WO2021189290A1 - 检测芯片、检测装置及制备和操作检测芯片的方法 - Google Patents

检测芯片、检测装置及制备和操作检测芯片的方法 Download PDF

Info

Publication number
WO2021189290A1
WO2021189290A1 PCT/CN2020/081082 CN2020081082W WO2021189290A1 WO 2021189290 A1 WO2021189290 A1 WO 2021189290A1 CN 2020081082 W CN2020081082 W CN 2020081082W WO 2021189290 A1 WO2021189290 A1 WO 2021189290A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
liquid
detection chip
storage chamber
liquid storage
Prior art date
Application number
PCT/CN2020/081082
Other languages
English (en)
French (fr)
Inventor
胡立教
张玙璠
崔皓辰
袁春根
李婧
申晓贺
甘伟琼
Original Assignee
京东方科技集团股份有限公司
北京京东方健康科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方健康科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202080000374.7A priority Critical patent/CN115734818A/zh
Priority to PCT/CN2020/081082 priority patent/WO2021189290A1/zh
Publication of WO2021189290A1 publication Critical patent/WO2021189290A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers

Definitions

  • the embodiments of the present disclosure relate to a detection chip, a detection device, and a method for preparing and operating the detection chip.
  • Microfluidic chip also known as Lab-on-a-chip, refers to the integration of basic operation units such as sample preparation, reaction, separation, and detection involved in the fields of biology, chemistry, and medicine. The whole process of reaction and analysis is automatically completed on the micro-scale micro-channel chip.
  • the advantages of the analysis and detection device based on the microfluidic chip include a small amount of sample, fast analysis speed, easy to make a portable instrument, and very suitable for real-time, on-site analysis.
  • At least one embodiment of the present disclosure provides a detection chip, which includes:
  • the substrate includes a first surface
  • the substrate includes a liquid storage chamber configured to contain liquid and including a bottom located on the first surface,
  • the bottom includes a central area and an edge area surrounding the central area
  • the edge region includes a channel surrounding the central region, and the thickness of the channel is smaller than the thickness of the central region.
  • the channel is a non-closed channel to partially surround the central region.
  • the channel is a closed channel to surround the central region.
  • the liquid storage chamber is cylindrical, and the channel is substantially annular.
  • the central angle corresponding to the channel is 340°-358°.
  • the thickness of the central region is 0.1 mm-3 mm.
  • the thickness of the channel is 0.05mm-0.3mm, and the width of the channel is 0.1mm-3mm.
  • the surface of the bottom that faces the inner space of the liquid storage chamber is a flat surface, and the channel faces the liquid storage on the first surface.
  • the internal space of the room is recessed.
  • the surface of the bottom that is away from the internal space of the liquid storage chamber is a plane, and the channel on the bottom faces the liquid storage chamber.
  • the surface of the internal space is recessed away from the internal space of the liquid storage chamber.
  • the liquid storage chamber further includes a side wall, and the channel is between the side wall and the central region,
  • the edge area also includes a connecting part
  • the connecting portion is between the side wall and the central area, and the connecting portion corresponds to an opening portion of the central area where the channel does not surround the central area.
  • the connecting portion is configured to allow the central area to be greater than zero degrees and less than 25 degrees from the sidewalls when the channel is destroyed. Of the horns.
  • the substrate further includes a liquid flow channel on the first surface
  • liquid flow channel communicates with the channel.
  • the connecting portion and the liquid flow channel are located on opposite sides of the central area.
  • the detection chip according to at least one embodiment of the present disclosure further includes: a first elastic film layer,
  • the liquid flow channel includes a groove on the first surface of the substrate
  • the first elastic film layer is on the first surface of the substrate, covers the bottom, and covers the groove to provide a space for liquid to flow.
  • the detection chip according to at least one embodiment of the present disclosure further includes a second elastic film layer,
  • the substrate further includes a second surface opposite to the first surface,
  • the second elastic film layer is on the second surface of the substrate and covers the opening of the liquid storage chamber on the second surface.
  • the detection chip further includes: a first adhesive layer and a second adhesive layer,
  • the first adhesive layer is between the substrate and the first elastic film layer to connect the substrate and the first elastic film layer;
  • the second adhesive layer is between the substrate and the second elastic film layer to connect the substrate and the second elastic film layer.
  • the detection chip according to at least one embodiment of the present disclosure further includes a liquid operation area
  • the liquid operation area is in communication with the liquid flow channel.
  • the liquid operation area includes at least one selected from the group consisting of a liquid mixing area, a liquid detection area, and a liquid storage area.
  • At least one embodiment of the present disclosure also provides a detection device, which includes:
  • the detection chip provided by any embodiment of the present disclosure.
  • the force acting mechanism is configured to apply a force on the bottom of the detection chip toward the inner space of the liquid storage chamber when in use, so as to break the channel and make the liquid contained in the inner space Flow out from the bottom.
  • At least one embodiment of the present disclosure also provides a method for preparing a detection chip, which includes:
  • the substrate including a first surface
  • the substrate includes a liquid storage chamber configured to contain liquid and included at the bottom of the first surface
  • the bottom includes a central area and an edge area surrounding the central area, and
  • the edge region includes a channel surrounding the central region, and the thickness of the channel is smaller than the thickness of the central region.
  • the method for preparing a detection chip according to at least one embodiment of the present disclosure further includes: preparing the substrate by an integral molding method.
  • At least one embodiment of the present disclosure also provides a method for operating the detection chip provided in any embodiment of the present disclosure, which includes:
  • a force is applied to the inner space of the liquid storage chamber on the bottom of the liquid storage chamber to break the channel and cause the liquid contained in the inner space to flow out from the bottom.
  • At least one embodiment of the present disclosure also provides a method for operating the detection chip provided by at least one embodiment of the present disclosure, which includes:
  • a force is applied on the first elastic film layer at a position corresponding to the length of the central region of the connecting portion 0-3/4 to apply a force to the bottom of the liquid storage chamber, thereby The channel is broken and the liquid contained in the inner space of the liquid storage chamber flows out from the bottom.
  • Fig. 1 is a schematic perspective perspective view of a detection chip according to at least one embodiment of the present disclosure.
  • FIG. 2 is a bottom perspective view of the liquid storage chamber of the detection chip shown in FIG. 1 according to at least one embodiment of the present disclosure.
  • FIG. 3 is a plan bottom view of the liquid storage chamber of the detection chip shown in FIG. 1 according to at least one embodiment of the present disclosure.
  • Fig. 4 is a perspective cross-sectional view along the line A-A' in Fig. 2 according to at least one embodiment of the present disclosure.
  • Fig. 5 is a cross-sectional view along the line B-B' in Fig. 2 according to at least one embodiment of the present disclosure.
  • Fig. 6 is another cross-sectional view taken along the line B-B' in Fig. 2 according to at least one embodiment of the present disclosure.
  • 7A and 7B are cross-sectional views along the line A-A' in FIG. 2 showing a liquid releasing process according to at least one embodiment of the present disclosure.
  • Fig. 8 is an exploded schematic diagram of another detection chip according to at least one embodiment of the present disclosure.
  • Fig. 9 is an assembly diagram of the detection chip shown in Fig. 8.
  • FIG. 10 is a schematic perspective view of the substrate in FIG. 8 according to at least one embodiment of the present disclosure.
  • FIG. 11 is a bottom perspective view of the substrate in FIG. 8 according to at least one embodiment of the present disclosure.
  • 12A and 12B are cross-sectional views taken along the line A-A' in FIG. 9 showing a liquid releasing process according to at least one embodiment of the present disclosure.
  • Fig. 13 is a schematic block diagram of a detection device according to at least one embodiment of the present disclosure.
  • substantially the same means that the difference between the two objects is within 5% to -5% of the compared object.
  • the reagent storage structure in the current microfluidic chip either has a complicated structure or requires a complicated preparation process, which causes the cost of the microfluidic chip as a consumable to be too high.
  • the bottom of the reservoir is encapsulated by aluminum or plastic film, so that when the aluminum or plastic film is pierced to release the reagent stored in the reservoir, the edge of the rupture will be upward.
  • the bulge is easy to cause the residue of the reagents, and it is impossible to completely release all the reagents in the liquid storage tank, so that the reagents cannot be added in a sufficient amount in the test, resulting in abnormal results of the biological reaction.
  • the liquid stored in the liquid storage tank is easy to leak, and processes such as hot pressing and laser welding are also required, resulting in complex processes and high costs.
  • At least one embodiment of the present disclosure provides a detection chip that is convenient to release the liquid stored therein, and has simple structure and manufacturing process and low cost.
  • the detection chip provided by the embodiment of the present disclosure may be a microfluidic chip, however, it should be understood that the embodiment of the present disclosure is not limited thereto.
  • the embodiments of the present disclosure also provide a detection device including any one of the above-mentioned detection chips and a method for preparing and operating any one of the above-mentioned detection chips.
  • Fig. 1 is a schematic perspective perspective view of a detection chip according to at least one embodiment of the present disclosure.
  • Fig. 2 is a bottom perspective view of the liquid storage chamber of the detection chip shown in Fig. 1 according to at least one embodiment of the present disclosure.
  • 3 is a plan bottom view of the liquid storage chamber of the detection chip shown in FIG. 1 according to at least one embodiment of the present disclosure.
  • Fig. 4 is a cross-sectional view taken along the line A-A' in Fig. 2 of at least one embodiment of the present disclosure.
  • Fig. 5 is a cross-sectional view along the line B-B' in Fig. 2 according to at least one embodiment of the present disclosure.
  • Fig. 6 is another cross-sectional view taken along the line B-B' in Fig. 2 according to at least one embodiment of the present disclosure.
  • the detection chip 100 includes a substrate 110.
  • the substrate 110 includes a first surface 111 and a second surface 111' opposite to the first surface 111.
  • the substrate 110 also includes a liquid storage chamber 112.
  • the liquid storage chamber 112 is configured to contain liquid (for example, various reagents required for analysis and detection) and is included at the bottom of the first surface 111.
  • the bottom includes a central area 113 and an edge area surrounding the central area 113.
  • the edge region includes channels 114/114'/114" surrounding the central region 113, and the thickness h1 of the channels 114/114'/114" is smaller than the thickness h2 of the central region 113.
  • the thickness of the channel 114/114'/114" mentioned here refers to the thickness of the bottom of the reservoir 112 at the channel 114/114'/114"
  • the thickness of the central region 113 refers to the center The thickness of the bottom of the liquid storage chamber 112 at the area 113.
  • the thickness h1 of the channel 114/114'/114" is smaller than the thickness h2 of the central region 113, when on the first surface 111, it faces toward the position corresponding to the liquid storage chamber 112 (for example, at the central region 113).
  • the channel 114/114'/114" is more likely to be destroyed than the central region 113, so as to crack along the path of the channel 114/114'/114" to form an opening ,
  • an external device connected to the detection chip 100 such as other analytical detection devices, etc.
  • the detection chip 100 such as other analytical detection devices, etc.
  • the liquid in the detection chip 100 For example, when a force is applied toward the inside of the liquid storage chamber 112 at a position corresponding to the liquid storage chamber 112 (for example, at the central area 113) on the first surface 111, the The bottom is split along the channel 114/114'/114”, so that the edge of the central area 113 surrounded by the channel 114 is separated from the other part of the bottom of the liquid storage chamber 112, and the force is continued to be exerted on the central area 113.
  • the central area 113 is made to continue to move in a direction away from the first surface 111 (for example, inclined with respect to the first surface 111), and an opening is formed between the central area 113 and other parts of the bottom of the liquid storage chamber 112 to accommodate the liquid storage chamber.
  • the liquid in 112 is released from the liquid storage chamber 112. In this way, the problem of not being able to completely release all the reagents in the liquid reservoir in other detection chips mentioned above can be avoided.
  • the thickness refers to the thickness in a direction perpendicular to the first surface 111. It should be understood that in the case where the channel 114/114'/114" has the same thickness over the entire circumference, the thickness of the channel 114/114'/114" mentioned here may refer to the channel 114/114' /114" is the thickness anywhere; in the case where the channel 114/114'/114" has different thicknesses over the entire circumference, the thickness of the channel 114/114'/114" mentioned here refers to The maximum thickness of the channel 114/114'/114".
  • the thickness of the central area 113 mentioned here may refer to the thickness of any part of the central area 113; the central area 113 has the same thickness in the entire area In the case of different thicknesses, the thickness of the central area 113 mentioned here refers to the minimum thickness of the central area 113.
  • the embodiments of the present disclosure will be described by taking the central region 113 having the same thickness over the entire area and the channel 114 having the same thickness over the entire circumference as an example.
  • the material of the substrate 110 can be any suitable material according to actual requirements, for example, it can be glass, silicon, quartz, ceramic, polyethylene terephthalate (PET), polystyrene (PS) , Poly(methyl methacrylate, PMMA), polypropylene (PP), polycarbonate (PC) or a combination thereof, the embodiments of the present disclosure do not limit this.
  • the material of the substrate 110 may be PS or PMMA; when the detection chip 100 is used for molecular detection, the material of the substrate 110 may be PP or PC.
  • FIGS. 1-6 only show that the substrate 110 includes one liquid storage chamber, the embodiments of the present disclosure are not limited thereto. In other embodiments, the substrate 110 may include any number of liquid storage chambers according to actual requirements. , These liquid storage chambers can contain various reagents required for analysis and detection, and these liquid storage chambers can have the same or different shapes and can contain the same or different liquids.
  • the channel 114 is a non-closed channel to partially surround the central region 113.
  • the channel 114 may be substantially C-shaped, U-shaped, or the like.
