WO2021190407A1 - 摄像头模组及电子设备 - Google Patents

摄像头模组及电子设备 Download PDF

Info

Publication number
WO2021190407A1
WO2021190407A1 PCT/CN2021/081740 CN2021081740W WO2021190407A1 WO 2021190407 A1 WO2021190407 A1 WO 2021190407A1 CN 2021081740 W CN2021081740 W CN 2021081740W WO 2021190407 A1 WO2021190407 A1 WO 2021190407A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
lens
camera module
sub
piezoelectric deforming
Prior art date
Application number
PCT/CN2021/081740
Other languages
English (en)
French (fr)
Inventor
李明
蔡庆斌
刘钦雷
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021190407A1 publication Critical patent/WO2021190407A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism

Definitions

  • the present invention relates to the technical field of camera devices, in particular to a camera module and electronic equipment.
  • the camera of a mobile phone generally uses a focus motor to achieve the focus of the camera.
  • the current mainstream focus motor is a Voice Coil Motor (VCM).
  • VCM Voice Coil Motor
  • the structure of the VCM is complicated, the manufacturing process is long, and the driving force of the VCM is small, and it cannot drive a high-performance and heavier camera for focusing.
  • the VCM will generate a strong magnetic field during the working process, which will interfere with the imaging quality of the camera, causing the imaging quality to not meet the needs of consumers, and when there are multiple VCMs in the camera, there will be a magnetic field between the multiple VCMs. Interference, resulting in poor focusing effect of the camera, which in turn leads to poor imaging quality of the camera.
  • the invention discloses a camera module and electronic equipment, which can solve the problems of a VCM with a complex structure, a small driving force and the presence of magnetic field interference.
  • the present invention is implemented as follows:
  • an embodiment of the present invention discloses a camera module including a photosensitive chip, a lens, and a driving motor, wherein:
  • the lens is arranged opposite to the photosensitive chip
  • the driving motor includes a piezoelectric deforming part
  • the piezoelectric deforming part includes at least two piezoelectric deforming sub-parts
  • the at least two piezoelectric deforming sub-parts are stacked one by one
  • the at least two piezoelectric deforming sub-parts can be deformed along the stacking direction when energized, so as to drive the lens to move in the first direction or the second direction, wherein the first direction is close to the The direction of the photosensitive chip, the second direction is a direction away from the photosensitive chip.
  • an embodiment of the present invention discloses an electronic device including the above-mentioned camera module.
  • the lens is drivingly connected with the piezoelectric deforming part to drive the lens to move in a direction close to the photosensitive chip or away from the photosensitive chip, thereby achieving a focusing effect.
  • the piezoelectric deforming part includes a plurality of piezoelectric deforming sub-parts, and the deformation of each piezoelectric deforming sub-part is accumulated to realize the driving of the lens, and the driving force is relatively large, so that the driving mechanism can drive high performance and high performance. Heavy camera for focusing.
  • the structure of this drive mechanism is simple, so that the manufacturing process of the drive mechanism is simple, so that the manufacturing process of the drive mechanism is shorter, and the drive mechanism of this structure does not or is difficult to generate a magnetic field, so as to avoid the existence of a magnetic field.
  • Interfering with the imaging quality of the camera module results in that the imaging quality cannot meet the needs of consumers, and when there are multiple drive mechanisms in the camera module, there will be no magnetic field interference between the multiple drive mechanisms.
  • the voltage or current of the piezoelectric deforming part can be controlled to achieve precise driving of the lens, and the response speed is relatively fast.
  • FIG. 1 is a schematic diagram of a camera module disclosed in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a partial structure of a camera module disclosed in an embodiment of the present invention.
  • Fig. 3 is a schematic view of a piezoelectric deforming part disclosed in an embodiment of the present invention.
  • Fig. 4 is a cross-sectional view of Fig. 3.
  • 100-piezoelectric deformation part 110-piezoelectric deformation sub-part, 120-first electrical connection part, 130-support sheet;
  • 500-lens holder 500 cylindrical body, 520-connecting flange.
  • an embodiment of the present invention discloses a camera module.
  • the disclosed camera module includes a photosensitive chip, a lens 400 and a driving motor.
  • the lens 400 mainly functions to transmit and refract light. After passing through the lens 400, the external light is transmitted to the photosensitive chip, and the photosensitive chip receives the optical signal, thereby converting the optical signal into an electrical signal to achieve the purpose of imaging.
  • the structure and principle of the lens 400 and the photosensitive chip are all known technologies, and for the sake of brevity, the details are not repeated here.
  • the lens 400 is disposed opposite to the photosensitive chip, and the photosensitive chip realizes photosensitive imaging through the lens 400.
  • the driving motor includes a piezoelectric deforming part 100, the piezoelectric deforming part 100 includes at least two piezoelectric deforming sub-parts 110, at least two piezoelectric deforming sub-parts 110 are stacked one by one, and the at least two piezoelectric deforming sub-parts 110 are energized. In the case, it can be deformed along the stacking direction.
  • the materials of the piezoelectric deformable sub-part 110 can be divided into three categories according to the crystallization method.
  • the first category is a single crystal structure, such as quartz;
  • the second category is a polycrystalline structure, such as ceramics, such as piezoelectric ceramics BaTiO3 and lead zirconate titanate.
  • Piezoelectric ceramics (lead zirconate titanate piezoelectric ceramics, PZT); the third category is high polymer piezoelectric materials, such as vinylidene fluoride (PVDF). Since piezoelectric ceramics have the advantages of acid and alkali resistance, high energy conversion efficiency, no electromagnetic interference, and simple structure, in the present invention, the piezoelectric deformable sub-part 110 may preferably be made of piezoelectric ceramics.
  • the sub-part 110 may be a piezoelectric ceramic sheet.
  • the relationship between the amount of deformation of the piezoelectric deformation portion 100 and the change of the electric field is as follows:
  • is the amount of deformation of the piezoelectric deforming part 100
  • n is the number of layers of the piezoelectric deforming part 100, that is, the number of piezoelectric deforming sub-parts 110 herein
  • d 33 is the piezoelectric strain coefficient of the electric deforming sub-part 110, That is, the ratio of the strain of the piezoelectric deforming sub-portion 110 in the polarization direction to the intensity of the electric field applied in the polarization direction
  • U is the voltage applied across the piezoelectric deforming sub-portion 110
  • I is the voltage passing through the piezoelectric deforming sub-portion 110 C is the capacitance of the piezoelectric deforming sub-part 110.
  • the piezoelectric deforming part 100 By adjusting the voltage, the number of layers or the piezoelectric strain coefficient at both ends of the piezoelectric deforming sub-part 110 (or the current, the number of layers, the capacitance or the piezoelectric strain coefficient at both ends of the piezoelectric deforming sub-part 110), the piezoelectric deforming part 100 The amount of deformation required for focusing of the lens 400, that is, the stroke of the driving motor can be obtained.
