WO2021190003A1 - 振膜和扬声器 - Google Patents

振膜和扬声器 Download PDF

Info

Publication number
WO2021190003A1
WO2021190003A1 PCT/CN2020/138341 CN2020138341W WO2021190003A1 WO 2021190003 A1 WO2021190003 A1 WO 2021190003A1 CN 2020138341 W CN2020138341 W CN 2020138341W WO 2021190003 A1 WO2021190003 A1 WO 2021190003A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
elastomer layer
diaphragm
thermoreversible
covalently crosslinked
Prior art date
Application number
PCT/CN2020/138341
Other languages
English (en)
French (fr)
Inventor
王婷
李春
刘春发
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2021190003A1 publication Critical patent/WO2021190003A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • H04R7/10Plane diaphragms comprising a plurality of sections or layers comprising superposed layers in contact
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/025Diaphragms comprising polymeric materials

Definitions

  • the invention relates to the technical field of acoustic products, in particular to a diaphragm and a speaker using the diaphragm.
  • thermoplastic elastomer has good thermal plasticity, is easy to process, and has a wide range of hardness, it has been widely used in loudspeaker diaphragms.
  • thermoplastic elastomer materials due to the structural design of the speaker, in order to achieve higher performance and greater displacement, the heat generated by the voice coil increases.
  • thermoplastic elastomer material has poor heat resistance, it is easy to cause the thermoplastic elastomer material to produce a large irreversible displacement, or even break, leading to the risk of loss of speaker performance.
  • thermoplastic elastomer materials have poor chemical resistance. During use, low-molecular-weight chemicals can easily penetrate into the elastomer and swell, which will cause the diaphragm structure to deform, which will also cause the speaker's acoustic performance loss or product failure. .
  • the main purpose of the present invention is to provide a diaphragm and a loudspeaker, aiming to improve the heat resistance and chemical resistance of the diaphragm.
  • the diaphragm provided by the present invention includes at least one layer of thermoreversibly covalently cross-linked elastomer.
  • the material of the thermally reversible covalently crosslinked elastomer layer is selected from thermally reversible covalently crosslinked polyester elastomers, thermally reversible covalently crosslinked polyurethane elastomers, and thermally reversible covalently crosslinked silicones At least one of an elastomer, a thermoreversibly covalently crosslinked acrylic rubber elastomer, a thermoreversibly covalently crosslinked olefin elastomer, and a thermoreversibly covalently crosslinked styrene elastomer.
  • the material of the thermally reversible covalently crosslinked elastomer layer is the thermally reversible D-A covalently crosslinked elastomer.
  • the elongation at break of the thermally reversible covalently crosslinked elastomer layer is greater than 200%; and/or, the thermally reversible covalently crosslinked elastomer layer has a thermally reversible de-crosslinking temperature of 80°C to 250°C.
  • the tensile modulus of the thermally reversible covalently crosslinked elastomer layer ranges from 1 MPa to 600 MPa; and/or the thickness of the thermally reversible covalently crosslinked elastomer layer ranges from 5 ⁇ m to 200 ⁇ m.
  • the thermally reversible covalently crosslinked elastomer layer is provided with at least two layers, and the two adjacent layers of the thermally reversible covalently crosslinked elastomer layer are connected by thermal compression or through a glue layer.
  • the diaphragm further includes a thermoplastic elastomer layer, the thermoplastic elastomer layer is one of the surface layers or the middle layer of the diaphragm, and the thermoplastic elastomer layer is covalently cross-linked with the thermoreversible
  • the elastomer layer is connected by hot pressing or by a glue layer.
  • the material of the thermoplastic elastomer layer is selected from polyester-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, polystyrene-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, and dynamic vulcanized rubbers. /At least one of thermoplastic elastomer blend type thermoplastic elastomers.
  • the thermally reversible covalently crosslinked elastomer layer is provided with a layer, and the thermoplastic elastomer layer is connected to the thermally reversible covalently crosslinked elastomer layer by thermal compression or through a glue layer; or, the The thermoreversible covalently crosslinked elastomer layer is provided with two layers, and the two layers of the thermoreversible covalently crosslinked elastomer layer are respectively provided on both surfaces of the thermoplastic elastomer layer, and the thermoplastic elastomer layer and the The thermoreversible covalently crosslinked elastomer layer is connected by hot pressing or through an adhesive layer; or, the thermoreversible covalently crosslinked elastomer layer is provided with multiple layers, the thermoplastic elastomer layer is provided with multiple layers, and the multiple layers are The thermally reversible covalently crosslinked elastomer layer and multiple layers of the thermoplastic elastomer layer are laminated, and at least one surface
  • the diaphragm further includes a plastic substrate layer, the plastic substrate layer is one of the surface layers or the middle layer of the diaphragm, and the plastic substrate layer is covalently cross-linked with the thermally reversible
  • the elastomer layer is connected by hot pressing or by a glue layer.
  • the material of the plastic substrate layer is selected from the group consisting of polyetheretherketone, polyarylate, polyetherimide, polyimide, polyphenylene sulfide, polyethylene naphthalate, and polyether At least one of ethylene phthalate.
  • the thermally reversible covalently crosslinked elastomer layer is provided with a layer, and the plastic substrate layer is connected to the thermally reversible covalently crosslinked elastomer layer by thermal compression or through a glue layer; or, the The thermoreversible covalently crosslinked elastomer layer is provided with two layers, the two layers of the thermoreversible covalently crosslinked elastomer layer are respectively provided on both surfaces of the plastic substrate layer, and the plastic substrate layer and the The thermoreversible covalently crosslinked elastomer layer is connected by hot pressing or through a glue layer; or, the thermoreversible covalently crosslinked elastomer layer is provided with multiple layers, the plastic substrate layer is provided with multiple layers, and the multiple layers are The thermally reversible covalently cross-linked elastomer layer and multiple layers of the plastic substrate layer are laminated, and at least one surface layer of the diaphragm is a thermally reversible covalently cross-linked elast
  • the diaphragm further includes a thermoplastic elastomer layer and a plastic substrate layer, and the thermoplastic elastomer layer, the plastic substrate layer, and the thermoreversible covalently crosslinked elastomer layer are connected by hot compression or through The glue layer is connected, and at least one surface layer of the diaphragm is a thermoreversible covalently cross-linked elastomer layer.
  • the present invention also provides a speaker.
  • the speaker includes a dome, a folding ring, and a voice coil.
  • the voice coil is connected to the other side of the folded ring portion, the dome top and/or the folded ring portion is a diaphragm, and the diaphragm includes at least one layer of thermoreversible covalently cross-linked elastomer Floor.
  • thermoreversible covalently cross-linked elastomer layer of the diaphragm is arranged toward the voice coil.
  • the diaphragm includes at least one layer of thermoreversible covalently cross-linked elastomer, where the diaphragm adopts a thermoreversible covalent cross-linked elastomer material, which can exhibit good heat resistance and chemical resistance. Product performance. At the same time, it also has the characteristics of thermal plasticity and easy processing at high temperatures, which can effectively reduce the processing cost, thereby reducing the manufacturing cost of the diaphragm.
  • Fig. 1 is a schematic structural diagram of an embodiment of a loudspeaker of the present invention
  • FIG. 2 is a schematic diagram of the structure of the first embodiment of the diaphragm of the present invention.
  • Fig. 3 is a schematic structural diagram of a second embodiment of a diaphragm of the present invention.
  • FIG. 4 is a schematic structural diagram of a third embodiment of a diaphragm of the present invention.
  • Fig. 5 is a schematic structural diagram of a fourth embodiment of a diaphragm of the present invention.
  • Fig. 6 is a schematic structural diagram of a fifth embodiment of a diaphragm of the present invention.
  • Fig. 7 is a schematic structural diagram of a sixth embodiment of a diaphragm of the present invention.
  • Fig. 8 is a schematic structural diagram of a seventh embodiment of a diaphragm of the present invention.
  • Figure 9 is a graph showing the change in storage modulus with temperature of the comparative sample and the modified sample.
  • Figure 10 is the THD curve performance graph of the comparative sample and the modified sample
  • Figure 11 shows the HOHD curve performance graph of the comparative sample and the modified sample.
  • Label name Label name 100 Diaphragm 200 speaker 10 Thermoreversible covalently crosslinked elastomer layer 210 Fold 20 Glue layer 220 Top of the ball 30 Thermoplastic elastomer layer 230 Voice coil 40 Plastic substrate layer To To
  • the terms “connected”, “fixed”, etc. should be interpreted broadly.
  • “fixed” can be a fixed connection, a detachable connection, or a whole; It is a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication between two components or the interaction relationship between two components, unless specifically defined otherwise.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • the present invention provides a diaphragm 100 which is applied to a speaker 200.
  • the number of layers of the thermoreversible covalently crosslinked elastomer layer 10 may be one layer or multiple layers. When it is a multilayer, the multiple layers of the thermoreversible covalently crosslinked elastomer layer 10 are laminated.
  • Thermoreversible covalent cross-linked elastomer is an existing material. At the working temperature of the speaker 200, the polymer molecular chains exist in the form of covalent bonds, and there is a cross-linked network structure.