  • the channel 114' may be a closed channel to surround the central region 113 in a full circle.
  • the channel 114' may be circular or polygonal (e.g., quadrilateral, etc.).
  • the liquid storage chamber 112 may have a cylindrical shape with a bottom surface parallel to the first surface 111, and the channel 114/114'/114" may be substantially annular.
  • the liquid storage chamber 112 and the channel 114/114'/114" can also have any suitable shape, which is not limited in the embodiment of the present disclosure.
  • the embodiments of the present disclosure will be described by taking the liquid storage chamber 112 in a cylindrical shape and the channel 114 in a circular ring shape as an example.
  • the central angle corresponding to the channel may be 330 degrees to 360 degrees.
  • the central angle corresponding to the channel 114 may be 340 degrees to 358 degrees.
  • the central angle corresponding to the channel 114 may be 340 degrees, 345 degrees, 350 degrees, 355 degrees, or 358 degrees.
  • the central angle corresponding to the channel 114 may be 350 degrees, so that the channel 114 is easily damaged, so as to split along the path of the channel 114 to form an opening, so as to remove the liquid contained in the liquid storage chamber 112 from the storage chamber.
  • the liquid chamber 112 is completely released and prevents the channel 114 from being unintentionally damaged during non-use processes such as transportation and storage.
  • the thickness of the central region 113 may be 0.1 mm-3 mm, for example.
  • the thickness of the central region 113 may be 0.1 mm, 0.5 mm, 1 mm, 1.5 mm, 2 mm, 2.5 mm, or 3 mm.
  • the thickness of the channel 114 may be, for example, 0.05 mm-0.3 mm.
  • the thickness of the channel 114 may be 0.05 mm, 0.1 mm, 0.15 mm, 0.2 mm, 0.25 mm, or 0.3 mm.
  • the width of the channel 114 is 0.1 mm-3 mm.
  • the width mentioned here refers to the width in a direction parallel to the first surface 111.
  • the width of the channel 114 may be 0.1mm, 0.5mm, 1mm, 1.5mm, 2mm, 2.5mm, or 3mm, so that the channel 114 is easily damaged, thereby removing the liquid contained in the liquid storage chamber 112 from the storage. The liquid chamber 112 is released.
  • the central angle corresponding to the channel 114 is 350 degrees
  • the width of the channel 114 is 1 mm
  • the thickness of the channel 114 is 0.1 mm
  • the thickness of the central region 113 is 1.5 mm. In this way, the channel 114 can be easily damaged, so that the liquid contained in the liquid storage chamber 112 is released from the liquid storage chamber 112.
  • the surface of the bottom of the liquid storage chamber 112 facing the inner space of the liquid storage chamber 112 is a flat surface, and the channel 114 faces the inner space of the liquid storage chamber 112 on the first surface 111.
  • the internal space is recessed.
  • the surface of the bottom of the liquid storage chamber 112 facing the first surface 111 is flat, and the channel 114 ′′ is recessed toward the first surface 111 on the inner bottom surface of the liquid storage chamber 112.
  • the embodiment of the present disclosure does not limit this. In the following, description will be made by taking the substrate 110 including the channel 114 recessed on the first surface 111 toward the inner space of the liquid storage chamber 112 as an example.
  • the liquid storage chamber 112 further includes a side wall 116, and the channel 114 is between the side wall 116 and the central region 113. As shown in FIG. 4, the channel 114 may be in direct contact with the sidewall 116; as shown in FIGS. 5-7B, the channel 114 may also be spaced apart from the sidewall 116, which is not limited in the embodiment of the present disclosure.
  • the edge area may further include a connecting part 117.
  • the connecting portion 117 is between the sidewall 116 and the central area 113, and the connecting portion 117 corresponds to the opening portion of the channel 114 that does not surround the central area 113.
  • the channel 114 and the connecting portion 117 may surround the central region 113 in a full circle together.
  • the connecting portion 117 may not be present. The embodiment of the present disclosure does not limit this.
  • the connecting portion 117 is configured to remain substantially intact due to a thicker thickness when the channel 114 is broken and cracked to form an opening, thereby connecting the central region 113 and the side Between the walls 116 and allow the central area 113 to be angled with the side walls 116 when it is pushed open.
  • the central region 113 may be configured to have a certain rigidity so that when it is pushed open, it can basically maintain its original shape without bending, so as to prevent the liquid in the liquid storage chamber 112 from flowing out of the opening formed by the crack of the channel 114.
  • the central angle corresponding to the channel 114 when on the first surface 111, it faces the liquid storage chamber 112 at a position corresponding to the liquid storage chamber 112 (for example, at the central area 113).
  • the size of the opening formed by the cracking of the channel 114 is basically the same as the size of the cross section of the liquid storage chamber 112, and the central area 113 is still connected to the substrate 110 through the connecting portion 117, and continues to be in the central area 113.
  • Applying force on the central area 113 and the side wall 116 can form an angle greater than 0 degrees and less than 90 degrees, such as an angle of 10 degrees to 25 degrees, so as to remove the liquid contained in the liquid storage chamber 112 from the liquid storage chamber 112.
  • the chamber 112 is completely released, and because the central area 113 is still connected to the substrate 110 through the connecting portion 117, it is avoided that if the central area 113 is completely separated from the substrate 110, the central area 113 will change with the flow of liquid in the liquid storage chamber 112. It is the problem of horizontal placement and blocking the above-mentioned opening.
  • the connecting portion 117 is configured to allow the central region 113 and the side wall 116 to form an angle greater than 0 degrees and less than 90 degrees, for example, an angle greater than 0 degrees and less than 25 degrees, so as to facilitate the liquid in the liquid storage chamber 112. All were released.
  • the central angle corresponding to the connecting portion 117 may be 2 degrees to 20 degrees.
  • the central angle corresponding to the connecting portion 117 is 10 degrees.
  • the connecting portion 117 bends so that the central area 113 can be
  • the angle between the side wall 116 and the side wall 116 is greater than 0 degrees and less than 90 degrees, for example, an angle of 10 degrees to 25 degrees.
  • the bending of the connecting portion 117 may be plastic deformation, so the central area is still 113 maintains the above-mentioned angle with the side wall 116, or at this time, the bending of the connecting portion 117 may be elastically deformed, so that the force needs to be constantly applied to maintain the angle between the central area 113 and the side wall 116, for example, until the liquid storage chamber 112 The liquid inside is completely released.
  • FIGS. 7A and 7B are cross-sectional views taken along the line AA' in FIG. 2 of the liquid release process according to at least one embodiment of the present disclosure, and FIGS. 7A and 7B show the liquid release of the detection chip shown in FIG. 2 Schematic diagram of the process. As shown in FIGS.
  • the channel 114 when a force is applied toward the bottom of the liquid storage chamber 112 (for example, the central region 113) in the direction indicated by arrow A, the channel 114 can be destroyed, and the The bottom is split along the channel 114, the edge of the central area 113 surrounded by the channel 114 is separated from other parts of the bottom of the liquid storage chamber 112, the connecting portion 117 connects the central area 113 and the side wall 116, and the connecting portion 117 allows the central area
  • the angle ⁇ between 113 and the side wall 116 is an angle greater than 0 degrees and less than 90 degrees, for example, an angle of 10 degrees to 25 degrees, so that the liquid in the liquid storage chamber 112 is completely released.
  • the sidewall 116 is substantially perpendicular to the first surface 111, it should be understood that the embodiment of the present disclosure is not limited thereto. In other embodiments, the sidewall 116 may also It is inclined with respect to the first surface 111, or the side wall 116 may have a curved surface.
  • the thickness of the connecting portion 117 may be substantially the same as the thickness of the central region 113 to simplify the manufacturing process.
  • the embodiments of the present disclosure are not limited to this.
  • the thickness of the connecting portion 117 may be less than the thickness of the central region 113.
  • the thickness of the connection portion 117 is greater than the thickness of the channel 114, so that the connection portion 117 can still be connected to the central region 113 and the sidewall 116 when the channel 114 is damaged.
  • the thickness of the connecting portion 117 may be substantially the same as the thickness of the central area 113, which may mean that the thickness of the connecting portion 117 and the thickness of the central area 113 are the same, substantially the same, or the difference is expected. Within the range, for example, the difference between the thickness of the connecting portion 117 and the thickness of the central region 113 is within 5% to -5% of the compared thickness.
  • Fig. 8 is an exploded schematic diagram of another detection chip according to at least one embodiment of the present disclosure.
  • Fig. 9 is an assembly diagram of the detection chip shown in Fig. 8.
  • the detection chip 200 may include a substrate 210.
  • the substrate 210 is basically the same as the substrate 110 described in any of the above embodiments, except that the substrate 210 also includes a liquid flow channel 215 on the first surface 211.
  • the substrate 210 and the substrate 110 please refer to the specific description of each embodiment above, which will not be repeated herein.
  • FIG. 10 is a schematic perspective view of the substrate in FIG. 8 according to at least one embodiment of the present disclosure.
  • FIG. 11 is a bottom perspective view of the substrate in FIG. 8 according to at least one embodiment of the present disclosure.
  • the substrate 210 includes a liquid flow channel 215 on the first surface 211.
  • the liquid flow channel 215 may include a groove on the first surface 211 of the substrate 210.
  • any suitable process such as laser engraving and photolithography may be used to form the groove, or it may be formed integrally with the substrate 210 in the process of forming and preparing the substrate 210, which is not limited in the embodiment of the present disclosure.
  • the liquid flow channel 215 is used to transport the liquid released from the liquid storage chamber 212 to other parts of the detection chip 200, such as the liquid operation area 219, including but not limited to the liquid mixing area, the liquid detection area, the liquid storage area, and the membrane pump. area.
  • the liquid flow channel 215 may communicate with the channel 214.
  • the connecting portion 217 and the liquid flow channel 215 are located on opposite sides of the central area 213 to facilitate the release of the liquid from the liquid storage chamber 212.
  • the liquid enters the liquid flow channel 215.
  • the connecting portion 217 and the liquid flow channel 215 may be arbitrarily positioned relative to each other, which is not limited in the embodiment of the present disclosure.
  • the extending direction of the connecting portion 217 may be 45 degrees, 90 degrees, 135 degrees, or the like with the extending direction of the liquid flow channel 215.
  • the detection chip 200 may further include a first elastic film layer 220.
  • the substrate 210 includes a first surface 211 and a second surface 211' opposite to the first surface 211. Along the direction from the first surface 211 to the second surface 211', the first elastic film layer 220 is below the first surface 211 of the substrate 210.
  • the first elastic film layer 220 may be connected to the substrate 210 in a liquid-tight manner.
  • the first elastic film layer 220 covers at least the bottom of the liquid storage chamber 212.
  • the first elastic film layer 220 in addition to covering the bottom of the liquid storage chamber 212, also covers the groove of the liquid flow channel 215, thereby closing the groove of the liquid flow channel 215 parallel to the first surface 211.
  • the open end surface of the tube provides a space for liquid to flow, for example, a space for reagent reaction.
  • the first elastic film layer 220 may also cover the entire first surface 211.
  • the first elastic film layer 220 has elasticity to allow elastic deformation.
  • the first elastic membrane layer 220 can be elastically deformed to allow the ejector pin to have a certain stroke, so that The channel 214 is cracked and the central area 213 forms a desired angle (such as 10-25 degrees) with the sidewalls, and after the ejector rod is retracted to remove the force, the first elastic film layer 220 can be basically restored to The initial state is not destroyed.
  • the first elastic film layer 220 may be at least partially transparent, such as transparent or translucent, to allow observation of the liquid in the liquid storage chamber 212 and the liquid flow channel 215 or optical detection.
  • the material of the first elastic film layer 220 may be polyethylene terephthalate (PET), polystyrene (PS), poly(methylmethacrylate), PMMA), polypropylene (Polypropylene, PP), polycarbonate (Polycarbonate, PC), etc. to have better elasticity and strength, so that it can restore the original state after elastic deformation.
  • PET polyethylene terephthalate
  • PS polystyrene
  • PMMA polypropylene
  • Polypropylene Polypropylene
  • PP polycarbonate
  • PC polycarbonate
  • the first elastic film layer 220 is shown as having substantially the same contour shape as the first surface 211 of the substrate 210, it should be understood that the embodiments of the present disclosure are not limited thereto.
  • the first elastic film layer 220 may only cover the bottom of the liquid storage chamber 212, and the groove of the liquid flow channel 215 is covered by another film layer (for example, another elastic film layer or a rigid film layer) , The other film layer is in a sealed connection with the first elastic film layer 220 to avoid liquid leakage, or the first elastic film layer 220 can cover the bottom of the liquid storage chamber 212 and the groove of the liquid flow channel 215, the first surface 212 Other parts of the film are covered by other layers or are no longer covered and are directly exposed to the external environment.
  • the detection chip 200 may further include a first adhesive layer 230.
  • the first adhesive layer 230 is between the substrate 210 and the first elastic film layer 220 to connect the substrate 210 and the first elastic film layer 220.
  • the first adhesive layer 230 may include an adhesive material such as an acrylic adhesive, for example, may be implemented as an adhesive coating or as a double-sided tape.
  • the first adhesive layer 230 and the first elastic film layer 220 have substantially the same outline, so that the first adhesive layer 230 can enable the substrate 210 and the first elastic film layer 220 to achieve a firm combination.
  • the first adhesive layer 230 when the first elastic film layer 220 covers the bottom of the liquid storage chamber 212 and the groove of the liquid flow channel 215, the first adhesive layer 230 may be exposed on the first surface 211 of the substrate 210.
  • the elastic film layer 220 and the liquid flow channel 215 form a space for, for example, liquid flow and/or reagent reaction.
  • the hollowed-out area 231 of the first adhesive layer 230 may only expose the bottom of the liquid storage chamber 212.
  • the hollowed-out area 231 of the first adhesive layer 230 may include an opening 2311 corresponding to the liquid operation area 219, so as to provide a gap between the substrate 210 and the first elastic film layer 220.
  • the liquid operation area 219 may communicate with the liquid flow channel 215.
  • the shape and position of the liquid operation area 219 shown in FIG. 9 are exemplary, and the embodiment of the present disclosure does not limit this.
  • the hollow area 231 of the first adhesive layer 230 may further include a liquid flow control area 2312.
