WO2021190457A1 - 控制全地形车的方法 - Google Patents

控制全地形车的方法 Download PDF

Info

Publication number
WO2021190457A1
WO2021190457A1 PCT/CN2021/082134 CN2021082134W WO2021190457A1 WO 2021190457 A1 WO2021190457 A1 WO 2021190457A1 CN 2021082134 W CN2021082134 W CN 2021082134W WO 2021190457 A1 WO2021190457 A1 WO 2021190457A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
soc
engine
motor
controlling
Prior art date
Application number
PCT/CN2021/082134
Other languages
English (en)
French (fr)
Inventor
虎普军
袁章平
Original Assignee
赛格威科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赛格威科技有限公司 filed Critical 赛格威科技有限公司
Publication of WO2021190457A1 publication Critical patent/WO2021190457A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to the field of vehicle technology, and in particular, to a method for controlling an all-terrain vehicle.
  • all-terrain vehicles are powered by a fuel engine, and the transmission and the engine are integrated or split.
  • the transmission includes CVT (Continuously Variable Transmission) and reduction gear transmission.
  • the engine power output is transmitted through the CVT through the V-belt.
  • the power source is a gasoline engine, coupled with the low transmission efficiency of the CVT structure, there are shortcomings of insufficient power under certain working conditions, as well as insufficient mixed gas combustion, low thermal efficiency, high fuel consumption, and harmful gas emissions. High content.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art.
  • one purpose of the present disclosure is to propose a method for controlling an all-terrain vehicle, which can realize reasonable control of the power generation and driving of the all-terrain vehicle, so as to meet the normal driving of the all-terrain vehicle.
  • the method for controlling an all-terrain vehicle proposed by the embodiment of the first aspect of the present disclosure includes obtaining the engine speed value and the SOC value of the power battery; according to the engine speed value and the SOC value of the power battery The operation mode of the motor is controlled, wherein the operation mode includes at least one of a driving mode, a power generation mode, and a field weakening mode.
  • the operation mode of the motor is controlled according to the engine speed value and the SOC value of the power battery, and the driving and power generation of the all-terrain vehicle are reasonably controlled to realize the control of the all-terrain vehicle, and, Compared with the method of only using fuel to provide power, the embodiment of the present disclosure controls the operation mode of the motor according to the engine speed value and the SOC value of the power battery, which can reduce harmful gas emissions.
  • controlling the operation mode of the electric motor according to the engine speed value and the SOC value of the power battery includes: determining that the SOC value is less than a first SOC threshold and the speed value is less than or equal to a first idle speed Threshold, controlling the motor to enter the field weakening mode.
  • controlling the operation mode of the electric motor according to the rotational speed value of the engine and the SOC value of the power battery further includes: determining that the SOC value is less than the first SOC threshold and the rotational speed value is greater than the The first idle speed threshold is used to control the motor to enter the power generation mode, wherein the motor does not respond to driving commands.
  • controlling the operation mode of the electric motor according to the rotational speed value of the engine and the SOC value of the power battery includes: determining that the SOC value is greater than the first SOC threshold value and less than or equal to the second SOC threshold value, And it is determined that the rotational speed value of the engine is less than or equal to a second idle speed threshold value, and the electric motor is controlled to enter the driving mode, wherein the second idle speed threshold value is equal to or greater than the first idle speed threshold value.
  • controlling the operation mode of the electric motor according to the rotational speed value of the engine and the SOC value of the power battery further includes: determining that the SOC value is greater than the first SOC threshold value and less than or equal to the second SOC threshold value , And determining that the rotation speed of the engine is greater than the second idle speed threshold, and controlling the electric motor to enter the power generation mode.
  • controlling the operation mode of the electric motor according to the rotational speed value of the engine and the SOC value of the power battery includes: determining that the SOC value is greater than a second SOC threshold, controlling the electric motor to only respond to driving commands, and Enter the driving mode according to the driving instruction.
  • the method further includes: acquiring accelerator pedal detection data; determining that the accelerator pedal depth is increased according to the accelerator pedal detection data, and adjusting the engine operating torque and the motor based on the SOC value and the operating mode of the motor Generated power, motor operating torque.
  • adjusting the engine operating torque, the motor generated power, and the motor operating torque according to the SOC value and the operating mode of the motor includes: the SOC value is less than or equal to a second SOC threshold, wherein the motor In the power generation mode, the engine operating torque is controlled to increase and the power generated by the motor is controlled to decrease, or the motor is in the driving mode, the engine operating torque is controlled to increase, and the motor operating torque is controlled to increase; or, the SOC value Greater than the second SOC threshold, the motor is in the drive mode, the engine operating torque is controlled to increase and the motor operating torque is controlled to increase.
  • the method further includes: obtaining vehicle speed information in response to a braking signal; determining that the SOC value is less than a third SOC threshold value and determining that the vehicle speed value is greater than the vehicle speed threshold value according to the vehicle speed information, then sending an energy recovery command Can signal.
  • the method before obtaining the engine speed value and the SOC value of the power battery, the method further includes: obtaining the operating parameters of the engine; judging the engine state according to the operating parameters; the engine is in the operating state, Obtain the rotational speed value of the engine, or, if the engine fails, a failure alarm is issued.
  • Fig. 1 is a flowchart of a method for controlling an all-terrain vehicle according to an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of SOC segmentation according to an embodiment of the present disclosure
  • Fig. 3 is a flowchart of a method for controlling an all-terrain vehicle according to another embodiment of the present disclosure
  • Fig. 4 is a structural block diagram of an all-terrain vehicle according to an embodiment of the present disclosure.
  • the following describes the method for controlling the all-terrain vehicle according to the embodiment of the first aspect of the present disclosure with reference to the drawings.
  • the method can realize reasonable control of the power generation and driving of the all-terrain vehicle to meet the normal driving of the all-terrain vehicle.
