WO2021190144A1 - 空间站机械臂六维力传感器高精度小型化在轨标定装置及标定方法 - Google Patents

空间站机械臂六维力传感器高精度小型化在轨标定装置及标定方法 Download PDF

Info

Publication number
WO2021190144A1
WO2021190144A1 PCT/CN2021/074661 CN2021074661W WO2021190144A1 WO 2021190144 A1 WO2021190144 A1 WO 2021190144A1 CN 2021074661 W CN2021074661 W CN 2021074661W WO 2021190144 A1 WO2021190144 A1 WO 2021190144A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
applying device
force applying
sensor
installation position
Prior art date
Application number
PCT/CN2021/074661
Other languages
English (en)
French (fr)
Inventor
宋爱国
杨述焱
徐宝国
周永辉
谭启蒙
梁常春
韦明
王春慧
李凡
张遂南
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US17/438,941 priority Critical patent/US11867578B2/en
Publication of WO2021190144A1 publication Critical patent/WO2021190144A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices

Definitions

  • the invention relates to a mechanical calibration device and a calibration method, in particular to a high-precision and miniaturized on-orbit calibration device and a calibration method for a six-dimensional force sensor of a space station mechanical arm.
  • the space manipulator As a multi-degree-of-freedom actuator for space operations, the space manipulator’s main tasks are auxiliary docking, target handling, on-orbit construction, observation and monitoring of space objects, capture and release of space objects, etc.
  • the six-dimensional force sensor mounted on the space manipulator, as the most important sensor for sensing external information, is the basis for achieving the above goals.
  • Calibration is an important part of the force sensor development process to determine the performance index of the sensor. After the development is completed, the performance of the sensor may change during long-term use, so it is necessary to repeat the calibration regularly to ensure the accuracy and reliability of the measurement.
  • the existing calibration devices for six-dimensional force sensors generally use weights for calibration, and cannot be used in the weightless environment of the space station.
  • the existing calibration device has a large volume, and if it is applied in a space station, it will cause problems such as high launch costs and a narrow space station environment.
  • the technical problem to be solved by the present invention is to address the above-mentioned shortcomings of the prior art, and provide a high-precision and miniaturized on-orbit calibration device and calibration method for a six-dimensional force sensor of a space station manipulator.
  • the on-orbit calibration device and calibration method use piezoelectric ceramic sheets and high-precision single-dimensional force sensors to generate standard forces to achieve on-orbit calibration in a weightless environment, and have the advantages of small size, large force value, and stable force source.
  • the technical solution adopted by the present invention is:
  • a high-precision and miniaturized on-orbit calibration device for a six-dimensional force sensor of a space station mechanical arm includes a fixed bracket, three force-applying devices and a square force-bearing block.
  • the fixed bracket is in an inverted " ⁇ " shape, and includes a horizontal plate and two vertical plates arranged vertically on the horizontal plate.
  • a calibration cavity with a U-shaped longitudinal section is formed between the two vertical plates and the horizontal plate.
  • the three force applying devices are respectively the first force applying device, the second force applying device and the third force applying device, and they are all located in the calibration cavity.
  • the first force applying device and the second force applying device are respectively arranged on the opposite side of the two vertical plates, and the height positions of the corresponding vertical plates can be adjusted.
  • the third force applying device is installed in the center of the upper surface of the horizontal plate.
  • Each force application device includes a force application head, a uniaxial tension and pressure sensor, a force source component and a fastening component.
  • the force source assembly includes an upper support plate, a second electrode plate, a piezoelectric ceramic sheet, a first electrode plate and a lower support plate which are arranged coaxially from top to bottom.
  • the upper support plate is installed on the lower support plate through the fastening component, and the second electrode plate, the piezoelectric ceramic sheet and the first electrode plate are elastically pressed between the upper support plate and the lower support plate.
  • the uniaxial tension and pressure sensor is installed at the top center of the upper support plate, and the force application head is installed at the top center of the uniaxial tension and pressure sensor, and has a hemispherical shape.
  • the square force block is installed on the top of the six-dimensional force sensor to be calibrated, and the six-dimensional force sensor is installed at the end of the robotic arm.
  • the square force-bearing block can be driven by the mechanical arm to extend into the calibration cavity and contact with three force-applying heads of the three force-applying devices.
  • the accuracy of the uniaxial tension and pressure sensor is higher than that of the six-dimensional force sensor to be calibrated.
  • Each vertical plate is provided with at least two installation positions of the force application device with different heights, wherein at least one of the installation positions of the force application device on the two vertical plates is located at the same height.
  • Each vertical plate is provided with three installation positions of the force applying device with different heights.
  • the two vertical plates are the left vertical plate and the right vertical plate.
  • the installation positions of the three force-applying devices on the left vertical plate are installation position A, installation position B, and installation position C from top to bottom.
  • the installation positions of the three force applying devices on the right vertical plate are respectively installation position a, installation position b and installation position c from top to bottom.
  • the installation position A, the installation position B and the installation position C are on the same vertical line
  • the installation position a, the installation position b and the installation position c are on another vertical line.
  • Installation position a, installation position b, and installation position c correspond to the height of installation position A, installation position B, and installation position C one-to-one.
  • the fastening components include bolts, nuts and pre-tensioned springs. After the shank of the bolt passes through the pre-tensioning spring, the upper support plate and the lower support plate from top to bottom, it is fastened by nuts.
  • the lower support plate is threadedly connected with the shank of the bolt, the upper support plate is slidably connected with the shank of the bolt, and the pre-tensioning spring is located between the upper support plate and the head of the bolt.
  • a high-precision and miniaturized on-orbit calibration method for a six-dimensional force sensor of a space station mechanical arm includes the following steps.
  • Step 1 The calibration of the force in the X direction includes the following steps:
  • Step 11 Install the force applying device: install the axis of the first force applying device and the second force applying device at the same height, and install the third force applying device at the center of the upper surface of the horizontal plate.
  • Step 12 install the cube force block: install the square force block on the top of the six-dimensional force sensor to be calibrated, and install the six-dimensional force sensor on the end of the robotic arm.
  • the mechanical arm moves to extend the square force-bearing block into the calibration cavity and contact with the three force-applying heads of the three force-applying devices.
  • the X-axis direction of the six-dimensional force sensor needs to be parallel to the axial direction of the first force applying device, and the Z-axis direction of the six-dimensional force sensor coincides with the axial direction of the third force applying device.
  • Step 13 Calibrate the positive X force: by controlling the first force applying device, apply multiple sets of force to the force block of the cube, and record the data of the uniaxial tension pressure sensor and the six-dimensional force sensor in the first force applying device, thereby Realize the calibration of X positive force.
  • the method for the first force applying device to apply multiple sets of forces to the force-bearing cube is: applying a set voltage between the first electrode plate and the second electrode plate in the first force applying device. Due to the piezoelectric effect, Several piezoelectric ceramic pieces between the two plates will produce a set X positive displacement, and the displacement is related to the magnitude of the voltage.
  • the uniaxial tension pressure sensor in the first force applying device detects and feeds back the applied positive X force in real time, and the magnitude of the positive X force can be adjusted by controlling the magnitude of the voltage.
  • Step 14 Calibrate the negative X force: the first force applying device is reset, and the second force applying device is controlled to apply multiple sets of negative X force to the force block of the cube, and the uniaxial tension pressure in the second force applying device is recorded
  • the data of the sensor and the six-dimensional force sensor can be used to calibrate the X negative force.
  • Step 2 The calibration of the force in the Y direction includes the following steps:
  • Step 21 adjust the force direction of the cube force block: the first force applying device and the second force applying device are reset, and the mechanical arm is rotated so that the Z axis direction of the six-dimensional force sensor coincides with the axial direction of the third force applying device , And the Y-axis direction of the six-dimensional force sensor is parallel to the axial direction of the first force applying device.
  • Step 22 Calibrate Y-direction force: using the same method as step 13 and step 14, by controlling the first force-applying device, the calibration of Y-direction force is achieved. By controlling the second force applying device, the calibration of the Y negative force is realized.
  • Step 3 Calibrate the force in the Z direction: both the first force applying device and the second force applying device are reset.
  • the third force applying device is controlled.
  • the force applying device applies multiple sets of force in the Z direction to the force receiving block of the cube, and records the data of the uniaxial tension pressure sensor and the six-dimensional force sensor in the third force applying device, thereby achieving the calibration of the force in the Z direction.
