WO2021186820A1 - State detection device and motor unit - Google Patents

State detection device and motor unit Download PDF

Info

Publication number
WO2021186820A1
WO2021186820A1 PCT/JP2020/046789 JP2020046789W WO2021186820A1 WO 2021186820 A1 WO2021186820 A1 WO 2021186820A1 JP 2020046789 W JP2020046789 W JP 2020046789W WO 2021186820 A1 WO2021186820 A1 WO 2021186820A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic flux
rotor
phase
detection
detection signal
Prior art date
Application number
PCT/JP2020/046789
Other languages
French (fr)
Japanese (ja)
Inventor
周平 村瀬
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202080098567.0A priority Critical patent/CN115280665A/en
Publication of WO2021186820A1 publication Critical patent/WO2021186820A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position

Definitions

  • the present invention relates to a state detection device and a motor unit.
  • a general motor unit includes a motor, a position detection device that detects the rotation position of the motor, and a control device that controls the motor based on the detection result of the rotation position obtained from the position detection device.
  • the following Patent Document 1 includes a sensor magnet, which is a disk-shaped magnet attached to the rotating shaft of a motor, and a magnetic sensor provided at a position facing the sensor magnet in the axial direction of the rotating shaft. The position detection device of the above is disclosed.
  • the control device has a function of detecting the coil current by a current sensor such as a shunt resistor and a function of estimating the torque based on the detection value of the coil current and the voltage command value (see Patent Documents 2 to 4). ).
  • one object of the present invention is to provide a state detection device that can be used as an all-in-one type small sensor independent of the control device, and a motor unit including the state detection device.
  • One aspect of the state detection device of the present invention is a state detection device that detects the state amount of a motor including a stator having a coil and a rotor having a permanent magnet.
  • the state detection device of this embodiment has a first magnetic sensor facing the permanent magnet in the axial direction of the rotor and a second magnetic sensor facing the stator in the axial direction of the rotor. At least three detection units provided along the rotation direction, a first detection signal indicating a magnetic flux detection result obtained from the first magnetic sensor, and a second detection signal indicating a magnetic flux detection result obtained from the second magnetic sensor.
  • a calculation unit that calculates the rotor magnetic flux component and the stator magnetic flux component for each detection unit, and the rotor magnetic flux component and the stator magnetic flux component obtained from the calculation unit, the rotor.
  • the first magnetic sensor and the second magnetic sensor are arranged along the radial direction of the rotor.
  • One aspect of the motor unit of the present invention is a motor including a stator having a coil and a rotor having a permanent magnet, a state detection device of the above aspect for detecting the state amount of the motor, and the state detection.
  • a control device for controlling the motor based on the detection result of the state quantity obtained from the device is provided.
  • a state detection device that can be used as an all-in-one type small sensor independent of the control device, and a motor unit including the state detection device.
  • FIG. 1 is a block diagram showing a configuration of a motor unit according to the present embodiment.
  • FIG. 2 is a diagram showing the arrangement of the first magnetic sensor and the second magnetic sensor with respect to the motor in the present embodiment.
  • FIG. 3 is a diagram showing the positional relationship between the first magnetic sensor and the second magnetic sensor in the present embodiment.
  • FIG. 4 is a diagram showing a detailed configuration of a calculation unit included in the state detection device according to the present embodiment.
  • FIG. 5 is a diagram showing a modified example of the calculation unit included in the state detection device according to the present embodiment.
  • FIG. 1 is a block diagram showing the configuration of the motor unit 1 of the present embodiment.
  • the motor unit 1 of the present embodiment includes a motor 10, a state detection device 20, and a control device 30.
  • the motor unit 1 is used as a device that generates a rotational force in various fields such as automobiles, robots, home appliances, industrial equipment, and medical equipment.
  • the motor 10 in this embodiment is, for example, an inner rotor type three-phase brushless DC motor.
  • the motor 10 includes a rotor (rotor) 100 and a stator (stator) 200.
  • the motor 10 also includes a motor housing that houses the rotor 100 and the stator 200, and bearing parts such as ball bearings.
  • the figure on the left side of FIG. 2 is a view of the motor 10 viewed from one end side of the central axis CA of the rotor 100.
  • the figure on the right side of FIG. 2 is a view of the cross section of the motor 10 along the IV-IV line as viewed from the direction of the arrow in the drawing.
  • the rotor 100 is a rotating body that is rotatably supported by bearing parts around the central axis CA inside the motor housing.
  • the direction parallel to the central axis CA of the rotor 100 is defined as the axial direction
  • the direction orthogonal to the central axis CA is defined as the radial direction.
  • the direction away from the central axis CA is defined as the radial outer side
  • the direction closer to the central axis CA is defined as the radial inner side.
  • the rotor 100 includes a rotor core 110, a rotor shaft 120, and 10 rotor magnets 130.
  • the rotor core 110 is an annular iron core component having a predetermined axial length.
  • the rotor core 110 is formed by laminating a plurality of thin electromagnetic steel sheets having the same shape in the axial direction.
  • the rotor shaft 120 is a columnar shaft component having an axial length longer than that of the rotor core 110.
  • the rotor shaft 120 is coaxially joined to the rotor core 110 in a state of axially penetrating the inside of the rotor core 110 in the radial direction.
  • the central axis of the rotor core 110 and the rotor shaft 120 is the central axis CA of the rotor 100.
  • the rotor shaft 120 is rotatably supported by the bearing component about the central axis CA.
  • the rotor magnet 130 is a plate-shaped permanent magnet having substantially the same axial length as the rotor core 110.
  • the rotor magnet 130 has an arcuate cross section when viewed from the axial direction.
  • ten grooves (magnet slots) that are recessed inward in the radial direction and extend in the axial direction are provided at intervals of 36 ° along the rotation direction of the rotor 100.
  • the case where the rotor 100 has 10 rotor magnets 130 is illustrated, but the number of rotor magnets 130 is not limited to 10. The number of rotor magnets 130 is appropriately determined according to the performance required for the motor 10. Further, in the present embodiment, the case where the motor 10 has an IPM type (embedded magnet type) rotor 100 is illustrated, but the motor 10 may have an SPM type (surface magnet type) rotor.
  • IPM type embedded magnet type
  • SPM type surface magnet type
  • the stator 200 is fixed inside the motor housing while surrounding the outer peripheral surface of the rotor 100, and generates an electromagnetic force for rotating the rotor 100.
  • the stator 200 has a stator core 210 and a coil 220.
  • the stator 200 has an insulator for electrically insulating the stator core 210 and the coil 220.
  • the stator core 210 is an iron core component having a yoke 211 and 12 teeth 212.
  • the yoke 211 is an annular portion having substantially the same axial length as the rotor core 110.
  • the central axis of the yoke 211 coincides with the central axis CA of the rotor 100.
  • the tooth 212 is a portion that protrudes inward in the radial direction from the inner peripheral surface of the yoke 211.
  • twelve teeth 212 are provided at intervals of 30 ° along the rotation direction. That is, the stator 200 in the present embodiment has 12 slots provided at intervals of 30 ° along the rotation direction.
  • An arcuate tip surface is provided on the inner tip of each tooth 212 in the radial direction when viewed from the axial direction.
  • the tip surface of each tooth 212 faces each rotor magnet 130 in the radial direction.
  • the above-mentioned stator core 210 is formed by laminating a plurality of thin electromagnetic steel sheets having the same shape in the axial direction.
  • the coil 220 is a coil to which a three-phase drive current is supplied from the control device 30.
  • the coil 220 includes a U-phase coil 221, a V-phase coil 222, and a W-phase coil 223.
  • the U-phase coil 221 is a coil to which the U-phase drive current Iu is supplied from the control device 30.
  • the V-phase coil 222 is a coil to which the V-phase drive current Iv is supplied from the control device 30.
  • the W-phase coil 223 is a coil to which the W-phase drive current Iw is supplied from the control device 30.
  • these currents are collectively referred to as coil currents I.
  • the U-phase coil 221 is wound around four teeth 212 separated by 90 ° in the rotation direction by a distributed winding method among the twelve teeth 212.
  • the V-phase coil 222 is wound by a distributed winding method on four teeth 212 adjacent to the wound teeth 212 on which the U-phase coil 221 is wound and separated by 90 ° in the rotation direction.
  • the W-phase coil 223 is wound around the four teeth 212 on which the V-phase coil 222 is wound and separated by 90 ° in the rotation direction by a distributed winding method. ..
  • the state detection device 20 detects the state amount of the motor 10 and outputs a signal indicating the detection result of the state amount to the control device 30.
  • the state quantity of the motor 10 includes the rotation position of the motor 10, that is, the rotation angle ⁇ R of the rotor 100, the coil currents I (Iu, Iv and Iw) flowing through the coil 220, and the torque T of the motor 10. That is, the state detection device 20 detects the rotation angle ⁇ R , the coil currents I (Iu, Iv and Iw), and the torque T as the state quantities of the motor 10, and controls a signal indicating the detection results of those state quantities. Output to device 30.
  • the state detection device 20 includes a U-phase detection unit 21u, a V-phase detection unit 21v, a W-phase detection unit 21w, a calculation unit 22, and a state estimation unit 23.
  • the detection unit 21 when it is not necessary to distinguish between the U-phase detection unit 21u, the V-phase detection unit 21v, and the W-phase detection unit 21w, these three components are collectively referred to as the detection unit 21. That is, the state detection device 20 in the present embodiment includes at least three detection units 21.
  • the U-phase detection unit 21u has a U-phase first magnetic sensor HAu and a U-phase second magnetic sensor HBu.
  • the V-phase detection unit 21v includes a V-phase first magnetic sensor HAv and a V-phase second magnetic sensor HBv.
  • the W-phase detection unit 21w has a W-phase first magnetic sensor HAw and a W-phase second magnetic sensor HBw.
  • these three magnetic sensors are collectively referred to as the first magnetic sensor HA. do.
  • each of the three detection units 21 has a first magnetic sensor HA and a second magnetic sensor HB, respectively. Twice
  • the state detection device 20 includes a disk-shaped circuit board 24.
  • the circuit board 24 has a shaft insertion hole 24a which is a hole penetrating in the plate thickness direction.
  • the circuit board 24 is fixed in the motor housing in a state where the thickness direction of the circuit board 24 coincides with the axial direction of the rotor 100 and the rotor shaft 120 is inserted into the shaft insertion hole 24a.
  • the three detection units 21 are provided on the plate surface 24b of the circuit board 24 facing the motor 10 side. That is, the first magnetic sensor HA and the second magnetic sensor HB of each of the three detection units 21 are mounted on the plate surface 24b of the circuit board 24.
  • the circuit board 24 may be a circuit board that the rotor shaft 120 does not penetrate. In this case, it is not necessary to provide the shaft insertion hole 24a in the circuit board 24.
  • the first magnetic sensor HA faces the rotor magnet 130 in the axial direction
  • the second magnetic sensor HB faces the stator 200 in the axial direction.
  • the first magnetic sensor HA and the second magnetic sensor HB are chip-type Hall sensors.
  • a chip-type Hall sensor has a marked flat surface as a detection surface.
  • the chip-type Hall sensor outputs an analog voltage signal proportional to the magnetic flux density of the magnetic flux interlinking with the detection surface.
  • the first magnetic sensor HA is mounted on the plate surface 24b of the circuit board 24 with its detection surface facing the rotor magnet 130 in the axial direction.
  • the second magnetic sensor HB is mounted on the plate surface 24b of the circuit board 24 with its detection surface facing the stator 200 in the axial direction.
  • FIG. 2 illustrates a case where all the detection surfaces of the first magnetic sensor HA face the rotor magnet 130 and all the detection surfaces of the second magnetic sensor HB face the stator 200.
  • FIG. 2 is only a schematic diagram, the actual chip sizes of the first magnetic sensor HA and the second magnetic sensor HB may differ from the sizes shown in FIG. In that case, at least a part of the detection surface of the first magnetic sensor HA may face the rotor magnet 130 in the axial direction. Further, at least a part of the detection surface of the second magnetic sensor HB may face the stator 200 in the axial direction.
  • the three detection units 21 are provided at intervals of 60 ° along the rotation direction of the rotor 100 when viewed from the axial direction. That is, the three first magnetic sensors HA are provided at intervals of 60 ° along the rotation direction of the rotor 100 when viewed from the axial direction. Further, the three second magnetic sensors HB are provided at intervals of 60 ° along the rotation direction of the rotor 100 when viewed from the axial direction. The three detection units 21 may be provided at intervals of 120 ° along the rotation direction of the rotor 100.
  • the first magnetic sensor HA and the second magnetic sensor HB are arranged along the radial direction of the rotor 100 when viewed from the axial direction.
  • a straight line passing through the center P2 of the second magnetic sensor HB and the center axis CA of the rotor 100 is defined as the reference line L.
  • the center P1 of the first magnetic sensor HA is located within a range extending ⁇ 2 mm with respect to the reference line L in the direction orthogonal to the reference line L.
  • both the center P1 of the first magnetic sensor HA and the center P2 of the second magnetic sensor HB do not necessarily have to be located on the same straight line extending in the radial direction. That is, in the present embodiment, "the first magnetic sensor HA and the second magnetic sensor HB are arranged along the radial direction of the rotor 100" means that the first magnetic sensor HA and the second magnetic sensor HB are relative to each other. Includes the meaning of allowing misalignment.
  • the U-phase first magnetic sensor HAu of the U-phase detection unit 21u transmits an analog voltage signal proportional to the magnetic flux density of the magnetic flux interlinking with the detection surface, and U-phase showing the magnetic flux detection result. It is output to the calculation unit 22 as the first detection signal VHAu.
  • the U-phase second magnetic sensor HBu of the U-phase detection unit 21u uses an analog voltage signal proportional to the magnetic flux density of the magnetic flux interlinking with the detection surface as a U-phase second detection signal V HBu indicating the magnetic flux detection result. Output to the calculation unit 22.
  • the V-phase first magnetic sensor HAv of the V-phase detection unit 21v uses an analog voltage signal proportional to the magnetic flux density of the magnetic flux interlinking with the detection surface as a V-phase first detection signal V HAv indicating the magnetic flux detection result. Output to the calculation unit 22.
  • the V-phase second magnetic sensor HBv of the V-phase detection unit 21v uses an analog voltage signal proportional to the magnetic flux density of the magnetic flux interlinking with the detection surface as a V-phase second detection signal V HBv indicating the magnetic flux detection result. Output to the calculation unit 22.
  • the W-phase first magnetic sensor HAw of the W-phase detection unit 21w uses an analog voltage signal proportional to the magnetic flux density of the magnetic flux interlinking with the detection surface as a W-phase first detection signal V HAw indicating the magnetic flux detection result. Output to the calculation unit 22.
  • the W-phase second magnetic sensor HBw of the W-phase detection unit 21w uses an analog voltage signal proportional to the magnetic flux density of the magnetic flux interlinking with the detection surface as a W-phase second detection signal V HBw indicating the magnetic flux detection result. Output to the calculation unit 22.
  • the U-phase first detection signal V HAu , the V-phase first detection signal V HAv, and the W-phase first detection signal V HAw have a phase difference of 120 ° in electrical angle from each other.
  • the U-phase second detection signal V HBu , the V-phase second detection signal V HBv, and the W-phase second detection signal V HBw have a phase difference of 120 ° in electrical angle from each other.
  • these three detection signals are referred to as the first detection signal.
  • V HB the V-phase second detection signal
  • V HBv the V-phase second detection signal
  • V HBw the W-phase second detection signal
  • the three first magnetic sensors HA are provided at intervals of 60 ° along the rotation direction of the rotor 100, the three first detection signals VHA having a phase difference of 120 ° in electrical angle from each other are generated.
  • a signal obtained by inverting the positive and negative values of the analog voltage signal output from the V-phase first magnetic sensor HAv is used as the V-phase first detection signal V HAv.
  • the three second magnetic sensors HBs are also provided at intervals of 60 ° along the rotation direction of the rotor 100, in order to obtain three second detection signals VHBs having a phase difference of 120 ° in electrical angles from each other.
  • V-phase second detection signal V HBv a signal obtained by inverting the positive and negative values of the analog voltage signal output from the V-phase second magnetic sensor HBv is used as the V-phase second detection signal V HBv.
  • the analog voltage signal output from the V-phase first magnetic sensor HAv is used as the V-phase first detection signal. It may be used directly as V HAv.
  • the analog voltage signal output from the V-phase second magnetic sensor HBv is detected in the V-phase second detection. It may be used directly as the signal V HBv.
  • the calculation unit 22 is based on the first detection signal V HA indicating the magnetic flux detection result obtained from the first magnetic sensor HA and the second detection signal V HB indicating the magnetic flux detection result obtained from the second magnetic sensor HB.
  • the magnetic flux component ⁇ m (rotor magnetic flux component) of the rotor 100 and the magnetic flux component ⁇ s (fixor magnetic flux component) of the stator 200 are calculated for each detection unit 21.
  • the calculation principle of the magnetic flux components ⁇ m and ⁇ s based on the first detection signal V HA and the second detection signal V HB will be described.
  • the first detection signal V HA can be expressed by the following equation (1) as a function of the electric angle ⁇ .
  • the second detection signal V HB can be expressed by the following equation (2) as a function of the electric angle ⁇ .
  • " ⁇ m ( ⁇ )” is the magnetic flux component of the rotor 100
  • " ⁇ s ( ⁇ , I)” is the magnetic flux component of the stator 200.
  • “X”, “y”, “j”, and “k” are coefficients that depend on the structure of the motor 10 and the arrangement of the first magnetic sensor HA and the second magnetic sensor HB.
  • the magnetic flux component of the rotor 100 is referred to as a rotor magnetic flux component
  • the magnetic flux component of the stator 200 is referred to as a stator magnetic flux component.
  • the first detection signal V HA and the second detection signal V HB have a rotor magnetic flux component ⁇ m ( ⁇ ) and a stator magnetic flux component ⁇ s ( ⁇ , I) as magnetic flux components. And include.
  • the rotor magnetic flux component ⁇ m ( ⁇ ) is represented by a periodic function of the electric angle ⁇ . Since the number of pole pairs of the motor 10 in this embodiment is "5", the rotor magnetic flux component ⁇ m ( ⁇ ) is included in the first detection signal V HA and the second detection signal V HB obtained during one rotation of the rotor 100. A periodic wave for 5 cycles is included.
  • the rotor magnetic flux component ⁇ m ( ⁇ ) is a periodic wave having a mechanical angle (rotation angle ⁇ R ) of 72 ° as one cycle.
  • the periodic wave means a wave having periodicity represented by a periodic function of the electric angle ⁇ .
  • the stator magnetic flux component ⁇ s ( ⁇ , I) is represented by a function of the electric angle ⁇ and the coil current I.
  • the stator magnetic flux component ⁇ s ( ⁇ , I) is a leakage flux (disturbance magnetic flux) generated by the current flowing through the coil 220 of the motor 10.
  • the stator magnetic flux component ⁇ s ( ⁇ , I) included in the U-phase first detection signal V HAu and the U-phase second detection signal V HBu is a function of the U-phase drive current Iu.
  • the stator magnetic flux component ⁇ s ( ⁇ , I) included in the V-phase first detection signal V HAv and the V-phase second detection signal V HBv is a function of the V-phase drive current Iv.
  • the stator magnetic flux component ⁇ s ( ⁇ , I) included in the W-phase first detection signal V HAw and the W-phase second detection signal V HBw is a function of the W-phase drive current Iw.
  • the U-phase drive current Iu is a current flowing between the U-phase coil 221 and the V-phase coil 222.
  • the V-phase drive current Iv is a current flowing between the V-phase coil 222 and the W-phase coil 223.
  • the W-phase drive current Iw is a current flowing between the W-phase coil 223 and the U-phase coil 221.
  • “X” is a coefficient representing the amplitude value of the rotor magnetic flux component ⁇ m ( ⁇ ) included in the first detection signal V HA , for example, a coefficient corresponding to the distance between the first magnetic sensor HA and the rotor magnet 130.
  • “J” is a coefficient representing the amplitude value of the stator magnetic flux component ⁇ s ( ⁇ , I) included in the first detection signal V HA , and is, for example, a coefficient corresponding to the distance between the first magnetic sensor HA and the starter 200. Is.
  • Y is a coefficient representing the amplitude value of the rotor magnetic flux component ⁇ m ( ⁇ ) included in the second detection signal V HB , and is, for example, a coefficient corresponding to the distance between the second magnetic sensor HB and the rotor magnet 130.
  • K is a coefficient representing the amplitude value of the stator magnetic flux component ⁇ s ( ⁇ , I) included in the second detection signal V HB , and is, for example, a coefficient corresponding to the distance between the second magnetic sensor HB and the starter 200. Is.
  • the inventor of the present application uses equations (1) and (2) to obtain a rotor magnetic flux component ⁇ m ( ⁇ ). And the stator magnetic flux component ⁇ s ( ⁇ , I) were found to be able to be calculated.
  • the first magnetic sensor HA faces the rotor magnet 130 in the axial direction
  • the second magnetic sensor HB faces the stator 200 in the axial direction.
  • the first magnetic sensor HA and the second magnetic sensor HB are arranged along the radial direction of the rotor 100.
  • the calculation result shown on the right side of the equation (3) can be obtained.
  • the first constant C is a value obtained by dividing the coefficient k by the coefficient j.