  • thermosetting elastomer Compared with thermoplastic elastomer materials, the cross-linked network structure is Existence makes the material have higher strength, heat resistance, chemical resistance and thermal stability, showing the characteristics of thermosetting elastomer; thermoreversible covalently cross-linked elastomer material is covalently cross-linked at a higher temperature Fracture can occur, and linear macromolecules can be regained without destroying the polymer material skeleton macromolecular chain structure, so as to realize the thermoplastic processing of the cross-linked material and exhibit thermal plasticity. It is understandable that the thermoreversible covalently cross-linked elastomer material has the characteristics of a thermosetting material under working conditions, such as good performance stability, heat resistance, and chemical resistance.
  • thermoreversible covalently cross-linked elastomer material When the thermoreversible covalently cross-linked elastomer material is used as the diaphragm 100, the diaphragm 100 can have better heat resistance and chemical resistance. At the same time, the thermoreversible covalently cross-linked elastomer material has the characteristics of thermal plasticity and easy processing at high temperatures. Using it as the diaphragm 100 of the speaker 200 can effectively reduce its processing cost.
  • thermoreversible covalent cross-linked elastomer is an elastomer material
  • the diaphragm 100 material has good resilience, which meets the high performance and high fidelity sound quality of the speaker 200 , The demand for high resilience.
  • thermoreversible covalently cross-linked elastomers are generally obtained by modifying thermosetting rubber or thermoplastic elastomers and introducing reversible cross-linking bonds, and have good thermal plasticity.
  • the diaphragm 100 includes at least one thermoreversible covalently cross-linked elastomer layer 10, where the diaphragm 100 uses a thermoreversible covalently cross-linked elastomer material, which can exhibit Good heat resistance and chemical resistance. At the same time, it also has the characteristics of thermal plasticity and easy processing at high temperatures, which can effectively reduce the processing cost, thereby reducing the manufacturing cost of the diaphragm 100.
  • the material of the thermally reversible covalently crosslinked elastomer layer 10 is selected from thermally reversible covalently crosslinked polyester elastomers, thermally reversible covalently crosslinked polyurethane elastomers, and thermally reversible covalently crosslinked silicones. At least one of an elastomer, a thermoreversibly covalently crosslinked acrylic rubber elastomer, a thermoreversibly covalently crosslinked olefin elastomer, and a thermoreversibly covalently crosslinked styrene elastomer.
  • thermoreversible covalently crosslinked elastomer layer 10 is selected as the diaphragm 100, one or more of these elastomers can be selected for the thermoreversible covalently crosslinked elastomer material. These mixtures can show good heat resistance and chemical resistance.
  • thermally reversible covalent cross-linked elastomer materials can be divided into five types according to the reaction mechanism, namely, acridine ester type, acid anhydride esterification type, Menxiu gold reaction type, isocyanate and active hydrogen reaction type, and Diels -Alder (DA) reactive type.
  • acridine ester type acid anhydride esterification type
  • Menxiu gold reaction type isocyanate and active hydrogen reaction type
  • Diels -Alder (DA) reactive type Diels -Alder
  • the material of the thermoreversible covalently crosslinked elastomer layer 10 is a thermoreversible D-A covalently crosslinked elastomer.
  • the thermoreversible covalent cross-linked elastomer material is selected from the thermoreversible DA covalent cross-linked elastomer.
  • the reaction conditions are mild and the positioning selectivity is strong. It is more suitable for the modification of elastomers.
  • the prepared polymer material is in the material The overall performance, use temperature, repeated processing, etc. can better match the application of the speaker 200 diaphragm 100.
  • thermoreversible DA covalently cross-linked elastomer has better thermoplastic processing properties, mainly because the dilute and dilutephilic groups are introduced into the matrix polymer molecular chain.
  • the Diels-Alder (DA) reaction between the dilute body and the dilute body produces covalent cross-linking, and this covalent cross-linking bond can undergo a reverse reaction in a higher specific temperature range, making the material have thermoplastic processing sex.
  • the DA reaction system here mainly includes one of the cyclopentadiene system, furan/maleimide system, maleic anhydride derivative and polyol/amine system.
  • the elongation at break of the thermally reversible covalently crosslinked elastomer layer 10 is greater than 200%.
  • the elongation at break of the thermoreversible covalently crosslinked elastomer layer 10 should be controlled appropriately to ensure good performance.
  • the elongation at break is greater than 200%. If the elongation at break is less than 200%, the thermally reversible covalently cross-linked elastomer material will cause material damage under long-term high temperature or low temperature vibration, resulting in diaphragm 100 products. The risk of failure increases.
  • thermoreversible covalently crosslinked elastomer layer 10 has a thermoreversible de-crosslinking temperature of 80°C to 250°C.
  • thermoreversible de-crosslinking temperature of the thermoreversible covalently crosslinked elastomer layer 10 should be controlled appropriately to ensure good performance.
  • the thermally reversible de-crosslinking temperature is 80°C, 100°C, 120°C, 150°C, 170°C, 200°C, 220°C or 250°C.
  • the thermally reversible cross-linking temperature of the material is lower than 80°C, the product dimensional stability during the use of the material is poor, and the speaker 200 diaphragm 100 is prone to deformation after long-term vibration and loss of product performance; if the material is thermally reversible de-crosslinking temperature Above 250°C, the thermoplasticity of the material becomes worse, and the processing cost during the preparation of the diaphragm 100 increases.
  • the tensile modulus of the thermoreversibly covalently crosslinked elastomer layer 10 ranges from 1 MPa to 600 MPa.
  • the tensile modulus of the thermoreversible covalently crosslinked elastomer layer 10 should be controlled appropriately to ensure good performance.
  • its tensile modulus can be 1 MPa, 25 MPa, 50 MPa, 100 MPa, 150 MPa, 250 MPa, 400 MPa, 500 MPa or 600 MPa. It is preferably between 3 MPa and 300 MPa. If the tensile modulus is less than 1 MPa, the rigidity of the material is insufficient, and problems such as polarization and excessive amplitude of the diaphragm 100 are prone to occur when the product is vibrated, resulting in product distortion.
  • the thickness of the thermoreversibly covalently crosslinked elastomer layer 10 ranges from 5 ⁇ m to 200 ⁇ m.
  • the thickness of the thermoreversible covalently crosslinked elastomer layer 10 should be selected appropriately, for example, the thickness is controlled to be 5 ⁇ m, 15 ⁇ m, 30 ⁇ m, 50 ⁇ m, 100 ⁇ m, 150 ⁇ m, or 200 ⁇ m. If the thickness is less than 5 ⁇ m, it will be more difficult to manufacture. If the thickness is greater than 200 ⁇ m, the weight of the diaphragm 100 will increase, resulting in reduced product sensitivity and reduced product vibration space.
  • thermoreversible covalently cross-linked elastomer layer 10 is provided with at least two layers, and two adjacent thermoreversible covalently cross-linked elastomer layers 10 are connected by thermocompression or by a glue layer 20.
  • the diaphragm 100 adopts at least two thermally reversible covalently cross-linked elastomer layers 10, which can more effectively improve its heat resistance and chemical resistance.
  • two adjacent thermally reversible covalently cross-linked elastomer layers 10 can be connected together by hot pressing, or can be connected by the adhesive layer 20, so that the diaphragm 100 can be obtained.
  • the material and thickness of each thermally reversible covalently crosslinked elastomer layer 10 can be the same or different, and there is no limitation here.
  • the diaphragm 100 includes two thermally reversible covalently cross-linked elastomer layers 10, and the two thermally reversible covalently cross-linked elastomer layers 10 are connected by a glue layer 20, where the glue layer 20 can be a damping glue Layer 20.
  • the diaphragm 100 further includes a thermoplastic elastomer layer 30, the thermoplastic elastomer layer 30 and at least one thermoplastic elastomer layer 30 are stacked, and the thermoplastic elastomer layer 30 is one of the surface layers of the diaphragm 100 Or the middle layer.
  • the composite structure of the diaphragm 100 contains a thermoplastic elastomer layer 30 and a thermoreversible covalently cross-linked elastomer layer 10, which can ensure that the prepared diaphragm 100 has good resilience, and meets the high performance and high fidelity sound quality of the speaker 200. And the demand for high resilience.
  • the diaphragm 100 has two surface layers and an intermediate layer along its thickness direction.
  • the plastic substrate layer 40 may be the intermediate layer of the composite structure of the diaphragm 100 or one of the surface layers of the composite structure of the diaphragm 100.
  • thermoreversible covalently crosslinked elastomer layer 10 refers to the outermost layer of the diaphragm 100
  • intermediate layer refers to the layer of the diaphragm 100 located between two surface layers.
  • surface layer refers to the outermost layer of the diaphragm 100
  • intermediate layer refers to the layer of the diaphragm 100 located between two surface layers.
  • the following definitions of “surface layer” and “intermediate layer” are the same. It is understandable that when the thermoreversible covalently crosslinked elastomer layer 10 is a single layer, the thermoplastic elastomer layer 30 is provided on a surface of the thermoreversibly covalently crosslinked elastomer layer 10, which constitutes the surface layer of the diaphragm 100.
  • thermoplastic elastomer layer 30 may be disposed between two layers in the multi-layer thermoreversibly covalently cross-linked elastomer layer 10, that is, the middle of the diaphragm 100
  • the layer may be arranged on the outer surface of the outermost layer in the multilayer thermoreversible covalently cross-linked elastomer layer 10, that is, one of the surface layers of the diaphragm 100.
