WO2021189871A1 - 冷水空调机组 - Google Patents

冷水空调机组 Download PDF

Info

Publication number
WO2021189871A1
WO2021189871A1 PCT/CN2020/128700 CN2020128700W WO2021189871A1 WO 2021189871 A1 WO2021189871 A1 WO 2021189871A1 CN 2020128700 W CN2020128700 W CN 2020128700W WO 2021189871 A1 WO2021189871 A1 WO 2021189871A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
conditioning unit
solar
evaporator
chilled water
Prior art date
Application number
PCT/CN2020/128700
Other languages
English (en)
French (fr)
Inventor
王雷
孙辉
赵雷
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021189871A1 publication Critical patent/WO2021189871A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • F24F2005/0064Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy
    • F24F2005/0067Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground using solar energy with photovoltaic panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to the technical field of air conditioning, in particular to a chilled water air-conditioning unit.
  • Chilled water air-conditioning units are widely used in various industries. Chilled water air-conditioning units are referred to as chillers, which mainly include compressors, evaporators, condensers, expansion valves, and evaporators usually adopt shell-and-tube evaporators or double-pipe evaporators.
  • the condenser usually adopts a water-cooled condenser or an air-cooled condenser. During operation, the refrigerant in the evaporator exchanges heat with the carrier refrigerant, and the refrigerant in the condenser exchanges heat with cooling water or outdoor air.
  • the outdoor unit of the chiller air-conditioning unit is equipped with multiple electronic components. If the unit operates in a low temperature environment, it will cause some component signal feedback deviations, resulting in system performance degradation. If the low temperature lasts for a long time, the components are also easy to freeze, which directly affects the normal operation of the unit.
  • the present invention provides a chilled water air-conditioning unit, which includes a compressor connected by a refrigerant pipe.
  • the chiller, condenser, throttling device, evaporator and a number of electronic components, the chilled water air conditioning unit also includes a solar device, the solar device includes a solar heat collector, a heat pipe and a first circulating pump, the solar collector
  • the heat exchanger has a heat collection inlet and a heat collection outlet, the heat pipe is respectively communicated with the heat collection inlet and the heat collection outlet, the first circulation pump is arranged on the heat pipe, and the heat pipe is filled with The heat conduction medium, and the heat conduction pipe is partially arranged on the outer bottom of the compressor, the outer bottom of the evaporator or the inside of the evaporator, and part of the periphery of the electronic components.
  • the electronic components include at least one of a temperature sensor, a pressure sensor, a pressure switch, and an electronic expansion valve.
  • the solar energy device further includes a water tank having a water inlet and a water outlet, and the heat conduction pipe is respectively communicated with the water inlet and the water outlet.
  • the evaporator is connected to the water tank through a pipeline.
  • the solar device further includes a solar photovoltaic cell, a power storage component, and a solar controller.
  • the solar photovoltaic cell is connected to the power storage component through the controller, and the storage
  • the electrical component is connected with the main controller of the chiller air-conditioning unit.
  • the solar photovoltaic cell and the solar heat collector are integrally arranged.
  • the power storage component is also connected to the power grid.
  • the electric storage component is a battery pack or a super capacitor battery pack.
  • the solar heat collector is a flat plate heat collector, a vacuum tube heat collector or a concentrating heat collector.
  • the chilled water air-conditioning unit includes a compressor, a condenser, a throttling device, an evaporator, and multiple electronic components connected by a refrigerant pipe. It also includes a solar device.
  • the solar device includes a solar heat collector, a heat pipe and a first circulating pump.
  • the solar heat collector has a heat collecting inlet and a heat collecting outlet.
  • the heat pipe is connected with the heat collecting inlet and the heat collecting outlet respectively.
  • the first cycle The pump is arranged on the heat pipe, and the heat pipe is filled with a heat transfer medium, and the heat pipe is partially arranged on the outer bottom of the compressor, the outer bottom of the evaporator or the inside of the evaporator, and some electronic components.
  • the start-up speed and operating efficiency of the unit are greatly improved, and the detection stability of electronic components is improved, while the evaporator is free from the risk of freezing and cracking. And the control accuracy of the unit, reduce the risk of evaporator freezing and cracking and component damage caused by low temperature.
  • the unit can be reasonably shut down when the unit is shut down.
  • the water tank can be used as an energy storage device to store heat, thereby greatly improving the heating efficiency of the unit.
  • this application can also convert solar energy into electrical energy and store it in the power storage components when the sunlight is abundant, so as to be used for the operation of the unit, saving energy.
  • Fig. 1 is a system structure diagram of the chilled water air-conditioning unit of the present invention.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense. For example, they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • Fig. 1 is a system structure diagram of the chilled water air-conditioning unit of the present invention.