  • Step 4 the calibration of the torque in the X direction includes the following steps:
  • Step 41 Install the force applying device: install the axes of the first force applying device and the second force applying device at different heights, and install the third force applying device at the center of the upper surface of the horizontal plate.
  • Step 42 Install the cube bearing block: follow the method in step 12 to install the cube bearing block.
  • the Y-axis direction of the six-dimensional force sensor needs to be parallel to the axial direction of the first force applying device, and the Z-axis direction of the six-dimensional force sensor coincides with the axial direction of the third force applying device.
  • Step 43 calibrate the X positive acting torque: control the first force applying device and the second force applying device, and simultaneously apply multiple sets of equal values to the force block of the cube, and record the uniaxial tension pressure sensor in the two force applying devices And the data of the six-dimensional force sensor, so as to realize the calibration of the X-direction torque.
  • multiple sets of forces with equal values refer to the application of multiple sets of forces, and in each set of forces, the values of the forces applied by the first force applying device and the second force applying device are equal.
  • Step 44 calibrate the X negative acting torque: the first force applying device and the second force applying device are reset, the six-dimensional force sensor rotates 180° around the Z axis or the height positions of the first force applying device and the second force applying device are exchanged. Control the first force applying device and the second force applying device again, and simultaneously apply multiple sets of equal forces to the force block of the cube, record and compare the data of the uniaxial tension pressure sensor and the six-dimensional force sensor in the two force applying devices , So as to realize the calibration of X negative acting torque.
  • Step 5 the calibration of the torque in the Y direction includes the following steps:
  • Step 51 Adjust the force receiving direction of the cube force block: the first force applying device and the second force applying device are reset, and the mechanical arm is rotated so that the Z axis direction of the six-dimensional force sensor coincides with the axial direction of the third force applying device , And the X-axis direction of the six-dimensional force sensor is parallel to the axial direction of the first force applying device.
  • Step 52 calibrate the Y-direction acting torque: adopt the method of step 43 to realize the calibration of the Y-direction acting torque. Using the method of step 44, the calibration of the Y negative acting torque is realized.
  • Step 6 the calibration of the moment in the Z direction, including the following steps:
  • Step 61 adjust the force direction of the cube force block: the first force device and the second force device are reset, and the mechanical arm is rotated so that the Z axis direction of the six-dimensional force sensor is in line with the first force device and the second force device.
  • the plane of the axis of the force device and the third force applying device is vertical, and the X-axis or Y-axis direction of the six-dimensional force sensor coincides with the axial direction of the third force applying device.
  • Step 62 calibrate the Z positive acting moment: control the first force applying device and the second force applying device, and simultaneously apply multiple sets of equal values to the force receiving block of the cube, record and compare the uniaxial tension of the two force applying devices
  • the data of the pressure sensor and the six-dimensional force sensor can be used to achieve the calibration of the Z positive torque.
  • Step 63 Calibrate the Z negative acting torque: After the Z positive acting torque calibration is completed, the first force applying device and the second force applying device are reset, and the six-dimensional force sensor rotates 180° around the Z axis or exchanges the first force applying device and The height position of the second force applying device. Control the first force applying device and the second force applying device again, and simultaneously apply multiple sets of equal forces to the force block of the cube, record and compare the data of the uniaxial tension pressure sensor and the six-dimensional force sensor in the two force applying devices , So as to achieve the calibration of the Z negative torque.
  • step 11 the first force applying device is installed at the installation position B of the left vertical plate, and the second force applying device is installed at the installation position b of the right vertical plate.
  • the axis of the installation position B and the installation position b are at the same height.
  • step 41 the first force applying device is installed at the installation position A of the left vertical plate, and the second force applying device is installed at the installation position c of the right vertical plate.
  • the height of the axis of the installation position A is higher than the height of the axis of the installation position c.
  • step 44 when the height position of the first forcing device and the second forcing device are exchanged for X negative moment calibration, the specific exchange method is: install the first forcing device at the installation position of the left vertical plate At C, the second force applying device is installed at the installation position a of the right vertical plate.
  • the invention uses piezoelectric ceramics and a high-precision uniaxial tension and pressure sensor to generate standard force, realizes on-orbit calibration in a weightless environment, and has the advantages of large force value and stable force source.
  • the present invention has a simple structure and a small volume, and is suitable for a narrow environment of a space station.
  • Fig. 1 is a perspective view of the force applying device in the present invention.
  • Figure 2 is a front view of the force applying device in the present invention.
  • Fig. 3 is an overall structure diagram of a high-precision and miniaturized on-orbit calibration device for a six-dimensional force sensor of a space station manipulator according to the present invention.
  • Fig. 4 is a schematic diagram of the posture of the on-orbit calibration device of the present invention when calibrating the force in the X, Y, or Z directions.
  • Fig. 5 is a schematic diagram of the posture of the on-orbit calibration device of the present invention when calibrating the X-direction and Y-direction moments.
  • Fig. 6 is a schematic diagram of the posture of the on-orbit calibration device of the present invention when calibrating the Z-direction moment.
  • a high-precision and miniaturized on-orbit calibration device for a six-dimensional force sensor of a space station manipulator arm includes a fixed bracket 15, three force-applying devices, and a square force-bearing block 22.
  • the fixed bracket is in an inverted " ⁇ " shape, and includes a horizontal plate and two vertical plates arranged vertically on the horizontal plate.
  • a calibration cavity with a U-shaped longitudinal section is formed between the two vertical plates and the horizontal plate.
  • the two vertical boards are the left vertical board and the right vertical board.
  • Each vertical board is preferably provided with at least two installation positions of the force applying device with different heights, among which, the installation positions of the force applying device on the two vertical boards are At least one group is located at the same height.
  • each vertical plate is preferably provided with three installation positions of the force applying device with different heights.
  • the installation positions of the three force applying devices on the left vertical plate are installation position A 19, installation position B 20, and installation position C 21 from top to bottom.
  • the installation position A, the installation position B and the installation position C are preferably located on the same vertical line.
  • the installation positions of the three forcing devices on the right vertical plate are installation position a 16, installation position b 17, and installation position c 18 from top to bottom.
  • the installation position a, the installation position b, and the installation position c are preferably located on another vertical line.
  • Installation position a, installation position b, and installation position c correspond to the height of installation position A, installation position B, and installation position C one-to-one.
  • the axis of installation position a and installation position A are the same height, and so on.
  • the three force applying devices are the first force applying device 12, the second force applying device 13 and the third force applying device 14, and they are all located in the calibration cavity.
  • the first force applying device and the second force applying device are respectively arranged on the opposite side of the two vertical plates, and the height positions of the corresponding vertical plates can be adjusted.
  • the third force applying device is installed in the center of the upper surface of the horizontal plate.
  • each force application device includes a force application head 1, a uniaxial tension and pressure sensor 2, a force source component and a fastening component.
  • the force source assembly includes an upper support plate 3, a second electrode plate 11, a piezoelectric ceramic sheet 7, a first electrode plate 6 and a lower support plate 4 coaxially arranged from top to bottom in sequence.
  • a number of connecting holes 5 are evenly distributed on the outer circumferential edge of the lower support plate 4 for installation and fixation with the fixing bracket.
  • the upper support plate is installed on the lower support plate through the fastening component, and the second electrode plate, the piezoelectric ceramic sheet and the first electrode plate are elastically pressed between the upper support plate and the lower support plate.
  • the fastening assembly preferably includes a bolt 8, a nut 10 and a pretension spring 9. After the shank of the bolt passes through the pre-tensioning spring, the upper support plate and the lower support plate from top to bottom, it is fastened by nuts.
  • the lower support plate is threadedly connected with the shank of the bolt, the upper support plate is slidably connected with the shank of the bolt, and the pre-tensioning spring is located between the upper support plate and the head of the bolt.
  • the uniaxial tension and pressure sensor is installed in the center of the top of the upper support plate, and the accuracy of the uniaxial tension and pressure sensor is higher than that of the six-dimensional force sensor to be calibrated.
