WO2021189295A1 - 磁性随机存储单元及其数据写入方法 - Google Patents

磁性随机存储单元及其数据写入方法 Download PDF

Info

Publication number
WO2021189295A1
WO2021189295A1 PCT/CN2020/081106 CN2020081106W WO2021189295A1 WO 2021189295 A1 WO2021189295 A1 WO 2021189295A1 CN 2020081106 W CN2020081106 W CN 2020081106W WO 2021189295 A1 WO2021189295 A1 WO 2021189295A1
Authority
WO
WIPO (PCT)
Prior art keywords
tunnel junction
magnetic tunnel
control signal
input
pulse control
Prior art date
Application number
PCT/CN2020/081106
Other languages
English (en)
French (fr)
Inventor
赵巍胜
彭守仲
李伟祥
芦家琪
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Priority to PCT/CN2020/081106 priority Critical patent/WO2021189295A1/zh
Publication of WO2021189295A1 publication Critical patent/WO2021189295A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to the technical field of magnetic memory, in particular to a magnetic random storage unit and a data writing method thereof.
  • MRAM magnetic random access memory
  • the write mechanism has been the main technical bottleneck restricting the development of MRAM.
  • the mainstream electrical writing methods of MRAM include spin transfer torque (Spin Transfer Torque, STT) and spin orbit moment (Spin Orbit Torque, SOT).
  • STT-MRAM spin transfer torque
  • SOT-MRAM spin orbit moment
  • SOT-MRAM has the advantages of writing current flowing through the underlying heavy metal to avoid the risk of breakdown, theoretically ultra-fast writing speed of less than 1ns, low heavy metal resistivity, low power consumption, separation of read and write branches, and Allows for thicker barrier layers and other advantages.
  • the spin-orbit moment writing method requires an external magnetic field in the in-plane direction, which will increase the complexity of the circuit.
  • an antiferromagnetic (AFM) film is used to generate an Exchange Bias Field in the free layer, EB) instead of an external magnetic field to achieve magnetic field-free reversal, because the generated EB is smaller, the critical reversal current is larger, and the power consumption is larger.
  • the storage unit of SOT-MRAM has three ports, each MTJ needs to have two access control first triode, the storage density is low.
  • the magnetic random memory cell includes a spin-orbital moment layer and at least one magnetic field arranged on the spin-orbital moment layer. Tunnel junction,
  • the method includes:
  • a write current is input to the spin-orbit moment layer after a preset time interval to make the resistance state of the magnetic tunnel junction correspond to the data to be written, wherein the write current is less than the critical flip of the magnetic tunnel junction A current that is greater than the critical switching current of the magnetic tunnel junction when the selection voltage is input;
  • the input of the selection voltage and the writing current is sequentially stopped.
  • the preset time interval is less than 4 ns.
  • a selection voltage to the magnetic tunnel junction to which data is to be written in the at least one magnetic tunnel junction specifically includes:
  • the first voltage terminal and the magnetic tunnel junction are turned on to form a selection voltage and input to the magnetic tunnel junction.
  • the input of a write current to the spin-orbit moment layer after a predetermined time interval so that the resistance state of the magnetic tunnel junction corresponds to the data to be written specifically includes:
  • the second voltage terminal and the spin orbit moment layer are turned on to form a write current and input into the spin orbit moment layer, wherein the difference between the first pulse control signal and the second pulse control signal
  • the input time interval is the preset time interval, and the stop time of the first pulse control signal is before the stop time of the second pulse control signal.
  • it further includes that before conducting the input current and the magnetic tunnel junction through the first switching element in response to the first pulse control signal:
  • the second pulse control signal is obtained by delaying the pulse control signal input to the spin-orbit moment layer according to a preset time interval.
  • the invention also discloses a magnetic random storage unit, comprising a spin-orbit moment layer and at least one magnetic tunnel junction arranged on the spin-orbit moment layer;
  • a selection voltage control module configured to input and stop input selection voltages to the magnetic tunnel junction where data is to be written in the at least one magnetic tunnel junction;
  • the write current control module is configured to input a write current to the spin-orbit moment layer after a preset time interval so that the resistance state of the magnetic tunnel junction corresponds to the data to be written, wherein the write current is less than
  • the critical switching current of the magnetic tunnel junction is greater than the critical switching current of the magnetic tunnel junction when the selection voltage is input, and the input of the writing current is stopped after the input of the selection voltage is stopped.
  • the preset time interval is less than 4 ns.
  • the selection voltage control module is specifically configured to turn on the first voltage terminal and the magnetic tunnel junction in response to the first pulse control signal to form a selection voltage and input the magnetic tunnel junction.
  • the selection voltage control module includes a first switching element, a first terminal of the first switching element is connected to a first voltage terminal, a second terminal is electrically connected to a magnetic tunnel junction, and the control of the first switching element The terminal receives the first pulse control signal to conduct the first voltage terminal and the magnetic tunnel junction.
  • the write current control module is specifically configured to turn on the second voltage terminal and the spin orbit moment layer through the second switching element in response to the second pulse control signal to form a write current and input the spin orbit moment layer,
  • the input time interval of the first pulse control signal and the second pulse control signal is the preset time interval
  • the stop time of the first pulse control signal is within the stop time of the second pulse control signal Before.
  • the write current control module includes a second switching element, a first end of the second switching element is connected to a second voltage end, and a second end is electrically connected to the spin-orbit moment layer, and the second switch The control terminal of the element receives the second pulse control signal to turn on the second voltage terminal and the spin-orbit moment layer.
  • it further includes a control signal processing unit for dividing the input control signal into two pulse control signals before the input current and the magnetic tunnel junction are turned on in response to the first pulse control signal through the first switching element, wherein the input The pulse control signal of the magnetic tunnel junction is the first pulse control signal, and the pulse control signal input to the spin-orbit moment layer is delayed according to a preset time interval to obtain the second pulse control signal.
  • a control signal processing unit for dividing the input control signal into two pulse control signals before the input current and the magnetic tunnel junction are turned on in response to the first pulse control signal through the first switching element, wherein the input The pulse control signal of the magnetic tunnel junction is the first pulse control signal, and the pulse control signal input to the spin-orbit moment layer is delayed according to a preset time interval to obtain the second pulse control signal.
  • the present invention also discloses a computer device, including a memory, a processor, and a computer program stored on the memory and running on the processor,
  • the invention also discloses a computer readable medium on which a computer program is stored,
  • the invention reduces the critical switching current of the magnetic tunnel junction by first inputting the selection voltage to the magnetic tunnel junction. After a preset time interval, a write current is input to the spin-orbit moment layer so that the resistance state of the magnetic tunnel junction corresponds to the data to be written. Finally, stop inputting the selection voltage and writing current in sequence.
  • the present invention adjusts the timing relationship between the selection voltage of the input magnetic tunnel junction and the write current of the spin-orbit moment layer. The current can ensure that the free layer of the magnetic tunnel junction to which the selection voltage is input completes the inversion, and the free layer magnetic moment of the magnetic tunnel junction to which the selection voltage is not input remains unchanged.
  • the selection voltage stops first, and the write current stops.
  • the application and stop timing of the write current are delayed relative to the selected voltage.
  • the delay of the preset time interval causes the critical switching current of the magnetic tunnel junction to be restored first to improve the anti-interference ability and reduce the data. Write error probability, reduce writing power consumption, and optimize memory performance.
  • FIG. 1 shows a structural diagram of a magnetic random memory cell in a specific embodiment of a data writing method for a magnetic random memory cell according to the present invention
  • FIG. 2 shows one of the flowcharts of a specific embodiment of a data writing method of a magnetic random memory cell of the present invention
  • FIG. 3 shows the second flow chart of a specific embodiment of a data writing method of a magnetic random memory cell of the present invention
  • FIG. 4 shows a schematic diagram of forming a first pulse control signal and a second pulse control signal in a specific embodiment of a data writing method for a magnetic random memory cell of the present invention
  • FIG. 5 shows a comparison diagram of an input control signal, a first voltage terminal and a second voltage terminal in a specific embodiment of a data writing method for a magnetic random memory cell of the present invention
  • FIG. 6 shows a comparison diagram of an input control signal, a first pulse control signal, and a second pulse control signal in a specific embodiment of a data writing method for a magnetic random memory cell of the present invention
  • FIG. 7 shows a comparison diagram of selection voltage, writing current, and magnetic tunnel junction resistance in a specific embodiment of a data writing method for a magnetic random memory cell of the present invention
  • FIG. 8 shows a structure diagram of a magnetic random memory cell in another specific embodiment of a data writing method for a magnetic random memory cell of the present invention
  • FIG. 9 shows a specific embodiment of a data writing method for a magnetic random memory cell of the present invention, selecting voltage, writing current, magnetic tunnel junction M 2 resistance R 2 , magnetic tunnel junction M 1 resistance R 1 and magnetic tunnel junction Comparison diagram of M n resistance R n;
  • Fig. 10 shows a schematic structural diagram of a computer device suitable for implementing an embodiment of the present invention.
  • the existing magnetic random access memory (MRAM) based on a magnetic tunnel junction (MTJ) includes a spin-orbital moment layer and at least one magnetic tunnel junction provided on the spin-orbital moment layer.
  • the magnetic tunnel junction includes a reference layer, a barrier layer and a free layer arranged from top to bottom, and the bottom surface of the free layer is in contact and fixed with the upper surface of the spin-orbit moment layer.
  • the resistance value of the magnetic tunnel junction depends on the magnetization directions of the free layer and the reference layer. If the magnetization directions of the free layer and the reference layer are the same, the resistance value of the magnetic tunnel junction is small, and the magnetic tunnel junction is in a low resistance state. Conversely, if the magnetization directions of the free layer and the reference layer are opposite, the resistance value of the magnetic tunnel junction is larger, and the magnetic tunnel junction is in a high resistance state.
  • the magnetization direction of the reference layer is preset as a fixed magnetization direction. For example, a synthetic antiferromagnetic layer can be used to make the magnetization direction of the reference layer fixed, and the magnetization direction of the free layer can be changed by a write operation.
  • the magnetization direction of the free layer is deterministically reversed by inputting a write current to the spin-orbit coupling layer during a write operation, so that the resistance state of the magnetic tunnel junction is the same as that of the magnetic tunnel junction corresponding to the data to be written.
  • the resistance state is consistent to achieve the purpose of data writing.
  • the current flowing through the spin-orbital moment layer can cause a torque to drive the magnetization direction of the free layer to reverse due to the Spin Hall Effect (SHE) or Rashba Effect (Rashba Effect).
  • SHE Spin Hall Effect
  • Rashba Effect Rashba Effect
  • the data stored in the memory can be determined by determining the resistance state of the magnetic tunnel junction through the reading circuit.
  • the write current method is in-plane write method, which can separate the read and write paths, and the write current does not flow through the magnetic tunnel junction, and is beneficial to the read and write performance.
  • Independent optimization makes SOT-MRAM superior to STT-MRAM in terms of writing speed and integration.
  • the write current to reverse the magnetization direction of the free layer requires an external magnetic field in an in-plane direction, which will increase the complexity of the circuit.
  • an AFM film is used to generate an exchange bias field (Exchange Bias Field, EB) in the free layer instead of an external magnetic field to achieve magnetic field-free switching. Since the generated EB is small, the critical switching current is large, and the power consumption is large. And the storage unit of SOT-MRAM has three ports, each MTJ needs to have two access control first triode, the storage density is low.
  • VCMA Voltage Control Magnetic Anisotropy
  • VCMA-based spin-orbit moment magnetic memory can combine the advantages of VCMA and SOT-MRAM.
  • a selection voltage is applied to both ends of the MTJ to reduce the critical switching current of the magnetic tunnel junction, thereby reducing the write power consumption, so that SOT-MRAM has the advantages of high density, low power consumption and high read stability .