  • the principle of deformation of the piezoelectric deformation portion 100 is as follows: due to the action of the electric field force in the direction of the electric field, the atomic unit cells of the piezoelectric deformation portion 100 are elongated, and a large number of atomic unit cells are elongated microscopically. When it accumulates to a certain amount, it appears as the deformation of the piezoelectric deformation portion 100 in a macroscopic view.
  • the piezoelectric deformation part 100 Because the deformation of the piezoelectric deformation part 100 is caused by the deformation of the atomic unit cell, the piezoelectric deformation part 100 has a larger thrust than a driving device such as a VCM, and has a faster response speed and a higher accuracy of action, and it can fully match heavier The focus and anti-shake requirements of the high-performance lens.
  • the deformation mechanism of the piezoelectric deformation portion 100 is a well-known technology, and for the sake of brevity of the text, it will not be repeated here.
  • the piezoelectric deforming part 100 can deform along the stacking direction to drive the lens 400 to move in the first direction or the second direction, where the first direction is approaching The direction of the photosensitive chip, and the second direction is a direction away from the photosensitive chip.
  • the lens 400 can move in a direction close to the photosensitive chip or away from the photosensitive chip along with the deformation of the at least two piezoelectric deforming sub-parts 110, so as to achieve a focusing effect, thereby making the camera module have a better shooting effect.
  • the lens 400 is drivingly connected to the piezoelectric deforming part 100 to drive the lens 400 to move in a direction close to the photosensitive chip or away from the photosensitive chip, thereby achieving a focusing effect.
  • the piezoelectric deforming part 100 includes a plurality of piezoelectric deforming sub-parts 110, and the deformation of each piezoelectric deforming sub-part 110 is accumulated to realize the driving of the lens 400, and the driving force is relatively large, so that the driving mechanism can Drive a high-performance and heavier camera to focus.
  • the structure of this drive mechanism is simple, so that the manufacturing process of the drive mechanism is simple, so that the manufacturing process of the drive mechanism is shorter, and the drive mechanism of this structure does not or is difficult to generate a magnetic field, so as to avoid the existence of a magnetic field.
  • Interfering with the imaging quality of the camera module results in that the imaging quality cannot meet the needs of consumers, and when there are multiple drive mechanisms in the camera module, there will be no magnetic field interference between the multiple drive mechanisms.
  • the precise driving of the lens 400 can be achieved by controlling the voltage or current of the piezoelectric deforming part 100, and the response speed is fast, and finally solves the problem of the complex structure of the VCM and the small driving force. And there is the problem of magnetic field interference.
  • the deformation amount of the piezoelectric deforming part 100 can be controlled by adjusting the voltage at both ends of the piezoelectric deforming sub-part 110.
  • the at least two piezoelectric deforming sub-parts 110 can drive the lens 400 to move in the first direction, so that the lens 400 is close to the photosensitive chip; at least When the second voltage is applied to the two piezoelectric deforming sub-parts 110, the at least two piezoelectric deforming sub-parts 110 can drive the lens 400 to move in the second direction, so that the lens 400 is away from the photosensitive chip.
  • the first voltage and the second voltage may be opposite.
  • the first voltage can be applied to the at least two piezoelectric deforming sub-parts 110, so that the at least two piezoelectric deforming sub-parts 110 110 drives the lens 400 to move in the first direction, so that the lens 400 is close to the photosensitive chip, so that the image of the subject through the lens 400 is located on the photosensitive chip, so that the camera module completes focusing.
  • the image of the subject through the lens 400 is located on the side of the photosensitive chip away from the lens 400, it means that the distance between the lens 400 and the photosensitive chip is relatively small, and the distance between the lens 400 and the photosensitive chip needs to be increased to make the photographed
  • the image of the object through the lens 400 is located on the photosensitive chip.
  • a second voltage can be applied to the at least two piezoelectric deforming sub-parts 110, so that the at least two piezoelectric deforming sub-parts 110 drive the lens 400 in the second direction.
  • the lens 400 is moved to move away from the photosensitive chip, so that the image of the subject through the lens 400 is located on the photosensitive chip, so that the camera module completes focusing.
  • This kind of focusing process is relatively simple, which can facilitate the camera module to focus, and at the same time, it can also facilitate the control of the camera module, thereby facilitating the designer to design the control device of the camera module or write the control program.
  • the movement direction of the piezoelectric deforming part 100 to drive the lens 400 by controlling the magnitude of the voltage applied to the piezoelectric deforming sub-part 110. Specifically, when applied to the piezoelectric deforming sub-part 110 When the voltage is large, the deformation amount of the piezoelectric deforming part 100 is greater. At this time, the voltage applied to the piezoelectric deforming sub-part 110 is reduced, and the deformation amount of the piezoelectric deforming part 100 is reduced. In this case, The direction of movement of the piezoelectric deformation part 100 to drive the lens 400 when the voltage is large is opposite to the direction of movement of the drive lens 400 when the voltage is reduced.
  • the deformation amount of the piezoelectric deforming part 100 is smaller. At this time, the voltage applied to the piezoelectric deforming sub-part 110 is increased, and the piezoelectric deforming part 100 In this case, the movement direction of the driving lens 400 when the voltage is large by the piezoelectric deformation part 100 is opposite to the movement direction of the driving lens 400 when the voltage is reduced. It can be seen that, in the embodiment of the present invention, It is also possible to control the direction in which the piezoelectric deforming part 100 drives the lens 400 by controlling the magnitude of the voltage applied to the piezoelectric deforming sub-part 110.
  • the lens 400 is drivingly connected to the piezoelectric deforming part 100.
  • the lens 400 can be driven and connected to the piezoelectric deforming part 100 in many ways.
  • the lens 400 is provided on the piezoelectric deforming part 100 by a snap-fit method, which is convenient for disassembly, or the lens 400 can also be glued.
  • the connection method is directly connected to the piezoelectric deformation part 100, which is simple to operate, and is not limited in the embodiment of the present invention.
  • the camera module may further include a lens holder 500, the lens holder 500 is connected to the piezoelectric deforming part 100, the lens 400 is disposed on the lens holder 500, and the piezoelectric deforming part 100 drives the lens 400 close to the photosensitive chip or near the photosensitive chip through the lens holder 500. Move away from the photosensitive chip.
  • the lens holder 500 can function to fix the lens 400.
  • the lens holder 500 can also prevent the lens 400 from directly contacting the piezoelectric deforming part 100.
  • the piezoelectric deforms The possible slight difference in the amount of deformation at each position on the portion 100 prevents uneven force on the lens 400, thereby improving the reliability of the camera module.
  • the camera module is usually provided with a plurality of lenses 400, and the process of directly setting each lens 400 with the piezoelectric deforming part 100 is relatively cumbersome.