  • the second detection signal V HB is subtracted from the calculation result obtained by multiplying the first detection signal V HA by the first constant C, the stator magnetic flux component ⁇ s ( ⁇ ). , I) are canceled and only the rotor magnetic flux component ⁇ m ( ⁇ ) remains.
  • the calculation result shown on the right side of the equation (5) can be obtained.
  • the third constant D is a value obtained by dividing the coefficient y by the coefficient x.
  • the second detection is obtained from the calculation result obtained by multiplying the first detection signal VHA by the first constant C.
  • the rotor magnetic flux component ⁇ m can be calculated by subtracting the signal V HB.
  • the stator magnetic flux component ⁇ s can be calculated by subtracting from HB. The above is the calculation principle of the rotor magnetic flux component ⁇ m and the stator magnetic flux component ⁇ s based on the first detection signal V HA and the second detection signal V HB.
  • the calculation unit 22 in the present embodiment subtracts the second detection signal V HB from the calculation result obtained by multiplying the first detection signal V HA by the first constant C to obtain the rotor magnetic flux. Calculate the component ⁇ m. Further, the calculation unit 22 subtracts the calculation result obtained by multiplying the first detection signal V HA by the third constant D from the second detection signal V HB based on the above calculation principle, so that the stator magnetic flux component ⁇ s Is calculated.
  • the calculation unit 22 includes a U-phase magnetic flux calculation unit 22u, a V-phase magnetic flux calculation unit 22v, and a W-phase magnetic flux calculation unit 22w.
  • the calculation unit 22 is provided on the circuit board 24.
  • the U-phase magnetic flux calculation unit 22u has a U-phase first detection signal V HAu obtained from the U-phase first magnetic sensor HAu and a U obtained from the U-phase second magnetic sensor HBu.
  • the second phase detection signal V HBu is input.
  • the U-phase magnetic flux calculation unit 22u has a first multiplier 22ua, a first subtractor 22ub, a second multiplier 22uc, and a second subtractor 22ud.
  • First multiplier 22ua the voltage V C having an analog voltage value corresponding to the first constant C is multiplied by the U-phase first detection signal V Hau, and outputs a signal indicating the calculation result to the first subtracter 22ub .
  • First subtractor 22ub calculates the rotor flux components ⁇ m of the U-phase by a signal input from the first multiplier 22ua subtracts the U-phase second detection signal V HBU, periodic wave signal indicating the calculation result
  • the U-phase rotor magnetic flux signal ⁇ mu is output to the state estimation unit 23.
  • Second multiplier 22uc the voltage V D having an analog voltage value corresponding to the third constant D by multiplying the U-phase first detection signal V Hau, and outputs a signal indicating the calculation result to the second subtracter 22ud .
  • the second subtractor 22ud calculates the U-phase stator magnetic flux component ⁇ s by subtracting the signal input from the second multiplier 22uc from the U-phase second detection signal VHBu, and the U-phase stator showing the calculation result.
  • the magnetic flux signal ⁇ su is output to the state estimation unit 23.
  • the V-phase magnetic flux calculation unit 22v includes a V-phase first detection signal V HAv obtained from the V-phase first magnetic sensor HAv and a V obtained from the V-phase second magnetic sensor HBv.
  • the second phase detection signal V HBv is input.
  • the V-phase magnetic flux calculation unit 22v includes a first multiplier 22va, a first subtractor 22vb, a second multiplier 22vc, and a second subtractor 22vd.
  • First multiplier 22va the voltage V C having an analog voltage value corresponding to the first constant C multiplies the V-phase first detection signal V HAV, and outputs a signal indicating the calculation result to the first subtracter 22vb .
  • the first subtractor 22vb calculates the rotor magnetic flux component ⁇ m of the V phase by subtracting the V-phase second detection signal V HBv from the signal input from the first multiplier 22va, and a periodic wave signal showing the calculation result.
  • the V-phase rotor magnetic flux signal ⁇ mv is output to the state estimation unit 23.
  • the second multiplier 22vc multiplies the voltage V D having an analog voltage value corresponding to the third constant D by the V-phase first detection signal V HAv , and outputs a signal indicating the calculation result to the second subtractor 22vd. ..
  • the second subtractor 22vd calculates the V-phase stator magnetic flux component ⁇ s by subtracting the signal input from the second multiplier 22vc from the V-phase second detection signal V HBv, and the V-phase stator showing the calculation result.
  • the magnetic flux signal ⁇ sv is output to the state estimation unit 23.
  • the W-phase magnetic flux calculation unit 22w has a W-phase first detection signal V HAw obtained from the W-phase first magnetic sensor HAw and a W obtained from the W-phase second magnetic sensor HBw.
  • the second phase detection signal V HBw is input.
  • the W-phase magnetic flux calculation unit 22w includes a first multiplier 22wa, a first subtractor 22wb, a second multiplier 22wc, and a second subtractor 22wd.
  • First multiplier 22wa the voltage V C having an analog voltage value corresponding to the first constant C is multiplied by W phase first detection signal V HAW, and outputs a signal indicating the calculation result to the first subtracter 22wb .
  • the first subtractor 22wb calculates the W-phase rotor magnetic flux component ⁇ m by subtracting the W-phase second detection signal V HBw from the signal input from the first multiplier 22wa, and a periodic wave signal indicating the calculation result.
  • the W-phase rotor magnetic flux signal ⁇ mw is output to the state estimation unit 23.
  • the second multiplier 22wc multiplies the W-phase first detection signal VHAw by the voltage V D having an analog voltage value corresponding to the third constant D, and outputs a signal indicating the calculation result to the second subtractor 22wd. ..
  • the second subtractor 22wd calculates the W-phase stator magnetic flux component ⁇ s by subtracting the signal input from the second multiplier 22wc from the W-phase second detection signal V HBw, and the W-phase stator showing the calculation result.
  • the magnetic flux signal ⁇ sw is output to the state estimation unit 23.
  • the rotor magnetic flux signal ⁇ m when it is not necessary to distinguish between the U-phase rotor magnetic flux signal ⁇ mu, the V-phase rotor magnetic flux signal ⁇ mv, and the W-phase rotor magnetic flux signal ⁇ mw, these signals are collectively referred to as the rotor magnetic flux signal ⁇ m. Further, when it is not necessary to distinguish between the U-phase stator magnetic flux signal ⁇ su, the V-phase stator magnetic flux signal ⁇ sv, and the W-phase stator magnetic flux signal ⁇ sw, these signals are collectively referred to as the stator magnetic flux signal ⁇ s.
  • the first multipliers 22ua, 22va and 22wa and the second multipliers 22uc, 22vc and 22wc may be the above-mentioned analog multipliers or digital multipliers.
  • the first subtractors 22ub, 22vb and 22wb and the second subtractors 22ud, 22vd and 22wd may be analog subtractors as described above or digital subtractors.
  • a digital multiplier and a digital subtractor if an A / D converter that converts three first detection signals V HA and three second detection signals V HB into digital signals is provided. good.
  • the digital signals corresponding to the first constant C and the third constant D may be input to the digital multiplier.
  • the calculation unit 22 In order to transmit the three rotor magnetic flux signals ⁇ m and the three stator magnetic flux signals ⁇ s according to the rotation angle ⁇ R of the rotor 100 to the state estimation unit 23 with the minimum delay time, the calculation unit 22 is hardened as described above. It is preferably configured by wear (particularly analog circuits). However, if necessary, the function of the calculation unit 22 may be realized by software. That is, a processor such as an MCU (Microcontroller Unit) may be provided on the circuit board 24, and the processor may execute a program based on the above calculation principle to realize the function of the calculation unit 22.
  • MCU Microcontroller Unit
  • the state estimation unit 23 is based on three rotor magnetic flux signals ⁇ m ( ⁇ mu, ⁇ mv and ⁇ mw) and three stator magnetic flux signals ⁇ s ( ⁇ su, ⁇ sv and ⁇ sw) input from the calculation unit 22. Then, the rotation angle ⁇ R of the rotor 100, the coil currents I (Iu, Iv and Iw), and the torque T are estimated as the state quantities of the motor 10, and the estimated results are used in the control device 30 as the state quantity detection results. Output.
  • the state estimation unit 23 is a processor such as an MCU provided on the circuit board 24.
  • the state estimation unit 23 is a component corresponding to the estimation unit of the present invention.
  • the state estimation unit 23 includes an angle estimation unit 23a, a current estimation unit 23b, and a torque estimation unit 23c.
  • the angle estimation unit 23a estimates (calculates) the rotation angle ⁇ R of the rotor 100 based on the three rotor magnetic flux signals ⁇ m ( ⁇ mu, ⁇ mv and ⁇ mw), and controls the estimation result as the detection result of the rotation angle ⁇ R. Output to device 30.
  • the angle estimation unit 23 is a component corresponding to the position estimation unit of the present invention. Location estimation algorithm for estimating the rotation angle theta R of the rotor 100, for example, can be used a position estimation algorithm disclosed in WO 2016/104378. Therefore, the description of the position estimation algorithm is omitted in the present specification.
  • the algorithm used for estimating the rotation angle ⁇ R is not limited to the position estimation algorithm disclosed in International Publication No. 2016/10374. If a position estimation algorithm constructed on the premise that it is capable of acquiring three cycles wavy flux detection signal having a predetermined phase difference, may use other algorithms for estimating the rotation angle theta R.
  • the current estimation unit 23b determines the coil currents I (Iu, Iv and Iw) based on the three stator magnetic flux signals ⁇ s ( ⁇ su, ⁇ sv and ⁇ sw) and the self-inductance and mutual inductance of the motor 10 predetermined as constants. Is estimated, and the estimation result is output to the control device 30 as the detection result of the coil current I.
  • the current estimation unit 23b calculates the U-phase drive current Iu, the V-phase drive current Iv, and the W-phase drive current Iw as the coil current I based on the following equation (7).
  • “Lu” is the self-inductance of the U-phase coil 221.
  • “Lv” is the self-inductance of the V-phase coil 222.
  • “Lw” is the self-inductance of the W-phase coil 223.
  • “Muv” is the mutual inductance between the U-phase coil 221 and the V-phase coil 222.
  • “Muw” is the mutual inductance between the U-phase coil 221 and the W-phase coil 223.
  • “Mvu” is the mutual inductance between the V-phase coil 222 and the U-phase coil 221.
  • Mvw is the mutual inductance between the V-phase coil 222 and the W-phase coil 223.
  • Mo is the mutual inductance between the W-phase coil 223 and the U-phase coil 221.
  • Mwv is the mutual inductance between the W-phase coil 223 and the V-phase coil 222.
  • the torque estimation unit 23c contains the three rotor magnetic flux signals ⁇ m ( ⁇ mu, ⁇ mv and ⁇ mw) obtained from the calculation unit 22 and the estimation results of the coil currents I (Iu, Iv and Iw) obtained from the current estimation unit 23b. Entered.
  • the torque estimation unit 23c includes three rotor magnetic flux signals ⁇ m ( ⁇ mu, ⁇ mv and ⁇ mw), an estimation result of the coil current I (Iu, Iv and Iw), and a polar logarithm Np of the rotor magnet 130 predetermined as a constant.
  • the torque T is estimated based on the above, and the estimation result is output to the control device 30 as the detection result of the torque T.
  • the torque estimation unit 23c calculates the torque T based on the following equation (8). Since the motor 10 in this embodiment has 10 rotor magnets 130, the pole logarithm Np is "5".
  • the control device 30 uses the motor 10 based on the detection results of the state quantities (rotation angle ⁇ R , U-phase drive current Iu, V-phase drive current Iv, W-phase drive current Iw, and torque T) obtained from the state detection device 20. To control.
  • the control device 30 may be provided inside the motor housing of the motor 10, or may be mounted on the outside of the motor housing.
  • the control device 30 rotates the rotor 100 by vector-controlling the U-phase drive current Iu, the V-phase drive current Iv, and the W-phase drive current Iw supplied to the motor 10 based on the detection result of the state quantity. Since vector control is generally known as a control method for the motor 10 which is a three-phase brushless DC motor, detailed description of vector control is omitted in the present specification.
  • the state detection device 20 in the present embodiment includes a first magnetic sensor HA facing the rotor magnet 130 in the axial direction of the rotor 100 and a second magnetic sensor HB facing the stator 200 in the axial direction. However, it has at least three detection units 21 provided along the rotation direction of the rotor 100. In each of the detection units 21, the first magnetic sensor HA and the second magnetic sensor HB are arranged along the radial direction of the rotor 100. Further, the state detection device 20 has a rotor magnetic flux component ⁇ m and a stator magnetic flux based on the first detection signal V HA obtained from the first magnetic sensor HA and the second detection signal V HB obtained from the second magnetic sensor HB.
  • the state detection device 20 includes a rotation angle ⁇ R of the rotor 100, coil currents I (Iu, Iv and Iw), and a motor 10 based on the rotor magnetic flux component ⁇ m and the stator magnetic flux component ⁇ s obtained from the calculation unit 22.
  • a state estimation unit 23 that estimates the torque T of the above as a state quantity is provided.
  • the state detection device 20 configured as described above, it is possible to detect the coil current I and estimate the torque T without a current sensor such as a shunt resistor, and the rotation angle ⁇ R without a dedicated sensor magnet. Can be detected. Therefore, according to the present embodiment, it is possible to provide a state detection device 20 that can be used as an all-in-one type small sensor independent of the control device 30.
  • the calculation unit 22 calculates the rotor magnetic flux component ⁇ m by subtracting the second detection signal V HB from the calculation result obtained by multiplying the first detection signal V HA by the first constant C. do.
  • the rotor magnetic flux component ⁇ m can be calculated easily and accurately by the combination of the multiplier and the subtractor.
  • the multiplier and the subtractor can be realized by inexpensive hardware such as an analog circuit or a digital circuit.
  • the calculation unit 22 calculates the stator magnetic flux component ⁇ s by subtracting the calculation result obtained by multiplying the first detection signal V HA by the third constant D from the second detection signal V HB. do.
  • the stator magnetic flux component ⁇ s can be calculated easily and accurately by the combination of the multiplier and the subtractor.
  • the multiplier and the subtractor can be realized by inexpensive hardware such as an analog circuit or a digital circuit.
  • the state estimation unit 23 includes an angle estimation unit 23a, a current estimation unit 23b, and a torque estimation unit 23c.
  • Angle estimator 23a estimates the rotation angle theta R based on three rotor flux component ⁇ m obtained from the calculation unit 22.
  • the current estimation unit 23b estimates the coil current I based on the three stator magnetic flux signals ⁇ s obtained from the calculation unit 22 and the self-inductance and mutual inductance of the motor 10 predetermined as constants.
  • the torque estimation unit 23c estimates the torque T based on the three rotor magnetic flux signals ⁇ m obtained from the calculation unit 22, the estimation result of the coil current I, and the polar logarithm Np of the rotor magnet 130 predetermined as a constant. do.
  • the rotation angle ⁇ R , the coil current I, and the torque T which are the state quantities of the motor 10, can be easily and accurately estimated.
  • the present invention is not limited to the above-described embodiment, and the configurations described in the present specification can be appropriately combined within a range that does not contradict each other.
  • the calculation unit 25 in the modified example shown in FIG. 5 may be provided in the state detection device 20.
  • the calculation unit 25 in the modified example calculates the rotor magnetic flux component ⁇ m by subtracting the first detection signal V HA from the calculation result obtained by multiplying the second detection signal V HB by the second constant E. Further, the calculation unit 25 calculates the stator magnetic flux component ⁇ s by subtracting the calculation result obtained by multiplying the second detection signal V HB by the fourth constant F from the first detection signal V HA.
  • the calculation result shown on the right side of the equation (9) can be obtained.
  • the second constant E is a value obtained by dividing the coefficient j by the coefficient k.
  • the stator magnetic flux component ⁇ s ( ⁇ ). , I) are canceled and only the rotor magnetic flux component ⁇ m ( ⁇ ) remains.
  • the calculation result shown on the right side of the equation (11) can be obtained.
  • the fourth constant F is a value obtained by dividing the coefficient x by the coefficient y.
  • the calculation result obtained by multiplying the second detection signal V HB by the fourth constant F is subtracted from the first detection signal V HA , the rotor magnetic flux component ⁇ m ( ⁇ ). ) Is canceled, and only the stator magnetic flux component ⁇ s ( ⁇ , I) remains.
  • the first detection is performed from the calculation result obtained by multiplying the second detection signal V HB by the second constant E.
  • the rotor magnetic flux component ⁇ m can be calculated by subtracting the signal V HA.
  • the stator magnetic flux component ⁇ s can be calculated by subtracting from HA.
  • the calculation unit 25 in the modified example includes a U-phase magnetic flux calculation unit 25u, a V-phase magnetic flux calculation unit 25v, and a W-phase magnetic flux calculation unit 25w.
  • the U-phase first detection signal V HAu obtained from the U-phase first magnetic sensor HAu and the U-phase second detection signal V HBu obtained from the U-phase second magnetic sensor HBu are input to the U-phase magnetic flux calculation unit 25u. Will be done.
  • the U-phase magnetic flux calculation unit 25u has a first multiplier 25ua, a first subtractor 25ub, a second multiplier 25uc, and a second subtractor 25ud.
  • First multiplier 25ua the voltage V E having an analog voltage value corresponding to the second constant E by multiplying the U-phase second detection signal V HBU, and outputs a signal indicating the calculation result to the first subtracter 25ub .
  • First subtractor 25ub calculates the rotor flux components ⁇ m of the U-phase by a signal input from the first multiplier 25ua subtracts the U-phase first detection signal V Hau, periodic wave signal indicating the calculation result
  • the U-phase rotor magnetic flux signal ⁇ mu is output to the state estimation unit 23.
  • Second multiplier 25uc the voltage V F having an analog voltage value corresponding to the fourth constant F multiplies the U-phase second detection signal V HBU, and outputs a signal indicating the calculation result to the second subtracter 25ud .
  • the second subtractor 25ud calculates the U-phase stator magnetic flux component ⁇ s by subtracting the signal input from the second multiplier 25uc from the U-phase first detection signal VHAu, and the U-phase stator showing the calculation result.
  • the magnetic flux signal ⁇ su is output to the state estimation unit 23.
  • the V-phase first detection signal V HAv obtained from the V-phase first magnetic sensor HAv and the V-phase second detection signal V HBv obtained from the V-phase second magnetic sensor HBv are input to the V-phase magnetic flux calculation unit 25v. Will be done.
  • the V-phase magnetic flux calculation unit 25v includes a first multiplier 25va, a first subtractor 25vb, a second multiplier 25vc, and a second subtractor 25vd.
  • First multiplier 25va the voltage V E having an analog voltage value corresponding to the second constant E multiplies the V-phase second detection signal V HBV, and outputs a signal indicating the calculation result to the first subtracter 25vb .
  • First subtractor 25vb calculates the rotor flux components ⁇ m of the V-phase by subtracting the V-phase first detection signal V HAV from a signal input from the first multiplier 25VA, periodic wave signal indicating the calculation result
  • the V-phase rotor magnetic flux signal ⁇ mv is output to the state estimation unit 23.
  • Second multiplier 25vc the voltage V F having an analog voltage value corresponding to the fourth constant F multiplies the V-phase second detection signal V HBV, and outputs a signal indicating the calculation result to the second subtracter 25vd .
  • the second subtractor 25vd calculates the V-phase stator magnetic flux component ⁇ s by subtracting the signal input from the second multiplier 25vc from the V-phase first detection signal VHAv, and the V-phase stator showing the calculation result.
  • the magnetic flux signal ⁇ sv is output to the state estimation unit 23.
  • the W-phase first detection signal V HAw obtained from the W-phase first magnetic sensor HAw and the W-phase second detection signal V HBw obtained from the W-phase second magnetic sensor HBw are input to the W-phase magnetic flux calculation unit 25w. Will be done.
  • the W-phase magnetic flux calculation unit 25w includes a first multiplier 25wa, a first subtractor 25wb, a second multiplier 25wc, and a second subtractor 25wd.
  • First multiplier 25wa the voltage V E having an analog voltage value corresponding to the second constant E by multiplying the W-phase second detection signal V HBW, and outputs a signal indicating the calculation result to the first subtracter 25wb .
  • First subtractor 25wb calculates the rotor flux components ⁇ m of the W phase by subtracting the W-phase first detection signal V HAW from a signal input from the first multiplier 25Wa, periodic wave signal indicating the calculation result
  • the W-phase rotor magnetic flux signal ⁇ mw is output to the state estimation unit 23.
  • Second multiplier 25wc the voltage V F having an analog voltage value corresponding to the fourth constant F multiplies the W-phase second detection signal V HBW, and outputs a signal indicating the calculation result to the second subtracter 25wd .
  • the second subtractor 25wd calculates the W-phase stator magnetic flux component ⁇ s by subtracting the signal input from the second multiplier 25wc from the W-phase first detection signal VHAw, and the W-phase stator showing the calculation result.
  • the magnetic flux signal ⁇ sw is output to the state estimation unit 23.
  • the first detection signal V HA obtained from the first magnetic sensor HA and the second detection signal V HB obtained from the second magnetic sensor HB can be calculated based on the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A state detection device according to one aspect of the present invention comprises: at least three detection units that have a first magnetic sensor facing a permanent magnet in an axial direction of a rotor of a motor and a second magnetic sensor facing a stator of the motor in the axial direction, and are provided in the rotation direction of the rotor; a calculation unit that calculates, for each detection unit, a rotor magnetic flux component and a stator magnetic flux component, on the basis of a first detection signal indicating a magnetic flux detection result obtained by the first magnetic sensor and a second detection signal indicating a magnetic flux detection result obtained by the second magnetic sensor; and an estimation unit that estimates, as the state quantities of the motor, a rotation position of the rotor, a coil current flowing through a coil, and a torque of the motor, on the basis of the rotor magnetic flux component and the stator magnetic flux component obtained from the calculation unit. In each of the detection units, the first magnetic sensor and the second magnetic sensor are arranged in a radial direction of the rotor.

