WO2021187772A1 - 발포체와 감광성 수지를 이용한 led칩 전사 방법 및 장치, 이를 이용한 디스플레이 장치의 제조 방법 - Google Patents

발포체와 감광성 수지를 이용한 led칩 전사 방법 및 장치, 이를 이용한 디스플레이 장치의 제조 방법 Download PDF

Info

Publication number
WO2021187772A1
WO2021187772A1 PCT/KR2021/002549 KR2021002549W WO2021187772A1 WO 2021187772 A1 WO2021187772 A1 WO 2021187772A1 KR 2021002549 W KR2021002549 W KR 2021002549W WO 2021187772 A1 WO2021187772 A1 WO 2021187772A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
photosensitive resin
led chip
layer
substrate
Prior art date
Application number
PCT/KR2021/002549
Other languages
English (en)
French (fr)
Inventor
민재식
이재엽
박재석
조병구
Original Assignee
(주)라이타이저
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)라이타이저 filed Critical (주)라이타이저
Publication of WO2021187772A1 publication Critical patent/WO2021187772A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes

Definitions

  • the present invention is a technology for transferring each separated chip to a carrier substrate by etching-separating the LED chip formed on the wafer, and a part of each chip transferred to the carrier substrate is selectively used as a carrier substrate and a display panel using a foam and a photosensitive resin, It relates to an LED chip transfer method and a method for manufacturing a display device to which transfer technology is applied sequentially or at intervals of time.
  • a light emitting diode is one of light emitting devices that emits light when an electric current is applied thereto. Light-emitting diodes can emit high-efficiency light with a low voltage, and thus have an excellent energy-saving effect.
  • the luminance problem of light emitting diodes has been greatly improved, and it has been applied to various devices such as a backlight unit of a liquid crystal display device, an electric sign board, a display device, and a home appliance.
  • ⁇ -LED micro light emitting diode
  • ⁇ -LED micro light emitting diodes
  • micro light emitting diodes Since the micro light emitting diodes are picked up one by one and transferred, it is referred to as a 1:1 pick-and-place transfer method.
  • the size of the micro light emitting diode chip manufactured on the sapphire substrate is small and the thickness is thin, the chip is damaged or the transfer fails, or the chip alignment ( Alignment) fails, or a problem such as a tilt of the chip is generated.
  • Patent Document 1 Republic of Korea Patent 10-0853410
  • the present invention provides a method for selectively transferring a plurality of chips formed or disposed on a base substrate by using predetermined heat and pressure.
  • the present invention provides a method for selectively transferring a plurality of chips formed on a base substrate using a predetermined foam and photosensitive resin.
  • Another object of the present invention is to provide a method for selectively transferring some of a plurality of chips transferred from a wafer to a first carrier substrate to a second carrier substrate.
  • Another object of the present invention is to provide a method for manufacturing a display device using a technology for sequentially transferring a chip transferred to a second carrier substrate to a display panel.
  • Another object of the present invention is to provide a method for manufacturing a display device having various sizes and various pitches between pixels.
  • Another object of the present invention is to provide a method for using a wafer having as many RGB pixels as possible on a limited area regardless of the resolution of the display device.
  • Another object of the present invention is to provide a method for rapidly manufacturing a large-area display device.
  • An LED chip transfer apparatus using a foam and a photosensitive resin includes: a substrate; an Expandable Micro-Capsule (EMC)-PR (Photo Resist) layer formed on the substrate and made of a photosensitive resin including a foam foamed at a predetermined temperature; and an adhesive layer formed on the EMC-PR layer, wherein an LED chip is disposed on the adhesive layer, and the EMC-PR layer is a photodegradation layer to which only a specific area is exposed by a mask and UV irradiation.
  • EMC Expandable Micro-Capsule
  • Photo Resist Photo Resist
  • a layer made of a photosensitive resin including a foam foamed at a predetermined temperature is formed on a substrate, and the foaming power of the foam is the above To exceed the resistivity of the layer, the layer is exposed to a specific area by UV irradiation, and the LED chip adhered to the layer is peeled off and transferred to the target substrate.
  • the LED chip transfer method using the foam preparing a substrate, a substrate preparation step; EMC-PR layer forming step of forming an EMC (Expandable Micro-Capsule)-PR (Photo Resist) layer made of a mixture of a photosensitive resin including a foam foamed at a predetermined temperature on the substrate; A pressure-sensitive adhesive layer forming step of forming an adhesive layer made of an adhesive solution on the EMC-PR layer; Positioning a mask on the back side of the substrate so that only a specific area is exposed by UV irradiation, a photodegradation layer forming step; and a selective transfer step of selectively transferring the LED chip array positioned in the adhesive layer on the photodegradation layer to a target substrate by applying a predetermined heat to the foaming of the foam.
  • the manufacturing method of the display device forming a plurality of LED chips and a protective layer passivating the plurality of LED chips on a wafer, an LED chip forming step; etching the protective layer for each LED chip on the wafer; a primary transfer step of transferring an array of LED chips etched on the wafer and arranged in rows, columns or matrices to a first carrier substrate; removing the wafer from the LED chip array; a secondary transfer step of transferring the LED chip array from the first carrier substrate to a second carrier substrate having an EMC adhesion layer made of a mixture of a second foam and an adhesive liquid; and a display panel transfer step of transferring the LED chip array from the second carrier substrate to the display panel.
  • an EMC-PR layer made of a photosensitive resin including a first foam foamed at a predetermined temperature is formed on a substrate, and the foaming force of the first foam is opposite to the foaming force.
  • the LED chip may be selectively peeled or transferred through the foamed region and the non-foamed region of the first foam.
  • each chip transferred to the second carrier substrate can be sequentially transferred to the display panel by a technique of selectively transferring the two carrier substrates.
  • the present invention can selectively transfer a plurality of chips formed on a base substrate through targeted exposure of a predetermined foam and a photosensitive resin layer including the foam.
  • FIG. 1 is a conceptual diagram for explaining an LED chip transfer method according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a transfer apparatus and method for selectively peeling an LED chip transferred or disposed on a substrate based on FIG. 1 .
  • FIG. 3 is an exemplary view in which an LED chip at a specific position is transferred with reference to FIG. 2 .
  • FIG. 4 is a flowchart illustrating a method of manufacturing a display device according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing chips formed on each wafer according to an embodiment of the present invention.
  • FIG. 6 is a process diagram of growing each Epi on each wafer according to an embodiment of the present invention.
  • FIG. 7 is a process diagram of etching each chip formed on each wafer in a single chip unit according to an embodiment of the present invention.
  • FIG. 8 is a process diagram of transferring the etched chip of FIG. 7 from a wafer to a first carrier substrate;
  • FIG. 9 is a process diagram of removing a wafer using an LLO technique.
  • FIG. 10 is a process diagram for explaining a step ( S150 ) of preparing the second carrier substrate shown in FIG. 4 .
  • 11 to 13 are exemplary views for explaining a process ( S160 ) of selectively transferring the chip array shown in FIG. 4 from a first carrier substrate to a second carrier substrate.
  • FIG. 14 shows a process ( S170 ) of transferring the LED chip array from the second carrier substrate shown in FIG. 4 to the display panel.
  • the upper (above) or lower (below) two components are in direct contact with each other or one or more other components disposed between two components.
  • each layer is exaggerated, omitted, or schematically illustrated for convenience and clarity of description.
  • the size of each component does not fully reflect the actual size.
  • the chip, CSP, LED pixel CSP, and LED sub-pixel CSP used in the present invention may be defined as follows.
  • a chip is a concept including an LED chip, an RGB chip, an R chip, a G chip, a B chip, a mini LED chip, and a micro LED chip.
  • the chip is described as an R chip, a G chip, or a B chip, but it should be noted that the chip is not limited to the R chip, the G chip, or the B chip.
  • a chip scale package is a package that has recently received a lot of attention in the development of a single chip package, and refers to a single chip package having a semiconductor/package area ratio of 80% or more.
  • LED pixel CSP refers to a single package in which one LED pixel is CSP packaged by using Red LED, Green LED, and Blue LED as one pixel unit.
  • the LED sub-pixel CSP refers to a single package in which each of Red LED, Green LED, and Blue LED is used as one sub-pixel unit and CSP is packaged in one LED sub-pixel unit.
  • a light emitting body formed on a wafer may be defined as an LED chip.
  • FIG. 1 is a conceptual diagram for explaining an LED chip transfer method according to an embodiment of the present invention.
  • the present invention uses a microcapsule foam (foaming agent) to increase the volume of the foam through the foaming, and the adhesive force decreases as the volume increases, so that the adhered LED chip is peeled off.
  • foaming agent foaming agent
  • microcapsule foams have foaming temperature characteristics.
  • the size of the microcapsule foam, the foaming start temperature (T start ) and the maximum foaming temperature (T max ) are developed and sold in various forms.
  • the size of the microcapsule foams varies from 5 ⁇ m to 50 ⁇ m, and according to the foaming temperature of the microcapsule foam, low-temperature-expansive products (70-100°C), medium-temperature-expansive products, 100 ⁇ 125°C), high-temperature-expansive products (125 ⁇ 155°C), and extremely high-temperature-expansive products (155 ⁇ 260°C).
  • Microcapsule foam is called thermally expandable microcapsule, and refers to a particulate foaming agent having a core and shell structure containing hydrocarbons of low boiling point and covering the outside with a gas barrier polymer.
  • the model shown in FIG. 1 is a structural diagram for explaining the foaming concept of the microcapsule foam of the present invention.
  • a typical microcapsule foam 10 may have a structure including a core 11 made of hydrocarbon and a shell 12 made of a thermoplastic resin having gas barrier properties.
  • the photosensitive resin 13 may be formed outside the shell 12 of the microcapsule foam 10 .
  • the photosensitive resin 13 is shown in a circular shape surrounding the outer periphery of the shell 12 , and may be a form in which microcapsule foams 10 are mixed with the photosensitive resin 13 .
  • the structure shown in FIG. 1 has the following physicochemical properties.
  • the microcapsule foam 10 has a force (F MC ) to expand from the core 11, and the shell 12 holds this force (F MC ), so that the expansion is not made, and there is a specific temperature (heat) When is applied, the force (F MC ) penetrates the force held by the shell 12 and expands and foams.
  • the force F MC that penetrates the shell 12 and expands may be blocked again by the photosensitive resin 13 .
  • the force to expand (F MC , foaming force ) of the core 11 and the resistive force (F PR , resistance) of the photosensitive resin 13 are opposed.
  • F MC is It is possible to control the type of microcapsule foam and the foaming temperature, and F PR can be controlled by controlling the type of photosensitive resin and UV exposure energy.
  • FIG. 2 is an explanatory diagram of a transfer apparatus and method for selectively peeling an LED chip transferred or disposed on a substrate based on FIG. 1 .
  • the LED chip transfer device includes a substrate 101 , an Expandable Micro-Capsule (EMC)-Photo Resist (PR) 103 , an adhesive layer 107 and an LED chip 100 , 100') may be included.
  • EMC Expandable Micro-Capsule
  • PR Photo Resist
  • the LED chips 100 and 100' may mean an RGB LED chip, an R LED chip, a G LED chip, a B LED chip, and a CSP (Chip Scale Package), and the LED chip pixel CSP is a Red LED, a Green LED, and a Blue LED.
  • the LED chip pixel CSP is a Red LED, a Green LED, and a Blue LED.
  • the LED sub-pixel CSP is one LED sub-pixel by using each of Red LED, Green LED, and Blue LED as one sub-pixel unit. It may mean a single package packaged as a CSP unit.
  • the substrate 101 may be made of any one of glass, quartz, synthetic quartz, and metal, and the material is not particularly limited.
  • the EMC-PR layer 103 may refer to a layer including the microcapsule foam 105 in a photosensitive resin.
  • the adhesive layer 107 may perform a role of adhering and disposing the LED chips 100 and 100 ′ or transferring and fixing the LED chips grown or disposed on a separate wafer or substrate by adhesive force, and the adhesion is adhesive. can be used in the same sense as
  • a process of peeling or transferring the LED chips 100 and 100 ′ at a specific position will be described with reference to FIG. 2 .
  • the EMC-PR layer 103 is formed on the substrate 101 as described above, and the adhesive layer 107 is applied and cured on the EMC-PR layer 103 . , the LED chips 100 and 100 ′ are disposed or transferred on the adhesive layer 107 .
  • a mask 109 to form a pattern is disposed on the back side of the substrate 101 , and UV is irradiated through the mask 109 .
  • the mask 109 and the photosensitive resin region exposed by UV irradiation form an exposure region 111 exposed by light as shown.
  • the photosensitive resin has an exposed region 111 and an unexposed region 103 (original EMC-PR layer).