  • One-time installation through the lens holder 500 can avoid multiple lenses 400 on the piezoelectric deforming part 100.
  • the lens 400 is installed at a time, thereby simplifying the installation process of drivingly connecting the plurality of lenses 400 with the piezoelectric deforming part 100.
  • the lens holder 500 may include a cylindrical body 510 and a connecting flange 520.
  • the connecting flange 520 is arranged on the outer side wall of one end of the cylindrical body 510; the cylindrical body 510 is arranged in the piezoelectric deforming part 100 with the connecting convex The edge 520 overlaps on the piezoelectric deformation part 100 and is connected to the piezoelectric deformation part 100.
  • the connecting flange 520 enables the lens holder 500 to be connected to the piezoelectric deforming part 100 in an overlapping manner. This assembly method is relatively simple, which facilitates the installation work of the staff.
  • the lens holder 500 can be connected to the piezoelectric deforming part 100 in many ways.
  • the lens holder 500 and the piezoelectric deforming part 100 are connected by threads, or the lens holder 500 and the piezoelectric deforming part 100 are connected by clamping.
  • the embodiment does not limit this.
  • the lens holder 500 may be connected to the piezoelectric deformable portion 100 through an adhesive layer, that is, the lens holder 500 is adhered to the piezoelectric deformable portion 100.
  • the bonding method is simple and easy to operate. , And the bonded lens holder 500 is reliably connected to the piezoelectric deforming part 100.
  • the driving motor may further include a deformable housing 300, the piezoelectric deformable part 100 is located in the deformable housing 300, and the deformable housing 300 can be deformed by expansion and contraction of the piezoelectric deformable part 100, the deformable housing 300 is connected to the piezoelectric deformation part 100.
  • the deformable housing 300 can protect the piezoelectric deformable part 100, avoid the piezoelectric deformable part 100 from being damaged by collision, or prevent water and dust from entering the piezoelectric deformable part 100, which affects the use of the piezoelectric deformable part 100, thereby improving the stability of the driving mechanism .
  • the deformable housing 300 may be a rubber housing or a silicone housing, which is not limited in the embodiment of the present invention.
  • the piezoelectric deforming part 100 includes a plurality of piezoelectric deforming sub-parts 110.
  • each piezoelectric deforming sub-part 110 in order to enable each piezoelectric deforming sub-part 110 to be energized, in an optional embodiment, any adjacent The two piezoelectric deforming sub-parts 110 are electrically connected through the first electrical connection part 120, so that each piezoelectric deforming sub-part 110 can be energized, so that each piezoelectric deforming sub-part 110 is stretched and deformed when the power is applied. Therefore, the accumulated deformation amount of the piezoelectric deforming part 100 is larger, and the driving force is larger.
  • this electrical connection method can prevent each piezoelectric deforming sub-portion 110 from being provided with an electrical connection line, thereby avoiding complicated wiring of the piezoelectric deforming portion 100, thereby simplifying the circuit, and this power supply method is simple and reliable.
  • the first electrical connection portion 120 may have various forms, such as a conductive sheet or a conductive wire, which is not limited in the embodiment of the present invention.
  • the first electrical connection part 120 may be a conductive coating.
  • the conductive coating can be directly disposed on the piezoelectric deformable sub-part 110, thereby reducing the number of parts of the driving mechanism, facilitating the installation by the staff, and making the structure of the driving mechanism simple.
  • the conductive coating is easy to set up, which simplifies the manufacturing process of the drive mechanism, thereby making the manufacturing process of the drive mechanism shorter.
  • the transmission is realized through the accumulation of deformation of each layer of piezoelectric deforming sub-parts 110, so that the stroke of the driving motor is larger, so that the driving motor can drive the lens 400.
  • the focusing range is wide.
  • the piezoelectric deforming part 110 100 may further include a supporting sheet 130, and a supporting sheet 130 is provided between any two adjacent piezoelectric deformable sub-parts 110.
  • the supporting sheet 130 is supported between any two adjacent piezoelectric deforming sub-parts 110, so that the deformation amount of the piezoelectric deforming sub-part 110 is transferred to the next piezoelectric deforming sub-part 110 through the supporting sheet 130, and the next piezoelectric deforming sub-part 110
  • the deformation amount of the deforming sub-portion 110 plus the deformation amount of the previous piezoelectric deforming sub-portion 110 continues to be transferred to the next piezoelectric deforming sub-portion 110 through the support sheet 130, and so on, so as to realize multiple piezoelectric deforming sub-portions 110
  • the accumulation of the amount of deformation enables the deformation of the plurality of piezoelectric deformation sub-portions 110 to be better accumulated, avoiding loss of the deformation amount of the piezoelectric deformation sub-portion 110, and finally makes the deformation amount of the piezoelectric deformation portion 100 larger, so that The stroke of the drive mechanism is relatively large.
  • the shape of the supporting piece 130 and the first electrical connection portion 120 may both be ring-shaped, and the supporting piece 130 may be located in the first electrical connection portion 120.
  • the supporting sheet 130 can be stably supported between any two adjacent piezoelectric deforming sub-parts 110, so that the stacked structure of the piezoelectric deforming part 100 is more stable.
  • the first electrical connection portion 120 may also be located in the supporting sheet 130.
  • the precise driving of the lens 400 can be achieved by controlling the voltage or current of the piezoelectric deforming part 100.
  • the driving motor may also include a control module 200, a control module 200 and the piezoelectric deforming part 100. Electrical connection, when the piezoelectric deforming part 100 is energized, the control module 200 controls the current or voltage of the piezoelectric deforming part 100.
  • the control module 200 can accurately determine the voltage or current of the piezoelectric deforming part 100 during the driving of the lens 400 by the driving mechanism, so as to accurately deform the piezoelectric deforming part 100 Therefore, the piezoelectric deforming part 100 drives the lens 400 to move accurately, and finally realizes the precise focusing effect of the lens 400, so that the imaging quality of the camera module is better.
  • the camera module may be provided with a power source, and the power source can provide the piezoelectric deforming part 100 with electrical energy required for deformation.
  • the camera module does not need to be provided with a power source, and the electronic device provided with the camera module can provide the piezoelectric deforming part 100 with electrical energy required for deformation, which is not limited in the embodiment of the present invention.
  • the present invention also discloses an electronic device.
  • the disclosed electronic device includes the camera module described in any of the above embodiments.
  • the electronic devices disclosed in the embodiments of the present invention may be devices such as smart phones, tablet computers, e-book readers, wearable devices (such as smart watches), and electronic game consoles.
  • the embodiments of the present invention do not limit the specific types of electronic devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