  • the projection of the liquid flow control area 2312 on the first surface 211 falls on the extension line of the liquid flow channel 215.
  • the first elastic film layer 220 is elastically deformed so that it can abut against the substrate 210, Therefore, the flow of the liquid in the liquid channel 215 can be blocked, and when the pressure is no longer pressed, the first elastic film layer 220 can basically return to the original state without being damaged, and the liquid in the liquid channel 215 can also resume flowing. In this way, the flow of the liquid in the liquid channel 215 can be controlled according to actual requirements.
  • the first elastic film layer 220 when the first elastic film layer 220 is bonded to the substrate 210 by hot pressing, ultrasonic welding, photosensitive adhesive bonding, chemical solvent bonding, or laser welding, the first bonding may be omitted. ⁇ 230.
  • the first elastic film layer 220 and the substrate 210 are formed of the same polymer material, the first elastic film layer 220 and the substrate 210 can be combined by laser welding without the first adhesive layer 230 being provided.
  • the detection chip 200 may further include a second elastic film layer 240.
  • the second elastic film layer 240 is above the second surface 211' of the substrate 210 opposite to the first surface 211, and covers at least the liquid storage chamber 212 on the second surface. Opening 218 on 211'.
  • the second elastic film layer 240 may also cover the entire second surface 211'.
  • the second elastic film layer 240 may be connected to the substrate 210 in a liquid-tight manner to prevent the liquid contained in the liquid storage chamber 212 from leaking from the opening 218 on the second surface 211'.
  • the second elastic film layer 240 has elasticity to allow elastic deformation.
  • the second elastic membrane layer 240 can be elastically deformed to allow the liquid storage chamber
  • the liquid contained in 212 is squeezed (for example, the liquid contained in the liquid storage chamber 212 flows out from the bottom of the liquid storage chamber 212), thereby allowing the liquid to flow out from the opening formed at the bottom, and after the force is removed
  • the second elastic film layer 240 can be basically restored to the initial state.
  • the liquid contained in the liquid storage chamber 212 can be repeatedly squeezed to more fully make the liquid flow out of the opening formed at the bottom.
  • the second elastic film layer 240 may be at least partially transparent, such as transparent or translucent, to allow observation of the liquid in the liquid storage chamber 212 or optical detection.
  • the material of the second elastic film layer 240 may be polyethylene terephthalate (PET), polystyrene (PS), poly(methylmethacrylate), PMMA), polypropylene (Polypropylene, PP), polycarbonate (Polycarbonate, PC), etc. to have better elasticity and strength, so that it can restore the original state after elastic deformation.
  • PET polyethylene terephthalate
  • PS polystyrene
  • PMMA polypropylene
  • Polypropylene Polypropylene
  • PP polycarbonate
  • PC polycarbonate
  • the first elastic film layer 220 and the second elastic film layer 240 may be formed of the same or different materials, which is not limited in the embodiment of the present disclosure.
  • the detection chip 200 may not include the second elastic film layer 240.
  • the second elastic film layer 240 is shown as covering the opening 218 of the liquid storage chamber 212 on the second surface 211', and also covering other parts of the second surface 211' of the substrate 210, however, It should be understood that the embodiments of the present disclosure are not limited thereto. For example, in some embodiments, the second elastic film layer 240 may only cover the opening 218 of the liquid storage chamber 212 on the second surface 211'.
  • the detection chip 200 may further include a second adhesive layer 250.
  • the second adhesive layer 250 is between the substrate 210 and the second elastic film layer 240 to connect the substrate 210 and the second elastic film layer 240.
  • the second adhesive layer 250 may include an adhesive material such as an acrylic adhesive.
  • it may be implemented as an adhesive coating or as a double-sided tape.
  • the second adhesive layer 250 and the second elastic film layer 240 have substantially the same contours, so the second adhesive layer 250 can achieve a firm combination of the substrate 210 and the second elastic film layer 240.
  • the second adhesive layer 250 is exposed in the opening 218 of the liquid storage chamber 212 on the second surface 211'. That is, the second adhesive layer 250 may include a hollow area 251 whose shape is the same or substantially the same as the orthographic projection of the opening 218 on the second adhesive layer 250.
  • the second elastic film layer 240 when the second elastic film layer 240 is bonded to the substrate 210 by hot pressing, ultrasonic welding, photosensitive adhesive bonding, chemical solvent bonding, or laser welding, the second bonding may be omitted.
  • Layer 250 when the second elastic film layer 240 and the substrate 210 are formed of the same polymer material, the second elastic film layer 240 and the substrate 210 can be combined by laser welding, without the second adhesive layer 250 being provided.
  • FIGS. 12A and 12B are cross-sectional views along the line A-A' in FIG. 9 according to at least one embodiment of the present disclosure, and FIGS. 12A and 12B show schematic diagrams of the liquid release process of the detection chip shown in FIG. 9.
  • the ejector pin applies a force toward the bottom of the liquid storage chamber 212 (for example, the central region 213), the channel 214 can be destroyed, and the bottom of the liquid storage chamber 212 is along the channel 214.
  • the edge of the central area 213 surrounded by the channel 214 is separated from the other part of the bottom of the liquid storage chamber 212, the connecting portion 217 connects the central area 213 and the side wall 216, and the connecting portion 217 allows the central area 213 and the side wall 216
  • the angle between is an angle greater than zero degrees and less than 90 degrees, for example, an angle of 10-25 degrees.
  • the liquid flow channel 215 communicates with the channel 214, and the liquid released from the liquid storage chamber 212 flows into the liquid flow channel 215, and is transported to other locations of the detection chip via the liquid flow channel 215, such as the liquid operation area 219.
  • At least one embodiment of the present disclosure also provides a method for preparing a detection chip, and the detection chip may be the detection chip provided in any of the foregoing embodiments.
  • the detection chip may be the detection chip provided in any of the foregoing embodiments.
  • the method for preparing a detection chip according to at least one embodiment of the present disclosure may include:
  • the substrate including a first surface
  • the substrate includes a liquid storage chamber configured to contain liquid and included at the bottom of the first surface
  • the bottom includes the central area and the edge area surrounding the central area, and
  • the edge region includes a channel surrounding the central region, and the thickness of the channel is smaller than the thickness of the central region.
  • the method for preparing a detection chip may further include: preparing the substrate by a method of integral molding.
  • the integrated molding method includes an injection molding process, and the substrate can be prepared through the injection molding process and a corresponding injection mold, so as to save costs and improve production efficiency.
  • a liquid flow channel and the like can also be formed in the substrate at the same time, which is not limited in the embodiments of the present disclosure.
  • the method for preparing a detection chip may further include: providing a first elastic film layer on the first surface of the substrate.
  • the first elastic film layer is in hermetically connected with the first surface of the substrate, and the first elastic film layer at least covers the bottom of the liquid storage chamber.
  • the first elastic film layer please refer to the description of each embodiment above, which will not be repeated here.
  • the method for preparing a detection chip may further include: joining the first elastic film layer and the substrate by laser welding or an adhesive.
  • the first elastic film layer and the substrate are formed of the same material (such as PS, PMMA, PC, PP and other polymer materials)
  • the first elastic film layer and the substrate can be joined by laser welding; when the first elastic film
  • the first elastic film layer and the substrate can be joined by, for example, an adhesive.
  • the step of bonding the first elastic film layer and the substrate through an adhesive may include: disposing a first adhesive layer between the first elastic film layer and the substrate.
  • a first adhesive layer for the description of the first adhesive layer, please refer to the description of the above embodiments, which will not be repeated here.
  • the method for preparing a detection chip may further include: providing a second elastic film layer on a second surface of the substrate opposite to the first surface.
  • the first elastic film layer is in hermetic connection with the second surface of the substrate.
  • the second elastic film layer at least covers the opening on the second surface of the liquid storage chamber, for example.
  • the method for preparing a detection chip may further include: joining the second elastic film layer and the substrate by laser welding or an adhesive.
  • the second elastic film layer and the substrate are formed of the same material (such as PS, PMMA, PC, PP and other polymer materials)
  • the second elastic film layer and the substrate can be joined by laser welding; when the second elastic film
  • the layer and the substrate are formed of different materials, the second elastic film layer and the substrate can be joined by, for example, an adhesive.
  • the step of bonding the second elastic film layer and the substrate through an adhesive may include: disposing a second adhesive layer between the second elastic film layer and the substrate.
  • a second adhesive layer for the description of the second adhesive layer, please refer to the description of the above embodiments, which will not be repeated here.
  • At least one embodiment of the present disclosure also provides a method for operating a detection chip, wherein the detection chip may be the detection chip provided in any of the foregoing embodiments.
  • the detection chip may be the detection chip provided in any of the foregoing embodiments.
  • a method for operating a detection chip may include:
  • a force is applied to the inner space of the liquid storage chamber on the bottom of the liquid storage chamber to break the channel and cause the liquid contained in the inner space of the liquid storage chamber to flow out from the bottom of the liquid storage chamber.
  • a force is applied to the inner space of the liquid storage chamber on the bottom of the liquid storage chamber to break the channel and cause the liquid contained in the inner space of the liquid storage chamber to flow out from the bottom of the liquid storage chamber, including : Applying the force on the bottom of the detection chip toward the inner space of the liquid storage chamber, so that the central area and the side wall form an angle greater than zero degrees and less than 90 degrees.
  • the central area and the side wall form an angle of 0.1 degree to 60 degree, 5 degree to 40 degree, and 10 degree to 25 degree.
  • the above-mentioned step of applying a force on the bottom of the liquid storage chamber toward the inner space of the liquid storage chamber may include: A force is applied to the layer to exert a force on the bottom of the liquid storage chamber, thereby breaking the channel and causing the liquid contained in the internal space of the liquid storage chamber to flow out from the bottom of the liquid storage chamber.
  • a force is applied to the layer to exert a force on the bottom of the liquid storage chamber, thereby breaking the channel and causing the liquid contained in the internal space of the liquid storage chamber to flow out from the bottom of the liquid storage chamber.
  • a force is applied to the bottom of the liquid storage chamber by applying a force on the first elastic film layer, thereby breaking the channel and causing the liquid contained in the internal space of the liquid storage chamber to escape from the liquid storage chamber.
  • the bottom outflow may include: applying a force on the first elastic film layer at a position corresponding to the length of the central region of the connecting portion 0-3/4 to apply a force to the bottom of the liquid storage chamber, thereby destroying the channel And the liquid contained in the inner space of the liquid storage chamber flows out from the bottom of the liquid storage chamber.
  • a force may be applied on the first elastic film layer at a position corresponding to a position that is 1/2 the length of the central region of the connecting portion.
  • the central area and the side wall form a smaller angle, so that the liquid in the inner space of the liquid storage chamber can flow out from the bottom of the liquid storage chamber.
  • the length of the central area mentioned here refers to the distance from the connecting part to a part of the side wall of the liquid storage chamber on the first surface, wherein the part of the side wall and the connecting part are located on opposite sides of the central area.
  • the method for operating the detection chip may further include: applying a force on the second elastic membrane layer to drive the storage chamber The liquid in the internal space flows out from the bottom of the liquid storage chamber.
  • the second elastic film layer please refer to the description of the above embodiments, which will not be repeated here.
  • Fig. 13 is a schematic block diagram of a detection device according to at least one embodiment of the present disclosure. As shown in FIG. 13, the detection device 300 according to at least one embodiment of the present disclosure may include:
  • the force acting mechanism 320 is configured to apply a force on the bottom of the detection chip 310 toward the inner space of the liquid storage chamber to break the channel and make the liquid contained in the inner space flow out from the bottom of the detection chip 310 when in use.
  • the detection chip 310 may be the detection chip provided in any of the foregoing embodiments.
  • the force acting mechanism 320 may take any suitable form as long as it can apply a force to the bottom of the detection chip 310 to destroy the channel at the bottom of the liquid storage chamber in the detection chip 310.
  • the force application mechanism 320 may include a rod to apply pressure to the bottom of the liquid storage chamber, thereby forming an opening at the bottom of the liquid storage chamber to allow the liquid stored therein to flow out, and the end of the rod may be connected to the bottom of the liquid storage chamber The end faces are matched.
  • the force application mechanism 320 can be driven by a motor or can be manually operated, which is not limited in the embodiment of the present disclosure.
  • the channel at the bottom of the liquid storage chamber is destroyed and the central area and the side wall form an angle greater than zero degrees and less than 90 degrees (for example, 10 degrees- After the angle of 25 degrees)
  • the force application mechanism 320 can be removed or kept against the bottom of the detection chip 310, so that the central area and the side walls maintain the angle formed.
  • the bending of the connecting portion is plastic deformation.
  • the force acting mechanism 320 can be removed.
  • the bending of the connecting portion is elastic deformation ,
  • the force acting mechanism 320 can be kept against the bottom of the detection chip 310, so that the central area and the sidewalls maintain the angle formed, thereby preventing the central area from becoming horizontal and blocked with the flow of liquid in the liquid storage chamber.
  • the detection device 300 may also include a base for placing the detection chip 310, a waste liquid processor, various analysis detectors, a liquid input and output interface, a power supply interface, etc.
  • the components can all be components known in the art, which are not limited in the embodiments of the present disclosure.