  • the air-cooled chilled water air-conditioning unit of the present application mainly includes a compressor 1, a four-way valve 2, and a condenser 3. Throttle device 4, evaporator 5, gas-liquid separator 6, total controller 7 and multiple electronic components.
  • the compressor 1, the four-way valve 2, the condenser 3, the throttling device 4, the evaporator 5 and the gas-liquid separator 6 are connected by a refrigerant pipe to form a refrigerant circuit.
  • the throttling device 4 is an electronic expansion valve
  • the condenser 3 is an air-cooled condenser
  • the evaporator 5 is a shell-and-tube evaporator.
  • the electronic components include, but are not limited to, an electronic expansion valve, an intake temperature sensor 91, an exhaust temperature sensor 92, a pressure sensor, a low pressure switch 93, a high pressure switch 94, and so on.
  • the master controller 7 is used to control the operation of the unit, such as controlling the start and stop of the unit, adjusting the opening of the electronic expansion valve based on the above temperature sensor or pressure sensor or the fan in the unit, and controlling the change of the four-way valve 2 based on the control command. To wait.
  • the chilled water air-conditioning unit of the present application further includes a solar device 8.
  • the solar device 8 includes a solar heat collector 81, a heat conduction pipe 82 and a first circulating pump 83.
  • the solar heat collector 81 has a heat collection inlet and The heat collection outlet and the heat pipe 82 respectively communicate with the heat collection inlet and the heat collection outlet to form a heat collection circuit.
  • the first circulating pump 83 is disposed on the heat transfer pipe 82, and the heat transfer pipe 82 is filled with a heat transfer medium.
  • the heat transfer pipe 82 is partially arranged on the outer bottom of the compressor 1, the outer bottom of the evaporator 5, and some electronic components.
  • the solar device 8 is installed in the chilled water air-conditioning unit, so that when the unit is operating in a low temperature environment, the startup speed and operating efficiency of the unit can be greatly improved while the evaporator 5 is free from the risk of freezing and cracking, and the electronics
  • the detection stability of the components and the control accuracy of the unit reduce the risk of freezing and cracking of the evaporator 5 and damage to the components due to low temperature.
  • the solar heat collector 81 collects the heat in the sunlight to heat the water in the heat conduction pipe 82, and then transfers the heat of the water in the heat conduction pipe 82 to the bottom of the compressor 1 through the first circulation pump 83.
  • the bottom of the evaporator 5 and the surroundings of the electronic components increase the temperature of the lubricating oil in the compressor 1, the temperature of the water in the evaporator 5, and the temperature of the air around the electronic components, thereby ensuring that the compressor
  • the oil temperature of 1, the water temperature of the evaporator 5 and the temperature of the electronic components are all in a suitable range, so the lubricating oil in the compressor 1 will not be viscous, the water in the evaporator 5 will not freeze, and the electronic components Will not be frozen out.
  • the heating efficiency of the unit can also be improved and the heating time can be reduced.
  • the unit Keeping the electronic components at a proper temperature further enables the unit to collect accurate parameters during operation, improves the control accuracy and accuracy of the unit, reduces the risk of damage to the electronic components, and reduces the number of after-sales maintenance.
  • this also enables the technical solution of the present application to have extremely low energy consumption during implementation.
  • the solar heat collector 81 is a flat-plate collector
  • the heat conducting medium is preferably water
  • the heat conducting tube 82 can be a copper tube or aluminum tube with better heat dissipation effect. Etc., it forms a heat collection loop with the heat collection inlet and the heat collection outlet of the solar heat collector 81.
  • the heat conduction pipe 82 is connected from the heat collection outlet of the solar collector 81, it is firstly arranged around the exhaust temperature sensor 92 and the high pressure switch 94 at the exhaust port of the compressor 1, and then it is arranged on the The outer bottom of the compressor 1 is finally set on the outer bottom of the evaporator 5 when it passes through the evaporator 5.
  • the solar energy device 8 further includes a water tank 10 having a water inlet and a water outlet, and the heat conducting pipe 82 is respectively connected with the water inlet and the water outlet.
  • the heat conduction pipe 82 is connected to the water inlet of the water tank 10 after being plated on the bottom of the outer side of the evaporator 5.
  • the water outlet of the water tank 10 is connected to the suction port of the first circulation pump 83 through the heat conduction pipe 82.
  • the first circulation pump The outlet of 83 is connected to the heat collecting inlet of the solar heat collector 81 through the heat conducting pipe 82, thereby forming a complete heat collecting circuit.
  • the cold water inlet 51 and cold water outlet 52 of the shell-and-tube evaporator 5 are respectively connected to the water tank 10, and a second circulating pump 11 is also provided between the cold water inlet 51 and the water tank 10.
  • the second circulating pump 11 is turned on
  • the water inside the tube shell and the water in the water tank 10 form a cycle.
  • the water tank in the solar device 8 can be shared with the water tank that comes with the unit, and only a slight modification of the water tank is required.
  • a water tank can be provided separately and the water tank is connected to the heat pipe 82 and the evaporator 5 at the same time.