  • the all-terrain vehicle of the embodiment of the present disclosure includes a hybrid all-terrain vehicle.
  • Hybrid power generally refers to hybrid power, that is, a mixture of fuel (gasoline, diesel, etc.) and electric energy.
  • All-terrain vehicles are vehicles designed for harsh terrain environments and regions. In theory, they refer to vehicles that can drive on any terrain. The biggest feature is that they have low ground pressure, strong passability, and can be difficult to maneuver in ordinary vehicles. It walks freely on the terrain and can easily pass through harsh terrain such as hills, jungles, beaches, deserts, and snow.
  • Hybrid all-terrain vehicles include at least an all-terrain vehicle frame, motor and engine, power battery, and vehicle controller. The vehicle controller is used to monitor the running status of the vehicle.
  • the engine and electric motor can be used for driving, the engine can also be used to drive the electric motor to generate electricity, and the power battery is used to store electrical energy.
  • Fig. 1 shows a flowchart of a method for controlling an all-terrain vehicle according to an embodiment of the present disclosure. As shown in Fig. 1, the method for controlling an all-terrain vehicle according to an embodiment of the present disclosure at least includes steps S1-S2.
  • Step S1 Obtain the rotational speed value of the engine and the SOC (State of charge, state of charge) value of the power battery.
  • the method of the embodiment of the present disclosure realizes the control of the all-terrain vehicle by taking the rotation speed value of the engine and the SOC value of the power battery as reference objects to control the operation mode of the electric motor.
  • the state of the engine can be detected by the vehicle controller, such as whether the engine is started or whether the engine is faulty, etc., and then when the engine is running, the engine speed value is obtained, and the state parameters of the power battery are detected to obtain power.
  • the SOC value of the battery can be detected by the vehicle controller, such as whether the engine is started or whether the engine is faulty, etc., and then when the engine is running, the engine speed value is obtained, and the state parameters of the power battery are detected to obtain power.
  • the SOC value of the battery can be detected by the vehicle controller, such as whether the engine is started or whether the engine is faulty, etc.
  • Step S2 controlling the operation mode of the motor according to the engine speed value and the SOC value of the power battery, where the operation mode includes at least one of a driving mode, a power generation mode, and a field weakening mode.
  • the motor has the function of generating power and starting.
  • the method of the embodiment of the present disclosure controls the operation mode of the motor according to the obtained engine speed value and the SOC value of the power battery, so as to realize the control of the all-terrain vehicle. Meet the normal operation of all-terrain vehicles.
  • the operation mode of the motor includes at least one of a driving mode, a power generation mode, and a field weakening mode.
  • the motor when the motor is in the power generation mode, it has the function of a generator, and the engine drives the motor to generate electricity; when the motor is in the field weakening mode, it has the function of starting the engine; when the motor is in the drive mode, the motor is a driving motor, that is, it participates in all terrain The drive of the car.
  • the operating mode of the motor can be determined, and the motor can be controlled to execute the corresponding operating mode, so as to realize the power generation control of the all-terrain vehicle.
  • the method of the embodiment of the present disclosure controls the operation mode of the motor according to the engine speed value and the SOC value of the power battery to provide driving force to the all-terrain vehicle, that is, to drive the all-terrain vehicle through electric energy, thereby reducing the harmful effects of the all-terrain vehicle. Emission of gas.
  • the operation mode of the motor is controlled according to the engine speed value and the SOC value of the power battery, and the driving and power generation of the all-terrain vehicle is reasonably controlled to realize the control of the all-terrain vehicle to meet
  • the operation mode of controlling the electric motor according to the engine speed value and the SOC value of the power battery in the embodiments of the present disclosure will be described in detail.
  • the SOC value of the power battery is used to measure the value of the remaining energy of the power battery, and the range is 0-100%, and 100% means that the battery is fully charged.
  • the present disclosure may control the operation mode of the electric motor according to different SOC ranges and speed value ranges.
  • the vehicle controller determines the SOC value of the power battery and the range of the engine speed value. When it is determined that the SOC value is less than the first SOC threshold value and the speed value is less than or equal to the first idle speed threshold value, the engine is in an idle state at this time, It does not provide driving force for the entire vehicle.
  • the motor is controlled to enter the field weakening mode to wait for the engine to be started to facilitate the control of the normal driving of the all-terrain vehicle.
  • the motor does not respond to the driving command; or, when it is determined When the SOC value is less than the first SOC threshold and the speed value is greater than the first idle speed threshold, the motor is controlled to enter the power generation mode, so that the engine-driven motor supplies power to the power battery to control the driving and power generation of the all-terrain vehicle, where the motor does not respond to driving commands; Or, when it is determined that the SOC value is greater than the first SOC threshold value and less than or equal to the second SOC threshold value, and it is determined that the engine speed value is less than or equal to the second idle speed threshold value, the power battery SOC value is in the normal working range at this time, which can meet the requirements of the all-terrain vehicle If driving is required, control the motor to enter the drive mode to control the driving and power generation of the all-terrain vehicle, that is, provide electric energy through the power battery, and control the motor to drive the all-terrain vehicle, wherein the second idle speed threshold is equal to or greater than the first idle speed threshold; or When it is determined that the SOC
  • the driving force of the terrain vehicle so that the control motor only responds to the driving command, and enters the driving mode according to the driving command. Therefore, by setting different SOC value ranges in the embodiments of the present disclosure, it is possible to avoid frequent charging and discharging of the power battery when the SOC value of the power battery is too high or too low, thereby improving the safety and service life of the power battery, and by Setting the range of the engine speed value can prevent the engine from continuously driving the motor, so as to increase the fuel saving rate and reduce the emission of harmful gases.
  • FIG. 2 is a sectional schematic diagram of the SOC value of a power battery, where the range of the SOC value is set from 0% to A% to B% to 100%, that is, the first SOC threshold is A%, and the second SOC threshold is A%.