  • SOT-MRAM based on VCMA simultaneously applies and stops writing currents to the magnetic tunnel junction and spin-orbital moment layer.
  • the present invention proposes a voltage-regulated spin-torque magnetic random access memory (VST-MRAM) to optimize the data writing method by controlling the timing of the applied selected voltage and the write current Reduce the probability of data write errors, reduce write power consumption, and optimize memory performance.
  • VST-MRAM voltage-regulated spin-torque magnetic random access memory
  • this embodiment discloses a data writing method of a magnetic random memory cell.
  • the magnetic random memory cell includes a spin-orbital moment layer 1 and at least one magnetic tunnel junction disposed on the spin-orbital moment layer 1.
  • a magnetic tunnel junction is taken as an example for description.
  • multiple magnetic tunnel junctions may also be provided.
  • the magnetic tunnel junction includes a reference layer 4, a barrier layer 3, and a free layer 2 arranged from top to bottom. The bottom surface of the free layer 2 is in contact and fixed with the upper surface of the spin-orbit moment layer 1.
  • a synthetic antiferromagnetic layer and a top electrode 5 can be added on the reference layer 4.
  • the data writing method of the magnetic random memory cell includes:
  • S100 Input a first current to the magnetic tunnel junction where data is to be written in the at least one magnetic tunnel junction.
  • only one magnetic tunnel junction is provided on the spin-orbit moment layer 1, that is, when data needs to be written to the magnetic tunnel junction, the first current is input to the magnetic tunnel junction.
  • a top electrode 5 can be provided on the top of the magnetic tunnel junction, and a selection voltage is input to the magnetic tunnel junction through the top electrode 5 to reduce the anisotropy of the magnetic tunnel junction.
  • S200 Input a write current to the spin-orbit moment layer 1 after a preset time interval so that the resistance state of the magnetic tunnel junction corresponds to the data to be written, wherein the write current is smaller than the magnetic tunnel junction
  • the critical switching current of the magnetic tunnel junction is greater than the critical switching current of the magnetic tunnel junction when the selection voltage is input.
  • the preset time interval is preferably less than 4 ns to ensure the duration of the reduction of the critical switching current of the magnetic tunnel junction. It should be noted that the input time of the write current needs to ensure that the magnetic moment of the free layer 2 completes the required reversal, which can be set according to actual requirements.
  • the critical switching current of the magnetic tunnel junction means that the magnetic tunnel junction is not applied
  • the critical switching current at the time of the selection voltage is greater than the critical switching current of the magnetic tunnel junction after the selection voltage is applied.
  • the invention reduces the critical switching current of the magnetic tunnel junction by first inputting the selection voltage to the magnetic tunnel junction. After a preset time interval, a write current is input to the spin-orbit moment layer 1 so that the resistance state of the magnetic tunnel junction corresponds to the data to be written. Finally, stop inputting the selection voltage and writing current in sequence.
  • the present invention adjusts the timing relationship between the selection voltage of the input magnetic tunnel junction and the write current of the spin-orbit moment layer 1.
  • the input current can ensure that the free layer 2 of the magnetic tunnel junction completes the inversion.
  • the selection voltage stops first, and the write current stops.
  • the application and stop timing of the write current are delayed relative to the selected voltage.
  • the delay of the preset time interval causes the critical switching current of the magnetic tunnel junction to be restored first to improve the anti-interference ability and reduce the data. Write error probability, reduce writing power consumption, and optimize memory performance.
  • the S100 may specifically include:
  • the first voltage terminal V G is used to provide the selection voltage of the magnetic tunnel junction, and the first switching element can be used to control whether the first voltage terminal V G is connected to the magnetic tunnel junction.
  • the top electrode 5 of the junction is turned on to input the selection voltage.
  • the first transistor Q V is selected as the first switching element. In other embodiments, other switching elements may also be selected to control the conduction between the first voltage terminal V G and the magnetic tunnel junction.
  • the control terminal of the first transistor receives a first BL Q V pulse control signal, a first terminal connected to a first terminal voltage V G, a second terminal electrically connected to the magnetic tunnel junction.
  • the first transistor Q V conducts the first voltage terminal V G and the magnetic tunnel junction in response to the first pulse control signal to form a selection voltage and input the magnetic tunnel junction to reduce the critical switching current of the magnetic tunnel junction.
  • the critical switching current of the magnetic tunnel junction will be reduced from 400uA to 260uA, so that data writing can be achieved by using a low writing current current value, thereby reducing writing power consumption.
  • the S200 may specifically include:
  • a second voltage terminal V SOT write current for providing a torque layer spin-orbit through the second switching element control terminal of the second voltage rail V SOT spin moment whether a contact layer Pass the input write current.
  • the second switching element is a second triode Q I.
  • other switching elements may also be selected to control the conduction between the second voltage terminal V SOT and the spin-orbit moment layer 1.
  • the control terminal WL of the second transistor Q I receives the second pulse control signal
  • the first terminal is connected to the second voltage terminal V SOT
  • the second terminal is electrically connected to the spin-orbit moment layer 1.
  • the second transistor Q I conducts the second voltage terminal V SOT and the spin orbit moment layer 1 to form a write current and input the spin orbit moment layer 1 to make the free layer 2 magnetic moment direction Flip.
  • an input electrode may be provided in the spin-orbit moment layer 1, and the second end of the second transistor Q I is connected to the input electrode, and when the second transistor Q I is turned on, the receiving electrode The write current formed by the second voltage terminal V SOT is input into the spin-orbit moment layer 1.
  • the method further precedes S110:
  • S010 Differentiate the input control signal to obtain two pulse control signals, where the pulse control signal input to the magnetic tunnel junction is the first pulse control signal.
  • S020 Delay the pulse control signal input to the spin-orbit moment layer 1 according to a preset time interval to obtain the second pulse control signal.
  • the first pulse control signal and the second pulse control signal are obtained from the same input control signal.
  • the input control signal is differentiated by the control signal processing unit to obtain two pulse control signals, and the pulse control signal input into the spin-orbit moment layer 1 is delayed according to the preset time interval t 0 to obtain the second pulse Control signals, thereby obtaining two first pulse control signals and second pulse control signals with equal pulse widths and a time interval of t 0.
  • the selection voltage applied to the magnetic tunnel junction and the stop time are both earlier than the write current.
  • the write current is input and stopped in sequence after the preset time interval. Input the requirements of the selection voltage and the writing current.
  • control signal processing unit can be implemented in different ways by those skilled in the art according to the function of the control signal processing unit, which is a conventional technical means in the field and will not be repeated here.
  • a specific example is used to further illustrate the present invention.
  • the positive write current reverses the magnetic moment of the free layer 2 of the magnetic tunnel junction
  • the direction of the magnetic moment of the free layer 2 is opposite to that of the reference layer 4, and the resistance of the magnetic tunnel junction changes from the low resistance state.
  • Change to the high-impedance state which can make the high-impedance state correspond to the data "1" and the low-impedance state correspond to the data "0".
  • the first voltage terminal V G and the second voltage terminal V SOT are kept continuously applied, as shown in FIG. 5. Furthermore, the input control signal (WRITE SIGNAL) with a pulse width of t is input, and the input control signal is differentiated to obtain a first pulse control signal and a second pulse control signal with equal pulse widths and a time interval of t 0, as shown in Figure 6. Show.
  • the first transistor Q V is turned on in response to the first pulse control signal input from the control terminal BL, and the selection voltage V of the first voltage terminal V G is applied to the magnetic tunnel junction to reduce the magnetic moment of the magnetic tunnel junction. Energy barrier, thereby reducing the critical switching current of the magnetic tunnel junction.
  • the second transistor Q I is turned on in response to the second pulse control signal input from the control terminal WL to form a write current I SOT and input to the spin orbit moment layer 1 to generate spin orbit moment inversion. Free layer 2 magnetic moment.
  • the magnetic tunnel junction recover energy barrier, enhance the anti-jamming capability.
  • this embodiment adopts one input control signal, two switching elements and two voltages to realize data writing, and writing different data only needs to change the polarity of the input voltage of the second voltage terminal V SOT.
  • the magnetic tunnel junction can choose common shapes such as round, rectangle, or square to reduce cost and facilitate continuous miniaturization. It is also suitable for multiple memory structures such as dual-interface structures and multi-interface structures. In other embodiments, an oval shape can also be selected, which is not limited in the present invention.
  • the magnetic tunnel junction includes a reference layer 4 on the top, a free layer 2 in contact with the spin-orbit moment layer 1, and a barrier layer 3 provided between the reference layer 4 and the free layer 2.
  • the tunnel junction is a three-layer structure, including only one free layer 2.
  • the free layer 2 may be provided in multiples, that is, more than two free layers 2.
  • the magnetic tunnel junction includes a reference layer 4 on the top, a plurality of free layers 2 and a barrier layer 3 arranged between every two adjacent layers. The free layer 2 at the bottom is arranged in contact with the spin-orbit moment layer 1.
  • the magnetic memory cell structure may include a spin-orbital moment layer 1, a second free layer 2 and a potential layer sequentially arranged on the spin-orbital moment layer 1.
  • the barrier layer 3 the first free layer 2, the barrier layer 3 and the reference layer 4.
  • the thickness of the free layer 2 can be selected from any value in the range of 0 to 3 nm
  • the thickness of the oxide barrier layer 3 can be selected from any value in the range of 0 to 2 nm
  • the thickness of the reference layer 4 can be selected from 0. Any value in the range of ⁇ 3nm
  • the thickness of the synthetic antiferromagnetic layer can be any value in the range of 0-20nm
  • the thickness of the tip electrode can be any value in the range of 10 ⁇ 200nm.
  • the spin-orbit moment layer 1 may be a strip-shaped thin film formed of materials such as heavy metals, antiferromagnetics, or topological insulators. More preferably, the thickness of the heavy metal stripe film or the antiferromagnetic stripe film can be any value in the range of 0-20 nm. More preferably, the heavy metal material can be any one of platinum Pt, tantalum Ta, or tungsten W, the antiferromagnetic material can be one of the compound iridium manganese IrMn or platinum manganese PtMn, and the topological insulator material Either bismuth selenide Bi 2 Se 3 or bismuth telluride Bi 2 Te 3 can be used.
  • the heavy metal material can be any one of platinum Pt, tantalum Ta, or tungsten W
  • the antiferromagnetic material can be one of the compound iridium manganese IrMn or platinum manganese PtMn
  • the topological insulator material Either bismuth selenide Bi 2 Se
  • each element in each compound is not limited, and can be flexibly determined according to the actual situation, and the material is not limited to the above
  • the technical solution of using materials that can realize the function of the spin-orbit moment layer 1 to form a magnetic random access memory should also fall within the protection scope of the present invention.
  • the magnetic random memory cell can input the selection voltage and write current to the spin-orbital moment layer 1 and the magnetic tunnel junction by arranging electrodes on the spin-orbital moment layer 1 and the magnetic tunnel junction, for example, Top electrode 5 on top of the magnetic tunnel junction.
  • the material of the top electrode 5 can be any one of tantalum Ta, aluminum Al, gold Au, or copper Cu.
  • the top area of the spin-orbital moment layer 1 is larger than the bottom area of the magnetic tunnel junction, and the bottom surface shape of the magnetic tunnel junction is completely embedded in the top surface of the spin-orbital moment layer 1, that is, the magnetic tunnel junction
  • the outer edge of is located inside the outer edge of the spin-orbit moment layer 1.
  • the materials of the free layer 2 and the reference layer 4 are ferromagnetic metals, and the barrier layer 3 is oxide.
  • the magnetic tunnel junction has perpendicular magnetic anisotropy, which means that the magnetization directions of the free layer 2 and the reference layer 4 forming the magnetic tunnel junction are along the perpendicular direction.
  • the ferromagnetic metal may be a mixed metal material formed of at least one of cobalt-iron CoFe, cobalt-iron-boron CoFeB, or nickel-iron NiFe, and the ratio of the mixed metal materials may be the same or different.
  • the oxide may be one of oxides such as magnesium oxide MgO or aluminum oxide Al 2 O 3 for generating a tunneling magnetoresistance effect. In practical applications, ferromagnetic metals and oxides can also use other feasible materials, which are not limited by the present invention.