  • the pipeline between the cold water outlet 52 or cold water inlet 51 and the water tank 10 usually passes through the indoor circulation.
  • the solar device 8 further includes a solar photovoltaic cell (not shown in the figure), a solar controller 84, and a power storage component 85.
  • the solar photovoltaic cell is connected to the power storage component 85 through the solar controller 84, and the power storage component 85 Connect with the main controller 7 of the chiller air-conditioning unit.
  • the solar photovoltaic cell adopts an amorphous silicon solar cell in this application, which is integrated with the solar heat collector 81.
  • the solar heat collector 81 can not only absorb light energy to generate heat, but also realize photoelectric conversion.
  • the power storage component 85 preferably adopts a battery pack, which includes a plurality of batteries.
  • the solar photovoltaic cell is connected to the battery pack through the solar controller 84, and the battery pack is connected to the master controller 7 through a connecting line, so as to realize the photoelectric conversion. Electric energy storage, and the use of stored electric energy for the operation of the unit.
  • the battery pack is also connected to the grid, so that the battery pack can be charged through the grid when the solar energy is insufficient.
  • the main controller 7 when the light is normal, the main controller 7 will give priority to start the heating function of the solar collector 81, and transfer the heat to the bottom of the compressor 1, the bottom of the evaporator 5 and the surroundings of the electronic components to heat the above components. , To ensure the heat preservation of the unit under low temperature conditions.
  • the main controller 7 starts the power storage function to charge the battery pack so as to store it The electric energy is used for unit operation.
  • the advantage of the above arrangement is that by disposing the heat pipe 82 on the outer bottom of the compressor 1, the outer bottom of the evaporator 5, or around the electronic components, the present application can meet the heating function, and not to the cold water air conditioning unit. Make changes to minimize the cost of unit transformation.
  • the water tank 10 can be used as an energy storage device to store heat, thereby greatly improving the heating efficiency during the startup and operation of the unit.
  • solar photovoltaic cells, solar controller 84 and power storage component 85 this application can also convert solar energy into electric energy and store it in power storage component 85 when the sunlight is abundant, for the operation of the unit, saving energy.
  • the solar heat collector 81 can realize the light-to-heat conversion and the photoelectric conversion at the same time, and the volume of the solar device 8 is greatly reduced.
  • the heat transfer medium being water
  • the heat transfer medium can also be salt water or glycol solution.
  • the coiled position of the heat pipe 82 is not static. Under the condition that the compressor 1, the evaporator 5 and the electronic components can be effectively heated, the heat pipe 82 can also be used. Set up in other reasonable locations. For example, if conditions permit, the heat transfer tube 82 can also be arranged in the bottom of the compressor 1 or the bottom of the tube shell of the evaporator 5 or the like.
  • the above embodiment is described in conjunction with the heat pipe 82 being arranged around the exhaust temperature sensor 92 and the high pressure switch 94, those skilled in the art should understand Yes, the contribution of the present invention to the prior art is embodied in the arrangement of the heat pipe 82 around the electronic components of the unit, and its protection scope should not be limited to the specific number and type of electronic components. Therefore, the use of the present invention In the case of the setting mode, setting the heat pipe 82 coiled around other electronic components of the unit will also fall within the protection scope of the present invention.
  • the heat pipe 82 may also be arranged in one or more of the suction temperature sensor 91, the low pressure switch 93, the electronic expansion valve, the pressure sensor, and the like.
  • the specific form of the power storage component 85 is not fixed, and those skilled in the art can adjust the specific form of the power storage component 85 on the premise that it can store electric energy.
  • the power storage component 85 can also be a super capacitor battery pack.
  • the specific arrangement form of the solar heat collector 81 is not unique.
  • those skilled in the art can also use a vacuum tube heat collector or a light-concentrating type. Heat collectors, etc., this type of collector change does not deviate from the principle of this application.
  • amorphous silicon solar cells as solar photovoltaic cells
  • those skilled in the art can also use monocrystalline silicon solar cells, polycrystalline silicon solar cells, etc. to replace them, and the technical solution after replacement still falls under the protection of this application.
  • monocrystalline silicon solar cells polycrystalline silicon solar cells, etc.
  • this application can also be realized by installing the two separately, although this method will inevitably As a result, the volume of the solar device 8 is increased.
  • the water tank 10 in the solar device 8 may not be shared with the unit, but a dedicated water tank is provided separately, which does not deviate from the principle of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及空气调节技术领域,具体涉及一种冷水空调机组。本发明旨在解决现有冷水空调机组在低温环境下启动速度慢、元器件易失效的问题。为此目的,本发明的冷水空调机组包括压缩机、冷凝器、节流装置、蒸发器、多个电子元器件和太阳能装置,太阳能装置包括太阳能集热器、导热管和第一循环泵,太阳能集热器具有集热进口和集热出口,导热管分别与集热进口和集热出口连通,第一循环泵设置于导热管上,导热管内填充有导热介质,并且导热管部分盘设于压缩机的外侧底部、蒸发器的外侧底部或蒸发器的内部、以及部分电子元器件的周围。本申请能够大幅度提高冷水空调机组的启动速度和运行效率,提升电子元器件的检测稳定性和机组的控制精度。