Abstract

一种检测芯片(100)、检测装置及制备和操作检测芯片(100)的方法。该检测芯片(100)包括:基板(110),该基板(110)包括第一表面(111);其中,该基板(110)包括储液室(112),该储液室(112)配置为容纳液体并包括位于第一表面(111)上的底部,该底部包括中央区(113)和围绕中央区(113)的边缘区,该边缘区包括围绕中央区的沟道(114/114'),该沟道(114/114')的厚度小于中央区(113)的厚度。该检测芯片(100)便于释放存储在其中的液体,并且结构和制造工艺简单,成本低。

Description

检测芯片、检测装置及制备和操作检测芯片的方法 技术领域
本公开的实施例涉及一种检测芯片、检测装置及制备和操作检测芯片的方法。
背景技术
微流控芯片又称为芯片实验室(Lab-on-a-chip),是指把生物、化学和医学等领域中所涉及的样品制备、反应、分离、检测等基本操作单元集成到一块具有微米尺度的微通道的芯片上,自动完成反应和分析的全过程。基于微流控芯片实现的分析检测装置的优点包括样本用量少,分析速度快,便于制成便携式仪器,非常适用于即时、现场分析。
发明内容
本公开的至少一个实施例提供了一种检测芯片,其包括:
基板,包括第一表面;
其中,所述基板包括储液室,所述储液室配置为容纳液体并包括位于所述第一表面上的底部,
所述底部包括中央区和围绕所述中央区的边缘区,
所述边缘区包括围绕所述中央区的沟道,所述沟道的厚度小于所述中央区的厚度。
例如,在根据本公开的至少一个实施例的检测芯片中,所述沟道为非封闭沟道,以部分围绕所述中央区。
例如,在根据本公开的至少一个实施例的检测芯片中,所述沟道为封闭沟道,以围绕所述中央区一周。
例如,在根据本公开的至少一个实施例的检测芯片中,所述储液室呈圆柱状,并且所述沟道基本呈环形。
例如,在根据本公开的至少一个实施例的检测芯片中,所述沟道所对应的圆心角为340度-358度。
例如,在根据本公开的至少一个实施例的检测芯片中,所述中央区的厚度为0.1mm-3mm。
例如,在根据本公开的至少一个实施例的检测芯片中,所述沟道的厚度为0.05mm-0.3mm,以及所述沟道的宽度为0.1mm-3mm。
例如,在根据本公开的至少一个实施例的检测芯片中,所述底部的朝向所述储液室的内部空间的面为平面,并且所述沟道在所述第一表面朝向所述储液室的内部空间凹陷。
例如,在根据本公开的至少一个实施例的检测芯片中,所述底部的远离所述储液室的内部空间的面为平面,并且所述沟道在所述底部的朝向所述储液室的内部空间的所述面凹陷远离所述储液室的内部空间。
例如,在根据本公开的至少一个实施例的检测芯片中,所述储液室还包括侧壁,所述沟道在所述侧壁与所述中央区之间,
所述边缘区还包括连接部,
其中,所述连接部在所述侧壁与所述中央区之间,并且所述连接部对应于所述沟道未围绕所述中央区的开口部分。
例如,在根据本公开的至少一个实施例的检测芯片中,所述连接部配置为在所述沟道被破坏的情况下,允许所述中央区与所述侧壁成大于零度且小于25度的角。
例如,在根据本公开的至少一个实施例的检测芯片中,所述基板还包括在所述第一表面上的液体流道,
其中,所述液体流道与所述沟道相连通。
例如,在根据本公开的至少一个实施例的检测芯片中,在所述第一表面上,所述连接部与所述液体流道位于所述中央区相反的两侧。
例如,根据本公开的至少一个实施例的检测芯片还包括:第一弹性膜层,
其中,所述液体流道包括在所述基板的所述第一表面上的凹槽,
所述第一弹性膜层在所述基板的第一表面,且覆盖所述底部,以及覆盖所述凹槽以提供液体流动的空间。
例如,根据本公开的至少一个实施例的检测芯片还包括第二弹性膜层,
所述基板还包括与所述第一表面相对的第二表面,
所述第二弹性膜层在所述基板的第二表面,并且覆盖所述储液室的在所 述第二表面上的开口。
例如,根据本公开的至少一个实施例的检测芯片还包括:第一粘合层和第二粘合层,
其中,所述第一粘合层在所述基板与所述第一弹性膜层之间以连接所述基板与所述第一弹性膜层;以及
所述第二粘合层在所述基板与所述第二弹性膜层之间以连接所述基板与所述第二弹性膜层。
例如,根据本公开的至少一个实施例的检测芯片还包括液体操作区,
所述液体操作区与所述液体流道连通。
例如,在根据本公开的至少一个实施例的检测芯片中,所述液体操作区包括选自由液体混合区、液体检测区和液体存储区构成的组中的至少之一。
本公开至少一个实施例还提供了一种检测装置,其包括:
本公开任一实施例提供的检测芯片;以及
力作用机构,配置为在使用时,在所述检测芯片的所述底部上朝向所述储液室的内部空间施加作用力,以破坏所述沟道并使得容纳在所述内部空间内的液体从所述底部流出。
本公开至少一个实施例还提供了一种用于制备检测芯片的方法,其包括:
提供基板,所述基板包括第一表面,
其中,所述基板包括储液室,所述储液室配置为容纳液体,并包括在所述第一表面的底部,
所述底部包括中央区和围绕所述中央区的边缘区,以及
所述边缘区包括围绕所述中央区的沟道,所述沟道的厚度小于所述中央区的厚度。
例如,在根据本公开至少一个实施例的用于制备检测芯片的方法还包括:通过一体成型的方法制备所述基板。
本公开至少一个实施例还提供了一种用于操作本公开任一实施例提供的检测芯片的方法,其包括:
在所述储液室的所述底部上朝向所述储液室的内部空间施加作用力,以破坏所述沟道并使得容纳在所述内部空间内的液体从所述底部流出。
本公开至少一个实施例还提供了一种用于操作本公开至少一个实施例提 供的检测芯片的方法,其包括:
在所述第一弹性膜层上的与距离所述连接部0-3/4中央区长度的位置对应的位置处施加作用力,以对所述储液室的所述底部施加作用力,从而破坏所述沟道并使得容纳在所述储液室的内部空间内的液体从所述底部流出。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1是根据本公开至少一个实施例的检测芯片的示意性立体透视图。
图2是根据本公开至少一个实施例的图1所示的检测芯片的储液室的仰视立体图。
图3是根据本公开至少一个实施例的图1所示的检测芯片的储液室的平面仰视图。
图4是根据本公开至少一个实施例的沿图2中的线A-A’的立体剖视图。
图5是根据本公开至少一个实施例的沿图2中的线B-B’的剖视图。
图6是根据本公开至少一个实施例的沿图2中的线B-B’的另一剖视图。
图7A和图7B是示出根据本公开至少一个实施例的液体释放过程的、沿图2中的线A-A’的剖视图。
图8是根据本公开至少一个实施例的另一检测芯片的分解示意图。
图9是图8所示的检测芯片的组装图。
图10是根据本公开至少一个实施例的图8中的基板的示意性透视图。
图11是根据本公开至少一个实施例的图8中的基板的仰视立体图。
图12A和图12B是示出根据本公开至少一个实施例的液体释放过程的、沿图9中的线A-A’的剖视图。
图13是根据本公开至少一个实施例的检测装置的示意性框图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例 是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
应理解,在本公开的至少一个实施例中,“基本相同”指的是两个对象之间差值在被比对象的5%至-5%以内。
目前的微流控芯片中的试剂存储结构,要么本身结构复杂,要么需要繁杂的制备工艺,从而造成微流控芯片作为耗材的成本过高。例如,在一些微流控芯片中,储液池底部通过铝膜或塑料膜进行封装,这样在扎破铝膜或塑料膜来释放存储在储液池中的试剂时,破裂的边缘部位会向上凸起,容易造成试剂的残留,无法将储液池中的所有试剂完全释放,从而无法在测试中足量地加入试剂,造成生物反应结果出现异常。此外,在这些微流控芯片中,存储在储液池中的液体容易泄露,而且还需要热压、激光焊接等工艺,导致工艺复杂,成本高。
针对上述问题中至少之一,本公开的至少一个实施例提供了一种检测芯片,其便于释放存储在其中的液体,并且结构和制造工艺简单,成本低。
本公开的实施例提供的该检测芯片可以是微流控芯片,然而,应理解,本公开的实施例并不限于此。
此外,本公开的实施例还提供了一种包括上述任一检测芯片的检测装置及制备和操作上述任一检测芯片的方法。
图1是根据本公开至少一个实施例的检测芯片的示意性立体透视图。图2是根据本公开至少一个实施例的图1所示的检测芯片的储液室的仰视立体 图。图3是根据本公开至少一个实施例的图1所示的检测芯片的储液室的平面仰视图。图4是本公开至少一个实施例的沿图2中的线A-A’的剖视图。图5是根据本公开至少一个实施例的沿图2中的线B-B’的剖视图。图6是根据本公开至少一个实施例的沿图2中的线B-B’的另一剖视图。
如图1-6所示,根据本公开至少一个实施例的检测芯片100包括基板110。基板110包括第一表面111和与第一表面111相对的第二表面111’。基板110还包括储液室112。储液室112配置为容纳液体(例如分析检测所需要的各种试剂)并包括在第一表面111的底部。该底部包括中央区113和围绕中央区113的边缘区。边缘区包括围绕中央区113的沟道114/114’/114”,并且沟道114/114’/114”的厚度h1小于中央区113的厚度h2。应理解,这里提到的沟道114/114’/114”的厚度指的是沟道114/114’/114”处储液室112的底部的厚度,以及中央区113的厚度指的是中央区113处储液室112的底部的厚度。
由于沟道114/114’/114”的厚度h1小于中央区113的厚度h2,因此当在第一表面111上,在与储液室112对应的位置处(例如,在中央区113处)朝向储液室112内部施加作用力的情况下,相对于中央区113,沟道114/114’/114”更易于被破坏,从而沿着沟道114/114’/114”的路径裂开形成开口,以将容纳在储液室112内的液体从储液室112释放出来,例如释放至与检测芯片100相连接的外部装置(例如其他分析检测装置等)或释放至该检测芯片100中的液体流道。例如,当在第一表面111上,在与储液室112对应的位置处(例如,在中央区113处)朝向储液室112内部施加作用力的情况下,储液室112的底部沿沟道114/114’/114”裂开,使得中央区113的被沟道114围绕的边缘与储液室112的底部的其他部分分离,并且继续在中央区113上施加作用力,可使得中央区113继续沿远离第一表面111的方向移动(例如相对于第一表面111倾斜),在中央区113与储液室112的底部其他部分之间形成开口,以将容纳在储液室112内的液体从储液室112释放出来。通过这种方式,可避免上述的其他检测芯片中存在的无法将储液池中的所有试剂完全释放的问题。
在本文中,厚度指的是在垂直于第一表面111的方向上的厚度。应理解,在沟道114/114’/114”在整个周长上具有相同厚度的情况下,这里提到的沟道114/114’/114”的厚度可以指的是沟道114/114’/114”的任一处的厚度;在沟道 114/114’/114”在整个周长上具有不同厚度的情况下,这里提到的沟道114/114’/114”的厚度指的是沟道114/114’/114”的最大厚度。类似地,在中央区113在整个区域中具有相同厚度的情况下,这里提到的中央区113的厚度可以指的是中央区113的任一处的厚度;在中央区113在整个区域中具有不同厚度的情况下,这里提到的中央区113的厚度指的是中央区113的最小厚度。在下文中,将以中央区113在整个区域上具有相同的厚度以及沟道114在整个周长上具有相同的厚度为例来描述本公开的各实施例。
基板110的材料根据实际要求可采用任何合适的材料,例如,可以为玻璃、硅、石英、陶瓷、聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET),聚苯乙烯(Polystyrene,PS)、聚甲基丙烯酸甲酯(poly(methyl methacrylate),PMMA)、聚丙烯(Polypropylene,PP)、聚碳酸酯(Polycarbonate,PC)或其组合,本公开的实施例对此不作限制。例如,当检测芯片100用于免疫检测时,基板110的材料可以是PS或PMMA;当检测芯片100用于分子检测时,基板110的材料可以是PP或PC。
虽然图1-6中仅示出了基板110包括一个储液室,然而,本公开的实施例并不限于此,在其他实施例中,根据实际要求,基板110可包括任意数量的储液室,这些储液室中可容纳分析检测所需的各种试剂,并且这些储液室可具有相同或不同的形状并可容纳相同或不同的液体。