Description

状態検出装置及びモータユニットState detector and motor unit
 本発明は、状態検出装置及びモータユニットに関する。 The present invention relates to a state detection device and a motor unit.
 一般的なモータユニットは、モータと、モータの回転位置を検出する位置検出装置と、位置検出装置から得られる回転位置の検出結果を基にモータを制御する制御装置と、を備える。下記特許文献1には、モータの回転軸に取り付けられる円板状の磁石であるセンサ磁石と、回転軸の軸方向においてセンサ磁石と対向する位置に設けられる磁気センサとを備える、センサ磁石搭載型の位置検出装置が開示されている。 A general motor unit includes a motor, a position detection device that detects the rotation position of the motor, and a control device that controls the motor based on the detection result of the rotation position obtained from the position detection device. The following Patent Document 1 includes a sensor magnet, which is a disk-shaped magnet attached to the rotating shaft of a motor, and a magnetic sensor provided at a position facing the sensor magnet in the axial direction of the rotating shaft. The position detection device of the above is disclosed.
 モータを制御するには、回転位置の情報だけでなく、モータのコイルに流れるコイル電流の情報と、モータのトルクの情報とが必要である。そのため、制御装置は、シャント抵抗器などの電流センサによってコイル電流を検出する機能と、コイル電流の検出値及び電圧指令値などに基づいてトルクを推定する機能とを備える(特許文献2から4参照)。 To control the motor, not only the information on the rotation position but also the information on the coil current flowing through the coil of the motor and the information on the torque of the motor are required. Therefore, the control device has a function of detecting the coil current by a current sensor such as a shunt resistor and a function of estimating the torque based on the detection value of the coil current and the voltage command value (see Patent Documents 2 to 4). ).
特開2016-133376号公報Japanese Unexamined Patent Publication No. 2016-133376 特開2015-12770号公報Japanese Unexamined Patent Publication No. 2015-12770 特開2009-33876号公報Japanese Unexamined Patent Publication No. 2009-33876 特許第6135713号公報Japanese Patent No. 6135713
 近年、モータ制御に必要な情報であるモータの状態量(回転位置、コイル電流及びトルク)の全てを検出する機能を備えるオールインワンタイプの小型センサの開発が要求されている。しかしながら、特許文献2から4に記載されているように、トルクの推定には制御装置に内蔵された電流センサが必要であり、また、特許文献1に記載されているように、回転位置の検出にはセンサの大型化を招く専用のセンサ磁石が必要なケースもある。 In recent years, there has been a demand for the development of an all-in-one type compact sensor having a function of detecting all the state quantities (rotational position, coil current and torque) of the motor, which is information necessary for motor control. However, as described in Patent Documents 2 to 4, a current sensor built in the control device is required for torque estimation, and as described in Patent Document 1, the detection of the rotation position. In some cases, a dedicated sensor magnet is required, which leads to an increase in the size of the sensor.
 そのため、制御装置から独立したセンサとしてオールインワンタイプの小型センサを得るには、電流センサ無しでコイル電流の検出及びトルクの推定が可能であって、且つ専用のセンサ磁石無しで回転位置を検出可能な技術が必要とされる。 Therefore, in order to obtain an all-in-one type compact sensor as a sensor independent of the control device, it is possible to detect the coil current and estimate the torque without a current sensor, and to detect the rotation position without a dedicated sensor magnet. Technology is needed.
 本発明は上記事情に鑑みて、制御装置から独立したオールインワンタイプの小型センサとして使用可能な状態検出装置と、その状態検出装置を備えるモータユニットを提供することを一つの目的とする。 In view of the above circumstances, one object of the present invention is to provide a state detection device that can be used as an all-in-one type small sensor independent of the control device, and a motor unit including the state detection device.
 本発明の状態検出装置における一つの態様は、コイルを有する固定子と、永久磁石を有する回転子と、を備えるモータの状態量を検出する状態検出装置である。本態様の状態検出装置は、前記回転子の軸方向において前記永久磁石と対向する第1磁気センサと、前記軸方向において前記固定子と対向する第2磁気センサとを有し、前記回転子の回転方向に沿って設けられる少なくとも3つの検出部と、前記第1磁気センサから得られる磁束検出結果を示す第1検出信号と、前記第2磁気センサから得られる磁束検出結果を示す第2検出信号とに基づいて、回転子磁束成分及び固定子磁束成分を前記検出部ごとに算出する算出部と、前記算出部から得られる前記回転子磁束成分及び前記固定子磁束成分に基づいて、前記回転子の回転位置と、前記コイルに流れるコイル電流と、前記モータのトルクとを前記状態量として推定する推定部と、を備える。前記検出部のそれぞれにおいて、前記第1磁気センサ及び前記第2磁気センサは、前記回転子の径方向に沿って配置される。 One aspect of the state detection device of the present invention is a state detection device that detects the state amount of a motor including a stator having a coil and a rotor having a permanent magnet. The state detection device of this embodiment has a first magnetic sensor facing the permanent magnet in the axial direction of the rotor and a second magnetic sensor facing the stator in the axial direction of the rotor. At least three detection units provided along the rotation direction, a first detection signal indicating a magnetic flux detection result obtained from the first magnetic sensor, and a second detection signal indicating a magnetic flux detection result obtained from the second magnetic sensor. Based on the above, a calculation unit that calculates the rotor magnetic flux component and the stator magnetic flux component for each detection unit, and the rotor magnetic flux component and the stator magnetic flux component obtained from the calculation unit, the rotor. A rotation position of the above, a coil current flowing through the coil, and an estimation unit that estimates the torque of the motor as the state quantity. In each of the detection units, the first magnetic sensor and the second magnetic sensor are arranged along the radial direction of the rotor.
 本発明のモータユニットにおける一つの態様は、コイルを有する固定子と、永久磁石を有する回転子と、を備えるモータと、前記モータの状態量を検出する上記態様の状態検出装置と、前記状態検出装置から得られる前記状態量の検出結果に基づいて前記モータを制御する制御装置と、を備える。 One aspect of the motor unit of the present invention is a motor including a stator having a coil and a rotor having a permanent magnet, a state detection device of the above aspect for detecting the state amount of the motor, and the state detection. A control device for controlling the motor based on the detection result of the state quantity obtained from the device is provided.
 本発明の上記態様によれば、制御装置から独立したオールインワンタイプの小型センサとして使用可能な状態検出装置と、その状態検出装置を備えるモータユニットとを提供することができる。 According to the above aspect of the present invention, it is possible to provide a state detection device that can be used as an all-in-one type small sensor independent of the control device, and a motor unit including the state detection device.
図1は、本実施形態におけるモータユニットの構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a motor unit according to the present embodiment. 図2は、本実施形態におけるモータに対する第1磁気センサ及び第2磁気センサの配置を示す図である。FIG. 2 is a diagram showing the arrangement of the first magnetic sensor and the second magnetic sensor with respect to the motor in the present embodiment. 図3は、本実施形態における第1磁気センサと第2磁気センサとの位置関係を示す図である。FIG. 3 is a diagram showing the positional relationship between the first magnetic sensor and the second magnetic sensor in the present embodiment. 図4は、本実施形態における状態検出装置が備える算出部の詳細な構成を示す図である。FIG. 4 is a diagram showing a detailed configuration of a calculation unit included in the state detection device according to the present embodiment. 図5は、本実施形態における状態検出装置が備える算出部の変形例を示す図である。FIG. 5 is a diagram showing a modified example of the calculation unit included in the state detection device according to the present embodiment.
 以下、本発明の一実施形態について図面を参照しながら詳細に説明する。
 図1は、本実施形態のモータユニット1の構成を示すブロック図である。図1に示すように、本実施形態のモータユニット1は、モータ10と、状態検出装置20と、制御装置30と、を備える。モータユニット1は、自動車、ロボット、家電機器、産業機器、及び医療機器などの様々な分野において、回転力を発生する装置として使用される。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of the motor unit 1 of the present embodiment. As shown in FIG. 1, the motor unit 1 of the present embodiment includes a motor 10, a state detection device 20, and a control device 30. The motor unit 1 is used as a device that generates a rotational force in various fields such as automobiles, robots, home appliances, industrial equipment, and medical equipment.
 図2に示すように、本実施形態におけるモータ10は、例えばインナーロータ型の3相ブラシレスDCモータである。モータ10は、ロータ(回転子)100と、ステータ(固定子)200と、を備える。図示は省略するが、モータ10は、ロータ100及びステータ200を内部に収容するモータハウジングと、ボールベアリング等の軸受け部品なども備える。なお、図2の左側の図は、ロータ100の中心軸線CAの一端側からモータ10を見た図である。図2の右側の図は、モータ10の断面のうち、IV-IV線に沿う断面を図示の矢印方向から見た図である。 As shown in FIG. 2, the motor 10 in this embodiment is, for example, an inner rotor type three-phase brushless DC motor. The motor 10 includes a rotor (rotor) 100 and a stator (stator) 200. Although not shown, the motor 10 also includes a motor housing that houses the rotor 100 and the stator 200, and bearing parts such as ball bearings. The figure on the left side of FIG. 2 is a view of the motor 10 viewed from one end side of the central axis CA of the rotor 100. The figure on the right side of FIG. 2 is a view of the cross section of the motor 10 along the IV-IV line as viewed from the direction of the arrow in the drawing.
 ロータ100は、モータハウジングの内部において、軸受け部品によって中心軸線CAを中心として回転可能に支持される回転体である。本実施形態において、ロータ100の中心軸線CAに平行な方向を軸方向と定義し、中心軸線CAに直交する方向を径方向と定義する。また、径方向において、中心軸線CAから離れる向きを径方向外側と定義し、中心軸線CAに近づく向きを径方向内側と定義する。ロータ100は、ロータコア110と、ロータシャフト120と、10個のロータマグネット130と、を有する。 The rotor 100 is a rotating body that is rotatably supported by bearing parts around the central axis CA inside the motor housing. In the present embodiment, the direction parallel to the central axis CA of the rotor 100 is defined as the axial direction, and the direction orthogonal to the central axis CA is defined as the radial direction. Further, in the radial direction, the direction away from the central axis CA is defined as the radial outer side, and the direction closer to the central axis CA is defined as the radial inner side. The rotor 100 includes a rotor core 110, a rotor shaft 120, and 10 rotor magnets 130.
 ロータコア110は、所定の軸方向長さを有する円環状の鉄心部品である。ロータコア110は、同一形状を有する複数の薄い電磁鋼板が軸方向に積層されることによって構成される。ロータシャフト120は、ロータコア110よりも長い軸方向長さを有する円柱状の軸部品である。ロータシャフト120は、ロータコア110の径方向内側を軸方向に貫通した状態でロータコア110と同軸接合される。ロータコア110及びロータシャフト120の中心軸線が、ロータ100の中心軸線CAである。ロータ100の構成部品のうち、ロータシャフト120が、軸受け部品によって中心軸線CAを中心として回転可能に支持される。 The rotor core 110 is an annular iron core component having a predetermined axial length. The rotor core 110 is formed by laminating a plurality of thin electromagnetic steel sheets having the same shape in the axial direction. The rotor shaft 120 is a columnar shaft component having an axial length longer than that of the rotor core 110. The rotor shaft 120 is coaxially joined to the rotor core 110 in a state of axially penetrating the inside of the rotor core 110 in the radial direction. The central axis of the rotor core 110 and the rotor shaft 120 is the central axis CA of the rotor 100. Among the components of the rotor 100, the rotor shaft 120 is rotatably supported by the bearing component about the central axis CA.
 ロータマグネット130は、ロータコア110とほぼ同じ軸方向長さを有する板状の永久磁石である。ロータマグネット130は、軸方向からみて円弧状の断面を有する。ロータコア110の外周面には、径方向内側に窪み且つ軸方向に延びる10個の溝部(マグネットスロット)が、ロータ100の回転方向に沿って36°間隔で設けられる。1つのロータマグネット130が、1つのマグネットスロットに挿入されることにより、ロータコア110の外周面において合計10個のロータマグネット130が、回転方向に沿って36°間隔で配置される。なお、本実施形態では、ロータ100が10個のロータマグネット130を有する場合を例示したが、ロータマグネット130の個数は10個に限定されない。ロータマグネット130の個数は、モータ10に要求される性能に応じて適宜決定される。また、本実施形態では、モータ10がIPM型(埋め込み磁石型)のロータ100を有する場合を例示したが、モータ10がSPM型(表面磁石型)のロータを有してもよい。 The rotor magnet 130 is a plate-shaped permanent magnet having substantially the same axial length as the rotor core 110. The rotor magnet 130 has an arcuate cross section when viewed from the axial direction. On the outer peripheral surface of the rotor core 110, ten grooves (magnet slots) that are recessed inward in the radial direction and extend in the axial direction are provided at intervals of 36 ° along the rotation direction of the rotor 100. By inserting one rotor magnet 130 into one magnet slot, a total of ten rotor magnets 130 are arranged at intervals of 36 ° along the rotation direction on the outer peripheral surface of the rotor core 110. In this embodiment, the case where the rotor 100 has 10 rotor magnets 130 is illustrated, but the number of rotor magnets 130 is not limited to 10. The number of rotor magnets 130 is appropriately determined according to the performance required for the motor 10. Further, in the present embodiment, the case where the motor 10 has an IPM type (embedded magnet type) rotor 100 is illustrated, but the motor 10 may have an SPM type (surface magnet type) rotor.
 ステータ200は、モータハウジングの内部において、ロータ100の外周面を囲った状態で固定され、ロータ100を回転させるための電磁力を発生させる。ステータ200は、ステータコア210と、コイル220と、を有する。なお、図示は省略するが、ステータ200は、ステータコア210とコイル220とを電気的に絶縁するためのインシュレータを有する。 The stator 200 is fixed inside the motor housing while surrounding the outer peripheral surface of the rotor 100, and generates an electromagnetic force for rotating the rotor 100. The stator 200 has a stator core 210 and a coil 220. Although not shown, the stator 200 has an insulator for electrically insulating the stator core 210 and the coil 220.
 ステータコア210は、ヨーク211と、12個のティース212と、を有する鉄心部品である。ヨーク211は、ロータコア110とほぼ同じ軸方向長さを有する円環状の部位である。ヨーク211の中心軸線は、ロータ100の中心軸線CAと一致する。ティース212は、ヨーク211の内周面から径方向内側に突出する部位である。ヨーク211の内周面において、12個のティース212が、回転方向に沿って30°間隔で設けられる。すなわち、本実施形態におけるステータ200は、回転方向に沿って30°間隔で設けられた12個のスロットを有する。各ティース212の径方向内側の先端部には、軸方向からみて円弧状の先端面が設けられる。各ティース212の先端面は、各ロータマグネット130と径方向に対向する。以上のステータコア210は、同一形状を有する複数の薄い電磁鋼板が軸方向に積層されることによって構成される。 The stator core 210 is an iron core component having a yoke 211 and 12 teeth 212. The yoke 211 is an annular portion having substantially the same axial length as the rotor core 110. The central axis of the yoke 211 coincides with the central axis CA of the rotor 100. The tooth 212 is a portion that protrudes inward in the radial direction from the inner peripheral surface of the yoke 211. On the inner peripheral surface of the yoke 211, twelve teeth 212 are provided at intervals of 30 ° along the rotation direction. That is, the stator 200 in the present embodiment has 12 slots provided at intervals of 30 ° along the rotation direction. An arcuate tip surface is provided on the inner tip of each tooth 212 in the radial direction when viewed from the axial direction. The tip surface of each tooth 212 faces each rotor magnet 130 in the radial direction. The above-mentioned stator core 210 is formed by laminating a plurality of thin electromagnetic steel sheets having the same shape in the axial direction.
 コイル220は、制御装置30から3相駆動電流が供給されるコイルである。コイル220は、U相コイル221と、V相コイル222と、W相コイル223と、を有する。U相コイル221は、制御装置30からU相駆動電流Iuが供給されるコイルである。V相コイル222は、制御装置30からV相駆動電流Ivが供給されるコイルである。W相コイル223は、制御装置30からW相駆動電流Iwが供給されるコイルである。以下では、U相駆動電流Iuと、V相駆動電流Ivと、W相駆動電流Iwとを区別する必要がない場合、これらの電流をコイル電流Iと総称する。 The coil 220 is a coil to which a three-phase drive current is supplied from the control device 30. The coil 220 includes a U-phase coil 221, a V-phase coil 222, and a W-phase coil 223. The U-phase coil 221 is a coil to which the U-phase drive current Iu is supplied from the control device 30. The V-phase coil 222 is a coil to which the V-phase drive current Iv is supplied from the control device 30. The W-phase coil 223 is a coil to which the W-phase drive current Iw is supplied from the control device 30. In the following, when it is not necessary to distinguish between the U-phase drive current Iu, the V-phase drive current Iv, and the W-phase drive current Iw, these currents are collectively referred to as coil currents I.
 U相コイル221は、12個のティース212のうち、回転方向に90°間隔で離れた4個のティース212に分布巻き方式によって巻かれる。V相コイル222は、12個のティース212のうち、U相コイル221が巻かれたティース212と隣り合い、且つ回転方向に90°間隔で離れた4個のティース212に分布巻き方式によって巻かれる。W相コイル223は、12個のティース212のうち、V相コイル222が巻かれたティース212と隣り合い、且つ回転方向に90°間隔で離れた4個のティース212に分布巻き方式によって巻かれる。 The U-phase coil 221 is wound around four teeth 212 separated by 90 ° in the rotation direction by a distributed winding method among the twelve teeth 212. Of the 12 teeth 212, the V-phase coil 222 is wound by a distributed winding method on four teeth 212 adjacent to the wound teeth 212 on which the U-phase coil 221 is wound and separated by 90 ° in the rotation direction. .. Of the 12 teeth 212, the W-phase coil 223 is wound around the four teeth 212 on which the V-phase coil 222 is wound and separated by 90 ° in the rotation direction by a distributed winding method. ..
 図1に示すように、状態検出装置20は、モータ10の状態量を検出し、状態量の検出結果を示す信号を制御装置30に出力する。モータ10の状態量には、モータ10の回転位置、すなわちロータ100の回転角度θと、コイル220に流れるコイル電流I(Iu、Iv及びIw)と、モータ10のトルクTとが含まれる。すなわち、状態検出装置20は、回転角度θと、コイル電流I(Iu、Iv及びIw)と、トルクTとをモータ10の状態量として検出し、それら状態量の検出結果を示す信号を制御装置30に出力する。 As shown in FIG. 1, the state detection device 20 detects the state amount of the motor 10 and outputs a signal indicating the detection result of the state amount to the control device 30. The state quantity of the motor 10 includes the rotation position of the motor 10, that is, the rotation angle θ R of the rotor 100, the coil currents I (Iu, Iv and Iw) flowing through the coil 220, and the torque T of the motor 10. That is, the state detection device 20 detects the rotation angle θ R , the coil currents I (Iu, Iv and Iw), and the torque T as the state quantities of the motor 10, and controls a signal indicating the detection results of those state quantities. Output to device 30.
 状態検出装置20は、U相検出部21u、V相検出部21v、W相検出部21wと、算出部22と、状態推定部23と、を備える。以下では、U相検出部21uと、V相検出部21vと、W相検出部21wとを区別する必要がない場合、これら3つの構成要素を検出部21と総称する。すなわち、本実施形態における状態検出装置20は、少なくとも3つの検出部21を備える。 The state detection device 20 includes a U-phase detection unit 21u, a V-phase detection unit 21v, a W-phase detection unit 21w, a calculation unit 22, and a state estimation unit 23. In the following, when it is not necessary to distinguish between the U-phase detection unit 21u, the V-phase detection unit 21v, and the W-phase detection unit 21w, these three components are collectively referred to as the detection unit 21. That is, the state detection device 20 in the present embodiment includes at least three detection units 21.
 U相検出部21uは、U相第1磁気センサHAuと、U相第2磁気センサHBuと、を有する。V相検出部21vは、V相第1磁気センサHAvと、V相第2磁気センサHBvと、を有する。W相検出部21wは、W相第1磁気センサHAwと、W相第2磁気センサHBwと、を有する。以下では、U相第1磁気センサHAuと、V相第1磁気センサHAvと、W相第1磁気センサHAwとを区別する必要がない場合、これら3つの磁気センサを第1磁気センサHAと総称する。同様に、U相第2磁気センサHBuと、V相第2磁気センサHBvと、W相第2磁気センサHBwとを区別する必要がない場合、これら3つの磁気センサを第2磁気センサHBと総称する。すなわち、本実施形態において、3つの検出部21は、それぞれ、第1磁気センサHAと、第2磁気センサHBと、を有する。  The U-phase detection unit 21u has a U-phase first magnetic sensor HAu and a U-phase second magnetic sensor HBu. The V-phase detection unit 21v includes a V-phase first magnetic sensor HAv and a V-phase second magnetic sensor HBv. The W-phase detection unit 21w has a W-phase first magnetic sensor HAw and a W-phase second magnetic sensor HBw. In the following, when it is not necessary to distinguish between the U-phase first magnetic sensor HAu, the V-phase first magnetic sensor HAv, and the W-phase first magnetic sensor HAw, these three magnetic sensors are collectively referred to as the first magnetic sensor HA. do. Similarly, when it is not necessary to distinguish between the U-phase second magnetic sensor HBu, the V-phase second magnetic sensor HBv, and the W-phase second magnetic sensor HBw, these three magnetic sensors are collectively referred to as the second magnetic sensor HB. do. That is, in the present embodiment, each of the three detection units 21 has a first magnetic sensor HA and a second magnetic sensor HB, respectively. Twice