  • the foam 105 of the exposure area 111 in the EMC-PR layer 103 is foamed and the The volume expands and changes into the expanded foam 105', and the expanded volume 105' penetrates the EMC-PR layer 103 and the adhesive layer 107, and the adhesive force of the adhesive layer 107 will be zeroed.
  • the foam 105 ′ is foamed so that the foaming force overcomes the resistive force and can be foamed. Conversely, in the unexposed region 103 , F MC ⁇ F PR In some cases, the foaming force of the foam 105 does not overcome the resistive force, so it is left unfoamed.
  • the LED chip 100 at a specific position is peeled off, and the LED chip 100 ′ at a different position is placed in a non-exfoliated state. , it becomes possible to selectively peel the LED chip or transfer it to a target substrate according to the control of the foaming force and the resistive force.
  • FIG. 3 is an exemplary view in which an LED chip at a specific position is transferred with reference to FIG. 2 .
  • FIG. 3 a process of transferring from a wafer to a target substrate using the principles and processes of FIGS. 1 and 2 is schematically described.
  • the LED chip 100 is formed in a matrix arrangement by growing an epitaxial layer on the wafer 10 .
  • the carrier substrate 20 may be the transfer device of FIG. 2 .
  • the EMC-PR layer is exposed by a mask and UV irradiation at the position 100a as described in FIG. 2 , , at the position 100b, even if UV irradiation is made by a mask, a preceding process is made so that it is not exposed by light.
  • the foam is foamed at the position 100a and the LED chip 100a is peeled off It is transferred to the target substrate 30, and at the position 100b, the foam does not overcome the resistive force of the photosensitive resin and is left there, so that only the LED chip located at 100a can be selectively transferred to the target substrate 30.
  • FIG. 4 is a flowchart illustrating a method of manufacturing a display device according to an embodiment of the present invention.
  • each of a plurality of chips is formed on each wafer ( S110 ), and each chip is etched on each wafer by one chip ( S110 ).
  • FIG. 5 is a diagram showing chips formed on each wafer according to an embodiment of the present invention.
  • the embodiment of the present invention describes three wafers each having an R chip, a G chip, and a B chip as an example, but is not limited thereto.
  • a plurality of light emitting devices 11R, 11G, and 11B emitting light of the same wavelength band are formed on each one wafer 10R, 10G, and 10B.
  • the light emitting devices 11R, 11G, and 11B may be light emitting chips emitting red, green, and blue light.
  • the plurality of light emitting devices 11R, 11G, and 11B may be arranged at equal intervals along a plurality of rows and columns on each wafer 10R, 10G, and 10B.
  • the manufacturing cost of the light emitting device can be reduced by efficiently utilizing the entire area of a relatively expensive wafer.
  • the wafers may be separated for each chip through an etching process for each chip.
  • the pitch W between the chips formed on each of the wafers 10R, 10G, and 10B is the same as the pitch between the chips formed on the display panel or is set as a multiple of a proportional constant of a predetermined value.
  • This may facilitate the transfer when selectively transferring the chips from the second carrier substrate to the display panel in a matrix unit, which will be described later.
  • FIG. 6 is a process diagram of growing each Epi on each wafer according to an embodiment of the present invention.
  • epis 11R, 11G, and 11B emitting a predetermined light are grown on one surface of each of the three wafers 10R, 10G, and 10B.
  • the wafers 10R, 10G, and 10B may be one of sapphire (Al2O3), silicon, gallium arsenide (GaAs), gallium nitride (GaN), and zinc nitride (ZnN).
  • Al2O3 aluminum oxide
  • GaAs gallium arsenide
  • GaN gallium nitride
  • ZnN zinc nitride
  • the present invention is not limited thereto, and any substrate that can be used as a wafer may be used.
  • a layer 13 is formed.
  • the pads 14r, 14g, and 14b are not expanded and may have the size and shape of a general pad.
  • the protective layer 13 When forming the protective layer 13, it is preferable to form the pads 14r, 14g, and 14b so that they are exposed to the outside of the protective layer 13 in order to expand the area of the pad thereafter.
  • FIG. 6 shows the cross-sectional views of the AA Section and the BB Section in FIG. 5, respectively.
  • a pair of (+), (-) electrodes per chip are formed under the Epi layer, and the electrodes are based on the AA section.
  • it can be formed up and down, and it is also possible to form left and right if necessary.
  • the light emitting bodies formed on the wafers 10R, 10G, and 10B are in a state of being electrically separated in units of chips, and in the present invention, they are referred to as LED chips, and after etching for each chip, the first carrier substrate from the wafers 10R, 10G, and 10B is transcribed into
  • FIG. 7 is a process diagram of etching each chip formed on each wafer in a single chip unit according to an embodiment of the present invention.
  • epis 11R, 11G, 11B and pads 14r, 14g, and 14b are formed on wafers 10B, 10G, and 10B, and a protective layer 13 is applied to each chip.
  • a plurality of physically separated chips 100R, 100G, and 100B are formed by etching.
  • each chip and the protective layer 13 surrounding the chip will be referred to as a chip in the present specification.
  • each chip and the protective layer 13 surrounding the chip may also be referred to as a pixel CSP or a sub-pixel CSP.
  • etching process for each chip 100R, 100G, and 100B wet or dry etching may be applied, and the shape of the LED chip is defined by etching, in which case the wafers 10B, 10G, 10B are will remain as it is.
  • one chip 100R, 100G, and 100B is illustrated as the chip 100R, 100G, 100B formed in FIG. 7, but is not limited thereto, and the chip etched in the row and column directions in FIG. 5 It may be a (100R, 100G, 100B) array.
  • Each of the chips 100R, 100G, and 100B may have a flip-chip structure that does not require wires.
  • each of the chips 100R, 100G, and 100B may be packaged into a new concept small package manufactured in the form of a CSP by configuring sub-pixels for each R, G, and B, respectively.
  • the R chip 100R, the G chip 100G, and the B chip 100B may constitute one light emitting device or a light emitting body.
  • a pre-process for transferring the chip array may be performed, and from the first carrier substrate to the second carrier substrate. After selectively transferring, the chip array arranged on the second carrier substrate may be sequentially transferred to a display panel to be described later.
  • a process of removing the wafer is performed by attaching chip arrays etched in the form of chips 100R, 100G, and 100B to a carrier substrate on each of the wafers 10B, 10G, and 10B, and thereafter, the first carrier substrate A process of sequentially selective transfer to the second carrier substrate and sequentially selective transfer to the display panel will be described.
  • FIG. 8 is a process diagram of transferring the etched chip of FIG. 7 from a wafer to a first carrier substrate
  • FIG. 9 is a process diagram of removing the wafer using an LLO technique.
  • 8 and 9 are processes for removing the wafers 10R, 10G, and 10B to transfer the etched chip to the first carrier substrate 210R.
  • the first carrier substrate 210R may have the same configuration as the transfer device of FIG. 2 .
  • the first carrier substrates 210R, 210G, and 210B are applied to the LED chips in the opposite direction of the wafers 10R, 10G, and 10B. (100R, 100G, 100B).
  • the first carrier substrates 210R, 210G, and 210B are attached to the pads 14r, 14g, and 14b of the chips 100R, 100G, and 100B.
  • the first carrier substrates 210R, 210G, and 210B include substrates 217R, 217G, and 217B, EMC-PR layers 213R, 213G, and 213B, and adhesive layers 211R, 211G, and 211B.
  • the substrates 217R, 217G, and 217B may be made of any one of glass, quartz, synthetic quartz, and metal, and the material is not particularly limited.
  • the EMC-PR layers 213R, 213G, and 213B may refer to layers including the microcapsule foams 215R, 215G, and 215B in a photosensitive resin.
  • the adhesive layers 211R, 211G, and 211B may perform a role of adhering and disposing the LED chips 100R, 100G, and 100B, or transferring and fixing the LED chips grown or disposed on a separate wafer or substrate by adhesive force. and adhesion can be used as the same meaning as adhesion.
  • the LED chips 100R, 100G, and 100B are formed on the first carrier substrate 210R, It is placed in a state attached to 210G and 210B, and at this time, the direction of the chips 100R, 100G, and 100B is opposite to that of the light emitting body.
  • LLO laser lift off
  • the first carrier substrates 210R, 210G, and 210B include a first carrier substrate 210R in which an R LED chip array is formed, a first carrier substrate 210G in which a G LED chip array is formed, and a first first carrier substrate in which an array of B LED chips is formed.
  • a carrier substrate 210B may be included.
  • 10 to 13 are exemplary views for explaining a process of selectively transferring the chip array shown in FIG. 4 from a first carrier substrate to a second carrier substrate.
  • the second carrier substrate 220 is disposed on the first carrier substrate 210 on which the LED chip array 100 is formed.
  • the EMC adhesive layer 223 of the second carrier substrate 220 is brought into contact on the LED chips 100 to be attached to each other.
  • the second carrier substrate 220 may be formed of a glass substrate 221 and an EMC adhesive layer 221 including a foam 225 .
  • Foam 225 may be a micro-scale encapsulated foam material having foaming properties at a predetermined temperature.
  • the EMC adhesive layer 221 may be a resin in which the foam 225 and the adhesive liquid are mixed.
  • the A mask 209 is disposed on the back surface of the glass substrate 217 .
  • the mask 209 may be a pre-patterned mask.
  • UV is irradiated while the mask 209 is disposed.
  • the photosensitive resin may be a positive type photosensitive resin, and it is also possible to use a negative type photosensitive resin.
  • the 'exposure' may have an exposure degree adjusted according to the control of the UV exposure energy.
  • the controlled exposure portion of the photosensitive resin according to the amount of UV irradiation is defined as a photo-induced degradation layer (219).
  • the reason for setting the photodegradation layer 219 is F MC and This is to selectively transfer only the LED chip at the corresponding position through zeroing of the foaming and adhesive force of the foam through the control of F PR.
  • F MC is It is possible to control the type of microcapsule foam and the foaming temperature, and F PR can be controlled by controlling the type of photosensitive resin and UV exposure energy.
  • the foam 215 may not be foamed, and if F MC > F PR , the foam 215 may be foamed.
  • heat is applied to the upper portion of the first carrier substrate 210 .
  • the heat may mean a foamable temperature of the foam 215 .
  • the foam 215 When heat is applied to the first carrier substrate 210 to a temperature at which the foam 215 can be foamed, the foam 215 becomes a foam 215' in which the volume is expanded, and the position at which the volume can be expanded is shown in FIG. It may be a region in which the photodegradation layer 219 progressed in .
  • the photodegradation layer 219 is formed at a specific position of the EMC-PR layer 213 by the mask 209 pattern and UV irradiation, and the F MC > F PR condition can be established in the region where the photodegradation layer 219 is formed.
  • the foam 215 may expand and expand in volume.
  • the volume-expanded foam 215 ′ increases in size, and the pressure-sensitive resin layer and the pressure-sensitive adhesive layer 211 are pushed by the pressure (foaming force, F MC ) when the volume expands, while the adhesive layer 211 is secured.
  • the adhesive force is zeroed, and the LED chip 100 adhered to the corresponding position is peeled off and transferred to the second carrier substrate 220 .
  • FIG. 14 is a cross-sectional process diagram illustrating a process in which the LED chip array is transferred from the second carrier substrate 220 to the display panel 300 .
  • a solder paste 33 is applied on the plurality of pads 31 of the display panel 300 .
  • a TFT array substrate 400 may be disposed under the display panel 300 .
  • solder paste 33 may be applied on the pads 31-SP1-31-SP4 in rows 1 to 4, or the solder paste 33 is applied only to the pad at the position where the LED chip 100 is selectively transferred. It can be applied selectively.
  • the solder paste 33 may be applied on the plurality of pads 31 of the display panel 300 through various methods such as screen printing, dispensing, jetting, and the like.
  • the LED chip array 100 attached to the second carrier substrate 220 is disposed on the display panel 300 , and the pad of the LED chip array 100 is displayed.
  • the solder pastes 33-SP1 to 33-SP4 applied on the pad 31 of the panel 300 are arranged.
  • heat is applied from an upper portion of the second carrier substrate 220 .
  • the heat means a temperature at which the foam 225 can be foamed.
  • the foam 225 loses the adhesive force between the LED chip 100 and the second carrier substrate 220 while pushing the EMC adhesive layer 223 including the adhesive solution impregnated therein with a constant pressure while expanding its volume by heat, thereby causing EMC adhesion.
  • the LED chip 100 positioned on the layer 223 may be transferred onto the display panel 300 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은 웨이퍼 상에 형성된 LED 칩을 에칭 분리하여 분리된 각 칩을 캐리어 기판으로 전사하는 기술, 캐리어 기판에 전사된 각 칩 중 일부를 발포체와 감광성 수지를 이용하여 캐리어 기판 및 디스플레이 패널로 선택적, 순차적 또는 시간 간격을 두고 전사하는 기술을 적용한 LED 칩 전사 방법 및 디스플레이 장치의 제조 방법에 관한 것이다. 본 발명의 실시 형태에 따른 발포체와 감광성 수지를 이용한 LED칩 전사 장치는, 기판; 상기 기판 상에 형성되고, 소정의 온도에서 발포되는 발포체를 포함하는 감광성 수지로 이루어지는 EMC(Expandable Micro-Capsule)-PR(Photo Resist)층; 및 상기 EMC-PR층 상에 형성된 점착층;을 포함하고, 상기 점착층 상에는 LED 칩이 배치되고, 상기 EMC-PR층은 마스크 및 UV 조사에 의해 특정 영역만이 노광되는 광열화층이 형성되는 것으로 이루어질 수 있다.