  • the material of the thermoplastic elastomer layer 30 is polyester-based thermoplastic elastomer, polyurethane-based thermoplastic elastomer, polyamide-based thermoplastic elastomer, polystyrene-based thermoplastic elastomer, polyolefin-based thermoplastic elastomer, and dynamic vulcanized rubber. At least one of thermoplastic blend type thermoplastic elastomers. These elastomer materials are all existing materials, and the material of the thermoplastic elastomer layer 30 can be selected from one or more of them.
  • thermoreversible covalently crosslinked elastomer layer 10 is provided with a layer, and the thermoplastic elastomer layer 30 and the thermoreversible covalently crosslinked elastomer layer 10 pass through an adhesive layer 20 connect.
  • the thermoreversible covalently crosslinked elastomer layer 10 is provided with two layers, and the two thermoreversible covalently crosslinked elastomer layers 10 are respectively provided on the thermoplastic elastomer layer 30. Both surfaces, and the thermoplastic elastomer layer 30 and the thermally reversible covalently cross-linked elastomer layer 10 are connected by thermal compression or by an adhesive layer 20.
  • the thermoreversible covalently cross-linked elastomer layer 10 adopts two layers, which can more effectively improve the heat resistance and chemical resistance of the diaphragm 100.
  • thermoreversible covalently crosslinked elastomer layer 10 is provided with multiple layers
  • thermoplastic elastomer layer 30 is provided with multiple layers
  • the elastomer layer 30 is stacked, and at least one surface layer of the diaphragm 100 is a thermoreversible covalently cross-linked elastomer layer 10, and two adjacent layers are connected by hot pressing or by an adhesive layer 20.
  • thermoreversible covalently cross-linked elastomer layer 10 and the thermoplastic elastomer layer 30 are both multi-layered, which can more effectively improve the heat resistance and chemical resistance of the diaphragm 100, and at the same time can more effectively ensure the diaphragm 100 It has good resilience and meets the needs of speaker 200 products for high performance, high fidelity sound quality and high resilience.
  • the diaphragm 100 further includes a plastic substrate layer 40, the plastic substrate layer 40 is one of the surface layers or the middle layer of the diaphragm 100, and the thermoplastic elastomer layer 30 is thermally reversibly covalently cross-linked
  • the elastomer layer 10 is connected by thermocompression or by an adhesive layer 20.
  • the composite structure of the diaphragm 100 contains a plastic base material layer 40, which can ensure that the diaphragm 100 has good toughness and strength, and good stability.
  • the diaphragm 100 has two surface layers and an intermediate layer along its thickness direction.
  • the plastic substrate layer 40 may be the intermediate layer of the composite structure of the diaphragm 100 or one of the surface layers of the composite structure of the diaphragm 100.
  • the plastic base layer 40 may be connected to the thermoplastic elastomer layer 30 through the adhesive layer 20, or may be connected to the plastic elastomer base layer by hot pressing.
  • the material of the plastic substrate layer 40 is selected from the group consisting of polyether ether ketone, polyarylate, polyetherimide, polyimide, polyphenylene sulfide, polyethylene naphthalate, and polyethylene terephthalate. At least one of ethylene glycol dicarboxylate. These materials are all existing materials, and the material of the plastic substrate layer 40 can be made by selecting one or more of the above-mentioned materials.
  • thermoreversible covalently crosslinked elastomer layer 10 is provided with a layer, and the plastic substrate layer 40 and the thermoreversible covalently crosslinked elastomer layer 10 pass through a glue layer 20. connect.
  • thermoreversible covalently cross-linked elastomer layer 10 adopts multiple layers, which can more effectively improve the heat resistance and chemical resistance of the diaphragm 100.
  • thermoreversible covalently crosslinked elastomer layer 10 is provided with two layers, and the two thermoreversible covalently crosslinked elastomer layers 10 are respectively provided on the plastic substrate layer 40. Both surfaces, and the plastic substrate layer 40 and the thermally reversible covalently cross-linked elastomer layer 10 are connected to each other by thermal compression or through an adhesive layer 20.
  • the thermoreversible covalently cross-linked elastomer layer 10 adopts two layers, which can more effectively improve the heat resistance and chemical resistance of the diaphragm 100.
  • thermoreversible covalently crosslinked elastomer layer 10 is provided with multiple layers
  • the plastic substrate layer 40 is provided with multiple layers
  • the base material layer 40 is stacked, and at least one surface layer of the diaphragm 100 is a thermally reversible covalently cross-linked elastomer layer 10, and two adjacent layers are connected by an adhesive layer 20 or connected by heat and pressure.
  • thermoreversible covalently cross-linked elastomer layer 10 and the plastic substrate layer 40 are both multi-layered, which can more effectively improve the heat resistance and chemical resistance of the diaphragm 100, and at the same time can more effectively ensure the diaphragm 100 It has good toughness and strength, and good stability.
  • the diaphragm 100 further includes a thermoplastic elastomer layer 30 and a plastic substrate layer 40, the thermoplastic elastomer layer 30, the plastic substrate layer 40, and a thermally reversible covalently cross-linked elastic
  • the body layer 10 is connected by thermocompression or through an adhesive layer 20, and at least one surface layer of the diaphragm 100 is a thermoreversible covalently cross-linked elastomer layer 10.
  • the diaphragm 100 is a composite layer structure of the thermoreversible covalently crosslinked elastomer layer 10, the thermoplastic elastomer layer 30 and the plastic substrate layer 40, wherein the thermoreversible covalently crosslinked elastomer layer 10, the thermoplastic elastomer layer 30 and The number of layers of the plastic substrate layer 40 may be one layer or multiple layers. The two adjacent layers can be connected by the glue layer 20, or can be connected by heat and pressure.
  • at least one surface layer of the diaphragm 100 is a thermoreversible covalently cross-linked elastomer layer 10, which can make the diaphragm 100 have good heat resistance, chemical resistance, toughness, strength, stability and high recovery. Flexibility to meet the needs of speaker 200 products for high performance, high fidelity sound quality and high resilience.
  • the present invention also provides a speaker 200.
  • the speaker 200 includes a dome 220, a folding ring portion 210, and a voice coil 230.
  • the folding ring portion 210 is disposed at the edge of the speaker 200.
  • the top 220 is connected to one side of the folding ring 210
  • the voice coil 230 is connected to the other side of the folding ring 210
  • the dome 220 and/or the folding ring 210 are as described above.
  • the specific structure of the diaphragm 100 refers to the foregoing embodiment. Since the speaker 200 adopts all the technical solutions of all the foregoing embodiments, it has at least all the beneficial effects brought about by the technical solutions of the foregoing embodiments, which will not be repeated here.
  • the dome 220 is located at the center of the speaker 200, and the folding ring 210 is located at the edge of the speaker 200.
  • the dome 220 is generally glued to one side of the folding ring 210, and the other side of the folding ring 210 is connected to the speaker.
  • the thermally reversible covalently cross-linked elastomer layer 10 of the diaphragm 100 is disposed toward the voice coil 230.
  • the thermoreversible covalently cross-linked elastomer layer 10 of the diaphragm 100 is arranged toward the voice coil 230, which can more effectively improve the heat resistance and chemical resistance of the speaker 200, thereby more effectively extending the service life of the speaker 200.
  • thermoplastic polyurethane elastomer material with a hardness of about 90A was used as the diaphragm, and it was recorded as a comparative sample.
  • the present invention improves the thermoplastic polyurethane elastomer material in the comparative example, that is, introduces dilute and dilutephilic functional groups capable of DA reaction into its molecular chain to obtain a thermoplastic reversible covalently cross-linked elastomer material, Recorded as modified sample.
  • DMA dynamic thermodynamic analyzer
  • the modulus change rate of the thermoreversibly modified elastomer material of the present invention is reduced from low temperature to high temperature, indicating that due to the existence of covalent cross-linking bonds, the thermal mobility of the segment is reduced, and the segment is affected by temperature. The influence is reduced, so that the diaphragm material has a relatively stable mechanical performance in a wide temperature range.
  • TDD total harmonic distortion
  • the crosslinked modified sample has lower THD under the same voltage, and as the test voltage increases from 2.37V to 4.0V, the increase in THD200 ⁇ 300Hz increases the degree of distortion of the modified sample lower.
  • the THD of the control sample increased from 21% to about 42%, while the THD of the modified sample increased from about 20% to about 36%).
  • the thermoreversible modified elastomer material has a relatively stable mechanical performance, and the listening yield of the speaker product is significantly improved. Especially the listening yield under high power is improved.
  • the high-order harmonic distortion of the comparative sample and the modified sample is tested, and a high-order harmonic distortion (HOHD) curve is obtained.
  • the solid line is the test voltage of 2.83V, and the dashed line is the test voltage of 4.0V. Can be used to reflect the presence or absence of noise in the speaker. The results are shown in Figure 11.
  • the modified sample has lower distortion, and with the increase of the test voltage, the distortion does not change much. Therefore, it can be inferred that the cross-linked modified sample will have more stable acoustic performance and higher listening yield under different voltages or input signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Laminated Bodies (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Abstract