 図2の右側の図に示すように、状態検出装置20は、円板状の回路基板24を備える。回路基板24は、板厚方向に貫通する孔であるシャフト挿入孔24aを有する。回路基板24は、モータハウジング内において、回路基板24の板厚方向がロータ100の軸方向と一致し、且つシャフト挿入孔24aにロータシャフト120が挿入された状態で固定される。3つの検出部21は、回路基板24の板面のうち、モータ10の側を向く板面24bに設けられる。すなわち、3つの検出部21のそれぞれが有する第1磁気センサHA及び第2磁気センサHBは、回路基板24の板面24bに実装される。なお、回路基板24は、ロータシャフト120が貫通しない回路基板でもよい。この場合、回路基板24にシャフト挿入孔24aを設ける必要はない。 As shown in the figure on the right side of FIG. 2, the state detection device 20 includes a disk-shaped circuit board 24. The circuit board 24 has a shaft insertion hole 24a which is a hole penetrating in the plate thickness direction. The circuit board 24 is fixed in the motor housing in a state where the thickness direction of the circuit board 24 coincides with the axial direction of the rotor 100 and the rotor shaft 120 is inserted into the shaft insertion hole 24a. The three detection units 21 are provided on the plate surface 24b of the circuit board 24 facing the motor 10 side. That is, the first magnetic sensor HA and the second magnetic sensor HB of each of the three detection units 21 are mounted on the plate surface 24b of the circuit board 24. The circuit board 24 may be a circuit board that the rotor shaft 120 does not penetrate. In this case, it is not necessary to provide the shaft insertion hole 24a in the circuit board 24.
 図2の右側の図に示すように、3つの検出部21のそれぞれにおいて、第1磁気センサHAは、軸方向においてロータマグネット130と対向し、第2磁気センサHBは、軸方向においてステータ200と対向する。本実施形態において、第1磁気センサHA及び第2磁気センサHBは、チップタイプのホールセンサである。一般的に、チップタイプのホールセンサは、マーキングされた平らな面を検出面として有する。チップタイプのホールセンサは、その検出面に対して鎖交する磁束の磁束密度に比例するアナログ電圧信号を出力する。第1磁気センサHAは、その検出面が軸方向においてロータマグネット130と対向する状態で回路基板24の板面24bに実装される。また、第2磁気センサHBは、その検出面が軸方向においてステータ200と対向する状態で回路基板24の板面24bに実装される。 As shown in the figure on the right side of FIG. 2, in each of the three detection units 21, the first magnetic sensor HA faces the rotor magnet 130 in the axial direction, and the second magnetic sensor HB faces the stator 200 in the axial direction. opposite. In the present embodiment, the first magnetic sensor HA and the second magnetic sensor HB are chip-type Hall sensors. Generally, a chip-type Hall sensor has a marked flat surface as a detection surface. The chip-type Hall sensor outputs an analog voltage signal proportional to the magnetic flux density of the magnetic flux interlinking with the detection surface. The first magnetic sensor HA is mounted on the plate surface 24b of the circuit board 24 with its detection surface facing the rotor magnet 130 in the axial direction. Further, the second magnetic sensor HB is mounted on the plate surface 24b of the circuit board 24 with its detection surface facing the stator 200 in the axial direction.
 なお、図2では、第1磁気センサHAの検出面の全部がロータマグネット130と対向し、第2磁気センサHBの検出面の全部がステータ200と対向する場合を例示している。しかしながら、図2はあくまで模式的な図に過ぎないため、実際の第1磁気センサHA及び第2磁気センサHBのチップサイズは、図2に示すサイズと異なる場合がある。その場合、第1磁気センサHAの検出面の少なくとも一部が、軸方向においてロータマグネット130と対向すればよい。また、第2磁気センサHBの検出面の少なくとも一部が、軸方向においてステータ200と対向すればよい。 Note that FIG. 2 illustrates a case where all the detection surfaces of the first magnetic sensor HA face the rotor magnet 130 and all the detection surfaces of the second magnetic sensor HB face the stator 200. However, since FIG. 2 is only a schematic diagram, the actual chip sizes of the first magnetic sensor HA and the second magnetic sensor HB may differ from the sizes shown in FIG. In that case, at least a part of the detection surface of the first magnetic sensor HA may face the rotor magnet 130 in the axial direction. Further, at least a part of the detection surface of the second magnetic sensor HB may face the stator 200 in the axial direction.
 図2の左側の図に示すように、本実施形態において、3つの検出部21は、軸方向からみて、ロータ100の回転方向に沿って60°間隔で設けられる。すなわち、3つの第1磁気センサHAは、軸方向からみて、ロータ100の回転方向に沿って60°間隔で設けられる。また、3つの第2磁気センサHBは、軸方向からみて、ロータ100の回転方向に沿って60°間隔で設けられる。なお、3つの検出部21は、ロータ100の回転方向に沿って120°間隔で設けられてもよい。 As shown in the figure on the left side of FIG. 2, in the present embodiment, the three detection units 21 are provided at intervals of 60 ° along the rotation direction of the rotor 100 when viewed from the axial direction. That is, the three first magnetic sensors HA are provided at intervals of 60 ° along the rotation direction of the rotor 100 when viewed from the axial direction. Further, the three second magnetic sensors HB are provided at intervals of 60 ° along the rotation direction of the rotor 100 when viewed from the axial direction. The three detection units 21 may be provided at intervals of 120 ° along the rotation direction of the rotor 100.
 図2の左側の図に示すように、3つの検出部21のそれぞれにおいて、第1磁気センサHA及び第2磁気センサHBは、軸方向からみて、ロータ100の径方向に沿って配置される。例えば、図3に示すように、1つの検出部21を軸方向からみた場合に、第2磁気センサHBの中心P2とロータ100の中心軸線CAとを通る直線を基準線Lと定義する。第1磁気センサHAの中心P1は、基準線Lに直交する方向において、基準線Lを中心として±2mm延びる範囲内に位置する。このように、3つの検出部21のそれぞれにおいて、第1磁気センサHAの中心P1と第2磁気センサHBの中心P2との両方が、径方向に延びる同一直線上に必ず位置する必要はない。すなわち、本実施形態において「第1磁気センサHA及び第2磁気センサHBは、ロータ100の径方向に沿って配置される」とは、第1磁気センサHAと第2磁気センサHBとの相対的な位置ズレを許容する意味を含む。 As shown in the figure on the left side of FIG. 2, in each of the three detection units 21, the first magnetic sensor HA and the second magnetic sensor HB are arranged along the radial direction of the rotor 100 when viewed from the axial direction. For example, as shown in FIG. 3, when one detection unit 21 is viewed from the axial direction, a straight line passing through the center P2 of the second magnetic sensor HB and the center axis CA of the rotor 100 is defined as the reference line L. The center P1 of the first magnetic sensor HA is located within a range extending ± 2 mm with respect to the reference line L in the direction orthogonal to the reference line L. As described above, in each of the three detection units 21, both the center P1 of the first magnetic sensor HA and the center P2 of the second magnetic sensor HB do not necessarily have to be located on the same straight line extending in the radial direction. That is, in the present embodiment, "the first magnetic sensor HA and the second magnetic sensor HB are arranged along the radial direction of the rotor 100" means that the first magnetic sensor HA and the second magnetic sensor HB are relative to each other. Includes the meaning of allowing misalignment.
 図1に示すように、U相検出部21uのU相第1磁気センサHAuは、その検出面に対して鎖交する磁束の磁束密度に比例するアナログ電圧信号を、磁束検出結果を示すU相第1検出信号VHAuとして算出部22に出力する。U相検出部21uのU相第2磁気センサHBuは、その検出面に対して鎖交する磁束の磁束密度に比例するアナログ電圧信号を、磁束検出結果を示すU相第2検出信号VHBuとして算出部22に出力する。 As shown in FIG. 1, the U-phase first magnetic sensor HAu of the U-phase detection unit 21u transmits an analog voltage signal proportional to the magnetic flux density of the magnetic flux interlinking with the detection surface, and U-phase showing the magnetic flux detection result. It is output to the calculation unit 22 as the first detection signal VHAu. The U-phase second magnetic sensor HBu of the U-phase detection unit 21u uses an analog voltage signal proportional to the magnetic flux density of the magnetic flux interlinking with the detection surface as a U-phase second detection signal V HBu indicating the magnetic flux detection result. Output to the calculation unit 22.
 V相検出部21vのV相第1磁気センサHAvは、その検出面に対して鎖交する磁束の磁束密度に比例するアナログ電圧信号を、磁束検出結果を示すV相第1検出信号VHAvとして算出部22に出力する。V相検出部21vのV相第2磁気センサHBvは、その検出面に対して鎖交する磁束の磁束密度に比例するアナログ電圧信号を、磁束検出結果を示すV相第2検出信号VHBvとして算出部22に出力する。 The V-phase first magnetic sensor HAv of the V-phase detection unit 21v uses an analog voltage signal proportional to the magnetic flux density of the magnetic flux interlinking with the detection surface as a V-phase first detection signal V HAv indicating the magnetic flux detection result. Output to the calculation unit 22. The V-phase second magnetic sensor HBv of the V-phase detection unit 21v uses an analog voltage signal proportional to the magnetic flux density of the magnetic flux interlinking with the detection surface as a V-phase second detection signal V HBv indicating the magnetic flux detection result. Output to the calculation unit 22.
 W相検出部21wのW相第1磁気センサHAwは、その検出面に対して鎖交する磁束の磁束密度に比例するアナログ電圧信号を、磁束検出結果を示すW相第1検出信号VHAwとして算出部22に出力する。W相検出部21wのW相第2磁気センサHBwは、その検出面に対して鎖交する磁束の磁束密度に比例するアナログ電圧信号を、磁束検出結果を示すW相第2検出信号VHBwとして算出部22に出力する。 The W-phase first magnetic sensor HAw of the W-phase detection unit 21w uses an analog voltage signal proportional to the magnetic flux density of the magnetic flux interlinking with the detection surface as a W-phase first detection signal V HAw indicating the magnetic flux detection result. Output to the calculation unit 22. The W-phase second magnetic sensor HBw of the W-phase detection unit 21w uses an analog voltage signal proportional to the magnetic flux density of the magnetic flux interlinking with the detection surface as a W-phase second detection signal V HBw indicating the magnetic flux detection result. Output to the calculation unit 22.
 U相第1検出信号VHAuと、V相第1検出信号VHAvと、W相第1検出信号VHAwとは、互いに電気角で120°の位相差を有する。同様に、U相第2検出信号VHBuと、V相第2検出信号VHBvと、W相第2検出信号VHBwとは、互いに電気角で120°の位相差を有する。以下では、U相第1検出信号VHAuと、V相第1検出信号VHAvと、W相第1検出信号VHAwとを区別する必要がない場合、これら3つの検出信号を第1検出信号VHAと総称する。同様に、U相第2検出信号VHBuと、V相第2検出信号VHBvと、W相第2検出信号VHBwとを区別する必要がない場合、これら3つの検出信号を第2検出信号VHBと総称する。 The U-phase first detection signal V HAu , the V-phase first detection signal V HAv, and the W-phase first detection signal V HAw have a phase difference of 120 ° in electrical angle from each other. Similarly, the U-phase second detection signal V HBu , the V-phase second detection signal V HBv, and the W-phase second detection signal V HBw have a phase difference of 120 ° in electrical angle from each other. In the following, when it is not necessary to distinguish between the U-phase first detection signal V HAu , the V-phase first detection signal V HAv, and the W-phase first detection signal V HAw , these three detection signals are referred to as the first detection signal. Collectively referred to as V HA. Similarly, when it is not necessary to distinguish between the U-phase second detection signal V HBu , the V-phase second detection signal V HBv, and the W-phase second detection signal V HBw , these three detection signals are referred to as the second detection signal. Collectively referred to as V HB.
 本実施形態において、3つの第1磁気センサHAは、ロータ100の回転方向に沿って60°間隔で設けられるので、互いに電気角で120°の位相差を有する3つの第1検出信号VHAを得るために、V相第1磁気センサHAvから出力されるアナログ電圧信号の正負の値を反転させた信号をV相第1検出信号VHAvとして用いる。同様に、3つの第2磁気センサHBも、ロータ100の回転方向に沿って60°間隔で設けられるので、互いに電気角で120°の位相差を有する3つの第2検出信号VHBを得るために、V相第2磁気センサHBvから出力されるアナログ電圧信号の正負の値を反転させた信号をV相第2検出信号VHBvとして用いる。なお、3つの第1磁気センサHAが、ロータ100の回転方向に沿って120°間隔で設けられる場合には、V相第1磁気センサHAvから出力されるアナログ電圧信号をV相第1検出信号VHAvとして直接用いればよい。同様に、3つの第2磁気センサHBが、ロータ100の回転方向に沿って120°間隔で設けられる場合には、V相第2磁気センサHBvから出力されるアナログ電圧信号をV相第2検出信号VHBvとして直接用いればよい。 In the present embodiment, since the three first magnetic sensors HA are provided at intervals of 60 ° along the rotation direction of the rotor 100, the three first detection signals VHA having a phase difference of 120 ° in electrical angle from each other are generated. In order to obtain the signal, a signal obtained by inverting the positive and negative values of the analog voltage signal output from the V-phase first magnetic sensor HAv is used as the V-phase first detection signal V HAv. Similarly, since the three second magnetic sensors HBs are also provided at intervals of 60 ° along the rotation direction of the rotor 100, in order to obtain three second detection signals VHBs having a phase difference of 120 ° in electrical angles from each other. In addition, a signal obtained by inverting the positive and negative values of the analog voltage signal output from the V-phase second magnetic sensor HBv is used as the V-phase second detection signal V HBv. When the three first magnetic sensors HA are provided at intervals of 120 ° along the rotation direction of the rotor 100, the analog voltage signal output from the V-phase first magnetic sensor HAv is used as the V-phase first detection signal. It may be used directly as V HAv. Similarly, when the three second magnetic sensors HB are provided at 120 ° intervals along the rotation direction of the rotor 100, the analog voltage signal output from the V-phase second magnetic sensor HBv is detected in the V-phase second detection. It may be used directly as the signal V HBv.
 算出部22は、第1磁気センサHAから得られる磁束検出結果を示す第1検出信号VHAと、第2磁気センサHBから得られる磁束検出結果を示す第2検出信号VHBとに基づいて、ロータ100の磁束成分φm(回転子磁束成分)と、ステータ200の磁束成分φs(固定子磁束成分)とを検出部21ごとに算出する。以下、第1検出信号VHA及び第2検出信号VHBに基づく磁束成分φm及びφsの算出原理について説明する。 The calculation unit 22 is based on the first detection signal V HA indicating the magnetic flux detection result obtained from the first magnetic sensor HA and the second detection signal V HB indicating the magnetic flux detection result obtained from the second magnetic sensor HB. The magnetic flux component φm (rotor magnetic flux component) of the rotor 100 and the magnetic flux component φs (fixor magnetic flux component) of the stator 200 are calculated for each detection unit 21. Hereinafter, the calculation principle of the magnetic flux components φm and φs based on the first detection signal V HA and the second detection signal V HB will be described.
 第1検出信号VHAは、電気角θの関数として以下の式(1)によって表すことができる。また、第2検出信号VHBは、電気角θの関数として以下の式(2)によって表すことができる。式(1)及び式(2)において、「φm(θ)」はロータ100の磁束成分であり、「φs(θ、I)」はステータ200の磁束成分である。「x」、「y」、「j」、及び「k」は、モータ10の構造と、第1磁気センサHA及び第2磁気センサHBの配置とに依存する係数である。以下では、ロータ100の磁束成分をロータ磁束成分と呼称し、ステータ200の磁束成分をステータ磁束成分と呼称する。 The first detection signal V HA can be expressed by the following equation (1) as a function of the electric angle θ. Further, the second detection signal V HB can be expressed by the following equation (2) as a function of the electric angle θ. In the formulas (1) and (2), "φm (θ)" is the magnetic flux component of the rotor 100, and "φs (θ, I)" is the magnetic flux component of the stator 200. “X”, “y”, “j”, and “k” are coefficients that depend on the structure of the motor 10 and the arrangement of the first magnetic sensor HA and the second magnetic sensor HB. Hereinafter, the magnetic flux component of the rotor 100 is referred to as a rotor magnetic flux component, and the magnetic flux component of the stator 200 is referred to as a stator magnetic flux component.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)及び式(2)に示すように、第1検出信号VHA及び第2検出信号VHBは、磁束成分として、ロータ磁束成分φm(θ)とステータ磁束成分φs(θ、I)とを含む。ロータ磁束成分φm(θ)は、電気角θの周期関数で表される。本実施形態におけるモータ10の極対数は「5」であるので、ロータ100が一回転する間に得られる第1検出信号VHA及び第2検出信号VHBには、ロータ磁束成分φm(θ)として5周期分の周期波が含まれる。言い換えれば、ロータ磁束成分φm(θ)は、機械角度(回転角度θ)で72°を一周期とする周期波である。なお、周期波とは、電気角θの周期関数で表される、周期性を有する波を意味する。 As shown in the formulas (1) and (2), the first detection signal V HA and the second detection signal V HB have a rotor magnetic flux component φm (θ) and a stator magnetic flux component φs (θ, I) as magnetic flux components. And include. The rotor magnetic flux component φm (θ) is represented by a periodic function of the electric angle θ. Since the number of pole pairs of the motor 10 in this embodiment is "5", the rotor magnetic flux component φm (θ) is included in the first detection signal V HA and the second detection signal V HB obtained during one rotation of the rotor 100. A periodic wave for 5 cycles is included. In other words, the rotor magnetic flux component φm (θ) is a periodic wave having a mechanical angle (rotation angle θ R ) of 72 ° as one cycle. The periodic wave means a wave having periodicity represented by a periodic function of the electric angle θ.
 ステータ磁束成分φs(θ、I)は、電気角θ及びコイル電流Iの関数で表される。ステータ磁束成分φs(θ、I)は、モータ10のコイル220に電流が流れることに起因して生じる漏れ磁束(外乱磁束)である。例えば、U相第1検出信号VHAu及びU相第2検出信号VHBuに含まれるステータ磁束成分φs(θ、I)は、U相駆動電流Iuの関数となる。V相第1検出信号VHAv及びV相第2検出信号VHBvに含まれるステータ磁束成分φs(θ、I)は、V相駆動電流Ivの関数となる。W相第1検出信号VHAw及びW相第2検出信号VHBwに含まれるステータ磁束成分φs(θ、I)は、W相駆動電流Iwの関数となる。 The stator magnetic flux component φs (θ, I) is represented by a function of the electric angle θ and the coil current I. The stator magnetic flux component φs (θ, I) is a leakage flux (disturbance magnetic flux) generated by the current flowing through the coil 220 of the motor 10. For example, the stator magnetic flux component φs (θ, I) included in the U-phase first detection signal V HAu and the U-phase second detection signal V HBu is a function of the U-phase drive current Iu. The stator magnetic flux component φs (θ, I) included in the V-phase first detection signal V HAv and the V-phase second detection signal V HBv is a function of the V-phase drive current Iv. The stator magnetic flux component φs (θ, I) included in the W-phase first detection signal V HAw and the W-phase second detection signal V HBw is a function of the W-phase drive current Iw.
 なお、U相駆動電流Iuは、U相コイル221とV相コイル222との間に流れる電流である。V相駆動電流Ivは、V相コイル222とW相コイル223との間に流れる電流である。また、W相駆動電流Iwは、W相コイル223とU相コイル221との間に流れる電流である。 The U-phase drive current Iu is a current flowing between the U-phase coil 221 and the V-phase coil 222. The V-phase drive current Iv is a current flowing between the V-phase coil 222 and the W-phase coil 223. The W-phase drive current Iw is a current flowing between the W-phase coil 223 and the U-phase coil 221.
 「x」は、第1検出信号VHAに含まれるロータ磁束成分φm(θ)の振幅値を表す係数であり、例えば第1磁気センサHAとロータマグネット130との間の距離に応じた係数である。「j」は、第1検出信号VHAに含まれるステータ磁束成分φs(θ、I)の振幅値を表す係数であり、例えば第1磁気センサHAとスタータ200との間の距離に応じた係数である。 “X” is a coefficient representing the amplitude value of the rotor magnetic flux component φm (θ) included in the first detection signal V HA , for example, a coefficient corresponding to the distance between the first magnetic sensor HA and the rotor magnet 130. be. “J” is a coefficient representing the amplitude value of the stator magnetic flux component φs (θ, I) included in the first detection signal V HA , and is, for example, a coefficient corresponding to the distance between the first magnetic sensor HA and the starter 200. Is.
 「y」は、第2検出信号VHBに含まれるロータ磁束成分φm(θ)の振幅値を表す係数であり、例えば第2磁気センサHBとロータマグネット130との間の距離に応じた係数である。「k」は、第2検出信号VHBに含まれるステータ磁束成分φs(θ、I)の振幅値を表す係数であり、例えば第2磁気センサHBとスタータ200との間の距離に応じた係数である。 “Y” is a coefficient representing the amplitude value of the rotor magnetic flux component φm (θ) included in the second detection signal V HB , and is, for example, a coefficient corresponding to the distance between the second magnetic sensor HB and the rotor magnet 130. be. “K” is a coefficient representing the amplitude value of the stator magnetic flux component φs (θ, I) included in the second detection signal V HB , and is, for example, a coefficient corresponding to the distance between the second magnetic sensor HB and the starter 200. Is.
 本願発明者は、第1磁気センサHAと第2磁気センサHBとの位置関係が以下の2つの条件を満たすとき、式(1)及び式(2)を使って、ロータ磁束成分φm(θ)とステータ磁束成分φs(θ、I)とを算出できることを見出した。
(条件1)3つの検出部21のそれぞれにおいて、第1磁気センサHAは軸方向においてロータマグネット130と対向し、第2磁気センサHBは軸方向においてステータ200と対向する。
(条件2)3つの検出部21のそれぞれにおいて、第1磁気センサHA及び第2磁気センサHBは、ロータ100の径方向に沿って配置される。
When the positional relationship between the first magnetic sensor HA and the second magnetic sensor HB satisfies the following two conditions, the inventor of the present application uses equations (1) and (2) to obtain a rotor magnetic flux component φm (θ). And the stator magnetic flux component φs (θ, I) were found to be able to be calculated.
(Condition 1) In each of the three detection units 21, the first magnetic sensor HA faces the rotor magnet 130 in the axial direction, and the second magnetic sensor HB faces the stator 200 in the axial direction.
(Condition 2) In each of the three detection units 21, the first magnetic sensor HA and the second magnetic sensor HB are arranged along the radial direction of the rotor 100.