Description

발포체와 감광성 수지를 이용한 LED칩 전사 방법 및 장치, 이를 이용한 디스플레이 장치의 제조 방법
본 발명은 웨이퍼 상에 형성된 LED 칩을 에칭 분리하여 분리된 각 칩을 캐리어 기판으로 전사하는 기술, 캐리어 기판에 전사된 각 칩 중 일부를 발포체와 감광성 수지를 이용하여 캐리어 기판 및 디스플레이 패널로 선택적, 순차적 또는 시간 간격을 두고 전사하는 기술을 적용한 LED 칩 전사 방법 및 디스플레이 장치의 제조 방법에 관한 것이다.
발광 다이오드(Light Emitting Diode: LED)는 전류가 인가되면 광을 방출하는 발광 소자 중 하나이다. 발광 다이오드는 저 전압으로 고효율의 광을 방출할 수 있어 에너지 절감 효과가 뛰어나다.
최근, 발광 다이오드의 휘도 문제가 크게 개선되어, 액정표시장치의 백라이트 유닛(Backlight Unit), 전광판, 표시기, 가전 제품 등과 같은 각종 기기에 적용되고 있다.
마이크로 발광 다이오드(μ-LED)의 크기는 1 ~ 100μm 수준으로 매우 작고, 40 인치(inch)의 디스플레이 장치를 구현하기 위해서는 대략 2,500만개 이상의 픽셀이 요구된다.
따라서, 40 인치의 디스플레이 장치를 하나 만드는데 단순한 픽 앤 플레이스(Pick & Place) 방법으로는 시간적으로 최소 한달이 소요되는 문제가 있다.
기존의 마이크로 발광 다이오드(μ-LED)는 사파이어 기판 상에 다수개로 제작된 후, 기계적 전사(Transfer) 방법인, 픽 앤 플레이스(pick & place)에 의해, 마이크로 발광 다이오드가 하나씩 유리 혹은 유연성 기판 등에 전사된다.
마이크로 발광 다이오드를 하나씩 픽업(pick-up)하여 전사하므로, 1:1 픽 앤 플레이스 전사 방법이라고 지칭한다.
그런데, 사파이어 기판 상에 제작된 마이크로 발광 다이오드 칩의 크기는 작고 두께가 얇기 때문에, 마이크로 발광 다이오드 칩을 하나씩 전사하는 픽 앤 플레이스 전사 공정 중에 상기 칩이 파손되거나, 전사가 실패하거나, 칩의 얼라인먼트(Alignment)가 실패되거나, 또는 칩의 틸트(Tilt)가 발생되는 등의 문제가 발생되고 있다.
또한, 전사 과정에 필요한 시간이 너무 오래 걸리는 문제가 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 등록특허 10-0853410
본 발명은, 베이스 기판에 형성 또는 배치된 다수의 칩을 소정의 열과 압력을 이용하여 선택적으로 전사시킬 수 있는 방법을 제공한다.
또한, 본 발명은 베이스 기판에 형성된 다수의 칩을 소정의 발포체 및 감광성 수지를 이용하여 선택적으로 전사시길 수 있는 방법을 제공한다.
또한, 웨이퍼에서 제1 캐리어 기판으로 전사된 다수의 칩들 중 일부를 제2 캐리어 기판으로 선택적으로 전사할 수 있는 방법을 제공하고자 한다.
또한, 제2 캐리어 기판에 전사된 칩을 디스플레이 패널로 순차적으로 전사하는 기술을 이용하여 디스플레이 장치를 제조할 수 있는 방법을 제공하고자 한다.
또한, 다양한 크기와 픽셀간 다양한 피치를 갖는 디스플레이 장치를 제조할 수 있는 방법을 제공하고자 한다.
또한, 디스플레이 장치의 해상도에 무관하게 한정된 면적 상에 가능한 많은 수의 RGB 픽셀을 구비한 웨이퍼를 이용할 수 있는 방법을 제공하고자 한다.
또한, 대면적의 디스플레이 장치를 신속하게 제조할 수 있는 방법을 제공하고자 한다.
본 발명의 해결하고자 하는 과제는 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 형태에 따른 발포체와 감광성 수지를 이용한 LED칩 전사 장치는, 기판; 상기 기판 상에 형성되고, 소정의 온도에서 발포되는 발포체를 포함하는 감광성 수지로 이루어지는 EMC(Expandable Micro-Capsule)-PR(Photo Resist)층; 및 상기 EMC-PR층 상에 형성된 점착층;을 포함하고, 상기 점착층 상에는 LED 칩이 배치되고, 상기 EMC-PR층은 마스크 및 UV 조사에 의해 특정 영역만이 노광되는 광열화층이 형성되는 것으로 이루어질 수 있다.
또한, 본 발명의 실시 형태에 따른 발포체와 감광성 수지를 이용한 LED칩 전사 방법은, 기판 상에 소정의 온도에서 발포되는 발포체를 포함하는 감광성 수지로 이루어지는 층을 형성하고, 상기 발포체의 발포력이 상기 층의 저항력을 초과하도록, 상기 층을 UV 조사에 의해 특정 영역을 노광시켜, 상기 층에 점착된 LED 칩을 박리하여 목적 기판에 전사시키는 것을 특징으로 하여 이루어질 수 있다.
또한, 본 발명의 실시 형태에 따른 발포체를 이용한 LED칩 전사 방법은, 기판을 준비하는, 기판 준비단계; 상기 기판 상에 소정의 온도에서 발포되는 발포체를 포함하는 감광성 수지 혼합으로 이루어지는 EMC(Expandable Micro-Capsule)-PR(Photo Resist)층을 형성하는, EMC-PR층 형성단계; 상기 EMC-PR층 상에 점착액으로 이루어지는 점착층을 형성하는, 점착층 형성단계; 상기 기판의 배면측에 마스크를 위치하여, UV 조사에 의해 특정 영역만이 노광되도록 하는, 광열화층 형성단계; 및 기설정된 소정의 열을 가하여 상기 발포체의 발포에 의해, 상기 광열화층 상의 상기 점착층에 위치된 LED 칩 어레이를 목적 기판에 선택적으로 전사시키는, 선택적 전사단계;를 포함하여 이루어질 수 있다.
또한, 본 발명의 실시 형태에 따른 디스플레이 장치의 제조 방법은, 웨이퍼 상에 다수의 LED 칩과 다수의 LED 칩을 패시베이션하는 보호층을 형성하는, LED 칩 형성단계; 상기 웨이퍼 상의 각각의 LED 칩 별로 상기 보호층을 에칭하는, 에칭단계; 상기 웨이퍼 상에 에칭되어 행, 열 또는 행렬로 배열된 LED 칩 어레이를 제1 캐리어 기판으로 전사시키는, 1차 전사단계; 상기 웨이퍼를 상기 LED 칩 어레이로부터 제거하는, 웨이퍼 제거단계; 상기 제1 캐리어 기판으로부터 제2 발포체와 점착액의 혼합으로 이루어지는 EMC 점착층을 갖는 제2 캐리어 기판으로 상기 LED 칩 어레이를 전사하는, 2차 전사단계; 및 상기 제2 캐리어 기판으로부터 디스플레이 패널로 상기 LED 칩 어레이를 전사하는, 디스플레이 패널 전사단계;를 포함하고,
상기 1차 전사단계는, 기판 상에 소정의 온도에서 발포되는 제1 발포체를 포함하는 감광성 수지로 이루어지는 EMC-PR층을 형성하고, 상기 제1 발포체의 발포력과, 상기 발포력과 대립되는 상기 감광성 수지의 저항력을 제어하여, 상기 제1 발포체의 발포 영역과 미발포 영역을 통해 LED 칩을 선택적으로 박리 또는 전사시키는 것으로 이루어질 수 있다.
상술한 본 발명의 구성에 따르면, 베이스 기판에 형성 또는 배치된 다수의 칩을 소정의 UV, 열과 압력을 이용하여 선택적으로 전사시킬 수 있는 이점이 있다.
또한, 각 웨이퍼 상에 형성된 R칩, G칩 및 B칩을 에칭을 통해 분리하는 기술, 분리된 각 칩을 제1 캐리어 기판으로 전사하는 기술, 제1 캐리어 기판에 전사된 각 칩 중 일부를 제2 캐리어 기판으로 선택적으로 전사하는 기술, 제2 캐리어 기판에 전사된 각 칩을 디스플레이 패널로 순차적으로 전사할 수 있는 이점이 있다.
또한, 본 발명은 베이스 기판에 형성된 다수의 칩을 소정의 발포체 및 발포체를 포함하는 감광성 수지 층의 표적 노광을 통해 선택적으로 전사시킬 수 있다.
또한, 마이크로급의 발광 소자를 하나하나 제어하지 않고, 선택된 다수의 발광 소자를 한꺼번에 디스플레이 패널로 신속히 전사할 수 있으므로, 디스플레이 장치의 제조 비용과 시간을 현저히 줄일 수 있는 이점이 있다.
또한, 대면적의 디스플레이 장치를 제조할 경우 상기 전사방법을 위치를 변경하며 반복적으로 실행하여 신속하게 제조할 수 있는 이점이 있다.
도 1은 본 발명의 실시 형태에 따른 LED칩 전사 방법을 설명하기 위한 개념도이다.
도 2는 도 1에 기반하여 기판 상에 전사 또는 배치된 LED 칩을 선택적으로 박리하는 전사 장치와 방법의 설명도이다.
도 3은 도 2를 기준으로 특정 위치의 LED 칩을 전사시킨 예시도이다.
도 4는 본 발명의 실시 형태에 따른 디스플레이 장치의 제조 방법을 설명하기 위한 순서도이다.
도 5는 본 발명의 실시 형태에 따라 각각의 웨이퍼 상에 칩들이 형성된 도면이다.
도 6은 본 발명의 실시 형태에 따라 각각의 웨이퍼 상에 각각의 Epi를 성장시키는 공정도이다.
도 7는 본 발명의 실시 형태에 따라 각각의 웨이퍼 상에 형성된 각각의 칩들을 하나의 칩 단위로 에칭(Etching)하는 공정도이다.
도 8은 도 7의 에칭된 칩을 웨이퍼로부터 제1 캐리어 기판으로 전사시키는 공정도이다.
도 9는 웨이퍼를 LLO 기법으로 제거하는 공정도이다.
도 10은 도 4에 도시된 제2 캐리어 기판을 준비하는 단계(S150)을 설명하기 위한 공정도이다.
도 11 내지 도 13은 도 4에 도시된 칩 어레이를 선택적으로 제1 캐리어 기판에서 제2 캐리어 기판으로 선택적으로 전사하는 과정(S160)을 설명하기 위한 예시적인 도면들이다.
도 14는 도 4에 도시된 제2 캐리어 기판으로부터 디스플레이 패널로 LED 칩 어레이가 전사되는 공정(S170)을 나타낸 것이다.