  • the accuracy of a single-axis tension and pressure sensor needs to be an order of magnitude higher than the expected accuracy of a calibrated six-dimensional force sensor. Specifically, if the expected accuracy of the six-dimensional force sensor is 3%, the accuracy of the uniaxial tension and pressure sensor needs to be higher than 0.3%.
  • the force application head is installed at the center of the top of the uniaxial tension and pressure sensor, and preferably has a hemispherical shape.
  • the square force receiving block is installed on the top of the six-dimensional force sensor 23 to be calibrated, and the six-dimensional force sensor is installed on the end of the mechanical arm 24.
  • the square force-bearing block can be driven by the mechanical arm to extend into the calibration cavity and contact with three force-applying heads of the three force-applying devices.
  • a high-precision and miniaturized on-orbit calibration method for a six-dimensional force sensor of a space station mechanical arm includes the following steps.
  • Step 1 The calibration of X-direction force (Fx) includes the following steps:
  • Step 11 Install the force applying device: install the axis of the first force applying device and the second force applying device at the same height, and install the third force applying device at the center of the upper surface of the horizontal plate.
  • the first forcing device is preferably installed at the installation position B of the left vertical plate
  • the second forcing device is preferably installed at the installation position b of the right vertical plate; the axis of the installation position B and the installation position b Located at the same height.
  • it can also be installed at the installation position A and the installation position a or the installation position C and the installation position c.
  • Step 12 install the cube force block: install the square force block on the top of the six-dimensional force sensor to be calibrated, and install the six-dimensional force sensor on the end of the robotic arm.
  • the mechanical arm moves to extend the square force-bearing block into the calibration cavity and contact the three force-applying heads of the three force-applying devices.
  • the X-axis direction of the six-dimensional force sensor needs to be parallel to the axial direction of the first force applying device, and the Z-axis direction of the six-dimensional force sensor coincides with the axial direction of the third force applying device, as shown in FIG. 4.
  • Step 13 Calibrate the X positive force: by controlling the first force applying device, apply multiple sets of force to the force block of the cube, and record and compare the data of the uniaxial tension pressure sensor and the six-dimensional force sensor in the first force applying device , So as to realize the calibration of the X positive force.
  • the method for applying multiple sets of forces to the force-bearing block of the cube by the first force applying device is: applying a set voltage between the first electrode plate and the second electrode plate in the first force applying device. Due to the piezoelectric effect, the two poles Several piezoelectric ceramic pieces between the plates will produce a set X positive displacement, and the displacement is related to the voltage. Since the force application head in the first force application device is in contact with the cube force block, the X positive displacement will be converted into the X positive force applied to the cube force block, and the value of the X positive force It is related to the voltage.
  • the uniaxial tension pressure sensor in the first force applying device detects and feeds back the applied positive X force in real time, and the magnitude of the positive X force can be adjusted by controlling the magnitude of the voltage.
  • Step 14 Calibrate X negative force: the first force applying device is reset, that is, the first force applying device 12 is still fixed at the installation position B20, and the second force applying device 13 is still fixed at the installation position b17, maintaining the posture of FIG. 4 constant.
  • Step 2 The calibration of the force in the Y direction (Fy) includes the following steps:
  • Step 21 Adjust the force direction of the force receiving block of the cube: both the first force applying device and the second force applying device are reset, and the height position remains unchanged.
  • Step 22 Calibrate Y-direction force: using the same method as step 13 and step 14, by controlling the first force-applying device, the calibration of Y-direction force is achieved. By controlling the second force applying device, the calibration of the Y negative force is realized.
  • Step 3 Calibration of the force in the Z direction: the first force applying device and the second force applying device are both reset, preferably keeping the posture of Fig. 4 unchanged, in the Z axis direction of the six-dimensional force sensor and the third force applying device axis
  • control the third force application device to apply multiple sets of force in the Z direction to the cube force block, record and compare the data of the uniaxial tension pressure sensor and the six-dimensional force sensor in the third force application device, thereby achieving Calibration of Z-direction force.
  • the calibration sequence of the force in the X, Y, and Z directions can be adjusted as needed.
  • Step 4 The calibration of the acting moment (Mx) in the X direction includes the following steps:
  • Step 41 Install the force applying device: install the axes of the first force applying device and the second force applying device at different heights, and install the third force applying device at the center of the upper surface of the horizontal plate.
  • the specific preferred installation method of the first force applying device and the second force applying device is as follows: as shown in FIG.
  • the device is installed at the installation position c of the right vertical plate.
  • the height of the axis of the installation position A is higher than the height of the axis of the installation position c.
  • Step 42 Install the cube bearing block: follow the method in step 12 to install the cube bearing block. At this time, it is necessary to make the Y-axis direction of the six-dimensional force sensor parallel to the axial direction of the first force applying device, and the Z-axis direction of the six-dimensional force sensor coincides with the axial direction of the third force applying device.
  • Step 43 calibrate the X positive acting torque: control the first force applying device and the second force applying device, and simultaneously apply multiple sets of equal values to the force block of the cube, and record the uniaxial tension pressure sensor in the two force applying devices And the data of the six-dimensional force sensor, so as to realize the calibration of the X-direction torque.
  • multiple sets of forces with equal values refer to the application of multiple sets of forces, and in each set of forces, the values of the forces applied by the first force applying device and the second force applying device are equal.
  • the data of the uniaxial tension pressure sensor in one of the force application devices is multiplied by the distance of the two force application heads along the Z axis to obtain the torque.
  • Step 44 calibrate the X negative acting torque: the first force applying device and the second force applying device are reset, the six-dimensional force sensor rotates 180° around the Z axis or the height positions of the first force applying device and the second force applying device are exchanged.
  • the specific preferred exchange method is: install the first force applying device at the installation position C of the left vertical plate, The second force applying device is installed at the installation position a of the right vertical plate.
  • Step 5 the calibration of the torque in the Y direction includes the following steps:
  • Step 51 adjust the force direction of the cube force block: the first force applying device and the second force applying device are both reset, and the mechanical arm rotates 90° around the Z axis of the six-dimensional force sensor to make the Z axis of the six-dimensional force sensor
  • the direction coincides with the axial direction of the third force applying device, and the X-axis direction of the six-dimensional force sensor is parallel to the axial direction of the first force applying device.
  • the adjusted posture is also shown in Fig. 5, the first force applying device is installed at the installation position A of the left vertical plate, and the second force applying device is installed at the installation position c of the right vertical plate.
  • Step 52 calibrate the Y-direction acting torque: adopt the method of step 43 to realize the calibration of the Y-direction acting torque. Using the method of step 44, the calibration of the Y negative acting torque is realized.
  • Step 6 the calibration of the moment in the Z direction, including the following steps:
  • Step 61 adjust the force direction of the cube force block: the first force device and the second force device are reset.
  • the first force device is installed at the installation position A of the left vertical plate
  • the second force device The force device is installed at the installation position c of the right vertical plate.
  • the mechanical arm rotates 90° around the X-axis or Y-axis of the six-dimensional force sensor, so that the Z-axis direction of the six-dimensional force sensor is perpendicular to the plane of the axis of the first force device, the second force device, and the third force device.
  • the X-axis or Y-axis direction of the six-dimensional force sensor coincides with the axial direction of the third force applying device.
  • Step 62 calibrate the Z positive acting moment: control the first force applying device and the second force applying device, and simultaneously apply multiple sets of equal values to the force receiving block of the cube, record and compare the uniaxial tension of the two force applying devices
  • the data of the pressure sensor and the six-dimensional force sensor can be used to achieve the calibration of the Z positive torque.
  • Step 63 Calibrate the Z negative acting torque: After the Z positive acting torque calibration is completed, the first force applying device and the second force applying device are reset, and the six-dimensional force sensor rotates 180° around the Z axis or exchanges the first force applying device and The height position of the second force applying device.
  • the specific preferred exchange method is: install the first force applying device at the installation position C of the left vertical plate, The second force applying device is installed at the installation position a of the right vertical plate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Manipulator (AREA)