一种振膜(100)和扬声器(200),所述振膜(100)包括至少一层热可逆共价交联弹性体层(10)。具有提升振膜(100)的耐热性能和耐化学品性能的效果。

Description

振膜和扬声器 技术领域
本发明涉及声学产品技术领域,特别涉及一种振膜和应用该振膜的扬声器。
背景技术
随着扬声器高功率化、防水及高音质需求的提高,兼顾刚性和柔韧性的弹性体材料用作扬声器振膜的产品得到了推广。由于热塑性弹性体具有良好的热可塑性,易于加工,且具有较宽的硬度范围,在扬声器振膜得到了广泛的应用。但是,在采用热塑性弹性体材料作为扬声器振膜时,由于受限于扬声器的结构设计,为达到较高的性能和较大的位移,音圈产生的热量增加,若散热受限,则音圈附近局部温度过高,而热塑性弹性体材料的耐热性能较差,则容易导致热塑性弹性体材料产生较大的不可逆的位移,甚至断裂,导致扬声器性能损失的风险。并且,热塑性弹性体材料的耐化学品性能较差,在使用过程中,低分子量的化学品易渗入弹性体内部发生溶胀,使得振膜结构发生形变,也会导致扬声器的声学性能损失或产品失效。
上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。
发明内容
本发明的主要目的是提供一种振膜和扬声器,旨在提升振膜的耐热性能和耐化学品性能。
为实现上述目的,本发明提出的振膜,包括至少一层热可逆共价交联弹性体层。
可选地,所述热可逆共价交联弹性体层的材料选自热可逆共价交联聚酯类弹性体、热可逆共价交联聚氨酯类弹性体、热可逆共价交联有机硅类弹性体、热可逆共价交联丙烯酸类橡胶弹性体、热可逆共价交联烯烃类弹性体、 热可逆共价交联苯乙烯类弹性体中的至少一种。
可选地,所述热可逆共价交联弹性体层的材料为所述热可逆D-A共价交联弹性体。
可选地,所述热可逆共价交联弹性体层的断裂伸长率大于200%;和/或,所述热可逆共价交联弹性体层的热可逆解交联温度为80℃至250℃。
可选地,所述热可逆共价交联弹性体层的拉伸模量范围为1MPa至600MPa;和/或,所述热可逆共价交联弹性体层的厚度范围为5μm至200μm。
可选地,所述热可逆共价交联弹性体层设有至少两层,相邻的两层所述热可逆共价交联弹性体层热压连接或者通过胶层连接。
可选地,所述振膜还包括热塑性弹性体层,所述热塑性弹性体层为所述振膜的其中一个表层或者中间层,且所述热塑性弹性体层与所述热可逆共价交联弹性体层热压连接或者通过胶层连接。
可选地,所述热塑性弹性体层的材料选用聚酯类热塑性弹性体、聚氨酯类热塑性弹性体、聚酰胺类热塑性弹性体、聚苯乙烯类热塑性弹性体、聚烯烃类热塑性弹性体、动态硫化橡胶/热塑性塑料共混物型热塑性弹性体中的至少一种。
可选地,所述热可逆共价交联弹性体层设置有一层,所述热塑性弹性体层与所述热可逆共价交联弹性体层热压连接或者通过胶层连接;或者,所述热可逆共价交联弹性体层设置有两层,两层所述热可逆共价交联弹性体层分别设于所述热塑性弹性体层的两表面,且所述热塑性弹性体层与所述热可逆共价交联弹性体层热压连接或者通过胶层连接;或者,所述热可逆共价交联弹性体层设置有多层,所述热塑性弹性体层设置有多层,多层所述热可逆共价交联弹性体层和多层所述热塑性弹性体层层叠设置,且所述振膜的至少一表层为热可逆共价交联弹性体层,相邻两层通过胶层连接或热压连接。
可选地,所述振膜还包括塑料基材层,所述塑料基材层为所述振膜的其中一个表层或者中间层,且所述塑料基材层与所述热可逆共价交联弹性体层热压连接或者通过胶层连接。
可选地,所述塑料基材层的材料选自聚醚醚酮、聚芳酯、聚醚酰亚胺、聚酰亚胺、聚苯硫醚、聚萘二甲酸乙二醇酯、聚对苯二甲酸乙二醇酯中的至 少一种。
可选地,所述热可逆共价交联弹性体层设置有一层,所述塑料基材层与所述热可逆共价交联弹性体层热压连接或者通过胶层连接;或者,所述热可逆共价交联弹性体层设置有两层,两层所述热可逆共价交联弹性体层分别设于所述塑料基材层的两表面,且所述塑料基材层与所述热可逆共价交联弹性体层热压连接或者通过胶层连接;或者,所述热可逆共价交联弹性体层设置有多层,所述塑料基材层设置有多层,多层所述热可逆共价交联弹性体层和多层所述塑料基材层层叠设置,且所述振膜的至少一表层为热可逆共价交联弹性体层,相邻两层通过胶层连接或热压连接。
可选地,所述振膜还包括热塑性弹性体层和塑料基材层,所述热塑性弹性体层、所述塑料基材层及所述热可逆共价交联弹性体层热压连接或者通过胶层连接,且所述振膜的至少一表层为热可逆共价交联弹性体层。
本发明还提出了一种扬声器,所述扬声器包括球顶部、折环部及音圈,所述折环部设于所述扬声器的边缘位置,所述球顶部连接于所述折环部的一侧,所述音圈连接于所述折环部的另一侧,所述球顶部和/或所述折环部为振膜,所述振膜包括至少一层热可逆共价交联弹性体层。
可选地,所述振膜的热可逆共价交联弹性体层朝向所述音圈设置。
本发明的技术方案,振膜包括至少一层的热可逆共价交联弹性体层,这里振膜采用了热可逆共价交联弹性体材料,则可以表现出良好的耐热性能和耐化学品性能。同时,也在高温下具有热可塑性便于加工的特点,则可以有效地降低其加工成本,从而降低振膜的制作成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明扬声器一实施例的结构示意图;
图2为本发明振膜第一实施例的结构示意图;
图3为本发明振膜第二实施例的结构示意图;
图4为本发明振膜第三实施例的结构示意图;
图5为本发明振膜第四实施例的结构示意图;
图6为本发明振膜第五实施例的结构示意图;
图7为本发明振膜第六实施例的结构示意图;
图8为本发明振膜第七实施例的结构示意图;
图9为对比样和改性样的储能模量随温度变化曲线图;
图10为对比样和改性样的THD曲线性能图;
图11为对比样和改性样的HOHD曲线性能图。
附图标号说明:
标号 名称 标号 名称
100 振膜 200 扬声器
10 热可逆共价交联弹性体层 210 折环部
20 胶层 220 球顶部
30 热塑性弹性体层 230 音圈
40 塑料基材层    
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也 相应地随之改变。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提出一种振膜100,应用于扬声器200。
请参阅图1至图3,在本发明振膜100的一实施例中,振膜100包括至少一层热可逆共价交联弹性体层10。
这里热可逆共价交联弹性体层10的层数可以为一层,也可以为多层,当为多层时,多层热可逆共价交联弹性体层10层叠设置。热可逆共价交联弹性体为现有材料,在扬声器200工作温度下聚合物分子链间以共价键形式存在,且存在交联网状结构,相对于热塑性弹性体材料,交联网状结构的存在使得材料具有更高的强度、耐热性、耐化学品性和热稳定性,表现出热固性弹性体的特性;热可逆共价交联弹性体材料在较高的温度下共价交联键可以发生断裂,在不破坏聚合物材料骨架大分子链结构的前提下重新获得线性大分子,从而实现交联材料的热塑加工,表现出热可塑性。可以理解的,热可逆共价交联弹性体材料在工作条件下具有热固性材料的特性,如良好的性能稳定性、耐热性、以及耐化学品性等。当热可逆共价交联弹性体材料作为 振膜100使用时,能够使得振膜100具有较好的耐热性能和耐化学品性能。同时,热可逆共价交联弹性体材料在高温下具有热可塑性便于加工的特点,将其用作扬声器200的振膜100,可以有效地降低其加工成本。