如图2所示,在本公开的至少一个实施例中,沟道114为非封闭沟道,以部分围绕中央区113。例如,沟道114可大体上呈C字形、U字形等。
然而,应理解,在其他实施例中,如图3所示,沟道114’可以为封闭沟道,以围绕中央区113一整圈。例如,沟道114’可呈圆形、多边形(例如四边形等)。
示例性地,储液室112可呈底面与第一表面111平行的圆柱状,并且沟道114/114’/114”可基本呈环形。然而,应理解,在其他实施例中,根据实际要求,储液室112和沟道114/114’/114”还可呈任何合适的形状,本公开的实施例对此不做限制。在下文中,将以储液室112呈圆柱状,沟道114呈圆环形为例来描述本公开的各实施例。
在一些实施例中,沟道所对应的圆心角可以为330度-360度。例如,沟道114所对应的圆心角可以为340度-358度。示例性地,沟道114所对应的 圆心角可以为340度、345度、350度、355度或358度。例如,沟道114所对应的圆心角可以为350度,以使得沟道114易于被破坏,从而沿着沟道114的路径裂开形成开口,以将容纳在储液室112内的液体从储液室112完全释放出来,并且防止沟道114在诸如运输、存储等非使用过程中被非故意地破坏。
在一些实施例中,中央区113的厚度例如可以为0.1mm-3mm。示例性地,中央区113的厚度可以为0.1mm、0.5mm、1mm、1.5mm、2mm、2.5mm或3mm。
在一些实施例中,对于上述材料,沟道114的厚度例如可以为0.05mm-0.3mm。示例性地,沟道114的厚度可以为0.05mm、0.1mm、0.15mm、0.2mm、0.25mm或0.3mm。
在一些实施例中,沟道114的宽度为0.1mm-3mm。这里提到的宽度指的是在平行于第一表面111的方向上的宽度。示例性地,沟道114的宽度可以为0.1mm、0.5mm、1mm、1.5mm、2mm、2.5mm或3mm,使得沟道114易于被破坏,从而将容纳在储液室112中的液体从储液室112中释放出来。
在一个示例性实施例中,沟道114所对应的圆心角为350度,沟道114的宽度为1mm,沟道114的厚度为0.1mm,以及中央区113的厚度为1.5mm。这样可使得沟道114易于被破坏,从而将容纳在储液室112中的液体从储液室112中释放出来。
如图4和图5所示,在一些实施例中,储液室112的底部的朝向储液室112的内部空间的面为平面,并且沟道114在第一表面111朝向储液室112的内部空间凹陷。如图6所示,在另一些实施例中,储液室112的底部的朝向第一表面111的面为平面,并且沟道114”在储液室112的内底面朝向第一表面111凹陷。本公开的实施例对此不作限制。在下文中,将以基板110包括在第一表面111朝向储液室112的内部空间凹陷的沟道114为例进行描述。
在一些实施例中,储液室112还包括侧壁116,沟道114在侧壁116与中央区113之间。如图4所示,沟道114例如可以与侧壁116直接接触;如图5-图7B所示,沟道114例如还可与侧壁116间隔开,本公开的实施例对此不作限制。
边缘区还可包括连接部117。连接部117在侧壁116与中央区113之间, 并且连接部117对应于沟道114未围绕中央区113的开口部分。例如,沟道114和连接部117可一起围绕中央区113一整圈。当然,应理解,在基板110包括如图3所示的封闭沟道114’的情况下,可不存在连接部117。本公开的实施例对此不作限制。
在一些实施例中,连接部117配置为在沟道114被破坏而裂开以形成开口的情况下,由于更厚的厚度而基本保持原状,不裂开,由此连接在中央区113与侧壁116之间,并允许中央区113在被顶开时与侧壁116成角度。例如,中央区113可配置为具有一定刚性,以在被顶开时,能够基本保持原状,而不弯曲,从而避免阻挡储液室112内的液体从沟道114裂开而形成的开口流出。
例如,在沟道114所对应的圆心角为350度的情况下,当在第一表面111上,在与储液室112对应的位置处(例如,在中央区113处)朝向储液室112内部施加作用力时,沟道114裂开而形成的开口的大小与储液室112的横截面的大小基本相同,并且中央区113通过连接部117与基板110仍保持连接,继续在中央区113上施加作用力,可使中央区113与侧壁116之间成大于0度且小于90度的角,例如10度-25度的角,从而将容纳在储液室112内的液体从储液室112完全释放出来,并且由于中央区113通过连接部117与基板110仍保持连接,避免了如果中央区113与基板110完全分离,中央区113又随着储液室112内的液体流动而变为水平放置并堵塞上述开口的问题。
在一些实施例中,连接部117配置为允许中央区113与侧壁116成大于0度且小于90度的角,例如大于0度且小于25度的角,以利于储液室112内的液体全部被释放。例如,连接部117所对应的圆心角可以为2度-20度。示例性地,连接部117所对应的圆心角为10度。
例如,当在第一表面111上,在与储液室112对应的位置处(例如,在中央区113处)朝向储液室112内部施加作用力时,连接部117弯曲而使得中央区113可与侧壁116之间成大于0度且小于90度的角,例如10度-25度的角,并且此时连接部117的弯曲可以是塑性形变,因此在该作用力撤消后仍使得中央区113与侧壁116保持上述角,或者此时连接部117的弯曲可以是弹性形变,从而需要一直施加该作用力,以保持中央区113与侧壁116之间的角,例如直到储液室112内的液体被完全释放。
图7A和图7B是根据本公开至少一个实施例的液体释放过程的沿图2中的线A-A’的剖视图,并且图7A和图7B示出了图2所示的检测芯片的液体释放过程的示意图。如图7A和图7B所示,当沿箭头A所示的方向朝向储液室112的底部(例如,中央区113)施加作用力的情况下,沟道114可被破坏,储液室112的底部沿沟道114裂开,中央区113的被沟道114围绕的边缘与储液室112的底部的其他部分分离,连接部117连接中央区113与侧壁116,并且连接部117允许中央区113与侧壁116之间的角θ为大于0度且小于90度的角,例如10度-25度的角,以利于储液室112内的液体被完全释放。虽然在图4、图7A和图7B中示出了侧壁116与第一表面111基本垂直,然而,应理解本公开的实施例并不限于此,在其他实施例中,侧壁116还可相对于第一表面111是倾斜的,或者侧壁116可具有弯曲的表面。
在一些实施例中,在垂直于第一表面111的方向上,连接部117的厚度可与中央区113的厚度基本相同,以简化制造工艺,然而,应理解,本公开的实施例并不限于此。例如,在另一些实施例中,连接部117的厚度可小于中央区113的厚度。此外,连接部117的厚度大于沟道114的厚度,以在沟道114被破坏的情况下,连接部117仍可与中央区113和侧壁116连接。
应理解,在本公开的至少一个实施例中,连接部117的厚度可与中央区113的厚度基本相同可指的是连接部117的厚度和中央区113的厚度相同、实质相同或者差异在预设范围内,例如连接部117的厚度和中央区113的厚度之间的差值在被比厚度的5%至-5%以内。
图8是根据本公开至少一个实施例的另一检测芯片的分解示意图。图9是图8所示的检测芯片的组装图。如图8所示,根据本公开至少一个实施例的检测芯片200可包括基板210。基板210与上述任一实施例中描述的基板110基本相同,除了基板210还包括在第一表面211上的液体流道215。关于基板210与基板110相同或相似部分的描述可参见上文中关于各实施例的具体描述,本文中将不再赘述。
图10是根据本公开至少一个实施例的图8中的基板的示意性透视图。图11是根据本公开至少一个实施例的图8中的基板的仰视立体图。如图10-11所示,在至少一个实施例中,基板210包括在第一表面211上的液体流道215。液体流道215可包括在基板210的第一表面211上的凹槽。例如,可采用激 光雕刻、光刻等任意合适的工艺形成凹槽,或者在形成制备基板210的过程中与基板210一体地形成,本公开的实施例对此不作限制。液体流道215用于将从储液室212中释放出来的液体输送至检测芯片200的其他部分,例如液体操作区219,包括但不限于液体混合区、液体检测区、液体存储区和膜泵区域。
在储液室212的底部包括在第一表面211朝向储液室112的内部空间凹陷的沟道214的情况下,液体流道215可与沟道214相连通。
在一些实施例中,如图10-图11所示,在第一表面211上,连接部217与液体流道215位于中央区213相反的两侧,以便于从储液室212中释放出来的液体进入液体流道215中。然而,应理解,在其他实施例中,连接部217和液体流道215可相对于彼此任意地定位,本公开的实施例对此不作限制。例如,连接部217的延伸方向可与液体流道215的延伸方向成45度、90度、135度等。
如图8所示,除了上述的基板210之外,根据本公开至少一个实施例的检测芯片200还可包括第一弹性膜层220。基板210包括第一表面211和与第一表面211相对的第二表面211’。沿从第一表面211到第二表面211’的方向,第一弹性膜层220在基板210的第一表面211下方。例如,第一弹性膜层220可与基板210液体密封连接。第一弹性膜层220至少覆盖储液室212的底部。在一些实施例中,第一弹性膜层220除了覆盖储液室212的底部之外,还覆盖液体流道215的凹槽,从而封闭了液体流道215的凹槽的与第一表面211平行的开放端面,以提供液体流动的空间,例如还形成用于试剂反应的空间。在一些实施例中,第一弹性膜层220还可覆盖整个第一表面211。
第一弹性膜层220具有弹性,以允许进行弹性变形。例如,在使用例如顶杆在第一弹性膜层220上朝向储液室212的底部施加作用力的情况下,第一弹性膜层220能够弹性变形,以允许顶杆具有一定的行程,从而使得沟道214裂开且中央区213与侧壁成期望的角度(如10度-25度),并且在该顶杆后撤以将作用力移除后,第一弹性膜层220可基本恢复至初始状态而不被破坏。
例如,第一弹性膜层220可以是至少部分透明的,例如透明的或半透明的,以允许观察储液室212和液体流道215内的液体或进行光学检测。
例如,第一弹性膜层220的材料可以为聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET),聚苯乙烯(Polystyrene,PS)、聚甲基丙烯酸甲酯(poly(methyl methacrylate),PMMA)、聚丙烯(Polypropylene,PP)、聚碳酸酯(Polycarbonate,PC)等以具有较好的弹性和强度,从而在弹性变形之后能够恢复初始状态。当然,本公开的实施例不限于上述材料,第一弹性膜层220也可以采用其他适用的材料,例如采用PS和PET的高分子复合材料,从而具有更好的弹性和强度。
虽然在图8中,第一弹性膜层220示出为具有与基板210的第一表面211基本相同的轮廓形状,然而,应理解,本公开的实施例并不限于此。例如,在一些实施例中,第一弹性膜层220可仅覆盖储液室212的底部,并且液体流道215的凹槽被其他膜层(例如,另一弹性膜层或刚性膜层)覆盖,该其他膜层与第一弹性膜层220之间密封连接,以避免液体泄漏,或第一弹性膜层220可覆盖储液室212的底部和液体流道215的凹槽,第一表面212的其他部分被其他膜层覆盖或者不再被覆盖而直接暴露至外部环境。
在一些实施例中,检测芯片200还可包括第一粘合层230。第一粘合层230在基板210与第一弹性膜层220之间,以连接基板210与第一弹性膜层220。
例如,第一粘合层230可以包括丙烯酸类粘结剂等具有粘结性的材料,例如,可以实现为粘结剂涂层或实现为双面胶。例如,第一粘合层230和第一弹性膜层220具有基本相同的外形轮廓,由此第一粘合层230可以使基板210和第一弹性膜层220实现牢固的结合。
在一些实施例中,在第一弹性膜层220覆盖储液室212的底部和液体流道215的凹槽的情况下,第一粘合层230可暴露在基板210的第一表面211上的液体流道215的凹槽以及储液室212的底部。即,第一粘合层230可包括镂空区域231,该镂空区域231的形状与液体流道215和储液室212在第一粘合层230上的正投影相同或基本相同,从而便于第一弹性膜层220与液体流道215形成用于例如液体流动和/或试剂反应的空间。在另一些实施例中,在第一弹性膜层220仅覆盖储液室212的底部的情况下,第一粘合层230的镂空区域231可仅暴露储液室212的底部。