Abstract

一种空间站机械臂六维力传感器高精度小型化在轨标定装置及标定方法,标定装置包括固定支架(15)、三个施力装置和正方形受力块(22);固定支架(15)呈倒置的"π"型,三个施力装置分别安装在固定支架(15)的两竖板和横板上,且高度能调整。每个施力装置均包括施力头(1)、单轴拉压力传感器(2)、力源组件和紧固组件;力源组件包括从上至下依次同轴设置的上支撑板(3)、第二电极板(11)、压电陶瓷片(7)、第一电极板(6)和下支撑板(4);单轴拉压力传感器(2)安装在上支撑板(3)顶部,半球形的施力头(1)安装在单轴拉压力传感器(2)顶部;正方形受力块(22)安装在待标定的六维力传感器(23)顶部,该标定装置及标定方法利用压电陶瓷片(7)和高精度单轴力传感器产生标准作用力,实现失重环境下的在轨标定,并且具有体积小、力值大、力源稳定等优点。

Description

空间站机械臂六维力传感器高精度小型化在轨标定装置及标定方法 技术领域
本发明涉及一种力学标定装置及标定方法,特别是一种空间站机械臂六维力传感器高精度小型化在轨标定装置及标定方法。
背景技术
空间机械臂作为一种用于空间作业的多自由度执行机构,其主要任务是辅助对接、目标搬运、在轨建设、空间物体的观察和监测、空间物体的捕获和释放等,是完成空间在轨服务、深空探测的主要载体。装载在空间机械臂上的六维力传感器,作为其感知外界信息的最重要的传感器,是实现上述目标的基础。
标定是力传感器研制过程中的重要环节,用以确定传感器的性能指标。而研制完成后,在长期使用过程中,传感器的性能可能发生变化,因此必须定期进行重复标定,以确保测量的准确性和可靠性。而对于安装在空间站机械臂上的六维力传感器而言,如何实现在轨标定是亟需解决的问题。现有的六维力传感器标定装置普遍采用砝码进行标定,无法在空间站的失重环境下使用。此外,现有标定装置体积较大,若在空间站进行应用,则会导致发射成本高、空间站环境狭小等问题。
发明内容
本发明要解决的技术问题是针对上述现有技术的不足,而提供一 种空间站机械臂六维力传感器高精度小型化在轨标定装置及标定方法,该空间站机械臂六维力传感器高精度小型化在轨标定装置及标定方法利用压电陶瓷片和高精度单维力传感器产生标准作用力,实现失重环境下的在轨标定,并且具有体积小、力值大、力源稳定等优点。
为解决上述技术问题,本发明采用的技术方案是:
一种空间站机械臂六维力传感器高精度小型化在轨标定装置,包括固定支架、三个施力装置和正方形受力块。
固定支架呈倒置的“π”型,包括一块横板和垂直设置在横板上的两块竖板。两块竖板与横板之间形成纵截面呈U型的标定腔。
三个施力装置分别为第一施力装置、第二施力装置和第三施力装置,且均位于标定腔内。第一施力装置和第二施力装置分别按照在两块竖板相向的一侧,且在对应竖板上的高度位置能够调整。第三施力装置安装在横板的上表面中心。
每个施力装置均包括施力头、单轴拉压力传感器、力源组件和紧固组件。
力源组件包括从上至下依次同轴设置的上支撑板、第二电极板、压电陶瓷片、第一电极板和下支撑板。上支撑板通过紧固组件安装在下支撑板上,并将第二电极板、压电陶瓷片和第一电极板弹性压紧在上支撑板和下支撑板之间。
单轴拉压力传感器安装在上支撑板顶部中心,施力头安装在单轴拉压力传感器顶部中心,且呈半球形。
正方形受力块安装在待标定的六维力传感器顶部,六维力传感器 安装在机械臂末端。正方形受力块能在机械臂的带动下,伸入标定腔内,并与三个施力装置中的三个施力头相接触。单轴拉压力传感器的精度高于待标定六维力传感器的精度。
每块竖板上均设置有至少两个高度不同的施力装置安装位置,其中,两块竖板上的施力装置安装位置至少有一组位于同一高度。
每块竖板上均设置有三个高度不同的施力装置安装位置。两块竖板分别为左侧竖板和右侧竖板,位于左侧竖板上的三个施力装置安装位置从上至下分别为安装位置A、安装位置B和安装位置C。位于右侧竖板上的三个施力装置安装位置从上至下分别为安装位置a、安装位置b和安装位置c。其中,安装位置A、安装位置B和安装位置C位于同一垂直线,安装位置a、安装位置b和安装位置c位于另一垂直线。安装位置a、安装位置b和安装位置c与安装位置A、安装位置B和安装位置C的高度一一对应。
紧固组件包括螺栓、螺母和预紧弹簧。螺栓的杆部从上至下依次穿过预紧弹簧、上支撑板和下支撑板后,采用螺母紧固。下支撑板与螺栓的杆部螺纹连接,上支撑板与螺栓的杆部滑动连接,预紧弹簧位于上支撑板和螺栓头部之间。
一种空间站机械臂六维力传感器高精度小型化在轨标定方法,包括如下步骤。
步骤1,对X方向作用力的标定,包括如下步骤:
步骤11,安装施力装置:将第一施力装置和第二施力装置的轴线安装在同一高度,第三施力装置安装在横板的上表面中心。
步骤12,安装正方体受力块:将正方形受力块安装在待标定的六维力传感器顶部,六维力传感器安装在机械臂末端。机械臂动作,将正方形受力块伸入标定腔内,并与三个施力装置中的三个施力头相接触。此时,需使六维力传感器的X轴方向与第一施力装置的轴向平行,六维力传感器的Z轴方向与第三施力装置的轴向重合。
步骤13,标定X正向作用力:通过控制第一施力装置,对正方体受力块施加多组作用力,记录第一施力装置中单轴拉压力传感器和六维力传感器的数据,从而实现X正向作用力的标定。其中,第一施力装置对正方体受力块施加多组作用力的方法为:向第一施力装置中的第一电极板和第二电极板间施加设定的电压,由于压电效应,两极板间的若干压电陶瓷片将产生设定的X正向位移,且位移量与电压大小相关。由于第一施力装置中的施力头与正方体受力块相接触,故而,X正向位移将转化为对正方体受力块施加的X正向作用力,且X正向作用力的数值与电压大小相关。第一施力装置中单轴拉压力传感器对施加的X正向作用力进行实时检测并反馈,通过控制电压的大小就能调整X正向作用力的大小值。
步骤14,标定X负向作用力:第一施力装置复位,通过控制第二施力装置,对正方体受力块施加多组X负向作用力,记录第二施力装置中单轴拉压力传感器和六维力传感器的数据,从而实现X负向作用力的标定。
步骤2,对Y方向作用力的标定,包括如下步骤:
步骤21,调整正方体受力块的受力方向:第一施力装置和第二 施力装置均复位,转动机械臂,使得六维力传感器的Z轴方向与第三施力装置的轴向重合,且六维力传感器的Y轴方向与第一施力装置的轴向平行。
步骤22,标定Y向作用力:采用与步骤13和步骤14相同的方法,通过控制第一施力装置,实现Y正向作用力的标定。通过控制第二施力装置,从而实现Y负向作用力的标定。
步骤3,对Z方向作用力的标定:第一施力装置和第二施力装置均复位,在六维力传感器的Z轴方向与第三施力装置轴向重合的情况下,控制第三施力装置对正方体受力块施加多组Z方向作用力,记录第三施力装置中单轴拉压力传感器和六维力传感器的数据,由此实现Z向作用力的标定。
还包括如下步骤:
步骤4,对X方向作用力矩的标定,包括如下步骤:
步骤41,安装施力装置:将第一施力装置和第二施力装置的轴线安装在不同高度,第三施力装置安装在横板的上表面中心。
步骤42,安装正方体受力块:按照步骤12的方法,进行正方体受力块的安装。此时,需使六维力传感器的Y轴方向与第一施力装置的轴向平行,六维力传感器的Z轴方向与第三施力装置的轴向重合。
步骤43,标定X正向作用力矩:控制第一施力装置和第二施力装置,同时对正方体受力块施加数值相等的多组作用力,记录两个施力装置中单轴拉压力传感器和六维力传感器的数据,从而实现X正向作用力矩的标定。其中,数值相等的多组作用力,是指施加多组作用 力,而在每组作用力中,第一施力装置和第二施力装置所施加的作用力数值大小相等。
步骤44,标定X负向作用力矩:第一施力装置和第二施力装置复位,六维力传感器绕Z轴旋转180°或交换第一施力装置和第二施力装置的高度位置。再次控制第一施力装置和第二施力装置,同时对正方体受力块施加数值相等的多组作用力,记录并比较两个施力装置中单轴拉压力传感器和六维力传感器的数据,从而实现X负向作用力矩的标定。
步骤5,对Y方向作用力矩的标定,包括如下步骤:
步骤51,调整正方体受力块的受力方向:第一施力装置和第二施力装置均复位,转动机械臂,使得六维力传感器的Z轴方向与第三施力装置的轴向重合,且六维力传感器的X轴方向与第一施力装置的轴向平行。
步骤52,标定Y向作用力矩:采用与步骤43的方法,实现Y正向作用力矩的标定。采用步骤44的方法,实现Y负向作用力矩的标定。
步骤6,对Z方向作用力矩的标定,包括如下步骤:
步骤61,调整正方体受力块的受力方向:第一施力装置和第二施力装置均复位,转动机械臂,使得六维力传感器的Z轴方向与第一施力装置、第二施力装置、第三施力装置的轴线所在平面垂直,且六维力传感器的X轴或Y轴方向与第三施力装置的轴向重合。
步骤62,标定Z正向作用力矩:控制第一施力装置和第二施力 装置,同时对正方体受力块施加数值相等的多组作用力,记录并比较两个施力装置中单轴拉压力传感器和六维力传感器的数据,从而实现Z正向作用力矩的标定。
步骤63,标定Z负向作用力矩:Z正向作用力矩标定完成后,第一施力装置和第二施力装置复位,六维力传感器绕Z轴旋转180°或交换第一施力装置和第二施力装置的高度位置。再次控制第一施力装置和第二施力装置,同时对正方体受力块施加数值相等的多组作用力,记录并比较两个施力装置中单轴拉压力传感器和六维力传感器的数据,从而实现Z负向作用力矩的标定。
步骤11中,第一施力装置安装在左侧竖板的安装位置B处,第二施力装置安装在右侧竖板的安装位置b处。安装位置B和安装位置b的轴线位于同一高度。
步骤41中,第一施力装置安装在左侧竖板的安装位置A处,第二施力装置安装在右侧竖板的安装位置c处。安装位置A的轴线高度高于安装位置c的轴线高度。
步骤44中,当采用交换第一施力装置和第二施力装置的高度位置进行X负向作用力矩标定时,具体交换方法为:将第一施力装置安装在左侧竖板的安装位置C处,第二施力装置安装在右侧竖板的安装位置a处。
本发明具有如下有益效果:
1、本发明采用压电陶瓷和高精度的单轴拉压力传感器产生标准作用力,实现失重环境下的在轨标定,并且具有力值大、力源稳定等 优点。
2、本发明结构简洁、体积较小,适用于空间站狭小的环境。
附图说明
图1为本发明中施力装置的立体图。
图2为本发明中施力装置的正视图。
图3为本发明一种空间站机械臂六维力传感器高精度小型化在轨标定装置的整体结构图。
图4为本发明的在轨标定装置对X向、Y向或Z向作用力进行标定时的姿态示意图。
图5为本发明的在轨标定装置对X向、Y向作用力矩进行标定时的姿态示意图。
图6为本发明的在轨标定装置对Z向作用力矩进行标定时的姿态示意图。