  • the SOC threshold value is B%
  • the first idle speed threshold is set to be equal to the second idle speed threshold, both are 2500rpm. Therefore, if the SOC value is lower than A%, the motor does not participate in driving.
  • the motor When the engine speed value is less than 2500rpm, the motor enters field weakening Mode, when the engine speed value is greater than 2500rpm, the motor enters the power generation mode; if the SOC value is higher than A% and lower than B%, the motor participates in driving. When the engine speed value is less than 2500rpm, the motor enters the driving mode. When it is greater than 2500rpm, the motor enters the power generation mode; if the SOC value is higher than B%, the motor only enters the drive mode, not the power generation mode.
  • the method of the present disclosure further includes: acquiring accelerator pedal detection data, and adjusting the engine operating torque and motor power generation according to the SOC value and the operating mode of the motor after determining that the accelerator pedal depth has increased according to the accelerator pedal detection data.
  • Operating torque specifically, when the SOC value is less than or equal to the second SOC threshold, if the motor is in the power generation mode, the engine is controlled to increase its operating torque and control the motor’s power generation to decrease, that is, the motor has the function of a generator at this time to control the engine Drive the motor to generate electricity, so that by increasing the engine output torque, the power of the engine can be improved.
  • Controlling the output torque of the engine can not only drive the motor to generate electricity, but also drive the all-terrain vehicle together with the motor to increase the power of the all-terrain vehicle.
  • the motor responds to the driving command, by reducing the power generated by the motor, that is, reducing the power generated by the motor to the power battery, so that the driving power of the motor to the all-terrain vehicle is increased to meet the needs of the driving condition of the all-terrain vehicle, or if the motor is driving Mode, the engine operating torque is controlled to increase and the motor operating torque is increased to increase the driving force of the all-terrain vehicle and meet the needs of the road conditions of the all-terrain vehicle; or, when the SOC value is greater than the second SOC threshold, the motor is now In the driving mode, the engine operating torque is controlled to increase and the motor operating torque is controlled to increase, so as to increase the driving force of the all-terrain vehicle and meet the needs of the road conditions of the all-terrain vehicle.
  • the method of the present disclosure further includes: acquiring vehicle speed information in response to the braking signal; determining that the SOC value is less than the third SOC threshold and determining that the vehicle speed value is greater than the vehicle speed threshold according to the vehicle speed information, then sending an energy recovery enable signal.
  • the motor when the all-terrain vehicle is coasting or braking, the motor outputs negative torque to generate electricity and charge the power battery.
  • This process of converting kinetic energy into electrical energy is called energy recovery.
  • the energy recovery enable signal is sent,
  • the energy recovery enable signal can be understood as a trigger signal for energy recovery, that is, start the energy recovery function, control the motor for energy recovery, and can provide the recovered electric energy to the power battery to continue to drive the all-terrain vehicle.
  • the vehicle controller detects whether there is a braking signal, and when it determines that the braking signal is valid, it judges whether to perform energy recovery based on the vehicle speed information and the SOC value of the power battery, and then The vehicle controller determines that the SOC value is less than the third threshold and the vehicle speed is greater than the vehicle speed threshold, and sends an energy recovery enable signal to the micro control unit.
  • the micro control unit performs energy recovery according to the SOC state. For example, the vehicle controller determines whether the SOC value is less than 90%, And whether the vehicle speed is greater than 15km/h, if the conditions are met, the energy recovery signal is sent to the micro control unit, otherwise, energy recovery is not performed.
  • the braking energy recovery judges the braking energy recovery torque based on braking and vehicle speed. The greater the braking torque, the higher the energy recovery.
  • the energy recovery signal is composed of a pedal switch signal and a pedal analog value.
  • the method of the embodiment of the present disclosure further includes obtaining the operating parameters of the engine, and judging the engine state according to the operating parameters, and when the engine is in the running state, obtaining The speed value of the engine, or, when the engine fails, a fault alarm is issued.
  • the method for controlling an all-terrain vehicle is illustrated below with reference to FIG. 3.
  • the detailed process includes steps S3-step S24, which are specifically as follows.
  • the SOC value is divided into a range of 0% to A % ⁇ B% ⁇ 100%, that is, the first SOC threshold is A%, the second SOC threshold is B%, and the first idle speed threshold is set to be equal to the second idle speed threshold, both at 2500 rpm.
  • Step S3 start the all-terrain vehicle, and execute step S4.
  • step S4 the VCU (Vehicle Control Unit, vehicle controller) judges whether the engine is running.
  • step S5 the engine fails, an error is reported, and the start is terminated.
  • step S6 it is judged whether the SOC value is greater than 0% and less than A%, and if yes, execute step S10.
  • step S7 it is judged whether the SOC value is greater than A% and less than B%, and if so, step S15 is executed.
  • step S8 it is judged whether the SOC value is greater than B% and less than 100%, and if so, step S19 is executed.
  • step S9 it is judged whether there is a brake signal, and if so, step S22 is executed.
  • Step 10 Determine whether the engine speed is less than 2500 rpm, if yes, execute step S11, if not, execute step S12.
  • Step S11 the motor enters the free mode, that is, the field weakening mode, and the ECU (Electronic Control Unit, electronic control unit) is driven separately.
  • ECU Electronic Control Unit, electronic control unit
  • step S12 the MCU (Microcontroller Unit) enters the power generation mode, that is, the motor executes the power generation mode.
  • step S13 it is determined whether the accelerator pedal is increased, and if so, step S14 is executed.
  • step S14 the output torque of the ECU is increased, and the MCU reduces the generated power.
  • step S15 it is determined whether the engine speed is less than 2500 rpm, if yes, then step S16 is executed, if not, step S12 is executed.
  • Step S16 the motor enters the driving mode to increase power.
  • step S17 it is determined whether the accelerator pedal is increased, and if so, step S18 is executed.
  • Step S18 increase the output torque of the ECU, and increase the output torque of the MCU.