本发明公开一种摄像头模组及电子设备,所公开的摄像头模组包括感光芯片、镜片(400)和驱动马达,其中:镜片(400)与感光芯片相对设置,驱动马达包括压电变形部(100),压电变形部(100)包括至少两个压电变形子部(110),至少两个压电变形子部(110)逐个叠置,且至少两个压电变形子部(110)在通电的情况下可沿着叠置方向变形,以驱动镜片(400)朝第一方向或第二方向移动,其中,第一方向为靠近感光芯片的方向,第二方向为远离感光芯片的方向。

Description

摄像头模组及电子设备
相关申请的交叉引用
本申请主张在2020年3月23日在中国提交的中国专利申请号No.202010210680.5的优先权,其全部内容通过引用包含于此。
技术领域
本发明涉及摄像装置技术领域,尤其涉及一种摄像头模组及电子设备。
背景技术
随着电子设备的快速发展,电子设备的应用越来越广泛,诸如手机、平板电脑等电子设备在人们的工作、生活、娱乐等方面发挥着越来越多的作用。以手机为例,近些年手机行业发展十分迅速,随着手机的发展,消费者对手机的拍照性能要求越来越高,甚至要求其具有可媲美单反相机的拍照效果。显然高像素、大光圈、快速对焦及光学防抖等会成为手机的主流发展趋势。
我们知道,手机的摄像头一般通过对焦马达实现摄像头的对焦,随着消费者对手机越来越高的拍照性能要求,使得消费者对对焦马达性能要求也越来越高。目前主流的对焦马达为音圈电机(Voice Coil Motor,VCM),但是,VCM的结构复杂,制造过程较长,且VCM的驱动力较小,不能驱动高性能较重的摄像头进行对焦。同时,VCM在工作过程中会产生强磁场,该强磁场会干扰摄像头的成像质量,导致成像质量不能满足消费者的需求,且当摄像头中存在多个VCM时,多个VCM之间会存在磁场干扰,导致摄像头的对焦效果较差,进而导致摄像头的成像质量较差。
发明内容
本发明公开一种摄像头模组及电子设备,能够解决VCM结构复杂、驱动力较小以及存在磁场干扰的问题。
为解决上述技术问题,本发明是这样实现的:
第一方面,本发明实施例公开一种摄像头模组,包括感光芯片、镜片和驱 动马达,其中:
所述镜片与所述感光芯片相对设置,所述驱动马达包括压电变形部,所述压电变形部包括至少两个压电变形子部,所述至少两个压电变形子部逐个叠置,且所述至少两个压电变形子部在通电的情况下可沿着叠置方向变形,以驱动所述镜片朝第一方向或第二方向移动,其中,所述第一方向为靠近所述感光芯片的方向,所述第二方向为远离所述感光芯片的方向。
第二方面,本发明实施例公开一种电子设备,包括上述摄像头模组。
本发明实施例公开的摄像头模组中,镜片与压电变形部驱动相连,以驱动镜片在靠近感光芯片或远离感光芯片的方向移动,从而实现对焦的效果。此方案中,压电变形部包括多个压电变形子部,每个压电变形子部的变形累加,实现对镜片的驱动,且驱动力较大,从而使得该驱动机构能够驱动高性能较重的摄像头进行对焦。同时,此种驱动机构的结构简单,以使驱动机构的制造过程简单,从而使得该驱动机构的制程较短,且此种结构的驱动机构不会或较难产生磁场,避免因磁场的存在而干扰摄像头模组的成像质量,导致成像质量不能满足消费者的需求,且当摄像头模组中存在多个该驱动机构时,多个该驱动机构之间不会存在磁场干扰。且在该驱动机构驱动镜片的过程中,可以通过控制压电变形部的电压或电流大小,实现对镜片的精准驱动,且响应速度较快。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对实施例或背景技术描述中所需要使用的附图作简单的介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例公开的摄像头模组的示意图;
图2为本发明实施例公开的摄像头模组的局部结构示意图;
图3为本发明实施例公开的压电变形部的示意视图;
图4为图3的剖视图。
附图标记说明:
100-压电变形部、110-压电变形子部、120-第一电连接部、130-支撑片;
200-控制模块;
300-可变形外壳;
400-镜片;
500-镜片支架、510筒状本体、520-连接凸缘。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下结合附图,详细说明本发明各个实施例公开的技术方案。
请参考图1至图4,本发明实施例公开一种摄像头模组,所公开的摄像头模组包括感光芯片、镜片400和驱动马达。
其中,镜片400主要起到传输、折射光线的作用,外界的光线经过镜片400之后传输到感光芯片上,感光芯片接收到光信号,从而将光信号转换为电信号以达到成像的目的。镜片400和感光芯片的结构及原理均为已知技术,为了文本简洁,在此不再赘述。在本发明实施例中,镜片400与感光芯片相对设置,感光芯片通过镜片400实现感光成像。
驱动马达包括压电变形部100,压电变形部100包括至少两个压电变形子部110,至少两个压电变形子部110逐个叠置,且至少两个压电变形子部110在通电的情况下可沿着叠置方向变形。压电变形子部110的材料按照结晶方式可以分为三大类,第一类为单晶结构,例如石英;第二类为多晶结构,例如陶瓷,如压电陶瓷BaTiO3、锆钛酸铅压电陶瓷(lead zirconate titanate piezoelectric ceramics,PZT);第三类为高分子压电材料,例如偏氟乙烯均聚物(vinylidene fluoride,PVDF)。由于压电陶瓷具有耐酸碱性、能量转换效率高、无电磁干扰以及结构简单等优点,因此在本发明中,压电变形子部110可以优选为由压电陶瓷制备而成,压电变形子部110可以为压电陶瓷片。
具体地,压电变形部100的变形量与电场的变化关系如下:
ε=nd 33U=nd 33(I/C)