 具体的には、以下の式(3)に示すように、まず、第1検出信号VHAに第1定数Cを乗算することにより、式(3)の右辺に示される演算結果が得られる。第1定数Cは、係数kを係数jで除算することで得られる値である。そして、以下の式(4)に示すように、第1検出信号VHAに第1定数Cを乗算して得られる演算結果から、第2検出信号VHBを減算すると、ステータ磁束成分φs(θ、I)がキャンセルされ、ロータ磁束成分φm(θ)のみが残る。 Specifically, as shown in the following equation (3), first, by multiplying the first detection signal V HA by the first constant C, the calculation result shown on the right side of the equation (3) can be obtained. The first constant C is a value obtained by dividing the coefficient k by the coefficient j. Then, as shown in the following equation (4), when the second detection signal V HB is subtracted from the calculation result obtained by multiplying the first detection signal V HA by the first constant C, the stator magnetic flux component φs (θ). , I) are canceled and only the rotor magnetic flux component φm (θ) remains.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、以下の式(5)に示すように、まず、第1検出信号VHAに第3定数Dを乗算することにより、式(5)の右辺に示される演算結果が得られる。第3定数Dは、係数yを係数xで除算することで得られる値である。そして、以下の式(6)に示すように、第1検出信号VHAに第3定数Dを乗算して得られる演算結果を、第2検出信号VHBから減算すると、ロータ磁束成分φm(θ)がキャンセルされ、ステータ磁束成分φs(θ、I)のみが残る。 Further, as shown in the following equation (5), first, by multiplying the first detection signal VHA by the third constant D, the calculation result shown on the right side of the equation (5) can be obtained. The third constant D is a value obtained by dividing the coefficient y by the coefficient x. Then, as shown in the following equation (6), when the calculation result obtained by multiplying the first detection signal V HA by the third constant D is subtracted from the second detection signal V HB , the rotor magnetic flux component φm (θ). ) Is canceled, and only the stator magnetic flux component φs (θ, I) remains.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記のように、実験又はシミュレーションによって第1定数C(=k/j)を予め求めておけば、第1検出信号VHAに第1定数Cを乗算して得られる演算結果から、第2検出信号VHBを減算することによりロータ磁束成分φmを算出することができる。同様に、実験又はシミュレーションによって第3定数D(=y/x)を予め求めておけば、第1検出信号VHAに第3定数Dを乗算して得られる演算結果を、第2検出信号VHBから減算することによりステータ磁束成分φsを算出することができる。以上が、第1検出信号VHA及び第2検出信号VHBに基づくロータ磁束成分φm及びステータ磁束成分φsの算出原理である。 As described above, if the first constant C (= k / j) is obtained in advance by experiment or simulation, the second detection is obtained from the calculation result obtained by multiplying the first detection signal VHA by the first constant C. The rotor magnetic flux component φm can be calculated by subtracting the signal V HB. Similarly, if the third constant D (= y / x) is obtained in advance by an experiment or simulation, the calculation result obtained by multiplying the first detection signal V HA by the third constant D can be obtained as the second detection signal V. The stator magnetic flux component φs can be calculated by subtracting from HB. The above is the calculation principle of the rotor magnetic flux component φm and the stator magnetic flux component φs based on the first detection signal V HA and the second detection signal V HB.
 本実施形態における算出部22は、上記の算出原理に基づき、第1検出信号VHAに第1定数Cを乗算して得られる演算結果から、第2検出信号VHBを減算することによりロータ磁束成分φmを算出する。また、算出部22は、上記の算出原理に基づき、第1検出信号VHAに第3定数Dを乗算して得られる演算結果を、第2検出信号VHBから減算することによりステータ磁束成分φsを算出する。具体的には、図1に示すように、算出部22は、U相磁束算出部22uと、V相磁束算出部22vと、W相磁束算出部22wと、を有する。算出部22は、回路基板24に設けられる。 Based on the above calculation principle, the calculation unit 22 in the present embodiment subtracts the second detection signal V HB from the calculation result obtained by multiplying the first detection signal V HA by the first constant C to obtain the rotor magnetic flux. Calculate the component φm. Further, the calculation unit 22 subtracts the calculation result obtained by multiplying the first detection signal V HA by the third constant D from the second detection signal V HB based on the above calculation principle, so that the stator magnetic flux component φs Is calculated. Specifically, as shown in FIG. 1, the calculation unit 22 includes a U-phase magnetic flux calculation unit 22u, a V-phase magnetic flux calculation unit 22v, and a W-phase magnetic flux calculation unit 22w. The calculation unit 22 is provided on the circuit board 24.
 図1及び図4に示すように、U相磁束算出部22uには、U相第1磁気センサHAuから得られるU相第1検出信号VHAuと、U相第2磁気センサHBuから得られるU相第2検出信号VHBuとが入力される。図4に示すように、U相磁束算出部22uは、第1乗算器22uaと、第1減算器22ubと、第2乗算器22ucと、第2減算器22udと、を有する。 As shown in FIGS. 1 and 4, the U-phase magnetic flux calculation unit 22u has a U-phase first detection signal V HAu obtained from the U-phase first magnetic sensor HAu and a U obtained from the U-phase second magnetic sensor HBu. The second phase detection signal V HBu is input. As shown in FIG. 4, the U-phase magnetic flux calculation unit 22u has a first multiplier 22ua, a first subtractor 22ub, a second multiplier 22uc, and a second subtractor 22ud.
 第1乗算器22uaは、第1定数Cに対応するアナログ電圧値を有する電圧VをU相第1検出信号VHAuに乗算し、その演算結果を示す信号を第1減算器22ubに出力する。第1減算器22ubは、第1乗算器22uaから入力される信号からU相第2検出信号VHBuを減算することによりU相のロータ磁束成分φmを算出し、その算出結果を示す周期波信号であるU相ロータ磁束信号φmuを状態推定部23に出力する。 First multiplier 22ua the voltage V C having an analog voltage value corresponding to the first constant C is multiplied by the U-phase first detection signal V Hau, and outputs a signal indicating the calculation result to the first subtracter 22ub .. First subtractor 22ub calculates the rotor flux components φm of the U-phase by a signal input from the first multiplier 22ua subtracts the U-phase second detection signal V HBU, periodic wave signal indicating the calculation result The U-phase rotor magnetic flux signal φmu is output to the state estimation unit 23.
 第2乗算器22ucは、第3定数Dに対応するアナログ電圧値を有する電圧VをU相第1検出信号VHAuに乗算し、その演算結果を示す信号を第2減算器22udに出力する。第2減算器22udは、第2乗算器22ucから入力される信号をU相第2検出信号VHBuから減算することによりU相のステータ磁束成分φsを算出し、その算出結果を示すU相ステータ磁束信号φsuを状態推定部23に出力する。 Second multiplier 22uc the voltage V D having an analog voltage value corresponding to the third constant D by multiplying the U-phase first detection signal V Hau, and outputs a signal indicating the calculation result to the second subtracter 22ud .. The second subtractor 22ud calculates the U-phase stator magnetic flux component φs by subtracting the signal input from the second multiplier 22uc from the U-phase second detection signal VHBu, and the U-phase stator showing the calculation result. The magnetic flux signal φsu is output to the state estimation unit 23.
 図1及び図4に示すように、V相磁束算出部22vには、V相第1磁気センサHAvから得られるV相第1検出信号VHAvと、V相第2磁気センサHBvから得られるV相第2検出信号VHBvとが入力される。図4に示すように、V相磁束算出部22vは、第1乗算器22vaと、第1減算器22vbと、第2乗算器22vcと、第2減算器22vdと、を有する。 As shown in FIGS. 1 and 4, the V-phase magnetic flux calculation unit 22v includes a V-phase first detection signal V HAv obtained from the V-phase first magnetic sensor HAv and a V obtained from the V-phase second magnetic sensor HBv. The second phase detection signal V HBv is input. As shown in FIG. 4, the V-phase magnetic flux calculation unit 22v includes a first multiplier 22va, a first subtractor 22vb, a second multiplier 22vc, and a second subtractor 22vd.
 第1乗算器22vaは、第1定数Cに対応するアナログ電圧値を有する電圧VをV相第1検出信号VHAvに乗算し、その演算結果を示す信号を第1減算器22vbに出力する。第1減算器22vbは、第1乗算器22vaから入力される信号からV相第2検出信号VHBvを減算することによりV相のロータ磁束成分φmを算出し、その算出結果を示す周期波信号であるV相ロータ磁束信号φmvを状態推定部23に出力する。 First multiplier 22va the voltage V C having an analog voltage value corresponding to the first constant C multiplies the V-phase first detection signal V HAV, and outputs a signal indicating the calculation result to the first subtracter 22vb .. The first subtractor 22vb calculates the rotor magnetic flux component φm of the V phase by subtracting the V-phase second detection signal V HBv from the signal input from the first multiplier 22va, and a periodic wave signal showing the calculation result. The V-phase rotor magnetic flux signal φmv is output to the state estimation unit 23.
 第2乗算器22vcは、第3定数Dに対応するアナログ電圧値を有する電圧VをV相第1検出信号VHAvに乗算し、その演算結果を示す信号を第2減算器22vdに出力する。第2減算器22vdは、第2乗算器22vcから入力される信号をV相第2検出信号VHBvから減算することによりV相のステータ磁束成分φsを算出し、その算出結果を示すV相ステータ磁束信号φsvを状態推定部23に出力する。 The second multiplier 22vc multiplies the voltage V D having an analog voltage value corresponding to the third constant D by the V-phase first detection signal V HAv , and outputs a signal indicating the calculation result to the second subtractor 22vd. .. The second subtractor 22vd calculates the V-phase stator magnetic flux component φs by subtracting the signal input from the second multiplier 22vc from the V-phase second detection signal V HBv, and the V-phase stator showing the calculation result. The magnetic flux signal φsv is output to the state estimation unit 23.
 図1及び図4に示すように、W相磁束算出部22wには、W相第1磁気センサHAwから得られるW相第1検出信号VHAwと、W相第2磁気センサHBwから得られるW相第2検出信号VHBwとが入力される。図4に示すように、W相磁束算出部22wは、第1乗算器22waと、第1減算器22wbと、第2乗算器22wcと、第2減算器22wdと、を有する。 As shown in FIGS. 1 and 4, the W-phase magnetic flux calculation unit 22w has a W-phase first detection signal V HAw obtained from the W-phase first magnetic sensor HAw and a W obtained from the W-phase second magnetic sensor HBw. The second phase detection signal V HBw is input. As shown in FIG. 4, the W-phase magnetic flux calculation unit 22w includes a first multiplier 22wa, a first subtractor 22wb, a second multiplier 22wc, and a second subtractor 22wd.
 第1乗算器22waは、第1定数Cに対応するアナログ電圧値を有する電圧VをW相第1検出信号VHAwに乗算し、その演算結果を示す信号を第1減算器22wbに出力する。第1減算器22wbは、第1乗算器22waから入力される信号からW相第2検出信号VHBwを減算することによりW相のロータ磁束成分φmを算出し、その算出結果を示す周期波信号であるW相ロータ磁束信号φmwを状態推定部23に出力する。 First multiplier 22wa the voltage V C having an analog voltage value corresponding to the first constant C is multiplied by W phase first detection signal V HAW, and outputs a signal indicating the calculation result to the first subtracter 22wb .. The first subtractor 22wb calculates the W-phase rotor magnetic flux component φm by subtracting the W-phase second detection signal V HBw from the signal input from the first multiplier 22wa, and a periodic wave signal indicating the calculation result. The W-phase rotor magnetic flux signal φmw is output to the state estimation unit 23.
 第2乗算器22wcは、第3定数Dに対応するアナログ電圧値を有する電圧VをW相第1検出信号VHAwに乗算し、その演算結果を示す信号を第2減算器22wdに出力する。第2減算器22wdは、第2乗算器22wcから入力される信号をW相第2検出信号VHBwから減算することによりW相のステータ磁束成分φsを算出し、その算出結果を示すW相ステータ磁束信号φswを状態推定部23に出力する。 The second multiplier 22wc multiplies the W-phase first detection signal VHAw by the voltage V D having an analog voltage value corresponding to the third constant D, and outputs a signal indicating the calculation result to the second subtractor 22wd. .. The second subtractor 22wd calculates the W-phase stator magnetic flux component φs by subtracting the signal input from the second multiplier 22wc from the W-phase second detection signal V HBw, and the W-phase stator showing the calculation result. The magnetic flux signal φsw is output to the state estimation unit 23.
 以下では、U相ロータ磁束信号φmuと、V相ロータ磁束信号φmvと、W相ロータ磁束信号φmwとを区別する必要がない場合、これらの信号をロータ磁束信号φmと総称する。また、U相ステータ磁束信号φsuと、V相ステータ磁束信号φsvと、W相ステータ磁束信号φswとを区別する必要がない場合、これらの信号をステータ磁束信号φsと総称する。 In the following, when it is not necessary to distinguish between the U-phase rotor magnetic flux signal φmu, the V-phase rotor magnetic flux signal φmv, and the W-phase rotor magnetic flux signal φmw, these signals are collectively referred to as the rotor magnetic flux signal φm. Further, when it is not necessary to distinguish between the U-phase stator magnetic flux signal φsu, the V-phase stator magnetic flux signal φsv, and the W-phase stator magnetic flux signal φsw, these signals are collectively referred to as the stator magnetic flux signal φs.
 第1乗算器22ua、22va及び22waと、第2乗算器22uc、22vc及び22wcとは、上記のようなアナログ乗算器でもよいし、或いはデジタル乗算器でもよい。
同様に、第1減算器22ub、22vb及び22wbと、第2減算器22ud、22vd及び22wdとは、上記のようなアナログ減算器でもよいし、或いはデジタル減算器でもよい。デジタル乗算器とデジタル減算器とを使う場合には、3つの第1検出信号VHAと、3つの第2検出信号VHBとを、それぞれデジタル信号に変換するA/D変換器を設ければよい。また、デジタル乗算器を使う場合、第1定数C及び第3定数Dに対応するデジタル信号をデジタル乗算器に入力すればよい。
The first multipliers 22ua, 22va and 22wa and the second multipliers 22uc, 22vc and 22wc may be the above-mentioned analog multipliers or digital multipliers.
Similarly, the first subtractors 22ub, 22vb and 22wb and the second subtractors 22ud, 22vd and 22wd may be analog subtractors as described above or digital subtractors. When using a digital multiplier and a digital subtractor, if an A / D converter that converts three first detection signals V HA and three second detection signals V HB into digital signals is provided. good. When using a digital multiplier, the digital signals corresponding to the first constant C and the third constant D may be input to the digital multiplier.
 ロータ100の回転角度θに応じた3つのロータ磁束信号φm及び3つのステータ磁束信号φsを最小限の遅延時間で状態推定部23に伝達するためには、上記のように算出部22をハードウェア(とくにアナログ回路)によって構成することが好ましい。しかしながら、必要に応じて、ソフトウェアによって算出部22の機能を実現してもよい。すなわち、MCU(Microcontroller Unit)などのプロセッサを回路基板24に設け、プロセッサが上記の算出原理に基づくプログラムを実行することにより、算出部22の機能を実現してもよい。 In order to transmit the three rotor magnetic flux signals φm and the three stator magnetic flux signals φs according to the rotation angle θ R of the rotor 100 to the state estimation unit 23 with the minimum delay time, the calculation unit 22 is hardened as described above. It is preferably configured by wear (particularly analog circuits). However, if necessary, the function of the calculation unit 22 may be realized by software. That is, a processor such as an MCU (Microcontroller Unit) may be provided on the circuit board 24, and the processor may execute a program based on the above calculation principle to realize the function of the calculation unit 22.
 図1に示すように、状態推定部23は、算出部22から入力される3つのロータ磁束信号φm(φmu、φmv及びφmw)と3つのステータ磁束信号φs(φsu、φsv及びφsw)とに基づいて、ロータ100の回転角度θと、コイル電流I(Iu、Iv及びIw)と、トルクTとをモータ10の状態量として推定し、その推定結果を状態量の検出結果として制御装置30に出力する。状態推定部23は、回路基板24に設けられたMCUなどのプロセッサである。状態推定部23は、本発明の推定部に対応する構成要素である。状態推定部23は、角度推定部23aと、電流推定部23bと、トルク推定部23cと、を有する。 As shown in FIG. 1, the state estimation unit 23 is based on three rotor magnetic flux signals φm (φmu, φmv and φmw) and three stator magnetic flux signals φs (φsu, φsv and φsw) input from the calculation unit 22. Then, the rotation angle θ R of the rotor 100, the coil currents I (Iu, Iv and Iw), and the torque T are estimated as the state quantities of the motor 10, and the estimated results are used in the control device 30 as the state quantity detection results. Output. The state estimation unit 23 is a processor such as an MCU provided on the circuit board 24. The state estimation unit 23 is a component corresponding to the estimation unit of the present invention. The state estimation unit 23 includes an angle estimation unit 23a, a current estimation unit 23b, and a torque estimation unit 23c.
 角度推定部23aには、算出部22から得られる3つのロータ磁束信号φm(φmu、φmv及びφmw)が入力される。角度推定部23aは、3つのロータ磁束信号φm(φmu、φmv及びφmw)に基づいて、ロータ100の回転角度θを推定(算出)し、その推定結果を回転角度θの検出結果として制御装置30に出力する。角度推定部23は、本発明の位置推定部に対応する構成要素である。ロータ100の回転角度θを推定するための位置推定アルゴリズムとして、例えば国際公開第2016/104378号に開示された位置推定アルゴリズムを用いることができる。従って、本明細書では位置推定アルゴリズムについての説明を省略する。 Three rotor magnetic flux signals φm (φmu, φmv and φmw) obtained from the calculation unit 22 are input to the angle estimation unit 23a. The angle estimation unit 23a estimates (calculates) the rotation angle θ R of the rotor 100 based on the three rotor magnetic flux signals φm (φmu, φmv and φmw), and controls the estimation result as the detection result of the rotation angle θ R. Output to device 30. The angle estimation unit 23 is a component corresponding to the position estimation unit of the present invention. Location estimation algorithm for estimating the rotation angle theta R of the rotor 100, for example, can be used a position estimation algorithm disclosed in WO 2016/104378. Therefore, the description of the position estimation algorithm is omitted in the present specification.
 なお、回転角度θの推定に用いられるアルゴリズムは、国際公開第2016/104378号に開示された位置推定アルゴリズムに限定されない。所定の位相差を有する3つの周期波状の磁束検出信号を取得可能であることを前提として構築された位置推定アルゴリズムであれば、他のアルゴリズムを回転角度θの推定に用いてもよい。 The algorithm used for estimating the rotation angle θ R is not limited to the position estimation algorithm disclosed in International Publication No. 2016/10374. If a position estimation algorithm constructed on the premise that it is capable of acquiring three cycles wavy flux detection signal having a predetermined phase difference, may use other algorithms for estimating the rotation angle theta R.
 電流推定部23bには、算出部22から得られる3つのステータ磁束信号φs(φsu、φsv及びφsw)が入力される。電流推定部23bは、3つのステータ磁束信号φs(φsu、φsv及びφsw)と、定数として予め定められたモータ10の自己インダクタンス及び相互インダクタンスとに基づいて、コイル電流I(Iu、Iv及びIw)を推定し、その推定結果をコイル電流Iの検出結果として制御装置30に出力する。 Three stator magnetic flux signals φs (φsu, φsv and φsw) obtained from the calculation unit 22 are input to the current estimation unit 23b. The current estimation unit 23b determines the coil currents I (Iu, Iv and Iw) based on the three stator magnetic flux signals φs (φsu, φsv and φsw) and the self-inductance and mutual inductance of the motor 10 predetermined as constants. Is estimated, and the estimation result is output to the control device 30 as the detection result of the coil current I.
 具体的には、電流推定部23bは、以下の式(7)を基に、コイル電流Iとして、U相駆動電流Iu、V相駆動電流Iv及びW相駆動電流Iwを算出する。なお、式(7)において、「Lu」はU相コイル221の自己インダクタンスである。「Lv」はV相コイル222の自己インダクタンスである。「Lw」はW相コイル223の自己インダクタンスである。「Muv」はU相コイル221とV相コイル222との相互インダクタンスである。「Muw」はU相コイル221とW相コイル223との相互インダクタンスである。
「Mvu」はV相コイル222とU相コイル221との相互インダクタンスである。「Mvw」はV相コイル222とW相コイル223との相互インダクタンスである。「Mwu」はW相コイル223とU相コイル221との相互インダクタンスである。「Mwv」はW相コイル223とV相コイル222との相互インダクタンスである。
Specifically, the current estimation unit 23b calculates the U-phase drive current Iu, the V-phase drive current Iv, and the W-phase drive current Iw as the coil current I based on the following equation (7). In the equation (7), "Lu" is the self-inductance of the U-phase coil 221. “Lv” is the self-inductance of the V-phase coil 222. “Lw” is the self-inductance of the W-phase coil 223. “Muv” is the mutual inductance between the U-phase coil 221 and the V-phase coil 222. “Muw” is the mutual inductance between the U-phase coil 221 and the W-phase coil 223.
“Mvu” is the mutual inductance between the V-phase coil 222 and the U-phase coil 221. “Mvw” is the mutual inductance between the V-phase coil 222 and the W-phase coil 223. “Mu” is the mutual inductance between the W-phase coil 223 and the U-phase coil 221. “Mwv” is the mutual inductance between the W-phase coil 223 and the V-phase coil 222.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 トルク推定部23cには、算出部22から得られる3つのロータ磁束信号φm(φmu、φmv及びφmw)と、電流推定部23bから得られるコイル電流I(Iu、Iv及びIw)の推定結果とが入力される。トルク推定部23cは、3つのロータ磁束信号φm(φmu、φmv及びφmw)と、コイル電流I(Iu、Iv及びIw)の推定結果と、定数として予め定められたロータマグネット130の極対数Npとに基づいて、トルクTを推定し、その推定結果をトルクTの検出結果として制御装置30に出力する。 The torque estimation unit 23c contains the three rotor magnetic flux signals φm (φmu, φmv and φmw) obtained from the calculation unit 22 and the estimation results of the coil currents I (Iu, Iv and Iw) obtained from the current estimation unit 23b. Entered. The torque estimation unit 23c includes three rotor magnetic flux signals φm (φmu, φmv and φmw), an estimation result of the coil current I (Iu, Iv and Iw), and a polar logarithm Np of the rotor magnet 130 predetermined as a constant. The torque T is estimated based on the above, and the estimation result is output to the control device 30 as the detection result of the torque T.
 具体的には、トルク推定部23cは、以下の式(8)に基づいて、トルクTを算出する。なお、本実施形態におけるモータ10は、10個のロータマグネット130を有するため、極対数Npは「5」である。 Specifically, the torque estimation unit 23c calculates the torque T based on the following equation (8). Since the motor 10 in this embodiment has 10 rotor magnets 130, the pole logarithm Np is "5".