실시 형태의 설명에 있어서, 각 구성 요소의 "상(위) 또는 하(아래)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되거나 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 배치되어 형성되는 것을 모두 포함한다.
또한, "상(위) 또는 하(아래)"으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
도면에서 각층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다.
본 발명에서 사용되는 칩, CSP, LED 픽셀 CSP, LED 서브 픽셀 CSP는 다음과 같이 정의될 수 있다.
칩은 LED 칩, RGB 칩, R 칩, G 칩, B 칩, 미니(Mini) LED 칩 및 마이크로(Micro) LED 칩 등을 모두 포함하는 개념이다. 이하에서는, 설명의 편의 상, 상기 칩을 R 칩, G 칩 또는 B 칩으로 설명하지만, 상기 칩이 R 칩, G 칩 또는 B 칩으로만 한정되는 것은 아님에 유의해야 한다.
CSP(Chip Scale Package)는 단일 칩 패키지(single chip package)의 발전에 있어 최근 매우 주목 받는 패키지로서 반도체/패키지 면적비가 80% 이상인 단일 칩 패키지를 의미한다.
LED 픽셀 CSP는 Red LED, Green LED 및 Blue LED를 하나의 픽셀 단위로 하여 하나의 LED 픽셀을 CSP 패키징한 단일 패키지를 의미한다.
LED 서브 픽셀 CSP는 Red LED, Green LED, Blue LED 각각을 하나의 서브 픽셀 단위로 하여 하나의 LED 서브 픽셀 단위로 CSP 패키징한 단일 패키지를 의미한다.
웨이퍼 상에 형성된 발광체는 LED 칩으로 정의될 수 있다.
도 1은 본 발명의 실시 형태에 따른 LED칩 전사 방법을 설명하기 위한 개념도이다.
본 발명은 마이크로 캡슐 발포체(발포제)를 이용하여, 발포체의 발포를 통해 발포체의 부피가 증가하고 부피가 증가함에 따라 점착력이 감소하여 점착된 LED 칩을 박리시키는 원리를 포함한다.
일반적으로 마이크로 캡슐 발포체는 발포 온도 특성을 갖는다.
마이크로 캡슐 발포체의 크기, 발포 시작 온도(Tstart) 및 발포 최대 온도(Tmax)는 다양한 형태로 개발되고 시중에 판매되고 있다.
마이크로 캡슐 발포체의 크기는 5㎛ 내지 50㎛까지 다양하며, 마이크로 캡슐 발포체의 발포 온도별로 저온 발포체 그룹(Low-temperature-expansive products, 70~100℃), 중온 발포체 그룹(Medium-temperature-expansive products, 100~125℃), 고온 발포체 그룹(High-temperature-expansive products, 125~155℃), 극고온 발포체 그룹(Extremely high-temperature-expansive products, 155~260℃)으로 구분할 수 있다.
마이크로 캡슐 발포체는 열팽창성 마이크로캡슐이라 하고, 저비점의 탄화수소를 내포하고 그 외측을 가스차단성 폴리머로 덮은 코어 및 쉘(Core and Shell)구조를 가진 미립자 발포제를 의미한다.
도 1에 도시된 모델은 본 발명의 마이크로 캡슐 발포체의 발포 개념을 설명하기 위한 구조도이다.
도 1에 도시된 바와 같이, 일반적인 마이크로 캡슐 발포체(10)는 탄화수소로 이루어지는 코어(11)와 가스차단성을 갖는 열가소성 수지로 이루어지는 쉘(12)을 포함하는 구조일 수 있다.
그리고, 마이크로 캡슐 발포체(10)의 쉘(12) 외측으로는 또 다른 물질인 감광성 수지(13)가 형성될 수 있다.
설명의 편의를 위해 감광성 수지(13)는 원형으로 쉘(12)의 외주연을 감싸는 형태로 도시되었으며, 마이크로 캡슐 발포체(10)들을 감광성 수지(13)에 혼합한 형태일 수 있다.
도 1과 같은 구조는 다음과 같은 물리화학적 특성을 갖는다.
마이크로 캡슐 발포체(10)는 코어(11)로부터 팽창하려는 힘(FMC)이 존재하고, 이 힘(FMC)을 쉘(12)이 잡아줌으로써 팽창이 이루어지지 않고, 여기에 특정 온도(열)가 가해지면 힘(FMC)이 쉘(12)이 잡아주는 힘을 뚫고 팽창하여 발포하는 특성을 갖는다.
여기서, 쉘(12)을 뚫고 팽창하는 힘(FMC)은 감광성 수지(13)에 의해 다시 차단될 수 있다.
코어(11)의 팽창하려는 힘(FMC, 발포력)과 감광성 수지(13)의 버티는 힘(FPR, 저항력)이 대립된다.
즉, FMC < FPR 인 경우는 코어(11)가 발포될 수 없고, FMC > FPR 인 경우는 코어(11)가 발포될 수 있는 현상을 갖을 수 있다.
이러한 FMC < FPR 또는 FMC > FPR 인 관계를 이용하면, 감광성 수지(13)의 경화도 및 UV 조사에 의한 노광 정도에 따라 얼마든지 힘의 대립 크기를 조절하고 제어하는 것이 가능하게 되며, 힘의 대립 크기의 제어에 따라 발포 상태를 ON 또는 OFF 상태로 디지털화하는 것이 가능하고, 디지털화된 제어에 따라 필요 위치의 LED 칩을 박리(전사)가 가능하게 된다.
FMC 마이크로 캡슐 발포체의 종류 및 발포 온도로 조절이 가능하며, FPR은 감광성 수지의 종류 및 UV Exposure 에너지 제어를 통해 조절이 가능하다.
도 2는 도 1에 기반하여 기판 상에 전사 또는 배치된 LED 칩을 선택적으로 박리하는 전사 장치와 방법의 설명도이다.
도 2에 도시된 바와 같이, 본 발명에 따른 LED 칩 전사 장치는 기판(101), EMC(Expandable Micro-Capsule)-PR(Photo Resist)(103), 점착층(107) 및 LED 칩(100, 100')을 포함하여 구성될 수 있다.
LED 칩(100, 100')은 RGB LED 칩, R LED 칩, G LED 칩, B LED 칩, CSP(Chip Scale Package)을 의미할 수 있으며, LED 칩 픽셀 CSP는 Red LED, Green LED 및 Blue LED를 하나의 픽셀 단위로 하여 하나의 LED 픽셀을 CSP 패키징한 단일 패키지를 의미할 수 있고, LED 서브 픽셀 CSP는 Red LED, Green LED, Blue LED 각각을 하나의 서브 픽셀 단위로 하여 하나의 LED 서브 픽셀 단위로 CSP 패키징한 단일 패키지를 의미할 수 있다.
기판(101)은 유리(Glass), 석영(Quartz), 인공 석영(synthetic Quartz) 및 금속(metal) 중 어느 하나의 물질로 구성될 수 있으며, 특별히 재질은 한정되지 않는다.
EMC-PR층(103)은 마이크로 캡슐 발포체(105)를 감광 수지에 포함한 층을 의미할 수 있다.
점착층(107)은 LED 칩(100, 100')을 점착하여 배치시키거나 별도의 웨이퍼나 기판에 성장 또는 배치된 LED 칩을 점착력에 의해 전사시켜 고정시키는 역할을 수행할 수 있으며, 점착은 접착과 같은 의미로서 사용될 수 있다.
도 2를 참조하여 특정 위치의 LED 칩(100, 100')을 박리 또는 전사시키는 공정을 살펴본다.
도 2의 (A)를 참조하면, 상술한 바와 같이 기판(101) 상에 EMC-PR층(103)이 형성되고, EMC-PR층(103) 상에 점착층(107)이 도포되어 경화되며, 점착층(107) 상에는 LED 칩(100, 100')이 배치 또는 전사되어 형성된다.
도 2의 (B)를 참조하면, 기판(101) 배면측에 패턴을 형성할 마스크(109)를 배치하고, 마스크(109)를 통해 UV를 조사한다.
마스크(109) 및 UV 조사에 의해 노광된 감광성 수지 영역은 도시된 바와 같이 광에 의해 노광된 노광 영역(111)을 형성한다.
마스크(109) 및 UV 조사에 의해, 감광성 수지는 노광 영역(111)과 노광되지 않은 영역(103, 원래의 EMC-PR층)을 갖는다.
도 2의 (C)를 참조하면, 기판(101)의 배면측으로부터 열을 가하여 소정의 온도에 이르게 되면, EMC-PR층(103) 내의 노광 영역(111)의 발포체(105)가 발포되면서 그 부피가 팽창하여 부피가 팽창된 발포체(105')로 변하게 되고, 부피가 팽창된 발포체(105')는 EMC-PR층(103) 및 점착층(107)을 뚫으면서 점착층(107)의 점착력을 제로화시키게 된다.
노광 영역(111)에서는 FMC > FPR 인 경우로서, 발포체(105')가 발포되어 발포력이 저항력을 이기면서 발포될 수 있고, 반대로 노광되지 않은 영역(103)에서는 FMC < FPR 인 경우로서, 발포체(105)의 발포력이 저항력을 이기지 못하기 때문에 발포되지 않은 상태로 놓이게 된다.
도 2의 (D)를 참조하면, 해당 위치에서의 점착층(107)이 점착력을 잃게 되면, 그 해당 위치에 점착되어 있던 LED 칩(100)은 박리되며, 반대측에 목적 기판이 있는 경우 그 목적 기판으로 전사가 될 수 있다.
이와 같이, 마이크로 캡슐 발포체(105)의 발포력과 감광성 수지의 저항력 제어를 통해 특정 위치의 LED 칩(100)은 박리시키고, 그렇지 않은 위치의 LED 칩(100')은 박리되지 않은 상태로 놓이게 함으로써, 발포력과 저항력의 제어에 따라 선택적으로 LED 칩을 박리하거나 목적 기판에 전사시키는 것이 가능하게 된다.