  • Step S19 the motor enters the driving mode.
  • step S20 it is determined whether the accelerator pedal is increased, and if so, step S21 is executed.
  • Step S21 increase the output torque of the ECU, and increase the output torque of the MCU.
  • Step S22 it is determined whether the SOC value is less than 90 and the vehicle speed is greater than 15km/h, if yes, then step S24 is executed, if not, step S23 is executed.
  • Step S23 energy recovery.
  • Step S24 Do not start energy recovery.
  • the engine speed value and the SOC value of the power battery are used to control the operation mode of the motor, reasonably control the driving and power generation of the all-terrain vehicle, and realize the control of the all-terrain vehicle. Control to meet the normal operation of the all-terrain vehicle.
  • the all-terrain vehicle in the embodiment of the present disclosure adopts a direct-connected driving mode and adopts the motor power generation control method provided by the above-mentioned embodiment, which can avoid frequent charging and discharging of the power battery and improve The service life of the power battery can reduce the emission of harmful gases.
  • Fig. 4 is a structural block diagram of an all-terrain vehicle provided by an embodiment of the present disclosure.
  • the all-terrain vehicle 1 of an embodiment of the present disclosure includes an engine 2, a motor 3, a vehicle controller 4, and an electronic control unit. 5 and the micro control unit 6.
  • the vehicle controller 4 is used to monitor the operating status of the entire vehicle; the electronic control unit 5 is used to monitor and control the operating condition information of the engine 2; the micro-control unit 6 is used to monitor and control the operating condition information of the motor 3 .
  • the vehicle controller 4, the electronic control unit 5, and the micro control unit 6 communicate through the vehicle CAN bus to implement the method for controlling the all-terrain vehicle provided in the above embodiment, according to the engine speed value and the SOC value of the power battery Control the operation mode of the motor, and reasonably control the driving and power generation of the all-terrain vehicle.
  • the vehicle controller 4, the electronic control unit 5, and the micro-control unit 6 communicate through the vehicle CAN bus, and adopt the method of controlling the all-terrain vehicle provided by the above-mentioned embodiments. Realize the control of the all-terrain vehicle to meet the normal operation of the all-terrain vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

一种控制全地形车的方法,包括:获取发动机的转速值和动力电池的SOC值;根据发动机的转速值和动力电池的SOC值控制电机的运行模式,其中,运行模式包括驱动模式、发电模式和弱磁模式中的至少一种。

Description

控制全地形车的方法
相关申请的交叉引用
本申请要求北京致行慕远科技有限公司于2020年3月27日提交的名称为“控制全地形车的方法”的中国专利申请号“202010228594.7”的优先权。
技术领域
本公开涉及车辆技术领域,尤其是涉及一种控制全地形车的方法。
背景技术