其中有:
1.施力头。2.单轴拉压力传感器。3.上支撑板。4.下支撑板。5.连接孔。6.第一电极板。7.压电陶瓷片。8.螺栓。9.预紧弹簧。10.螺母。11.第二电极板。12.第一施力装置。13.第二施力装置。14.第三施力装置。15.固定支架。16.安装位置a。17.安装位置b。18.安装位置c。19.安装位置A。20.安装位置B。21.安装位置C。22.正方形受力块。23.六维力传感器。24.机械臂。
具体实施方式
下面结合附图和具体较佳实施方式对本发明作进一步详细的说明。
本发明的描述中,需要理解的是,术语“左侧”、“右侧”、“上部”、“下部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,“第一”、“第二”等并不表示零部件的重要程度,因此不能理解为对本发明的限制。本实施例中采用的具体尺寸只是为了举例说明技术方案,并不限制本发明的保护范围。
如图3至图6所示,一种空间站机械臂六维力传感器高精度小型化在轨标定装置,包括固定支架15、三个施力装置和正方形受力块22。
固定支架呈倒置的“π”型,包括一块横板和垂直设置在横板上的两块竖板。两块竖板与横板之间形成纵截面呈U型的标定腔。
两块竖板分别为左侧竖板和右侧竖板,每块竖板上均优选设置有至少两个高度不同的施力装置安装位置,其中,两块竖板上的施力装置安装位置至少有一组位于同一高度。
本实施例中,每块竖板上均优选设置有三个高度不同的施力装置安装位置。
位于左侧竖板上的三个施力装置安装位置从上至下分别为安装位置A 19、安装位置B 20和安装位置C 21。安装位置A、安装位置 B和安装位置C优选位于同一垂直线。
位于右侧竖板上的三个施力装置安装位置从上至下分别为安装位置a 16、安装位置b 17和安装位置c 18。安装位置a、安装位置b和安装位置c优选位于另一垂直线。
安装位置a、安装位置b和安装位置c与安装位置A、安装位置B和安装位置C的高度一一对应。如安装位置a与安装位置A的轴线等高,以此类推。
三个施力装置分别为第一施力装置12、第二施力装置13和第三施力装置14,且均位于标定腔内。第一施力装置和第二施力装置分别按照在两块竖板相向的一侧,且在对应竖板上的高度位置能够调整。第三施力装置安装在横板的上表面中心。
如图1和图2所示,每个施力装置均包括施力头1、单轴拉压力传感器2、力源组件和紧固组件。
如图2所示,力源组件包括从上至下依次同轴设置的上支撑板3、第二电极板11、压电陶瓷片7、第一电极板6和下支撑板4。
下支撑板4的外圆周边缘均布有若干个连接孔5,用于与固定支架进行安装固定。
上支撑板通过紧固组件安装在下支撑板上,并将第二电极板、压电陶瓷片和第一电极板弹性压紧在上支撑板和下支撑板之间。
紧固组件优选包括螺栓8、螺母10和预紧弹簧9。螺栓的杆部从上至下依次穿过预紧弹簧、上支撑板和下支撑板后,采用螺母紧固。下支撑板与螺栓的杆部螺纹连接,上支撑板与螺栓的杆部滑动连接, 预紧弹簧位于上支撑板和螺栓头部之间。
单轴拉压力传感器安装在上支撑板顶部中心,单轴拉压力传感器的精度高于待标定六维力传感器的精度。单轴拉压力传感器的精度需比带标定六维力传感器的预期精度高一个数量级。具体来说,若六维力传感器的预期精度为3%,则单轴拉压力传感器的精度需高于0.3%。
施力头安装在单轴拉压力传感器顶部中心,且优选呈半球形。
如图4至图6所示,正方形受力块安装在待标定的六维力传感器23顶部,六维力传感器安装在机械臂24末端。正方形受力块能在机械臂的带动下,伸入标定腔内,并与三个施力装置中的三个施力头相接触。
一种空间站机械臂六维力传感器高精度小型化在轨标定方法,包括如下步骤。
步骤1,对X方向作用力(Fx)的标定,包括如下步骤:
步骤11,安装施力装置:将第一施力装置和第二施力装置的轴线安装在同一高度,第三施力装置安装在横板的上表面中心。本实施例中,第一施力装置优选安装在左侧竖板的安装位置B处,第二施力装置优选安装在右侧竖板的安装位置b处;安装位置B和安装位置b的轴线位于同一高度。当然作为替换,也可以安装在安装位置A和安装位置a或者安装位置C和安装位置c处。
步骤12,安装正方体受力块:将正方形受力块安装在待标定的六维力传感器顶部,六维力传感器安装在机械臂末端。机械臂动作,将正方形受力块伸入标定腔内,并与三个施力装置中的三个施力头相 接触。此时,需使六维力传感器的X轴方向与第一施力装置的轴向平行,六维力传感器的Z轴方向与第三施力装置的轴向重合,如图4所示。
步骤13,标定X正向作用力:通过控制第一施力装置,对正方体受力块施加多组作用力,记录并比较第一施力装置中单轴拉压力传感器和六维力传感器的数据,从而实现X正向作用力的标定。
上述第一施力装置对正方体受力块施加多组作用力的方法为:向第一施力装置中的第一电极板和第二电极板间施加设定的电压,由于压电效应,两极板间的若干压电陶瓷片将产生设定的X正向位移,且位移量与电压大小相关。由于第一施力装置中的施力头与正方体受力块相接触,故而,X正向位移将将转化为对正方体受力块施加的X正向作用力,且X正向作用力的数值与电压大小相关。第一施力装置中单轴拉压力传感器对施加的X正向作用力进行实时检测并反馈,通过控制电压的大小就能调整X正向作用力的大小值。
后续第二施力装置以及第三施力装置对正方体受力块施加多组作用力的方法,均同上。
步骤14,标定X负向作用力:第一施力装置复位,也即第一施力装置12仍然固定在安装位置B20,第二施力装置13仍然固定在安装位置b17,保持图4的姿态不变。
然后,通过控制第二施力装置,对正方体受力块施加多组X负向作用力,记录并比较第二施力装置中单轴拉压力传感器和六维力传感器的数据,从而实现X负向作用力的标定。
步骤2,对Y方向作用力(Fy)的标定,包括如下步骤:
步骤21,调整正方体受力块的受力方向:第一施力装置和第二施力装置均复位,高度位置保持不变。
转动机械臂24,使六维力传感器23绕Z轴旋转90度;此时,六维力传感器的Z轴方向与第三施力装置的轴向重合,且六维力传感器的Y轴方向与第一施力装置的轴向平行。
步骤22,标定Y向作用力:采用与步骤13和步骤14相同的方法,通过控制第一施力装置,实现Y正向作用力的标定。通过控制第二施力装置,从而实现Y负向作用力的标定。
步骤3,对Z方向作用力的标定:第一施力装置和第二施力装置均复位,优选保持图4的姿态不变,在六维力传感器的Z轴方向与第三施力装置轴向重合的情况下,控制第三施力装置对正方体受力块施加多组Z方向作用力,记录并比较第三施力装置中单轴拉压力传感器和六维力传感器的数据,由此实现Z向作用力的标定。
上述X、Y、Z方向作用力的标定顺序,可以根据需要进行调整。
步骤4,对X方向作用力矩(Mx)的标定,包括如下步骤:
步骤41,安装施力装置:将第一施力装置和第二施力装置的轴线安装在不同高度,第三施力装置安装在横板的上表面中心。
本实施例中,第一施力装置和第二施力装置的具体优选安装方法为:如图5所示,第一施力装置安装在左侧竖板的安装位置A处,第二施力装置安装在右侧竖板的安装位置c处。安装位置A的轴线高度高于安装位置c的轴线高度。
步骤42,安装正方体受力块:按照步骤12的方法,进行正方体受力块的安装。此时,需使六维力传感器的Y轴方向与第一施力装置的轴向平行,六维力传感器的Z轴方向与第三施力装置的轴向重合。
步骤43,标定X正向作用力矩:控制第一施力装置和第二施力装置,同时对正方体受力块施加数值相等的多组作用力,记录两个施力装置中单轴拉压力传感器和六维力传感器的数据,从而实现X正向作用力矩的标定。其中,数值相等的多组作用力,是指施加多组作用力,而在每组作用力中,第一施力装置和第二施力装置所施加的作用力数值大小相等。
由于两个施力装置施加大小相同的力,因此用其中一个施力装置中单轴拉压力传感器的数据乘以两个施力头沿Z轴方向的距离,就得到力矩。
步骤44,标定X负向作用力矩:第一施力装置和第二施力装置复位,六维力传感器绕Z轴旋转180°或交换第一施力装置和第二施力装置的高度位置。
当采用交换第一施力装置和第二施力装置的高度位置进行X负向作用力矩标定时,具体优选交换方法为:将第一施力装置安装在左侧竖板的安装位置C处,第二施力装置安装在右侧竖板的安装位置a处。
再次控制第一施力装置和第二施力装置,同时对正方体受力块施加数值相等的多组作用力,记录并比较两个施力装置中单轴拉压力传感器和六维力传感器的数据,从而实现X负向作用力矩的标定。
步骤5,对Y方向作用力矩的标定,包括如下步骤:
步骤51,调整正方体受力块的受力方向:第一施力装置和第二施力装置均复位,机械臂绕六维力传感器的Z轴进行90°转动,使得六维力传感器的Z轴方向与第三施力装置的轴向重合,且六维力传感器的X轴方向与第一施力装置的轴向平行。调整后的位姿也如图5所示,第一施力装置安装在左侧竖板的安装位置A处,第二施力装置安装在右侧竖板的安装位置c处。
步骤52,标定Y向作用力矩:采用与步骤43的方法,实现Y正向作用力矩的标定。采用步骤44的方法,实现Y负向作用力矩的标定。
步骤6,对Z方向作用力矩的标定,包括如下步骤:
步骤61,调整正方体受力块的受力方向:第一施力装置和第二施力装置均复位,此时,第一施力装置安装在左侧竖板的安装位置A处,第二施力装置安装在右侧竖板的安装位置c处。机械臂绕六维力学传感器的X轴或Y轴转动90°,使得六维力传感器的Z轴方向与第一施力装置、第二施力装置、第三施力装置的轴线所在平面相垂直,且六维力传感器的X轴或Y轴方向与第三施力装置的轴向相重合。
步骤62,标定Z正向作用力矩:控制第一施力装置和第二施力装置,同时对正方体受力块施加数值相等的多组作用力,记录并比较两个施力装置中单轴拉压力传感器和六维力传感器的数据,从而实现Z正向作用力矩的标定。
步骤63,标定Z负向作用力矩:Z正向作用力矩标定完成后,第 一施力装置和第二施力装置复位,六维力传感器绕Z轴旋转180°或交换第一施力装置和第二施力装置的高度位置。
当采用交换第一施力装置和第二施力装置的高度位置进行Z负向作用力矩标定时,具体优选交换方法为:将第一施力装置安装在左侧竖板的安装位置C处,第二施力装置安装在右侧竖板的安装位置a处。
再次控制第一施力装置和第二施力装置,同时对正方体受力块施加数值相等的多组作用力,记录并比较两个施力装置中单轴拉压力传感器和六维力传感器的数据,从而实现Z负向作用力矩的标定。
上述标定流程只是其中的一种优选方案,可根据需求进行调整。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种等同变换,这些等同变换均属于本发明的保护范围。