  • the free layer 2 of the magnetic tunnel junction is fixed in contact with the spin-orbital moment layer 1, and the layers of the magnetic tunnel junction and the spin-orbital moment layer 1 can be fixed by traditional ion beam epitaxy, atomic layer deposition or magnetron sputtering. It is plated on the substrate sequentially from bottom to top, and then a plurality of magnetic tunnel junctions are formed by traditional nano-device processing techniques such as photolithography and etching.
  • the spin-orbit moment layer 1 is a spin-orbit moment layer 1 composed of a heavy metal film, an antiferromagnetic film, or other materials.
  • the heavy metal film or antiferromagnetic film can be made into a rectangle, and its top area needs to be larger than the bottom area of the outline formed by all magnetic tunnel junctions to be able to set up multiple magnetic tunnel junctions.
  • the bottom surface shape of the magnetic tunnel junction is completely embedded in the heavy metal film or The shape of the top surface of the antiferromagnetic film.
  • the material of the spin-orbit moment layer 1 can be one of platinum Pt, tantalum Ta, or tungsten W. In practical applications, the spin-orbit moment layer 1 can also be formed of other feasible materials, which is not limited in the present invention.
  • this embodiment uses in-plane magnetic anisotropy MTJ as an example to illustrate the present invention.
  • an antiferromagnetic film is added as a strip or in an MTJ with perpendicular magnetic anisotropy.
  • the data writing method of the present invention can also realize data writing without an external magnetic field.
  • the triode in this embodiment can be either an N-type triode or a P-type triode.
  • the high and low levels of various signals can be matched with the type of the triode to achieve the corresponding functions.
  • P-type transistors need to be turned on with low-level signals, and N-type transistors must be turned on with high-level signals, so that N-type transistors or P-type transistors are used and the transistor grid (control terminal) is set. To achieve the corresponding turn-on or turn-off function, so as to achieve the data reading purpose of the present invention.
  • the control terminal of the triode provided by the embodiment of the present invention is the gate, the first terminal may be the source, and the second terminal is the drain, or vice versa, the first terminal may be the drain, and the second terminal is the source.
  • the invention does not limit this, and it can be reasonably selected according to the type of triode.
  • the transistor provided by the embodiment of the present invention may be a field effect transistor, which may be an enhanced field effect transistor or a depletion type field effect transistor.
  • the triode can be a low-temperature polysilicon TFT, which can reduce manufacturing costs and product power consumption, has a faster electron mobility, and can also use an oxide semiconductor TFT.
  • the data writing method of the magnetic random memory cell of the present invention applies the first voltage during the magnetization reversal process, reduces the energy barrier during the magnetic moment reversal process, and reduces the critical switching current. Small, low writing power consumption. At the same time, the writing speed is faster than the traditional spin-orbit moment writing method. The reason is that the applied selection voltage reduces the energy barrier height, the magnetic moment requires lower energy during the inversion process, and the writing time is shorter. faster.
  • the magnetic random memory cell may include a spin-orbit moment layer 1 and at least one magnetic tunnel junction provided on the spin-orbit moment layer 1.
  • the magnetic random access memory unit further includes a selection voltage control module and a write current control module.
  • the selection voltage control module is used to input and stop input selection voltage to the magnetic tunnel junction.
  • the write current control module is used to input a write current to the spin-orbit moment layer 1 after a preset time interval so that the resistance state of the magnetic tunnel junction corresponds to the data to be written, wherein the write current is less than
  • the critical switching current of the magnetic tunnel junction is greater than the critical switching current of the magnetic tunnel junction when the selection voltage is input, and the input of the writing current is stopped after the input of the selection voltage is stopped.
  • the preset time interval is less than 4 ns.
  • the selection voltage control module is specifically configured to turn on the first voltage terminal and the magnetic tunnel junction in response to the first pulse control signal to form a selection voltage and input the magnetic tunnel junction.
  • the selection voltage control module includes a first switching element, a first end of the first switching element is connected to a first voltage end, a second end is electrically connected to a magnetic tunnel junction, and the first switching element is electrically connected to the magnetic tunnel junction.
  • the control terminal of the switching element receives the first pulse control signal to conduct the first voltage terminal and the magnetic tunnel junction.
  • the write current control module is specifically configured to turn on the second voltage terminal and the spin-orbit moment layer 1 through the second switching element in response to the second pulse control signal to form a write current and input it from The spin-orbital moment layer 1, wherein the input time interval of the first pulse control signal and the second pulse control signal is the preset time interval, and the stop time of the first pulse control signal is in the second pulse control signal. Before the stop time of the pulse control signal.
  • the write current control module includes a second switching element, the first end of the second switching element is connected to the second voltage end, and the second end is electrically connected to the spin-orbit moment layer 1, and The control terminal of the second switch element receives the second pulse control signal to turn on the second voltage terminal and the spin-orbit moment layer 1.
  • it further includes a control signal processing unit for dividing the input control signal into two pulse control signals before the input current and the magnetic tunnel junction are turned on in response to the first pulse control signal through the first switching element
  • a control signal processing unit for dividing the input control signal into two pulse control signals before the input current and the magnetic tunnel junction are turned on in response to the first pulse control signal through the first switching element
  • the pulse control signal input to the magnetic tunnel junction is the first pulse control signal
  • the pulse control signal input to the spin-orbit moment layer 1 is delayed according to a preset time interval to obtain the second pulse control signal.
  • the implementation of the magnetic random memory unit can refer to the implementation of the method, which will not be repeated here.
  • the magnetic random memory cell of this embodiment includes a spin-orbital moment layer 1 and a plurality of magnetic tunnel junctions fixed on the spin-orbital moment layer 1, and a plurality of magnetic tunnel junctions An array of magnetic tunnel junctions is formed.
  • a selection voltage is input to the magnetic tunnel junction where data is to be written among the plurality of magnetic tunnel junctions.
  • a write current is input to the spin-orbit moment layer 1 so that the resistance state of the magnetic tunnel junction corresponds to the data to be written, wherein the write current is less than that of the magnetic tunnel junction.
  • the critical switching current is greater than the critical switching current of the magnetic tunnel junction when the selection voltage is input. Finally, the input of the selection voltage and the writing current is stopped sequentially.
  • the critical switching current of one or more magnetic tunnel junctions to be written is reduced by selecting the voltage first, and then the write current is input after a preset time interval. Because the writing current is smaller than the critical switching current of the magnetic tunnel junction and larger than the critical switching current of the magnetic tunnel junction when the selection voltage is input.
  • the magnetic tunnel junction without input selection voltage will not be affected by the spin-orbital moment generated by the spin-orbital moment layer 1 when the write current is input, and the direction of the magnetic moment of the free layer 2 will not change, realizing the input selection voltage
  • Batch writing of one or more magnetic tunnel junctions does not affect the storage state of other magnetic tunnel junctions, improves write efficiency and write data accuracy, reduces power consumption, and multiple magnetic tunnel junctions are integrated into a spin-orbit moment On layer 1, the storage density of the memory can be improved.
  • the first voltage terminal and the first switching element are respectively provided corresponding to each magnetic tunnel junction, and the first switching element of each magnetic tunnel junction can respond
  • the first pulse control signal conducts the first voltage terminal and the magnetic tunnel junction to form the selected voltage input magnetic tunnel junction.
  • n magnetic tunnel junctions M 1 , M 2 ...M n
  • the magnetic tunnel junctions M 1 , M 2 ...M n are respectively The transistors Q 1 , Q 2 ...
  • Q n are connected to the first voltage terminal V G to provide the magnetic tunnel junction with voltages (V 1 , V 2 ... V n ) that form a selection voltage, respectively.
  • V 1 , V 2 ... V n voltages that form a selection voltage
  • One or more of BL 1 ...BL n input the first pulse control signal, which can reduce the critical switching current of the corresponding magnetic tunnel junction.
  • a second pulse control signal is further input to the control terminal of the second transistor Q I , and the control terminal of the second transistor Q I is turned on in response to the second pulse control signal to form a write current input spin-orbit moment layer 1.
  • the resistance state change of the magnetic tunnel junction of the input selection voltage can be realized, and the data writing can be completed.
  • a magnetic random memory cell may be integrated on a plurality of magnetic tunnel junction layer of a spin-orbit moment 1 , The data writing of each magnetic tunnel junction does not affect other magnetic tunnel junctions, and the simultaneous data writing of multiple magnetic tunnel junctions can also be realized.
  • the magnetic storage unit structure in the foregoing Embodiments 1 and 2 can be either a conventional data storage unit structure and other computer storage media and other storage unit structures in the memory field, or it can be one of the memory field based on this principle.
  • External storage unit structures with logic processing functions, such as processors, logic gates, and in-memory calculations, are all within the protection scope of the present invention.
  • a typical implementation device is a computer device.
  • the computer device can be, for example, a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, Game consoles, tablet computers, wearable devices, or any combination of these devices.
  • the computer device specifically includes a memory, a processor, and a computer program that is stored in the memory and can run on the processor, and the processor implements the method described in the above embodiment when the processor executes the program.
  • FIG. 10 shows a schematic structural diagram of a computer device 600 suitable for implementing the embodiments of the present application.
  • the computer device 600 includes a central processing unit (CPU) 601, which can be based on a program stored in a read-only memory (ROM) 602 or loaded from a storage part 608 to a random access memory (RAM)) 603
  • the program performs various appropriate tasks and processing.
  • RAM 603 various programs and data required for the operation of the system 600 are also stored.
  • the CPU 601, the ROM 602, and the RAM 603 are connected to each other through a bus 604.
  • An input/output (I/O) interface 605 is also connected to the bus 604.
  • the following components are connected to the I/O interface 605: an input part 606 including a keyboard, a mouse, etc.; an output part 607 including a cathode ray tube (CRT), a liquid crystal feedback device (LCD), etc., and speakers, etc.; a storage part including a hard disk, etc. 608; and the communication part 609 including a network interface card such as a LAN card, a modem, etc.
  • the communication section 609 performs communication processing via a network such as the Internet.
  • the driver 610 is also connected to the I/O interface 606 as needed.
  • a removable medium 611 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc., is installed on the drive 610 as required, so that the computer program read from it is installed as the storage part 608 as required.
  • an embodiment of the present invention includes a computer program product, which includes a computer program tangibly embodied on a machine-readable medium, and the computer program includes program code for executing the method shown in the flowchart.
  • the computer program may be downloaded and installed from the network through the communication part 609, and/or installed from the removable medium 611.
  • Computer-readable media include permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer-readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage, Magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices. According to the definition in this article, computer-readable media does not include transitory media, such as modulated data signals and carrier waves.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • this application can be provided as a method, a system, or a computer program product. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • This application may be described in the general context of computer-executable instructions executed by a computer, such as a program module.
  • program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
  • This application can also be practiced in distributed computing environments. In these distributed computing environments, tasks are performed by remote processing devices connected through a communication network. In a distributed computing environment, program modules can be located in local and remote computer storage media including storage devices.