相关技术中,全地形车以燃油发动机为动力,变速器与发动机集成一体式或分体式,变速器包括CVT(Continuously Variable Transmission,无级变速器)和减速齿轮传动,发动机动力输出经CVT通过V型带传递到变速箱,经齿轮减速后输出。但是,由于动力源是汽油发动机,再加上CVT结构传动效率低下,在某些特定工况下存在动力不足的缺陷,以及会产生混合气燃烧不充分、热效率低、燃油消耗高,有害气体排放含量高的情况。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开的一个目的在于提出一种控制全地形车的方法,该方法可以实现对全地形车的发电和驱动的合理控制,以满足全地形车的正常行驶。
为了解决上述问题,本公开第一方面实施例提出的控制全地形车的方法,包括,获取发动机的转速值和动力电池的SOC值;根据所述发动机的转速值和所述动力电池的SOC值控制电机的运行模式,其中,所述运行模式包括驱动模式、发电模式和弱磁模式中的至少一种。
根据本公开实施例的控制全地形车的方法,根据发动机的转速值和动力电池的SOC值控制电机的运行模式,合理控制全地形车的驱动和发电,实现对全地形车的控制,以及,相较于仅采用燃油提供动力的方式,本公开实施例根据发动机的转速值和动力电池的SOC值以控制电机运行模式的方式,可以减少有害气体的排放。
在一些实施例中,根据所述发动机的转速值和所述动力电池的SOC值控制电机的运行模式,包括:确定所述SOC值小于第一SOC阈值且所述转速值小于或等于第一怠速阈值,控制所述电机进入所述弱磁模式。
在一些实施例中,根据所述发动机的转速值和所述动力电池的SOC值控制电机的运行模式,还包括:确定所述SOC值小于所述第一SOC阈值且所述转速值大于所述第一怠速阈值,控制所述电机进入所述发电模式,其中,所述电机不响应驱动指令。
在一些实施例中,根据所述发动机的转速值和所述动力电池的SOC值控制电机的运行模 式,包括:确定所述SOC值大于所述第一SOC阈值且小于或等于第二SOC阈值,以及确定所述发动机的转速值小于或等于第二怠速阈值,控制所述电机进入所述驱动模式,其中,所述第二怠速阈值等于或大于所述第一怠速阈值。
在一些实施例中,根据所述发动机的转速值和所述动力电池的SOC值控制电机的运行模式,还包括:确定所述SOC值大于所述第一SOC阈值且小于或等于第二SOC阈值,以及确定所述发动机的转速值大于所述第二怠速阈值,控制所述电机进入所述发电模式。
在一些实施例中,根据所述发动机的转速值和所述动力电池的SOC值控制电机的运行模式,包括:确定所述SOC值大于第二SOC阈值,控制所述电机仅响应驱动指令,并根据所述驱动指令进入所述驱动模式。
在一些实施例中,所述方法还包括:获取加速踏板检测数据;根据所述加速踏板检测数据确定加速踏板深度增加,则根据所述SOC值和所述电机的运行模式调整发动机运行扭矩和电机发电功率、电机运行扭矩。
在一些实施例中,根据所述SOC值和所述电机的运行模式调整发动机运行扭矩和电机发电功率、电机运行扭矩,包括:所述SOC值小于或等于第二SOC阈值,其中,所述电机处于所述发电模式,控制发动机运行扭矩增大且控制电机发电功率降低,或者,所述电机处于所述驱动模式,控制发动机运行扭矩增大且控制电机运行扭矩增大;或者,所述SOC值大于第二SOC阈值,所述电机处于所述驱动模式,控制发动机运行扭矩增大且控制电机运行扭矩增大。
在一些实施例中,所述方法还包括:响应于制动信号,获取车速信息;确定所述SOC值小于第三SOC阈值且根据所述车速信息确定车速值大于车速阈值,则发送能量回收使能信号。
在一些实施例中,在获取发动机的转速值和动力电池的SOC值之前,所述方法还包括:获取所述发动机的运行参数;根据所述运行参数判断发动机状态;所述发动机处于运行状态,获取所述发动机的转速值,或者,所述发动机发生故障,进行故障报警。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开一个实施例的控制全地形车方法的流程图;
图2是根据本公开一个实施例的SOC分段示意图;
图3是根据本公开另一个实施例的控制全地形车方法的流程图;
图4是根据本公开一个实施例的全地形车的结构框图。
附图标记:
全地形车1;发动机2;电机3;整车控制器4;电子控制单元5;微控制单元6。
具体实施方式
下面详细描述本公开的实施例,参考附图描述的实施例是示例性的,下面详细描述本公开的实施例。
下面参考附图描述根据本公开第一方面实施例提供的控制全地形车的方法,该方法可以实现对全地形车的发电和驱动的合理控制,以满足全地形车的正常行驶。
在实施例中,本公开实施例的全地形车包括混合动力全地形车。混合动力一般是指油电混合动力,即燃料(汽油、柴油等)和电能的混合。全地形车是针对恶劣地形环境和地域而设计的车辆,理论上是指可以在任何地形上行驶的车辆,最大的特点是具有较低的接地压力,通过性强,可以在普通车辆难以机动的地形上行走自如,可以轻松地穿过山丘、丛林、岸滩、沙漠、雪地等恶劣地形。混合动力全地形车至少包括全地形车车架、电机和发动机、动力电池、整车控制器。整车控制器用于监控整车运行状态,发动机和电机可用于驱动,发动机也可用于驱动电机发电,动力电池用于存储电能。
图1所示为本公开实施例的控制全地形车方法的流程图,如图1所示,本公开实施例的控制全地形车方法至少包括步骤S1-S2。
步骤S1,获取发动机的转速值和动力电池的SOC(State of charge,荷电状态)值。
本公开实施例的方法通过以发动机的转速值和动力电池的SOC值作为参考对象,以控制电机的运行模式,实现对全地形车的控制。
在实施例中,可以通过整车控制器检测发动机的状态,如发动机是否启动或者发动机是否故障等,进而在发动机处于运行状态时,获取发动机的转速值,以及检测动力电池的状态参数,获取动力电池的SOC值。
步骤S2,根据发动机的转速值和动力电池的SOC值控制电机的运行模式,其中,运行模式包括驱动模式、发电模式和弱磁模式中的至少一种。
在实施例中,电机具有发电以及启动的功能,本公开实施例的方法根据获取的发动机的转速值和动力电池的SOC值,以控制电机的运行模式,从而实现对全地形车的控制,以满足全地形车的正常运行。其中,电机的运行模式包括驱动模式、发电模式和弱磁模式中的至少一种。
在实施例中,电机处于发电模式时,具有发电机的功能,发动机驱动电机发电;电机处于弱磁模式时,具有启动发动机的功能;电机处于驱动模式时,电机为驱动电机,即参与全地形车的驱动。
在实施例中,可以通过设定发动机的转速阈值以及划分动力电池的SOC值的阶段范围, 以确定电机的运行模式,控制电机执行相应的运行模式,以实现对全地形车的发电控制。同时,本公开实施例的方法通过根据发动机的转速值和动力电池的SOC值控制电机的运行模式,以给全地形车提供驱动力,即通过电能驱动全地形车,从而可以减少全地形车有害气体的排放。
根据本公开实施例的控制全地形车的方法,根据发动机的转速值和动力电池的SOC值控制电机的运行模式,合理控制全地形车的驱动和发电,实现对全地形车的控制,以满足全地形车的正常行驶,以及,相较于仅采用燃油提供动力的方式,本公开实施例根据发动机的转速值和动力电池的SOC值以控制电机运行模式的方式,可以减少有害气体的排放。
下面对于本公开实施例中根据发动机的转速值和动力电池的SOC值以控制电机的运行模式作具体说明。其中,动力电池的SOC值用于衡量动力电池剩余能量的数值,范围是0-100%,100%表示电池满电。
