WO2014153697A1 - 用于测量岩土工程试块真三轴蠕变的装置及其方法 - Google Patents

用于测量岩土工程试块真三轴蠕变的装置及其方法 Download PDF

Info

Publication number
WO2014153697A1
WO2014153697A1 PCT/CN2013/001487 CN2013001487W WO2014153697A1 WO 2014153697 A1 WO2014153697 A1 WO 2014153697A1 CN 2013001487 W CN2013001487 W CN 2013001487W WO 2014153697 A1 WO2014153697 A1 WO 2014153697A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
steel plate
plates
steel
pressure plates
Prior art date
Application number
PCT/CN2013/001487
Other languages
English (en)
French (fr)
Inventor
李术才
李利平
刘洪亮
王庆瀚
石少帅
张乾青
许振浩
周宗青
王旌
胡聪
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201320145784 external-priority patent/CN203164066U/zh
Priority claimed from CN201310103132.2A external-priority patent/CN103217345B/zh
Application filed by 山东大学 filed Critical 山东大学
Priority to US14/780,848 priority Critical patent/US9551639B2/en
Publication of WO2014153697A1 publication Critical patent/WO2014153697A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0071Creep
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0256Triaxial, i.e. the forces being applied along three normal axes of the specimen

Definitions

  • the present invention relates to an apparatus and method for measuring true triaxial creep of a geotechnical test block.
  • Creep refers to the phenomenon that the strain increases with time as the solid material maintains the stress. Unlike plastic deformation, plastic deformation usually occurs after the stress exceeds the elastic limit, and creep can occur as long as the stress is less than the elastic limit.
  • Creeping is very common in geotechnical engineering. Many geotechnical disasters are also closely related to rock and soil creep, such as landslides, landslides, foundation settlements, etc. Therefore, it is necessary to study the creep of rock and soil, which is also the safety of geotechnical engineering. Important guarantee.
  • the device for measuring true triaxial creep of a geotechnical test block comprising a support structure, the device further comprising four surrounding pressure plates and upper and lower pressure plates to form a closed cavity of the wrapped test block;
  • the pressing plate comprises two long surrounding pressing plates and two short surrounding pressing plates, wherein the upper and lower pressing plates are rectangular top steel plates and bottom steel plates, and two adjacent sides of the bottom steel plate are provided with two outwardly bent outer sides.
  • the top plate is erected with a top steel plate, and the top steel plate is in close contact with the inner side surfaces of the two short surrounding pressure plates; the interior of the support structure corresponds to the four surrounding pressure plates and the upper and lower pressing plates are vertically disposed with a pressure sensor, the pressure A scale is provided on the sensor.
  • the support structure comprises a bottom plate and a top ten steel bracket, and the four ends of the top steel bracket are respectively connected to the bottom plate by side steel brackets; the center of the bottom plate and the center of the side steel brackets respectively face the interior It has a hydraulic jack.
  • the lower end of the intersection of the top steel bracket is connected with the connecting steel sheet I, and the hydraulic jack is respectively connected with the connecting steel piece ⁇ through a pressure sensor, and the lower end of the connecting steel sheet I is provided with a top pulley for connecting the steel sheet ⁇ a top pulley is disposed at the top end, and a side pulley is disposed on the inner side of the connecting steel piece ⁇ ; the top pulley supports a top steel plate, and the bottom pulley supports a bottom steel plate for placing a square test piece, the test piece
  • the four sides are respectively closely attached to the two long surrounding pressure plates and the two short surrounding pressure plates; the lateral pulleys support the outer sides of the four surrounding pressure plates.
  • the inner side and the bottom of the shoulder of the pressure plate are respectively provided with a shoulder plate pulley and a bottom plate pulley for the pressure plate.
  • the specific method of the step 1) is: erecting the support structure, locating the bottom steel plate at the bottom of the support structure, and arranging two long surrounding pressure plates on the adjacent side of the bottom steel plate; placing the test block on the bottom steel plate, And close to the long circumference pressure plate, the two short pressure platens are placed on the bottom steel plate and contact with the test block; the top steel plate is placed on the long circumference pressure plate, and the sides of the two short surrounding pressure plates are in contact with each other to form a closed cavity wrapping test block. .
  • the specific method for erecting the support structure is: connecting the four ends of the "ten" shaped top steel bracket to the bottom plate through the side steel brackets respectively; the central portion of the bottom plate and the center of the side steel brackets are respectively installed with hydraulic jacks toward the inside; The lower end of the intersection of the top steel bracket is connected with the connecting steel sheet I, and the hydraulic jack is respectively connected with the connecting steel piece II ⁇ VI through a pressure sensor, and a grating ruler is mounted on each pressure sensor, and a top pulley is attached to the lower end of the steel sheet I, and the steel is connected.
  • the bottom part of the piece II is mounted with a bottom pulley, and the connecting steel plate III ⁇ VI is mounted with a side pulley toward the inner side; the top pulley supports the top steel plate, the bottom pulley supports the bottom steel plate, and the side pulley supports the outer side of the four surrounding pressure plates.
  • the specific method of measuring the creep displacement in the X direction and the y direction is: measuring every 30 minutes in one day, and measuring every 2 hours after one day.
  • the square test block is surrounded by four sets of surrounding steel plates, and the surrounding pressure is approximated by the extrusion of the four steel plates;
  • the upper and lower baffles of the test block are misaligned and overlapped, and each cover two sets of surrounding steel plates to ensure the free deformation of the test block when the axial force is applied;
  • the pressure sensor is connected to the outside of the steel plate by a ball-type pulley, and the lateral stress is applied by the pressure of the hydraulic jack.
  • the sensor can precisely control the pressure;
  • the device adopts the method of squeezing the test block from bottom to top to ensure the stability of the whole device.
  • the invention realizes the three-way loading of the test block by mutually slidable overlapping of the four sets of the surrounding pressure plate and the upper and lower pressing plates.
  • the four sets of confining plates adopt the "windmill type" lap joint method, which can freely change the relative position within a certain range when the lateral force is applied, ensuring the independence of the X-direction and the y-direction force;
  • the overlapping manner of the lateral steel plate up and down ensures the independence of the axial force of the test block;
  • the surrounding structure of the "windmill” can make the test block laterally subject to different confining pressures, and can ensure the lateral direction of the test block. Free deformation, ensuring the independence of side pressure.