Abstract

本发明提供了一种磁性随机存储单元及其数据写入方法,所述磁性随机存储单元包括自旋轨道矩层以及设于所述自旋轨道矩层上的至少一个磁隧道结;所述数据写入方法包括:向所述至少一个磁隧道结中待写入数据的磁隧道结输入选择电压;经过预设时间间隔向所述自旋轨道矩层输入写入电流以使所述磁隧道结的阻态与待写入数据对应,其中,所述写入电流小于所述磁隧道结的临界翻转电流且大于输入所述选择电压时所述磁隧道结的临界翻转电流;依次停止输入所述选择电压和所述写入电流,本发明可保证磁隧道结磁矩的确定性翻转,提高存储密度。

Description

磁性随机存储单元及其数据写入方法 技术领域
本发明涉及磁性存储器技术领域,尤其涉及一种磁性随机存储单元及其数据写入方法。
背景技术
随着半导体工艺尺寸的不断缩小,摩尔定律放缓,漏电流的增加和互联延迟成为传统CMOS存储器的瓶颈。寻找新一代存储技术的解决方案成为集成电路研究的重点,其中磁性随机存储单元器受到广泛关注。相对比传统器件,磁性随机存储单元器(Magnetic random access memory,MRAM))具有无限擦写次数、非易失性、读写速度快和抗辐照等优点,有望成为通用存储器,是构建下一代非易失存储器以及存内计算的理想器件。
长期以来,写入机制一直是限制MRAM发展的主要技术瓶颈。目前,MRAM的主流电学写入方式包括自旋转移矩(Spin Transfer Torque,STT)和自旋轨道矩(Spin Orbit Torque,SOT)两种。与STT-MRAM相比,SOT-MRAM具有写入电流流经底层重金属避免击穿风险、具有理论上小于1ns的超快写入速度、重金属电阻率低、功耗低、读写支路分离和允许更厚的势垒层等优点。然而,自旋轨道矩写入方式需要一个面内方向的外磁场,这将增加电路的复杂度,如果采用反铁磁(Antiferromagnetic,AFM)薄膜在自由层产生交换偏置场(Exchange Bias Field,EB)代替外磁场实现无磁场翻转,由于产生的EB较小,临界翻转电流较大,功耗较大。且SOT-MRAM的存储单元具有三个端口,每一个MTJ需要有两个访问控制第一三极管,存储密度较低。
发明内容
本发明的一个目的在于提供一种磁性存储器的数据写入方法,以保证磁隧道结磁矩的确定性翻转,提高存储密度。本发明的另一个目的在于提供一种磁性存储器。本发明的再一个目的在于提供一种计算机设备。本发明的还一个目的在于提供一种可读介质。
为了达到以上目的,本发明一方面公开了一种磁性随机存储单元的数据写入方法,所述磁性随机存储单元包括自旋轨道矩层以及设于所述自旋轨道矩层上的至少一个磁隧道结,
所述方法包括:
向所述至少一个磁隧道结中待写入数据的磁隧道结输入选择电压;
经过预设时间间隔向所述自旋轨道矩层输入写入电流以使所述磁隧道结的阻态与待写入数据对应,其中,所述写入电流小于所述磁隧道结的临界翻转电流且大于输入所述选择电压时所述磁隧道结的临界翻转电流;
依次停止输入所述选择电压和所述写入电流。
优选的,所述预设时间间隔小于4ns。
优选的,向所述至少一个磁隧道结中待写入数据的磁隧道结输入选择电压,选择电压具体包括:
响应于第一脉冲控制信号导通第一电压端和磁隧道结以形成选择电压并输入磁隧道结。
优选的,所述经过预设时间间隔向所述自旋轨道矩层输入写入电流以使所述磁隧道结的阻态与待写入数据对应具体包括:
响应于第二脉冲控制信号导通第二电压端和自旋轨道矩层以形成写入电流并输入自旋轨道矩层,其中,所述第一脉冲控制信号和所述第二脉冲控制信号的输入时间间隔为所述预设时间间隔,所述第一脉冲控制信号的停止时间在所述第二脉冲控制信号的停止时间之前。
优选的,进一步包括在通过第一开关元件响应于第一脉冲控制信号导通输入电流和磁隧道结,之前:
将输入控制信号分化得到两个脉冲控制信号,其中,输入磁隧道结的脉冲控制信号为第一脉冲控制信号;
将输入自旋轨道矩层的脉冲控制信号根据预设时间间隔进行延时得到所述第二脉冲控制信号。
本发明还公开了一种磁性随机存储单元,包括自旋轨道矩层以及设于所述自旋轨道矩层上的至少一个磁隧道结;
进一步包括:
选择电压控制模块,用于向所述至少一个磁隧道结中待写入数据的磁隧道结输入和停止输入选择电压;
写入电流控制模块,用于经过预设时间间隔向所述自旋轨道矩层输入写入电流以使所述磁隧道结的阻态与待写入数据对应,其中,所述写入电流小于所述磁隧道结的临界 翻转电流且大于输入所述选择电压时所述磁隧道结的临界翻转电流,并在所述选择电压停止输入之后停止输入所述写入电流。
优选的,所述预设时间间隔小于4ns。
优选的,所述选择电压控制模块具体用于响应于第一脉冲控制信号导通第一电压端和磁隧道结以形成选择电压并输入磁隧道结。
优选的,所述选择电压控制模块包括第一开关元件,所述第一开关元件的第一端与第一电压端连接,第二端与磁隧道结电连接,所述第一开关元件的控制端接收所述第一脉冲控制信号导通第一电压端和磁隧道结。
优选的,所述写入电流控制模块具体用于通过第二开关元件响应于第二脉冲控制信号导通第二电压端和自旋轨道矩层以形成写入电流并输入自旋轨道矩层,其中,所述第一脉冲控制信号和所述第二脉冲控制信号的输入时间间隔为所述预设时间间隔,所述第一脉冲控制信号的停止时间在所述第二脉冲控制信号的停止时间之前。
优选的,所述写入电流控制模块包括第二开关元件,所述第二开关元件的第一端与第二电压端连接,第二端与自旋轨道矩层电连接,所述第二开关元件的控制端接收所述第二脉冲控制信号导通第二电压端和自旋轨道矩层。
优选的,进一步包括控制信号处理单元,用于在通过第一开关元件响应于第一脉冲控制信号导通输入电流和磁隧道结之前,将输入控制信号分化得到两个脉冲控制信号,其中,输入磁隧道结的脉冲控制信号为第一脉冲控制信号,将输入自旋轨道矩层的脉冲控制信号根据预设时间间隔进行延时得到所述第二脉冲控制信号。
本发明还公开了一种计算机设备,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,
所述处理器执行所述程序时实现如上所述方法。
本发明还公开了一种计算机可读介质,其上存储有计算机程序,
该程序被处理器执行时实现如上所述方法。
本发明通过首先向磁隧道结输入选择电压,降低磁隧道结的临界翻转电流。经过预设时间间隔后再向自旋轨道矩层输入写入电流以使所述磁隧道结的阻态与待写入数据对应。最后,依次停止输入选择电压和写入电流。本发明通过调整输入磁隧道结的选择电压和自旋轨道矩层的写入电流的时序关系,输入写入数据的写入电流时,选择电压已降低磁隧道结的临界翻转电流,使写入电流可以保证输入选择电压的磁隧道结的自由层完成翻转,未输入选择电压的磁遂道结自由层磁矩保持不变。而选择电压先停止,写入电 流再停止,写入电流的施加和停止时刻相对于选择电压较延迟,延迟预设时间间隔使磁隧道结的临界翻转电流首先恢复以提高抗干扰能力,降低数据写入错误概率,降低写入功耗,优化存储器的性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出本发明一种磁性随机存储单元的数据写入方法一个具体实施例中磁性随机存储单元的结构图;
图2示出本发明一种磁性随机存储单元的数据写入方法一个具体实施例的流程图之一;
图3示出本发明一种磁性随机存储单元的数据写入方法一个具体实施例的流程图之二;
图4示出本发明一种磁性随机存储单元的数据写入方法一个具体实施例中形成第一脉冲控制信号和第二脉冲控制信号的原理图;
图5示出本发明一种磁性随机存储单元的数据写入方法一个具体实施例中输入控制信号、第一电压端和第二电压端的对比图;
图6示出本发明一种磁性随机存储单元的数据写入方法一个具体实施例中输入控制信号、第一脉冲控制信号和第二脉冲控制信号的对比图;
图7示出本发明一种磁性随机存储单元的数据写入方法一个具体实施例中选择电压、写入电流和磁隧道结电阻的对比图;
图8示出本发明一种磁性随机存储单元的数据写入方法另一个具体实施例中磁性随机存储单元的结构图;
图9示出本发明一种磁性随机存储单元的数据写入方法一个具体实施例中选择电压、写入电流、磁隧道结M 2电阻R 2、磁隧道结M 1电阻R 1和磁隧道结M n电阻R n的对比图;
图10示出适于用来实现本发明实施例的计算机设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
现有基于磁隧道结(Magnetic Tunnel Junction,MTJ)的磁性随机访问存储器(Magnetic Random Access Memory,MRAM)包括自旋轨道矩层以及设于所述自旋轨道矩层上的至少一个磁隧道结。其中,磁隧道结包括自上向下设置的参考层、势垒层和自由层,自由层的底面与自旋轨道矩层的上表面接触固定。
磁隧道结的电阻值取决于自由层和参考层的磁化方向,如果自由层与参考层的磁化方向一致,则磁隧道结的电阻值较小,磁隧道结处于低阻态。反之,如果自由层与参考层的磁化方向相反,则磁隧道结的电阻值较大,磁隧道结处于高阻态。其中,参考层的磁化方向预先设置为固定不变的磁化方向,例如可采用合成反铁磁层使参考层的磁化方向固定不变,自由层的磁化方向可通过写入操作而被改变。对于SOT-MRAM,写入操作时通过向自旋轨道耦合层输入写入电流使自由层的磁化方向发生确定性翻转,从而使磁隧道结的阻态与待写入数据对应的磁隧道结的阻态一致,实现数据写入的目的。具体的,流经自旋轨道矩层的电流由于自旋霍尔效应(Spin Hall Effect,SHE)或者拉什巴效应(Rashba Effect)能够引发力矩以驱动自由层的磁化方向翻转。在后期数据读取时,通过读取电路确定磁隧道结的阻态即可确定存储器中存储的数据。采用自旋轨道矩磁性随机访问存储器(SOT-MRAM),写入电流方式为面内写入方式,可将读写路径分离,写入电流不流经磁隧道结,并且有利于读写性能分别独立优化,使SOT-MRAM在写入速度、集成度等方面优于STT-MRAM。
SOT-MRAM中写入电流使自由层磁化方向翻转需要一个面内方向的外磁场,这将增加电路的复杂度。现有技术中采用AFM薄膜在自由层产生交换偏置场(Exchange Bias Field,EB)代替外磁场实现无磁场翻转,由于产生的EB较小,临界翻转电流较大,功耗较大。且SOT-MRAM的存储单元具有三个端口,每一个MTJ需要有两个访问控制第一三极管,存储密度较低。
电压调控磁各向异性(Voltage Control Magnetic Anisotropy,VCMA)的作用机理为在MTJ两端施加的电场导致电子电荷的累积,引起界面原子轨道和态密度的变化,从而导致界面磁各向异性的变化。VCMA效应可用来做震荡翻转,这种翻转功耗较低,但数 据写入错误概率(Write Error Rate,WER)较高,且通常需要一个面内方向的外磁场辅助垂直磁矩的翻转。