Claims (9)

  1. 一种空间站机械臂六维力传感器高精度小型化在轨标定装置,其特征在于:包括固定支架、三个施力装置和正方形受力块;
    固定支架呈倒置的“π”型,包括一块横板和垂直设置在横板上的两块竖板;两块竖板与横板之间形成纵截面呈U型的标定腔;
    三个施力装置分别为第一施力装置、第二施力装置和第三施力装置,且均位于标定腔内;第一施力装置和第二施力装置分别按照在两块竖板相向的一侧,且在对应竖板上的高度位置能够调整;第三施力装置安装在横板的上表面中心;
    每个施力装置均包括施力头、单轴拉压力传感器、力源组件和紧固组件;
    力源组件包括从上至下依次同轴设置的上支撑板、第二电极板、压电陶瓷片、第一电极板和下支撑板;上支撑板通过紧固组件安装在下支撑板上,并将第二电极板、压电陶瓷片和第一电极板弹性压紧在上支撑板和下支撑板之间;
    单轴拉压力传感器安装在上支撑板顶部中心,施力头安装在单轴拉压力传感器顶部中心,且呈半球形;
    正方形受力块安装在待标定的六维力传感器顶部,六维力传感器安装在机械臂末端;正方形受力块能在机械臂的带动下,伸入标定腔内,并与三个施力装置中的三个施力头相接触;单轴拉压力传感器的精度高于待标定六维力传感器的精度。
  2. 根据权利要求1所述的空间站机械臂六维力传感器高精度小型化 在轨标定装置,其特征在于:每块竖板上均设置有至少两个高度不同的施力装置安装位置,其中,两块竖板上的施力装置安装位置至少有一组位于同一高度。
  3. 根据权利要求2所述的空间站机械臂六维力传感器高精度小型化在轨标定装置,其特征在于:每块竖板上均设置有三个高度不同的施力装置安装位置;两块竖板分别为左侧竖板和右侧竖板,位于左侧竖板上的三个施力装置安装位置从上至下分别为安装位置A、安装位置B和安装位置C;位于右侧竖板上的三个施力装置安装位置从上至下分别为安装位置a、安装位置b和安装位置c;其中,安装位置A、安装位置B和安装位置C位于同一垂直线,安装位置a、安装位置b和安装位置c位于另一垂直线;安装位置a、安装位置b和安装位置c与安装位置A、安装位置B和安装位置C的高度一一对应。
  4. 根据权利要求1所述的空间站机械臂六维力传感器高精度小型化在轨标定装置,其特征在于:紧固组件包括螺栓、螺母和预紧弹簧;螺栓的杆部从上至下依次穿过预紧弹簧、上支撑板和下支撑板后,采用螺母紧固;下支撑板与螺栓的杆部螺纹连接,上支撑板与螺栓的杆部滑动连接,预紧弹簧位于上支撑板和螺栓头部之间。
  5. 一种空间站机械臂六维力传感器高精度小型化在轨标定方法,其特征在于:包括如下步骤:
    步骤1,对X方向作用力的标定,包括如下步骤:
    步骤11,安装施力装置:将第一施力装置和第二施力装置的轴线安装在同一高度,第三施力装置安装在横板的上表面中心;
    步骤12,安装正方体受力块:将正方形受力块安装在待标定的六维力传感器顶部,六维力传感器安装在机械臂末端;机械臂动作,将正方形受力块伸入标定腔内,并与三个施力装置中的三个施力头相接触;此时,需使六维力传感器的X轴方向与第一施力装置的轴向平行,六维力传感器的Z轴方向与第三施力装置的轴向重合;
    步骤13,标定X正向作用力:通过控制第一施力装置,对正方体受力块施加多组作用力,记录第一施力装置中单轴拉压力传感器和六维力传感器的数据,从而实现X正向作用力的标定;其中,第一施力装置对正方体受力块施加多组作用力的方法为:向第一施力装置中的第一电极板和第二电极板间施加设定的电压,由于压电效应,两极板间的若干压电陶瓷片将产生设定的X正向位移,且位移量与电压大小相关;由于第一施力装置中的施力头与正方体受力块相接触,故而,X正向位移将转化为对正方体受力块施加的X正向作用力,且X正向作用力的数值与电压大小相关;第一施力装置中单轴拉压力传感器对施加的X正向作用力进行实时检测并反馈,通过控制电压的大小就能调整X正向作用力的大小值;
    步骤14,标定X负向作用力:第一施力装置复位,通过控制第二施力装置,对正方体受力块施加多组X负向作用力,记录第二施力装置中单轴拉压力传感器和六维力传感器的数据,从而实现X负向作用力的标定;
    步骤2,对Y方向作用力的标定,包括如下步骤:
    步骤21,调整正方体受力块的受力方向:第一施力装置和第二 施力装置均复位,转动机械臂,使得六维力传感器的Z轴方向与第三施力装置的轴向重合,且六维力传感器的Y轴方向与第一施力装置的轴向平行;
    步骤22,标定Y向作用力:采用与步骤13和步骤14相同的方法,通过控制第一施力装置,实现Y正向作用力的标定;通过控制第二施力装置,从而实现Y负向作用力的标定;
    步骤3,对Z方向作用力的标定:第一施力装置和第二施力装置均复位,在六维力传感器的Z轴方向与第三施力装置轴向重合的情况下,控制第三施力装置对正方体受力块施加多组Z方向作用力,记录第三施力装置中单轴拉压力传感器和六维力传感器的数据,由此实现Z向作用力的标定。
  6. 根据权利要求5所述的空间站机械臂六维力传感器高精度小型化在轨标定方法,其特征在于:还包括如下步骤:
    步骤4,对X方向作用力矩的标定,包括如下步骤:
    步骤41,安装施力装置:将第一施力装置和第二施力装置的轴线安装在不同高度,第三施力装置安装在横板的上表面中心;
    步骤42,安装正方体受力块:按照步骤12的方法,进行正方体受力块的安装;此时,需使六维力传感器的Y轴方向与第一施力装置的轴向平行,六维力传感器的Z轴方向与第三施力装置的轴向重合;
    步骤43,标定X正向作用力矩:控制第一施力装置和第二施力装置,同时对正方体受力块施加数值相等的多组作用力,记录两个施力装置中单轴拉压力传感器和六维力传感器的数据,从而实现X正向 作用力矩的标定;其中,数值相等的多组作用力,是指施加多组作用力,而在每组作用力中,第一施力装置和第二施力装置所施加的作用力数值大小相等;
    步骤44,标定X负向作用力矩:第一施力装置和第二施力装置复位,六维力传感器绕Z轴旋转180°或交换第一施力装置和第二施力装置的高度位置;再次控制第一施力装置和第二施力装置,同时对正方体受力块施加数值相等的多组作用力,记录并比较两个施力装置中单轴拉压力传感器和六维力传感器的数据,从而实现X负向作用力矩的标定;
    步骤5,对Y方向作用力矩的标定,包括如下步骤:
    步骤51,调整正方体受力块的受力方向:第一施力装置和第二施力装置均复位,转动机械臂,使得六维力传感器的Z轴方向与第三施力装置的轴向重合,且六维力传感器的X轴方向与第一施力装置的轴向平行;
    步骤52,标定Y向作用力矩:采用与步骤43的方法,实现Y正向作用力矩的标定;采用步骤44的方法,实现Y负向作用力矩的标定;
    步骤6,对Z方向作用力矩的标定,包括如下步骤:
    步骤61,调整正方体受力块的受力方向:第一施力装置和第二施力装置均复位,转动机械臂,使得六维力传感器的Z轴方向与第一施力装置、第二施力装置、第三施力装置的轴线所在平面垂直,且六维力传感器的X轴或Y轴方向与第三施力装置的轴向重合;
    步骤62,标定Z正向作用力矩:控制第一施力装置和第二施力装置,同时对正方体受力块施加数值相等的多组作用力,记录并比较两个施力装置中单轴拉压力传感器和六维力传感器的数据,从而实现Z正向作用力矩的标定;
    步骤63,标定Z负向作用力矩:Z正向作用力矩标定完成后,第一施力装置和第二施力装置复位,六维力传感器绕Z轴旋转180°或交换第一施力装置和第二施力装置的高度位置;再次控制第一施力装置和第二施力装置,同时对正方体受力块施加数值相等的多组作用力,记录并比较两个施力装置中单轴拉压力传感器和六维力传感器的数据,从而实现Z负向作用力矩的标定。
  7. 根据权利要求6所述的空间站机械臂六维力传感器高精度小型化在轨标定方法,其特征在于:步骤11中,第一施力装置安装在左侧竖板的安装位置B处,第二施力装置安装在右侧竖板的安装位置b处;安装位置B和安装位置b的轴线位于同一高度。
  8. 根据权利要求7所述的空间站机械臂六维力传感器高精度小型化在轨标定方法,其特征在于:步骤41中,第一施力装置安装在左侧竖板的安装位置A处,第二施力装置安装在右侧竖板的安装位置c处;安装位置A的轴线高度高于安装位置c的轴线高度。
  9. 根据权利要求8所述的空间站机械臂六维力传感器高精度小型化在轨标定方法,其特征在于:步骤44中,当采用交换第一施力装置和第二施力装置的高度位置进行X负向作用力矩标定时,具体交换方法为:将第一施力装置安装在左侧竖板的安装位置C处,第二施力装 置安装在右侧竖板的安装位置a处。
PCT/CN2021/074661 2020-03-25 2021-02-01 空间站机械臂六维力传感器高精度小型化在轨标定装置及标定方法 WO2021190144A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/438,941 US11867578B2 (en) 2020-03-25 2021-02-01 High-precision and miniaturized on-orbit calibration device for six-dimensional force sensor of space station manipulator and calibration method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010216824.8 2020-03-25
CN202010216824.8A CN111351615B (zh) 2020-03-25 2020-03-25 空间站机械臂六维力传感器高精度小型化在轨标定装置及标定方法