在检测芯片200包括液体操作区219的情况下,第一粘合层230的镂空 区域231可包括与液体操作区219对应的开口2311,以在基板210与第一弹性膜层220之间提供用于液体流动和/或试剂反应的空间。例如,液体操作区219可与液体流道215相连通。然而,应理解,图9中所示的液体操作区219的形状和位置均是示例性的,本公开的实施例对此不作限制。
此外,如图8所示,在一些实施例中,第一粘合层230的镂空区域231还可包括液体流动控制区2312。液体流动控制区2312在第一表面211上的投影落在液体流道215的延伸线上。在操作中,当在第一表面211上,在与液体流动控制区2312对应的位置处手动地或通过作用装置进行按压时,第一弹性膜层220弹性变形,从而可与基板210相抵靠,因此可阻断液体流道215中液体的流动,并且在不再按压时,第一弹性膜层220可基本恢复至初始状态而不被破坏,液体流道215中的液体也可恢复流动。这样可根据实际要求,对液体流道215内液体的流动进行控制。
例如,在其他实施例中,当采用热压、超声波焊接、光敏胶粘接、化学溶剂键合或者激光焊接等方式将第一弹性膜层220结合在基板210上时,可以省略第一粘合层230。例如,在第一弹性膜层220与基板210通过相同的聚合物材料形成时,可通过激光焊接将第一弹性膜层220与基板210结合,而无需设置第一粘合层230。
此外,如图8所示,根据本公开至少一个实施例的检测芯片200还可包括第二弹性膜层240。沿从第一表面211到第二表面211’的方向,第二弹性膜层240在基板210的与第一表面211相对的第二表面211’上方,并且至少覆盖储液室212在第二表面211’上的开口218。在一些实施例中,第二弹性膜层240还可覆盖整个第二表面211’。第二弹性膜层240可与基板210液体密封连接,以防止容纳在储液室212内的液体从第二表面211’上的开口218泄露。
第二弹性膜层240具有弹性,以允许进行弹性变形。例如,在第二弹性膜层240上朝向储液室212施加作用力(例如通过其他作用机构或手动施加作用力)的情况下,第二弹性膜层240能够弹性变形,以允许对储液室212内容纳的液体进行挤压(例如,使得储液室212内容纳的液体从储液室212的底部流出),由此可以使得液体从底部形成的开口流出,并且在该作用力移除后,第二弹性膜层240可基本恢复至初始状态,例如,可以通过反复多 次对储液室212内容纳的液体进行挤压,以更充分地使得液体从底部形成的开口流出。例如第二弹性膜层240可以是至少部分透明的,例如透明的或半透明的,以允许观察储液室212内的液体或进行光学检测。
例如,第二弹性膜层240的材料可以为聚对苯二甲酸乙二醇酯(Polyethylene Terephthalate,PET),聚苯乙烯(Polystyrene,PS)、聚甲基丙烯酸甲酯(poly(methyl methacrylate),PMMA)、聚丙烯(Polypropylene,PP)、聚碳酸酯(Polycarbonate,PC)等以具有较好的弹性和强度,从而在弹性变形之后能够恢复初始状态。当然,本公开的实施例不限于此,第二弹性膜层240也可以采用其他适用的材料,例如采用PS和PET的高分子复合材料,从而具有更好的弹性和强度。
第一弹性膜层220和第二弹性膜层240可通过相同或不同的材料形成,本公开的实施例对此不作限制。
然而,应理解,在储液室212在第二表面211’上不具有开口218的情况下,检测芯片200可不包括第二弹性膜层240。
虽然在图8中,第二弹性膜层240示出为除了覆盖储液室212在第二表面211’上的开口218之外,还覆盖基板210的第二表面211’的其他部分,然而,应理解,本公开的实施例并不限于此。例如,在一些实施例中,第二弹性膜层240可仅覆盖储液室212在第二表面211’上的开口218。
在一些实施例中,检测芯片200还可包括第二粘合层250。第二粘合层250在基板210与第二弹性膜层240之间,以连接基板210与第二弹性膜层240。
例如,第二粘合层250可以包括丙烯酸类粘结剂等具有粘结性的材料,例如,可以实现为粘结剂涂层或实现为双面胶。例如,第二粘合层250和第二弹性膜层240具有基本相同的外形轮廓,由此第二粘合层250可以使基板210和第二弹性膜层240实现牢固的结合。
在一些实施例中,第二粘合层250暴露在储液室212在第二表面211’上的开口218。即,第二粘合层250可包括镂空区域251,该镂空区域251的形状与开口218在第二粘合层250上的正投影相同或基本相同。
例如,在其他实施例中,当采用热压、超声波焊接、光敏胶粘接、化学溶剂键合或者激光焊接等方式将第二弹性膜层240结合在基板210上时,可 以省略第二粘合层250。例如,在第二弹性膜层240与基板210通过相同的聚合物材料形成时,可通过激光焊接将第二弹性膜层240与基板210结合,而无需设置第二粘合层250。
图12A和图12B是根据本公开至少一个实施例的沿图9中的线A-A’的剖视图,并且图12A和图12B示出了图9所示的检测芯片的液体释放过程的示意图。如图12A和图12B所示,当顶杆朝向储液室212的底部(例如,中央区213)施加作用力的情况下,沟道214可被破坏,储液室212的底部沿沟道214裂开,中央区213的被沟道214围绕的边缘与储液室212的底部的其他部分分离,连接部217连接中央区213与侧壁216,并且连接部217允许中央区213与侧壁216之间的角为大于零度且小于90度的角,例如10度-25度的角。液体流道215与沟道214相连通,从储液室212释放出的液体流入液体流道215,并经由液体流道215输送至检测芯片的其他位置,例如液体操作区219。
本公开的至少一个实施例还提供了一种用于制备检测芯片的方法,该检测芯片可以是上述任一实施例提供的检测芯片。关于检测芯片的详细描述可参见上文中各实施例的描述,本文中将不再赘述。
例如,根据本公开至少一个实施例的用于制备检测芯片的方法可包括:
提供基板,该基板包括第一表面,
其中,该基板包括储液室,该储液室配置为容纳液体,并包括在第一表面的底部,
该底部包括中央区和围绕中央区的边缘区,以及
该边缘区包括围绕中央区的沟道,沟道的厚度小于中央区的厚度。
在一些实施例中,该制备检测芯片的方法还可包括:通过一体成型的方法制备基板。例如,该一体成型的方法包括注塑工艺,可通过注塑工艺并采用相应的注塑模具来制备基板,以节约成本和提高生产效率。在一些实施例中,在通过注塑工艺来制备基板时,还可同时在基板中形成液体流道等,本公开的实施例对此不作限制。
在一些实施例中,该制备检测芯片的方法还可包括:在基板的第一表面提供第一弹性膜层。该第一弹性膜层与基板的第一表面密封连接,并且该第一弹性膜层至少覆盖储液室的底部。关于第一弹性膜层的描述可参见上文中 各实施例的描述,本文中将不再赘述。
在一些实施例中,该制备检测芯片的方法还可包括:通过激光焊接或粘合剂来接合第一弹性膜层与基板。例如,当第一弹性膜层与基板通过相同的材料(如PS、PMMA、PC、PP等聚合物材料)形成时,可通过激光焊接来接合第一弹性膜层与基板;当第一弹性膜层与基板通过不同的材料形成时,可通过例如粘合剂来接合第一弹性膜层与基板。
在一些实施例中,通过粘合剂来接合第一弹性膜层与基板的步骤可包括:在第一弹性膜层与基板之间设置第一粘合层。关于第一粘合层的描述可参见上文中各实施例的描述,本文中将不再赘述。
在一些实施例中,该制备检测芯片的方法还可包括:在基板的与第一表面相对的第二表面提供第二弹性膜层。该第一弹性膜层与基板的第二表面密封连接。该第二弹性膜层例如至少覆盖储液室的在第二表面的开口。关于第二弹性膜层的描述可参见上文中各实施例的描述,本文中将不再赘述。
在一些实施例中,该制备检测芯片的方法还可包括:通过激光焊接或粘合剂来接合第二弹性膜层与基板。例如,当第二弹性膜层与基板通过相同的材料(如PS、PMMA、PC、PP等聚合物材料)形成时,可通过激光焊接来接合第二弹性膜层与基板;当第二弹性膜层与基板通过不同的材料形成时,可通过例如粘合剂来接合第二弹性膜层与基板。
在一些实施例中,通过粘合剂来接合第二弹性膜层与基板的步骤可包括:在第二弹性膜层与基板之间设置第二粘合层。关于第二粘合层的描述可参见上文中各实施例的描述,本文中将不再赘述。
本公开的至少一个实施例还提供了一种用于操作检测芯片的方法,其中该检测芯片可以是上述任一实施例提供的检测芯片。关于检测芯片的详细描述可参见上文中各实施例的描述,本文中将不再赘述。
例如,根据本公开至少一个实施例的用于操作检测芯片的方法可包括:
在储液室的底部上朝向储液室的内部空间施加作用力,以破坏沟道并使得容纳在储液室的内部空间内的液体从储液室的底部流出。
在一些实施例中,在储液室的底部上朝向储液室的内部空间施加作用力,以破坏沟道并使得容纳在储液室的内部空间内的液体从储液室的底部流出,包括:在检测芯片的所述底部上朝向所述储液室的内部空间施加所述作用力, 以使得所述中央区与所述侧壁成大于零度且小于90度的角。例如,中央区与侧壁成0.1度-60度、5度-40度、10度-25度的角。
在一些实施例中,在检测芯片还包括第一弹性膜层的情况下,上述的在储液室的底部上朝向储液室的内部空间施加作用力的步骤可包括:通过在第一弹性膜层上施加作用力,以对储液室的底部施加作用力,从而破坏沟道并使得容纳在储液室的内部空间内的液体从储液室的底部流出。关于第一弹性膜层的描述可参见上文中各实施例的描述,本文中将不再赘述。
在一些实施例中,通过在第一弹性膜层上施加作用力,以对储液室的底部施加作用力,从而破坏沟道并使得容纳在储液室的内部空间内的液体从储液室的底部流出可包括:在第一弹性膜层上与距离连接部0-3/4中央区长度的位置对应的位置处施加作用力,以对储液室的底部施加作用力,从而破坏沟道并使得容纳在储液室的内部空间内的液体从储液室的底部流出。例如,可以在第一弹性膜层上与距离连接部1/2中央区长度的位置对应的位置处施加作用力。这样可使得在第一弹性膜层产生相同的弹性形变情况下,中央区与侧壁成更小的角度,便于储液室的内部空间内的液体从储液室底部流出。这里提到的中央区长度指的是在第一表面上,从连接部到储液室的一部分侧壁的距离,其中该一部分侧壁与连接部位于中央区的相反的两侧。
在一些实施例中,在检测芯片还包括第二弹性膜层的情况下,该用于操作检测芯片的方法还可包括:在第二弹性膜层上施加作用力,以驱使容纳在储液室的内部空间内的液体从储液室的底部流出。关于第二弹性膜层的描述可参见上文中各实施例的描述,本文中将不再赘述。
图13是根据本公开至少一个实施例的检测装置的示意性框图。如图13所示,根据本公开的至少一个实施例的检测装置300可包括:
检测芯片310;以及
力作用机构320,配置为在使用时,在检测芯片310的底部上朝向储液室的内部空间施加作用力,以破坏沟道并使得容纳在内部空间内的液体从检测芯片310的底部流出。
检测芯片310可以是上述任一实施例提供的检测芯片。力作用机构320可以采用任何合适的形式,只要其可以向检测芯片310的底部施加作用力,以破坏检测芯片310中储液室的底部的沟道。例如,力作用机构320可以包 括杆,以对储液室的底部施加压力,从而在储液室的底部形成开口以允许其中存储的液体流出,该杆的端部可以与储液室的底部的端面相配合。该力作用机构320可以通过电机驱动或可以被手动操作,本公开的实施例对此不作限制。
在一些实施例中,在检测芯片310的基板包括连接部的情况下,在储液室的底部的沟道被破坏且中央区与侧壁成大于零度且小于90度的角(例如10度-25度的角)后,力作用机构320可撤走或保持抵靠在检测芯片310的底部上,以使得中央区与侧壁保持所形成的角。例如,在储液室的底部的沟道被破坏且中央区与侧壁成大于零度且小于90度的角(例如10度-25度的角)时,连接部的弯曲为塑性形变的情况下,可撤走力作用机构320。例如,在储液室的底部的沟道被破坏且中央区与侧壁成大于零度且小于90度的角(例如10度-25度的角)时,连接部的弯曲为弹性形变的情况下,力作用机构320可保持抵靠在检测芯片310的底部上,以使得中央区与侧壁保持所形成的角,从而防止中央区又随着储液室内的液体流动而变为水平放置并堵塞储液室的底部的开口。
虽然在图13中未示出,然而,应理解,检测装置300还可包括用于放置检测芯片310的底座、废液处理器、各种分析检测器、液体输入输出接口、电源接口等,这些部件均可采用本领域已知的部件,本公开的实施例对此不作限制。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (21)