基于VCMA的自旋轨道矩磁性存储器可以结合VCMA和SOT-MRAM的优势。数据写入时,在MTJ两端加上选择电压,降低磁隧道结的临界翻转电流,从而降低了写入功耗,使SOT-MRAM具有高密度、低功耗和高读取稳定性的优势。但是,基于VCMA的SOT-MRAM同时施加和停止写入磁隧道结和自旋轨道矩层的电流,磁矩翻转后仍然存在选择电压,能量势垒较低,抗干扰能力弱,持续施加的自旋轨道矩层的电流对自由层的磁矩干扰作用明显,增大写入错误率。
针对现有技术中包括磁性随机存储单元器的磁性随机存储单元写入方式所面临的问题,尤其是基于VCMA的自旋轨道矩的电压调控自旋存储器(Voltage-Control Spintronics Memory)存在的数据写入错误概率高、写入功耗高的问题,本发明提出电压调控自旋矩磁随机存储器(VST-MRAM),对数据写入方法进行优化,通过控制所加选择电压和写入电流的时序降低数据写入错误概率,降低写入功耗,优化存储器的性能。
实施例1
为了解决以上问题,根据本发明的一个方面,本实施例公开了一种磁性随机存储单元的数据写入方法。其中,所述磁性随机存储单元包括自旋轨道矩层1以及设于所述自旋轨道矩层1上的至少一个磁隧道结,本实施例中,以一个磁隧道结为例进行说明,如图1所示,在其他实施例中,也可以设置多个磁隧道结。磁隧道结包括自上向下设置的参考层4、势垒层3和自由层2,自由层2的底面与自旋轨道矩层1的上表面接触固定。优选的,参考层4上面还可以增加合成反铁磁层和顶电极5。
以面内磁各向异性的MTJ为例,如图2所示,所述磁性随机存储单元的数据写入方法包括:
S100:向所述至少一个磁隧道结中待写入数据的磁隧道结输入第一电流。可以理解的是,本实施例中,自旋轨道矩层1上仅设有一个磁隧道结,即当需要向该磁隧道结写入数据时,向该磁隧道结输入第一电流。优选的,可在磁隧道结的顶部设置顶电极5,通过顶电极5向磁隧道结输入选择电压,用以降低磁隧道结的各向异性。
S200:经过预设时间间隔向所述自旋轨道矩层1输入写入电流以使所述磁隧道结的阻态与待写入数据对应,其中,所述写入电流小于所述磁隧道结的临界翻转电流且大于输入所述选择电压时所述磁隧道结的临界翻转电流。其中,预设时间间隔优选的小于4ns,保证磁隧道结临界翻转电流降低的时长。需要说明的是,写入电流的输入时间需要 保证自由层2磁矩完成需要的翻转,可根据实际需求设置。所述写入电流小于所述磁隧道结的临界翻转电流且大于输入所述选择电压时所述磁隧道结的临界翻转电流中,所述磁隧道结的临界翻转电流是指磁隧道结未施加选择电压时的临界翻转电流,其大于施加选择电压后的磁隧道结的临界翻转电流。
S300:依次停止输入所述选择电压和所述写入电流。
本发明通过首先向磁隧道结输入选择电压,降低磁隧道结的临界翻转电流。经过预设时间间隔后再向自旋轨道矩层1输入写入电流以使所述磁隧道结的阻态与待写入数据对应。最后,依次停止输入选择电压和写入电流。本发明通过调整输入磁隧道结的选择电压和自旋轨道矩层1的写入电流的时序关系,输入写入数据的写入电流时,选择电压已降低磁隧道结的临界翻转电流,使写入电流可以保证磁隧道结的自由层2完成翻转。而选择电压先停止,写入电流再停止,写入电流的施加和停止时刻相对于选择电压较延迟,延迟预设时间间隔使磁隧道结的临界翻转电流首先恢复以提高抗干扰能力,降低数据写入错误概率,降低写入功耗,优化存储器的性能。
作为优选的实施方式,所述S100具体可包括:
S110:响应于第一脉冲控制信号导通第一电压端和磁隧道结以形成选择电压并输入磁隧道结。
具体的,如图1所示,在优选的实施方式中,第一电压端V G用于提供磁隧道结的选择电压,可通过采用第一开关元件控制第一电压端V G是否与磁隧道结的顶电极5接通以输入选择电压。
本实施例中,第一开关元件选用第一三极管Q V,在其他实施方式中,也可以选用其他开关元件以控制第一电压端V G与磁隧道结的导通。具体的,第一三极管Q V的控制端BL接收第一脉冲控制信号,第一端与第一电压端V G连接,第二端与磁隧道结电连接。第一三极管Q V响应于第一脉冲控制信号导通第一电压端V G与磁隧道结,形成选择电压并输入磁隧道结,使磁隧道结的临界翻转电流降低。在一个具体例子中,输入选择电压后,磁隧道结的临界翻转电流会从400uA降低到260uA,从而采用低的写入电流的电流值即可实现数据写入,从而降低写入功耗。
作为优选的实施方式,所述S200具体可包括:
S210:响应于第二脉冲控制信号导通第二电压端和自旋轨道矩层1以形成写入电流并输入自旋轨道矩层1,其中,所述第一脉冲控制信号和所述第二脉冲控制信号的输入 时间间隔为所述预设时间间隔,所述第一脉冲控制信号的停止时间在所述第二脉冲控制信号的停止时间之前。
具体的,再次参照图1,第二电压端V SOT用于提供自旋轨道矩层1的写入电流,可通过第二开关元件控制第二电压端V SOT是否与自旋轨道矩层1接通以输入写入电流。
本实施例中,第二开关元件选用第二三极管Q I,在其他实施方式中,也可以选用其他开关元件以控制第二电压端V SOT与自旋轨道矩层1的导通。具体的,第二三极管Q I的控制端WL接收第二脉冲控制信号,第一端与第二电压端V SOT连接,第二端与自旋轨道矩层1电连接。第二三极管Q I响应于第二脉冲控制信号导通第二电压端V SOT与自旋轨道矩层1,形成写入电流并输入自旋轨道矩层1,使自由层2磁矩方向翻转。在一个可选的实施方式中,可在自旋轨道矩层1设置输入电极,第二三极管Q I的第二端与输入电极连接,在第二三极管Q I导通时,接收第二电压端V SOT形成的写入电流并输入自旋轨道矩层1。
在优选的实施方式中,如图3所示,所述方法进一步在S110之前:
S010:将输入控制信号分化得到两个脉冲控制信号,其中,输入磁隧道结的脉冲控制信号为第一脉冲控制信号。
S020:将输入自旋轨道矩层1的脉冲控制信号根据预设时间间隔进行延时得到所述第二脉冲控制信号。
可以理解的是,在该优选的实施方式中,第一脉冲控制信号和第二脉冲控制信号由同一输入控制信号得到。如图4所示,通过控制信号处理单元对输入控制信号分化得到两个脉冲控制信号,将其中输入自旋轨道矩层1的脉冲控制信号根据预设时间间隔t 0进行延时得到第二脉冲控制信号,从而得到两个脉冲宽度相等、时间间隔为t 0的第一脉冲控制信号和第二脉冲控制信号。通过将其中一个脉冲控制信号进行延时,使施加在磁隧道结上的选择电压施加和停止的时间都较写入电流提前,满足输入选择电压后预设时间间隔之后输入写入电流以及依次停止输入所述选择电压和所述写入电流的要求。其中,输入控制信号的时长t应能保证自由层2磁矩发生翻转。控制信号处理单元的具体结构本领域技术人员根据控制信号处理单元的功能可以选择不同的方式实现,为本领域的常规技术手段,在此不再赘述。
下面通过一个具体例子来对本发明作进一步的说明。在该例子中,正向的写入电流使磁隧道结的自由层2磁矩翻转后,自由层2的磁矩方向与参考层4的磁矩方向相反, 磁隧道结的电阻由低阻态变为高阻态,可使高阻态对应数据“1”,低阻态对应数据“0”。
当磁隧道结初始状态为“0”,需要写入数据“1”时,使第一电压端V G和第二电压端V SOT保持持续施加,如图5所示。进而,输入脉冲宽度为t的输入控制信号(WRITE SIGNAL),对输入控制信号分化得到两个脉冲宽度相等、时间间隔为t 0的第一脉冲控制信号和第二脉冲控制信号,如图6所示。第一三极管Q V响应于控制端BL输入的第一脉冲控制信号而导通,则第一电压端V G的选择电压V施加在磁隧道结上,降低磁隧道结磁矩翻转时的能量势垒,从而降低磁隧道结的临界翻转电流。经过时间间隔t 0后,第二三极管Q I响应于控制端WL输入的第二脉冲控制信号而导通,形成写入电流I SOT输入自旋轨道矩层1,产生自旋轨道矩翻转自由层2磁矩。待磁矩翻转完成后,施加在第一三极管Q V控制端BL的第一脉冲控制信号首先撤去,磁隧道结的能量势垒恢复,抗干扰能力增强。经过时间间隔t 0后,施加在第二三极管Q I控制端WL的第二脉冲控制信号再撤去,磁矩翻转完成,磁隧道结电阻为高阻态,实现数据值“1”的写入,反之,可实现数据值“0”的写入,如图7所示。因此,本实施例采用一个输入控制信号、两个开关元件和两个电压即可实现数据写入,写入不同的数据只需要改变第二电压端V SOT输入电压的极性即可。
作为优选的实施方式,磁隧道结可选用圆形、长方形或正方形等常见形状,以降低成本并有利于尺寸持续小型化,同时适用于双界面结构和多界面结构等多种存储器结构。在其他实施方式中,也可选用椭圆形,本发明对此并不作限定。
在本实施例中,磁隧道结包括顶部的参考层4、与自旋轨道矩层1接触的自由层2以及设于所述参考层4和所述自由层2间的势垒层3,磁隧道结为三层结构,只包括一个自由层2。在其他实施例中,自由层2可设置为多个,即两层以上的自由层2。则磁隧道结包括顶部的参考层4、多个自由层2以及设于每相邻两层间的势垒层3,最底层的自由层2与所述自旋轨道矩层1接触设置。例如,在一个具体例子中,当包括两层自由层2时,磁性存储单元结构可包括自旋轨道矩层1、依次设于所述自旋轨道矩层1上的第二自由层2、势垒层3、第一自由层2、势垒层3和参考层4。
在优选的实施方式中,自由层2的厚度可选择0~3nm范围中的任意值,氧化物势垒层3的厚度可选择0~2nm范围中的任意值,参考层4的厚度可选择0~3nm范围中的任意值,合成反铁磁层的厚度可选择0~20nm范围中的任意值,顶端电极的厚度可选择10~200nm范围中的任意值。
在优选的实施方式中,自旋轨道矩层1可为采用重金属、反铁磁或拓扑绝缘体等材料形成的条状薄膜。更优选的,重金属条状薄膜或反铁磁条状薄膜的厚度可为0~20nm范围中的任意值。更优选的,所述重金属材料可采用铂Pt、钽Ta或钨W中的任意一种,所述反铁磁材料可采用化合物铱锰IrMn或铂锰PtMn中的一种,所述拓扑绝缘体材料可采用硒化铋Bi 2Se 3或碲化铋Bi 2Te 3中的一种,其中,各化合物中各个元素的配比含量可以不作限定,可根据实际情况灵活确定,材料也并不限于以上列举的材料,采用可实现自旋轨道矩层1功能的材料形成磁性随机存储器的技术方案也应当在本发明的保护范围内。
在优选的实施方式中,磁性随机存储单元向自旋轨道矩层1和磁隧道结输入选择电压和写入电流可通过在自旋轨道矩层1和磁隧道结上设置电极输入,例如设置于磁隧道结顶部的顶电极5。其中,优选的,顶电极5的材料可采用钽Ta、铝Al、金Au或铜Cu中的任意一种。
在优选的实施方式中,自旋轨道矩层1的顶面积大于磁隧道结的底面积,磁隧道结的底面形状完全内嵌于自旋轨道矩层1的顶面之中,即磁隧道结的外侧边缘位于自旋轨道矩层1的外侧边缘内侧。