其中,ε为压电变形部100的变形量,n为压电变形部100的层数,也就是本文中压电变形子部110的数量,d 33为电变形子部110压电应变系数,即压电变形子部110在极化方向上的应变与在极化方向上所加电场强度之比,U为施加在压电变形子部110两端的电压,I为通过压电变形子部110的电流,C为压电变形子部110的电容。通过调整压电变形子部110两端的电压、层数或压电应变系数(或者通过压电变形子部110两端电流、层数、电容或压电应变系数),以使压电变形部100可获得镜片400对焦所需的变形量,即驱动马达的行程。
需要说明的是,压电变形部100的形变原理如下:由于在电场方向上受到电场力的作用,压电变形部100的原子晶胞被拉长,大量原子晶胞在微观上被拉长并累积到一定量时,就表现为在宏观上压电变形部100的形变。正因为压电变形部100的形变是由原子晶胞形变引起,因此压电变形部100相较VCM等驱动装置具有更大推力,而且响应速度更快,作用精度更高,完全能够匹配较重的高性能镜头的调焦和防抖要求。压电变形部100的形变机理为公知技术,为了文本简洁,在此不再赘述。
从上述公式可以得出,通过增加电变形子部110的数量达到压电变形部100驱动镜片400对焦所需的变形量为一种较为简单的方式,因为在摄像头模组中,摄像头模组为压电变形部100提供的电压或电流的大小有限,因此,多个压电变形子部110能够使得驱动马达的行程较大,从而能够使得驱动马达驱动镜片400对焦的范围较广。
在至少两个压电变形子部110在通电的情况下,压电变形部100可沿着叠置方向变形,以驱动镜片400朝第一方向或第二方向移动,其中,第一方向为靠近感光芯片的方向,第二方向为远离感光芯片的方向。也就是说,镜片400可随至少两个压电变形子部110的变形在靠近感光芯片或远离感光芯片的方向移动,从而实现对焦的效果,进而使得摄像头模组的拍摄效果较好。
本发明实施例公开的摄像头模组中,镜片400与压电变形部100驱动相连,以驱动镜片400在靠近感光芯片或远离感光芯片的方向移动,从而实现对焦的效果。此方案中,压电变形部100包括多个压电变形子部110,每个压电变形 子部110的变形累加,实现对镜片400的驱动,且驱动力较大,从而使得该驱动机构能够驱动高性能较重的摄像头进行对焦。同时,此种驱动机构的结构简单,以使驱动机构的制造过程简单,从而使得该驱动机构的制程较短,且此种结构的驱动机构不会或较难产生磁场,避免因磁场的存在而干扰摄像头模组的成像质量,导致成像质量不能满足消费者的需求,且当摄像头模组中存在多个该驱动机构时,多个该驱动机构之间不会存在磁场干扰。且在该驱动机构驱动镜片400的过程中,可以通过控制压电变形部100的电压或电流大小,实现对镜片400的精准驱动,且响应速度较快,最终解决VCM结构复杂、驱动力较小以及存在磁场干扰的问题。
通过上文中压电变形部100的形变原理可知,可以通过调整压电变形子部110两端的电压实现对压电变形部100变形量的控制。可选地,至少两个压电变形子部110在施加第一电压的情况下,至少两个压电变形子部110可以驱动镜片400朝第一方向移动,以使镜片400靠近感光芯片;至少两个压电变形子部110在施加第二电压的情况下,至少两个压电变形子部110可以驱动镜片400朝第二方向移动,以使镜片400远离感光芯片。第一电压和第二电压可以相反。
在摄像头模组进行拍摄的情况下,当所拍摄物透过镜片400的成像位于感光芯片与镜片400之间时,说明镜片400与感光芯片之间的距离较大,需要缩短镜片400与感光芯片之间的距离,以使所拍摄物透过镜片400的成像位于感光芯片上,此时,可以在至少两个压电变形子部110在施加第一电压,从而使得至少两个压电变形子部110驱动镜片400朝第一方向移动,以使镜片400靠近感光芯片,进而使得所拍摄物透过镜片400的成像位于感光芯片上,以使摄像头模组完成对焦。当所拍摄物透过镜片400的成像位于感光芯片背离镜片400的一侧时,说明镜片400与感光芯片之间的距离较小,需要增大镜片400与感光芯片之间的距离,以使所拍摄物透过镜片400的成像位于感光芯片上,此时,可以在至少两个压电变形子部110在施加第二电压,从而使得至少两个压电变形子部110驱动镜片400朝第二方向移动,以使镜片400远离感光芯片,进而使得所拍摄物透过镜片400的成像位于感光芯片上,以使摄像头模组完成对焦。
此种对焦过程较为简单,从而能够方便摄像头模组进行对焦,同时,也能 方便摄像头模组控制,进而方便设计人员设计摄像头模组的控制装置或编写控制程序。
在本发明实施例中,还可以通过控制施加在压电变形子部110上电压的大小来控制压电变形部100驱动镜片400的移动方向,具体地,当施加在压电变形子部110上的电压较大时,压电变形部100的形变量较大,此时,减小施加在压电变形子部110上的电压,压电变形部100的形变量减小,此种情况下,压电变形部100在电压较大时驱动镜片400的移动方向与电压减小时驱动镜片400的移动方向相反。或者,当施加在压电变形子部110上的电压较小时,压电变形部100的形变量较小,此时,增大施加在压电变形子部110上的电压,压电变形部100的形变量增大,此种情况下,压电变形部100在电压较大时驱动镜片400的移动方向与电压减小时驱动镜片400的移动方向相反,由此可见,在本发明实施例中,还可以通过控制施加在压电变形子部110上电压的大小来控制压电变形部100驱动镜片400的移动方向。
镜片400与压电变形部100驱动相连。具体地,镜片400与压电变形部100驱动相连的方式可以有多种,例如镜片400通过卡扣的方式设置于压电变形部100,此种方式方便拆卸,或者,镜片400还可以通过粘接的方式直接与压电变形部100相连,此种方式操作简单,本发明实施例中对此不做限制。