Publications (1)

Publication Number Publication Date
WO2021190144A1 true WO2021190144A1 (zh) 2021-09-30

Family

ID=71193027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074661 WO2021190144A1 (zh) 2020-03-25 2021-02-01 空间站机械臂六维力传感器高精度小型化在轨标定装置及标定方法

Country Status (3)

Country Link
US (1) US11867578B2 (zh)
CN (1) CN111351615B (zh)
WO (1) WO2021190144A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264405A (zh) * 2021-12-29 2022-04-01 山东欧瑞安电气有限公司 一种大扭矩传感器标定装置及其标定方法
CN114577393A (zh) * 2022-02-25 2022-06-03 中信戴卡股份有限公司 一种直立式三分力动板载荷传感器力值校准装置
CN114894365A (zh) * 2022-04-02 2022-08-12 上海理工大学 一种六维力传感器
CN115452244A (zh) * 2022-09-15 2022-12-09 中安集控自动化科技(苏州)有限公司 六维传感器校准系统
CN115524058A (zh) * 2022-08-11 2022-12-27 东南大学 一种六维力/力矩传感器自动化标定装置及标定方法
CN117109804A (zh) * 2023-08-21 2023-11-24 北京科技大学 用于大变形六维力传感器的标定装置及标定方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111351615B (zh) * 2020-03-25 2021-07-20 东南大学 空间站机械臂六维力传感器高精度小型化在轨标定装置及标定方法
CN112077816B (zh) * 2020-09-24 2023-12-19 上海交通大学 遥操作设备力反馈功能的测试装置及方法
CN115824492B (zh) * 2022-12-05 2024-04-19 西北工业大学 一种用于高频响三维冲击力传感器的同步标定方法及装置
CN117387918B (zh) * 2023-10-12 2024-06-25 北京嘉诚兴业工贸股份有限公司 一种汽车肘枕开合力测量设备
CN117870955B (zh) * 2024-03-12 2024-05-07 中国科学院长春光学精密机械与物理研究所 基于音圈电机的六维力标定装置和方法
CN118482855A (zh) * 2024-05-20 2024-08-13 湖北省计量测试技术研究院 一种机器人六维力传感器在线校准装置及主动驱动校准方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292835A (en) * 1980-02-25 1981-10-06 Raymond Engineering, Inc. Calibration apparatus and method for strain measuring instruments
DE19960482A1 (de) * 1999-12-15 2001-06-21 Peter Giesecke Automatische Kalibriereinrichtung für Mehrkomponenten-Kraft- und Momentenaufnehmer mit systemeigener Antriebskraft
CN101226095A (zh) * 2008-01-30 2008-07-23 中国科学院合肥物质科学研究院 六维力传感器标定装置
CN101776506A (zh) * 2010-01-28 2010-07-14 燕山大学 大型多维力传感器标定加载台
KR20110075727A (ko) * 2009-12-28 2011-07-06 전자부품연구원 로봇 관절의 토크 센서의 조정 장치 및 이에 의한 토크 센서의 조정 방법
JP2012176465A (ja) * 2011-02-28 2012-09-13 Univ Of Tokyo トルクセンサ校正装置、校正方法、及びプログラム
CN104280187A (zh) * 2014-11-03 2015-01-14 大连交通大学 一种六维力传感器标定装置
CN104406736A (zh) * 2014-11-14 2015-03-11 燕山大学 一种组合式小型多维力传感器标定加载装置
CN105021390A (zh) * 2015-07-27 2015-11-04 天津大学 数控机床主轴单元静刚度测试装置及测试方法
CN109580089A (zh) * 2019-01-10 2019-04-05 东南大学 一种六维力传感器标定装置及其标定的方法
CN111351615A (zh) * 2020-03-25 2020-06-30 东南大学 空间站机械臂六维力传感器高精度小型化在轨标定装置及标定方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2076193A5 (zh) * 1970-01-06 1971-10-15 Commissariat Energie Atomique
US4132318A (en) * 1976-12-30 1979-01-02 International Business Machines Corporation Asymmetric six-degree-of-freedom force-transducer system for a computer-controlled manipulator system
US4620436A (en) * 1984-10-09 1986-11-04 Hitachi, Ltd. Method and apparatus for calibrating transformation matrix of force sensor
US5020357A (en) * 1989-08-18 1991-06-04 N. K. Biotechnical Engineering Company Calibration stand for sensor
US5261266A (en) * 1990-01-24 1993-11-16 Wisconsin Alumni Research Foundation Sensor tip for a robotic gripper and method of manufacture
DE4108939A1 (de) * 1991-03-19 1992-09-24 Bodenseewerk Geraetetech Verfahren zum kalibrieren von hochgenauen robotern
US5677487A (en) * 1995-10-13 1997-10-14 A/S Bruel & Kjaer Method and apparatus for measuring acceleration or mechanical forces
JP3053606B2 (ja) * 1998-02-23 2000-06-19 ファナック株式会社 ロボットに装着された力センサのキャリブレーション方法及びロボット
US6418774B1 (en) * 2001-04-17 2002-07-16 Abb Ab Device and a method for calibration of an industrial robot
DE102004029001B4 (de) * 2004-06-16 2015-10-15 Robert Bosch Gmbh Vorrichtung zur Positionierung eines Bauteils in einer geneigten Lage und Schlagprüfstand mit einer solchen Vorrichtung
CN102802883B (zh) * 2010-03-18 2015-07-15 Abb研究有限公司 工业机器人的基座坐标系的校准
US8265792B2 (en) * 2010-04-15 2012-09-11 GM Global Technology Operations LLC Method and apparatus for calibrating multi-axis load cells in a dexterous robot
US8726740B1 (en) * 2012-12-13 2014-05-20 King Fahd University Of Petroleum And Minerals Multi-axis dynamometer
US9551639B2 (en) * 2013-03-27 2017-01-24 Shandong University Device and method for measuring true triaxial creep of geotechnical engineering test block
US10126186B2 (en) * 2013-10-05 2018-11-13 Bertec Limited Load transducer system configured to correct for measurement errors in the output forces and/or moments of the system
CN103600354B (zh) * 2013-11-08 2016-10-05 北京卫星环境工程研究所 航天器机械臂柔性随动控制重力补偿方法
JP6252241B2 (ja) * 2014-02-27 2017-12-27 セイコーエプソン株式会社 力検出装置、およびロボット
JP6476730B2 (ja) * 2014-10-21 2019-03-06 セイコーエプソン株式会社 力検出装置及びロボット
WO2016149649A1 (en) * 2015-03-18 2016-09-22 Michigan Scientific Corporation Transducer calibration apparatus
WO2016178737A1 (en) * 2015-05-07 2016-11-10 Sikorsky Aircraft Corporation Strain gage calibration system
CN105352657A (zh) * 2015-10-08 2016-02-24 安徽埃力智能科技有限公司 多维力传感器标定中加力装置精密校准系统和方法
CN106994687B (zh) * 2017-03-30 2019-08-20 北京卫星环境工程研究所 工业机器人末端六维力传感器安装姿态标定方法
DE102018111380A1 (de) * 2017-05-24 2018-11-29 HELLA GmbH & Co. KGaA Verfahren zur Kalibrierung mindestens eines Sensors
US10641663B2 (en) * 2017-09-13 2020-05-05 Government Of The United States Of America, As Represented By The Secretary Of Commerce Dynamic force contactor, providing a dynamic force, and calibrating a force sensor to be traceable to the international system of units
EP3460437B1 (fr) * 2017-09-25 2021-10-27 ETA SA Manufacture Horlogère Suisse Dispositif d'etalonnage dynamique de couple et/ou force
CN108318179A (zh) * 2018-01-11 2018-07-24 浙江大学 基于压电陶瓷的正弦力在线校准装置
CN108151945A (zh) * 2018-01-24 2018-06-12 大连交通大学 一种正交六维大载荷传感器标定装置及其工作方法
FR3117592B1 (fr) * 2020-12-16 2022-12-16 Commissariat Energie Atomique Capteur de force
US11554506B2 (en) * 2021-03-31 2023-01-17 National Chung Shan Institute Of Science And Technology Device and method for measuring repeated positioning precision of robotic arm