Description

冷水空调机组 技术领域
本发明涉及空气调节技术领域,具体涉及一种冷水空调机组。
背景技术
冷水空调机组在各行各业的应用比较广泛,冷水空调机组简称冷水机组,其主要包括压缩机,蒸发器,冷凝器,膨胀阀,蒸发器通常采用管壳式蒸发器或套管式蒸发器,冷凝器通常采用水冷式冷凝器或风冷式冷凝器。工作时,蒸发器中的冷媒与载冷剂进行热交换,冷凝器中的冷媒与冷却水或室外空气进行热交换。
机组在冬季停机时,为防止蒸发器内的载冷剂冻结而损坏蒸发器,通常需要将蒸发器内的水放掉。然而,当机组再次启动运行时,重新上水需要耗费一定的时间,而且由于环境温度较低,压缩机内部润滑油的油温也较低,机组启动后油温升高至正常温度需要耗费很长一段时间,这都将导致冷水空调机组在冬季无法快速启动运行。此外,冷水空调机组的室外机部分设置有多个电子元器件,如果机组在低温环境运行,将会导致部分元器件信号反馈出现偏差,导致系统性能下降。如果低温时间持续较长,元器件还容易冻坏,直接影响机组的正常运行。
相应地,本领域需要一种新的冷水空调机组来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有冷水空调机组在低温环境下启动速度慢、元器件易失效的问题,本发明提供了一种冷水空调机组,包括通过冷媒管连接的压缩机、冷凝器、节流装置、蒸发器和多个电子元器件,所述冷水空调机组还包括太阳能装置,所述太阳能装置包括太阳能集热器、导热管和第一循环泵,所述太阳能集热器具有集热进口和集热出口,所述导热管分别与所述集热进口和所述集 热出口连通,所述第一循环泵设置于所述导热管上,所述导热管内填充有导热介质,并且所述导热管部分盘设于所述压缩机的外侧底部、所述蒸发器的外侧底部或所述蒸发器的内部、以及部分所述电子元器件的周围。
在上述冷水空调机组的优选技术方案中,当所述导热管部分盘设于所述蒸发器的内部时,所述导热管盘设于所述蒸发器的底部。
在上述冷水空调机组的优选技术方案中,所述电子元器件包括温度传感器、压力传感器、压力开关、电子膨胀阀中的至少一个。
在上述冷水空调机组的优选技术方案中,所述太阳能装置还包括水箱,所述水箱具有进水口和出水口,所述导热管分别与所述进水口和所述出水口连通。
在上述冷水空调机组的优选技术方案中,所述蒸发器通过管路与所述水箱连通。
在上述冷水空调机组的优选技术方案中,所述太阳能装置还包括太阳能光伏电池、储电部件和太阳能控制器,所述太阳能光伏电池通过所述控制器与所述储电部件连接,所述储电部件与所述冷水空调机组的总控制器连接。
在上述冷水空调机组的优选技术方案中,所述太阳能光伏电池与所述太阳能集热器一体设置。
在上述冷水空调机组的优选技术方案中,所述储电部件还与电网连接。
在上述冷水空调机组的优选技术方案中,所述储电部件为蓄电池组或超级电容电池组。
在上述冷水空调机组的优选技术方案中,所述太阳能集热器为平板型集热器、真空管集热器或聚光型集热器。
本领域技术人员能够理解的是,在本发明的优选技术方案中,冷水空调机组,包括通过冷媒管连接的压缩机、冷凝器、节流装置、蒸发器和多个电子元器件,冷水空调机组还包括太阳能装置,太阳能装置包括太阳能集热器、导热管和第一循环泵,太阳能集热器具有集热进口和集热出口,导热管分别与集热进口和集热出口连通,第一循环泵设置于导热管上,导热管内填充有导热介质,并且导热管部分盘设于压缩 机的外侧底部、蒸发器的外侧底部或蒸发器的内部、以及部分电子元器件的周围。
通过在冷水空调机组中设置太阳能装置,使得机组在低温环境下运行时,在保证蒸发器无冻裂风险的前提下,大幅度提高机组的启动速度和运行效率,提升电子元器件的检测稳定性和机组的控制精度,降低由于温度过低而导致的蒸发器冻裂、元器件损坏等风险。
具体地,通过利用太阳能集热器收集热量,然后通过集热管把热量传递到压缩机的外侧底部、换热器的外侧底部或内部,以及电子元器件的周围,使得机组在停机时,能够合理利用自然能源产生的热量加热压缩机底部的润滑油、蒸发器内部的水以及电子元器件周围的空气,从而保证润滑油的油温、蒸发器内部的水温以及电子元器件的温度均保持在合适的区间内。这样一来,不仅节省了为蒸发器放水的步骤,而且更重要的是,由于压缩机内部的油温、蒸发器内部的水温都处于合适的温度,这使得在机组在低温下的快速启动成为可能,并且压缩机可以极速到达较佳的工作状态。在机组制热运行时,由于蒸发器内水的蓄能作用,还能够提升机组的加热效率,减少加热时间。而电子元器件保持在合适的温度,还进一步使得机组在工作过程中能够采集到精确的参数,提高机组的控制精度和准度,降低电子元器件损坏风险,减少售后维修次数。此外,由于采用了太阳能技术收集热量,本申请的技术方案在实施过程中还具有极低的能耗。