可选地,摄像头模组还可以包括镜片支架500,镜片支架500与压电变形部100相连,镜片400设置于镜片支架500,压电变形部100通过镜片支架500驱动镜片400在靠近感光芯片或远离感光芯片的方向移动。此种情况下,镜片支架500能够起到固定镜片400的作用,同时,镜片支架500还能够避免镜片400直接与压电变形部100接触,在压电变形部100的变形过程中,压电变形部100上各位置处的变形量可能存在的微小差异,防止镜片400受力不均,从而能够提高摄像头模组的可靠性。
与此同时,摄像头模组通常设置有多个镜片400,每个镜片400与压电变形部100直接设置的过程较为繁琐,通过镜片支架500一次性安装,能够避免在压电变形部100上多次安装镜片400,从而简化多个镜片400与压电变形部100驱动连接的安装过程。
进一步地,镜片支架500可以包括筒状本体510和连接凸缘520,连接凸 缘520设置于筒状本体510的一端的外侧壁上;筒状本体510设置于压电变形部100内,连接凸缘520搭接在压电变形部100上,且与压电变形部100相连。连接凸缘520能够使镜片支架500通过搭接的方式与压电变形部100相连,此种装配方式较为简单,从而能够方便工作人员的进行安装作业。
镜片支架500与压电变形部100相连的方式可以有多种,例如,镜片支架500与压电变形部100通过螺纹连接,或者,镜片支架500与压电变形部100通过卡接等,本发明实施例对此不做限制。在一种可选的实施例中,镜片支架500可以通过粘接层与压电变形部100相连,也就是说,镜片支架500粘接于压电变形部100,粘接的方式简单,易于操作,且粘接后的镜片支架500与压电变形部100连接可靠。
在一种可选的实施例中,驱动马达还可以包括可变形外壳300,压电变形部100位于可变形外壳300内,且可变形外壳300可随压电变形部100伸缩变形,可变形外壳300与压电变形部100相连。可变形外壳300能够防护压电变形部100,避免压电变形部100磕碰损坏,或者避免压电变形部100中进水进尘,影响压电变形部100的使用,从而提高驱动机构的稳定性。具体地,可变形外壳300可以橡胶外壳或硅胶外壳等,本发明实施例中对此不做限制。
在本发明实施例中,压电变形部100包括多个压电变形子部110,为了使每个压电变形子部110均能够通电,在一种可选的实施例中,任意相邻的两个压电变形子部110通过第一电连接部120电连接,以使每个压电变形子部110均能够通电,从而使得每个压电变形子部110均在通电的情况下伸缩变形,进而使得压电变形部100累加后的变形量较大,且驱动力较大。同时,此种电连接方式能够避免每个压电变形子部110均设置有电连接线,从而能够避免压电变形部100的走线复杂,进而简化电路,且此种通电方式简单可靠。
具体地,第一电连接部120的形式可以有多种,例如导电片或导电线等,本发明实施例中对此不做限制。可选地,第一电连接部120可以为导电涂层。导电涂层可以直接设置在压电变形子部110上,从而能够减少驱动机构的零件数量,方便工作人员进行安装,进而使得驱动机构的结构简单。同时导电涂层易于设置,从而简化驱动机构的制造过程,进而使得驱动机构的制程较短。
如上文所述,通过至少两个压电变形子部110的叠加,通过每层压电变形 子部110变形的累加实现传动,以使驱动马达的行程较大,从而能够使得驱动马达驱动镜片400对焦的范围较广,为了使多个压电变形子部110的变形能够较好地累加,避免损失压电变形子部110的形变量,在一种可选的实施例中,压电变形部100还可以包括支撑片130,任意相邻的两个压电变形子部110之间设置有支撑片130。支撑片130支撑于任意相邻的两个压电变形子部110之间,以使压电变形子部110的形变量通过支撑片130传递至下一个压电变形子部110,下一个压电变形子部110的形变量加上上一个压电变形子部110的形变量继续通过支撑片130传递至下下一个压电变形子部110,依次类推,从而实现多个压电变形子部110形变量的累加,进而使得多个压电变形子部110的变形能够较好地累加,避免损失压电变形子部110的形变量,最终使得压电变形部100的形变量较大,以使驱动机构的行程较大。
进一步地,支撑片130和第一电连接部120的形状可以均为环状,且支撑片130可以位于第一电连接部120之内。此种情况下,支撑片130能够稳定地支撑于任意相邻的两个压电变形子部110之间,以使压电变形部100的堆叠结构更加稳定。当然,第一电连接部120也可以位于支撑片130之内。
在本发明实施例中,可以通过控制压电变形部100的电压或电流大小,实现对镜片400的精准驱动,具体地,驱动马达还可以包括控制模块200,控制模块200与压电变形部100电连接,在压电变形部100通电的情况下,控制模块200控制压电变形部100的电流或电压大小。在驱动机构驱动镜片400的具体过程中,在该驱动机构驱动镜片400的过程中,控制模块200可以精准压电变形部100的电压大小或电流大小,从而能够使得压电变形部100精准地变形,进而使得压电变形部100驱动镜片400精准地移动,最终实现镜片400精准地对焦效果,以使摄像头模组的成像质量较好。
具体地,摄像头模组可以设置有电源,该电源能够为压电变形部100提供变形所需的电能。当然,摄像头模组也可以不设置电源,可以通过设置有该摄像头模组的电子设备为压电变形部100提供变形所需的电能,本发明实施例中对此不做限制。
基于本发明实施例中公开的摄像头模组,本发明还公开一种电子设备,所公开的电子设备包括上文任意实施例所述的摄像头模组。
本发明实施例公开的电子设备可以是智能手机、平板电脑、电子书阅读器、可穿戴设备(例如智能手表)、电子游戏机等设备,本发明实施例不限制电子设备的具体种类。
本发明上文实施例中重点描述的是各个实施例之间的不同,各个实施例之间不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
以上所述仅为本发明的实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (13)

