WO2021190027A1 - 一种氨法电解装置及其使用方法 - Google Patents

一种氨法电解装置及其使用方法 Download PDF

Info

Publication number
WO2021190027A1
WO2021190027A1 PCT/CN2020/140102 CN2020140102W WO2021190027A1 WO 2021190027 A1 WO2021190027 A1 WO 2021190027A1 CN 2020140102 W CN2020140102 W CN 2020140102W WO 2021190027 A1 WO2021190027 A1 WO 2021190027A1
Authority
WO
WIPO (PCT)
Prior art keywords
shunt
optionally
tank
electrolytic cell
liquid
Prior art date
Application number
PCT/CN2020/140102
Other languages
English (en)
French (fr)
Inventor
冯国军
罗彦
马黎阳
张武
李永华
马青龙
唐卫军
Original Assignee
鑫联环保科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鑫联环保科技股份有限公司 filed Critical 鑫联环保科技股份有限公司
Publication of WO2021190027A1 publication Critical patent/WO2021190027A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/16Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This application belongs to the technical field of hydrometallurgy, and relates to an ammonia electrolysis device and a method of use thereof.
  • Electrolysis technology is one of the important methods for the production of various metal elements, especially the production of transition metal elements.
  • the traditional electrolysis method mainly adopts acid electrolysis.
  • the structure and material selection of the corresponding electrolysis device are mainly suitable for this condition.
  • alkaline electrolysis has also emerged.
  • ammonia electrolysis is One of the key electrolysis methods currently being studied has its unique advantages.
  • Ammonia electrolytic zinc is an important method for metal zinc production. It has the advantages of good material adaptability, low raw material prices, simple process flow and low cost. It is especially suitable for secondary zinc-containing materials, such as zinc-containing electric arc furnace dust. System, but there are also problems such as low zinc concentration in the electrolyte, strong chlorine corrosion, and large aerosol volume.
  • the ammonia electrolysis setup mainly adopts the original acid electrolysis equipment. Its structure or specifications are difficult to adapt to the characteristics of ammonia electrolysis, resulting in lower production capacity. Therefore, targeted design or improvement is required to make it better suitable Application of ammonia electrolysis.
  • CN 109440129A discloses a corrosion-resistant electrolytic cell for industrial production, comprising a cell body, on which an internal anti-corrosion layer, a reinforcement layer, an alloy layer, an overflow pipe, a horizontal pipe, an elbow, a connecting pipe, and a mud suction are provided Pipes and mud pumps.
  • the tank body is composed of an internal anti-corrosion layer, a reinforcement layer and an alloy layer from the inside to the outside.
  • the overflow pipe is located on the left side of the tank body, and the horizontal pipe, the suction pipe and the mud pump are arranged It is mainly to suck out the waste slag produced in the electrolysis process.
  • the electrolytic cell does not improve how to achieve the full mixing of the electrolyte to eliminate the concentration polarization, and it does not explain the problem of aerosol corrosion caused by the ammonia electrolysis solution. How to solve.
  • CN 205773538U discloses a micro-electrolysis device, comprising a box body, the upper part of the box body is provided with a water collection area, the middle part is provided with a micro-electrolysis packing area, the bottom is provided with a water distribution area, and the bottom of the micro-electrolysis packing area is provided with a composite supporting layer ,
  • the side wall of the water collection area is provided with a water outlet, and one side of the water collection area is provided with a water collection device.
  • the side wall is provided with a water inlet, an overflow device in the water inlet area and the water distribution area are connected through a diversion pipe, and an air release device is arranged in the water distribution area.
  • the device is mainly suitable for micro-electrolysis systems, suitable for the treatment of small batches of electrolytes, but not suitable for the treatment of large-volume, corrosive, and prone to aerosol electrolytes, and the electrolytic fillers and electrolysis methods using cathode and anode plates are also not applicable. different.
  • the electrolysis device needs to be improved, and appropriate structural composition and component configuration should be selected, while avoiding the influence of electrolyte concentration polarization and ensuring the safety of the electrolysis process.
  • the purpose of this application is to provide an ammonia electrolysis device and a method of use thereof. According to the characteristics of ammonia electrolysis, the device improves the existing electrolysis device. The full mixing of the electrolyte can maintain the stability of the electrolysis process and improve the quality of the product obtained.
  • an ammonia electrolysis device which includes an electrolytic cell main body, a liquid inlet unit and a liquid outlet unit, and the liquid inlet unit and the liquid outlet unit are located at corresponding two ends of the electrolytic cell main body;
  • a cathode plate and an anode plate are arranged longitudinally in the main body of the electrolytic cell, and the cathode plate and the anode plate are arranged in parallel;
  • the shunt pipe includes a vertical pipe part and a flat pipe part, forming an L-shaped structure, the vertical pipe part of the shunt pipe is led out by a closed shunt bin, and the shunt half tank is arranged in the shunt pipe Below the flat pipe part;
  • the liquid outlet unit includes an overflow buffer tank, the overflow buffer tank is located in the upper part of the liquid outlet end of the electrolytic tank body, and an overflow outlet is provided on the overflow buffer tank.
  • the main body of the electrolyzer is provided with a liquid inlet unit and a liquid outlet unit.
  • the flow rate of the inlet liquid can be controlled by the arrangement of a closed shunt bin and a shunt duct in the liquid inlet unit.
  • the setting of the flow half tank can accelerate the fixed-point mixing of the electrolyte, reduce the concentration polarization of the electrode interface, and realize uniform and stable electrolysis;
  • the setting of the overflow buffer tank in the discharge unit can effectively control the height of the liquid level and avoid the water line Corrosion shortens the life of the electrode, and can avoid the problems of uneven thickness and poor quality of electrolyzed products due to changes in electrolyte concentration;
  • the design of the above-mentioned electrolysis device can be effectively applied to the ammonia electrolysis process, with high electrolysis efficiency and good product quality.
  • the main body of the electrolytic cell has a rectangular parallelepiped structure.
  • the cathode plate and the anode plate are parallel to two sides of the electrolytic cell body and perpendicular to the other two sides of the electrolytic cell body.
  • the edges of the cathode plate and the anode plate are not in contact with the inner wall of the electrolytic cell body.
  • the distance from the liquid surface to the side of the cell can be 100-200mm, such as 100mm, 120mm, 140mm, 160mm, 180mm or 200mm, etc.
  • the distance from the electrode plate to the vertical cell wall is 80-120mm , such as 80mm, 90mm, 100mm, 110mm, or 120mm, etc.
  • the distance from the most edge electrode plate to the groove wall parallel to it is 110-180mm, such as 110mm, 120mm, 130mm, 150mm, 160mm or 180mm.
  • the center-to-center distance of the cathode plate and the anode plate is 60-120mm, such as 60mm, 70mm, 80mm, 90mm, 100mm, 110mm, or 120mm, etc., but it is not limited to the listed values, which are within the range of values. Other unlisted values also apply.
  • the center distance of the same pole is the distance between adjacent cathodes or adjacent anodes.
  • the liquid phase mass transfer can be effectively controlled and the characteristics of ammonium complex electrolysis can be effectively controlled to obtain compactness.
  • the flat metal sheet avoids the interference of local dendrites.
  • the required size of the electrolytic cell can be obtained.
  • a liquid inlet pipe is connected to the upper end of the closed shunt bin, and at least two shunt pipes are connected to the lower end.