进一步地,通过将导热管和蒸发器同时与水箱连通,使得水箱能够作为蓄能装置储存热量,从而大幅度提升机组的加热效率。
进一步地,通过设置太阳能光伏电池、储电部件和太阳能控制器,使得本申请在当阳光较充裕时,还能够将太阳能转换为电能并存储在储电部件中,以用于机组的运行,节省能源。
附图说明
下面参照附图并结合风冷式冷水空调机组来描述本发明的冷水空调机组。附图中:
图1为本发明的冷水空调机组的系统结构图。
附图标记列表
1、压缩机;2、四通阀;3、冷凝器;4、节流装置;5、蒸发器;51、冷水进口;52、冷水出口;6、气液分离器;7、总控制器;8、太阳能装置;81、太阳能集热器;82、导热管;83、第一循环泵;84、太阳能控制器;85、储电部件;91、吸气温度传感器;92、排气温度传感器;93、低压开关;94、高压开关;10、水箱;11、第二循环泵。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,虽然本实施方式是结合风冷式冷水空调机组进行介绍的,但是这并非旨在于限制本发明的保护范围,在不偏离本发明原理的条件下,本领域技术人员可以将本发明应用于其他应用场景。例如,本申请还可以应用于水冷式冷水空调机组等。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
首先参照图1,对本发明的冷水空调机组进行描述。其中,图1为本发明的冷水空调机组的系统结构图。
如图1所示,为解决现有冷水空调机组在低温环境下启动速度慢、元器件易失效的问题,本申请的风冷式冷水空调机组主要包括压缩机1、四通阀2、冷凝器3、节流装置4、蒸发器5、气液分离器6、总控制器7和多个电子元器件。压缩机1、四通阀2、冷凝器3、节流装置 4、蒸发器5和气液分离器6通过冷媒管连接形成冷媒回路。在本申请中节流装置4为电子膨胀阀,冷凝器3为风冷式冷凝器,蒸发器5为管壳式蒸发器。电子元器件包括但不限于电子膨胀阀、吸气温度传感器91、排气温度传感器92、压力传感器、低压开关93、高压开关94等。总控制器7用于控制机组的运行,如控制机组的启停、基于上述温度传感器或压力传感器调整电子膨胀阀的开度或机组中风机的启停、基于控制指令控制四通阀2的换向等。
继续参照图1,特别地,本申请的冷水空调机组还包括太阳能装置8,太阳能装置8包括太阳能集热器81、导热管82和第一循环泵83,太阳能集热器81具有集热进口和集热出口,导热管82分别与集热进口和集热出口连通从而形成集热回路。第一循环泵83设置在导热管82上,导热管82内填充有导热介质。其中,导热管82部分盘设于压缩机1的外侧底部、蒸发器5的外侧底部以及部分电子元器件的周围。
如背景技术所述,现有技术中,当冷水空调机组在低温环境中停机后,需要将管壳式蒸发器5内部的存水放掉,以避免蒸发器5内部的水冻结而将蒸发器5冻裂。但如此一来,在重新启动机组时不仅需要重新上水,而且由于压缩机1内部的润滑油温度较低,这都将导致机组无法快速启动。而机组运行过程中,由于环境温度低,还将导致电子元器件出现信号反馈偏差甚至损坏的情况,这非常影响机组的稳定运行。
而本申请通过在冷水空调机组中设置太阳能装置8,使得机组在低温环境下运行时,能够在保证蒸发器5无冻裂风险的前提下,大幅度提高机组的启动速度和运行效率,提升电子元器件的检测稳定性和机组的控制精度,降低由于温度过低而导致的蒸发器5冻裂、元器件损坏等风险。
具体地,在机组停机后,太阳能集热器81收集阳光中的热量加热导热管82内的水,然后通过第一循环泵83将导热管82中的水的热量传递到压缩机1的底部、蒸发器5的底部以及电子元器件的周围,使压缩机1中的润滑油的油温升高、蒸发器5中的水温升高以及电子元器件周围的空气温度升高,从而保证压缩机1的油温、蒸发器5的水温以及电子元器件的自身温度均处于一个合适的区间,因此压缩机1中的润滑油不会粘稠、蒸发器5中的水不会冻结、电子元器件不会被冻坏。 当机组再次启动时,由于压缩机1内的油温和蒸发器5内的水温都处于合适的温度区间,因此机组能够以最快的速度达到较佳的工作状态,实现机组的快速启动。在机组制热运行时,由于蒸发器5内水的蓄能作用,还能够提升机组的加热效率,减少加热时间。而电子元器件保持在合适的温度,还进一步使得机组在工作过程中能够采集到精确的参数,提高机组的控制精度和准度,降低电子元器件损坏风险,减少售后维修次数。此外,由于采用了太阳能技术收集热量,这还使得本申请的技术方案在实施过程中还具有极低的能耗。