优选的,所述自由层2和参考层4的材料为铁磁金属,所述势垒层3为氧化物。所述磁隧道结具有垂直磁各向异性,则表示形成磁隧道结的自由层2和参考层4的磁化方向沿垂直方向。其中,铁磁金属可为钴铁CoFe、钴铁硼CoFeB或镍铁NiFe等材料中的至少一种形成的混合金属材料,混合的金属材料的比例可以相同也可以不同。所述氧化物可为氧化镁MgO或氧化铝Al 2O 3等氧化物中的一种,用于产生隧穿磁阻效应。在实际应用中,铁磁金属和氧化物还可以采用其他可行的材料,本发明对此并不作限定。
磁隧道结的自由层2与自旋轨道矩层1接触固定,可通过传统的离子束外延、原子层沉积或磁控溅射等方法将磁隧道结的各层和自旋轨道矩层1按照从下到上的顺序依次镀在衬底上,然后通过光刻、刻蚀等传统纳米器件加工工艺来制备形成多个磁隧道结。
在优选的实施方式中,所述自旋轨道矩层1为重金属薄膜、反铁磁薄膜或其他材料构成的自旋轨道矩层1。重金属薄膜或反铁磁薄膜可制成长方形,其顶面积需大于所有磁隧道结形成的轮廓的底面积,以能够设置多个磁隧道结,磁隧道结的底面形状完全内嵌于重金属薄膜或反铁磁薄膜的顶面形状。优选的,所述自旋轨道矩层1的材料可以选用铂Pt、钽Ta或钨W等材料中的一种。在实际应用中,自旋轨道矩层1还可以采用其他可行的材料形成,本发明对此并不作限定。
需要说明的是,本实施例以面内磁各向异性的MTJ为例对本发明进行说明,在其他实施方式中,在具有垂直磁各向异性的MTJ中加入反铁磁薄膜作为条带或在磁隧道结上方加入具有面内各向异性的铁磁层等方式后通过本发明的数据写入方法也可以实现无需外磁场的数据写入,这些技术方案与本发明属于相同的发明构思,也在本发明的保护范围内。
本领域技术人员能够明了,本实施例中的三极管可采用N型三极管,也可以采用P型三极管,各种信号的高低电平是与三极管的型号配合才能实现对应的功能。本领域技术人员能够知晓使得P型三极管导通需要配合低电平信号,使得N型三极管导通需要配合高电平信号,从而采用N型三极管或P型三极管并设置三极管栅极(控制端)的电平以实现相应的导通或断开功能,从而实现本发明的数据读取目的。本发明实施例提供的三极管的控制端为栅极,第一端可以为源极,则第二端为漏极,或者反之,第一端可以是漏极,则第二端为源极,本发明对此不作限定,可根据三极管的类型合理选择即可。
此外,本发明实施例提供的三极管可以为场效应三极管,其中可以为增强型场效应三极管,也可以为耗尽型场效应三极管。三极管可以采用低温多晶硅TFT,能够降低制造成本和产品功耗,具有更快的电子迁移率,还可以采用氧化物半导体TFT。
本发明的磁性随机存储单元的数据写入方法相较于传统的自旋轨道矩写入方式,在磁化翻转过程中施加了第一电压,磁矩翻转过程中能量势垒降低,临界翻转电流减小,写入功耗小。同时写入速度相较于传统的自旋轨道矩写入方法更快,原因是施加的选择电压降低了能量势垒高度,磁矩在翻转过程中所需能量更低,写入时间更短,速度更快。
基于相同原理,本实施例还公开了一种磁性随机存储单元。磁性随机存储单元可包括自旋轨道矩层1以及设于所述自旋轨道矩层1上的至少一个磁隧道结。磁性随机存储单元进一步还包括选择电压控制模块和写入电流控制模块。
其中,选择电压控制模块用于向所述磁隧道结输入和停止输入选择电压。
写入电流控制模块用于经过预设时间间隔向所述自旋轨道矩层1输入写入电流以使所述磁隧道结的阻态与待写入数据对应,其中,所述写入电流小于所述磁隧道结的临界翻转电流且大于输入所述选择电压时所述磁隧道结的临界翻转电流,并在所述选择电压停止输入之后停止输入所述写入电流。
在优选的实施方式中,所述预设时间间隔小于4ns。
在优选的实施方式中,所述选择电压控制模块具体用于响应于第一脉冲控制信号导通第一电压端和磁隧道结以形成选择电压并输入磁隧道结。
在优选的实施方式中,所述选择电压控制模块包括第一开关元件,所述第一开关元件的第一端与第一电压端连接,第二端与磁隧道结电连接,所述第一开关元件的控制端接收所述第一脉冲控制信号导通第一电压端和磁隧道结。
在优选的实施方式中,所述写入电流控制模块具体用于通过第二开关元件响应于第二脉冲控制信号导通第二电压端和自旋轨道矩层1以形成写入电流并输入自旋轨道矩层1,其中,所述第一脉冲控制信号和所述第二脉冲控制信号的输入时间间隔为所述预设时间间隔,所述第一脉冲控制信号的停止时间在所述第二脉冲控制信号的停止时间之前。
在优选的实施方式中,所述写入电流控制模块包括第二开关元件,所述第二开关元件的第一端与第二电压端连接,第二端与自旋轨道矩层1电连接,所述第二开关元件的控制端接收所述第二脉冲控制信号导通第二电压端和自旋轨道矩层1。
在优选的实施方式中,进一步包括控制信号处理单元,用于在通过第一开关元件响应于第一脉冲控制信号导通输入电流和磁隧道结之前,将输入控制信号分化得到两个脉冲控制信号,其中,输入磁隧道结的脉冲控制信号为第一脉冲控制信号,将输入自旋轨道矩层1的脉冲控制信号根据预设时间间隔进行延时得到所述第二脉冲控制信号。
由于该磁性随机存储单元解决问题的原理与以上方法类似,因此本磁性随机存储单元的实施可以参见方法的实施,在此不再赘述。
实施例2
本实施例中,与实施例1不同的是,本实施例的磁性随机存储单元包括自旋轨道矩层1和固定在自旋轨道矩层1上的多个磁隧道结,多个磁隧道结形成磁隧道结阵列。当向磁隧道结阵列中的一个或多个写入数据时,与实施例1中类似,向多个磁隧道结中待写入数据的磁隧道结输入选择电压。然后经过预设时间间隔向所述自旋轨道矩层1输入写入电流以使所述磁隧道结的阻态与待写入数据对应,其中,所述写入电流小于所述磁隧道结的临界翻转电流且大于输入所述选择电压时所述磁隧道结的临界翻转电流。最后依次停止输入所述选择电压和所述写入电流。
在本实施例中,先通过选择电压使待写入的一个或多个磁隧道结的临界翻转电流降低,经过预设时间间隔再输入写入电流。由于写入电流小于所述磁隧道结的临界翻转电流且大于输入所述选择电压时所述磁隧道结的临界翻转电流。则没有输入选择电压的磁隧道结不会受到写入电流输入时自旋轨道矩层1产生的自旋轨道矩的影响,自由层2的 磁矩方向不会发生改变,实现对输入选择电压的一个或多个磁隧道结的批量写入而不影响其他磁隧道结的存储状态,提高写入效率和写入数据准确性,降低功耗并且,多个磁隧道结集成在一个自旋轨道矩层1上,可提高存储器的存储密度。
在优选的实施方式中,为了实现自旋轨道矩层1和多个磁隧道结输入电流的控制。为了实现每个磁隧道结的选择电压的输入,与实施例1类似,对应于每个磁隧道结分别设置第一电压端和第一开关元件,每个磁隧道结的第一开关元件可响应于第一脉冲控制信号导通第一电压端和磁隧道结,形成选择电压输入磁隧道结。例如,在一个具体例子中,如图8所示,自旋轨道矩层1上设置n个磁隧道结(M 1、M 2…M n),磁隧道结M 1、M 2…M n分别通过三极管Q 1、Q 2…Q n与第一电压端V G连接,分别向磁隧道结提供形成选择电压的电压(V 1、V 2…V n)。向三极管Q 1、Q 2…Q n的控制端(BL 1
BL 1…BL n)中的一个或多个输入第一脉冲控制信号,可以实现对应的磁隧道结的临界翻转电流降低。进一步向第二三极管Q I的控制端输入第二脉冲控制信号,第二三极管Q I的控制端响应于第二脉冲控制信号而导通,形成写入电流输入自旋轨道矩层1,即可实现输入选择电压的磁隧道结的阻态变化,完成数据写入。
如图9所示,当向磁隧道结M 2写入数据时,通过V 2形成选择电压输入磁隧道结M 2,然后输入正向或负向的写入电流I SOT,使磁隧道结M 2的阻态变为高阻态或低阻态,分别对应数字“1”或“0”,实现数据写入。在此过程中,磁隧道结M 1和磁隧道结M n的电阻R 1和R n没有任何变化,本发明的磁性随机存储单元可在一个自旋轨道矩层1上集成多个磁隧道结,每个磁隧道结的数据写入不影响其他磁隧道结,还可以实现多个磁隧道结的同时数据写入。
本实施例的磁性随机存储单元和磁性随机存储单元的数据写入方法的其他技术特征与实施例1中类似,在此不再赘述。
需要说明的是,上述实施例1和2中的磁性存储单元结构既可以是常规数据存储单元结构和其他计算机存储介质等存储器领域之内的存储单元结构,也可以是基于本原理的存储器领域之外的具有逻辑处理功能的存储单元结构,如处理器,逻辑门和存内计算等等,均在本发明的保护范围之内。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机设备,具体的,计算机设备例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人 数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
在一个典型的实例中计算机设备具体包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上实施例中所述的方法。
下面参考图10,其示出了适于用来实现本申请实施例的计算机设备600的结构示意图。
如图10所示,计算机设备600包括中央处理单元(CPU)601,其可以根据存储在只读存储器(ROM)602中的程序或者从存储部分608加载到随机访问存储器(RAM))603中的程序而执行各种适当的工作和处理。在RAM603中,还存储有系统600操作所需的各种程序和数据。CPU601、ROM602、以及RAM603通过总线604彼此相连。输入/输出(I/O)接口605也连接至总线604。
以下部件连接至I/O接口605:包括键盘、鼠标等的输入部分606;包括诸如阴极射线管(CRT)、液晶反馈器(LCD)等以及扬声器等的输出部分607;包括硬盘等的存储部分608;以及包括诸如LAN卡,调制解调器等的网络接口卡的通信部分609。通信部分609经由诸如因特网的网络执行通信处理。驱动器610也根据需要连接至I/O接口606。可拆卸介质611,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器610上,以便于从其上读出的计算机程序根据需要被安装如存储部分608。
特别地,根据本发明的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本发明的实施例包括一种计算机程序产品,其包括有形地包含在机器可读介质上的计算机程序,所述计算机程序包括用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分609从网络上被下载和安装,和/或从可拆卸介质611被安装。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访 问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本申请时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (14)

  1. 一种磁性随机存储单元的数据写入方法,其特征在于,所述磁性随机存储单元包括自旋轨道矩层以及设于所述自旋轨道矩层上的至少一个磁隧道结,所述方法包括:
    向所述至少一个磁隧道结中待写入数据的磁隧道结输入选择电压;
    经过预设时间间隔向所述自旋轨道矩层输入写入电流以使所述磁隧道结的阻态与待写入数据对应,其中,所述写入电流小于所述磁隧道结的临界翻转电流且大于输入所述选择电压时所述磁隧道结的临界翻转电流;
    依次停止输入所述选择电压和所述写入电流。
  2. 根据权利要求1所述的磁性随机存储单元的数据写入方法,其特征在于,所述预设时间间隔小于4ns。
  3. 根据权利要求1所述的磁性随机存储单元的数据写入方法,其特征在于,向所述至少一个磁隧道结中待写入数据的磁隧道结输入选择电压,选择电压具体包括:
    响应于第一脉冲控制信号导通第一电压端和磁隧道结以形成选择电压并输入磁隧道结。
  4. 根据权利要求3所述的磁性随机存储单元的数据写入方法,其特征在于,所述经过预设时间间隔向所述自旋轨道矩层输入写入电流以使所述磁隧道结的阻态与待写入数据对应具体包括:
    响应于第二脉冲控制信号导通第二电压端和自旋轨道矩层以形成写入电流并输入自旋轨道矩层,其中,所述第一脉冲控制信号和所述第二脉冲控制信号的输入时间间隔为所述预设时间间隔,所述第一脉冲控制信号的停止时间在所述第二脉冲控制信号的停止时间之前。
  5. 根据权利要求4所述的磁性随机存储单元的数据写入方法,其特征在于,进一步包括在通过第一开关元件响应于第一脉冲控制信号导通输入电流和磁隧道结,之前:
    将输入控制信号分化得到两个脉冲控制信号,其中,输入磁隧道结的脉冲控制信号为第一脉冲控制信号;
    将输入自旋轨道矩层的脉冲控制信号根据预设时间间隔进行延时得到所述第二脉冲控制信号。
  6. 一种磁性随机存储单元,其特征在于,包括自旋轨道矩层以及设于所述自旋轨道矩层上的至少一个磁隧道结;
    进一步包括:
    选择电压控制模块,用于向所述至少一个磁隧道结中待写入数据的磁隧道结输入和停止输入选择电压;
    写入电流控制模块,用于经过预设时间间隔向所述自旋轨道矩层输入写入电流以使所述磁隧道结的阻态与待写入数据对应,其中,所述写入电流小于所述磁隧道结的临界翻转电流且大于输入所述选择电压时所述磁隧道结的临界翻转电流,并在所述选择电压停止输入之后停止输入所述写入电流。
  7. 根据权利要求6所述的磁性随机存储单元,其特征在于,所述预设时间间隔小于4ns。
  8. 根据权利要求6所述的磁性随机存储单元,其特征在于,所述选择电压控制模块具体用于响应于第一脉冲控制信号导通第一电压端和磁隧道结以形成选择电压并输入磁隧道结。
  9. 根据权利要求8所述的磁性随机存储单元,其特征在于,所述选择电压控制模块包括第一开关元件,所述第一开关元件的第一端与第一电压端连接,第二端与磁隧道结电连接,所述第一开关元件的控制端接收所述第一脉冲控制信号导通第一电压端和磁隧道结。
  10. 根据权利要求8所述的磁性随机存储单元,其特征在于,所述写入电流控制模块具体用于通过第二开关元件响应于第二脉冲控制信号导通第二电压端和自旋轨道矩层以形成写入电流并输入自旋轨道矩层,其中,所述第一脉冲控制信号和所述第二脉冲控制信号的输入时间间隔为所述预设时间间隔,所述第一脉冲控制信号的停止时间在所述第二脉冲控制信号的停止时间之前。
  11. 根据权利要求10所述的磁性随机存储单元,其特征在于,所述写入电流控制模块包括第二开关元件,所述第二开关元件的第一端与第二电压端连接,第二端与自旋轨道矩层电连接,所述第二开关元件的控制端接收所述第二脉冲控制信号导通第二电压端和自旋轨道矩层。
  12. 根据权利要求10所述的磁性随机存储单元,其特征在于,进一步包括控制信号处理单元,用于在通过第一开关元件响应于第一脉冲控制信号导通输入电流和磁隧道结之前,将输入控制信号分化得到两个脉冲控制信号,其中,输入磁隧道结的脉冲控制信号为第一脉冲控制信号,将输入自旋轨道矩层的脉冲控制信号根据预设时间间隔进行延时得到所述第二脉冲控制信号。
  13. 一种计算机设备,包括存储器、处理器以及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,
    所述处理器执行所述程序时实现如权利要求1-5任一项所述方法。
  14. 一种计算机可读介质,其上存储有计算机程序,其特征在于,
    该程序被处理器执行时实现如权利要求1-5任一项所述方法。
PCT/CN2020/081106 2020-03-25 2020-03-25 磁性随机存储单元及其数据写入方法 WO2021189295A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081106 WO2021189295A1 (zh) 2020-03-25 2020-03-25 磁性随机存储单元及其数据写入方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081106 WO2021189295A1 (zh) 2020-03-25 2020-03-25 磁性随机存储单元及其数据写入方法