此外,由于热可逆共价交联弹性体是一种弹性体材料,在用于振膜100时,可以保证振膜100材料具有较好的回弹性,满足了扬声器200产品高性能、高保真音质、高回弹性的需求。
需要说明的是,现有的热可逆共价交联弹性体一般是通过对热固性橡胶或热塑性弹性体进行改性,引入可逆交联键获得的,具有较好的热可塑性热。
因此,可以理解的,本发明的技术方案,振膜100包括至少一层的热可逆共价交联弹性体层10,这里振膜100采用了热可逆共价交联弹性体材料,可以表现出良好的耐热性能和耐化学品性能。同时,也在高温下具有热可塑性便于加工的特点,则可以有效地降低其加工成本,从而降低振膜100的制作成本。
可选地,热可逆共价交联弹性体层10的材料选自热可逆共价交联聚酯类弹性体、热可逆共价交联聚氨酯类弹性体、热可逆共价交联有机硅类弹性体、热可逆共价交联丙烯酸类橡胶弹性体、热可逆共价交联烯烃类弹性体、热可逆共价交联苯乙烯类弹性体中的至少一种。
这些弹性体材料均为现有材料,在选用热可逆共价交联弹性体层10作为振膜100时,其热可逆共价交联弹性体材料可以选用的这些弹性体中的一种或多种混合物,均能表现出较好的耐热性能和耐化学品性能。
需要说明的是,热可逆共价交联弹性体材料按照反应机理,可以分为5大类型,即吖为酯型、酸酐酯化型、门秀金反应型、异氰酸酯与活泼氢反应型以及Diels-Alder(DA)反应型。在选用热可逆共价交联弹性体层10作为振膜100时,其热可逆共价交联弹性体材料可以选用的这些类型弹性体中的一种或多种混合物。
优选地,热可逆共价交联弹性体层10的材料为热可逆D-A共价交联弹性体。这里热可逆共价交联弹性体材料选用热可逆D-A共价交联弹性体,其反应条件温和、定位选择性强,更适合应用于弹性体的改性,所制备得到的聚合物材料在材料的整体性能、使用温度、重复加工等方面可以更好匹配扬 声器200振膜100的应用。
需要说明的是,这里热可逆D-A共价交联弹性体具有较好的热塑加工性能,主要是因为基体聚合物分子链中引入了双稀体和亲双稀体基团,在指定温度下,双稀体和亲双稀体发生Diels-Alder(DA)反应,产生共价交联,而这种共价交联键在较高的特定温度范围内又可发生逆向反应,使得材料具有热塑加工性。这里DA反应体系主要包括环戊二稀体系、呋喃/马来酰亚胺体系、马来酸酐衍生物与多元醇/胺体系中的一种。
可选地,热可逆共价交联弹性体层10的断裂伸长率大于200%。这里热可逆共价交联弹性体层10的断裂伸长率要控制适宜,以保证其性能良好。一般地其断裂伸长率要大于200%,若断裂伸长率低于200%,热可逆共价交联弹性体材料在长期的高温或低温振动下,会造成材料破坏,导致振膜100产品失效的风险增加。
可选地,热可逆共价交联弹性体层10的热可逆解交联温度为80℃至250℃。
这里热可逆共价交联弹性体层10的热可逆解交联温度要控制适宜,以保证其性能良好。比如其热可逆解交联温度为80℃、100℃、120℃、150℃、170℃、200℃、220℃或250℃。若该材料热可逆解交联温度低于80℃,材料使用过程中产品尺寸稳定性差,长时间工作振动后扬声器200振膜100易发生形变,损失产品性能;若该材料热可逆解交联温度高于250℃,材料的热塑性变差,振膜100制备过程中的加工成本增加。
可选地,热可逆共价交联弹性体层10的拉伸模量范围为1MPa至600MPa。
这里热可逆共价交联弹性体层10的拉伸模量要控制适宜,以保证其性能良好。比如其拉伸模量可以为1MPa、25MPa、50MPa、100MPa、150Mpa、250MPa、400MPa、500MPa或600MPa。优选3MPa至300MPa之间。若其拉伸模量低于1MPa,则材料的刚度不足,产品振动时振膜100易发生偏振以及振幅过大等问题,从而导致产品失真。若其拉伸模量高于600MPa,则材料的韧性不足,回弹性变差,尤其振膜100产品产生较大位移后,产品会发生部分不可逆形变,或因模量较高在输入功率一定的情况下,导致产品很难达到需要的位移,从而影响产品灵敏度和响度。
可选地,热可逆共价交联弹性体层10的厚度范围为5μm至200μm。
这里热可逆共价交联弹性体层10的厚度要选择适宜,比如其厚度控制为5μm、15μm、30μm、50μm、100μm、150μm或200μm。若其厚度低于5μm,则制作难度较大,若其厚度高于200um,则振膜100的重量增加,导致产品灵敏度降低,且产品振动空间减少。
在本发明的一实施例中,热可逆共价交联弹性体层10设有至少两层,相邻的两层热可逆共价交联弹性体层10热压连接或者通过胶层20连接。
这里振膜100采用至少两层热可逆共价交联弹性体层10,可更有效地提升其耐热性能和耐化学品性能。并且,相邻两层热可逆共价交联弹性体层10之间可以采用热压方式连接在一起,也可以采用胶层20连接,均可得到振膜100。需要说明的,每一层热可逆共价交联弹性体层10的材料、厚度可以相同,也可以不同,在此不做限制。
请参阅图3,振膜100包括两层热可逆共价交联弹性体层10,两层热可逆共价交联弹性体层10之间通过胶层20连接,这里胶层20可以为阻尼胶层20。
在本发明的一实施例中,振膜100还包括热塑性弹性体层30,热塑性弹性体层30与至少一热塑性弹性体层30层叠设置,且热塑性弹性体层30为振膜100的其中一个表层或者中间层。
这里振膜100的复合结构中含有热塑性弹性体层30和热可逆共价交联弹性体层10,可以保证制备的振膜100具有较好的回弹性、满足扬声器200产品高性能、高保真音质及高回弹性的需求。振膜100沿其厚度方向上具有两个表层和中间层,塑料基材层40可以为振膜100复合结构的中间层,也可以为振膜100复合结构的其中一个表层。这里“表层”指振膜100最外侧的层,“中间层”指振膜100位于两个表层之间的层,下述“表层”和“中间层”的定义相同。可以理解的,在热可逆共价交联弹性体层10为一层时,热塑性弹性体层30设于热可逆共价交联弹性体层10的一表面,即构成了振膜100的表层。当热可逆共价交联弹性体层10为多层时,热塑性弹性体层30可以设置于多层热可逆共价交联弹性体层10中的两层之间,即为振膜100的中间层,可以设置于多层热可逆共价交联弹性体层10中最外层的外表面,即为振膜100的其中一个表层。
可选地,热塑性弹性体层30的材料选用聚酯类热塑性弹性体、聚氨酯类热塑性弹性体、聚酰胺类热塑性弹性体、聚苯乙烯类热塑性弹性体、聚烯烃类热塑性弹性体、动态硫化橡胶/热塑性塑料共混物型热塑性弹性体中的至少一种。这些弹性体材料均为现有材料,热塑性弹性体层30的材料可以选用其中的一种或多种混合物。
请参阅图4,在本发明的一实施例中,热可逆共价交联弹性体层10设置有一层,热塑性弹性体层30与热可逆共价交联弹性体层10之间通过胶层20连接。