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 制御装置30は、状態検出装置20から得られる状態量(回転角度θ、U相駆動電流Iu、V相駆動電流Iv、W相駆動電流Iw、及びトルクT)の検出結果を基にモータ10を制御する。制御装置30は、モータ10のモータハウジングの内側に設けられてもよいし、或いはモータハウジングの外側に装着されてもよい。制御装置30は、状態量の検出結果を基に、モータ10に供給されるU相駆動電流Iu、V相駆動電流Iv及びW相駆動電流Iwをベクトル制御することにより、ロータ100を回転させる。ベクトル制御は、3相ブラシレスDCモータであるモータ10の制御方式として一般的に知られているため、本明細書においてベクトル制御の詳細な説明は省略する。 The control device 30 uses the motor 10 based on the detection results of the state quantities (rotation angle θ R , U-phase drive current Iu, V-phase drive current Iv, W-phase drive current Iw, and torque T) obtained from the state detection device 20. To control. The control device 30 may be provided inside the motor housing of the motor 10, or may be mounted on the outside of the motor housing. The control device 30 rotates the rotor 100 by vector-controlling the U-phase drive current Iu, the V-phase drive current Iv, and the W-phase drive current Iw supplied to the motor 10 based on the detection result of the state quantity. Since vector control is generally known as a control method for the motor 10 which is a three-phase brushless DC motor, detailed description of vector control is omitted in the present specification.
 以上のように、本実施形態における状態検出装置20は、ロータ100の軸方向においてロータマグネット130と対向する第1磁気センサHAと、軸方向においてステータ200と対向する第2磁気センサHBとを有し、ロータ100の回転方向に沿って設けられる少なくとも3つの検出部21を有する。検出部21のそれぞれにおいて、第1磁気センサHA及び第2磁気センサHBは、ロータ100の径方向に沿って配置される。また、状態検出装置20は、第1磁気センサHAから得られる第1検出信号VHAと、第2磁気センサHBから得られる第2検出信号VHBとに基づいて、ロータ磁束成分φm及びステータ磁束成分φsを検出部21ごとに算出する算出部22を有する。さらに、状態検出装置20は、算出部22から得られるロータ磁束成分φm及びステータ磁束成分φsに基づいて、ロータ100の回転角度θと、コイル電流I(Iu、Iv及びIw)と、モータ10のトルクTとを状態量として推定する状態推定部23を備える。
 上記のように構成された状態検出装置20によれば、シャント抵抗器等の電流センサ無しでコイル電流Iの検出及びトルクTの推定が可能であり、且つ専用のセンサ磁石無しで回転角度θを検出可能である。従って、本実施形態によれば、制御装置30から独立したオールインワンタイプの小型センサとして使用可能な状態検出装置20を提供することができる。
As described above, the state detection device 20 in the present embodiment includes a first magnetic sensor HA facing the rotor magnet 130 in the axial direction of the rotor 100 and a second magnetic sensor HB facing the stator 200 in the axial direction. However, it has at least three detection units 21 provided along the rotation direction of the rotor 100. In each of the detection units 21, the first magnetic sensor HA and the second magnetic sensor HB are arranged along the radial direction of the rotor 100. Further, the state detection device 20 has a rotor magnetic flux component φm and a stator magnetic flux based on the first detection signal V HA obtained from the first magnetic sensor HA and the second detection signal V HB obtained from the second magnetic sensor HB. It has a calculation unit 22 that calculates the component φs for each detection unit 21. Further, the state detection device 20 includes a rotation angle θ R of the rotor 100, coil currents I (Iu, Iv and Iw), and a motor 10 based on the rotor magnetic flux component φm and the stator magnetic flux component φs obtained from the calculation unit 22. A state estimation unit 23 that estimates the torque T of the above as a state quantity is provided.
According to the state detection device 20 configured as described above, it is possible to detect the coil current I and estimate the torque T without a current sensor such as a shunt resistor, and the rotation angle θ R without a dedicated sensor magnet. Can be detected. Therefore, according to the present embodiment, it is possible to provide a state detection device 20 that can be used as an all-in-one type small sensor independent of the control device 30.
 また、本実施形態において、算出部22は、第1検出信号VHAに第1定数Cを乗算して得られる演算結果から、第2検出信号VHBを減算することによりロータ磁束成分φmを算出する。
 これにより、乗算器と減算器との組み合わせによって簡単且つ正確にロータ磁束成分φmを算出することができる。なお、上記実施形態で説明したように、乗算器及び減算器は、アナログ回路またはデジタル回路などの安価なハードウェアで実現可能である。
Further, in the present embodiment, the calculation unit 22 calculates the rotor magnetic flux component φm by subtracting the second detection signal V HB from the calculation result obtained by multiplying the first detection signal V HA by the first constant C. do.
Thereby, the rotor magnetic flux component φm can be calculated easily and accurately by the combination of the multiplier and the subtractor. As described in the above embodiment, the multiplier and the subtractor can be realized by inexpensive hardware such as an analog circuit or a digital circuit.
 また、本実施形態において、算出部22は、第1検出信号VHAに第3定数Dを乗算して得られる演算結果を、第2検出信号VHBから減算することによりステータ磁束成分φsを算出する。
 これにより、乗算器と減算器との組み合わせによって簡単且つ正確にステータ磁束成分φsを算出することができる。なお、上記と同様に、乗算器及び減算器は、アナログ回路またはデジタル回路などの安価なハードウェアで実現可能である。
Further, in the present embodiment, the calculation unit 22 calculates the stator magnetic flux component φs by subtracting the calculation result obtained by multiplying the first detection signal V HA by the third constant D from the second detection signal V HB. do.
Thereby, the stator magnetic flux component φs can be calculated easily and accurately by the combination of the multiplier and the subtractor. Similar to the above, the multiplier and the subtractor can be realized by inexpensive hardware such as an analog circuit or a digital circuit.
 また、本実施形態において、状態推定部23は、角度推定部23aと、電流推定部23bと、トルク推定部23cと、を有する。角度推定部23aは、算出部22から得られる3つのロータ磁束成分φmに基づいて回転角度θを推定する。電流推定部23bは、算出部22から得られる3つのステータ磁束信号φsと、定数として予め定められたモータ10の自己インダクタンス及び相互インダクタンスとに基づいて、コイル電流Iを推定する。トルク推定部23cは、算出部22から得られる3つのロータ磁束信号φmと、コイル電流Iの推定結果と、定数として予め定められたロータマグネット130の極対数Npとに基づいて、トルクTを推定する。
 これにより、簡単且つ正確に、モータ10の状態量である回転角度θ、コイル電流I及びトルクTを推定することができる。
Further, in the present embodiment, the state estimation unit 23 includes an angle estimation unit 23a, a current estimation unit 23b, and a torque estimation unit 23c. Angle estimator 23a estimates the rotation angle theta R based on three rotor flux component φm obtained from the calculation unit 22. The current estimation unit 23b estimates the coil current I based on the three stator magnetic flux signals φs obtained from the calculation unit 22 and the self-inductance and mutual inductance of the motor 10 predetermined as constants. The torque estimation unit 23c estimates the torque T based on the three rotor magnetic flux signals φm obtained from the calculation unit 22, the estimation result of the coil current I, and the polar logarithm Np of the rotor magnet 130 predetermined as a constant. do.
Thereby, the rotation angle θ R , the coil current I, and the torque T, which are the state quantities of the motor 10, can be easily and accurately estimated.
〔変形例〕
 本発明は上記実施形態に限定されず、本明細書において説明した各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。
 例えば、上記実施形態で説明した算出部22に替えて、図5に示す変形例における算出部25を状態検出装置20に設けてもよい。変形例における算出部25は、第2検出信号VHBに第2定数Eを乗算して得られる演算結果から、第1検出信号VHAを減算することによりロータ磁束成分φmを算出する。また、算出部25は、第2検出信号VHBに第4定数Fを乗算して得られる演算結果を、第1検出信号VHAから減算することによりステータ磁束成分φsを算出する。
[Modification example]
The present invention is not limited to the above-described embodiment, and the configurations described in the present specification can be appropriately combined within a range that does not contradict each other.
For example, instead of the calculation unit 22 described in the above embodiment, the calculation unit 25 in the modified example shown in FIG. 5 may be provided in the state detection device 20. The calculation unit 25 in the modified example calculates the rotor magnetic flux component φm by subtracting the first detection signal V HA from the calculation result obtained by multiplying the second detection signal V HB by the second constant E. Further, the calculation unit 25 calculates the stator magnetic flux component φs by subtracting the calculation result obtained by multiplying the second detection signal V HB by the fourth constant F from the first detection signal V HA.
 以下の式(9)に示すように、まず、第2検出信号VHBに第2定数Eを乗算することにより、式(9)の右辺に示される演算結果が得られる。第2定数Eは、係数jを係数kで除算することで得られる値である。そして、以下の式(10)に示すように、第2検出信号VHBに第2定数Eを乗算して得られる演算結果から、第1検出信号VHAを減算すると、ステータ磁束成分φs(θ、I)がキャンセルされ、ロータ磁束成分φm(θ)のみが残る。 As shown in the following equation (9), first, by multiplying the second detection signal V HB by the second constant E, the calculation result shown on the right side of the equation (9) can be obtained. The second constant E is a value obtained by dividing the coefficient j by the coefficient k. Then, as shown in the following equation (10), when the first detection signal V HA is subtracted from the calculation result obtained by multiplying the second detection signal V HB by the second constant E, the stator magnetic flux component φs (θ). , I) are canceled and only the rotor magnetic flux component φm (θ) remains.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 また、以下の式(11)に示すように、まず、第2検出信号VHBに第4定数Fを乗算することにより、式(11)の右辺に示される演算結果が得られる。第4定数Fは、係数xを係数yで除算することで得られる値である。そして、以下の式(12)に示すように、第2検出信号VHBに第4定数Fを乗算して得られる演算結果を、第1検出信号VHAから減算すると、ロータ磁束成分φm(θ)がキャンセルされ、ステータ磁束成分φs(θ、I)のみが残る。 Further, as shown in the following equation (11), first, by multiplying the second detection signal V HB by the fourth constant F, the calculation result shown on the right side of the equation (11) can be obtained. The fourth constant F is a value obtained by dividing the coefficient x by the coefficient y. Then, as shown in the following equation (12), when the calculation result obtained by multiplying the second detection signal V HB by the fourth constant F is subtracted from the first detection signal V HA , the rotor magnetic flux component φm (θ). ) Is canceled, and only the stator magnetic flux component φs (θ, I) remains.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 上記のように、実験又はシミュレーションによって第2定数E(=j/k)を予め求めておけば、第2検出信号VHBに第2定数Eを乗算して得られる演算結果から、第1検出信号VHAを減算することによりロータ磁束成分φmを算出することができる。同様に、実験又はシミュレーションによって第4定数F(=x/y)を予め求めておけば、第2検出信号VHBに第4定数Fを乗算して得られる演算結果を、第1検出信号VHAから減算することによりステータ磁束成分φsを算出することができる。図5に示すように、変形例における算出部25は、U相磁束算出部25uと、V相磁束算出部25vと、W相磁束算出部25wと、を有する。 As described above, if the second constant E (= j / k) is obtained in advance by experiment or simulation, the first detection is performed from the calculation result obtained by multiplying the second detection signal V HB by the second constant E. The rotor magnetic flux component φm can be calculated by subtracting the signal V HA. Similarly, if the fourth constant F (= x / y) is obtained in advance by an experiment or simulation, the calculation result obtained by multiplying the second detection signal V HB by the fourth constant F can be obtained as the first detection signal V. The stator magnetic flux component φs can be calculated by subtracting from HA. As shown in FIG. 5, the calculation unit 25 in the modified example includes a U-phase magnetic flux calculation unit 25u, a V-phase magnetic flux calculation unit 25v, and a W-phase magnetic flux calculation unit 25w.
 U相磁束算出部25uには、U相第1磁気センサHAuから得られるU相第1検出信号VHAuと、U相第2磁気センサHBuから得られるU相第2検出信号VHBuとが入力される。U相磁束算出部25uは、第1乗算器25uaと、第1減算器25ubと、第2乗算器25ucと、第2減算器25udと、を有する。 The U-phase first detection signal V HAu obtained from the U-phase first magnetic sensor HAu and the U-phase second detection signal V HBu obtained from the U-phase second magnetic sensor HBu are input to the U-phase magnetic flux calculation unit 25u. Will be done. The U-phase magnetic flux calculation unit 25u has a first multiplier 25ua, a first subtractor 25ub, a second multiplier 25uc, and a second subtractor 25ud.
 第1乗算器25uaは、第2定数Eに対応するアナログ電圧値を有する電圧VをU相第2検出信号VHBuに乗算し、その演算結果を示す信号を第1減算器25ubに出力する。第1減算器25ubは、第1乗算器25uaから入力される信号からU相第1検出信号VHAuを減算することによりU相のロータ磁束成分φmを算出し、その算出結果を示す周期波信号であるU相ロータ磁束信号φmuを状態推定部23に出力する。 First multiplier 25ua the voltage V E having an analog voltage value corresponding to the second constant E by multiplying the U-phase second detection signal V HBU, and outputs a signal indicating the calculation result to the first subtracter 25ub .. First subtractor 25ub calculates the rotor flux components φm of the U-phase by a signal input from the first multiplier 25ua subtracts the U-phase first detection signal V Hau, periodic wave signal indicating the calculation result The U-phase rotor magnetic flux signal φmu is output to the state estimation unit 23.
 第2乗算器25ucは、第4定数Fに対応するアナログ電圧値を有する電圧VをU相第2検出信号VHBuに乗算し、その演算結果を示す信号を第2減算器25udに出力する。第2減算器25udは、第2乗算器25ucから入力される信号をU相第1検出信号VHAuから減算することによりU相のステータ磁束成分φsを算出し、その算出結果を示すU相ステータ磁束信号φsuを状態推定部23に出力する。 Second multiplier 25uc the voltage V F having an analog voltage value corresponding to the fourth constant F multiplies the U-phase second detection signal V HBU, and outputs a signal indicating the calculation result to the second subtracter 25ud .. The second subtractor 25ud calculates the U-phase stator magnetic flux component φs by subtracting the signal input from the second multiplier 25uc from the U-phase first detection signal VHAu, and the U-phase stator showing the calculation result. The magnetic flux signal φsu is output to the state estimation unit 23.
 V相磁束算出部25vには、V相第1磁気センサHAvから得られるV相第1検出信号VHAvと、V相第2磁気センサHBvから得られるV相第2検出信号VHBvとが入力される。V相磁束算出部25vは、第1乗算器25vaと、第1減算器25vbと、第2乗算器25vcと、第2減算器25vdと、を有する。 The V-phase first detection signal V HAv obtained from the V-phase first magnetic sensor HAv and the V-phase second detection signal V HBv obtained from the V-phase second magnetic sensor HBv are input to the V-phase magnetic flux calculation unit 25v. Will be done. The V-phase magnetic flux calculation unit 25v includes a first multiplier 25va, a first subtractor 25vb, a second multiplier 25vc, and a second subtractor 25vd.
 第1乗算器25vaは、第2定数Eに対応するアナログ電圧値を有する電圧VをV相第2検出信号VHBvに乗算し、その演算結果を示す信号を第1減算器25vbに出力する。第1減算器25vbは、第1乗算器25vaから入力される信号からV相第1検出信号VHAvを減算することによりV相のロータ磁束成分φmを算出し、その算出結果を示す周期波信号であるV相ロータ磁束信号φmvを状態推定部23に出力する。 First multiplier 25va the voltage V E having an analog voltage value corresponding to the second constant E multiplies the V-phase second detection signal V HBV, and outputs a signal indicating the calculation result to the first subtracter 25vb .. First subtractor 25vb calculates the rotor flux components φm of the V-phase by subtracting the V-phase first detection signal V HAV from a signal input from the first multiplier 25VA, periodic wave signal indicating the calculation result The V-phase rotor magnetic flux signal φmv is output to the state estimation unit 23.
 第2乗算器25vcは、第4定数Fに対応するアナログ電圧値を有する電圧VをV相第2検出信号VHBvに乗算し、その演算結果を示す信号を第2減算器25vdに出力する。第2減算器25vdは、第2乗算器25vcから入力される信号をV相第1検出信号
HAvから減算することによりV相のステータ磁束成分φsを算出し、その算出結果を示すV相ステータ磁束信号φsvを状態推定部23に出力する。
Second multiplier 25vc the voltage V F having an analog voltage value corresponding to the fourth constant F multiplies the V-phase second detection signal V HBV, and outputs a signal indicating the calculation result to the second subtracter 25vd .. The second subtractor 25vd calculates the V-phase stator magnetic flux component φs by subtracting the signal input from the second multiplier 25vc from the V-phase first detection signal VHAv, and the V-phase stator showing the calculation result. The magnetic flux signal φsv is output to the state estimation unit 23.
 W相磁束算出部25wには、W相第1磁気センサHAwから得られるW相第1検出信号VHAwと、W相第2磁気センサHBwから得られるW相第2検出信号VHBwとが入力される。W相磁束算出部25wは、第1乗算器25waと、第1減算器25wbと、第2乗算器25wcと、第2減算器25wdと、を有する。 The W-phase first detection signal V HAw obtained from the W-phase first magnetic sensor HAw and the W-phase second detection signal V HBw obtained from the W-phase second magnetic sensor HBw are input to the W-phase magnetic flux calculation unit 25w. Will be done. The W-phase magnetic flux calculation unit 25w includes a first multiplier 25wa, a first subtractor 25wb, a second multiplier 25wc, and a second subtractor 25wd.
 第1乗算器25waは、第2定数Eに対応するアナログ電圧値を有する電圧VをW相第2検出信号VHBwに乗算し、その演算結果を示す信号を第1減算器25wbに出力する。第1減算器25wbは、第1乗算器25waから入力される信号からW相第1検出信号VHAwを減算することによりW相のロータ磁束成分φmを算出し、その算出結果を示す周期波信号であるW相ロータ磁束信号φmwを状態推定部23に出力する。 First multiplier 25wa the voltage V E having an analog voltage value corresponding to the second constant E by multiplying the W-phase second detection signal V HBW, and outputs a signal indicating the calculation result to the first subtracter 25wb .. First subtractor 25wb calculates the rotor flux components φm of the W phase by subtracting the W-phase first detection signal V HAW from a signal input from the first multiplier 25Wa, periodic wave signal indicating the calculation result The W-phase rotor magnetic flux signal φmw is output to the state estimation unit 23.
 第2乗算器25wcは、第4定数Fに対応するアナログ電圧値を有する電圧VをW相第2検出信号VHBwに乗算し、その演算結果を示す信号を第2減算器25wdに出力す
る。第2減算器25wdは、第2乗算器25wcから入力される信号をW相第1検出信号VHAwから減算することによりW相のステータ磁束成分φsを算出し、その算出結果を示すW相ステータ磁束信号φswを状態推定部23に出力する。
Second multiplier 25wc the voltage V F having an analog voltage value corresponding to the fourth constant F multiplies the W-phase second detection signal V HBW, and outputs a signal indicating the calculation result to the second subtracter 25wd .. The second subtractor 25wd calculates the W-phase stator magnetic flux component φs by subtracting the signal input from the second multiplier 25wc from the W-phase first detection signal VHAw, and the W-phase stator showing the calculation result. The magnetic flux signal φsw is output to the state estimation unit 23.
 以上のような算出部25を備える変形例の状態検出装置20においても、第1磁気センサHAから得られる第1検出信号VHAと、第2磁気センサHBから得られる第2検出信号VHBとに基づいて、ロータ磁束成分φm及びステータ磁束成分φsを算出可能である
Also in the modified state detection device 20 including the calculation unit 25 as described above, the first detection signal V HA obtained from the first magnetic sensor HA and the second detection signal V HB obtained from the second magnetic sensor HB The rotor magnetic flux component φm and the stator magnetic flux component φs can be calculated based on the above.
 1…モータユニット、10…モータ、20…状態検出装置、21…検出部、21u…U相検出部、21v…V相検出部、21w…W相検出部、22、25…算出部、22u、25u…U相磁束算出部、22v、25v…V相磁束算出部、22w、25w…W相磁束算出部、22ua、22va、22wa、25ua、25va、25wa…第1乗算器、22ub、22vb、22wb、25ub、25vb、25wb…第1減算器、22uc、22vc、22wc、25uc、25vc、25wc…第2乗算器、22ud、22vd、22wd、25ud、25vd、25wd…第2減算器、23…状態推定部(推定部)、23a…角度推定部(位置推定部)、23b…電流推定部、23c…トルク推定部、24…回路基板、24a…シャフト挿入孔、24b…回路基板の板面、30…制御装置、100…ロータ(回転子)、110…ロータコア、120…ロータシャフト、130…ロータマグネット(永久磁石)、200…ステータ(固定子)、210…ステータコア、211…ヨーク、212…ティース、220…コイル、221…U相コイル、222…V相コ
イル、223…W相コイル、220…コイル、HA…第1磁気センサ、HAu…U相第1磁気センサ、HAv…V相第1磁気センサ、HAw…W相第1磁気センサ、HB…第2磁
気センサ、HBu…U相第2磁気センサ、HBv…V相第2磁気センサ、HBw…W相第2磁気センサ
1 ... motor unit, 10 ... motor, 20 ... state detection device, 21 ... detection unit, 21u ... U phase detection unit, 21v ... V phase detection unit, 21w ... W phase detection unit, 22, 25 ... calculation unit, 22u, 25u ... U-phase magnetic flux calculation unit, 22v, 25v ... V-phase magnetic flux calculation unit, 22w, 25w ... W-phase magnetic flux calculation unit, 22ua, 22va, 22wa, 25ua, 25va, 25wa ... First multiplier, 22ub, 22vb, 22wb , 25ub, 25vb, 25wb ... 1st subtractor, 22uc, 22vc, 22wc, 25uc, 25vc, 25wc ... 2nd multiplier, 22ud, 22vd, 22wd, 25ud, 25vd, 25wd ... 2nd subtractor, 23 ... State estimation Unit (estimation unit), 23a ... angle estimation unit (position estimation unit), 23b ... current estimation unit, 23c ... magnetic flux estimation unit, 24 ... circuit board, 24a ... shaft insertion hole, 24b ... circuit board plate surface, 30 ... Control device, 100 ... rotor (rotor), 110 ... rotor core, 120 ... rotor shaft, 130 ... rotor magnet (permanent magnet), 200 ... stator (fixer), 210 ... stator core, 211 ... yoke, 212 ... teeth, 220 ... Coil, 221 ... U-phase coil, 222 ... V-phase coil, 223 ... W-phase coil, 220 ... Coil, HA ... 1st magnetic sensor, HAu ... U-phase 1st magnetic sensor, HAv ... V-phase 1st magnetic sensor, HAw ... W phase 1st magnetic sensor, HB ... 2nd magnetic sensor, HBu ... U phase 2nd magnetic sensor, HBv ... V phase 2nd magnetic sensor, HBw ... W phase 2nd magnetic sensor