下面进一步参照图1,对本申请的冷水空调机组的一种较为优选的实施方式进行介绍。
如图1所示,在一种较为优选的实施方式中,太阳能集热器81选用平板型集热器,导热介质优选地为水,导热管82可以选择散热效果较好的铜管或铝管等,其与太阳能集热器81的集热进口和集热出口之间构成集热回路。导热管82由太阳能集热器81的集热出口接出后,首先盘设于压缩机1排气口处的排气温度传感器92和高压开关94周围,然后在经过压缩机1时盘设于压缩机1的外侧底部,最后在经过蒸发器5时盘设在蒸发器5的外侧底部。
继续参照图1,太阳能装置8还包括水箱10,水箱10具有进水口和出水口,导热管82分别与进水口和出水口连通。具体地,导热管82在盘设于蒸发器5的外侧底部后,与水箱10的进水口连接,水箱10的出水口通过导热管82与第一循环泵83的吸入口连接,第一循环泵83的排出口通过导热管82与太阳能集热器81的集热进口连接,从而构成一个完整的集热回路。
继续参照图1,管壳式蒸发器5的冷水进口51和冷水出口52分别与水箱10连通,并且冷水进口51与水箱10之间还设置有第二循环泵11,第二循环泵11开启时管壳内部的水与水箱10中的水形成循环。在实际应用时,如果冷水空调机组本身带有水箱,则太阳能装置8中的水箱可以与机组中自带的水箱共用,只需对水箱稍加改造即可。如果机组中未设置水箱,那么可以单独设置水箱并将水箱同时与导热管82和蒸发器5连通。当然,如果机组自带水箱,那么冷水出口52或冷水进口51与水箱10之间的管路通常会经过室内循环。
仍参照图1,太阳能装置8还包括太阳能光伏电池(图中未示出)、太阳能控制器84和储电部件85,太阳能光伏电池通过太阳能控制器84与储电部件85连接,储电部件85与冷水空调机组的总控制器7连接。具体地,太阳能光伏电池在本申请中采用非晶硅太阳能电池,其与太阳能集热器81一体设置,具体设置方式例如可以参见公告号为CN202973593U的专利文件,在此不再赘述。一体设置后,使得太阳能集热器81既可以吸收光能产生热量,也能够实现光电转换。储电部件85优选的采用蓄电池组,蓄电池组中包括多个蓄电池,太阳能光伏电池通过太阳能控制器84与蓄电池组连接,蓄电池组通过连接线与总控制器7连接,从而实现对光电转换后的电能存储,以及将储存电能用于机组的运行。此外,蓄电池组还与电网连接,从而在太阳能不足时能够通过电网向蓄电池组充电。
控制方式上,当光照一般时,总控制器7优先启动太阳能集热器81的加热功能,将热量传递到压缩机1的底部、蒸发器5的底部以及电子元器件的周围,为上述部件加热,保证低温状态下机组的保温。当光照足够时,在确保机组保温的前提下(可通过采集相关位置的温度等方式进行判断),如果光照能量仍有剩余,则总控制器7启动蓄电功能给蓄电池组充电,以便将储存的电能用于机组运行。
上述设置方式的优点在于:通过将导热管82盘设于压缩机1的外侧底部、蒸发器5的外侧底部或电子元器件的周围,本申请能够在满足加热功能的前提下,不对冷水空调机组进行改动,最大限度的降低了机组的改造成本。通过将导热管82和蒸发器5同时与水箱10连通,使得水箱10能够作为蓄能装置储存热量,从而在机组启动和运行过程中大幅度提升加热效率。通过设置太阳能光伏电池、太阳能控制器84和储电部件85,使得本申请在当阳光较充裕时,还能够将太阳能转换为电能并存储在储电部件85中,以用于机组的运行,节省能源。通过将太阳能光伏电池与太阳能集热器81集成设置,使得太阳能集热器81能够同时实现光热转换和光电转换,并且大幅减小太阳能装置8的体积。
需要说明的是,上述优选的实施方式仅仅用于阐述本发明的原理,并非旨在于限制本发明的保护范围。在不偏离本发明原理的前提 下,本领域技术人员可以对上述设置方式进行调整,以便本发明能够适用于更加具体的应用场景。
例如,在一种可替换的实施方式中,虽然上述实施方式中是结合导热介质为水进行描述的,但是本领域技术人员可以采用其他的导热液体对其进行替换,只要其能够提供较好的热传导性能即可。比如,导热介质还可以为盐水或乙二醇溶液等。
再如,在另一种可替换的实施方式中,导热管82的盘设位置并非一成不变,在能够对压缩机1、蒸发器5和电子元器件进行有效加热的条件下,导热管82还可以设置于其他合理位置。比如,在条件允许的情况下,也可以把导热管82盘设到压缩机1内部或者蒸发器5的管壳内的底部等位置。