  • a ball-type pulley is placed between the contact faces of the four sets of the pressure plate to reduce the frictional resistance and to slide freely.
  • the four sets of confining plates adopt the "L" shape design, which overcomes the biasing effect of the surrounding plate pressing process.
  • the outside of the pressure plate is connected to the pressure sensor in the form of a pulley, which ensures the axial pressure along the axis of the test piece and ensures the independence of the axial pressure.
  • the invention overcomes the problems encountered in the past true triaxial creep.
  • the "windmill" surrounding structure can make the test block laterally unequally confined and can be freely deformed, and the use of the ball pulley reduces the surrounding steel plate.
  • the friction between the two can be freely moved within a certain range;
  • the electronic pressure sensor controls the hydraulic jack pressure to accurately and constantly pressurize the geotechnical test block, ensuring the accuracy of the experiment;
  • the axial pressure is adopted from the bottom
  • the upper pressurization method ensures the free deformation of the test piece in the axial direction and ensures the stability of the entire device.
  • the invention solves the inconveniences in the previous experiments and realizes the simulation experiment of the creep of the test block under low pressure conditions.
  • the hydraulic jack is simple and easy to press, easy to adjust;
  • the creep process is slower in deformation and the test period is long.
  • the hydraulic jack automatically adjusts the pressure to ensure the accuracy of the experiment, which is sufficient for the low-strength creep experiment.
  • Figure 1 is a schematic structural view of the present invention
  • FIG. 2 is a schematic structural view of a support structure
  • Figure 3 is a side view of the direction of the short surrounding pressure plate
  • Figure 4 is a side view of the direction of the long circumference platen
  • Figure 5 is a view before loading the test block
  • Figure 6 is a view after loading the test block
  • the invention comprises a supporting structure, the inner sliding joint of the supporting structure overlaps four surrounding pressure plates and the upper and lower pressing plates to form a closed cavity of the wrapping test block;
  • the surrounding pressure plate comprises two long surrounding pressure plates 13 and two short surrounding pressure plates 14.
  • the upper and lower pressing plates are a rectangular top steel plate 11 and a bottom steel plate 14, and two adjacent sides of the bottom steel plate 14 are provided with two "L" long long pressing plates 13 bent outward, and the remaining two Two “L”-shaped short surrounding pressure plates 12 bent outward are disposed on the side, and the bottom end of the short surrounding pressure plate 12 is placed on the bottom steel plate 14;
  • the top end of the long surrounding pressure plate 13 is provided with a top steel plate 11, a top steel plate 11 and two
  • the inner side of the short surrounding pressure plate 12 is in close contact with each other;
  • the interior of the support structure corresponds to the four surrounding pressure plates and the upper and lower pressure plates are vertically disposed with a pressure sensor 10, and the pressure sensor 10 is provided with a grating rule 4.
  • the support structure comprises a bottom plate 5 and a top ten steel bracket 2, and the four ends of the top steel bracket 2 are respectively connected to the bottom plate 5 through the side steel bracket 3, and the joint is fixedly connected by a fixing screw 1; the center and the side of the bottom plate 5
  • the center of the section steel bracket 3 is provided with a hydraulic jack 6 toward the inside.
  • the lower end of the intersection of the top steel bracket 2 is connected with the connecting steel sheet I, and the hydraulic jack 6 is connected with the connecting steel piece 118, the connecting steel piece III, the connecting steel piece IV, the connecting steel piece, and the connecting steel piece VI through the pressure sensor 10, respectively.
  • the lower end of the connecting steel sheet I is provided with a top pulley
  • the top end of the connecting steel sheet ⁇ 8 is provided with a bottom pulley 9
  • the connecting steel sheets III ⁇ VI are provided with lateral pulleys 7 toward the inner side
  • the top pulley supports the top steel plate 11
  • the bottom pulley 9 Supporting the bottom steel plate 14 for placing the square test block, the four sides of the test block are respectively closely adhered to the two long surrounding pressure plates 13 and the two short surrounding pressure plates 12
  • the lateral pulleys 7 support the outer sides of the four surrounding pressure plates.
  • the inner side and the bottom of the shoulder of the pressure plate are respectively provided with a pressure plate shoulder pulley 15 and a pressure plate bottom pulley 16.
  • step 1) The creep displacement in the X direction and the y direction is measured, and the rising distance of the bottom steel plate 14 is taken as the axial creep displacement of the test piece.
  • the specific method of step 1) is: erecting the support structure, arranging the bottom steel plate 14 on the bottom of the support structure, and erecting the two long surrounding pressure plates 13 on the adjacent side of the bottom steel plate 14; placing the test block on the bottom steel plate 14 Up, and close to the long surrounding pressure plate 13, the two short surrounding pressure plates 12 are placed on the bottom steel plate 14 and in contact with the test piece; the top steel plate 11 is placed on the long surrounding pressure plate 13, and the sides of the two short surrounding pressure plates 12 Contact, forming a closed cavity wrapped test block.
  • the specific method of erecting the support structure is: connecting the four ends of the "ten"-shaped top steel bracket 2 to the bottom plate through the side steel brackets 3; the center of the bottom plate 5 and the center of the side steel brackets 3 are respectively installed hydraulically toward the inside Jack 6;
  • the lower end of the top steel bracket 2 is connected to the connecting steel sheet I, and the hydraulic jack 6 passes through the pressure sensor 10 and the connecting steel sheet 118, the connecting steel sheet III, the connecting steel sheet IV, the connecting steel sheet, and the connecting steel sheet VI
  • each of the pressure sensors 10 is provided with a grating rule 4, a lower end of the steel plate I is connected to the top pulley, a top end of the steel plate 118 is attached to the bottom pulley 9, and a steel plate III VI is attached to the inner side to install a lateral pulley 7; Supporting the top steel plate, the bottom pulley 9 supports the bottom steel plate 14, and the lateral pulley 7 supports the outer sides of the four surrounding pressure plates.
  • step 5 the specific method of measuring the creep displacement in the X direction and the y direction is: measuring every 30 minutes in one day, and measuring every 2 hours after one day.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种用于测量岩土工程试块真三轴蠕变的装置,它包括支撑结构,还包括四个围压板与上、下加压板,以形成一包裹试块的封闭腔;围压板包括两个长围压板和两个短围压板,上、下加压板为长方形的顶部钢板(11)和底部钢板(14),底部钢板(14)的相邻两个侧面搭设两个向外侧弯折的"L"形长围压板(13),剩余的两个侧面搭设两个向外侧弯折的"L'形短围压板(12),短围压板(12)的底端置于底部钢板(14)上;长围压板(13)的顶端搭设顶部钢板(11),顶部钢板(11)与两个短围压板(12)的内侧面紧贴;支撑结构的内部对应于四个围压板与上、下加压板均垂直设有压力传感器(10),压力传感器(10)上均设有光栅尺(4)。还提供了利用该装置测量岩土工程试块真三轴蠕变的方法。