도 3은 도 2를 기준으로 특정 위치의 LED 칩을 전사시킨 예시도이다.
도 3에 도시된 바와 같이, 도 1 및 도 2의 원리 및 공정을 이용하여 웨이퍼로부터 목적 기판으로 전사시키는 과정을 도식적으로 살펴본다.
먼저, 웨이퍼(10) 상에서 에피를 성장시켜 LED 칩(100)을 행렬 배열로 형성시킨다.
웨이퍼(10)를 마주보도록 정배열시킨 캐리어 기판(20)을 배치시킨 상태에서 LED 칩을 전부 전사시킨다. 캐리어 기판(20)은 도 2의 전사 장치일 수 있다.
이때 전사 방법은, 롤투롤, 점착력에 의해 전사, 스탬프 방식, 픽앤플레이스 또는 스크린 인쇄 방식 등 제한을 둘 이유는 없다.
이 상태에서는 웨이퍼(10) 상에 LED 칩(100)이 모두 전사되어 빈 공간(100')의 상태가 되고, 캐리어 기판(20) 상으로 LED 칩(100a, 100b)이 모두 전사된 상태가 된다.
캐리어 기판(20)에서 전사 목적의 LED 칩을 100a라 하고, 전사 시키지 않을 LED 칩을 100b라 할 때, 100a 위치에는 도 2에서 설명한 바와 같이 EMC-PR층을 마스크와 UV조사에 의해 노광되도록 하고, 100b 위치에는 마스크에 의해 UV 조사가 이루어지더라도 광에 의해 노광되지 않도록 선행 공정이 이루어진다.
그 다음, 캐리어 기판(20)과 목적 기판(30)을 마주 보도록 정배열 배치된 상태에서 캐리어 기판(20)의 배면측으로부터 열을 가하면, 100a 위치에서는 발포체가 발포되어 LED 칩(100a)이 박리되어 목적 기판(30)으로 전사되고, 100b 위치에서는 발포체가 감광성 수지의 저항력을 이기지 못하고 그 위치에 그대로 놓이게 됨으로써, 100a에 위치한 LED 칩만을 선택적으로 목적 기판(30)에 전사시키는 것이 가능하게 된다.
이하, 도 4 내지 도 14를 참조하여, 상술한 LED 칩 전사 장치를 이용한 디스플레이 패널로의 전사 방법에 대해 상세하게 설명한다.
도 4는 본 발명의 실시 형태에 따른 디스플레이 장치의 제조 방법을 설명하기 위한 순서도이다.
도 4을 참조하면, 본 발명의 실시 형태에 따른 디스플레이 장치의 제조 방법은, 각각의 웨이퍼 상에 각각의 다수의 칩을 형성하는 단계(S110), 각각의 칩을 하나의 칩 별로 웨이퍼를 에칭(Etching)하는 단계(S120), 칩 단위로 분리된 각각의 웨이퍼의 칩 어레이를 제1 캐리어 기판에 부착하는 단계(S130), LLO(Laser Lift Off) 공정에 의해 웨이퍼를 제거하는 단계(S140), 제2 캐리어 기판을 준비하는 단계(S150), 칩 어레이를 제1 캐리어 기판으로부터 제2 캐리어 기판으로 선택적으로 전사하는 단계(S160), 제2 캐리어 기판에 선택적으로 전사된 칩 어레이를 디스플레이 패널로 순차적으로 전사하는 단계(S170) 및 제2 캐리어 기판을 제거하는 단계(S180)를 포함한다.
도 5는 본 발명의 실시 형태에 따라 각각의 웨이퍼 상에 칩들이 형성된 도면이다.
도 5에 도시된 바와 같이 본 발명의 실시 형태는 R칩, G칩 및 B칩이 각각 형성된 3개의 웨이퍼를 예시로서 설명하나 이에 한정되지는 않는다.
도 5를 참조하면, 각각의 하나의 웨이퍼(10R, 10G, 10B) 상에 같은 파장 대역의 광을 방출하는 복수의 발광 소자(11R, 11G, 11B)를 형성한다.
여기서, 발광 소자(11R, 11G, 11B)는 적색, 녹색, 청색의 광을 방출하는 발광 칩일 수 있다.
복수의 발광 소자(11R, 11G, 11B)는 각각의 웨이퍼(10R, 10G, 10B) 상에서 복수의 행과 열을 따라 등간격으로 이격된 채 배열될 수 있다.
등간격으로 배치된 발광 소자(11R, 11G, 11B)는 행 또는 열 방향으로 이후 디스플레이 패널에 전사되므로, 상대적으로 고가인 웨이퍼의 전체 면적으로 효율적으로 활용하여 발광 소자의 제조 단가를 낮출 수 있다.
한편, 각각의 하나의 웨이퍼(10R, 10G, 10B) 상에 다수의 칩을 형성한 후, 각 칩 별로 웨이퍼를 에칭 공정을 거쳐 각 칩 별로 분리할 수 있다.
각각의 웨이퍼(10R, 10G, 10B) 상에 형성된 칩 간의 피치(W)는 디스플레이 패널 상에 형성된 칩 간의 피치와 동일하거나 소정의 값의 비례상수의 배수로 정하여지는 것이 바람직하다.
이는 후술할 제2 캐리어 기판으로부터 디스플레이 패널로 칩들을 행렬 단위로 선택적으로 전사할 때 전사를 용이하게 할 수 있다.
도 6은 본 발명의 실시 형태에 따라 각각의 웨이퍼 상에 각각의 Epi를 성장시키는 공정도이다.
도 6을 참조하면, 3개의 웨이퍼(10R, 10G, 10B) 각각의 일면 상에 소정의 광을 방출하는 에피(11R, 11G, 11B)를 성장시킨다.
여기서, 웨이퍼(10R, 10G, 10B)는 사파이어(Al2O3), 실리콘, 갈륨비소(GaAs), 질화갈륨(GaN) 및 질화아연(ZnN) 중 어느 하나의 기판일 수 있다. 그러나 이에 한정하는 것은 아니며, 웨이퍼로 이용될 수 어떠한 기판이든 사용가능하다.
성장된 각각의 에피(11R, 11G, 11B) 상에 패드(14r, 14g, 14b)를 형성하고, 에피(11R, 11G, 11B)와 패드(14r, 14g, 14b)를 패시베이션(Passivation)하는 보호층(13)을 형성한다.
여기서, 패드(14r, 14g, 14b)는 확장되지 않은 것으로서, 일반적인 패드의 크기와 형상을 가질 수 있다.
보호층(13)을 형성할 때, 패드(14r, 14g, 14b)가 보호층(13)의 외부에 노광되도록 형성하는 것이 이후 패드의 영역을 확장하는 데 있어서 바람직하다.
도 6에는 도 5에서의 A-A Section과 B-B Section의 단면도를 각각 표현하고 있으며, 바람직하게는 칩 당 한 쌍의 (+), (-) 전극은 Epi 층 아래에 형성되는데, A-A section 기준으로 전극을 상하 형성할 수 있으며 필요에 따라서는 좌우로 형성하는 것도 가능함은 물론이다.
웨이퍼(10R, 10G, 10B) 상에 형성된 발광체는 칩 단위로 전기적으로 분리된 상태이며, 본 발명에서는 LED 칩이라 칭하며, 이후 칩 별로 에칭된 후 웨이퍼(10R, 10G, 10B)로부터 제1 캐리어 기판으로 전사된다.
도 7은 본 발명의 실시 형태에 따라 각각의 웨이퍼 상에 형성된 각각의 칩들을 하나의 칩 단위로 에칭(Etching)하는 공정도이다.
도 7을 참조하면, 도 6과 같이 웨이퍼(10B, 10G, 10B)에 에피(11R, 11G, 11B) 및 패드(14r, 14g, 14b)를 형성시키고, 보호층(13)을 각각의 칩 별로 에칭하여 물리적으로 분리된 다수의 칩(100R, 100G, 100B)을 형성한다. 여기서, 각 칩과 칩을 둘러싸는 보호층(13)을 본 명세서에서 칩이라 칭하도록 한다. 물론, 각 칩과 칩을 둘러싸는 보호층(13)을 픽셀 CSP 또는 서브 픽셀 CSP로도 칭할 수 있다.
여기서, 칩(100R, 100G, 100B) 별로 에칭하는 공정은 습식(Wet) 또는 건식(Dry) 에칭이 적용될 수 있으며, 에칭에 의해 LED 칩 모양이 정의되며, 이때 웨이퍼(10B, 10G, 10B)는 그대로 잔존하게 된다.
이하의 도면들에서 하나의 칩(100R, 100G, 100B)은 도 7에서 형성된 칩(100R, 100G, 100B)으로 도시되어 있으나, 이에 한정하는 것은 아니며, 도 5에서 행과 열 방향으로 에칭된 칩(100R, 100G, 100B) 어레이일 수도 있다.
각각의 칩(100R, 100G, 100B)은 와이어가 불필요한 플립 칩 구조를 가질 수 있다.
와이어 대신에 패드(14r, 14g, 14b)로 전기적 연결이 가능하며, 칩(100R, 100G, 100B) 각각은 패드(14r, 14g, 14b)를 통한 외부 제어신호에 따라 다양한 색상의 광을 방출할 수 있다.
또한, 본 발명에서 칩(100R, 100G, 100B) 각각은 R, G, B 별로 각각 서브 픽셀을 구성하여 CSP 형태로 제작된 새로운 개념의 소형 패키지화될 수 있다.
R 칩(100R), G 칩(100G) 및 B 칩(100B)은 하나의 발광 소자 또는 발광체를 구성할 수 있다.
각각의 칩(100R, 100G, 100B)을 복수로 행과 열 방향으로 제1 캐리어 기판에 부착시킴으로써 칩 어레이를 전사할 수 있는 선공정이 수행될 수 있고, 제1 캐리어 기판으로부터 제2 캐리어 기판으로 선택적으로 전사하고, 제2 캐리어 기판에 배열된 칩 어레이가 후술할 디스플레이 패널로 순차적으로 전사될 수 있다.
도 7에서와 같이 각각의 웨이퍼(10B, 10G, 10B) 상에서 칩(100R, 100G, 100B) 형태로 에칭된 칩 어레이들을 캐리어 기판에 부착하여 웨이퍼를 제거하는 공정을 수행하고, 이후 제1 캐리어 기판으로부터 제2 캐리어 기판으로 선택적 전사 및 디스플레이 패널로 순차적으로 선택적 전사시키는 공정을 살펴본다.
이하의 도면들은 도 5의 웨이퍼 상에서 행렬 배열된 칩 어레이에서 행(가로) 배열 기준으로 설명된다.
도 8은 도 7의 에칭된 칩을 웨이퍼로부터 제1 캐리어 기판으로 전사시키는 공정도이고, 도 9는 웨이퍼를 LLO 기법으로 제거하는 공정도이다.