再如,在另一种可替换的实施方式中,虽然上述实施方式中是结合导热管82盘设在排气温度传感器92和高压开关94周围进行介绍的,但是,本领域技术人员应该理解的是,本发明对现有技术的贡献体现在将导热管82盘设在机组的电子元器件的周围,其保护范围不应局限于电子元器件的具体数量和类型,因此,在采用本发明的设置方式的情况下,将导热管82盘设在机组的其他电子元器件的周围也将落入本发明的保护范围之内。比如,导热管82还可以盘设在吸气温度传感器91、低压开关93、电子膨胀阀、压力传感器等中的一个或多个等。
再如,在另一种可替换的实施方式中,储电部件85的具体形式并非固定,在满足能够储存电能的前提下,本领域技术人员可以对储电部件85的具体形式进行调整。比如储电部件85还可以采用超级电容电池组等。
再如,在另一种可替换的实施方式中,太阳能集热器81的具体设置形式并非唯一,除采用平板型集热器外,本领域技术人员还可以采用真空管集热器或聚光型集热器等,这种集热器类型的更改并未偏离本申请的原理。
再如,除采用非晶硅太阳能电池作为太阳能光伏电池外,本领域技术人员还可以采用单晶硅太阳能电池、多晶硅太阳能电池等对其进行替换,替换后的技术方案仍然落入本申请的保护范围之内。在设置形式上,虽然上述实施方式是济合太阳能光伏电池与太阳能集热器81一 体设置为例进行介绍的,但是显然将二者分开设置也能够实现本申请,虽然这种方式会不可避免地导致太阳能装置8的体积增大。
再如,在另一种可能的实施方式中,太阳能装置8中的水箱10可以不与机组共用,而是单独设置专用水箱,这种设置方式并未偏离本申请的原理。
当然,上述可以替换的实施方式之间、以及可以替换的实施方式和优选的实施方式之间还可以交叉配合使用,从而组合出新的实施方式以适用于更加具体的应用场景。
本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在本发明的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种冷水空调机组,包括通过冷媒管连接的压缩机、冷凝器、节流装置、蒸发器和多个电子元器件,其特征在于,
    所述冷水空调机组还包括太阳能装置,所述太阳能装置包括太阳能集热器、导热管和第一循环泵,所述太阳能集热器具有集热进口和集热出口,所述导热管分别与所述集热进口和所述集热出口连通,所述第一循环泵设置于所述导热管上,所述导热管内填充有导热介质,并且所述导热管部分盘设于所述压缩机的外侧底部、所述蒸发器的外侧底部或所述蒸发器的内部、以及部分所述电子元器件的周围。
  2. 根据权利要求1所述的冷水空调机组,其特征在于,当所述导热管部分盘设于所述蒸发器的内部时,所述导热管盘设于所述蒸发器的底部。
  3. 根据权利要求1所述的冷水空调机组,其特征在于,所述电子元器件包括温度传感器、压力传感器、压力开关、电子膨胀阀中的至少一个。
  4. 根据权利要求1所述的冷水空调机组,其特征在于,所述太阳能装置还包括水箱,所述水箱具有进水口和出水口,所述导热管分别与所述进水口和所述出水口连通。
  5. 根据权利要求4所述的冷水空调机组,其特征在于,所述蒸发器通过管路与所述水箱连通。
  6. 根据权利要求1所述的冷水空调机组,其特征在于,所述太阳能装置还包括太阳能光伏电池、储电部件和太阳能控制器,所述太阳能光伏电池通过所述控制器与所述储电部件连接,所述储电部件与所述冷水空调机组的总控制器连接。
  7. 根据权利要求6所述的冷水空调机组,其特征在于,所述太阳能光伏电池与所述太阳能集热器一体设置。
  8. 根据权利要求6所述的冷水空调机组,其特征在于,所述储电部件还与电网连接。
  9. 根据权利要求6所述的冷水空调机组,其特征在于,所述储电部件为蓄电池组或超级电容电池组。
  10. 根据权利要求1所述的冷水空调机组,其特征在于,所述太阳能集热器为平板型集热器、真空管集热器或聚光型集热器。
PCT/CN2020/128700 2020-03-23 2020-11-13 冷水空调机组 WO2021189871A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010208379.0A CN111503781A (zh) 2020-03-23 2020-03-23 冷水空调机组
CN202010208379.0 2020-03-23