  1. 一种检测芯片,包括:
    基板,包括第一表面;
    其中,所述基板包括储液室,所述储液室配置为容纳液体并包括位于所述第一表面上的底部,
    所述底部包括中央区和围绕所述中央区的边缘区,
    所述边缘区包括围绕所述中央区的沟道,所述沟道的厚度小于所述中央区的厚度。
  2. 如权利要求1所述的检测芯片,其中,所述沟道为非封闭沟道,以部分围绕所述中央区。
  3. 如权利要求1所述的检测芯片,其中,所述沟道为封闭沟道,以围绕所述中央区一周。
  4. 如权利要求1或2所述的检测芯片,其中,所述储液室呈圆柱状,并且所述沟道呈环形。
  5. 如权利要求4所述的检测芯片,其中,所述沟道所对应的圆心角为340度-358度。
  6. 如权利要求1至5中任一项所述的检测芯片,其中,所述中央区的厚度为0.1mm-3mm,以及
    所述沟道的厚度为0.05mm-0.3mm,以及所述沟道的宽度为0.1mm-3mm。
  7. 如权利要求1至6中任一项所述的检测芯片,其中,所述底部的朝向所述储液室的内部空间的面为平面,并且所述沟道在所述第一表面朝向所述储液室的内部空间凹陷。
  8. 如权利要求1至6中任一项所述的检测芯片,其中,所述底部的远离所述储液室的内部空间的面为平面,并且所述沟道在所述底部的朝向所述储液室的内部空间的所述面凹陷远离所述储液室的内部空间。
  9. 如权利要求1或2所述的检测芯片,其中,
    所述储液室还包括侧壁,所述沟道在所述侧壁与所述中央区之间,
    所述边缘区还包括连接部,
    其中,所述连接部在所述侧壁与所述中央区之间,并且所述连接部对应 于所述沟道未围绕所述中央区的开口部分。
  10. 如权利要求9所述的检测芯片,其中,所述连接部配置为在所述沟道被破坏的情况下,允许所述中央区与所述侧壁成大于零度且小于25度的角。
  11. 如权利要求9或10所述的检测芯片,其中,所述基板还包括在所述第一表面上的液体流道,
    其中,所述液体流道与所述沟道相连通。
  12. 如权利要求11所述的检测芯片,其中,在所述第一表面上,所述连接部与所述液体流道位于所述中央区相反的两侧。
  13. 如权利要求11或12所述的检测芯片,还包括:第一弹性膜层,
    其中,所述液体流道包括在所述基板的所述第一表面上的凹槽,
    所述第一弹性膜层在所述基板的第一表面,且覆盖所述底部,以及覆盖所述凹槽以提供液体流动的空间。
  14. 如权利要求13所述的检测芯片,还包括第二弹性膜层,
    所述基板还包括与所述第一表面相对的第二表面,
    所述第二弹性膜层在所述基板的第二表面,并且覆盖所述储液室的在所述第二表面上的开口。
  15. 如权利要求14所述的检测芯片,还包括:第一粘合层和第二粘合层,
    其中,所述第一粘合层在所述基板与所述第一弹性膜层之间以连接所述基板与所述第一弹性膜层;以及
    所述第二粘合层在所述基板与所述第二弹性膜层之间以连接所述基板与所述第二弹性膜层。
  16. 如权利要求11至15中任一项所述的检测芯片,还包括液体操作区,
    所述液体操作区与所述液体流道连通,
    其中,所述液体操作区包括选自由液体混合区、液体检测区和液体存储区构成的组中的至少之一。
  17. 一种检测装置,包括:
    如权利要求1至16中任一项所述的检测芯片;以及
    力作用机构,配置为在使用时,在所述检测芯片的所述底部上朝向所述储液室的内部空间施加作用力,以破坏所述沟道并使得容纳在所述内部空间 内的液体从所述底部流出。
  18. 一种用于制备检测芯片的方法,包括:
    提供基板,所述基板包括第一表面,
    其中,所述基板包括储液室,所述储液室配置为容纳液体,并包括在所述第一表面的底部,
    所述底部包括中央区和围绕所述中央区的边缘区,以及
    所述边缘区包括围绕所述中央区的沟道,所述沟道的厚度小于所述中央区的厚度。
  19. 如权利要求18所述的方法,还包括:通过一体成型的方法制备所述基板。
  20. 一种用于操作如权利要求1至16中任一项所述的检测芯片的方法,包括:
    在所述储液室的所述底部上朝向所述储液室的内部空间施加作用力,以破坏所述沟道并使得容纳在所述内部空间内的液体从所述底部流出。
  21. 一种用于操作如权利要求13所述的检测芯片的方法,包括:
    在所述第一弹性膜层上的与距离所述连接部0-3/4中央区长度的位置对应的位置处施加作用力,以对所述储液室的所述底部施加作用力,从而破坏所述沟道并使得容纳在所述储液室的内部空间内的液体从所述底部流出。
PCT/CN2020/081082 2020-03-25 2020-03-25 检测芯片、检测装置及制备和操作检测芯片的方法 WO2021189290A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080000374.7A CN115734818A (zh) 2020-03-25 2020-03-25 检测芯片、检测装置及制备和操作检测芯片的方法
PCT/CN2020/081082 WO2021189290A1 (zh) 2020-03-25 2020-03-25 检测芯片、检测装置及制备和操作检测芯片的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/081082 WO2021189290A1 (zh) 2020-03-25 2020-03-25 检测芯片、检测装置及制备和操作检测芯片的方法