도 8 및 도 9는 에칭된 칩을 제1 캐리어 기판(210R)으로 전사시키기 위해 웨이퍼(10R, 10G, 10B)를 제거하기 위한 공정이다.
제1 캐리어 기판(210R)은 도 2의 전사 장치와 동일한 구성일 수 있다.
도 8를 참조하면, 에칭에 의해 칩이 행렬 방향으로 분리된 후(도 7와 같이), 제1 캐리어 기판(210R, 210G, 210B)을 웨이퍼(10R, 10G, 10B)의 반대 방향의 LED칩(100R, 100G, 100B)에 부착시킨다.
즉, 제1 캐리어 기판(210R, 210G, 210B)을 칩(100R, 100G, 100B)의 패드(14r, 14g, 14b)측에 부착시킨다.
제1 캐리어 기판(210R, 210G, 210B)은 기판(217R, 217G, 217B), EMC-PR층(213R, 213G, 213B), 점착층(211R, 211G, 211B)을 포함한다.
기판(217R, 217G, 217B)은 유리(Glass), 석영(Quartz), 인공 석영(synthetic Quartz) 및 금속(metal) 중 어느 하나의 물질로 구성될 수 있으며, 특별히 재질은 한정되지 않는다.
EMC-PR층(213R, 213G, 213B)은 마이크로 캡슐 발포체(215R, 215G, 215B)를 감광 수지에 포함한 층을 의미할 수 있다.
점착층(211R, 211G, 211B)은 LED 칩(100R, 100G, 100B)을 점착하여 배치시키거나 별도의 웨이퍼나 기판에 성장 또는 배치된 LED 칩을 점착력에 의해 전사시켜 고정시키는 역할을 수행할 수 있으며, 점착은 접착과 같은 의미로서 사용될 수 있다.
도 9를 참조하면, 도 8과 같은 상태에서 LLO(Laser Lift Off) 공정에 의해 웨이퍼(10R, 10G, 10B)를 제거시키면, LED 칩(100R, 100G, 100B)은 제1 캐리어 기판(210R, 210G, 210B)에 부착된 상태로 놓이게 되며, 이때 칩(100R, 100G, 100B)의 방향은 반대 방향으로 발광체가 노광된 상태로 배치된다.
제1 캐리어 기판(210R, 210G, 210B)은, R LED 칩 어레이가 형성된 제1 캐리어 기판(210R), G LED 칩 어레이가 형성된 제1 캐리어 기판(210G) 및 B LED 칩이 어레이가 형성된 제1 캐리어 기판(210B)을 포함할 수 있다.
도 10 내지 도 13은 도 4에 도시된 칩 어레이를 선택적으로 제1 캐리어 기판에서 제2 캐리어 기판으로 선택적으로 전사하는 과정을 설명하기 위한 예시적인 도면들이다.
도 10 내지 도 13은 도 6 내지 도 9와 같은 RGB LED 칩 중 어느 하나의 LED 칩만을 기준으로 설명된다.
도 10을 참조하면, LED 칩 어레이(100)가 형성된 제1 캐리어 기판(210) 상에 제2 캐리어 기판(220)을 배치한다.
LED 칩(100)들 상에 제2 캐리어 기판(220)의 EMC 점착층(223)을 접촉시켜 서로 부착되도록 한다.
여기서, 제2 캐리어 기판(220)은 글라스 기판(221), 발포체(225)를 포함하는 EMC 점착층(221)으로 이루어질 수 있다.
발포체(225)는 소정 온도에서 발포 특성을 갖는 마이크로 단위의 캡슐화된 발포 물질일 수 있다.
EMC 점착층(221)은 발포체(225)와 점착액을 혼합한 수지일 수 있다.
도 11를 참조하면, 도 10과 같이 LED 칩(100)을 사이에 두고 제1 캐리어 기판(210)과 제2 캐리어 기판(220)이 대향하여 배치된 상태에서, 제1 캐리어 기판(210)의 글라스 기판(217)의 배면에 마스크(209)를 배치한다.
마스크(209)는 사전에 패터닝된 마스크일 수 있다.
마스크(209)가 배치된 상태에서 UV를 조사한다.
마스크(209) 패턴 및 UV 조사에 의해 감광성 수지를 포함하는 EMC-PR층(213)의 특정 영역만이 노광될 수 있다.
감광성 수지는 포지티브 타입의 감광성 수지일 수 있으며, 네거티브 타입의 감광성 수지를 사용하는 것도 가능하다.
여기서, '노광(Exposure)'은 UV 조사량(UV Exposure Energy)의 제어에 따라 노광 정도가 조절될 수 있다.
UV 조사량에 따른 감광성 수지의 조절된 노광 부분을 광열화층(Photo-induced Degradation, 219)이라 정의한다.
광열화층(219)을 설정하는 이유는 FMC FPR의 제어를 통해 발포체의 발포와 점착력의 제로화, 이를 통한 해당 위치의 LED 칩만을 선택적으로 전사시키기 위함이다.
FMC 마이크로 캡슐 발포체의 종류 및 발포 온도로 조절이 가능하며, FPR은 감광성 수지의 종류 및 UV Exposure 에너지 제어를 통해 조절이 가능하다.
즉, FMC < FPR 인 경우는 발포체(215)가 발포될 수 없고, FMC > FPR 인 경우는 발포체(215)가 발포될 수 있는 현상을 갖을 수 있다.
도 12를 참조하면, 제1 캐리어 기판(210) 상부로 열을 가한다.
이 때 열은 발포체(215)의 발포 가능한 온도를 의미할 수 있다.
제1 캐리어 기판(210)에 열을 가하여 발포체(215)가 발포 가능한 온도가 되면, 발포체(215)는 부피가 팽창한 발포체(215')가 되고, 이때 부피가 팽창할 수 있는 위치는 도 11에서 진행된 광열화층(219)이 존재하는 영역이 될 수 있다.
마스크(209) 패턴과 UV 조사에 의해 EMC-PR층(213)의 특정 위치에서 광열화층(219)이 형성되고, 광열화층(219)이 형성된 영역은 FMC > FPR 조건이 성립될 수 있으므로 발포체(215)가 발포하여 부피가 팽창할 수 있다.
부피가 팽창한 발포체(215')는 그 크기가 커지고, 부피가 팽창할 때의 압력(발포력, FMC)에 의해 감광성 수지층과 점착층(211)을 밀어내면서 점착층(211)이 확보하고 있는 점착력을 제로화시키게 되며, 그 해당 위치에 점착된 LED 칩(100)은 박리되어 제2 캐리어 기판(220)으로 전사될 수 있는 상태가 된다.
도 13를 참조하면, 제1 캐리어 기판(210)으로부터 제2 캐리어 기판(220)으로 특정 LED 칩(100)만이 선택적으로 박리되어 전사되어 있는 상태를 볼 수 있다.
도 14는 제2 캐리어 기판(220)으로부터 디스플레이 패널(300)로 LED 칩 어레이가 전사되는 공정을 표현한 단면 공정도이다.
도 14의 (A)를 참조하면, 디스플레이 패널(300)의 다수의 패드(31) 상에 솔더 페이스트(Solder Paste, 33)를 도포한다.
디스플레이 패널(300) 아래에는 TFT 어레이 기판(400)이 배치될 수 있다.
여기서, 솔더 페이스트(33)는 1열 내지 4열의 패드(31-SP1~31-SP4) 상에 도포될 수 있고, 또는 LED 칩(100)이 선택 전사되는 위치의 패드에만 솔더 페이스트(33)가 선택적으로 도포될 수 있다.
솔더 페이스트(33)는 디스플레이 패널(300)의 다수의 패드(31) 상에 스크린 프린팅, 디스펜싱, 젯팅 등의 여러 방법을 통해 도포될 수 있다.
다음으로, 도 14의 (B)를 참조하면, 제2 캐리어 기판(220)에 부착된 LED 칩 어레이(100)를 디스플레이 패널(300) 상으로 배치하고, LED 칩 어레이(100)의 패드를 디스플레이 패널(300)의 패드(31) 상에 도포된 솔더 페이스트(33-SP1~33-SP4)위치에 배열시킨다.
다음으로, 도 14의 (C)를 참조하면, 제2 캐리어 기판(220) 상부로부터 열을 가한다.
이때 열은 발포체(225)가 발포될 수 있는 온도를 의미한다.
발포체(225)는 열에 의해 그 부피가 팽창하고 함침된 점착액을 포함한 EMC 점착층(223)을 일정한 압력으로 밀어내면서 LED 칩(100)과 제2 캐리어 기판(220)간의 접착력을 잃게하여 EMC 점착층(223) 선상에 위치한 LED 칩(100)이 디스플레이 패널(300) 상으로 전사될 수 있게 된다.
이와 같은 공정들을 반복적으로 수행하면, 디스플레이 패널(300) 상에 순차적으로 R, G, B LED 칩을 시간간격 순으로 순차적으로 전사하는 것이 가능하게 된다.
이상에서 실시 형태들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시 형태에 포함되며, 반드시 하나의 실시 형태에만 한정되는 것은 아니다. 나아가, 각 실시 형태에서 예시된 특징, 구조, 효과 등은 실시 형태들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시 형태들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시 형태를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시 형태의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 형태에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
[부호의 설명]
10R, 10G, 10B : 웨이퍼
100, 100R, 100G, 100B : LED 칩
210, 210R, 210G, 210B : 제1 캐리어 기판
220, 220R, 220G, 220B : 제2 캐리어 기판
300 : 디스플레이 패널
400 : TFT 어레이 기판