在实施例中,出于对燃油经济性和动力电池使用安全性的考虑,本公开可以根据不同的SOC范围以及转速值范围控制电机的运行模式。具体地,通过整车控制器判断动力电池的SOC值以及发动机转速值所在的范围,当确定SOC值小于第一SOC阈值且转速值小于或等于第一怠速阈值时,此时发动机处于怠速状态,不为整车提供驱动力,为防止动力电池继续耗电,则控制电机进入弱磁模式,以待启动发动机,便于控制全地形车的正常驱动,其中,电机不响应驱动指令;或者,当确定SOC值小于第一SOC阈值且转速值大于第一怠速阈值时,控制电机进入发电模式,使发动机驱动电机对动力电池供电,以控制全地形车的驱动和发电,其中,电机不响应驱动指令;或者,当确定SOC值大于第一SOC阈值且小于或等于第二SOC阈值,以及确定发动机的转速值小于或等于第二怠速阈值,此时动力电池SOC值处于正常工作范围,可以满足全地形车驱动的需要,则控制电机进入驱动模式,以控制全地形车的驱动和发电,即通过动力电池提供电能,控制电机驱动全地形车,其中,第二怠速阈值等于或大于第一怠速阈值;或者,当确定SOC值大于第一SOC阈值且小于或等于第二SOC阈值,以及确定发动机的转速值大于第二怠速阈值,则控制电机进入发电模式,使发动机驱动电机对动力电池供电,增加动力电池的电能,以提高全地形车的动力性,满足全地形车行驶的需求,其中,电机响应驱动指令;当确定SOC值大于第二SOC阈值,此时动力电池的SOC值较高,可以满足全地形车的驱动力,从而控制电机仅响应驱动指令,并根据驱动指令进入驱动模式。因此,本公开实施例中通过设定不同的SOC值范围,可以避免动力电池SOC值过高或过低时,对动力电池频繁的充放电,从而提高动力电池的使用安全和使用寿命,以及通过设定发动机转速值的范围,可以避免发动机持续驱动电机,以增加节油率,减少有害气体的排放含量。
举例说明,如图2所示为动力电池SOC值的分段示意图,其中,设定SOC值的范围为0%~A%~B%~100%,即第一SOC阈值为A%,第二SOC阈值为B%,以及设定第一怠速阈值等于第二怠速阈值,均为2500rpm,因此,若SOC值低于A%,电机不参与驱动,在发 动机转速值小于2500rpm时,电机进入弱磁模式,在发动机转速值大于2500rpm时,电机进入发电模式;若SOC值高于A%且低于B%时,电机参与驱动,在发动机转速值小于2500rpm时,电机进入驱动模式,在发动机转速值大于2500rpm时,电机进入发电模式;若SOC值高于B%时,电机只进入驱动模式,不可进入发电模式。
在实施例中,本公开的方法还包括,获取加速踏板检测数据,并根据加速踏板检测数据在确定加速踏板深度增加后,根据SOC值和电机的运行模式调整发动机运行扭矩和电机发电功率、电机运行扭矩,具体地,当SOC值小于或等于第二SOC阈值时,若电机处于发电模式,则控制发动机运行扭矩增大且控制电机发电功率降低,即此时电机具有发电机的功能,控制发动机驱动电机发电,从而通过增大发动机输出扭矩,可以提高发动机的动力性,控制发动机的输出扭矩既可以驱动电机发电,又可以与电机共同驱动全地形车行驶,以增加全地形车的动力性,以及电机响应于驱动指令,通过降低电机发电功率,即减少电机对动力电池的发电功率,使电机对全地形车的驱动功率增加,以满足全地形车行驶路况的需要,或者,若电机处于驱动模式,则控制发动机运行扭矩增大且控制电机运行扭矩增大,以增加全地形车的驱动力,满足全地形车行驶路况的需要;或者,当SOC值大于第二SOC阈值时,此时电机处于驱动模式,则控制发动机运行扭矩增大且控制电机运行扭矩增大,以增加全地形车的驱动力,满足全地形车行驶路况的需要。
在实施例中,本公开的方法还包括,响应于制动信号,获取车速信息;确定SOC值小于第三SOC阈值且根据车速信息确定车速值大于车速阈值,则发送能量回收使能信号。
在实施例中,全地形车在滑行或刹车时,电机输出负扭矩进行发电并为动力电池充电,这一将动能转换成电能的过程称为能量回收。具体地,在全地形车处于制动状态时,根据车速信息以及动力电池的SOC值,判断是否进行能量回收,当SOC值小于第三阈值且车速大于车速阈值时,发送能量回收使能信号,能量回收使能信号可以理解为进行能量回收的触发信号,即启动能量回收功能,控制电机进行能量回收,可以将回收的电能提供给动力电池,以用于继续驱动全地形车。举例说明,在全地形车在行驶中,整车控制器检测是否有制动信号,并在确定制动信号有效时,根据车速信息以及动力电池的SOC值,判断是否进行能量回收,并在整车控制器确定SOC值小于第三阈值且车速大于车速阈值,发送能量回收使能信号至微控制单元,微控制单元根据SOC状态进行能量回收,如整车控制器判断SOC值是否小于90%,且车速是否大于15km/h,若满足条件则发送能量回收信号至微控制单元,反之则不进行能量回收。其中,制动能量回收根据制动以及车速判断制动能量回收力矩,制动力矩越大,能量回收越高。以及能量回收信号有踏板开关信号与踏板模拟值组成。
在实施例中,在获取发动机的转速值和动力电池的SOC值之前,本公开实施例的方法还包括,获取发动机的运行参数,并根据运行参数判断发动机状态,当发动机处于运行状态时,获取发动机的转速值,或者,当发动机发生故障时,则进行故障报警。
下面通过附图3对本公开实施例的控制全地形车的方法进行举例说明,详细过程包括步 骤S3-步骤S24,具体如下,其中,如图2所示,SOC值的划分范围为0%~A%~B%~100%,即第一SOC阈值为A%,第二SOC阈值为B%,以及设定第一怠速阈值等于第二怠速阈值,均为2500rpm。
步骤S3,启动全地形车,执行步骤S4。
步骤S4,VCU(Vehicle control unit,整车控制器)判断发动机是否处于运行状态。
步骤S5,发动机发生故障,上报错误,起步终止。
步骤S6,判断SOC值是否大于0%且小于A%,若是,则执行步骤S10。
步骤S7,判断SOC值是否大于A%且小于B%,若是,则执行步骤S15。
步骤S8,判断SOC值是否大于B%且小于100%,若是,则执行步骤S19。
步骤S9,判断是否有制动信号,若是,则执行步骤S22。
步骤10,判断发动机转速是否小于2500rpm,若是,则执行步骤S11,若否,则执行步骤S12。
步骤S11,电机进入自由模式,即弱磁模式,ECU(Electronic Control Unit,电子控制单元)单独驱动。
步骤S12,MCU(Microcontroller Unit,微控制单元)进入发电模式,即电机执行发电模式。
步骤S13,判断加速踏板是否有增加,若是,则执行步骤S14。
步骤S14,增大ECU输出扭矩,MCU降低发电功率。
步骤S15,判断发动机转速是否小于2500rpm,若是,则执行步骤S16,若否,则执行步骤S12。
步骤S16,电机进入驱动模式,增加动力性。
步骤S17,判断加速踏板是否有增加,若是,则执行步骤S18。
步骤S18,增大ECU输出扭矩,增大MCU输出扭矩。
步骤S19,电机进入驱动模式。
步骤S20,判断加速踏板是否有增加,若是,则执行步骤S21。