  1. 一种摄像头模组,包括感光芯片、镜片(400)和驱动马达,其中:
    所述镜片(400)与所述感光芯片相对设置,所述驱动马达包括压电变形部(100),所述压电变形部(100)包括至少两个压电变形子部(110),所述至少两个压电变形子部(110)逐个叠置,且所述至少两个压电变形子部(110)在通电的情况下可沿着叠置方向变形,以驱动所述镜片(400)朝第一方向或第二方向移动,其中,所述第一方向为靠近所述感光芯片的方向,所述第二方向为远离所述感光芯片的方向。
  2. 根据权利要求1所述的摄像头模组,其中,所述至少两个压电变形子部(110)在施加第一电压的情况下,所述至少两个压电变形子部(110)驱动所述镜片(400)朝所述第一方向移动;所述至少两个压电变形子部(110)在施加第二电压的情况下,所述至少两个压电变形子部(110)驱动所述镜片(400)朝所述第二方向移动。
  3. 根据权利要求1所述的摄像头模组,其中,所述摄像头模组还包括镜片支架(500),所述镜片支架(500)与所述压电变形部(100)相连,所述镜片(400)设置于所述镜片支架(500),所述压电变形部(100)通过所述镜片支架(500)驱动所述镜片(400)在靠近所述感光芯片或远离所述感光芯片的方向移动。
  4. 根据权利要求3所述的摄像头模组,其中,所述镜片支架(500)包括筒状本体(510)和连接凸缘(520),所述连接凸缘(520)设置于所述筒状本体(510)的一端的外侧壁上;
    所述筒状本体(510)设置于所述压电变形部(100)内,所述连接凸缘(520)搭接在所述压电变形部(100)上,且与所述压电变形部(100)相连。
  5. 根据权利要求3所述的摄像头模组,其中,所述镜片支架(500)通过粘接层与所述压电变形部(100)相连。
  6. 根据权利要求1所述的摄像头模组,其中,所述驱动马达还包括可变形外壳(300),所述压电变形部(100)位于所述可变形外壳(300)内,且所述可变形外壳(300)可随所述压电变形部(100)伸缩变形,所述可变形外壳 (300)与所述压电变形部(100)相连。
  7. 根据权利要求1所述的摄像头模组,其中,任意相邻的两个所述压电变形子部(110)通过第一电连接部(120)电连接。
  8. 根据权利要求7所述的摄像头模组,其中,所述压电变形部(100)还包括支撑片(130),任意相邻的两个所述压电变形子部(110)之间设置有所述支撑片(130)。
  9. 根据权利要求8所述的摄像头模组,其中,所述支撑片(130)和所述第一电连接部(120)的形状均为环状,且所述支撑片(130)位于所述第一电连接部(120)之内。
  10. 根据权利要求7所述的摄像头模组,其中,所述第一电连接部(120)为导电涂层。
  11. 根据权利要求1所述的摄像头模组,其中,所述压电变形子部(110)为压电陶瓷片。
  12. 根据权利要求1所述的摄像头模组,其中,所述驱动马达还包括控制模块(200),所述控制模块(200)与所述压电变形部(100)电连接,在所述压电变形部(100)通电的情况下,所述控制模块(200)控制所述压电变形部(100)的电流大小或电压大小。
  13. 一种电子设备,包括权利要求1至12中任一项所述的摄像头模组。
PCT/CN2021/081740 2020-03-23 2021-03-19 摄像头模组及电子设备 WO2021190407A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010210680.5A CN111343372A (zh) 2020-03-23 2020-03-23 摄像头模组及电子设备
CN202010210680.5 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021190407A1 true WO2021190407A1 (zh) 2021-09-30