Description

说 明 书
用于测量岩土工程试块真三轴蠕变的装置及其方法 技术领域
本发明涉及一种用于测量岩土工程试块真三轴蠕变的装置及其方法。
背景技术
蠕变是指固体材料在保持应力不变的条件下, 应变随时间延长而增加的现象。 它与塑 性变形不同, 塑性变形通常在应力超过弹性极限之后才出现, 而蠕变只要应力的作用时间 相当长, 它在应力小于弹性极限时也能出现。
岩土工程中蠕变现象非常普遍, 很多岩土工程灾害也与岩土体蠕变息息相关, 如滑坡, 塌方, 地基沉降等, 因此研究岩土体蠕变非常必要, 这也是岩土工程安全的重要保证。
以往的岩土工程蠕变试验往往停留在单轴、 假三轴的试验上, 单轴试验忽略了试块围 压的影响, 假三轴试验则忽略了试块各向压力的不等性, 这些都不能准确反映岩土体在实 际条件下的真实受力及蠕变行为。 国内外岩土体真三轴蠕变试验仪器非常少见, 结构十分 复杂, 规模相对庞大, 操作繁琐, 价格昂贵, 并只用于高强度的蠕变试验中, 对于低强度 条件下的三轴蠕变往往丧失准确性。 目前, 对于低强度条件下岩土的蠕变现象的研究较为 欠缺。
发明内容
本发明的目的是为克服上述现有技术的不足, 提供用于测量岩土工程试块真三轴蠕变 的装置及其方法。
为实现上述目的, 本发明采用下述技术方案:
用于测量岩土工程试块真三轴蠕变的装置, 包括支撑结构, 所述装置还包括四个围压 板与上、 下加压板, 以形成一包裹试块的封闭腔; 所述围压板包括两个长围压板和两个短 围压板, 所述上、 下加压板为长方形的顶部钢板和底部钢板, 所述底部钢板的相邻两个侧 面搭设两个向外侧弯折的 " L"形长围压板, 剩余的两个侧面搭设两个向外侧弯折的 " L" 形短围压板, 所述短围压板的底端置于底部钢板上; 所述长围压板的顶端搭设顶部钢板, 所述顶部钢板与两个短围压板的内侧面紧贴; 所述支撑结构的内部对应于四个围压板与上、 下加压板均垂直设有压力传感器, 所述压力传感器上均设有光栅尺。
所述支撑结构包括底板和 "十"字形的顶部钢支架, 所述顶部钢支架的四个末端分别 通过侧部钢支架与底板连接; 所述底板的中央以及侧部钢支架的中央分别朝向内部设有液 压千斤顶。 说 明 书
所述顶部钢支架的交叉处下端与连接钢片 I连接,所述液压千斤顶分别通过压力传感器 与连接钢片 π~νι连接, 所述连接钢片 I的下端设有顶部滑轮,连接钢片 π的顶端设有底部 滑轮, 连接钢片 ιιι~νι朝向内侧均设有侧向滑轮; 所述顶部滑轮支撑顶部钢板, 所述底部 滑轮支撑用于放置方形试块的底部钢板, 所述试块的四个侧面分别与两个长围压板以及两 个短围压板紧密贴合; 所述侧向滑轮支撑四个围压板的外侧面。
所述围压板的肩部内侧和底部分别设有围压板肩部滑轮和围压板底部滑轮。
利用上述装置测量岩土工程试块真三轴蠕变的方法, 具体步骤如下:
1 ) 装配试验装置, 形成一封闭腔包裹试块;
2 ) 预加压, 使支撑结构的内部与四个围压板以及上、 下加压板接触, 并保持稳定;
3 )调节与底部钢板对应的压力传感器的示数, 使之归零, 并记录相应光栅尺的初始读 数;
4 ) 分别调节 X轴、 y轴、 z轴方向的液压千斤顶, 使三个方向的压力传感器的读数分 别达到设定值, 并保持稳定; 所述设定值的范围为 0~5MPa;
5 ) 测量 X方向、 y方向的蠕变位移, 取底部钢板的上升距离作为试块轴向蠕变位移。 所述步骤 1 )的具体方法是: 搭置支撑结构, 将底部钢板搭设在支撑结构内的底部, 将 两个长围压板搭设在底部钢板的相邻侧面; 将试块放置于底部钢板上, 并紧靠长围压板, 将两短围压板安置于底部钢板上, 并与试块接触; 将顶部钢板置于长围压板上, 与两个短 围压板的侧面接触, 形成封闭腔包裹试块。