  • the selection of the number of shunt pipes is related to factors such as the main body of the electrolytic cell, the width of the closed shunt bin, and the diameter of the shunt pipe.
  • the closed shunt bin is arranged on the inner side of the liquid inlet end of the electrolytic tank, the upper end is not higher than the edge of the electrolytic tank, and the lower end is not lower than the liquid level of the electrolyte.
  • the width of the closed shunt bin is 1/3 to 2/3 of the width of the side of the liquid inlet end of the electrolytic cell body, such as 1/3, 2/5, 9/20, 1/2, 11/20, 3/5 or 2/3, etc., but not limited to the listed values, and other unlisted values within this range of values are also applicable.
  • liquid inlet method of the closed shunt bin is pressurized liquid inlet, so that the flow rate of the electrolyte in the shunt conduit can be adjusted.
  • the upper end of the vertical pipe portion of the shunt pipe is connected to the lower end of the closed shunt bin, and the lower end of the vertical pipe portion is connected to the flat pipe portion through an elbow.
  • a 90-degree elbow is generally selected for the elbow.
  • the flat pipe part of the shunt duct is fixed to the inner bottom of the diversion half groove.
  • the length of the flat tube part of the shunt conduit is 1/3 to 1/2 of the length of the electrolytic cell body, such as 1/3, 7/20, 2/5, 9/20, or 1/2, etc., but It is not limited to the listed values, and other unlisted values within this range of values are also applicable.
  • the length of the flat pipe part of the shunting conduit is less than the length of the diversion half tank.
  • the flat tube portion of the shunt conduit is evenly provided with jet holes, and the jet holes are opened vertically upwards.
  • a row of open circular holes are uniformly distributed on the upper part of the flat tube of the shunt conduit.
  • the diameter of the circular holes can be 5-10mm, such as 5mm, 6mm, 7mm, 8mm, 9mm or 10mm.
  • the diversion half groove is an open semicircular tube, and the diameter of the diversion half groove is 1.5 to 3.5 times the diameter of the shunt conduit, such as 1.5 times, 2 times, 2.5 times, and 3 times. Or 3.5 times, etc., but not limited to the listed values, and other unlisted values within this range of values are also applicable.
  • the length of the guide half tank extends from the liquid inlet end of the electrolytic tank body to the position of the terminal electrode plate.
  • a gap is left between the bottom of the flow guide half tank and the bottom of the electrolytic tank body.
  • the diameter of the diversion half groove is larger than that of the diversion duct, so the flat tube in the diversion duct is fixed at the bottom of the diversion half groove; the installation position of the diversion half groove is a certain distance from the bottom of the groove, such as 80-120 mm It is possible to avoid the agitation of the bottom during the mixing process, which is conducive to the precipitation of sediments, improves the quality of the solution, and prolongs the cleaning cycle; at the same time, the guide half tank also needs to be a certain distance from the bottom of the electrode plate, such as 350-400mm, to avoid jet holes The turbulence when the sprayed liquid is mixed affects the electrodeposition at the electrode plate.
  • the overflow buffer tank is arranged inside the outlet end of the electrolytic tank, and the upper end is flush with the liquid surface of the electrolyte.
  • the upper part of the overflow buffer tank is open and the lower part is closed.
  • the upper part of the overflow buffer tank is provided with a height adjustment gate, which mainly adjusts the amount of liquid entering the overflow buffer tank, thereby adjusting the height of the liquid level and the electrolyte flow rate of the electrolytic tank.
  • the width of the overflow buffer tank is 1/3 to 2/3 of the width of the side surface of the liquid outlet end of the electrolytic tank body, such as 1/3, 2/5, 9/20, 1/2, 11/20 , 3/5 or 2/3, etc., but not limited to the listed values, and other unlisted values within this range of values are also applicable.
  • one side surface of the overflow buffer tank coincides with the liquid outlet end of the electrolytic tank body, and an overflow outlet is opened.
  • the overflow buffer tank can play a better buffering effect on the outflow of the electrolyte, so as to prevent the electrolytic deposits from directly flowing out of the outlet, and the setting of the height adjustment gate can be based on the height of the liquid level in the electrolytic tank. It needs to be adjusted flexibly to avoid corrosion to the electrode plate connection line.
  • the cross-sectional area of the overflow outlet is not less than the total cross-sectional area of the shunt duct.
  • a gas mist collection hole is provided on the side surface of the liquid outlet end of the electrolytic tank main body which is higher than the liquid level of the electrolytic solution.
  • an aerosol collection and processing device is connected to the outside of the aerosol collection hole.
  • the distance from the electrolyte surface to the top of the electrolytic cell can be increased, and the distance from the electrolyte surface to the top of the electrolytic cell can be selected from 120 to 180 mm, such as 120 mm, 130 mm, 140 mm, 150 mm, 160mm, 170mm or 180mm, etc., increase the diffusion space, so that the electrolytic aerosol is buffered and diluted, and then extracted from the aerosol collection hole under negative pressure for centralized treatment.
  • the present application provides a method for using the above ammonia electrolysis device.
  • the method includes: adding the electrolytic solution to be treated into the main body of the electrolytic tank through a liquid inlet unit, and starting electrolysis after reaching the required liquid level, The electrolyte is continuously added during the electrolysis process, and the rapid mixing of the electrolyte is realized through the action of the shunt conduit and the guide half tank. After the liquid level exceeds the overflow buffer tank, it leaves from the overflow outlet after being buffered by the overflow buffer tank to maintain The electrolysis process is carried out continuously.
  • the electrolyte includes an ammonium salt solution of a transition metal, and optionally an ammonia zinc electrolyte solution.
  • the liquid pressure in the shunt conduit during the electrolyte adding process is 0.3 to 1 MPa, such as 0.3 MPa, 0.4 MPa, 0.5 MPa, 0.6 MPa, 0.7 MPa, 0.8 MPa, or 1 MPa, etc., but is not limited to the list.
  • the value of, other unlisted values in this value range are also applicable, and it can be selected as 0.3 ⁇ 0.6MPa.
  • the current density during the electrolysis process is 200-600A/m 2 , for example 200A/m 2 , 250A/m 2 , 300A/m 2 , 350A/m 2 , 400A/m 2 , 450A/m 2 , 500A/m 2 , 550A/m 2 or 600A/m 2, etc., but not limited to the listed values, and other unlisted values within this range of values are also applicable.
  • the electrolysis cycle in the electrolysis process is 24 to 36h, such as 24h, 26h, 28h, 30h, 32h, 34h, or 36h, etc., but not limited to the listed values, and other unlisted values within the range of values The same applies.
  • the design of the structure and size of the electrolysis cell and the selection of the ammonia electrolysis method require appropriate electrolysis process parameters to solve the problem of maximizing the production capacity per unit time.
  • corrosive aerosol may be generated during the electrolysis process.
  • the corrosive aerosol is extracted through a negative pressure aerosol collection hole provided at the liquid outlet end of the electrolytic cell body for post-processing.
  • the electrolysis device described in the present application can effectively realize the fixed-point mixing of the electrolyte through the arrangement of the air-tight shunt bin, shunt duct, and diversion half tank in the liquid inlet unit, and at the same time use the wall effect and jet suction effect of the pressure liquid flow
  • An active liquid circulation and mixing system is formed, which helps to eliminate the concentration polarization of the electrolyte and realize the compactness and flatness of the electrolytic products;
  • FIG. 1 is a schematic diagram of the front structure of the ammonia electrolysis device described in Example 1 of the present application;