Publications (1)

Publication Number Publication Date
WO2021189295A1 true WO2021189295A1 (zh) 2021-09-30

Family

ID=77890884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081106 WO2021189295A1 (zh) 2020-03-25 2020-03-25 磁性随机存储单元及其数据写入方法

Country Status (1)

Country Link
WO (1) WO2021189295A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113887734A (zh) * 2021-12-07 2022-01-04 北京芯可鉴科技有限公司 随机磁隧道结器件及应用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050117391A1 (en) * 2003-03-11 2005-06-02 Hiroaki Yoda Magnetic random access memory
CN104393169A (zh) * 2014-10-10 2015-03-04 北京航空航天大学 一种无需外部磁场的自旋轨道动量矩磁存储器
CN106025063A (zh) * 2016-05-19 2016-10-12 华为技术有限公司 磁隧道结以及磁存储器
CN109087995A (zh) * 2017-06-14 2018-12-25 中电海康集团有限公司 垂直磁化mtj器件及stt-mram
CN109560193A (zh) * 2018-10-29 2019-04-02 西安交通大学 基于人工反铁磁固定层的磁性结构及sot-mram
CN109712655A (zh) * 2017-10-25 2019-05-03 闪迪技术有限公司 具有电压相关的面内磁各向异性的mram

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050117391A1 (en) * 2003-03-11 2005-06-02 Hiroaki Yoda Magnetic random access memory
CN104393169A (zh) * 2014-10-10 2015-03-04 北京航空航天大学 一种无需外部磁场的自旋轨道动量矩磁存储器
CN106025063A (zh) * 2016-05-19 2016-10-12 华为技术有限公司 磁隧道结以及磁存储器
CN109087995A (zh) * 2017-06-14 2018-12-25 中电海康集团有限公司 垂直磁化mtj器件及stt-mram
CN109712655A (zh) * 2017-10-25 2019-05-03 闪迪技术有限公司 具有电压相关的面内磁各向异性的mram
CN109560193A (zh) * 2018-10-29 2019-04-02 西安交通大学 基于人工反铁磁固定层的磁性结构及sot-mram

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113887734A (zh) * 2021-12-07 2022-01-04 北京芯可鉴科技有限公司 随机磁隧道结器件及应用方法
CN113887734B (zh) * 2021-12-07 2022-04-22 北京芯可鉴科技有限公司 随机磁隧道结器件及应用方法

Similar Documents

Publication Publication Date Title
CN111540395B (zh) 磁性随机存储单元及其数据写入方法
US10020044B2 (en) High-density magnetic memory device
KR102543879B1 (ko) 외부 자기장의 부재시에 스핀 궤도 상호작용 토크를 사용하여 프로그래밍할 수 있는 자기 접합부
US9536583B2 (en) Magnetic memory, spin element, and spin MOS transistor
US9559698B2 (en) Spintronic logic element
US20130070513A1 (en) Method and apparatus for direct backup of memory circuits
US10832847B2 (en) Low stray field magnetic memory
US9159409B2 (en) Method and apparatus for providing complimentary state retention
KR102130054B1 (ko) 자기 터널링 접합 시드, 캡핑 및 스페이서 막 물질들
US10522739B2 (en) Perpendicular magnetic memory with reduced switching current
CN113451356B (zh) 磁性随机存储单元、存储器及设备
US10910029B2 (en) Complementary magnetic memory cell
CN110797371B (zh) 一种磁性存储器、数据存储装置及控制方法
WO2021189295A1 (zh) 磁性随机存储单元及其数据写入方法
CN116403624B (zh) 一种轨道转移力矩磁性随机存储器件及其实现方法
CN113451502B (zh) 多功能磁性随机存储单元、方法、存储器及设备
CN113451505B (zh) 磁性随机存储单元、存储器及设备
Sverdlov et al. CMOS technology compatible magnetic memories
US11832530B2 (en) Multi-bit memory cell, analog-to-digital converter, device and method
US20240023347A1 (en) Memory array, memory, preparing method and writing method
US20230165014A1 (en) Two-dimensional material-based selector, memory unit, array, and method of operating the same
CN114613400A (zh) 抗辐射磁性存储单元、存储器及设备
CN116096212A (zh) 多比特磁性存储单元的制作方法及存储单元
Guo et al. Ultra-low power consumption spintronics devices
CN116741217A (zh) 磁性随机存储单元、读写方法以及存储器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926548

Country of ref document: EP

Kind code of ref document: A1