Publications (1)

Publication Number Publication Date
WO2021189871A1 true WO2021189871A1 (zh) 2021-09-30

Family

ID=71869347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128700 WO2021189871A1 (zh) 2020-03-23 2020-11-13 冷水空调机组

Country Status (2)

Country Link
CN (1) CN111503781A (zh)
WO (1) WO2021189871A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115264927A (zh) * 2022-08-26 2022-11-01 宁波奥克斯电气股份有限公司 一种油温加热系统、空调器及其控制方法、可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111503781A (zh) * 2020-03-23 2020-08-07 青岛海尔空调电子有限公司 冷水空调机组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121107A (ja) * 1998-10-15 2000-04-28 Hitachi Ltd 氷蓄熱システム
CN103075324A (zh) * 2012-03-21 2013-05-01 宁波奥克斯电气有限公司 压缩机油温的控制方法
CN106225318A (zh) * 2016-07-25 2016-12-14 重庆大学 以太阳能‑岩土能为低位热源的全热回收空气源热泵系统
CN106969498A (zh) * 2017-05-25 2017-07-21 宿迁伊杉科技有限公司 一种空气能热泵蒸发器底部防冻供水装置
CN208672000U (zh) * 2018-10-15 2019-03-29 天津威恳德测控设备技术有限公司 一种具有防冻结构的传感器
CN111503781A (zh) * 2020-03-23 2020-08-07 青岛海尔空调电子有限公司 冷水空调机组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121107A (ja) * 1998-10-15 2000-04-28 Hitachi Ltd 氷蓄熱システム
CN103075324A (zh) * 2012-03-21 2013-05-01 宁波奥克斯电气有限公司 压缩机油温的控制方法
CN106225318A (zh) * 2016-07-25 2016-12-14 重庆大学 以太阳能‑岩土能为低位热源的全热回收空气源热泵系统
CN106969498A (zh) * 2017-05-25 2017-07-21 宿迁伊杉科技有限公司 一种空气能热泵蒸发器底部防冻供水装置
CN208672000U (zh) * 2018-10-15 2019-03-29 天津威恳德测控设备技术有限公司 一种具有防冻结构的传感器
CN111503781A (zh) * 2020-03-23 2020-08-07 青岛海尔空调电子有限公司 冷水空调机组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115264927A (zh) * 2022-08-26 2022-11-01 宁波奥克斯电气股份有限公司 一种油温加热系统、空调器及其控制方法、可读存储介质

Also Published As

Publication number Publication date
CN111503781A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
CN108461868B (zh) 汽车热管理系统及汽车
CN101487616B (zh) 一种可用储冰制冷的空调系统
CN101373087B (zh) 新风整体式节能机房专用空调机组
CN102788392B (zh) 一种热管热泵复合系统
WO2021189871A1 (zh) 冷水空调机组
WO2015043259A1 (zh) 电力电子器件冷却系统及分布式发电系统
CN103496319B (zh) 新能源汽车动力蓄电池温度调控装置
CN201396872Y (zh) 节能型全自动冷、热水中央空调系统
CN113659236A (zh) 一种用于集装箱储能电池的热管理方法和系统
CN208332532U (zh) 一种补偿式太阳能热泵空调制冷系统
CN218936802U (zh) 一种储能电池用一体式冷水机
CN101442147B (zh) 电动车辆动力电池包的冷却装置
CN212299271U (zh) 冷水空调机组
CN212299269U (zh) 冷水空调机组
CN212299270U (zh) 冷水空调机组
CN209766604U (zh) 一种节能型水路可逆电池热管理系统
CN210463660U (zh) 并联压缩机超低温度空气源热泵机组
KR200357888Y1 (ko) 지열을 이용한 냉난방 장치
CN1587868A (zh) 一种太阳能半导体空调系统
CN205897656U (zh) 一种节能型车载制冷机组
CN218215463U (zh) 储能柜冷水空调
CN111578390A (zh) 一种风冷式pvt空调外机及运行方法
CN217929048U (zh) 一种给储能装置控温的空调机组
CN101581513A (zh) 通信基站专用太阳能制冷装置及制冷方法
CN219797383U (zh) 一种具有储冷热功能的空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927140

Country of ref document: EP

Kind code of ref document: A1