Claims (11)

  1. 기판;
    상기 기판 상에 형성되고, 소정의 온도에서 발포되는 발포체를 포함하는 감광성 수지로 이루어지는 EMC(Expandable Micro-Capsule)-PR(Photo Resist)층; 및
    상기 EMC-PR층 상에 형성된 점착층;을 포함하고,
    상기 점착층 상에는 LED 칩이 배치되고,
    상기 EMC-PR층은 마스크 및 UV 조사에 의해 특정 영역만이 노광되는 광열화층이 형성되는, 발포체와 감광성 수지를 이용한 LED칩 전사 장치.
  2. 제1항에 있어서,
    상기 광열화층의 상부에는 박리 또는 전사시킬 LED 칩이 배치되는, 발포체와 감광성 수지를 이용한 LED칩 전사 장치.
  3. 제1항에 있어서,
    상기 발포체는 소정의 발포 온도에서 팽창하려는 발포력(FMC)을 가지며, 상기 감광성 수지는 상기 발포력(FMC)에 대립되는 저항력(FPR)을 갖고,
    상기 발포력(FMC)은 상기 발포체의 발포 온도에 따라 조절하고, 상기 저항력(FPR)은 상기 감광성 수지에 가해지는 UV 조사량의 제어를 통해 조절하여, FMC < FPR 또는 FMC > FPR 인 관계가 성립되도록 하는, 발포체와 감광성 수지를 이용한 LED칩 전사 장치.
  4. 기판 상에 소정의 온도에서 발포되는 발포체를 포함하는 감광성 수지로 이루어지는 EMC-PR층을 형성하고,
    상기 발포체의 발포력과, 상기 발포력과 대립되는 상기 감광성 수지의 저항력을 제어하여, 상기 발포체의 발포 영역과 미발포 영역을 통해 LED 칩을 선택적으로 박리 또는 전사시키는, 발포체와 감광성 수지를 이용한 LED칩 전사 방법.
  5. 제4항에 있어서,
    상기 감광성 수지의 저항력은, 상기 EMC-PR층에 조사되는 UV 조사량(UV 노광 에너지)의 제어를 통해 조절되는, 발포체와 감광성 수지를 이용한 LED칩 전사 방법.
  6. 기판을 준비하는, 기판 준비단계;
    상기 기판 상에 소정의 온도에서 발포되는 발포체를 포함하는 감광성 수지 혼합으로 이루어지는 EMC(Expandable Micro-Capsule)-PR(Photo Resist)층을 형성하는, EMC-PR층 형성단계;
    상기 EMC-PR층 상에 점착액으로 이루어지는 점착층을 형성하는, 점착층 형성단계;
    상기 기판의 배면측에 마스크를 위치하여, UV 조사에 의해 특정 영역만이 노광되도록 하는, 광열화층 형성단계; 및
    기설정된 소정의 열을 가하여 상기 발포체의 발포에 의해, 상기 광열화층 상의 상기 점착층에 위치된 LED 칩 어레이를 목적 기판에 선택적으로 전사시키는, 선택적 전사단계;를 포함하는, 발포체와 감광성 수지를 이용한 LED칩 전사 방법.
  7. 제6항에 있어서,
    상기 발포체는 발포 온도에서 팽창하려는 발포력(FMC)을 가지며, 상기 감광성 수지는 상기 발포력(FMC)에 대립되는 저항력(FPR)을 갖고,
    상기 발포력(FMC)은 상기 발포체의 발포 온도에 따라 조절하고, 상기 저항력(FPR)은 상기 감광성 수지에 가해지는 UV 조사량의 제어를 통해 조절하여, FMC < FPR 또는 FMC > FPR 인 관계가 성립되도록 하는, 발포체와 감광성 수지를 이용한 LED칩 전사 방법.
  8. 웨이퍼 상에 다수의 LED 칩과 다수의 LED 칩을 패시베이션하는 보호층을 형성하는, LED 칩 형성단계;
    상기 웨이퍼 상의 각각의 LED 칩 별로 상기 보호층을 에칭하는, 에칭단계;
    상기 웨이퍼 상에 에칭되어 행, 열 또는 행렬로 배열된 LED 칩 어레이를 제1 캐리어 기판으로 전사시키는, 1차 전사단계;
    상기 웨이퍼를 상기 LED 칩 어레이로부터 제거하는, 웨이퍼 제거단계;
    상기 제1 캐리어 기판으로부터 제2 발포체와 점착액의 혼합으로 이루어지는 EMC 점착층을 갖는 제2 캐리어 기판으로 상기 LED 칩 어레이를 전사하는, 2차 전사단계; 및
    상기 제2 캐리어 기판으로부터 디스플레이 패널로 상기 LED 칩 어레이를 전사하는, 디스플레이 패널 전사단계;를 포함하고,
    상기 1차 전사단계는,
    기판 상에 소정의 온도에서 발포되는 제1 발포체를 포함하는 감광성 수지로 이루어지는 EMC-PR층을 형성하고,
    상기 제1 발포체의 발포력과, 상기 발포력과 대립되는 상기 감광성 수지의 저항력을 제어하여, 상기 제1 발포체의 발포 영역과 미발포 영역을 통해 LED 칩을 선택적으로 박리 또는 전사시키는, 디스플레이 장치의 제조 방법.
  9. 제8항에 있어서,
    상기 1차 전사 단계는,
    글라스 기판을 준비하는, 글라스 기판 준비단계;
    상기 글라스 기판 상에 소정의 온도에서 발포되는 상기 제1 발포체를 포함하는 감광성 수지 혼합으로 이루어지는 EMC-PR층을 형성하는 단계; 및
    상기 EMC-PR층 상에 점착액으로 이루어지는 점착층을 형성하는 단계;를 포함하는, 디스플레이 장치의 제조 방법.
  10. 제8항에 있어서,
    상기 2차 전사단계는,
    상기 제1 캐리어 기판의 배면측에 마스크를 위치하여, UV 조사에 의해 특정 영역만이 노광되는 광열화층을 형성하는 단계; 및
    기설정된 소정의 열을 가하여 상기 제1 발포체의 발포에 의해, 상기 광열화층 상에 위치된 LED 칩 어레이를 제2 캐리어 기판에 선택적으로 전사시키는 단계;를 포함하는, 디스플레이 장치의 제조 방법.
  11. 제8항에 있어서,
    상기 디스플레이 패널 전사 단계는,
    상기 디스플레이 패널의 다수의 패드 상에 솔더 페이스트를 도포하는 단계;
    상기 제2 캐리어 기판에 전사된 상기 LED 칩 어레이의 패드를 도포된 상기 솔더 페이스트에 접촉시켜 솔더링하는 단계; 및
    상기 제2 캐리어 기판 위로 소정의 열을 가하여, 상기 열에 의해 상기 제2 발포체의 팽창에 의해 선택 전사된 상기 LED 칩 어레이를 상기 디스플레이 패널로 전사하는 단계;를 포함하는, 디스플레이 장치의 제조 방법.
PCT/KR2021/002549 2020-03-19 2021-03-02 발포체와 감광성 수지를 이용한 led칩 전사 방법 및 장치, 이를 이용한 디스플레이 장치의 제조 방법 WO2021187772A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0033597 2020-03-19
KR1020200033597A KR102216369B1 (ko) 2020-03-19 2020-03-19 발포체와 감광성 수지를 이용한 led칩 전사 방법 및 장치, 이를 이용한 디스플레이 장치의 제조 방법