所述搭置支撑结构的具体方法是: 将 "十"字形顶部钢支架的四个末端分别通过侧部 钢支架连接至底板; 底板的中央以及侧部钢支架的中央分别朝向内部安装液压千斤顶; 顶 部钢支架的交叉处下端与连接钢片 I连接, 液压千斤顶分别通过压力传感器与连接钢片 II~VI连接, 各个压力传感器上均安装光栅尺, 连接钢片 I的下端安装顶部滑轮, 连接钢片 II的顶端安装底部滑轮, 连接钢片 III~VI朝向内侧均安装侧向滑轮; 顶部滑轮支撑顶部钢 板, 底部滑轮支撑底部钢板, 侧向滑轮支撑四个围压板的外侧面。
所述步骤 5 )中, 测量 X方向、 y方向的蠕变位移的具体方法是: 1天内每隔 30分钟测 量一次, 1天以后每隔 2小时测量一次。
本发明的工作原理:
1 方形试块四周以四组环绕钢板包裹, 通过四钢板的挤压作用近似模拟围压;
2四组钢板采用 "风车式"的搭接方式,侧向受力时可在一定范围内自由改变相对位置;
3四组钢板接触面之间安置滚珠式滑轮, 减小摩擦阻力, 同时克服了偏压作用; 说 明 书
4试块上下方两组挡板错位搭接, 各覆盖两组环绕钢板,保证试块轴向受力时的自由变 形;
5环绕钢板外侧通过滚珠式滑轮连接压力传感器,采用液压千斤顶加压的方式施加侧向 应力, 传感器可对压力进行精确控制;
6重力加载无法实现本装置的轴向加压, 本装置采用自下向上挤压试块的方式,保证了 整个装置的稳定性。
本发明通过四组围压板与上、 下加压板的相互可滑动搭接, 实现了试块的三向加载。 四组围压板, 采用 "风车式"的搭接方式, 侧向受力时可在一定范围内自由改变相对位置, 保证了 X向与 y向受力的独立性; 上下加压板与两组侧向钢板上下错开的搭接方式, 保证 了试块 z轴向受力的独立性; "风车式"的环绕结构可以使试块侧向受到不等的围压, 并且 可以保证试块侧向自由变形, 保证了侧压的独立性。
四组围压板的接触面之间安置滚珠式滑轮, 减小了摩擦阻力, 且可自由相对滑动。 四 组围压板采用 "L"形的设计形态, 克服了围压板运动过程的偏压作用。 加压板外侧与压力 传感器以滑轮形式接触连接, 保证了轴压沿试件轴心方向, 同时确保了轴压的独立性。
通过两组 "L"形的长侧压板与两组 "L"形的短侧压板上下错位搭接, 实现了试块轴 向受力时的自由变形, 同时保证了试块轴向受力的独立性。 "L"形钢板外侧与压力传感器 以滑轮方式接触连接, 保证了装置沿试块轴心方向加压, 同时保证了试块轴压与侧压的独 立性。 加压通过液压千斤顶实现, 确保压力的恒定。 利用压力传感器实现了对压力的精确 恒定控制。 采用光栅尺量测试块的三向位移, 极大提高了实验精度。
本发明克服了以往真三轴蠕变中遇到的难题, "风车式"的环绕结构可以使试块侧向受 到不等的围压, 且可以自由形变, 滚珠式滑轮的使用降低了环绕钢板间的摩擦, 且可在一 定范围内自由移动; 电子压力传感器控制液压千斤顶加压的方式可对岩土体试块进行准确, 恒定地加压, 确保了实验精度; 轴向压力采用自下而上加压的方式确保了试块轴向的自由 形变, 且保证了整个装置的稳定。
本发明的有益效果是,
1本发明解决了以前实验中的诸多不便, 实现了低压条件下试块蠕变的模拟实验。
2.液压千斤顶加压简单而容易实现, 便于调节;
3.蠕变过程变形较慢, 试验周期长, 通过液压千斤顶自动调控加压的方式, 保证了实验 精度, 足以满足低强度蠕变实验的需要;
4.压力传感器的安装保证了蠕变围压的恒定, 确保了低强度真三轴蠕变实验的准确性。 5采用自下向上挤压试块的方式, 保证了整个装置的稳定性。 说 明 书
6.采用光栅尺量测试块位移, 提高了试验精度。
附图说明
图 1为本发明的结构示意图;
图 2是支撑结构的结构示意图;
图 3是短围压板方向的侧面视图;
图 4是长围压板方向的侧面视图;
图 5是加载试块前的视图;
图 6是加载试块后的视图;
其中〗固定螺丝 2.顶部钢支架 3.侧部钢支架 4.光栅尺 5.底板 6.液压千斤顶 7.侧向滑轮 8.连接钢片 II 9.底部滑轮 10.压力传感器 11.顶部钢板 12.短围压板 13.长围压板 14.底部钢板 15.围压板肩部滑轮 16.围压板底部滑轮。
具体实施方式
下面结合附图和实施例对本发明进行进一步的阐述, 应该说明的是, 下述说明仅是为 了解释本发明, 并不对其内容进行限定。
本发明包括支撑结构, 支撑结构的内部滑动搭接四个围压板与上、 下加压板, 以形成 一包裹试块的封闭腔; 围压板包括两个长围压板 13和两个短围压板 14, 上、 下加压板为长 方形的顶部钢板 11和底部钢板 14,底部钢板 14的相邻两个侧面搭设两个向外侧弯折的" L" 形长围压板 13, 剩余的两个侧面搭设两个向外侧弯折的 "L"形短围压板 12, 短围压板 12 的底端置于底部钢板 14上; 长围压板 13的顶端搭设顶部钢板 11, 顶部钢板 11与两个短围 压板 12的内侧面紧贴; 支撑结构的内部对应于四个围压板与上、 下加压板均垂直设有压力 传感器 10, 压力传感器 10上均设有光栅尺 4。
支撑结构包括底板 5和 "十"字形的顶部钢支架 2, 顶部钢支架 2的四个末端分别通过 侧部钢支架 3与底板 5连接, 连接处以固定螺丝 1固定连接; 底板 5的中央以及侧部钢支 架 3的中央分别朝向内部设有液压千斤顶 6。
顶部钢支架 2的交叉处下端与连接钢片 I连接, 液压千斤顶 6分别通过压力传感器 10 与连接钢片 118、 连接钢片 III、 连接钢片 IV、 连接钢片 、 连接钢片 VI连接, 所述连接钢 片 I的下端设有顶部滑轮, 连接钢片 Π8的顶端设有底部滑轮 9, 连接钢片 III~VI朝向内侧 均设有侧向滑轮 7; 顶部滑轮支撑顶部钢板 11, 底部滑轮 9支撑用于放置方形试块的底部 钢板 14, 试块的四个侧面分别与两个长围压板 13以及两个短围压板 12紧密贴合; 侧向滑 轮 7支撑四个围压板的外侧面。
围压板的肩部内侧和底部分别设有围压板肩部滑轮 15和围压板底部滑轮 16。 说 明 书
利用上述装置测量岩土工程试块真三轴蠕变的方法, 具体步骤如下:
1 ) 装配试验装置, 形成一封闭腔包裹试块;
2) 预加压, 使支撑结构的内部与四个围压板以及上、 下加压板接触, 并保持稳定;
3 ) 调节与底部钢板 14对应的压力传感器 10的示数, 使之归零, 并记录相应光栅尺 4 的初始读数;
4) 分别调节 X轴、 y轴、 z轴方向的液压千斤顶 6, 使三个方向的压力传感器 10的读 数分别达到设定值, 并保持稳定; 设定值的范围为 0~5MPa;
5 )测量 X方向、 y方向的蠕变位移,取底部钢板 14的上升距离作为试块轴向蠕变位移。 步骤 1 ) 的具体方法是: 搭置支撑结构, 将底部钢板 14搭设在支撑结构内的底部, 将 两个长围压板 13搭设在底部钢板 14的相邻侧面; 将试块放置于底部钢板 14上, 并紧靠长 围压板 13, 将两短围压板 12安置于底部钢板 14上, 并与试块接触; 将顶部钢板 11置于长 围压板 13上, 与两个短围压板 12的侧面接触, 形成封闭腔包裹试块。
搭置支撑结构的具体方法是: 将 "十"字形顶部钢支架 2的四个末端分别通过侧部钢 支架 3连接至底板;底板 5的中央以及侧部钢支架 3的中央分别朝向内部安装液压千斤顶 6; 顶部钢支架 2的交叉处下端与连接钢片 I连接, 液压千斤顶 6分别通过压力传感器 10与连 接钢片 118、 连接钢片 III、 连接钢片 IV、 连接钢片 、 连接钢片 VI连接, 各个压力传感器 10上均安装光栅尺 4, 连接钢片 I的下端安装顶部滑轮, 连接钢片 118的顶端安装底部滑轮 9, 连接钢片 III VI朝向内侧均安装侧向滑轮 7; 顶部滑轮支撑顶部钢板, 底部滑轮 9支撑 底部钢板 14, 侧向滑轮 7支撑四个围压板的外侧面。
步骤 5 ) 中, 测量 X方向、 y方向的蠕变位移的具体方法是: 1天内每隔 30分钟测量一 次, 1天以后每隔 2小时测量一次。
上述虽然结合附图对本发明的具体实施方式进行了描述, 但并非对本发明保护范围的 限制, 在本发明的技术方案的基础上, 本领域技术人员不需要付出创造性劳动即可做出的 各种修改或变形仍在本发明的保护范围以内。

Claims

权 利 要 求 书
1、 用于测量岩土工程试块真三轴蠕变的装置, 包括支撑结构, 其特征在于, 所述装置 还包括四个围压板与上、 下加压板, 以形成一包裹试块的封闭腔; 所述围压板包括两个长 围压板和两个短围压板, 所述上、 下加压板为长方形的顶部钢板和底部钢板, 所述底部钢 板的相邻两个侧面搭设两个向外侧弯折的 " L"形长围压板, 剩余的两个侧面搭设两个向外 侧弯折的 "L"形短围压板, 所述短围压板的底端置于底部钢板上; 所述长围压板的顶端搭 设顶部钢板, 所述顶部钢板与两个短围压板的内侧面紧贴; 所述支撑结构的内部对应于四 个围压板与上、 下加压板均垂直设有压力传感器, 所述压力传感器上均设有光栅尺。
2、 根据权利要求 1所述的装置, 其特征在于, 所述支撑结构包括底板和 "十"字形的 顶部钢支架, 所述顶部钢支架的四个末端分别通过侧部钢支架与底板连接; 所述底板的中 央以及侧部钢支架的中央分别朝向内部设有液压千斤顶。
3、 根据权利要求 2所述的装置, 其特征在于, 所述顶部钢支架的交叉处下端与连接钢 片 I连接, 所述液压千斤顶分别通过压力传感器与连接钢片 II~VI连接, 所述连接钢片 I的 下端设有顶部滑轮, 连接钢片 II的顶端设有底部滑轮, 连接钢片 πι~νι朝向内侧均设有侧 向滑轮; 所述顶部滑轮支撑顶部钢板, 所述底部滑轮支撑用于放置方形试块的底部钢板, 所述试块的四个侧面分别与两个长围压板以及两个短围压板紧密贴合; 所述侧向滑轮支撑 四个围压板的外侧面。
4、 根据权利要求 1所述的装置, 其特征在于, 所述围压板的肩部内侧和底部分别设有 围压板肩部滑轮和围压板底部滑轮。
5、 利用权利要求 1所述的装置测量岩土工程试块真三轴蠕变的方法, 其特征在于, 具 体步骤如下:
1 ) 装配试验装置, 形成一封闭腔包裹试块;
2 ) 预加压, 使支撑结构的内部与四个围压板以及上、 下加压板接触, 并保持稳定;
3 )调节与底部钢板对应的压力传感器的示数, 使之归零, 并记录相应光栅尺的初始读 数;
4 ) 分别调节 X轴、 y轴、 z轴方向的液压千斤顶 6, 使三个方向的压力传感器 10的读 数分别达到设定值, 并保持稳定; 所述设定值的范围为 0~5MPa;
5 ) 测量 X方向、 y方向的蠕变位移, 取底部钢板的上升距离作为试块轴向蠕变位移。
6、 根据权利要求 5所述的方法, 其特征在于, 所述步骤 1 ) 的具体方法是: 搭置支撑 结构, 将底部钢板搭设在支撑结构内的底部, 将两个长围压板搭设在底部钢板的相邻侧面; 将试块放置于底部钢板上, 并紧靠长围压板, 将两短围压板安置于底部钢板上, 并与试块 接触; 将顶部钢板置于长围压板上, 与两个短围压板的侧面接触, 形成封闭腔包裹试块。 权 利 要 求 书
7、根据权利要求 6所述的方法,其特征在于,所述搭置支撑结构的具体方法是:将"十" 字形顶部钢支架的四个末端分别通过侧部钢支架连接至底板; 底板的中央以及侧部钢支架 的中央分别朝向内部安装液压千斤顶;顶部钢支架的交叉处下端与连接钢片 I连接,液压千 斤顶分别通过压力传感器与连接钢片 II~VI连接, 各个压力传感器上均安装光栅尺,连接钢 片 I的下端安装顶部滑轮, 连接钢片 II的顶端安装底部滑轮, 连接钢片 III~VI朝向内侧均 安装侧向滑轮: 顶部滑轮支撑顶部钢板, 底部滑轮支撑底部钢板, 侧向滑轮支撑四个围压 板的外侧面。
8、 根据权利要求 5所述的方法, 其特征在于, 所述步骤 5 ) 中, 测量 X方向、 y方向 的蠕变位移的具体方法是: 1天内每隔 30分钟测量一次, 1天以后每隔 2小时测量一次。
PCT/CN2013/001487 2013-03-27 2013-12-02 用于测量岩土工程试块真三轴蠕变的装置及其方法 WO2014153697A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/780,848 US9551639B2 (en) 2013-03-27 2013-12-02 Device and method for measuring true triaxial creep of geotechnical engineering test block

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201320145784.8 2013-03-27
CN 201320145784 CN203164066U (zh) 2013-03-27 2013-03-27 用于测量岩土工程试块真三轴蠕变的装置
CN201310103132.2 2013-03-27
CN201310103132.2A CN103217345B (zh) 2013-03-27 2013-03-27 用于测量岩土工程试块真三轴蠕变的装置及其方法

Publications (1)

Publication Number Publication Date
WO2014153697A1 true WO2014153697A1 (zh) 2014-10-02

Family

ID=51622339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001487 WO2014153697A1 (zh) 2013-03-27 2013-12-02 用于测量岩土工程试块真三轴蠕变的装置及其方法

Country Status (2)

Country Link
US (1) US9551639B2 (zh)
WO (1) WO2014153697A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107389543A (zh) * 2017-07-27 2017-11-24 山东大学 主动及被动变形模式下锚固挡墙活动门试验装置及方法
CN107421854A (zh) * 2017-07-17 2017-12-01 大连理工大学 连续体‑离散体边界面接触参数标定装置
CN108489797A (zh) * 2018-05-30 2018-09-04 西安科技大学 一种大倾角煤岩地层力学性状物理模拟与测试装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289996B (zh) * 2016-10-26 2023-04-28 中国科学院武汉岩土力学研究所 一种可进行真假三轴试验的装置
CN106918508B (zh) * 2017-01-23 2019-08-09 中南大学 一种不同应力边界下非均匀应力场室内再现系统
CN107631940B (zh) * 2017-10-25 2024-03-19 武汉科技大学 一种垂直荷载作用下的岩石裂隙冻胀力测试装置
IT201800002647A1 (it) * 2018-02-13 2019-08-13 Univ Degli Studi Di Milano Bicocca Dispositivo e metodo di simulazione di iniezioni di miscele cementizie e/o chimiche in terreni
CN108896414A (zh) * 2018-06-20 2018-11-27 中国科学院、水利部成都山地灾害与环境研究所 一种便携式原位水平推剪仪
CN109115612B (zh) * 2018-10-31 2023-08-15 成都理工大学 摩擦体力型岩质滑坡试验系统
CN109682691B (zh) * 2019-01-30 2021-11-12 河南理工大学 一种井壁与围土接触面剪切试验设备
CN109781528B (zh) * 2019-02-18 2024-06-28 长安大学 测试沥青混合料迁移过程中剪胀作用的装置及其使用方法
CN109827849A (zh) * 2019-04-02 2019-05-31 贵州大学 一种携带式真三轴试验机结构及操作方法
CN110595897B (zh) * 2019-09-03 2021-03-23 武汉理工大学 一种锚固体相似材料试验加载系统
CN110618034A (zh) * 2019-10-19 2019-12-27 辽宁工程技术大学 一种岩石拉张蠕变实验测试仪器
CN110823705A (zh) * 2019-10-31 2020-02-21 河南理工大学 一种双向加压大尺寸混凝土试块室内加压试验装置及方法
CN111351615B (zh) * 2020-03-25 2021-07-20 东南大学 空间站机械臂六维力传感器高精度小型化在轨标定装置及标定方法
CN111579353B (zh) * 2020-05-29 2022-10-14 贵州大学 一种集加载和注液于一体的水力堵头装置和试验方法
CN112730055B (zh) * 2020-12-18 2022-10-21 三峡大学 一种模拟深土层恒阻土锚拉拔的试验装置及方法
CN112748016A (zh) * 2020-12-28 2021-05-04 辽宁工程技术大学 一种大型三维立体可拆卸钻屑相似模拟实验装置
CN112730032A (zh) * 2021-01-11 2021-04-30 大连理工大学 考虑真实复杂边界条件的结构多维加载试验系统
CN113125257B (zh) * 2021-03-30 2023-04-11 上海盈达空调设备股份有限公司 一种用于镀锌板板体变形测试工装
CN113075051B (zh) * 2021-04-01 2023-01-03 辽宁工程技术大学 一种软岩压缩蠕变相似环境模拟试验装置及试验方法
CN117213784B (zh) * 2023-10-25 2024-03-15 中交城乡建设规划设计研究院有限公司 一种加筋土桥台的模型试验装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU951103A1 (ru) * 1977-09-30 1982-08-15 Московский Трижды Ордена Ленина,Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Автомобильный Завод Им.И.А.Лихачева (Производственное Объединение "Зил") Устройство дл испытани образцов на трехосное сжатие
JP2003050188A (ja) * 2001-08-06 2003-02-21 Ichiro Shimizu 二軸圧縮装置