步骤S21,增大ECU输出扭矩,增大MCU输出扭矩。
步骤S22,判断SOC值是否小于90且车速是否大于15km/h,若是,则执行步骤S24,若否,则执行步骤S23。
步骤S23,能量回收。
步骤S24,不启动能量回收。
总而言之,根据本公开实施例的控制全地形车的方法,通过发动机的转速值和动力电池的SOC值,以控制电机的运行模式,合理控制全地形车的驱动和发电,实现对全地形车的控制,以满足全地形车的正常运行,同时,本公开实施例中全地形车采用直连式行驶方式,并采用上述实施例提供的电机发电控制方法,可以避免动力电池的频繁充放电,提高动力电池 的使用寿命,且可以减少有害气体的排放含量。
如图4所示为本公开实施例提供的全地形车的结构框图,如图4所示,本公开实施例的全地形车1包括发动机2、电机3、整车控制器4、电子控制单元5以及微控制单元6。
具体地,整车控制器4用于监控全地形车整车运行状态;电子控制单元5用于监测与控制发动机2的工况信息;微控制单元6用于监测和控制电机3的工况信息。其中,整车控制器4、电子控制单元5和微控制单元6通过整车CAN总线通信,用于执行上述实施例提供的控制全地形车的方法,根据发动机的转速值和动力电池的SOC值控制电机的运行模式,合理控制全地形车的驱动和发电。
根据本公开实施例提供的全地形车1,通过整车控制器4、电子控制单元5和微控制单元6通过整车CAN总线通信,并采用上述实施例提供的控制全地形车的方法,可以实现对全地形车的控制,以满足全地形车的正常运行。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种控制全地形车的方法,其特征在于,包括:
    获取发动机的转速值和动力电池的SOC值;
    根据所述发动机的转速值和所述动力电池的SOC值控制电机的运行模式,其中,所述运行模式包括驱动模式、发电模式和弱磁模式中的至少一种。
  2. 根据权利要求1所述的控制全地形车的方法,其特征在于,根据所述发动机的转速值和所述动力电池的SOC值控制电机的运行模式,包括:
    确定所述SOC值小于第一SOC阈值且所述转速值小于或等于第一怠速阈值,控制所述电机进入所述弱磁模式。
  3. 根据权利要求2所述的控制全地形车的方法,其特征在于,根据所述发动机的转速值和所述动力电池的SOC值控制电机的运行模式,还包括:
    确定所述SOC值小于所述第一SOC阈值且所述转速值大于所述第一怠速阈值,控制所述电机进入所述发电模式,其中,所述电机不响应驱动指令。
  4. 根据权利要求1所述的控制全地形车的方法,其特征在于,根据所述发动机的转速值和所述动力电池的SOC值控制电机的运行模式,包括:
    确定所述SOC值大于所述第一SOC阈值且小于或等于第二SOC阈值,以及确定所述发动机的转速值小于或等于第二怠速阈值,控制所述电机进入所述驱动模式,其中,所述第二怠速阈值等于或大于所述第一怠速阈值。
  5. 根据权利要求4所述的控制全地形车的方法,其特征在于,根据所述发动机的转速值和所述动力电池的SOC值控制电机的运行模式,还包括:
    确定所述SOC值大于所述第一SOC阈值且小于或等于第二SOC阈值,以及确定所述发动机的转速值大于所述第二怠速阈值,控制所述电机进入所述发电模式。
  6. 根据权利要求1所述的控制全地形车的方法,其特征在于,根据所述发动机的转速值和所述动力电池的SOC值控制电机的运行模式,包括:
    确定所述SOC值大于第二SOC阈值,控制所述电机仅响应驱动指令,并根据所述驱动指令进入所述驱动模式。
  7. 根据权利要求1所述的控制全地形车的方法,其特征在于,所述方法还包括:
    获取加速踏板检测数据;
    根据所述加速踏板检测数据确定加速踏板深度增加,则根据所述SOC值和所述电机的运行模式调整发动机运行扭矩和电机发电功率、电机运行扭矩。
  8. 根据权利要求7所述的控制全地形车的方法,其特征在于,根据所述SOC值和所述电机的运行模式调整发动机运行扭矩和电机发电功率、电机运行扭矩,包括:
    所述SOC值小于或等于第二SOC阈值,其中,所述电机处于所述发电模式,控制发动机运行 扭矩增大且控制电机发电功率降低,或者,所述电机处于所述驱动模式,控制发动机运行扭矩增大且控制电机运行扭矩增大;
    或者,所述SOC值大于第二SOC阈值,所述电机处于所述驱动模式,控制发动机运行扭矩增大且控制电机运行扭矩增大。
  9. 根据权利要求1所述的控制全地形车的方法,其特征在于,所述方法还包括:
    响应于制动信号,获取车速信息;
    确定所述SOC值小于第三SOC阈值且根据所述车速信息确定车速值大于车速阈值,则发送能量回收使能信号。
  10. 根据权利要求1所述的控制全地形车的方法,其特征在于,在获取发动机的转速值和动力电池的SOC值之前,所述方法还包括:
    获取所述发动机的运行参数;
    根据所述运行参数判断发动机状态;
    所述发动机处于运行状态,获取所述发动机的转速值,或者,所述发动机发生故障,进行故障报警。
PCT/CN2021/082134 2020-03-27 2021-03-22 控制全地形车的方法 WO2021190457A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010228594.7 2020-03-27
CN202010228594 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021190457A1 true WO2021190457A1 (zh) 2021-09-30

Family

ID=72546341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082134 WO2021190457A1 (zh) 2020-03-27 2021-03-22 控制全地形车的方法

Country Status (2)

Country Link
CN (1) CN111703414B (zh)
WO (1) WO2021190457A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111703414B (zh) * 2020-03-27 2022-09-30 九号智能(常州)科技有限公司 控制全地形车的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209650052U (zh) * 2018-12-28 2019-11-19 北京致行慕远科技有限公司 全地形车
CN209650051U (zh) * 2018-12-28 2019-11-19 北京致行慕远科技有限公司 全地形车
US20190366829A1 (en) * 2018-02-20 2019-12-05 The United States Of America, As Represented By The Secretary Of The Navy Hyper-Compact Electric All-Terrain Vehicle Drivetrain and Conversion Kit