  • Example 2 is a schematic diagram of the front end side structure of the ammonia electrolysis device described in Example 1 of the present application;
  • FIG. 3 is a schematic diagram of the rear end side structure of the ammonia electrolysis device described in Example 1 of the present application;
  • 1- the main body of the electrolytic cell
  • 2- the airtight shunt bin
  • 32- the flat pipe part 4- diversion half tank
  • 5- overflow buffer tank 6- overflow outlet
  • 7- aerosol Collection hole 1- the main body of the electrolytic cell
  • 2- the airtight shunt bin
  • 31- the vertical pipe part 32- the flat pipe part
  • 4- diversion half tank 5- overflow buffer tank
  • 6- overflow outlet 7- aerosol Collection hole.
  • the specific implementation mode of this application provides an ammonia electrolysis device and a method of use thereof.
  • the device includes an electrolytic cell main body 1, a liquid inlet unit and a liquid outlet unit, and the liquid inlet unit and the liquid outlet unit are located in the electrolytic cell main body 1. Corresponding ends within;
  • the electrolytic cell body 1 is longitudinally provided with a cathode plate and an anode plate, and the cathode plate and the anode plate are arranged in parallel;
  • the shunt bin 2 is located at the upper part of the liquid inlet end of the electrolytic cell body 1.
  • the shunt pipe includes a vertical pipe portion 31 and a flat pipe portion 32, forming an L-shaped structure.
  • the vertical pipe portion 31 of the shunt pipe is led out from the closed shunt bin 1, and
  • the diversion half tank 4 is arranged below the flat pipe portion 32 of the shunt conduit;
  • the liquid outlet unit includes an overflow buffer tank 5, which is located at the upper part of the liquid outlet end in the electrolytic tank body 1.
  • An overflow outlet 6 is provided on the overflow buffer tank 5.
  • This embodiment provides an ammonia electrolysis device.
  • the front structure diagram of the device is shown in FIG. 1, the front side structure diagram is shown in FIG. 2, and the rear side structure diagram is shown in FIG. 3.
  • the device includes An electrolytic cell body 1, a liquid inlet unit and a liquid outlet unit, the liquid inlet unit and the liquid outlet unit are located at corresponding two ends in the electrolytic cell main body 1;
  • the electrolytic cell body 1 is longitudinally provided with a cathode plate and an anode plate, and the cathode plate and the anode plate are arranged in parallel;
  • the shunt bin 2 is located at the upper part of the liquid inlet end of the electrolytic cell body 1.
  • the shunt pipe includes a vertical pipe portion 31 and a flat pipe portion 32, forming an L-shaped structure.
  • the vertical pipe portion 31 of the shunt pipe is led out from the closed shunt bin 1, and
  • the diversion half tank 4 is arranged below the flat pipe portion 32 of the shunt conduit;
  • the liquid outlet unit includes an overflow buffer tank 5, which is located at the upper part of the liquid outlet end in the electrolytic tank body 1.
  • An overflow outlet 6 is provided on the overflow buffer tank 5.
  • the electrolytic cell main body 1 has a rectangular parallelepiped structure, the cathode plate and the anode plate are parallel to two sides of the electrolytic cell main 1 and perpendicular to the other two sides of the electrolytic cell main body 1; the edges of the cathode and anode plates are not It is in contact with the inner wall of the electrolytic cell body 1; the distance between the electrode plate and the vertical groove wall is 100mm, the distance between the most edge electrode plate and the parallel groove wall is 150mm, and the center distance of the same pole between the cathode plate and the anode plate is 90mm .
  • the upper end of the airtight shunt bin 2 is connected with a liquid inlet pipe, and the lower end is connected with two shunt pipes;
  • the width of the closed shunt bin 2 is 1/2 of the width of the side surface of the liquid inlet end of the electrolytic cell body 1.
  • the upper end of the vertical pipe portion 31 of the shunt pipe is connected to the lower end of the closed shunt bin 2, and the lower end of the vertical pipe portion 31 is connected to the flat pipe portion 32 through an elbow; the flat pipe portion 32 of the shunt pipe is fixed to the diversion half groove 4 Inner bottom; the length of the flat pipe portion 32 of the shunt pipe is 2/5 of the length of the electrolytic cell body 1; the upper part of the flat pipe portion 32 of the shunt pipe is evenly provided with jet holes, and the jet holes are opened vertically upward, and a single jet hole The diameter is 8mm.
  • the guide half tank 4 is an open semicircular tube, and the diameter of the guide half tank 4 is 2.5 times the diameter of the shunt conduit; the length of the guide half tank 4 extends from the liquid inlet end of the electrolytic cell body 1 to the end pole The position of the plate; there is a gap between the bottom of the flow guide half tank 4 and the bottom of the electrolytic cell body 1 with a distance of 100 mm; the flow guide half tank 4 is located below the electrode plate, and the distance from the bottom of the electrode plate is 380 mm.
  • the overflow buffer tank 5 is arranged on the inner side of the outlet end of the electrolytic tank, and the upper end is flush with the electrolyte level; the upper part of the overflow buffer tank 5 is open and the lower part is closed; the upper part of the overflow buffer tank 5 is provided with a height adjustment
  • the width of the overflow buffer tank 5 is 1/2 of the width of the side surface of the liquid outlet end of the electrolytic cell body 1; one side of the overflow buffer groove 5 coincides with the liquid outlet end of the electrolytic cell body 1, and is provided with overflow Outlet 6; the cross-sectional area of the overflow outlet 6 is equal to the total cross-sectional area of the shunt duct.
  • a gas mist collection hole 7 is provided on the side surface of the liquid outlet end of the electrolytic cell body 1 higher than the liquid level of the electrolyte; Aerosol collection and processing device.
  • This embodiment provides an ammonia electrolysis device, the device includes an electrolytic cell main body 1, a liquid inlet unit and a liquid outlet unit, and the liquid inlet unit and the liquid outlet unit are located at corresponding two ends in the electrolytic cell main body 1;
  • the electrolytic cell body 1 is longitudinally provided with a cathode plate and an anode plate, and the cathode plate and the anode plate are arranged in parallel;
  • the shunt bin 2 is located at the upper part of the liquid inlet end of the electrolytic cell body 1.
  • the shunt pipe includes a vertical pipe portion 31 and a flat pipe portion 32, forming an L-shaped structure.
  • the vertical pipe portion 31 of the shunt pipe is led out from the closed shunt bin 1, and
  • the diversion half tank 4 is arranged below the flat pipe portion 32 of the shunt conduit;
  • the liquid outlet unit includes an overflow buffer tank 5, which is located at the upper part of the liquid outlet end in the electrolytic tank body 1.
  • An overflow outlet 6 is provided on the overflow buffer tank 5.
  • the electrolytic cell body 1 has a rectangular parallelepiped structure, the cathode plate and the anode plate are parallel to the two sides of the electrolytic cell main 1 and perpendicular to the other two sides of the electrolytic cell main body 1; the edges of the cathode and anode plates are not It is in contact with the inner wall of the electrolytic cell body 1; the distance between the electrode plate and the vertical groove wall is 80mm, the distance between the most edge electrode plate and the parallel groove wall is 110mm, and the center distance between the same pole of the cathode plate and the anode plate is 60mm .
  • the upper end of the airtight shunt bin 2 is connected with a liquid inlet pipe, and the lower end is connected with three shunt pipes;
  • the liquid level; the width of the closed shunt bin 2 is 2/3 of the width of the side of the liquid inlet end of the electrolytic cell body 1.
  • the upper end of the vertical pipe portion 31 of the shunt pipe is connected to the lower end of the closed shunt bin 2, and the lower end of the vertical pipe portion 31 is connected to the flat pipe portion 32 through an elbow; the flat pipe portion 32 of the shunt pipe is fixed to the diversion half groove 4 Inner bottom; the length of the flat pipe portion 32 of the shunt pipe is 1/3 of the length of the electrolytic cell body 1; the upper part of the flat pipe portion 32 of the shunt pipe is evenly provided with jet holes, and the jet holes are opened vertically upwards, and a single jet hole The diameter is 5mm.
  • the guide half tank 4 is an open semicircular tube, and the diameter of the guide half tank 4 is 1.5 times the diameter of the shunt conduit; the length of the guide half tank 4 extends from the liquid inlet end of the electrolytic tank body 1 to the end pole The position of the plate; there is a gap between the bottom of the flow guide half tank 4 and the bottom of the electrolytic cell body 1 with a distance of 80 mm; the flow guide half tank 4 is located below the electrode plate, and the distance from the bottom of the electrode plate is 350 mm.
  • the overflow buffer tank 5 is arranged on the inner side of the outlet end of the electrolytic tank, and the upper end is flush with the electrolyte level; the upper part of the overflow buffer tank 5 is open and the lower part is closed; the upper part of the overflow buffer tank 5 is provided with a height adjustment
  • the width of the overflow buffer tank 5 is 2/3 of the width of the side surface of the liquid outlet end of the electrolytic cell body 1; one side of the overflow buffer tank 5 coincides with the liquid outlet end of the electrolytic cell body 1, and is provided with overflow Outlet 6; the cross-sectional area of the overflow outlet 6 is 1.1 times the total cross-sectional area of the shunt duct.
  • a gas mist collection hole 7 is provided on the side surface of the liquid outlet end of the electrolytic cell body 1 higher than the liquid level of the electrolytic solution; Aerosol collection and processing device.
  • This embodiment provides an ammonia electrolysis device, the device includes an electrolytic cell main body 1, a liquid inlet unit and a liquid outlet unit, and the liquid inlet unit and the liquid outlet unit are located at corresponding two ends in the electrolytic cell main body 1;
  • the electrolytic cell body 1 is longitudinally provided with a cathode plate and an anode plate, and the cathode plate and the anode plate are arranged in parallel;
  • the shunt bin 2 is located at the upper part of the liquid inlet end of the electrolytic cell body 1.
  • the shunt pipe includes a vertical pipe portion 31 and a flat pipe portion 32, forming an L-shaped structure.
  • the vertical pipe portion 31 of the shunt pipe is led out from the closed shunt bin 1, and
  • the diversion half tank 4 is arranged below the flat pipe portion 32 of the shunt conduit;
  • the liquid outlet unit includes an overflow buffer tank 5, which is located at the upper part of the liquid outlet end in the electrolytic tank body 1.
  • An overflow outlet 6 is provided on the overflow buffer tank 5.
  • the electrolytic cell body 1 has a rectangular parallelepiped structure, the cathode plate and the anode plate are parallel to the two sides of the electrolytic cell main 1 and perpendicular to the other two sides of the electrolytic cell main body 1; the edges of the cathode and anode plates are not It is in contact with the inner wall of the electrolytic cell body 1; the distance between the electrode plate and the vertical groove wall is 120mm, the distance between the most edge electrode plate and the parallel groove wall is 180mm, and the center distance of the same pole between the cathode plate and the anode plate is 120mm .
  • the upper end of the airtight shunt bin 2 is connected with a liquid inlet pipe, and the lower end is connected with two shunt pipes;
  • the width of the closed shunt bin 2 is 1/3 of the width of the side surface of the liquid inlet end of the electrolytic cell body 1.
  • the upper end of the vertical pipe portion 31 of the shunt pipe is connected to the lower end of the closed shunt bin 2, and the lower end of the vertical pipe portion 31 is connected to the flat pipe portion 32 through an elbow; the flat pipe portion 32 of the shunt pipe is fixed to the diversion half groove 4 Inner bottom; the length of the flat pipe portion 32 of the shunt pipe is 1/2 of the length of the electrolytic cell body 1; the upper part of the flat pipe portion 32 of the shunt pipe is evenly provided with jet holes, and the jet holes are opened vertically upward, and a single jet hole The diameter is 10mm.
  • the guide half tank 4 is an open semicircular tube, and the diameter of the guide half tank 4 is 3.5 times the diameter of the shunt conduit; the length of the guide half tank 4 extends from the liquid inlet end of the electrolytic tank body 1 to the end pole The position of the plate; there is a gap between the bottom of the flow guide half tank 4 and the bottom of the electrolytic cell body 1 with a distance of 120 mm; the flow guide half tank 4 is located below the electrode plate, and the distance from the bottom of the electrode plate is 400 mm.
  • the overflow buffer tank 5 is arranged on the inner side of the outlet end of the electrolytic tank, and the upper end is flush with the electrolyte level; the upper part of the overflow buffer tank 5 is open and the lower part is closed; the upper part of the overflow buffer tank 5 is provided with a height adjustment Gate; the width of the overflow buffer tank 5 is 1/3 of the width of the liquid outlet end of the electrolytic cell body 1; one side of the overflow buffer tank 5 coincides with the liquid outlet end of the electrolytic cell main body 1, and is provided with overflow Outlet 6; the cross-sectional area of the overflow outlet 6 is 1.05 times the total cross-sectional area of the shunt conduit.
  • a gas mist collection hole 7 is provided on the side surface of the liquid outlet end of the electrolytic cell body 1 higher than the liquid level of the electrolyte; Aerosol collection and processing device.
  • This embodiment provides a method for using an ammonia electrolysis device.
  • the method adopts the device in embodiment 1, and specifically includes:
  • the overflow buffer tank 5 After the liquid level exceeds the overflow buffer tank 5, it leaves from the overflow outlet 6 after being buffered by the overflow buffer tank 5 to maintain the continuous electrolysis process;
  • the medium current density is 250A/m 2 , and the electrolysis cycle is 36 hours; the corrosive mist generated during the electrolysis process is drawn out through the aerosol collection hole 7 provided at the liquid outlet end of the electrolytic cell body 1 under negative pressure and then processed.
  • This embodiment provides a method for using an ammonia electrolysis device, the method adopts the device in embodiment 2, and specifically includes:
  • This comparative example provides an ammonia electrolysis device.
  • the structure of the device refers to the device structure in Example 1.
  • the only difference is that: the liquid inlet unit only includes the closed shunt chamber 1 and the vertical pipe part 31 in the shunt conduit. .
  • This comparative example provides an ammonia electrolysis device.
  • the structure of the device refers to the device structure in Embodiment 1. The difference is only that: the liquid outlet unit is only provided with an overflow outlet 6 and no overflow buffer tank 5 is provided.
  • the electrolysis device described in the present application can effectively achieve fixed-point mixing of electrolytes while using pressure flow
  • the attached wall effect and the ejection effect constitute an active liquid circulation and mixing system, which helps eliminate the concentration polarization of the electrolyte, and realizes the compactness and flatness of the electrolytic product;
  • the design of the liquid outlet unit in the electrolysis device helps the electrolyte
  • the stable access of the device can effectively control the height of the liquid level, avoid shortening the life of the electrode due to waterline corrosion, and realize the organized discharge of aerosols, and optimize the electrolysis environment and sanitation; the device structure is reasonable, and it is especially suitable for the ammonia electrolysis process. , It is an effective improvement to the ammonia electrolysis device.

Abstract

一种氨法电解装置及其使用方法,所述装置包括电解槽主体(1)、进液单元和出液单元,电解槽主体(1)内纵向设有平行相间排列的阴极板和阳极板;进液单元包括密闭分流仓(2)、分流导管和导流半槽(4),密闭分流仓(2)位于进液端的上部,分流导管包括竖管部分(31)和平管部分(32),导流半槽(4)设置于平管部分(32)的下方;出液单元包括溢流缓冲槽(5),位于出液端的上部,其上设有溢流出口(6)。

Description

一种氨法电解装置及其使用方法 技术领域
本申请属于湿法冶金技术领域,涉及一种氨法电解装置及其使用方法。
背景技术
随着经济与社会的快速发展,金属材料作为一类重要材料,广泛应用于现代社会的各个领域,电解技术是生产各类金属单质的重要方法之一,尤其是过渡金属元素的生产。传统的电解方法主要是采用酸法电解,相应的电解装置的结构及材质的选择主要是适用于该条件,而随着电解技术的不断发展,碱法电解也应运而生,其中氨法电解是目前重点研究的电解方法之一,具有其独特的优势。
氨法电解锌是金属锌生产的重要方法,具有物料适应性好、原料价格低、工艺流程简单、成本低的优势,特别适合于以二次含锌物料,如含锌电弧炉烟尘为原料的体系,但也存在电解液含锌浓度低、含氯腐蚀强、气雾量大等问题。目前,氨法电解设置主要是采用原有的酸法电解设备,其结构或规格难以适应氨法电解的特点,导致产能较低,因此需要进行针对性设计或改进,使之能够更好的适合氨法电解的应用。
CN 109440129A公开了一种工业生产用耐腐蚀电解槽,包括槽体,所述槽体上设置有内防腐层、增强层、合金层、溢流管、水平管、弯管、连接管、吸泥管和抽泥泵,所述槽体自内向外依次为内防腐层、增强层和合金层,所述溢流管位于槽体的左侧,而水平管、吸泥管和抽泥泵的设置主要是为了将电解过程中产生的废渣吸出,所述电解槽并未对如何实现电解液的充分混合,以消除浓差极化作出改进,也未说明氨法电解的溶液造成的气雾腐蚀问题如何解决。
CN 205773538U公开了一种微电解装置,包括箱体,所述箱体上部设有集水区,中部设有微电解填料区,底部设有配水区,微电解填料区底部设有复合承托层,集水区的侧壁上设有出水口,集水区的一侧设有集水装置,所述集水装置包括pH自动调节槽、进水区溢流装置和进气管,集水装置的侧壁上设有进水口,进水区溢流装置和配水区通过导流管连通,配水区内设有空气释放装置。该装置主要适用于微电解系统,适合小批量电解液的处理,对于大批量、腐蚀性、易产生气雾的电解液的处理并不适用,且电解填料与使用阴极、阳极板的电解方式也不同。
综上所述,对于腐蚀性氨法电解溶液的处理,还需对电解装置进行改进,选择合适的结构组成与组件配置,同时避免电解液浓差极化的影响,保证电解过程安全。
发明内容
本申请的目的在于提供一种氨法电解装置及其使用方法,所述装置根据氨法电解的特性,将现有电解装置进行改进,通过进液单元和出液单元结构设计,保持电解过程中电解液的充分混合,维持电解过程稳定,提高所得产品质量。
为达此目的,本申请采用以下技术方案:
一方面,本申请提供了一种氨法电解装置,所述装置包括电解槽主体、进液单元和出液单元,所述进液单元和出液单元位于电解槽主体内对应的两端;
所述电解槽主体内纵向设有阴极板和阳极板,所述阴极板和阳极板平行相间排列;所述进液单元包括密闭分流仓、分流导管和导流半槽,所述密闭分流仓位于电解槽主体内进液端的上部,所述分流导管包括竖管部分和平管部分,构成L型结构,所述分流导管的竖管部分由密闭分流仓引出,所述导流半槽设 置于分流导管平管部分的下方;所述出液单元包括溢流缓冲槽,所述溢流缓冲槽位于电解槽主体内出液端的上部,所述溢流缓冲槽上设有溢流出口。
本申请中,电解槽主体中设置进液单元和出液单元,通过进液单元中密闭分流仓、分流导管的设置,能够控制进液的流量,而分流导管中竖管、平管部分以及导流半槽的设置,能够加速电解液的定点混合,减小电极界面的浓差极化,实现均匀稳定电解;出液单元中溢流缓冲槽的设置可以有效控制液面高度,避免因水线腐蚀而缩短电极寿命,又可避免因电解液浓度变化造成电解产物厚度不均匀,质量较差的问题;上述电解装置的设计可有效适用于氨法电解工艺,电解效率高,产品质量好。
以下作为本申请可选的技术方案,但不作为本申请提供的技术方案的限制,通过以下技术方案,可以更好地达到和实现本申请的技术目的和有益效果。
作为本申请可选的技术方案,所述电解槽主体呈长方体结构。
可选地,所述阴极板和阳极板平行于电解槽主体的两个侧面,垂直于电解槽主体的另两个侧面。
可选地,所述阴极板和阳极板的边缘不与电解槽主体的内壁接触。
本申请中,根据电解槽尺寸的设计,与极板的数量、极板与槽壁边缘的距离、极板的间距等因素有关,根据氨法电解溶液的特点以及对现有电解装置的改进,本申请中所述电解槽内,液面至槽边的距离可选100~200mm,例如100mm、120mm、140mm、160mm、180mm或200mm等,极板到与其垂直的槽壁的距离为80~120mm,例如80mm、90mm、100mm、110mm或120mm等,最边缘的极板到与其平行的槽壁的距离为110~180mm,例如110mm、120mm、130mm、150mm、160mm或180mm等。
可选地,所述阴极板和阳极板的同极中心距为60~120mm,例如60mm、70mm、80mm、90mm、100mm、110mm或120mm等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,所述同极中心距为相邻阴极或相邻阳极之间的距离,通过控制同极中心距,可以有效控制液相传质更适应铵络合物电解的特点,以获得致密平整的金属片,避免局部枝晶生成干扰。
本申请中,根据上述参数的大小以及阴、阳极板的数量,可得出所需电解槽尺寸的大小。
作为本申请可选的技术方案,所述密闭分流仓的上端连接有进液管,下端连接有至少两支分流导管。其中,分流导管数量的选择与电解槽主体、密闭分流仓的宽度,分流导管的直径等因素有关。
可选地,所述密闭分流仓设置于电解槽进液端的内侧,上端不高于电解槽的边沿,下端不低于电解液的液面。
可选地,所述密闭分流仓的宽度为电解槽主体进液端侧面宽度的1/3~2/3,例如1/3、2/5、9/20、1/2、11/20、3/5或2/3等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,密闭分流仓的进液方式为有压进液,从而可以调节电解液在分流导管的的流速。
作为本申请可选的技术方案,所述分流导管的竖管部分的上端与密闭分流仓的下端连接,竖管部分的下端经弯头连接平管部分。
本申请中,由于竖管部分与平管部分垂直,因此弯头一般选择90度弯头。
可选地,所述分流导管的平管部分固定于导流半槽内底部。
可选地,所述分流导管平管部分的长度为电解槽主体长度的1/3~1/2,例如1/3、7/20、2/5、9/20或1/2等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,所述分流导管平管部分的长度小于导流半槽的长度,电解液流出平管部分后,后续的导流半槽部分起到搅拌混液功能以及液体的自我推动,通过这种给液方式,可以实现槽内新旧液体更充分的混匀。
可选地,所述分流导管的平管部分均匀开设射流孔,所述射流孔垂直向上开设。
本申请中,分流导管的平管部分上部均布一列开口圆孔,圆孔直径可选择5~10mm,例如5mm、6mm、7mm、8mm、9mm或10mm等,通过射流孔的设置,管内液体流出时流速大于槽内液体的流速而产生的射吸效应,引起混合,加速极板间液体的流动,平管部分导出的液体在附壁效应下,沿导流半槽流动,与槽内液体快速混合,缩短了混液和循环距离,减小电极界面的浓差极化。
作为本申请可选的技术方案,所述导流半槽为开口半圆管,所述导流半槽的直径为分流导管直径的1.5~3.5倍,例如1.5倍、2倍、2.5倍、3倍或3.5倍等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述导流半槽的长度从电解槽主体进液端延伸至末端极板的位置。
可选地,所述导流半槽的底部与电解槽主体的底部之间留有空隙。
本申请中,导流半槽的直径大于分流导管,因此分流导管中的平管固定在导流半槽内底部;导流半槽的安装位置距离槽底一定距离,如80~120mm,以尽可能避免混液过程中底部的搅动,有利于沉积物的沉淀,提高溶液的质量,延长清槽周期;同时,导流半槽的也需要距离极板底部一定距离,如350~400mm, 避免射流孔喷出的液体混合时的扰动影响到极板处的电解沉积。
作为本申请可选的技术方案,所述溢流缓冲槽设置于电解槽出液端的内侧,上端与电解液液面平齐。
可选地,所述溢流缓冲槽的上部开放,下部封闭。
可选地,所述溢流缓冲槽的上部设有高度调节闸板,主要调节进入溢流缓冲槽的液体量,从而调节电解槽的液面高度和电解液流量。
可选地,所述溢流缓冲槽的宽度为电解槽主体出液端侧面宽度的1/3~2/3,例如1/3、2/5、9/20、1/2、11/20、3/5或2/3等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述溢流缓冲槽的一个侧面与电解槽主体出液端重合,开设有溢流出口。
本申请中,溢流缓冲槽可以对电解液的流出起到较好的缓冲作用,从而避免电解沉积物直接从出口流出,而高度调节闸板的设置则可以对电解槽内的液面高度根据需要进行灵活调节,避免对极板连接线的腐蚀。
可选地,所述溢流出口的截面积不小于分流导管的总截面积。
作为本申请可选的技术方案,所述电解槽主体出液端侧面上高于电解液液面的部分设有气雾收集孔。
可选地,所述气雾收集孔外侧连接有气雾收集处理装置。
本申请中,针对氨法电解液的特点,对于电解过程中可能产生的气雾,通过加高电解液面到电解槽顶的距离,可选120~180mm,例如120mm、130mm、140mm、150mm、160mm、170mm或180mm等,增大了扩散空间,使电解气雾得到缓冲和稀释,再由气雾收集孔经负压抽出,集中处理。
另一方面,本申请提供了一种上述氨法电解装置的使用方法,所述方法包括:将待处理电解液经进液单元加入到电解槽主体内,达到所需液面高度后开始电解,电解过程中持续加入电解液,经分流导管和导流半槽的作用实现电解液的快速混合,液面高度超过溢流缓冲槽后,经过溢流缓冲槽的缓冲后从溢流出口离开,维持电解过程连续进行。
作为本申请可选的技术方案,所述电解液包括过渡金属的铵盐溶液,可选为氨法锌电解溶液。
可选地,所述电解液加入过程中分流导管内的液体压力为0.3~1MPa,例如0.3MPa、0.4MPa、0.5MPa、0.6MPa、0.7MPa、0.8MPa或1MPa等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,可选为0.3~0.6MPa。
可选地,所述电解过程中电流密度为200~600A/m 2,例如200A/m 2、250A/m 2、300A/m 2、350A/m 2、400A/m 2、450A/m 2、500A/m 2、550A/m 2或600A/m 2等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述电解过程中电解周期为24~36h,例如24h、26h、28h、30h、32h、34h或36h等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,电解槽结构及尺寸的设计,氨法电解方式的选择,相应的需要有合适的电解工艺参数,以解决单位时间产能最大化的问题。
作为本申请可选的技术方案,所述电解过程中会产生腐蚀性气雾。
可选地,所述腐蚀性气雾经电解槽主体出液端设置的气雾收集孔负压抽出后处理。
与现有技术相比,本申请具有以下有益效果:
(1)本申请所述电解装置通过进液单元中密闭分流仓、分流导管和导流半槽的设置,可以有效实现电解液的定点混合,同时利用压液流的附壁效应、射吸效应构成主动液体循环和混合系统,有助于消除电解液浓差极化,实现电解产品的致密平整;
(2)本申请所述电解装置中出液单元的设计,有助于电解液的稳定出入,从而有效控制液面高度,避免因水线腐蚀而缩短电极寿命,同时可实现气雾的有组织排放,优化电解环境卫生;
(3)本申请所述装置结构设置合理,尤其适合于氨法电解工艺,是对氨法电解装置的有效改进。
附图说明
图1是本申请实施例1所述氨法电解装置的正面结构示意图;
图2是本申请实施例1所述氨法电解装置的前端侧面结构示意图;
图3是本申请实施例1所述氨法电解装置的后端侧面结构示意图;
其中,1-电解槽主体,2-密闭分流仓,31-竖管部分,32-平管部分,4-导流半槽,5-溢流缓冲槽,6-溢流出口,7-气雾收集孔。
具体实施方式
为更好地说明本申请,便于理解本申请的技术方案,下面对本申请进一步详细说明。但下述的实施例仅是本申请的简易例子,并不代表或限制本申请的权利保护范围,本申请保护范围以权利要求书为准。
本申请具体实施方式部分提供了一种氨法电解装置及其使用方法,所述装置包括电解槽主体1、进液单元和出液单元,所述进液单元和出液单元位于电解 槽主体1内对应的两端;
所述电解槽主体1内纵向设有阴极板和阳极板,所述阴极板和阳极板平行相间排列;所述进液单元包括密闭分流仓2、分流导管和导流半槽4,所述密闭分流仓仓2位于电解槽主体1内进液端的上部,所述分流导管包括竖管部分31和平管部分32,构成L型结构,所述分流导管的竖管部分31由密闭分流仓1引出,所述导流半槽4设置于分流导管平管部分32的下方;所述出液单元包括溢流缓冲槽5,所述溢流缓冲槽5位于电解槽主体1内出液端的上部,所述溢流缓冲槽5上设有溢流出口6。
以下为本申请典型但非限制性实施例:
实施例1:
本实施例提供了一种氨法电解装置,所述装置的正面结构示意图如图1所示,前端侧面结构示意图如图2所示,后端侧面结构示意图如图3所示,所述装置包括电解槽主体1、进液单元和出液单元,所述进液单元和出液单元位于电解槽主体1内对应的两端;
所述电解槽主体1内纵向设有阴极板和阳极板,所述阴极板和阳极板平行相间排列;所述进液单元包括密闭分流仓2、分流导管和导流半槽4,所述密闭分流仓仓2位于电解槽主体1内进液端的上部,所述分流导管包括竖管部分31和平管部分32,构成L型结构,所述分流导管的竖管部分31由密闭分流仓1引出,所述导流半槽4设置于分流导管平管部分32的下方;所述出液单元包括溢流缓冲槽5,所述溢流缓冲槽5位于电解槽主体1内出液端的上部,所述溢流缓冲槽5上设有溢流出口6。
所述电解槽主体1呈长方体结构,所述阴极板和阳极板平行于电解槽主1 的两个侧面,垂直于电解槽主体1的另两个侧面;所述阴极板和阳极板的边缘不与电解槽主体1的内壁接触;极板到与其垂直的槽壁的距离为100mm,最边缘的极板到与其平行的槽壁的距离为150mm,阴极板和阳极板的同极中心距为90mm。
所述密闭分流仓2的上端连接有进液管,下端连接有两支分流导管;所述密闭分流仓2设置于电解槽进液端的内侧,上端不高于电解槽的边沿,下端不低于电解液的液面;所述密闭分流仓2的宽度为电解槽主体1进液端侧面宽度的1/2。
所述分流导管的竖管部分31的上端与密闭分流仓2的下端连接,竖管部分31的下端经弯头连接平管部分32;所述分流导管的平管部分32固定于导流半槽4内底部;所述分流导管平管部分32的长度为电解槽主体1长度的2/5;所述分流导管的平管部分32的上部均匀开设射流孔,射流孔垂直向上开设,单个射流孔的直径为8mm。
所述导流半槽4为开口半圆管,所述导流半槽4的直径为分流导管直径的2.5倍;所述导流半槽4的长度从电解槽主体1进液端延伸至末端极板的位置;所述导流半槽4的底部与电解槽主体1的底部之间留有空隙,距离为100mm;导流半槽4位于电极板的下方,与电极板底部的距离为380mm。
所述溢流缓冲槽5设置于电解槽出液端的内侧,上端与电解液液面平齐;所述溢流缓冲槽5的上部开放,下部封闭;溢流缓冲槽5的上部设有高度调节闸板;所述溢流缓冲槽5的宽度为电解槽主体1出液端侧面宽度的1/2;所述溢流缓冲槽5的一个侧面与电解槽主体1出液端重合,开设有溢流出口6;所述溢流出口6的截面积等于分流导管的总截面积。
所述电解槽主体1出液端侧面上高于电解液液面的部分设有气雾收集孔7;电解液液面到电解槽顶的距离为150mm,所述气雾收集孔7外侧连接有气雾收集处理装置。
实施例2:
本实施例提供了一种氨法电解装置,所述装置包括电解槽主体1、进液单元和出液单元,所述进液单元和出液单元位于电解槽主体1内对应的两端;
所述电解槽主体1内纵向设有阴极板和阳极板,所述阴极板和阳极板平行相间排列;所述进液单元包括密闭分流仓2、分流导管和导流半槽4,所述密闭分流仓仓2位于电解槽主体1内进液端的上部,所述分流导管包括竖管部分31和平管部分32,构成L型结构,所述分流导管的竖管部分31由密闭分流仓1引出,所述导流半槽4设置于分流导管平管部分32的下方;所述出液单元包括溢流缓冲槽5,所述溢流缓冲槽5位于电解槽主体1内出液端的上部,所述溢流缓冲槽5上设有溢流出口6。
所述电解槽主体1呈长方体结构,所述阴极板和阳极板平行于电解槽主1的两个侧面,垂直于电解槽主体1的另两个侧面;所述阴极板和阳极板的边缘不与电解槽主体1的内壁接触;极板到与其垂直的槽壁的距离为80mm,最边缘的极板到与其平行的槽壁的距离为110mm,阴极板和阳极板的同极中心距为60mm。
所述密闭分流仓2的上端连接有进液管,下端连接有三支分流导管;所述密闭分流仓2设置于电解槽进液端的内侧,上端不高于电解槽的边沿,下端不低于电解液的液面;所述密闭分流仓2的宽度为电解槽主体1进液端侧面宽度的2/3。
所述分流导管的竖管部分31的上端与密闭分流仓2的下端连接,竖管部分31的下端经弯头连接平管部分32;所述分流导管的平管部分32固定于导流半槽4内底部;所述分流导管平管部分32的长度为电解槽主体1长度的1/3;所述分流导管的平管部分32的上部均匀开设射流孔,射流孔垂直向上开设,单个射流孔的直径为5mm。
所述导流半槽4为开口半圆管,所述导流半槽4的直径为分流导管直径的1.5倍;所述导流半槽4的长度从电解槽主体1进液端延伸至末端极板的位置;所述导流半槽4的底部与电解槽主体1的底部之间留有空隙,距离为80mm;导流半槽4位于电极板的下方,与电极板底部的距离为350mm。
所述溢流缓冲槽5设置于电解槽出液端的内侧,上端与电解液液面平齐;所述溢流缓冲槽5的上部开放,下部封闭;溢流缓冲槽5的上部设有高度调节闸板;所述溢流缓冲槽5的宽度为电解槽主体1出液端侧面宽度的2/3;所述溢流缓冲槽5的一个侧面与电解槽主体1出液端重合,开设有溢流出口6;所述溢流出口6的截面积为分流导管的总截面积的1.1倍。
所述电解槽主体1出液端侧面上高于电解液液面的部分设有气雾收集孔7;电解液液面到电解槽顶的距离为120mm,所述气雾收集孔7外侧连接有气雾收集处理装置。
实施例3:
本实施例提供了一种氨法电解装置,所述装置包括电解槽主体1、进液单元和出液单元,所述进液单元和出液单元位于电解槽主体1内对应的两端;
所述电解槽主体1内纵向设有阴极板和阳极板,所述阴极板和阳极板平行相间排列;所述进液单元包括密闭分流仓2、分流导管和导流半槽4,所述密闭 分流仓仓2位于电解槽主体1内进液端的上部,所述分流导管包括竖管部分31和平管部分32,构成L型结构,所述分流导管的竖管部分31由密闭分流仓1引出,所述导流半槽4设置于分流导管平管部分32的下方;所述出液单元包括溢流缓冲槽5,所述溢流缓冲槽5位于电解槽主体1内出液端的上部,所述溢流缓冲槽5上设有溢流出口6。
所述电解槽主体1呈长方体结构,所述阴极板和阳极板平行于电解槽主1的两个侧面,垂直于电解槽主体1的另两个侧面;所述阴极板和阳极板的边缘不与电解槽主体1的内壁接触;极板到与其垂直的槽壁的距离为120mm,最边缘的极板到与其平行的槽壁的距离为180mm,阴极板和阳极板的同极中心距为120mm。
所述密闭分流仓2的上端连接有进液管,下端连接有两支分流导管;所述密闭分流仓2设置于电解槽进液端的内侧,上端不高于电解槽的边沿,下端不低于电解液的液面;所述密闭分流仓2的宽度为电解槽主体1进液端侧面宽度的1/3。
所述分流导管的竖管部分31的上端与密闭分流仓2的下端连接,竖管部分31的下端经弯头连接平管部分32;所述分流导管的平管部分32固定于导流半槽4内底部;所述分流导管平管部分32的长度为电解槽主体1长度的1/2;所述分流导管的平管部分32的上部均匀开设射流孔,射流孔垂直向上开设,单个射流孔的直径为10mm。
所述导流半槽4为开口半圆管,所述导流半槽4的直径为分流导管直径的3.5倍;所述导流半槽4的长度从电解槽主体1进液端延伸至末端极板的位置;所述导流半槽4的底部与电解槽主体1的底部之间留有空隙,距离为120mm; 导流半槽4位于电极板的下方,与电极板底部的距离为400mm。
所述溢流缓冲槽5设置于电解槽出液端的内侧,上端与电解液液面平齐;所述溢流缓冲槽5的上部开放,下部封闭;溢流缓冲槽5的上部设有高度调节闸板;所述溢流缓冲槽5的宽度为电解槽主体1出液端侧面宽度的1/3;所述溢流缓冲槽5的一个侧面与电解槽主体1出液端重合,开设有溢流出口6;所述溢流出口6的截面积为分流导管的总截面积的1.05倍。
所述电解槽主体1出液端侧面上高于电解液液面的部分设有气雾收集孔7;电解液液面到电解槽顶的距离为180mm,所述气雾收集孔7外侧连接有气雾收集处理装置。
实施例4:
本实施例提供了一种氨法电解装置的使用方法,所述方法采用实施例1中的装置,具体包括:
将氨法锌电解液经进液单元加入到电解槽主体1内,达到所需液面高度后开始电解,电解过程中持续加入电解液,经分流导管和导流半槽4的作用实现电解液的快速混合,分流导管内电解液的压力为0.8MPa,液面高度超过溢流缓冲槽5后,经过溢流缓冲槽5的缓冲后从溢流出口6离开,维持电解过程连续进行;电解过程中电流密度为250A/m 2,电解周期为36h;电解过程中产生的腐蚀性气雾经电解槽主体1出液端设置的气雾收集孔7负压抽出后处理。
实施例5:
本实施例提供了一种氨法电解装置的使用方法,所述方法采用实施例2中的装置,具体包括:
将氨法铅电解液经进液单元加入到电解槽主体1内,达到所需液面高度后 开始电解,电解过程中持续加入电解液,经分流导管和导流半槽4的作用实现电解液的快速混合,分流导管内电解液的压力为0.3MPa,液面高度超过溢流缓冲槽5后,经过溢流缓冲槽5的缓冲后从溢流出口6离开,维持电解过程连续进行;电解过程中电流密度为500A/m 2,电解周期为24h;电解过程中产生的腐蚀性气雾经电解槽主体1出液端设置的气雾收集孔7负压抽出后处理。
对比例1:
本对比例提供了一种氨法电解装置,所述装置的结构参照实施例1中的装置结构,区别仅在于:所述进液单元只包括密闭分流仓1和分流导管中的竖管部分31。
本对比例中,由于进液单元未设置分流导管平管部分和导流半槽,电解液进入后,与原有电解液的混合速率较慢,从而造成电解液浓度不均匀,存在浓差极化,影响电解产物的致密性与平整性。
对比例2:
本对比例提供了一种氨法电解装置,所述装置的结构参照实施例1中的装置结构,区别仅在于:所述出液单元只设置溢流出口6,不设置溢流缓冲槽5。
本对比例中,由于电解装置中未设置溢流缓冲槽,液面一旦到达溢流出口处,电解液会直接流出,影响出液端附近电解液的稳定性,液面高度不易调节,而且可能造成沉积物直接流出。
综合上述实施例和对比例可以看出,本申请所述电解装置通过进液单元中密闭分流仓、分流导管和导流半槽的设置,可以有效实现电解液的定点混合, 同时利用压液流的附壁效应、射吸效应构成主动液体循环和混合系统,有助于消除电解液浓差极化,实现电解产品的致密平整;所述电解装置中出液单元的设计,有助于电解液的稳定出入,从而有效控制液面高度,避免因水线腐蚀而缩短电极寿命,同时可实现气雾的有组织排放,优化电解环境卫生;所述装置结构设置合理,尤其适合于氨法电解工艺,是对氨法电解装置的有效改进。
申请人声明,本申请通过上述实施例来说明本申请的详细装置及方法,但本申请并不局限于上述详细装置及方法,即不意味着本申请必须依赖上述详细装置及方法才能实施。

Claims (12)

  1. 一种氨法电解装置,其包括电解槽主体、进液单元和出液单元,所述进液单元和出液单元位于电解槽主体内对应的两端;
    所述电解槽主体内纵向设有阴极板和阳极板,所述阴极板和阳极板平行相间排列;所述进液单元包括密闭分流仓、分流导管和导流半槽,所述密闭分流仓位于电解槽主体内进液端的上部,所述分流导管包括竖管部分和平管部分,构成L型结构,所述分流导管的竖管部分由密闭分流仓引出,所述导流半槽设置于分流导管平管部分的下方;所述出液单元包括溢流缓冲槽,所述溢流缓冲槽位于电解槽主体内出液端的上部,所述溢流缓冲槽上设有溢流出口。
  2. 根据权利要求1所述的氨法电解装置,其中,所述分流导管的竖管部分的上端与密闭分流仓的下端连接,竖管部分的下端经弯头连接平管部分。
  3. 根据权利要求1或2所述的氨法电解装置,其中,所述分流导管平管部分的长度为电解槽主体长度的1/3~1/2。
  4. 根据权利要求1-3任一项所述的氨法电解装置,其中,所述分流导管的平管部分固定于导流半槽内底部;
    可选地,所述分流导管的平管部分均匀开设射流孔,所述射流孔垂直向上。
  5. 根据权利要求1-4任一项所述的氨法电解装置,其中,所述电解槽主体呈长方体结构;
    可选地,所述阴极板和阳极板平行于电解槽主体的两个侧面,垂直于电解槽主体的另两个侧面;
    可选地,所述阴极板和阳极板的边缘不与电解槽主体的内壁接触;
    可选地,所述阴极板和阳极板的同极中心距为60~120mm。
  6. 根据权利要求1-5任一项所述的氨法电解装置,其中,所述密闭分流仓 的上端连接有进液管,下端连接有至少两支分流导管;
    可选地,所述密闭分流仓设置于电解槽进液端的内侧,上端不高于电解槽的边沿,下端不低于电解液的液面;
    可选地,所述密闭分流仓的宽度为电解槽主体进液端侧面宽度的1/3~2/3。
  7. 根据权利要求1-6任一项所述的氨法电解装置,其中,所述导流半槽为开口半圆管,所述导流半槽的直径为分流导管直径的1.5~3.5倍;
    可选地,所述导流半槽的长度从电解槽主体进液端延伸至末端极板的位置;
    可选地,所述导流半槽的底部与电解槽主体的底部之间留有空隙。
  8. 根据权利要求1-7任一项所述的氨法电解装置,其中,所述溢流缓冲槽设置于电解槽出液端的内侧,上端与电解液液面平齐;
    可选地,所述溢流缓冲槽的上部开放,下部封闭;
    可选地,所述溢流缓冲槽的上部设有高度调节闸板;
    可选地,所述溢流缓冲槽的宽度为电解槽主体出液端侧面宽度的1/3~2/3;
    可选地,所述溢流缓冲槽的一个侧面与电解槽主体出液端重合,开设有溢流出口;
    可选地,所述溢流出口的截面积不小于分流导管的总截面积。
  9. 根据权利要求1-8任一项所述的氨法电解装置,其中,所述电解槽主体出液端侧面上高于电解液液面的部分设有气雾收集孔;
    可选地,所述气雾收集孔外侧连接有气雾收集处理装置。
  10. 根据权利要求1-9任一项所述的氨法电解装置的使用方法,其包括:将待处理电解液经进液单元加入到电解槽主体内,达到所需液面高度后开始电解,电解过程中持续加入电解液,经分流导管和导流半槽的作用实现电解液的 快速混合,液面高度超过溢流缓冲槽后,经过溢流缓冲槽的缓冲后从溢流出口离开,维持电解过程连续进行。
  11. 根据权利要求10所述的方法,其中,所述电解液包括过渡金属的铵盐溶液,可选为氨法锌电解溶液;
    可选地,所述电解液加入过程中分流导管内的液体压力为0.3~1MPa,可选为0.3~0.6MPa;
    可选地,所述电解过程中电流密度为200~600A/m 2
    可选地,所述电解过程中电解周期为24~36h。
  12. 根据权利要求10或11任一项所述的方法,其中,所述电解过程中会产生腐蚀性气雾;
    可选地,所述腐蚀性气雾经电解槽主体出液端设置的气雾收集孔负压抽出后处理。
PCT/CN2020/140102 2020-03-24 2020-12-28 一种氨法电解装置及其使用方法 WO2021190027A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010214087.8A CN111270266A (zh) 2020-03-24 2020-03-24 一种氨法电解装置及其使用方法
CN202010214087.8 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021190027A1 true WO2021190027A1 (zh) 2021-09-30

Family

ID=70997893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140102 WO2021190027A1 (zh) 2020-03-24 2020-12-28 一种氨法电解装置及其使用方法

Country Status (2)

Country Link
CN (1) CN111270266A (zh)
WO (1) WO2021190027A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111270266A (zh) * 2020-03-24 2020-06-12 鑫联环保科技股份有限公司 一种氨法电解装置及其使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007071713A1 (en) * 2005-12-20 2007-06-28 Industrie De Nora S.P.A. Electrolytic cell for metal deposition
CN203807570U (zh) * 2014-04-24 2014-09-03 重庆科技学院 一种电解槽
CN104018191A (zh) * 2014-06-16 2014-09-03 岑溪市东正动力科技开发有限公司 带流量控制管的电解槽
CN104032332A (zh) * 2014-06-04 2014-09-10 杭州三耐环保科技有限公司 一种底部进液循环高电流密度电解沉积金属的装置及实现方法
CN105297079A (zh) * 2015-11-15 2016-02-03 杨伟燕 一种超高电流密度平行流电解槽及其出液装置
CN111270266A (zh) * 2020-03-24 2020-06-12 鑫联环保科技股份有限公司 一种氨法电解装置及其使用方法
CN212375408U (zh) * 2020-03-24 2021-01-19 鑫联环保科技股份有限公司 一种氨法电解装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007071713A1 (en) * 2005-12-20 2007-06-28 Industrie De Nora S.P.A. Electrolytic cell for metal deposition
CN203807570U (zh) * 2014-04-24 2014-09-03 重庆科技学院 一种电解槽
CN104032332A (zh) * 2014-06-04 2014-09-10 杭州三耐环保科技有限公司 一种底部进液循环高电流密度电解沉积金属的装置及实现方法
CN104018191A (zh) * 2014-06-16 2014-09-03 岑溪市东正动力科技开发有限公司 带流量控制管的电解槽
CN105297079A (zh) * 2015-11-15 2016-02-03 杨伟燕 一种超高电流密度平行流电解槽及其出液装置
CN111270266A (zh) * 2020-03-24 2020-06-12 鑫联环保科技股份有限公司 一种氨法电解装置及其使用方法
CN212375408U (zh) * 2020-03-24 2021-01-19 鑫联环保科技股份有限公司 一种氨法电解装置

Also Published As

Publication number Publication date
CN111270266A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
CN101397691B (zh) 耐指纹板生产线上控制和提升镀液ph值的装置和工艺
US20100065433A1 (en) System and apparatus for enhancing convection in electrolytes to achieve improved electrodeposition of copper and other non ferrous metals in industrial electrolytic cells
WO2021190027A1 (zh) 一种氨法电解装置及其使用方法
CN104831319A (zh) 一种顶部进液双向平行流电解槽及其使用方法
CN203781897U (zh) 铝加工厂煲模废液与阳极氧化废液中和处理及铝离子回收系统
CN212375408U (zh) 一种氨法电解装置
CN201598340U (zh) 铝电解用穿孔阳极
CN211170908U (zh) 一种节能环保的金属板酸洗槽
CN206219686U (zh) 一种碱性蚀刻液电解提铜系统
CN202786491U (zh) 液体腔式电解清洗装置
CN209798135U (zh) 一种均匀垂直入流加料的电解槽
CN114381790A (zh) 一种制备hit晶硅太阳能电池片的水平电镀设备
CN109023458B (zh) 一种pcb电路板的电镀装置和方法
CN101560675A (zh) Rpp机械脉冲断流节能型电解槽及制造工艺
WO2021233300A1 (zh) 一种自耗阳极电解沉积制备高纯铁的装置和方法
CN201186955Y (zh) 挠性材料电镀装置
CN204661368U (zh) 一种循环冷却水处理装置
CN204384936U (zh) 一种多单元集成式电解槽
CN208413940U (zh) 一种处理工业循环冷却水的装置
CN201857437U (zh) CTcP版制作中使用的电解装置
CN202323064U (zh) 一种去除镀铬溶液中金属杂质的设备
CN210657162U (zh) 对废微蚀刻液进行电积铜的装置
CN219297692U (zh) 一种电解酸洗槽
CN209974921U (zh) 具有进液扰动功能的电解槽
CN217378052U (zh) 一种铜电解诱导脱铜槽内电解液的循环装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928012

Country of ref document: EP

Kind code of ref document: A1