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292835A (en) * 1980-02-25 1981-10-06 Raymond Engineering, Inc. Calibration apparatus and method for strain measuring instruments
DE19960482A1 (de) * 1999-12-15 2001-06-21 Peter Giesecke Automatische Kalibriereinrichtung für Mehrkomponenten-Kraft- und Momentenaufnehmer mit systemeigener Antriebskraft
CN101226095A (zh) * 2008-01-30 2008-07-23 中国科学院合肥物质科学研究院 六维力传感器标定装置
KR20110075727A (ko) * 2009-12-28 2011-07-06 전자부품연구원 로봇 관절의 토크 센서의 조정 장치 및 이에 의한 토크 센서의 조정 방법
CN101776506A (zh) * 2010-01-28 2010-07-14 燕山大学 大型多维力传感器标定加载台
JP2012176465A (ja) * 2011-02-28 2012-09-13 Univ Of Tokyo トルクセンサ校正装置、校正方法、及びプログラム
CN104280187A (zh) * 2014-11-03 2015-01-14 大连交通大学 一种六维力传感器标定装置
CN104406736A (zh) * 2014-11-14 2015-03-11 燕山大学 一种组合式小型多维力传感器标定加载装置
CN105021390A (zh) * 2015-07-27 2015-11-04 天津大学 数控机床主轴单元静刚度测试装置及测试方法
CN109580089A (zh) * 2019-01-10 2019-04-05 东南大学 一种六维力传感器标定装置及其标定的方法
CN111351615A (zh) * 2020-03-25 2020-06-30 东南大学 空间站机械臂六维力传感器高精度小型化在轨标定装置及标定方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264405A (zh) * 2021-12-29 2022-04-01 山东欧瑞安电气有限公司 一种大扭矩传感器标定装置及其标定方法
CN114264405B (zh) * 2021-12-29 2022-10-14 山东欧瑞安电气有限公司 一种大扭矩传感器标定装置及其标定方法
CN114577393A (zh) * 2022-02-25 2022-06-03 中信戴卡股份有限公司 一种直立式三分力动板载荷传感器力值校准装置
CN114894365A (zh) * 2022-04-02 2022-08-12 上海理工大学 一种六维力传感器
CN114894365B (zh) * 2022-04-02 2023-11-28 上海理工大学 一种六维力传感器
CN115524058A (zh) * 2022-08-11 2022-12-27 东南大学 一种六维力/力矩传感器自动化标定装置及标定方法
CN115452244A (zh) * 2022-09-15 2022-12-09 中安集控自动化科技(苏州)有限公司 六维传感器校准系统
CN117109804A (zh) * 2023-08-21 2023-11-24 北京科技大学 用于大变形六维力传感器的标定装置及标定方法
CN117109804B (zh) * 2023-08-21 2024-05-07 北京科技大学 用于大变形六维力传感器的标定装置及标定方法

Also Published As

Publication number Publication date
CN111351615B (zh) 2021-07-20
US20220307933A1 (en) 2022-09-29
CN111351615A (zh) 2020-06-30
US11867578B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
WO2021190144A1 (zh) 空间站机械臂六维力传感器高精度小型化在轨标定装置及标定方法
CN107615035B (zh) 变换器校准设备
TWI398641B (zh) 用於控制探針卡組件之熱誘發的移動之設備與方法
US6629446B2 (en) Single vector calibration system for multi-axis load cells and method for calibrating a multi-axis load cell
US9354134B2 (en) In-situ load system for calibrating and validating aerodynamic properties of scaled aircraft in ground-based aerospace testing applications
US10041976B2 (en) Gimbal assembly test system and method
US9869597B1 (en) Compound strain gage carrier for multi-axis force/torque sensing
CN106461367B (zh) 具有集成应变感测元件的微型拾取阵列枢转底座
US11027435B2 (en) Automated work piece testing system and method for same
CN105784266B (zh) 对接机构试验系统六分量力在线校准方法
CN106625774A (zh) 一种空间机械臂几何参数标定方法
CN109781328B (zh) 一种八梁结构的六维力传感器
CN110967264A (zh) 一种基于杠杆原理的动-静态耦合加载试验系统
JP3168179U (ja) 力覚センサおよび6次元力検出装置
CN117347013B (zh) 大口径空间光学望远镜的地面模拟调整测量装置及方法
CN109443765B (zh) 一种rv减速器倾覆刚性测试装置
WO2022141786A1 (zh) 微装配用操作系统
CN113071705A (zh) 一种测量标定三坐标数控定位器球窝位置坐标的方法
CN108639393B (zh) 一种新型变构型控制器及方法
CN112362216B (zh) 一种采用双测量系统的发动机六分力测量装置
CN104842153A (zh) 一种姿态调整与卸载效率检测一体化装置
JP2016223827A (ja) 力検出装置及びロボット
CN114112186B (zh) 一种六维力传感器标定装置
CN110986899A (zh) 一种封闭舱体被遮挡电子设备的精度测量设备及测量方法
CN109814584A (zh) 一种挠性航天器姿态与结构振动的耦合控制实验系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775661

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21775661

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.09.2023)