Publications (1)

Publication Number Publication Date
WO2021187772A1 true WO2021187772A1 (ko) 2021-09-23

Family

ID=74731429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002549 WO2021187772A1 (ko) 2020-03-19 2021-03-02 발포체와 감광성 수지를 이용한 led칩 전사 방법 및 장치, 이를 이용한 디스플레이 장치의 제조 방법

Country Status (2)

Country Link
KR (1) KR102216369B1 (ko)
WO (1) WO2021187772A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116936554A (zh) * 2023-07-19 2023-10-24 深圳市鸿展光电有限公司 一种使用机械式转移技术制备Mini LED阵列的方法
WO2024108777A1 (zh) * 2022-11-22 2024-05-30 重庆康佳光电技术研究院有限公司 巨量转移修复方法及显示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115692451A (zh) * 2021-07-26 2023-02-03 重庆康佳光电技术研究院有限公司 生长基板组件、发光组件及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040085079A (ko) * 2003-03-31 2004-10-07 닛토덴코 가부시키가이샤 열박리성 양면 점착 시이트, 피착체의 가공 방법 및 전자부품
JP2009272478A (ja) * 2008-05-08 2009-11-19 Sharp Corp 半導体チップおよびその製造方法
KR20100064468A (ko) * 2008-12-05 2010-06-15 삼성전기주식회사 칩 내장 인쇄회로기판 및 그 제조방법
KR20180042890A (ko) * 2016-10-18 2018-04-27 삼성전자주식회사 반도체 패키지의 제조 방법
KR20190127666A (ko) * 2016-12-13 2019-11-13 홍콩 베이다 제이드 버드 디스플레이 리미티드 접착제를 사용하는 마이크로 구조의 물질 이동

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100853410B1 (ko) 2001-04-11 2008-08-21 소니 가부시키가이샤 소자의 전사방법 및 이를 이용한 소자의 배열방법,화상표시장치의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040085079A (ko) * 2003-03-31 2004-10-07 닛토덴코 가부시키가이샤 열박리성 양면 점착 시이트, 피착체의 가공 방법 및 전자부품
JP2009272478A (ja) * 2008-05-08 2009-11-19 Sharp Corp 半導体チップおよびその製造方法
KR20100064468A (ko) * 2008-12-05 2010-06-15 삼성전기주식회사 칩 내장 인쇄회로기판 및 그 제조방법
KR20180042890A (ko) * 2016-10-18 2018-04-27 삼성전자주식회사 반도체 패키지의 제조 방법
KR20190127666A (ko) * 2016-12-13 2019-11-13 홍콩 베이다 제이드 버드 디스플레이 리미티드 접착제를 사용하는 마이크로 구조의 물질 이동

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024108777A1 (zh) * 2022-11-22 2024-05-30 重庆康佳光电技术研究院有限公司 巨量转移修复方法及显示装置
CN116936554A (zh) * 2023-07-19 2023-10-24 深圳市鸿展光电有限公司 一种使用机械式转移技术制备Mini LED阵列的方法
CN116936554B (zh) * 2023-07-19 2024-04-16 深圳市鸿展光电有限公司 一种使用机械式转移技术制备Mini LED阵列的方法

Also Published As

Publication number Publication date
KR102216369B1 (ko) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2021187772A1 (ko) 발포체와 감광성 수지를 이용한 led칩 전사 방법 및 장치, 이를 이용한 디스플레이 장치의 제조 방법
WO2021215741A1 (ko) Led칩 전사용 감광성 전사 수지, 그 감광성 전사 수지를 이용한 led칩 전사 방법 및 이를 이용한 디스플레이 장치의 제조 방법
WO2020213937A1 (en) Led transferring method and display module manufactured by the same
WO2019124994A1 (ko) 변형필름을 이용한 전사방법
WO2021167149A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2021040102A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2019017670A1 (en) APPARATUS AND METHOD FOR MANUFACTURING LED MODULE
WO2020166985A1 (ko) 디스플레이용 발광 소자 전사 방법 및 디스플레이 장치
WO2021054491A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
EP3530077A1 (en) Display device using semiconductor light emitting device and fabrication method thereof
WO2022025415A1 (ko) Led칩 디스플레이 패널로의 전사 및 그 전사 전의 led칩 테스트를 위한 미들 플랫폼 장치
WO2020251136A1 (en) Method for manufacturing display device and substrate for manufacturing display device
WO2012060619A2 (ko) 반도체 소자 및 그 제조 방법
KR102225498B1 (ko) 발포체를 이용한 led칩 전사 방법 및 장치, 이를 이용한 디스플레이 장치의 제조 방법
WO2021025436A1 (ko) 발광 다이오드 디스플레이 패널 및 그것을 갖는 디스플레이 장치
WO2021085993A1 (ko) 디스플레이용 발광 소자 및 그것을 갖는 led 디스플레이 장치
WO2020149602A1 (ko) 발광 소자 패키지 및 이를 포함한 표시 장치
WO2019146819A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법 및 디스플레이 장치
WO2019045277A1 (ko) 픽셀용 발광소자 및 엘이디 디스플레이 장치
WO2021096099A1 (ko) 디스플레이 장치의 제조 방법 및 그 방법에 의해 제조되는 디스플레이 장치
WO2021080030A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2022039309A1 (ko) 디스플레이 장치 제조용 기판 및 이를 포함하는 디스플레이 장치
WO2022045392A1 (ko) 디스플레이 장치 제조용 기판
WO2021107273A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2011105858A2 (ko) 발광 다이오드 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21770470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21770470

Country of ref document: EP

Kind code of ref document: A1