CN111703414A (zh) * 2020-03-27 2020-09-25 北京致行慕远科技有限公司 控制全地形车的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101602362A (zh) * 2009-06-08 2009-12-16 奇瑞汽车股份有限公司 一种混合动力车的辅助驱动扭矩分配方法
CN101691118B (zh) * 2009-10-13 2014-05-07 奇瑞汽车股份有限公司 一种混合动力汽车的电机辅助驱动模式控制方法
US9221455B2 (en) * 2011-02-03 2015-12-29 Suzuki Motor Corporation Drive control apparatus and method for providing a drive control to a hybrid electric vehicle, and hybrid electric vehicle
CN102431547A (zh) * 2011-10-28 2012-05-02 奇瑞汽车股份有限公司 一种可充电式混合动力汽车的控制方法
CN103587522B (zh) * 2013-12-04 2016-02-10 安徽工业大学 一种混合动力汽车动力总成智能控制方法
CN103802836B (zh) * 2014-01-26 2016-08-17 上汽通用五菱汽车股份有限公司 一种混合动力汽车控制方法
CN106853820B (zh) * 2015-12-09 2019-01-15 上海汽车集团股份有限公司 混合动力车辆多动力源分配的控制方法和系统
CN105599755B (zh) * 2016-01-18 2018-04-17 安徽安凯汽车股份有限公司 一种插电式混合动力客车的驱动轴转矩控制方法
CN109895758A (zh) * 2017-12-08 2019-06-18 郑州宇通客车股份有限公司 一种混合动力汽车发动机扭矩控制方法、系统及车辆
JP7035781B2 (ja) * 2018-05-08 2022-03-15 トヨタ自動車株式会社 車両の変速制御装置
CN110395243B (zh) * 2019-07-23 2021-03-23 南昌工程学院 一种cvt插电式四驱混合动力汽车的cvt速比优化及能量管理方法
CN110861631B (zh) * 2019-11-28 2021-07-20 中国重汽集团济南动力有限公司 一种同轴式混联混合动力车辆协同驱动控制系统,方法及混合动力车辆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190366829A1 (en) * 2018-02-20 2019-12-05 The United States Of America, As Represented By The Secretary Of The Navy Hyper-Compact Electric All-Terrain Vehicle Drivetrain and Conversion Kit
CN209650052U (zh) * 2018-12-28 2019-11-19 北京致行慕远科技有限公司 全地形车
CN209650051U (zh) * 2018-12-28 2019-11-19 北京致行慕远科技有限公司 全地形车
CN111703414A (zh) * 2020-03-27 2020-09-25 北京致行慕远科技有限公司 控制全地形车的方法

Also Published As

Publication number Publication date
CN111703414A (zh) 2020-09-25
CN111703414B (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
CN108545076B (zh) 一种基于bsg电机的车辆控制方法和装置
US10077039B2 (en) Hybrid electrical vehicle and method for controlling the same
KR100862432B1 (ko) Etc가 탑재된 하이브리드 전기자동차의 엔진 토크 제어방법
US10011264B2 (en) Control system of hybrid electrical vehicle and control method for the same
WO2022135097A1 (zh) 双电机车辆控制方法、装置、设备及存储介质
US7562730B2 (en) Hybrid vehicle and control method of hybrid vehicle
CN101691118B (zh) 一种混合动力汽车的电机辅助驱动模式控制方法
CN108556836B (zh) 功率分流混合动力汽车制动器辅助起动发动机的控制方法
KR101703613B1 (ko) 하이브리드 차량의 엔진 기동 시점 제어 방법 및 그 제어 장치
CN102029888B (zh) 一种机电液混合驱动车辆动力系统及其控制方法
CN102658817A (zh) 一种混合动力汽车实现纯电动功能的控制方法
CN108248365B (zh) 混联式气电混合动力车动力系统及控制方法
CN109240125B (zh) 一种混动车变速箱二轴需求扭矩计算方法
WO2024001873A1 (zh) 一种基于混合动力系统的挡位切换方法及系统
WO2023134397A1 (zh) 双电机车辆控制方法及装置
KR100737003B1 (ko) 직렬 및 병렬 하이브리드 자동차에서의 최적 운전점결정방법
WO2021190457A1 (zh) 控制全地形车的方法
JP2008094238A (ja) ハイブリッド車の制御装置
KR102663987B1 (ko) 마일드 하이브리드 차량의 시동 제어 장치 및 그 방법
CN111997766A (zh) 一种应用于汽车控制器的控制方法
CN114347973B (zh) 混合动力汽车催化器加热阶段扭矩控制方法
CN106828071B (zh) 一种混合动力车辆双离合驱动装置及控制方法
TWI662183B (zh) Hybrid control method
CN113459791A (zh) 一种混合动力电动汽车及应用其的能量管理控制方法
JP4211243B2 (ja) 充電制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775446

Country of ref document: EP

Kind code of ref document: A1