Publications (1)

Publication Number Publication Date
WO2021189290A1 true WO2021189290A1 (zh) 2021-09-30

Family

ID=77890864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081082 WO2021189290A1 (zh) 2020-03-25 2020-03-25 检测芯片、检测装置及制备和操作检测芯片的方法

Country Status (2)

Country Link
CN (1) CN115734818A (zh)
WO (1) WO2021189290A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160220994A1 (en) * 2015-01-29 2016-08-04 David W. Wright Diagnostic cartridge, fluid storage and delivery apparatus therefor and methods of construction thereof
CN206965753U (zh) * 2017-06-09 2018-02-06 北京百康芯生物科技有限公司 一种具有试剂存储单元的微流控芯片
CN110252434A (zh) * 2019-06-27 2019-09-20 深圳华迈兴微医疗科技有限公司 一种用于微流控芯片的液体储存结构及微流控芯片

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE359502T1 (de) * 1999-07-16 2007-05-15 Applera Corp Vorrichtung und verfahren für hochdichte elektrophorese
WO2004067708A2 (en) * 2003-01-17 2004-08-12 Sri International Et Al. Device and method for fragmenting material by hydrodynamic shear
CN100547403C (zh) * 2005-08-12 2009-10-07 宗小林 一种微流控芯片分析仪及配套芯片
DE102011003856B4 (de) * 2011-02-09 2020-06-18 Robert Bosch Gmbh Mikrosystem für fluidische Anwendungen sowie Herstellungsverfahren und Benutzungsverfahren für ein Mikrosystem für fluidische Anwendungen
DE102012212650A1 (de) * 2012-07-19 2014-01-23 Robert Bosch Gmbh Mikrofluidische Lagerungsvorrichtung zum Vorlagern eines Fluids, Verfahren zu dessen Herstellung und eine Verwendung derselben
GB201405808D0 (en) * 2014-03-31 2014-05-14 Univ Hull Fluid delivery
CN109557150A (zh) * 2019-01-14 2019-04-02 大连大学 数字微流控芯片及基于其的病原体免疫检测方法
CN110632286A (zh) * 2019-10-28 2019-12-31 南京晶捷生物科技有限公司 一种生化检测设备
CN114100702B (zh) * 2020-08-27 2023-05-30 京东方科技集团股份有限公司 一种检测芯片及其制备方法、使用方法、检测装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160220994A1 (en) * 2015-01-29 2016-08-04 David W. Wright Diagnostic cartridge, fluid storage and delivery apparatus therefor and methods of construction thereof
CN206965753U (zh) * 2017-06-09 2018-02-06 北京百康芯生物科技有限公司 一种具有试剂存储单元的微流控芯片
CN110252434A (zh) * 2019-06-27 2019-09-20 深圳华迈兴微医疗科技有限公司 一种用于微流控芯片的液体储存结构及微流控芯片

Also Published As

Publication number Publication date
CN115734818A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
US9644794B2 (en) Flow cell with cavity and diaphragm
US10232367B2 (en) Flow cell with an integrated dry substance
US7790109B2 (en) Micro-fluid reaction vessel, method for manufacturing the same, and micro-fluid reaction method using the vessel
US10100939B2 (en) Valve, fluid control structure, fluid device and method of manufacturing valve
US9168524B2 (en) Microfluidic storage device for pre-storing of fluid, method for its production and a use thereof
CN102192881A (zh) 流路芯片和夹具
CN113275046B (zh) 检测芯片及其使用方法、检测装置
EP2452751A2 (en) Microchip
US20220250067A1 (en) Detection chip, method for using detection chip, and detection device
JP2010151717A (ja) マイクロ流路チップ
US20140147930A1 (en) Microfluidic device with holding interface, and methods of use
WO2021189290A1 (zh) 检测芯片、检测装置及制备和操作检测芯片的方法
JP2017516097A (ja) マイクロ流体フローセルアセンブリ及びその使用方法
JP2017516099A (ja) 撮像用マイクロ流体フローセルアセンブリ及びその使用方法
US20110135538A1 (en) Microchip
CN114100702B (zh) 一种检测芯片及其制备方法、使用方法、检测装置
JPWO2019092989A1 (ja) マイクロ流体チップおよびマイクロ流体デバイス
WO2021164529A1 (zh) 检测芯片及其操作方法、检测系统
US11592114B2 (en) Fluid handling device and fluid handling system
US10946376B2 (en) Carrier element for introducing a dry substance into a flow cell
WO2019102865A1 (ja) 流体チップ、流体デバイスおよびそれらの製造方法
JP2006224011A (ja) マイクロバルブ
CN114302949B (zh) 微芯片
JP2013117424A (ja) 流体取扱装置
WO2023060849A1 (zh) 一种基于lamp的微流控芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927591

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20927591

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 16.11.2022)