Family

ID=71186106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081740 WO2021190407A1 (zh) 2020-03-23 2021-03-19 摄像头模组及电子设备

Country Status (2)

Country Link
CN (1) CN111343372A (zh)
WO (1) WO2021190407A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111343372A (zh) * 2020-03-23 2020-06-26 维沃移动通信(杭州)有限公司 摄像头模组及电子设备
CN112698465B (zh) * 2020-12-30 2022-11-04 维沃移动通信有限公司 摄像头模组及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7333724B2 (en) * 2005-08-18 2008-02-19 Jack Chen Camera and piezo ceramic motor therefor
CN105516563A (zh) * 2015-12-15 2016-04-20 三星半导体(中国)研究开发有限公司 晶圆级照相模块
CN109819152A (zh) * 2019-02-27 2019-05-28 维沃移动通信有限公司 对焦摄像模组及终端设备
CN109889711A (zh) * 2019-03-11 2019-06-14 昆山丘钛微电子科技有限公司 摄像模组
CN109995919A (zh) * 2019-05-06 2019-07-09 吉林大学 一种多层钹型压电驱动组件的手机镜头变焦机构
CN111343372A (zh) * 2020-03-23 2020-06-26 维沃移动通信(杭州)有限公司 摄像头模组及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4795083B2 (ja) * 2006-04-10 2011-10-19 パナソニック株式会社 圧電駆動装置、撮像装置、および携帯端末装置
CN101542348B (zh) * 2008-10-14 2011-04-20 香港应用科技研究院有限公司 多致动器镜头致动装置
CN101726820B (zh) * 2008-10-22 2013-04-24 鸿富锦精密工业(深圳)有限公司 晶圆级镜头模组
CN101969097B (zh) * 2009-07-28 2013-11-06 财团法人工业技术研究院 叠层式压电元件及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7333724B2 (en) * 2005-08-18 2008-02-19 Jack Chen Camera and piezo ceramic motor therefor
CN105516563A (zh) * 2015-12-15 2016-04-20 三星半导体(中国)研究开发有限公司 晶圆级照相模块
CN109819152A (zh) * 2019-02-27 2019-05-28 维沃移动通信有限公司 对焦摄像模组及终端设备
CN109889711A (zh) * 2019-03-11 2019-06-14 昆山丘钛微电子科技有限公司 摄像模组
CN109995919A (zh) * 2019-05-06 2019-07-09 吉林大学 一种多层钹型压电驱动组件的手机镜头变焦机构
CN111343372A (zh) * 2020-03-23 2020-06-26 维沃移动通信(杭州)有限公司 摄像头模组及电子设备

Also Published As

Publication number Publication date
CN111343372A (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
CN111641761B (zh) 摄像头模组及电子设备
WO2021190407A1 (zh) 摄像头模组及电子设备
US9661196B2 (en) Camera module
CN111510607A (zh) 摄像头以及电子设备
US11493727B2 (en) Optical system
CN210246879U (zh) 摄像模组及电子设备
US9516233B2 (en) Micro electro mechanical systems device and apparatus for compensating tremble
CN101557177A (zh) 压电驱动器及镜头模组
CN109068249A (zh) 喇叭结构层及显示器
CN101750706B (zh) 晶圆级镜头模组及其阵列
WO2022170961A1 (zh) 可伸缩摄像模组及电子设备
WO2021078098A1 (zh) 电子设备
CN106060366B (zh) 图像对焦系统、拍摄装置和电子设备
WO2023231896A1 (zh) 摄像模组、控制方法、装置和电子设备
WO2015167101A1 (ko) 초점 가변 렌즈
WO2022262400A1 (zh) 一种相机模组及设备
TW201728939A (zh) 電磁驅動模組及應用該電磁驅動模組之鏡頭驅動裝置
KR20140116737A (ko) 카메라 모듈
WO2022087786A1 (zh) 潜望式摄像模组及电子设备
US11616429B2 (en) Driving assembly with two driving sources and driving system including thereof
CN217332909U (zh) 镜头模组及电子装置
CN210053464U (zh) 一种sma防抖致动器结构
WO2022233289A1 (zh) 摄像模组、光学致动器、感光组件及其制造方法
CN213461914U (zh) 潜望式摄像模组及电子设备
WO2023093839A1 (zh) 可变光圈装置和带有可变光圈装置的摄像模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776105

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21776105

Country of ref document: EP

Kind code of ref document: A1