Claims (7)

  1.  コイルを有する固定子と、永久磁石を有する回転子と、を備えるモータの状態量を検出する状態検出装置であって、
     前記回転子の軸方向において前記永久磁石と対向する第1磁気センサと、前記軸方向において前記固定子と対向する第2磁気センサとを有し、前記回転子の回転方向に沿って設
    けられる少なくとも3つの検出部と、
     前記第1磁気センサから得られる磁束検出結果を示す第1検出信号と、前記第2磁気センサから得られる磁束検出結果を示す第2検出信号とに基づいて、回転子磁束成分及び固
    定子磁束成分を前記検出部ごとに算出する算出部と、
     前記算出部から得られる前記回転子磁束成分及び前記固定子磁束成分に基づいて、前記回転子の回転位置と、前記コイルに流れるコイル電流と、前記モータのトルクとを前記状
    態量として推定する推定部と、
     を備え、
     前記検出部のそれぞれにおいて、前記第1磁気センサ及び前記第2磁気センサは、前記回転子の径方向に沿って配置される、
     状態検出装置。
    A state detection device for detecting the state quantity of a motor including a stator having a coil and a rotor having a permanent magnet.
    It has a first magnetic sensor facing the permanent magnet in the axial direction of the rotor and a second magnetic sensor facing the stator in the axial direction, and is provided at least along the rotation direction of the rotor. Three detectors and
    The rotor magnetic flux component and the stator magnetic flux component are based on the first detection signal indicating the magnetic flux detection result obtained from the first magnetic sensor and the second detection signal indicating the magnetic flux detection result obtained from the second magnetic sensor. With a calculation unit that calculates for each detection unit,
    Estimating the rotation position of the rotor, the coil current flowing through the coil, and the torque of the motor as the state quantities based on the rotor magnetic flux component and the stator magnetic flux component obtained from the calculation unit. Department and
    With
    In each of the detection units, the first magnetic sensor and the second magnetic sensor are arranged along the radial direction of the rotor.
    State detector.
  2.  前記算出部は、前記第1検出信号に第1定数を乗算して得られる演算結果から、前記第2検出信号を減算することにより前記回転子磁束成分を算出する、
    請求項1に記載の状態検出装置。
    The calculation unit calculates the rotor magnetic flux component by subtracting the second detection signal from the calculation result obtained by multiplying the first detection signal by the first constant.
    The state detection device according to claim 1.
  3.  前記算出部は、前記第2検出信号に第2定数を乗算して得られる演算結果から、前記第1検出信号を減算することにより前記回転子磁束成分を算出する、
    請求項1に記載の状態検出装置。
    The calculation unit calculates the rotor magnetic flux component by subtracting the first detection signal from the calculation result obtained by multiplying the second detection signal by the second constant.
    The state detection device according to claim 1.
  4.  前記算出部は、前記第1検出信号に第3定数を乗算して得られる演算結果を、前記第2検出信号から減算することにより前記固定子磁束成分を算出する、
    請求項1から3のいずれか一項に記載の状態検出装置。
    The calculation unit calculates the stator magnetic flux component by subtracting the calculation result obtained by multiplying the first detection signal by the third constant from the second detection signal.
    The state detection device according to any one of claims 1 to 3.
  5.  前記算出部は、前記第2検出信号に第4定数を乗算して得られる演算結果を、前記第1検出信号から減算することにより前記固定子磁束成分を算出する、
    請求項1から3のいずれか一項に記載の状態検出装置。
    The calculation unit calculates the stator magnetic flux component by subtracting the calculation result obtained by multiplying the second detection signal by the fourth constant from the first detection signal.
    The state detection device according to any one of claims 1 to 3.
  6.  前記推定部は、
     前記算出部から得られる前記回転子磁束成分に基づいて、前記回転位置を推定する位置推定部と、
     前記算出部から得られる前記固定子磁束成分と、定数として予め定められた前記モータの自己インダクタンス及び相互インダクタンスとに基づいて、前記コイル電流を推定する
    電流推定部と、
     前記算出部から得られる前記回転子磁束成分と、前記電流推定部から得られる前記コイル電流の推定結果と、定数として予め定められた前記永久磁石の極対数とに基づいて、前記トルクを推定するトルク推定部と、
     を有する、
    請求項1から5のいずれか一項に記載の状態検出装置。
    The estimation unit
    A position estimation unit that estimates the rotation position based on the rotor magnetic flux component obtained from the calculation unit, and a position estimation unit.
    A current estimation unit that estimates the coil current based on the stator magnetic flux component obtained from the calculation unit and the self-inductance and mutual inductance of the motor that are predetermined as constants.
    The torque is estimated based on the rotor magnetic flux component obtained from the calculation unit, the estimation result of the coil current obtained from the current estimation unit, and the number of pole pairs of the permanent magnet predetermined as a constant. Torque estimation unit and
    Have,
    The state detection device according to any one of claims 1 to 5.
  7.  コイルを有する固定子と、永久磁石を有する回転子と、を備えるモータと、
     前記モータの状態量を検出する請求項1から6のいずれか一項に記載の状態検出装置と、
     前記状態検出装置から得られる前記状態量の検出結果に基づいて前記モータを制御する制御装置と、
     を備えるモータユニット。
    A motor including a stator with a coil and a rotor with a permanent magnet,
    The state detection device according to any one of claims 1 to 6, which detects the state amount of the motor.
    A control device that controls the motor based on the detection result of the state quantity obtained from the state detection device, and
    Motor unit with.
PCT/JP2020/046789 2020-03-18 2020-12-15 State detection device and motor unit WO2021186820A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080098567.0A CN115280665A (en) 2020-03-18 2020-12-15 State detection device and motor unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020047779 2020-03-18
JP2020-047779 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021186820A1 true WO2021186820A1 (en) 2021-09-23