请参阅图5,在本发明的一实施例中,热可逆共价交联弹性体层10设置有两层,两层热可逆共价交联弹性体层10分别设于热塑性弹性体层30的两表面,且热塑性弹性体层30与热可逆共价交联弹性体层10热压连接或者通过胶层20连接。这里热可逆共价交联弹性体层10采用两层,可以更有效地提升振膜100的耐热性能和耐化学品性能。
在本发明的一实施例中,热可逆共价交联弹性体层10设置有多层,热塑性弹性体层30设置有多层,多层热可逆共价交联弹性体层10和多层热塑性弹性体层30层叠设置,且振膜100的至少一表层为热可逆共价交联弹性体层10,相邻两层热压连接或通过胶层20连接。这里热可逆共价交联弹性体层10和热塑性弹性体层30均采用多层,可以更有效地提升振膜100的耐热性能和耐化学品性能,同时也能更有效地保证振膜100具有较好的回弹性、满足扬声器200产品高性能、高保真音质及高回弹性的需求。
在本发明的一实施例中,振膜100还包括塑料基材层40,塑料基材层40为振膜100的其中一个表层或者中间层,且热塑性弹性体层30与热可逆共价交联弹性体层10热压连接或者通过胶层20连接。
这里振膜100的复合结构中含有塑料基材层40,可以保证振膜100具有良好的韧性和强度,且稳定性较好。振膜100沿其厚度方向上具有两个表层和中间层,塑料基材层40可以为振膜100复合结构的中间层,也可以为振膜100复合结构的其中一个表层。塑料基材层40可以通过胶层20连接于热塑性弹性体层30,也可以通过热压方式与塑性弹性体基层连接。
可选地,塑料基材层40的材料选自聚醚醚酮、聚芳酯、聚醚酰亚胺、聚酰亚胺、聚苯硫醚、聚萘二甲酸乙二醇酯、聚对苯二甲酸乙二醇酯中的至 少一种。这些材料均为现有材料,塑料基材层40的材料可以选用上述这些材料的一种或多种制作而成。
请参阅图6,在本发明的一实施例中,热可逆共价交联弹性体层10设置有一层,塑料基材层40与热可逆共价交联弹性体层10之间通过胶层20连接。这里热可逆共价交联弹性体层10采用多层,可以更有效地提升振膜100的耐热性能和耐化学品性能。
请参阅图7,在本发明的一实施例中,热可逆共价交联弹性体层10设置有两层,两层热可逆共价交联弹性体层10分别设于塑料基材层40的两表面,且塑料基材层40与热可逆共价交联弹性体层10热压连接或者通过胶层20连接。这里热可逆共价交联弹性体层10采用两层,可以更有效地提升振膜100的耐热性能和耐化学品性能。
在本发明的一实施例中,热可逆共价交联弹性体层10设置有多层,塑料基材层40设置有多层,多层热可逆共价交联弹性体层10和多层塑料基材层40层叠设置,且振膜100的至少一表层为热可逆共价交联弹性体层10,相邻两层通过胶层20连接或热压连接。这里热可逆共价交联弹性体层10和塑料基材层40均采用多层,可以更有效地提升振膜100的耐热性能和耐化学品性能,同时也能更有效地保证振膜100具有良好的韧性和强度,且稳定性较好。
请参阅图8,在本发明的一些实施例中,振膜100还包括热塑性弹性体层30和塑料基材层40,热塑性弹性体层30、塑料基材层40及热可逆共价交联弹性体层10热压连接或者通过胶层20连接,且振膜100的至少一表层为热可逆共价交联弹性体层10。
这里振膜100为热可逆共价交联弹性体层10、热塑性弹性体层30及塑料基材层40的复合层结构,其中热可逆共价交联弹性体层10、热塑性弹性体层30及塑料基材层40的层数可以为一层或多层。相邻两层之间可以通过胶层20连接,也可以热压连接。并且,振膜100的至少一表层为热可逆共价交联弹性体层10,这样可以使得振膜100同时具有较好的耐热性能、耐化学品性、韧性、强度、稳定性及高回弹性,满足扬声器200产品高性能、高保真音质及高回弹性的需求。
请再次参阅图1,本发明还提出一种扬声器200,扬声器200包括球顶 部220、折环部210及音圈230,所述折环部210设于所述扬声器200的边缘位置,所述球顶部220连接于所述折环部210的一侧,所述音圈230连接于所述折环部210的另一侧,所述球顶部220和/或所述折环部210为如前所述的振膜100,该振膜100的具体结构参照前述实施例。由于扬声器200采用了前述所有实施例的全部技术方案,因此至少具有前述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。
具体地,球顶部220位于扬声器200的中心位置,折环部210位于扬声器200的边缘位置,球顶部220一般胶接于折环部210的一侧,折环部210的另一侧连接于扬声器200的音圈230,这里折环部210和球顶部220均采用本发明的振膜100结构,这样可以提高扬声器200的耐热性能和耐化学品性能,从而延长扬声器200的使用寿命。
可选地,振膜100的热可逆共价交联弹性体层10朝向音圈230设置。这里将振膜100的热可逆共价交联弹性体层10朝向音圈230设置,可以更有效地提升扬声器200的耐热性能和耐化学品性能,从而更有效地延长扬声器200的使用寿命。
下面通过具体实施例对本发明振膜进行详细说明。
对比例
采用硬度为90A左右的热塑性聚氨酯弹性体材料作为振膜使用,记为对比样。
实施例
本发明对对比例中的热塑性聚氨酯弹性体材料样进行改进,即在其样分子链中引入可发生DA反应的双稀及亲双稀功能基团,得到热塑性可逆共价交联弹性体材料,记为改性样。
采用动态热力学分析仪(DMA)分别对上述对比样和改性样进行温度扫描,得到其储能模量随温度的变化曲线,结果参见图9所示。
由图可以看出,本发明热可逆改性的弹性体材料在低温至高温的模量变化率降低,说明由于共价交联键的存在,链段的热运动性降低,链段受温度的影响降低,从而实现振膜材料在较宽的温度范围内具有较为稳定的力学性能。
进一步地,对对比样和改性样在不同电压下的总谐波失真进行测试,得到总谐波失真(Total Harmonic Distortion,THD)曲线,即由失真产生的结果参见图10所示。总谐波声压的有效值与平均特性声压之表示的百分比,表示失真的大小。
由图可以看出,相同电压下交联改性后样具有更低的THD,且随着测试电压由2.37V提升至4.0V,THD200~300Hz的增加量,改性样失真升高程度更低(对比样的THD由21%升高至42%左右,而改性样的THD由约20%升高至36%左右)。可以理解的,热可逆改性的弹性体材料因其具有较为稳定的力学性能,扬声器产品的听音良率显著提升。尤其大功率下的听音良率提升。这是因为大功率下,扬声器的悬置系统需要产生较大的位移,且音圈附近的温度升高,扬声器振膜折环的力学性能受温度影响越小,振动系统的振动稳定性会越优,越不易产生偏振等不良,从而可有效的降低产品因大位移带来的失真增加问题。
同时,对对比样和改性样的高次谐波失真进行测试,得到高次谐波失真(HOHD)曲线,实线为测试电压2.83V,虚线为测试电压为4.0V。可以用来反映扬声器有无杂音。其结果参见图11所示。
由图可以看出,改性样具有更低的失真,且随着测试电压的增加,失真变化不大。由此可以推测交联改性后样在不同电压大或输入信号下,声学性能更稳定,具有更高的听音良率。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (15)

  1. 一种振膜,应用于扬声器,其特征在于,所述振膜包括至少一层热可逆共价交联弹性体层。
  2. 如权利要求1所述的振膜,其特征在于,所述热可逆共价交联弹性体层的材料选自热可逆共价交联聚酯类弹性体、热可逆共价交联聚氨酯类弹性体、热可逆共价交联有机硅类弹性体、热可逆共价交联丙烯酸类橡胶弹性体、热可逆共价交联烯烃类弹性体、热可逆共价交联苯乙烯类弹性体中的至少一种。
  3. 如权利要求1所述的振膜,其特征在于,所述热可逆共价交联弹性体层的材料为所述热可逆D-A共价交联弹性体。
  4. 如权利要求1所述的振膜,其特征在于,所述热可逆共价交联弹性体层的断裂伸长率大于200%;和/或,
    所述热可逆共价交联弹性体层的热可逆解交联温度为80℃至250℃。
  5. 如权利要求1所述的振膜,其特征在于,所述热可逆共价交联弹性体层的拉伸模量范围为1MPa至600MPa;和/或,
    所述热可逆共价交联弹性体层的厚度范围为5μm至200μm。
  6. 如权利要求1至5中任一项所述的振膜,其特征在于,所述热可逆共价交联弹性体层设有至少两层,相邻的两层所述热可逆共价交联弹性体层热压连接或者通过胶层连接。
  7. 如权利要求1至5中任一项所述的振膜,其特征在于,所述振膜还包括热塑性弹性体层,所述热塑性弹性体层为所述振膜的其中一个表层或者中间层,且所述热塑性弹性体层与所述热可逆共价交联弹性体层热压连接或者通过胶层连接。
  8. 如权利要求7所述的振膜,其特征在于,所述热塑性弹性体层的材料选用聚酯类热塑性弹性体、聚氨酯类热塑性弹性体、聚酰胺类热塑性弹性体、聚苯乙烯类热塑性弹性体、聚烯烃类热塑性弹性体、动态硫化橡胶/热塑性塑料共混物型热塑性弹性体中的至少一种。
  9. 如权利要求7所述的振膜,其特征在于,所述热可逆共价交联弹性体层设置有一层,所述热塑性弹性体层与所述热可逆共价交联弹性体层热压连接或者通过胶层连接;或者,
    所述热可逆共价交联弹性体层设置有两层,两层所述热可逆共价交联弹性体层分别设于所述热塑性弹性体层的两表面,且所述热塑性弹性体层与所述热可逆共价交联弹性体层热压连接或者通过胶层连接;或者,
    所述热可逆共价交联弹性体层设置有多层,所述热塑性弹性体层设置有多层,多层所述热可逆共价交联弹性体层和多层所述热塑性弹性体层层叠设置,且所述振膜的至少一表层为热可逆共价交联弹性体层,相邻两层通过胶层连接或热压连接。
  10. 如权利要求1至5中任一项所述的振膜,其特征在于,所述振膜还包括塑料基材层,所述塑料基材层为所述振膜的其中一个表层或者中间层,且所述塑料基材层与所述热可逆共价交联弹性体层热压连接或者通过胶层连接。
  11. 如权利要求10所述的振膜,其特征在于,所述塑料基材层的材料选自聚醚醚酮、聚芳酯、聚醚酰亚胺、聚酰亚胺、聚苯硫醚、聚萘二甲酸乙二醇酯、聚对苯二甲酸乙二醇酯中的至少一种。
  12. 如权利要求10所述的振膜,其特征在于,所述热可逆共价交联弹性体层设置有一层,所述塑料基材层与所述热可逆共价交联弹性体层热压连接或者通过胶层连接;或者,
    所述热可逆共价交联弹性体层设置有两层,两层所述热可逆共价交联弹 性体层分别设于所述塑料基材层的两表面,且所述塑料基材层与所述热可逆共价交联弹性体层热压连接或者通过胶层连接;或者,
    所述热可逆共价交联弹性体层设置有多层,所述塑料基材层设置有多层,多层所述热可逆共价交联弹性体层和多层所述塑料基材层层叠设置,且所述振膜的至少一表层为热可逆共价交联弹性体层,相邻两层通过胶层连接或热压连接。
  13. 如权利要求1至5中任一项所述的振膜,其特征在于,所述振膜还包括热塑性弹性体层和塑料基材层,所述热塑性弹性体层、所述塑料基材层及所述热可逆共价交联弹性体层热压连接或者通过胶层连接,且所述振膜的至少一表层为热可逆共价交联弹性体层。
  14. 一种扬声器,其特征在于,所述扬声器包括球顶部、折环部及音圈,所述折环部设于所述扬声器的边缘位置,所述球顶部连接于所述折环部的一侧,所述音圈连接于所述折环部的另一侧,所述球顶部和/或所述折环部为如权利要求1至13中任一项所述的振膜。
  15. 如权利要求14所述的扬声器,其特征在于,所述振膜的热可逆共价交联弹性体层朝向所述音圈设置。
PCT/CN2020/138341 2020-03-27 2020-12-22 振膜和扬声器 WO2021190003A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010234078.5A CN111246347A (zh) 2020-03-27 2020-03-27 振膜和扬声器
CN202010234078.5 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021190003A1 true WO2021190003A1 (zh) 2021-09-30

Family

ID=70873713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138341 WO2021190003A1 (zh) 2020-03-27 2020-12-22 振膜和扬声器

Country Status (2)

Country Link
CN (1) CN111246347A (zh)
WO (1) WO2021190003A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111246347A (zh) * 2020-03-27 2020-06-05 歌尔股份有限公司 振膜和扬声器
CN111935626B (zh) * 2020-09-23 2022-03-15 歌尔股份有限公司 一种扬声器的振膜及其制备方法、扬声器
CN114827871B (zh) * 2021-01-29 2023-07-14 歌尔股份有限公司 振膜及发声装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130401A (ja) * 2009-12-21 2011-06-30 Bifristec Kk 音響機器用塗料
CN106095153A (zh) * 2015-04-30 2016-11-09 三星显示有限公司 柔性窗口基底和具有其的柔性显示装置
CN207053770U (zh) * 2017-07-04 2018-02-27 歌尔科技有限公司 振膜以及扬声器单体
CN207070338U (zh) * 2017-07-03 2018-03-02 歌尔科技有限公司 振膜以及扬声器单体
CN208609173U (zh) * 2018-08-22 2019-03-15 歌尔科技有限公司 一种振膜组件和发声装置
WO2019125158A1 (en) * 2017-12-21 2019-06-27 Nederlandse Organisatie Voor Teogepast-Natuurwetenschappelijk Onderzoek Tno Photovoltaic roadway assembly
CN210183518U (zh) * 2019-08-06 2020-03-24 深圳市信维声学科技有限公司 一种用于扬声器的振膜料带
CN111246347A (zh) * 2020-03-27 2020-06-05 歌尔股份有限公司 振膜和扬声器
CN211321492U (zh) * 2020-03-27 2020-08-21 歌尔股份有限公司 振膜和扬声器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130401A (ja) * 2009-12-21 2011-06-30 Bifristec Kk 音響機器用塗料
CN106095153A (zh) * 2015-04-30 2016-11-09 三星显示有限公司 柔性窗口基底和具有其的柔性显示装置
CN207070338U (zh) * 2017-07-03 2018-03-02 歌尔科技有限公司 振膜以及扬声器单体
CN207053770U (zh) * 2017-07-04 2018-02-27 歌尔科技有限公司 振膜以及扬声器单体
WO2019125158A1 (en) * 2017-12-21 2019-06-27 Nederlandse Organisatie Voor Teogepast-Natuurwetenschappelijk Onderzoek Tno Photovoltaic roadway assembly
CN208609173U (zh) * 2018-08-22 2019-03-15 歌尔科技有限公司 一种振膜组件和发声装置
CN210183518U (zh) * 2019-08-06 2020-03-24 深圳市信维声学科技有限公司 一种用于扬声器的振膜料带
CN111246347A (zh) * 2020-03-27 2020-06-05 歌尔股份有限公司 振膜和扬声器
CN211321492U (zh) * 2020-03-27 2020-08-21 歌尔股份有限公司 振膜和扬声器

Also Published As

Publication number Publication date
CN111246347A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
WO2021190003A1 (zh) 振膜和扬声器
US11825285B2 (en) Speaker diaphragm and speaker
US11818559B2 (en) Speaker diaphragm and speaker
US20210120340A1 (en) Speaker diaphragm and speaker
US11457317B2 (en) Speaker
WO2019237609A1 (zh) 扬声器振膜以及扬声器
CN111065024A (zh) 振膜和扬声器
US20210258692A1 (en) Speaker diaphragm and speaker
CN111866669B (zh) 一种用于微型发声装置的振膜和微型发声装置
US9827749B2 (en) Composite for production of an acoustic membrane and acoustic membrane
CN110708634B (zh) 发声装置的振膜以及发声装置
US11470425B2 (en) Speaker
CN108859296B (zh) 复合膜结构、振膜和发声装置
CN210609670U (zh) 振膜和扬声器
US10397705B2 (en) Multi-layer composite for acoustic membranes
CN111923525A (zh) 振膜和发声装置
CN211321492U (zh) 振膜和扬声器
WO2021082244A1 (zh) 一种用于微型发声装置的振膜及微型发声装置
CN112693200A (zh) 振膜及其制备方法、声电器件
CN110784806B (zh) 一种用于微型发声装置的振膜及微型发声装置
KR102659012B1 (ko) 미니어처 사운드 발생 장치용 다이어프램 및 미니어처 사운드 발생 장치
KR102659011B1 (ko) 미니어처 사운드 발생 장치용 다이어프램 및 미니어처 사운드 발생 장치
CN111866670B (zh) 一种用于微型发声装置的振膜和微型发声装置
CN111836174A (zh) 一种复合振膜、复合振膜的制备方法及发声装置
CN113773533A (zh) 发声装置的振膜及其发声装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926756

Country of ref document: EP

Kind code of ref document: A1