US7051600B1 (en) * 2004-05-24 2006-05-30 The United States Of America As Represented By The Secretary Of The Navy Triaxial tension compression, shear testing apparatus
CN102607946A (zh) * 2012-02-28 2012-07-25 武汉大学 一种原始级配堆石体大型真三轴试验装置及其使用方法
CN103217345A (zh) * 2013-03-27 2013-07-24 山东大学 用于测量岩土工程试块真三轴蠕变的装置及其方法
CN203164066U (zh) * 2013-03-27 2013-08-28 山东大学 用于测量岩土工程试块真三轴蠕变的装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU951103A1 (ru) * 1977-09-30 1982-08-15 Московский Трижды Ордена Ленина,Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Автомобильный Завод Им.И.А.Лихачева (Производственное Объединение "Зил") Устройство дл испытани образцов на трехосное сжатие
JP2003050188A (ja) * 2001-08-06 2003-02-21 Ichiro Shimizu 二軸圧縮装置
US7051600B1 (en) * 2004-05-24 2006-05-30 The United States Of America As Represented By The Secretary Of The Navy Triaxial tension compression, shear testing apparatus
CN102607946A (zh) * 2012-02-28 2012-07-25 武汉大学 一种原始级配堆石体大型真三轴试验装置及其使用方法
CN103217345A (zh) * 2013-03-27 2013-07-24 山东大学 用于测量岩土工程试块真三轴蠕变的装置及其方法
CN203164066U (zh) * 2013-03-27 2013-08-28 山东大学 用于测量岩土工程试块真三轴蠕变的装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107421854A (zh) * 2017-07-17 2017-12-01 大连理工大学 连续体‑离散体边界面接触参数标定装置
CN107421854B (zh) * 2017-07-17 2023-04-11 大连理工大学 连续体-离散体边界面接触参数标定装置
CN107389543A (zh) * 2017-07-27 2017-11-24 山东大学 主动及被动变形模式下锚固挡墙活动门试验装置及方法
CN108489797A (zh) * 2018-05-30 2018-09-04 西安科技大学 一种大倾角煤岩地层力学性状物理模拟与测试装置
CN108489797B (zh) * 2018-05-30 2024-01-26 西安科技大学 一种大倾角煤岩地层力学性状物理模拟与测试装置

Also Published As

Publication number Publication date
US20160054211A1 (en) 2016-02-25
US9551639B2 (en) 2017-01-24

Similar Documents

Publication Publication Date Title
WO2014153697A1 (zh) 用于测量岩土工程试块真三轴蠕变的装置及其方法
CN103217345B (zh) 用于测量岩土工程试块真三轴蠕变的装置及其方法
CN202836997U (zh) 可移动式千斤顶检定装置
CN103317116B (zh) 基于压铸机锁模力自动调节系统和控制方法
CN103954262A (zh) 一种圆柱形试件径向变形测量装置
CN203949656U (zh) 一种圆柱形试件径向变形测量装置
CN203164066U (zh) 用于测量岩土工程试块真三轴蠕变的装置
CN103148982A (zh) 拉压一体传感器标定装置
CN102539261B (zh) 一种钢管弯曲变形试验系统
CN101458142A (zh) 测力计量标准装置
CN103575597A (zh) 轴心受压柱非卸载加固试验装置
CN104792627A (zh) 一种大型冻土直剪仪
CN110567773A (zh) 物理相似材料试件的快速承压成型装置及其成型方法
CN109655336B (zh) 一种研究复杂条件下岩土蠕变规律的方法
CN104345028A (zh) 桩土滑动摩擦测试方法
CN203148624U (zh) 一种拉压一体传感器标定装置
CN201225943Y (zh) 测力计量标准装置
CN105043282B (zh) 一种光纤光栅剪切应变传感器
CN103487329A (zh) 用于土壤与结构面的力学测试仪及其测试方法
CN102103065A (zh) 拔出仪校准装置
CN203785964U (zh) 数字式便携压力机
CN101487749B (zh) 静压桩沉桩阻力测量装置及其测量方法
CN203259434U (zh) 一种数显式室内回弹模量的测量装置
CN202649055U (zh) 一种结构用木材弯曲强度检测设备
CN206430927U (zh) 一种飞机千斤顶的承载试验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13879965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14780848

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13879965

Country of ref document: EP

Kind code of ref document: A1