Family

ID=77771921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046789 WO2021186820A1 (en) 2020-03-18 2020-12-15 State detection device and motor unit

Country Status (2)

Country Link
CN (1) CN115280665A (en)
WO (1) WO2021186820A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771259A (en) * 1980-10-17 1982-05-04 Matsushita Electric Ind Co Ltd Commutatorless motor
JP2013031298A (en) * 2011-07-28 2013-02-07 Nippon Densan Corp Motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5771259A (en) * 1980-10-17 1982-05-04 Matsushita Electric Ind Co Ltd Commutatorless motor
JP2013031298A (en) * 2011-07-28 2013-02-07 Nippon Densan Corp Motor

Also Published As

Publication number Publication date
CN115280665A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
US8217545B2 (en) Rotor of permanent magnet rotary machine and manufacturing method of rotor
US8324768B2 (en) Rotational angle detection device and method for permanent magnet dynamo-electric machine and electric power steering device
JP3546817B2 (en) Magnetic pole position detection device for motor
JP2010011637A (en) Permanent magnet rotary electric machine and elevator winding machine using the same
WO2012124372A1 (en) Permanent-magnet type rotating electrical machine
JP6209372B2 (en) Rotating electrical machine and control device for rotating electrical machine
WO2015019495A1 (en) Motor drive system and motor control device
TWI593890B (en) Motor system and magnetic bearing system
JP2021535713A (en) Position monitoring for electrical machinery
JP4237075B2 (en) Rotating electric machine
JP2020502984A (en) Hall effect sensor signal offset correction in phase commutation
JP2002044888A (en) Motor and motor controller
CN111740672A (en) Permanent magnet synchronous motor angle detection method and system based on linear Hall sensor
EP3747119B1 (en) Slotless synchronous permanent magnet motor
WO2021186819A1 (en) Position detection device and motor unit
WO2021186820A1 (en) State detection device and motor unit
JP6428520B2 (en) Magnet temperature estimation system, motor, and magnet temperature estimation method
Kuruppu et al. Post production PMSM position sensor offset error quantification via voltage estimation
JP3676944B2 (en) Control device for synchronous motor
KR20210110994A (en) Motor Having Thin Magnetic Flux Measuring Coil As Position Sensor
JP2009261121A (en) Motor control apparatus
JP2010200460A (en) Permanent magnet type rotary electric machine and electric power steering device
WO2024019003A1 (en) Torque pulsation measurement method and torque pulsation measurement device for permanent magnet motor and method for manufacturing permanent magnet motor
US20240030851A1 (en) Method and Device for Identifying the Anisotrophy of an Electric Three-Phase Machine
WO2023218676A1 (en) Rotating electric machine control device and rotating electric machine control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP