WO2021186813A1 - Fluorescent nanoparticles and method for manufacturing fluorescent nanoparticles - Google Patents

Fluorescent nanoparticles and method for manufacturing fluorescent nanoparticles Download PDF

Info

Publication number
WO2021186813A1
WO2021186813A1 PCT/JP2020/046420 JP2020046420W WO2021186813A1 WO 2021186813 A1 WO2021186813 A1 WO 2021186813A1 JP 2020046420 W JP2020046420 W JP 2020046420W WO 2021186813 A1 WO2021186813 A1 WO 2021186813A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent nanoparticles
target substance
group
substance
fluorescent
Prior art date
Application number
PCT/JP2020/046420
Other languages
French (fr)
Japanese (ja)
Inventor
義一 栗原
祐輝 三宅
中山 慎
治▲高▼ 李
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2022508058A priority Critical patent/JPWO2021186813A1/ja
Publication of WO2021186813A1 publication Critical patent/WO2021186813A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to fluorescent nanoparticles and a method for producing fluorescent nanoparticles.
  • IHC immunohistochemistry
  • ISH in situ hybridization
  • DAB staining a dye staining method using an enzyme
  • staining with an enzyme label such as DAB staining has a problem that it is difficult to estimate the actual amount of antigen or the like from the staining concentration because the staining concentration is greatly affected by environmental conditions such as temperature and time. Therefore, in immunological observation in pathological diagnosis, a fluorescent labeling method using a fluorescent label is also performed instead of staining with an enzyme label.
  • the fluorescent labeling method measures the amount of antigen by observing the target antigen by staining it with an antibody modified with a fluorescent dye.
  • Patent Document 1 discloses fluorescent nanoparticles to which streptavidin is bound.
  • Streptavidin is bound to the surface of the fluorescent nanoparticles described in Patent Document 1 above.
  • the sensitivity may be low when the target substance (target substance bound to the detection target) is stained with the fluorescent nanoparticles.
  • the present invention has been made in view of the above circumstances, and the target substance recognizing substance has high activity in the fluorescent nanoparticles on which the target substance recognizing substance is supported on the surface, and the target substance can be measured with high sensitivity. It is an object of the present invention to provide fluorescent nanoparticles that can be produced. Another object of the present invention is to provide a method for producing the fluorescent nanoparticles.
  • the fluorescent nanoparticles according to an embodiment of the present invention are fluorescent nanoparticles in which a target substance recognizing substance that binds to a target substance is supported on the surface, and is a 100 ⁇ L liquid containing the fluorescent nanoparticles at a concentration of 100 pmol / L. and the fluorescent nano 0.1 pmol / mm the target substance over an area of 28.3 mm 2 at a density of 2 into contact with a substrate immobilized, binding to the target substance when allowed to stir 1 hour at 4 ° C.
  • the proportion of particles is 1.5% or more.
  • the method for producing fluorescent nanoparticles includes a step of preparing fluorescent nanoparticles into which a maleimide group has been introduced, a step of introducing a thiol group into a target substance-labeled molecule, and the fluorescent nanoparticles.
  • the target substance recognizing substance has high activity, and it is possible to provide fluorescent nanoparticles capable of measuring the target substance with high sensitivity. Can be done.
  • the present invention can also provide a method for producing the fluorescent nanoparticles.
  • FIGS. 1A to 1C show an example of a method for producing fluorescent nanoparticles in which a target substance recognizing substance is supported on the surface.
  • 2A to 2E show the results of immunostaining using the fluorescent nanoparticles according to the embodiment of the present invention and the fluorescent nanoparticles of the comparative example.
  • FIG. 3A shows the correlation between the performance evaluation of the fluorescent nanoparticles by the BCA method and the result of immunostaining
  • FIG. 3B shows the correlation between the performance evaluation of the fluorescent nanoparticles by the biotin plate method and the result of immunostaining.
  • the fluorescent nanoparticles according to the embodiment of the present invention include nanoparticles containing a fluorescent dye and a resin, and a target substance recognition substance supported on the surface of the nanoparticles.
  • the fluorescent nanoparticles according to the present embodiment include nanoparticles as a mother body.
  • thermoplastic resin or thermosetting resin can be used as the resin constituting the nanoparticles.
  • thermoplastic resin for example, polystyrene, polyacrylonitrile, polyfuran, or a similar resin can be preferably used.
  • thermosetting resin for example, polyxylene, polylactic acid, glycidyl methacrylate, melamine resin, polyurea, polybenzoguanamine, polyamide, phenol resin, polysaccharide or similar resin can be preferably used.
  • Thermosetting resins are preferable in that elution of the dye contained in the nanoparticles can be suppressed even by treatments such as dehydration, permeation, and encapsulation using an organic solvent such as xylene.
  • the nanoparticles are provided with a functional group for at least directly or indirectly binding the target substance recognizing substance to the surface.
  • a functional group the same functional group as in the case of binding various target substances to each other in the technical field to which the present invention belongs can be used, but for example, an epoxy group or an amino group is preferable.
  • the method for preparing the nanoparticles having a functional group is not particularly limited, but for example, a predetermined functional group is previously side-chained as a monomer for synthesizing a thermoplastic resin or a thermosetting resin constituting the nanoparticles.
  • a predetermined functional group is previously side-chained as a monomer for synthesizing a thermoplastic resin or a thermosetting resin constituting the nanoparticles.
  • the functional groups of the resin monomer units constituting the resin are treated with a reagent to obtain the predetermined functional groups.
  • a method of conversion can be used.
  • polystyrene resin nanoparticles having an epoxy group on the surface are produced by copolymerizing glycidyl methacrylate with styrene as a monomer.
  • styrene carboxylic acid or styrene sulfonic acid is copolymerized with styrene to produce polystyrene-based resin nanoparticles having carboxylic acid or styrene acid on the surface, or amino sulfonic acid is copolymerized with styrene.
  • An embodiment of producing polystyrene-based resin nanoparticles having an amino group on the surface thereof is included.
  • the epoxy group contained in the glycidyl methacrylate can also be converted into an amino group by a predetermined treatment.
  • thermosetting dye resin particles there is an embodiment in which nanoparticles of a melamine resin are produced by copolymerizing using a melamine resin raw material (for example, MX035 manufactured by Sanwa Chemical Co., Ltd.) as a monomer. Be done.
  • a melamine resin raw material for example, MX035 manufactured by Sanwa Chemical Co., Ltd.
  • the fluorescent nanoparticles according to the present embodiment include a fluorescent dye.
  • the fluorescent dye may be bound to the nanoparticles by physical or chemical force, and the fluorescent dye is incorporated into the nanoparticles, for example, by polymerizing a monomer in a solvent containing the fluorescent dye.
  • Examples of the fluorescent dye to be encapsulated in the nanoparticles or fixed to the surface of the nanoparticles when forming nanoparticles while incorporating the fluorescent dye by polymerizing the monomers constituting the resin include the following rhodamine-based dye molecules and BODIPY-based. Dye molecules, squarylium-based dye molecules, aromatic hydrocarbon-based dye molecules, or combinations thereof can be used.
  • Fluorodamines such as rhodamine-based dye molecules are preferable because they have relatively high light resistance, and among them, perylene, pyrene, and perylene diimide, which belong to aromatic hydrocarbon-based dye molecules, are preferable.
  • rhodamine-based dye molecules include 5-carboxy-rhodamine, 6-carboxy-rhodamine, 5,6-dicarboxy-rhodamine, rhodamine 6G, tetramethylrhodamine, X-rhodamine, Texas red, Spectrum Red, LD700 PERCHLORATE, Derivatives thereof and the like are included.
  • BODIPY dye molecules examples include BODIPY FL, BODIPY TMR, BODIPY 493/503, BODIPY 530/550, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, BODIPY.
  • BODIPY 650/665 manufactured by Invitrogen
  • derivatives thereof are included.
  • squalylium-based dye molecules examples include SRfluor 680-Carboxylate, 1,3-Bis [4- (dimethylamino) -2-hydroxyphenyl] -2,4-dihydroxycyclobutenediylium dihydroxide, bis1,3-.
  • aromatic hydrocarbon dye molecules include N, N-Bis- (2,6-diisopropylphenyl) -1,6,7,12- (4-tert-butylphenoxy) -perylene-3,4,9, 10-teracarbonacid dimide, N, N'-Bis (2,6-diisotropyperylene) -1,6,7,12-teraphenoxyperylene-3,4: 9,10-terracarboxdimide, N, N'-Bis (2,6 diisopropylphenyl) perylene-3,4,9,10-bis (dicarbimide), 16,N, N'-Bis (2,6-dimethylphenyl) perylene-3,4,9,10-terracarboxyldi-midide, 4,4 [(8,16-Dihydro-8,16-dioxodibenzo [a, j] perylene-2,10-diyl) dioxy] dibutyric acid, 2,10-Dihydroxy-d
  • Target substance recognition substance A target substance recognizing substance is supported on the surface of the fluorescent nanoparticles according to the present embodiment.
  • the target substance recognition substance is, for example, a molecule that specifically binds to the target substance bound to the detection target.
  • the target substance recognition substance binds to the target substance, the target substance is labeled with fluorescent nanoparticles to be detected.
  • the target substance recognition substance is not particularly limited, but is at least one selected from the group consisting of, for example, avidin, streptavidin and neutravidin.
  • Examples of the combination of the target substance and the target substance recognizing substance that specifically binds to the target substance include a combination of biotin-avidin, biotin-streptavidin, and biotin-neutravidin.
  • the binding constant between a target substance to be dyed object (K A) is preferably in the range of 1 ⁇ 10 5 ⁇ 1 ⁇ 10 12. If binding constants (K A) is within the range, the target substance can be handled as a target substance recognition substance that specifically binds to a target substance to be dyed object.
  • the average particle size of the fluorescent nanoparticles is preferably 30 to 300 nm, more preferably 40 nm to 200 nm, from the viewpoint that bright spots can be preferably observed even with a general-purpose fluorescence microscope.
  • the average particle size exceeds 300 nm, the number of bright spots per cell decreases during observation after staining, making it difficult to observe bright spots.
  • the average particle size is less than 30 nm, per cell. This is because the number of bright spots increases and it becomes difficult to observe the bright spots.
  • the average particle size can be taken as the average value by measuring the major axis of each particle (100 or more) shown in the image taken by the scanning electron microscope.
  • the fluorescent nanoparticles according to the present embodiment have a relatively high rate of binding to the target substance because the target substance recognizing substance supported on the surface thereof has high activity.
  • 100 pmol / concentration of L to 100 ⁇ L of liquid containing fluorescent nanoparticles, 4 is brought into contact with the substrate target substance is immobilized over an area of 28.3 mm 2 at a density of 0.1 pmol / mm 2 ° C.
  • the proportion of fluorescent nanoparticles bound to the target substance on the substrate when stirred for 1 hour is 1.5% or more.
  • the ratio of the fluorescent nanoparticles bound to the target substance on the substrate is determined by bringing the fluorescent nanoparticles on the surface of the target substance recognition substance into contact with the substrate on which the target substance is immobilized. It can be evaluated by.
  • the target substance recognition substance supported on the fluorescent nanoparticles may be active or inactive. That is, the target substance recognition substance may or may not have the ability to bind to the target substance.
  • the ratio of the fluorescent nanoparticles bound to the target substance is 1.5% or more, which indicates that there are many active target substance recognizing substances on the surface of the fluorescent nanoparticles.
  • the target substance recognizing substance has high activity and the rate of recognizing the target substance is improved. This makes it possible to perform highly sensitive measurements. Also. By setting the degree of activity of the target substance recognition substance within a certain range, the detection sensitivity is improved and the variation in detection is reduced (the detection accuracy is improved).
  • the target substance recognizing substance bound to the surface of the fluorescent nanoparticles is measured as the amount of protein, but in the above method, the target substance recognizing substance supported on the surface of the fluorescent nanoparticles is recognized.
  • the activity of a substance can be measured.
  • the above ratio may be 1.5% or more, but from the viewpoint of measuring with higher sensitivity, it is more preferably 2% or more, further preferably 2.5% or more, and 5% or more. Is more preferable, and 8% or more is further preferable.
  • the upper limit of the above ratio is preferably 10% or less from the viewpoint of suppressing non-specific binding.
  • the method for producing fluorescent nanoparticles according to the present embodiment is not particularly limited.
  • the fluorescent nanoparticles according to the present embodiment can be produced by the method for producing fluorescent nanoparticles described below.
  • the method for producing fluorescent nanoparticles includes a step of preparing fluorescent nanoparticles into which a maleimide group has been introduced, a step of introducing a thiol group into a target substance recognizing substance, and a step of introducing the fluorescent nanoparticles into the fluorescent nanoparticles. It comprises a step of reacting a maleimide group with a thiol group introduced into the target substance-labeled molecule.
  • the step of introducing the thiol group and the step of reacting the maleimide group with the thiol group are carried out at 0 ° C. to 8 ° C.
  • each step will be described.
  • the maleimide group-introduced fluorescent nanoparticles may be obtained in advance, or the maleimide group is introduced into the fluorescent nanoparticles to introduce the maleimide group. Nanoparticles may be made.
  • a maleimide group When a maleimide group is introduced into the fluorescent nanoparticles, it can be carried out by reacting the maleimide group-introducing reagent (for example, NHS-PEG12-maleimide) with the fluorescent nanoparticles into which the amino group has been introduced as shown in FIG. 1A. preferable.
  • the maleimide group-introducing reagent for example, NHS-PEG12-maleimide
  • fluorescent nanoparticles are first treated with formic acid as shown in FIG. 1A, a carboxyl group is added to the surface thereof, and then an amino group introducing reagent (for example, BAEE) is used. It is considered preferable to introduce an amino group by adding it.
  • an amino group-introducing reagent may be added to the fluorescent nanoparticles that have not been treated with formic acid to introduce an amino group.
  • the presence of unreacted carboxy groups suppresses the surface of the fluorescent nanoparticles from being negatively charged, and the surface charge is suppressed. Is expected to be tilted to the positive side as compared with the conventional case, and the accessibility to the probe of RNAscape having a negative charge derived from nucleic acid is expected to be improved.
  • the fluorescent nano having an amino group introduced. It is preferable to carry out a step of washing the particles with an organic solvent. This washing step is preferably performed so as to remove water using an organic solvent. Specifically, it is preferable to perform cleaning a plurality of times using a cleaning solution in which the amount of the organic solvent in the cleaning solution is gradually increased. It is considered that the deactivation of the maleimide group-introducing reagent can be suppressed by washing by removing water in this way.
  • amino group introduction reagent is not particularly limited as long as an amino group can be introduced.
  • amino group-introducing reagents include 1,2-Bis (2-aminoethoxy) ethane (BAEE), 1,4-Diaminobutane, 1,10-Diaminodekane, 1,12-Diaminododekane, 1,7-Diaminoheptane, 1, 6-Diaminohexane, 1,8-Diaminooctane, 1,5-Diaminopenentane, 1,3-Diaminopropane, 1,11-Diaminodykane, Ethylenediamine, 2,2'-Oxybis (ethylamine), 1,2'-Oxybis (ethylamine), 1, 9-trioxanedecane and the like are included.
  • the amino group introduced into the fluorescent nanoparticles as described above includes, for example, the N-hydroxysuccinimide group of a compound containing a maleimide group and an N-hydroxysuccinimide group. Introduces a maleimide group into the fluorescent nanoparticles by reacting.
  • maleimide group-introducing reagent is not particularly limited as long as the maleimide group can be introduced.
  • maleimide group-introducing reagents include compounds containing a maleimide group and an N-hydroxysuccinimide group, NHS-PEG12-maleimide, TFP-PEG-maleimide, PFP-PEG-maleimide and the like.
  • Step of introducing a thiol group into a target substance recognition substance The step of introducing a thiol group into the target substance recognizing substance is performed, for example, by reacting the amino group of the target substance recognizing substance with a thiol group introducing reagent (for example, a trout reagent), as shown in FIG. 1B.
  • the step of introducing a thiol group into the target substance recognizing substance is preferably carried out at 0 to 8 ° C., and is preferably carried out at 0 to 4 ° C. from the viewpoint of ensuring that the target substance recognizing substance has high activity. More preferably, it is carried out at 2 to 4 ° C.
  • the target substance recognition substance is not particularly limited, but is at least one selected from the group consisting of, for example, avidin, streptavidin and neutravidin.
  • the thiol group-introducing reagent is not particularly limited as long as a thiol group can be introduced.
  • thiol group-introducing reagents include trout reagent (2-Iminothiolane), SPDP (N- ⁇ 6- [3- (2-Pyridyldithio) PEGylamide] hexanoyloxy ⁇ sulfosuccinimide), Sulfo-AC5-SPDP (N- ⁇ 6- [3- (2-pyridyldithio) propionamido] hexanoyloxy ⁇ sulfosuccinimide, sodium salt), SATA (N-succinimidyl S-acetylthioacetate), SATP (N-succinimidyl-S-acetylthiopropionate), SAT (PEG) 4 (PEGylated N-succinimidyl S -Acetylthioactate) and the like are
  • Step of reacting maleimide group and thiol group The step of reacting the maleimide group with the thiol group is carried out, for example, by reacting the fluorescent nanoparticles into which the maleimide group has been introduced with the target substance recognizing substance into which the thiol group has been introduced, as shown in FIG. 1C. (Fig. 1C).
  • the step of reacting the maleimide group with the thiol group is preferably carried out at 0 to 8 ° C., and more preferably at 0 to 4 ° C. from the viewpoint of ensuring that the target substance recognizing substance has high activity. Preferably, it is more preferably carried out at 2-4 ° C.
  • the activity of the target substance recognition substance supported on the surface thereof is high. Moreover, the degree of activity can be kept in a certain range. Further, according to the method for producing fluorescent nanoparticles according to the embodiment of the present invention, the activity of the target substance recognizing substance supported on the surface thereof can be increased. Thereby, according to the fluorescent nanoparticles according to the embodiment of the present invention, it is possible to measure the improvement of the detection sensitivity and the reduction of the variation in the detection result.
  • the cooled solution was transferred to a centrifuge tube and centrifuged at 12000 rpm for 20 minutes with a centrifuge. The supernatant of the centrifuged solution was removed and only the sediment was recovered. The recovered sediment was washed with ethanol and then washed with water in the same manner.
  • the obtained fluorescent nanoparticles were adjusted to 3 nmol / L using THF.
  • This reaction solution was centrifuged at 10000 G for 20 minutes to remove the supernatant and collect only the sediment. Then, PBS containing 2 mmol / L of EDTA was added to disperse the precipitate. Then, again, centrifugation was performed at 10000 G for 20 minutes to remove the supernatant, and only the sediment was recovered.
  • the fluorescent nanoparticles were washed three more times by a series of operations from the dispersion treatment of the sediment to the centrifugation. Then, fluorescent nanoparticles in which the maleimide group was present on the particle surface and contained a Texas Red dye were obtained. Further, when the average particle size of the melamine-based particles was measured by the above-mentioned method using a scanning electron microscope, the average particle size was 150 nm.
  • streptavidin capable of binding to fluorescent nanoparticles into which the maleimide group was introduced was prepared as follows.
  • This streptavidin solution was desalted at 4 ° C. using a gel filtration column (Zeba Spin Desalting Colors: manufactured by Thermo Fisher Scientific Co., Ltd.) to obtain streptavidin capable of binding to the fluorescent nanoparticles.
  • Example 2 Formic acid treatment omitted, water removal washing, low temperature reaction
  • Example 2 In Example 2, in the above-mentioned (2) polymerization step, 100 ⁇ L of formic acid was not added and the mixture was heated and stirred.
  • Example 2 the above (4) cleaning step was changed as follows. That is, the reaction solution was centrifuged at 10000 G for 20 minutes, the supernatant was removed to collect only the sediment, then 1 mL of water was added, and the reaction solution was centrifuged again at 10000 G for 20 minutes to remove the supernatant. Only the sediment was collected. Next, 1 mL of a washing solution having a volume ratio of water and THF of 1: 1 was added, and centrifugation was performed again at 10000 G for 20 minutes to remove the supernatant and collect only the sediment. Next, the volume ratio of water and THF was set to 1: 3, and only the sediment was recovered in the same manner.
  • Example 2 fluorescent nanoparticles of Example 2 were obtained in the same manner as in Example 1.
  • Comparative Example 1 Room temperature reaction
  • the reaction temperature was set to room temperature in the above-mentioned (6) Streptavidin thiol group modification. Further, in the above-mentioned (7) bonding reaction of a maleimide group and a thiol group, the reaction temperature was set to room temperature. Fluorescent nanoparticles of Comparative Example 1 were obtained in the same manner as in Example 1 except for the above.
  • Comparative Example 2 Formic acid treatment omitted, room temperature reaction
  • 100 ⁇ L of formic acid was not added, and the solution was further heated and stirred for 20 minutes while maintaining the solution temperature at 60 ° C.
  • the reaction temperature was set to room temperature.
  • the reaction temperature was set to room temperature.
  • Fluorescent nanoparticles of Comparative Example 2 were obtained in the same manner as in Example 1 except for the above.
  • Comparative Example 3 Water removal washing, room temperature reaction
  • the above (4) cleaning step was changed as follows. That is, the reaction solution was centrifuged at 10000 G for 20 minutes, the supernatant was removed to collect only the sediment, then 1 mL of water was added, and the reaction solution was centrifuged again at 10000 G for 20 minutes to remove the supernatant. Only the sediment was collected. Next, 1 mL of a washing solution having a volume ratio of water and THF of 1: 1 was added, and centrifugation was performed again at 10000 G for 20 minutes to remove the supernatant and collect only the sediment. Next, the volume ratio of water and THF was set to 2: 2 and only the sediment was recovered in the same manner.
  • the volume ratio of water and THF was set to 1: 3, and only the sediment was recovered in the same manner.
  • 1 mL of THF was added, and a precipitate was obtained in the same manner. In this way, washing was performed so as to remove water using a washing liquid in which the amount of THF was gradually increased.
  • fluorescent nanoparticles before streptavidin modification and fluorescent nanoparticles after streptavidin modification were prepared, and the amount of protein was measured by the BCA method for each.
  • the bicinconic acid (BCA) solution and the copper sulfate solution included in the kit were mixed and added to each of the above, and the absorbance at 562 nm was measured.
  • the absorbance of the fluorescent nanoparticles before streptavidin modification is subtracted from the absorbance of the fluorescent nanoparticles before streptavidin modification as the background, and the absorbance is compared with the standard curve to determine the net amount of protein in the aqueous solution (concentration of streptavidin). It was determined.
  • the number of streptavidin molecules per fluorescent nanoparticles was calculated based on the ratio of the amount of protein (streptavidin concentration) measured by the BCA method to the amount of fluorescent nanoparticles charged (concentration of fluorescent nanoparticles) in the measurement. .. The calculation results are shown in Table 1 below.
  • the entire amount of the PBS dispersion of fluorescent nanoparticles was aspirated, 100 ⁇ L of PBS was dispensed into the wells, and the fluorescence value at 595 nm with respect to light irradiation at a wavelength of 531 nm was measured with a plate reader (manufactured by PerkinElmer, model number EnVision2104). .. In the fluorescence measurement, the average value for 5 times was repeatedly used for each well. The measurement results are shown in the plate reader fluorescence values in Table 1 below.
  • the proportion of fluorescent nanoparticles bound to the target substance was determined based on the calibration curve.
  • the calibration curve was prepared on a well plate prepared in the same manner as above, and a PBS dispersion of fluorescent nanoparticles modified with streptavidin (particle concentration 0 pmol / L, 1.56 pmol / L, 3.12 pmol / L, 6.25 pmol / L).
  • Immunostaining using fluorescent nanoparticles Immunostaining was performed using the fluorescent nanoparticles of Examples 1 to 4 and Comparative Examples.
  • immunostaining was performed according to the following procedure.
  • staining reagent for pathological diagnosis An antibody reagent (staining reagent for pathological diagnosis) having fluorescent nanoparticles and a biotinylated secondary antibody prepared as follows was prepared, and immunostaining was performed using this staining reagent.
  • a linker reagent "(+)-Biotin-PEG 6- NH-Mal" (manufactured by PurePEG, product number 246106-250) having a spacer length of 30 angstroms was used in 0.4 mmol / DMSO. It was adjusted to be L. 8.5 ⁇ L of this solution was added to the antibody solution, mixed and reacted at 37 ° C. for 30 minutes.
  • This reaction solution was purified by subjecting it to a desalting column "Zeba Spin Desalting Colors".
  • the absorption of the desalted reaction solution at a wavelength of 300 nm was measured with a spectroscopic altimeter (“F-7000” manufactured by Hitachi) to calculate the amount of protein contained in the reaction solution.
  • the reaction solution was adjusted to 250 ⁇ g / mL with a 50 mmol / L Tris solution, and the solution was used as a solution of the biotinylated secondary antibody.
  • ⁇ Fluorescent immunostaining method ⁇ (1) Deparaffinizing Step Using the above biotinylated secondary antibody and the like, immunostaining and morphological observation staining of human breast cancer-derived cultured cells SK-BR-3 (HER2 (3+)) were performed as follows. As a slide for staining, a HER2 IHC positive control slide (manufactured by Pasoroji Research Institute, hereinafter referred to as a control slide) was used. The tissue array slides were deparaffinized.
  • HE staining hematoxylin / eosin staining
  • the immunostained sections were stained with Meyer hematoxylin solution for 5 minutes to perform hematoxylin staining.
  • the control slide was washed with running water at 45 ° C. for 3 minutes.
  • eosin staining was performed by staining with a 1% eosin solution for 5 minutes.
  • the control slide after the immobilization treatment step was irradiated with a predetermined excitation light to emit fluorescence.
  • the control slide in that state was observed and imaged with a fluorescence microscope (“BX-53” manufactured by Olympus Corporation) and a digital camera for a microscope (“DP73” manufactured by Olympus Corporation).
  • the wavelength of the excitation light was set to 575 to 600 nm by passing it through an optical filter.
  • the wavelength of fluorescence to be observed was also set to 612 to 692 nm by passing through an optical filter.
  • the conditions of the excitation wavelength at the time of microscopic observation and image acquisition were such that the irradiation energy near the center of the visual field was 900 W / cm 2 when excited at 580 nm.
  • the exposure time at the time of image acquisition was arbitrarily set (for example, set to 4000 ⁇ sec) so that the brightness of the image was not saturated, and the image was taken.
  • the number of bright spots (PID score) of SK-BR-3 was taken as the average value of 1000 cells measured by the ImageJ FindMaxima method based on the image taken at 400 times.
  • the observation results are shown in FIG. 2A to 2E show the observation results when the fluorescent nanoparticles of Examples 1 and 2 and Comparative Examples 1 to 3 were used, respectively.
  • Table 1 shows the measurement results of the number of bright spots (PID score) per cell when the fluorescent nanoparticles of Examples 1 and 2 and Comparative Examples 1 to 3 were used.
  • Example 2 an amino group was introduced into the fluorescent nanoparticles without treatment with formic acid, and the washing was carried out by using a washing liquid in which the amount of the organic solvent was gradually increased in the washing step so as to remove water, and further thiol.
  • the step of introducing the group and the step of reacting the thiol group with the maleimide group were carried out at a low temperature. As a result, in Example 2, a higher value was obtained in each evaluation than in any of Example 1 and Comparative Examples 1 to 3.
  • the graph of FIG. 3B shows the correlation between the performance evaluation of the fluorescent nanoparticles by the biotin plate method in Table 1 above and the result of immunostaining.
  • the horizontal axis of the graph of FIG. 3B is the PID score (number of bright spots per cell) obtained by immunostaining shown in Table 1, and the vertical axis is obtained by the biotin plate method shown in Table 1. It is a plate reader fluorescence value.
  • FIG. 3B has a higher correlation. That is, it can be seen that the biotin plate method can correctly evaluate the performance of the fluorescent nanoparticles than the BCA method.
  • the BCA method cannot correctly evaluate the active streptavidin, whereas the biotin plate method can correctly evaluate the active streptavidin.
  • the fluorescent nanoparticles according to this embodiment are useful for fluorescence imaging and the like because of their high sensitivity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to providing fluorescent nanoparticles with a target-substance-recognizing substance supported on the surface thereof, wherein the target-substance-recognizing substance has a high level of activity, allowing for highly sensitive measurement of the target substance. These fluorescent nanoparticles have supported on the surface thereof a target-substance-recognizing substance for binding to a target substance. When a 100 μL of liquid containing the fluorescent nanoparticles at a concentration of 100 pmol/L is brought into contact with a substrate on which the target substance has been immobilized over an area of 28.3 mm2 at a density of 0.1 pmol/mm2, and the liquid is stirred for one hour at 4°C, at least 2% of the fluorescent nanoparticles bind to the target substance.

Description

蛍光ナノ粒子、および蛍光ナノ粒子の製造方法Fluorescent nanoparticles and methods for producing fluorescent nanoparticles
 本発明は、蛍光ナノ粒子、および蛍光ナノ粒子の製造方法に関する。 The present invention relates to fluorescent nanoparticles and a method for producing fluorescent nanoparticles.
 病理診断では、免疫染色(immunohistochemistry;IHC)やin situ hybridization(ISH)と呼ばれる、標本の分子情報の発現を確認するための分子を標的とした染色を施し、遺伝子やタンパク質の発現異常といった機能異常を診断する観察が行われている。免疫染色には、例えば、酵素を用いた色素染色法(DAB染色等)が用いられる。 In pathological diagnosis, immunohistochemistry (IHC) and in situ hybridization (ISH) are used to perform staining targeting molecules to confirm the expression of molecular information in specimens, resulting in functional abnormalities such as abnormal gene and protein expression. Observations have been made to diagnose. For immunostaining, for example, a dye staining method using an enzyme (DAB staining or the like) is used.
 しかしながら、DAB染色のような酵素標識による染色は、染色濃度が温度・時間などの環境条件により大きく左右されるため、染色濃度から実際の抗原等の量を見積もることが難しいという課題がある。そのため、病理診断における免疫観察では、酵素標識による染色の代わりに、蛍光標識体を用いる蛍光標識法も行われている。 However, staining with an enzyme label such as DAB staining has a problem that it is difficult to estimate the actual amount of antigen or the like from the staining concentration because the staining concentration is greatly affected by environmental conditions such as temperature and time. Therefore, in immunological observation in pathological diagnosis, a fluorescent labeling method using a fluorescent label is also performed instead of staining with an enzyme label.
 この方法はDAB染色と比べて定量性に優れるという特徴がある。蛍光標識法は、蛍光色素が修飾された抗体を用いて対象となる抗原を染色して観察することで抗原量を測るものである。 This method is characterized by being superior in quantitativeness compared to DAB staining. The fluorescent labeling method measures the amount of antigen by observing the target antigen by staining it with an antibody modified with a fluorescent dye.
 従来、蛍光標識に用いるものとして、蛍光色素を含む樹脂粒子に標的物質標識分子としてのストレプトアビジンを直接的に結合させた蛍光ナノ粒子を含む染色液が知られている。たとえば、特許文献1は、ストレプトアビジンが結合した蛍光ナノ粒子を開示している。 Conventionally, a dyeing solution containing fluorescent nanoparticles in which streptavidin as a target substance labeling molecule is directly bound to resin particles containing a fluorescent dye has been known as used for fluorescent labeling. For example, Patent Document 1 discloses fluorescent nanoparticles to which streptavidin is bound.
特表2008-543982号公報Special Table 2008-543982
 上記の特許文献1に記載されている蛍光ナノ粒子は、その表面にストレプトアビジンが結合している。本発明者らが検討したところ、この蛍光ナノ粒子を用いて標的物質(検出対象に結合した標的物質)の染色を行うと感度が低い場合があることを見いだした。 Streptavidin is bound to the surface of the fluorescent nanoparticles described in Patent Document 1 above. As a result of studies by the present inventors, it has been found that the sensitivity may be low when the target substance (target substance bound to the detection target) is stained with the fluorescent nanoparticles.
 本発明者らはその理由を鋭意検討し、特許文献1に記載の蛍光ナノ粒子では、その表面に担持されたストレプトアビジン(標的物質認識物質)が活性を失っており、ビオチン(標的物質)に結合できない場合があるためであると考えた。 The present inventors have diligently investigated the reason, and in the fluorescent nanoparticles described in Patent Document 1, streptavidin (target substance recognizing substance) supported on the surface thereof has lost its activity, and biotin (target substance) has been used. I thought it was because there were cases where it could not be combined.
 本発明は上記事情に鑑みてなされたものであり、標的物質認識物質が表面に担持された蛍光ナノ粒子において、標的物質認識物質が高い活性を有し、標的物質を高感度に測定することができる蛍光ナノ粒子を提供することを目的とする。また、本発明は当該蛍光ナノ粒子の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and the target substance recognizing substance has high activity in the fluorescent nanoparticles on which the target substance recognizing substance is supported on the surface, and the target substance can be measured with high sensitivity. It is an object of the present invention to provide fluorescent nanoparticles that can be produced. Another object of the present invention is to provide a method for producing the fluorescent nanoparticles.
 本発明の一実施形態に係る蛍光ナノ粒子は、標的物質に結合する標的物質認識物質が表面に担持された蛍光ナノ粒子であって、100pmol/Lの濃度で前記蛍光ナノ粒子を含む100μLの液体を、0.1pmol/mmの密度で28.3mmの面積にわたって前記標的物質が固定化された基板に接触させ、4℃で1時間攪拌させた際の前記標的物質に結合する前記蛍光ナノ粒子の割合が1.5%以上である。 The fluorescent nanoparticles according to an embodiment of the present invention are fluorescent nanoparticles in which a target substance recognizing substance that binds to a target substance is supported on the surface, and is a 100 μL liquid containing the fluorescent nanoparticles at a concentration of 100 pmol / L. and the fluorescent nano 0.1 pmol / mm the target substance over an area of 28.3 mm 2 at a density of 2 into contact with a substrate immobilized, binding to the target substance when allowed to stir 1 hour at 4 ° C. The proportion of particles is 1.5% or more.
 また、本発明の一実施形態に係る蛍光ナノ粒子の製造方法は、マレイミド基が導入された蛍光ナノ粒子を準備する工程と、標的物質標識分子にチオール基を導入する工程と、前記蛍光ナノ粒子に導入されたマレイミド基と前記標的物質標識分子に導入されたチオール基とを反応させる工程と、を有し、前記チオール基を導入する工程と、前記マレイミド基と前記チオール基とを反応させる工程とは0℃~8℃で行われる、標的物質に結合する標的物質認識物質が表面に担持された蛍光ナノ粒子の製造方法である。 Further, the method for producing fluorescent nanoparticles according to an embodiment of the present invention includes a step of preparing fluorescent nanoparticles into which a maleimide group has been introduced, a step of introducing a thiol group into a target substance-labeled molecule, and the fluorescent nanoparticles. The step of reacting the maleimide group introduced in the above with the thiol group introduced into the target substance-labeled molecule, the step of introducing the thiol group, and the step of reacting the maleimide group with the thiol group. Is a method for producing fluorescent nanoparticles in which a target substance recognizing substance that binds to a target substance is supported on the surface, which is carried out at 0 ° C. to 8 ° C.
 本発明によれば、標的物質認識物質が表面に担持された蛍光ナノ粒子において、標的物質認識物質が高い活性を有し、標的物質を高感度に測定することができる蛍光ナノ粒子を提供することができる。また、本発明は、当該蛍光ナノ粒子の製造方法を提供することができる。 According to the present invention, among fluorescent nanoparticles on which a target substance recognizing substance is supported on a surface, the target substance recognizing substance has high activity, and it is possible to provide fluorescent nanoparticles capable of measuring the target substance with high sensitivity. Can be done. The present invention can also provide a method for producing the fluorescent nanoparticles.
図1A~Cは、標的物質認識物質が表面に担持された蛍光ナノ粒子の製造方法の一例を示す。FIGS. 1A to 1C show an example of a method for producing fluorescent nanoparticles in which a target substance recognizing substance is supported on the surface. 図2A~Eは、本発明の実施の形態に係る蛍光ナノ粒子および比較例の蛍光ナノ粒子を用いた免疫染色の結果を示す。2A to 2E show the results of immunostaining using the fluorescent nanoparticles according to the embodiment of the present invention and the fluorescent nanoparticles of the comparative example. 図3AはBCA法による蛍光ナノ粒子の性能評価と免疫染色の結果との相関を示し、図3Bはビオチンプレート法による蛍光ナノ粒子の性能評価と免疫染色の結果との相関を示す。FIG. 3A shows the correlation between the performance evaluation of the fluorescent nanoparticles by the BCA method and the result of immunostaining, and FIG. 3B shows the correlation between the performance evaluation of the fluorescent nanoparticles by the biotin plate method and the result of immunostaining.
 [蛍光ナノ粒子]
 本発明の実施の形態に係る蛍光ナノ粒子は、蛍光色素および樹脂を含むナノ粒子と、前記ナノ粒子の表面に担持された標的物質認識物質とを有する。
[Fluorescent nanoparticles]
The fluorescent nanoparticles according to the embodiment of the present invention include nanoparticles containing a fluorescent dye and a resin, and a target substance recognition substance supported on the surface of the nanoparticles.
 (ナノ粒子)
 本実施の形態に係る蛍光ナノ粒子は、母体としてのナノ粒子を含む。
(Nanoparticles)
The fluorescent nanoparticles according to the present embodiment include nanoparticles as a mother body.
 ナノ粒子を構成する樹脂として、次のような熱可塑性樹脂または熱硬化性樹脂を用いることができる。熱可塑性樹脂としては、例えば、ポリスチレン、ポリアクリロニトリル、ポリフラン、または、これに類する樹脂を好適に用いることができる。熱硬化性樹脂としては、例えば、ポリキシレン、ポリ乳酸、グリシジルメタクリレート、メラミン樹脂、ポリウレア、ポリベンゾグアナミン、ポリアミド、フェノール樹脂、多糖類またはこれに類する樹脂を好適に用いることができる。熱硬化性樹脂、特にメラミン樹脂は、キシレン等の有機溶媒を用いる脱水、透徹、封入などの処理によっても、ナノ粒子に内包させた色素の溶出を抑制することができる点で好ましい。 The following thermoplastic resin or thermosetting resin can be used as the resin constituting the nanoparticles. As the thermoplastic resin, for example, polystyrene, polyacrylonitrile, polyfuran, or a similar resin can be preferably used. As the thermosetting resin, for example, polyxylene, polylactic acid, glycidyl methacrylate, melamine resin, polyurea, polybenzoguanamine, polyamide, phenol resin, polysaccharide or similar resin can be preferably used. Thermosetting resins, particularly melamine resins, are preferable in that elution of the dye contained in the nanoparticles can be suppressed even by treatments such as dehydration, permeation, and encapsulation using an organic solvent such as xylene.
 ナノ粒子は、表面に少なくとも直接的または間接的に標的物質認識物質を結合させるための官能基を備えることが好ましい。このような官能基としては、本発明の属する技術分野において様々な標的物質同士を結合させる場合と同様の官能基を利用することができるが、例えば、エポキシ基またはアミノ基が好ましい。 It is preferable that the nanoparticles are provided with a functional group for at least directly or indirectly binding the target substance recognizing substance to the surface. As such a functional group, the same functional group as in the case of binding various target substances to each other in the technical field to which the present invention belongs can be used, but for example, an epoxy group or an amino group is preferable.
 官能基を有するナノ粒子の調製方法は特に限定されるものではないが、例えば、ナノ粒子を構成する熱可塑性樹脂または熱硬化性樹脂を合成するためのモノマーとして、所定の官能基をあらかじめ側鎖に有する(コ)モノマーを(共)重合させるか、熱可塑性樹脂または熱硬化性樹脂の合成後に、それを構成している樹脂モノマー単位が有する官能基を試薬処理して前記所定の官能基に変換する方法を用いることができる。 The method for preparing the nanoparticles having a functional group is not particularly limited, but for example, a predetermined functional group is previously side-chained as a monomer for synthesizing a thermoplastic resin or a thermosetting resin constituting the nanoparticles. After (co) polymerizing the (co) monomer contained in the resin or synthesizing a thermoplastic resin or a thermosetting resin, the functional groups of the resin monomer units constituting the resin are treated with a reagent to obtain the predetermined functional groups. A method of conversion can be used.
 熱可塑性の樹脂を用いてナノ粒子を製造する場合の実施形態の例には、スチレンと共にグリシジルメタクリレートをモノマーとして用いて共重合させることにより、表面にエポキシ基を有するポリスチレン系樹脂のナノ粒子を製造する実施形態、あるいはスチレンと共にスチレンカルボン酸やスチレンスルホン酸を共重合させて、表面にカルボン酸、スルホン酸を有するポリスチレン系樹脂のナノ粒子を製造する実施形態、あるいはスチレンと共にアミノスルホン酸を共重合させて表面にアミノ基を有するポリスチレン系樹脂のナノ粒子を製造する実施形態が含まれる。なお、前記グリシジルメタクリレートが有するエポキシ基は、所定の処理によりアミノ基に変換することもできる。 In the example of the embodiment in which nanoparticles are produced using a thermoplastic resin, polystyrene resin nanoparticles having an epoxy group on the surface are produced by copolymerizing glycidyl methacrylate with styrene as a monomer. Or an embodiment in which styrene carboxylic acid or styrene sulfonic acid is copolymerized with styrene to produce polystyrene-based resin nanoparticles having carboxylic acid or styrene acid on the surface, or amino sulfonic acid is copolymerized with styrene. An embodiment of producing polystyrene-based resin nanoparticles having an amino group on the surface thereof is included. The epoxy group contained in the glycidyl methacrylate can also be converted into an amino group by a predetermined treatment.
 一方、熱硬化性の色素樹脂粒子を製造する場合、メラミン樹脂原料(例えば三和ケミカル社製MX035)をモノマーとして用いて共重合させることにより、メラミン系樹脂のナノ粒子を製造する実施形態が挙げられる。 On the other hand, in the case of producing thermosetting dye resin particles, there is an embodiment in which nanoparticles of a melamine resin are produced by copolymerizing using a melamine resin raw material (for example, MX035 manufactured by Sanwa Chemical Co., Ltd.) as a monomer. Be done.
 (蛍光色素)
 本実施の形態に係る蛍光ナノ粒子は、蛍光色素を含む。
(Fluorescent dye)
The fluorescent nanoparticles according to the present embodiment include a fluorescent dye.
 蛍光色素は、ナノ粒子に物理的または化学的な力で結合されていればよく、蛍光色素は例えば、蛍光色素を含む溶媒中でモノマーを重合させることでナノ粒子に取り込まれる。 The fluorescent dye may be bound to the nanoparticles by physical or chemical force, and the fluorescent dye is incorporated into the nanoparticles, for example, by polymerizing a monomer in a solvent containing the fluorescent dye.
 上記樹脂を構成するモノマーを重合して蛍光色素を取り込みつつナノ粒子を形成する際に、ナノ粒子に内包または粒子の表面に固定させる蛍光色素としては、例えば、以下のローダミン系色素分子、BODIPY系色素分子、スクアリリウム系色素分子、芳香族炭化水素系色素分子、または、これらの組合せを用いることができる。 Examples of the fluorescent dye to be encapsulated in the nanoparticles or fixed to the surface of the nanoparticles when forming nanoparticles while incorporating the fluorescent dye by polymerizing the monomers constituting the resin include the following rhodamine-based dye molecules and BODIPY-based. Dye molecules, squarylium-based dye molecules, aromatic hydrocarbon-based dye molecules, or combinations thereof can be used.
 ローダミン系色素分子などの蛍光色素は、比較的耐光性が高いため好ましく、なかでも芳香族炭化水素系色素分子に属するペリレン(perylene)やピレン(Pyrene)、ペリレンジイミド(perylene diimide)が好ましい。 Fluorodamines such as rhodamine-based dye molecules are preferable because they have relatively high light resistance, and among them, perylene, pyrene, and perylene diimide, which belong to aromatic hydrocarbon-based dye molecules, are preferable.
 ローダミン系色素分子の例には、5-カルボキシ-ローダミン、6-カルボキシ-ローダミン、5,6-ジカルボキシ-ローダミン、ローダミン 6G、テトラメチルローダミン、X-ローダミン、テキサスレッド、Spectrum Red、LD700 PERCHLORATE、それらの誘導体などが含まれる。 Examples of rhodamine-based dye molecules include 5-carboxy-rhodamine, 6-carboxy-rhodamine, 5,6-dicarboxy-rhodamine, rhodamine 6G, tetramethylrhodamine, X-rhodamine, Texas red, Spectrum Red, LD700 PERCHLORATE, Derivatives thereof and the like are included.
 BODIPY系色素分子の例には、BODIPY FL、BODIPY TMR、BODIPY 493/503、BODIPY 530/550、BODIPY 558/568、BODIPY 564/570、BODIPY 576/589、BODIPY 581/591、BODIPY 630/650、BODIPY 650/665(以上インビトロジェン社製)、それらの誘導体などが含まれる。 Examples of BODIPY dye molecules include BODIPY FL, BODIPY TMR, BODIPY 493/503, BODIPY 530/550, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, BODIPY. BODIPY 650/665 (manufactured by Invitrogen) and derivatives thereof are included.
 スクアリリウム系色素分子の例には、SRfluor 680-Carboxylate、1,3-Bis[4-(dimethylamino)-2-hydroxyphenyl]-2,4-dihydroxycyclobutenediylium dihydroxide, bis、1,3-Bis[4-(dimethylamino)phenyl]-2,4-dihydroxycyclobutenediylium dihydroxide, bis、2-(4-(Diethylamino)-2-hydroxyphenyl)-4-(4-(diethyliminio)-2-hydroxycyclohexa-2,5-dienylidene)-3-oxocyclobut-1-enolate、2-(4-(Dibutylamino)-2-hydroxyphenyl)-4-(4-(dibutyliminio)-2-hydroxycyclohexa-2,5-dienylidene)-3-oxocyclobut-1-enolate、2-(8-Hydroxy-1,1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-9-yl)-4-(8-hydroxy-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H-pyrido[3,2,1-ij]quinolinium-9(5H)-ylidene)-3-oxocyclobut-1-enolate、それらの誘導体などが含まれる。 Examples of squalylium-based dye molecules include SRfluor 680-Carboxylate, 1,3-Bis [4- (dimethylamino) -2-hydroxyphenyl] -2,4-dihydroxycyclobutenediylium dihydroxide, bis1,3-. ) Phenyl] -2,4-dihydroxycyclobutenediylium dihydroxide, bis, 2- (4- (Diethylamino) -2-hydroxyphenyl) -4- (4- (diethylminio) -2-hydroxylicylic -1-enlate, 2- (4- (Dibutylamino) -2-hydroxyphenyl) -4- (4- (dibutylimino) -2-hydroxycyclohexa-2,5-dienyllide) -3-oxyclobut-1-enlate, 2-( 8-Hydroxy-1,1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido [3,2,1-ij] quinolin-9-yl) -4- (8-hydroxy- 1,1,7,7-tetramethyl-2,3,6,7-tetramhydro-1H-pyrido [3,2,1-ij] quinolinium-9 (5H) -ylidene) -3-oxocyclobut-1-enlate, Derivatives thereof and the like are included.
 芳香族炭化水素系色素分子の例には、N,N-Bis-(2,6-diisopropylphenyl)-1,6,7,12-(4-tert-butylphenoxy)-perylene-3,4,9,10-tetracarbonacid diimide、N,N’-Bis(2,6-diisopropylphenyl)-1,6,7,12-tetraphenoxyperylene-3,4:9,10-tetracarboxdiimide、N,N’-Bis(2,6-diisopropylphenyl)perylene-3,4,9,10-bis(dicarbimide)、16,N,N’-Bis(2,6-dimethylphenyl)perylene-3,4,9,10-tetracarboxylic diimide、4,4’-[(8,16-Dihydro-8,16-dioxodibenzo[a,j]perylene-2,10-diyl)dioxy]dibutyric acid、2,10-Dihydroxy-dibenzo[a,j]perylene-8,16-dione、2,10-Bis(3-aminopropoxy)dibenzo[a,j]perylene-8,16-dione, 3,3’-[(8,16-Dihydro-8,16-dioxodibenzo[a,j]perylen-2,10-diyl)dioxy]dipropylamine、17-BIS(Octyloxy)Anthra[9,1,2-cde-]Benzo[RST]Pentaphene-5-10-Dione、Octadecanoicacid, 5,10-dihydro-5,10-dioxoanthra[9,1,2-cde]benzo[rst]pentaphene-16,17-diylester、Dihydroxydibenzanthrone、Benzenesulfonic acid, 4,4’,4’’,4’’’-[[2,9-bis[2,6-bis(1-methylethyl)phenyl]-1,2,3,8,9,10-hexahydro-1,3,8,10-tetraoxoanthra[2,1,9-def:6,5,10-d’e’f’]diisoquinoline-5,6,12,13-tetrayl]tetrakis(oxy)]tetrakis-,Benzeneethanaminium、 4,4’,4’’,4’’’-[[2,9-bis[2,6-bis(1-methylethyl)phenyl]-1,2,3,8,9,10-hexahydro-1,3,8,10-tetraoxoanthra[2,1,9-def:6,5,10-d‘e’f‘]diisoquinoline-5,6,12,13-tetrayl]tetrakis(oxy)]tetrakis[N,N,N-trimethyl-]、それらの誘導体などが含まれる。 Examples of aromatic hydrocarbon dye molecules include N, N-Bis- (2,6-diisopropylphenyl) -1,6,7,12- (4-tert-butylphenoxy) -perylene-3,4,9, 10-teracarbonacid dimide, N, N'-Bis (2,6-diisotropyperylene) -1,6,7,12-teraphenoxyperylene-3,4: 9,10-terracarboxdimide, N, N'-Bis (2,6 diisopropylphenyl) perylene-3,4,9,10-bis (dicarbimide), 16,N, N'-Bis (2,6-dimethylphenyl) perylene-3,4,9,10-terracarboxyldi-midide, 4,4 [(8,16-Dihydro-8,16-dioxodibenzo [a, j] perylene-2,10-diyl) dioxy] dibutyric acid, 2,10-Dihydroxy-dibenzo [a, j] perylene-8,16 , 2,10-Bis (3-aminopropoxy) dibenzo [a, j] perylene-8,16-dione, 3,3'-[(8,16-Dihydro-8,16-dioxodibenzo [a, j] perylene- 2,10-diyl) perylene] dipropylamine, 17-BIS (Octyloxy) Anthra [9,1,2-cde-] Benzo [RST] Perylene-5-10-Dione, Octadecanoicacid, 5,10-dihydro -Dioxoanthra [9,1,2-cde] benzo [rst] pentaphene-16,17-diylester, Dihydroxydibenzanthrone, Benzenesulphonic acid, 4,4', 4'', 4'''-[[2,9-bis [2,9-bis [2,9-bis [2,9-bis 2,6-bis (1-methylylene) perylene] -1,2,3,8,9,10-hexahydro-1,3,8,10-terraoxoanthra [2,1,9-def: 6,5,10 -D'e'f'] diisoquinoline-5,6,12,13-tetrayl] tetracis (oxy)] tet rakes-, Benzeneethanaminium, 4,4', 4'', 4'''-[[2,9-bis [2,6-bis (1-methylyl) phenyl] -1,2,3,8,9, 10-hexahydro-1,3,8,10-tetraokistra [2,1,9-def: 6,5,10-d'e'f'] diisoquinoline-5,6,12,13-tetrayl] tetracis (oxy) )] Tetrakis [N, N, N-trimethyl-], derivatives thereof and the like are included.
 (標的物質認識物質)
 本実施の形態に係る蛍光ナノ粒子はその表面に標的物質認識物質が担持されている。
(Target substance recognition substance)
A target substance recognizing substance is supported on the surface of the fluorescent nanoparticles according to the present embodiment.
 標的物質認識物質は、例えば検出対象に結合した標的物質に特異的に結合する分子である。標的物質認識物質が標的物質に結合することで、標的物質が蛍光ナノ粒子によって検出対象が標識されることになる。 The target substance recognition substance is, for example, a molecule that specifically binds to the target substance bound to the detection target. When the target substance recognition substance binds to the target substance, the target substance is labeled with fluorescent nanoparticles to be detected.
 標的物質認識物質は、特に限定されないが、例えばアビジン、ストレプトアビジンおよびニュートラアビジンからなる群より選ばれる少なくとも1種である。 The target substance recognition substance is not particularly limited, but is at least one selected from the group consisting of, for example, avidin, streptavidin and neutravidin.
 標的物質およびそれに特異的に結合する標的物質認識物質の組み合わせとしては、例えば、ビオチン-アビジン、ビオチン-ストレプトアビジン、ビオチン-ニュートラアビジンの組み合わせが挙げられる。特異的に結合するとは、このような組み合わせに応じて、本発明の属する技術分野における一般的な用語として解釈することが可能であるが、結合定数(K)またはその逆数である解離定数(K)によって定義することも可能である。 Examples of the combination of the target substance and the target substance recognizing substance that specifically binds to the target substance include a combination of biotin-avidin, biotin-streptavidin, and biotin-neutravidin. To specifically bind, in response to such a combination, it is possible to interpret as a generic term in the art of the present invention, association constant (K A) or dissociation constant which is the inverse ( It can also be defined by KD).
 すなわち、本発明で用いられる標的物質認識物質は、染色対象となる標的物質との間の結合定数(K)が1×10~1×1012の範囲にあることが好ましい。結合定数(K)が当該範囲内にある場合は、その標的物質は染色対象となる標的物質と特異的に結合する標的物質認識物質として取り扱うことができる。 That is, the target substance recognition substance to be used in the present invention, the binding constant between a target substance to be dyed object (K A) is preferably in the range of 1 × 10 5 ~ 1 × 10 12. If binding constants (K A) is within the range, the target substance can be handled as a target substance recognition substance that specifically binds to a target substance to be dyed object.
 (平均粒子径)
 蛍光ナノ粒子の平均粒子径は、汎用の蛍光顕微鏡でも好適に輝点の観察が可能となる観点から、好ましくは30~300nmであり、より好ましくは40nm~200nmである。平均粒子径が300nmを超える場合、染色後の観察の際に細胞1個当たりの輝点数が減って輝点観察がしにくくなり、逆に平均粒子径が30nm未満の場合、細胞1個当たりの輝点数が増えて輝点観察がしにくくなるからである。なお、平均粒子径は走査型電子顕微鏡で撮影した画像に写っている各粒子(100個以上)の長径を測定し、その平均値とすることができる。
(Average particle size)
The average particle size of the fluorescent nanoparticles is preferably 30 to 300 nm, more preferably 40 nm to 200 nm, from the viewpoint that bright spots can be preferably observed even with a general-purpose fluorescence microscope. When the average particle size exceeds 300 nm, the number of bright spots per cell decreases during observation after staining, making it difficult to observe bright spots. Conversely, when the average particle size is less than 30 nm, per cell. This is because the number of bright spots increases and it becomes difficult to observe the bright spots. The average particle size can be taken as the average value by measuring the major axis of each particle (100 or more) shown in the image taken by the scanning electron microscope.
 (蛍光ナノ粒子の標的物質に結合する割合)
 本実施の形態に係る蛍光ナノ粒子は、その表面に担持された標的物質認識物質が高い活性を有するため、標的物質に結合する割合が比較的高い。
(Ratio of fluorescent nanoparticles bound to the target substance)
The fluorescent nanoparticles according to the present embodiment have a relatively high rate of binding to the target substance because the target substance recognizing substance supported on the surface thereof has high activity.
 具体的には、100pmol/Lの濃度で蛍光ナノ粒子を含む100μLの液体を、0.1pmol/mmの密度で28.3mmの面積にわたって標的物質が固定化された基板に接触させ4℃で1時間攪拌させた際の基板上の標的物質に結合する蛍光ナノ粒子の割合が1.5%以上である。なお、基板上の標的物質に結合する蛍光ナノ粒子の割合は、標的物質が固定化された基板に、標的物質認識物質が表面に担持された蛍光ナノ粒子を接触させて、結合した割合を求めることによって評価することができる。 Specifically, 100 pmol / concentration of L to 100μL of liquid containing fluorescent nanoparticles, 4 is brought into contact with the substrate target substance is immobilized over an area of 28.3 mm 2 at a density of 0.1 pmol / mm 2 ° C. The proportion of fluorescent nanoparticles bound to the target substance on the substrate when stirred for 1 hour is 1.5% or more. The ratio of the fluorescent nanoparticles bound to the target substance on the substrate is determined by bringing the fluorescent nanoparticles on the surface of the target substance recognition substance into contact with the substrate on which the target substance is immobilized. It can be evaluated by.
 蛍光ナノ粒子に担持された標的物質認識物質は活性があるものと、非活性であるものとがある。すなわち、標的物質認識物質が標的物質に結合する能力があるものと、ないものとがある。上記のような評価において、標的物質に結合する蛍光ナノ粒子の割合が1.5%以上であることは、活性がある標的物質認識物質が蛍光ナノ粒子の表面に多くあることを表している。 The target substance recognition substance supported on the fluorescent nanoparticles may be active or inactive. That is, the target substance recognition substance may or may not have the ability to bind to the target substance. In the above evaluation, the ratio of the fluorescent nanoparticles bound to the target substance is 1.5% or more, which indicates that there are many active target substance recognizing substances on the surface of the fluorescent nanoparticles.
 本実施の形態に係る蛍光ナノ粒子は、その製造プロセスを改善することにより、標的物質認識物質が高い活性を有し、標的物質を認識する割合が向上する。これにより高感度な測定をすることができる。また。標的物質認識物質の活性度合いを一定の範囲にすることで、検出感度が向上し、検出のバラツキが低減する(検出精度が向上する)。 By improving the production process of the fluorescent nanoparticles according to the present embodiment, the target substance recognizing substance has high activity and the rate of recognizing the target substance is improved. This makes it possible to perform highly sensitive measurements. Also. By setting the degree of activity of the target substance recognition substance within a certain range, the detection sensitivity is improved and the variation in detection is reduced (the detection accuracy is improved).
 従来のBCA法では、蛍光ナノ粒子の表面に結合した標的物質認識物質の量をタンパク質の量として測定するだけであったが、上記の方法では、蛍光ナノ粒子の表面に担持された標的物質認識物質の活性を測定することができる。 In the conventional BCA method, only the amount of the target substance recognizing substance bound to the surface of the fluorescent nanoparticles is measured as the amount of protein, but in the above method, the target substance recognizing substance supported on the surface of the fluorescent nanoparticles is recognized. The activity of a substance can be measured.
 上記の割合は1.5%以上であればよいが、より高感度に測定するという観点から、2%以上であることがさらに好ましく、2.5%以上であることがさらに好ましく、5%以上であることがさらに好ましく、8%以上であることがさらに好ましい。上記の割合の上限は非特異的な結合を抑制するという観点から10%以下であることが好ましい。 The above ratio may be 1.5% or more, but from the viewpoint of measuring with higher sensitivity, it is more preferably 2% or more, further preferably 2.5% or more, and 5% or more. Is more preferable, and 8% or more is further preferable. The upper limit of the above ratio is preferably 10% or less from the viewpoint of suppressing non-specific binding.
 本実施の形態に係る蛍光ナノ粒子の製造方法は、特に限定されない。たとえば、本実施の形態に係る蛍光ナノ粒子は、次に説明する蛍光ナノ粒子の製造方法により製造されうる。 The method for producing fluorescent nanoparticles according to the present embodiment is not particularly limited. For example, the fluorescent nanoparticles according to the present embodiment can be produced by the method for producing fluorescent nanoparticles described below.
 [蛍光ナノ粒子の製造方法]
 本実施の形態に係る蛍光ナノ粒子の製造方法は、マレイミド基が導入された蛍光ナノ粒子を準備する工程と、標的物質認識物質にチオール基を導入する工程と、前記蛍光ナノ粒子に導入されたマレイミド基と前記標的物質標識分子に導入されたチオール基とを反応させる工程と、を有する。前記チオール基を導入する工程と、前記マレイミド基と前記チオール基とを反応させる工程とは0℃~8℃で行われる。以下、各工程について説明する。
[Manufacturing method of fluorescent nanoparticles]
The method for producing fluorescent nanoparticles according to the present embodiment includes a step of preparing fluorescent nanoparticles into which a maleimide group has been introduced, a step of introducing a thiol group into a target substance recognizing substance, and a step of introducing the fluorescent nanoparticles into the fluorescent nanoparticles. It comprises a step of reacting a maleimide group with a thiol group introduced into the target substance-labeled molecule. The step of introducing the thiol group and the step of reacting the maleimide group with the thiol group are carried out at 0 ° C. to 8 ° C. Hereinafter, each step will be described.
 (マレイミド基が導入された蛍光ナノ粒子を準備する工程)
 マレイミド基が導入された蛍光ナノ粒子を準備する工程では、予めマレイミド基が導入された蛍光ナノ粒子を入手してもよいし、蛍光ナノ粒子にマレイミド基を導入してマレイミド基が導入された蛍光ナノ粒子を作製してもよい。
(Step of preparing fluorescent nanoparticles with maleimide groups introduced)
In the step of preparing the maleimide group-introduced fluorescent nanoparticles, the maleimide group-introduced fluorescent nanoparticles may be obtained in advance, or the maleimide group is introduced into the fluorescent nanoparticles to introduce the maleimide group. Nanoparticles may be made.
 蛍光ナノ粒子にマレイミド基を導入する場合は、図1Aに示されるようにアミノ基が導入された蛍光ナノ粒子にマレイミド基導入試薬(例えばNHS-PEG12-マレイミド)を反応させることで行われることが好ましい。ここで、一般に、アミノ基を導入するには、図1Aに示されるように蛍光ナノ粒子を先ずギ酸で処理し、その表面にカルボキシル基を付加させてから、アミノ基導入試薬(例えばBAEE)を加えることでアミノ基を導入することが好ましいと考えられている。しかし、本発明の一実施の形態においては、ギ酸処理されていない蛍光ナノ粒子にアミノ基導入試薬を加えてアミノ基を導入するようにしてもよい。ギ酸処理を省略することで、その理由は明らかではないが、より標的物質認識物質の活性が高く、高感度の蛍光ナノ粒子を得ることができる。 When a maleimide group is introduced into the fluorescent nanoparticles, it can be carried out by reacting the maleimide group-introducing reagent (for example, NHS-PEG12-maleimide) with the fluorescent nanoparticles into which the amino group has been introduced as shown in FIG. 1A. preferable. Here, in general, in order to introduce an amino group, fluorescent nanoparticles are first treated with formic acid as shown in FIG. 1A, a carboxyl group is added to the surface thereof, and then an amino group introducing reagent (for example, BAEE) is used. It is considered preferable to introduce an amino group by adding it. However, in one embodiment of the present invention, an amino group-introducing reagent may be added to the fluorescent nanoparticles that have not been treated with formic acid to introduce an amino group. By omitting the formic acid treatment, although the reason is not clear, it is possible to obtain fluorescent nanoparticles having higher activity of the target substance recognizing substance and high sensitivity.
 また、ギ酸処理を省略することで、未反応のカルボキシ基(アミノ基が導入されなかったカルボキシ基)が存在することにより、蛍光ナノ粒子の表面が負に帯電することを抑制し、表面の電荷を従来よりも正側に傾け、核酸由来の負電荷を持つRNAscopeのプローブに対するアクセス性が向上することが期待される。 In addition, by omitting the formic acid treatment, the presence of unreacted carboxy groups (carboxy groups into which no amino group has been introduced) suppresses the surface of the fluorescent nanoparticles from being negatively charged, and the surface charge is suppressed. Is expected to be tilted to the positive side as compared with the conventional case, and the accessibility to the probe of RNAscape having a negative charge derived from nucleic acid is expected to be improved.
 また、図1Aに示されるように、蛍光ナノ粒子にアミノ基を導入する工程の後、かつアミノ基にN-ヒドロキシコハク酸イミド基を反応させる工程の前に、アミノ基を導入された蛍光ナノ粒子を有機溶媒で洗浄する工程を行うことが好ましい。この洗浄工程は、有機溶媒を用いて水を除去するように行われることが好ましい。具体的には、洗浄液中の有機溶媒の量を徐々に多くした洗浄液を用いて複数回洗浄することが好ましい。このように水を除去するようにして洗浄することで、マレイミド基導入試薬の失活を抑えることができると考えられる。 Further, as shown in FIG. 1A, after the step of introducing an amino group into the fluorescent nanoparticles and before the step of reacting the amino group with an N-hydroxysuccinimide group, the fluorescent nano having an amino group introduced. It is preferable to carry out a step of washing the particles with an organic solvent. This washing step is preferably performed so as to remove water using an organic solvent. Specifically, it is preferable to perform cleaning a plurality of times using a cleaning solution in which the amount of the organic solvent in the cleaning solution is gradually increased. It is considered that the deactivation of the maleimide group-introducing reagent can be suppressed by washing by removing water in this way.
 上記のアミノ基導入試薬はアミノ基を導入することができれば特に制限されない。アミノ基導入試薬の例には、1,2-Bis(2-aminoethoxy)ethane(BAEE)、1,4-Diaminobutane、1,10-Diaminodecane、1,12-Diaminododecane、1,7-Diaminoheptane、1,6-Diaminohexane、1,8-Diaminooctane、1,5-Diaminopentane、1,3-Diaminopropane、1,11-Diaminoundecane、Ethylenediamine、2,2’-Oxybis(ethylamine)、1,11-Diamino-3,6,9-trioxaundecaneなどが含まれる。 The above amino group introduction reagent is not particularly limited as long as an amino group can be introduced. Examples of amino group-introducing reagents include 1,2-Bis (2-aminoethoxy) ethane (BAEE), 1,4-Diaminobutane, 1,10-Diaminodekane, 1,12-Diaminododekane, 1,7-Diaminoheptane, 1, 6-Diaminohexane, 1,8-Diaminooctane, 1,5-Diaminopenentane, 1,3-Diaminopropane, 1,11-Diaminodykane, Ethylenediamine, 2,2'-Oxybis (ethylamine), 1,2'-Oxybis (ethylamine), 1, 9-trioxanedecane and the like are included.
 次に、図1Aに示されるように、上記のようにして蛍光ナノ粒子に導入されたアミノ基に、例えば、マレイミド基およびN-ヒドロキシコハク酸イミド基を含む化合物のN-ヒドロキシコハク酸イミド基を反応させることで蛍光ナノ粒子にマレイミド基を導入する。 Next, as shown in FIG. 1A, the amino group introduced into the fluorescent nanoparticles as described above includes, for example, the N-hydroxysuccinimide group of a compound containing a maleimide group and an N-hydroxysuccinimide group. Introduces a maleimide group into the fluorescent nanoparticles by reacting.
 マレイミド基導入試薬はマレイミド基を導入することができれば特に制限されない。マレイミド基導入試薬の例には、マレイミド基およびN-ヒドロキシコハク酸イミド基を含む化合物、NHS-PEG12-マレイミド、TFP-PEG-マレイミド、PFP-PEG-マレイミドなどが含まれる。 The maleimide group-introducing reagent is not particularly limited as long as the maleimide group can be introduced. Examples of maleimide group-introducing reagents include compounds containing a maleimide group and an N-hydroxysuccinimide group, NHS-PEG12-maleimide, TFP-PEG-maleimide, PFP-PEG-maleimide and the like.
 (標的物質認識物質にチオール基を導入する工程)
 標的物質認識物質にチオール基を導入する工程は、図1Bに示されるように、例えば、標的物質認識物質のアミノ基にチオール基導入試薬(例えばトラウト試薬)を反応させることで行われる。この標的物質認識物質にチオール基を導入する工程は、標的物質認識物質が高い活性を有するようにするという観点から、0~8℃で行われことが好ましく、0~4℃で行われることがさらに好ましく、2~4℃で行われることがさらに好ましい。
(Step of introducing a thiol group into a target substance recognition substance)
The step of introducing a thiol group into the target substance recognizing substance is performed, for example, by reacting the amino group of the target substance recognizing substance with a thiol group introducing reagent (for example, a trout reagent), as shown in FIG. 1B. The step of introducing a thiol group into the target substance recognizing substance is preferably carried out at 0 to 8 ° C., and is preferably carried out at 0 to 4 ° C. from the viewpoint of ensuring that the target substance recognizing substance has high activity. More preferably, it is carried out at 2 to 4 ° C.
 標的物質認識物質は、特に限定されないが、例えばアビジン、ストレプトアビジンおよびニュートラアビジンからなる群より選ばれる少なくとも1種である。 The target substance recognition substance is not particularly limited, but is at least one selected from the group consisting of, for example, avidin, streptavidin and neutravidin.
 チオール基導入試薬はチオール基を導入することができれば特に制限されない。チオール基導入試薬の例には、トラウト試薬(2-Iminothiolane)、SPDP(N-{6-[3-(2-Pyridyldithio)propionamido]hexanoyloxy}sulfosuccinimide)、Sulfo-AC5-SPDP(N-{6-[3-(2-Pyridyldithio)propionamido]hexanoyloxy}sulfosuccinimide, sodium salt)、SATA(N-succinimidyl S-acetylthioacetate)、SATP(N-succinimidyl-S-acetylthiopropionate)、SAT(PEG)4 (PEGylated N-succinimidyl S-acetylthioacetate)などが含まれる。 The thiol group-introducing reagent is not particularly limited as long as a thiol group can be introduced. Examples of thiol group-introducing reagents include trout reagent (2-Iminothiolane), SPDP (N- {6- [3- (2-Pyridyldithio) PEGylamide] hexanoyloxy} sulfosuccinimide), Sulfo-AC5-SPDP (N- {6- [3- (2-pyridyldithio) propionamido] hexanoyloxy} sulfosuccinimide, sodium salt), SATA (N-succinimidyl S-acetylthioacetate), SATP (N-succinimidyl-S-acetylthiopropionate), SAT (PEG) 4 (PEGylated N-succinimidyl S -Acetylthioactate) and the like are included.
 (マレイミド基とチオール基とを反応させる工程)
 マレイミド基とチオール基とを反応させる工程は、図1Cに示されるように、例えば、マレイミド基が導入された蛍光ナノ粒子と、チオール基が導入された標的物質認識物質とを反応させることで行われる(図1C)。このマレイミド基とチオール基とを反応させる工程は、標的物質認識物質が高い活性を有するようにするという観点から、0~8℃で行われることが好ましく、0~4℃で行われることがさらに好ましく、2~4℃で行われることがさらに好ましい。
(Step of reacting maleimide group and thiol group)
The step of reacting the maleimide group with the thiol group is carried out, for example, by reacting the fluorescent nanoparticles into which the maleimide group has been introduced with the target substance recognizing substance into which the thiol group has been introduced, as shown in FIG. 1C. (Fig. 1C). The step of reacting the maleimide group with the thiol group is preferably carried out at 0 to 8 ° C., and more preferably at 0 to 4 ° C. from the viewpoint of ensuring that the target substance recognizing substance has high activity. Preferably, it is more preferably carried out at 2-4 ° C.
 (効果)
 本発明の実施の形態に係る蛍光ナノ粒子によれば、その表面に担持された標的物質認識物質の活性が高い。また活性の度合いを一定の範囲にすることができる。また、本発明の実施の形態に係る蛍光ナノ粒子の製造方法によれば、その表面に担持された標的物質認識物質の活性を高くすることができる。これにより、本発明の実施の形態に係る蛍光ナノ粒子によれば検出感度の向上および検出結果のバラツキの低減を測ることができる。
(effect)
According to the fluorescent nanoparticles according to the embodiment of the present invention, the activity of the target substance recognition substance supported on the surface thereof is high. Moreover, the degree of activity can be kept in a certain range. Further, according to the method for producing fluorescent nanoparticles according to the embodiment of the present invention, the activity of the target substance recognizing substance supported on the surface thereof can be increased. Thereby, according to the fluorescent nanoparticles according to the embodiment of the present invention, it is possible to measure the improvement of the detection sensitivity and the reduction of the variation in the detection result.
 以下、本実施の形態に係る発明について実施例を参照して詳細に説明するが、本実施の形態に係る発明はこれらの実施例により限定されない。 Hereinafter, the invention according to the present embodiment will be described in detail with reference to the examples, but the invention according to the present embodiment is not limited to these examples.
 [蛍光ナノ粒子の調製]
 (実施例1:低温反応)
 〈蛍光ナノ粒子の合成〉
(1)原料調製・混合工程
 蛍光色素のスルホローダミン101(「Sulforhodamine 101」、シグマアルドリッチ社製、TexasRed色素)2.5mgを純水22.5mLに溶解した。この溶液をホットスターラーで70℃に維持しながら20分間撹拌した。次に、水溶性メラミン樹脂「ニカラックMX-035」(日本カーバイド工業社製)1.5gを前記溶液に加えて、同条件でさらに5分間加熱撹拌した。
[Preparation of fluorescent nanoparticles]
(Example 1: Low temperature reaction)
<Synthesis of fluorescent nanoparticles>
(1) Raw Material Preparation / Mixing Step 2.5 mg of the fluorescent dye sulforhodamine 101 (“Sulforhodamine 101”, Sigma-Aldrich, TexasRed dye) was dissolved in 22.5 mL of pure water. The solution was stirred with a hot stirrer for 20 minutes while maintaining at 70 ° C. Next, 1.5 g of the water-soluble melamine resin "Nicarac MX-035" (manufactured by Nippon Carbide Industries, Ltd.) was added to the solution, and the mixture was further heated and stirred for 5 minutes under the same conditions.
(2)重合工程(ギ酸処理)
 加熱した溶液にギ酸100μLを加え、溶液温度を60℃に維持しつつ20分間さらに加熱攪拌した。その後、当該溶液を放置して室温まで冷却した。
(2) Polymerization step (formic acid treatment)
100 μL of formic acid was added to the heated solution, and the mixture was further heated and stirred for 20 minutes while maintaining the solution temperature at 60 ° C. Then, the solution was left to cool to room temperature.
 冷却した溶液を遠心用チューブに移して、遠心分離機で12000rpm、20分間遠心分離した。遠心分離した溶液の上澄みを除去して沈降物のみを回収した。回収した沈降物に対してエタノールを用いて洗浄をした後、水を用いて同様に洗浄した。 The cooled solution was transferred to a centrifuge tube and centrifuged at 12000 rpm for 20 minutes with a centrifuge. The supernatant of the centrifuged solution was removed and only the sediment was recovered. The recovered sediment was washed with ethanol and then washed with water in the same manner.
(3)アミノ基導入工程
 以下に示すように、蛍光ナノ粒子の表面にアミノ基を導入した。まず、上記洗浄後の1nmol/Lに調整したメラミン系粒子(蛍光ナノ粒子)1mLを1,2-Bis(2-aminoethoxy)ethane(BAEE)20μLと混合し、温度70℃で1時間反応させた。このようにして、蛍光ナノ粒子へアミノ基を導入した。
(3) Amino group introduction step As shown below, an amino group was introduced on the surface of the fluorescent nanoparticles. First, 1 mL of melamine-based particles (fluorescent nanoparticles) adjusted to 1 nmol / L after the washing was mixed with 20 μL of 1,2-Bis (2-aminoethoxy) ethane (BAEE) and reacted at a temperature of 70 ° C. for 1 hour. .. In this way, the amino group was introduced into the fluorescent nanoparticles.
(4)洗浄工程
 この反応液を10000Gで20分間、遠心分離を行い、上澄みを除去して沈降物のみを回収した。その後、1mLの水を加え、再度10000Gで20分間、遠心分離を行い、上澄みを除去して沈降物のみを回収した。この操作をさらに2回行い、合計で3回の水洗浄を行った。次に、沈降物に1mLのTHFを加え、再度10000Gで20分間、遠心分離を行い、上澄みを除去して沈降物を回収した。
(4) Washing step This reaction solution was centrifuged at 10000 G for 20 minutes to remove the supernatant and collect only the sediment. Then, 1 mL of water was added, and centrifugation was performed again at 10000 G for 20 minutes to remove the supernatant and collect only the sediment. This operation was performed two more times, and a total of three water washes were performed. Next, 1 mL of THF was added to the sediment, and centrifugation was performed again at 10000 G for 20 minutes to remove the supernatant and recover the sediment.
 得られた蛍光ナノ粒子を、THFを用いて3nmol/Lに調整した。 The obtained fluorescent nanoparticles were adjusted to 3 nmol / L using THF.
(5)蛍光ナノ粒子のマレイミド基修飾
 この蛍光ナノ粒子の溶液に、最終濃度10mmol/LとなるようにNHS-PEG12-マレイミドを混合して、室温℃で1時間反応した。すなわち、上記のようにして蛍光ナノ粒子にマレイミド基を導入した。
(5) Modification of Maleimide Group of Fluorescent Nanoparticles NHS-PEG12-maleimide was mixed with a solution of these fluorescent nanoparticles so as to have a final concentration of 10 mmol / L, and reacted at room temperature for 1 hour. That is, the maleimide group was introduced into the fluorescent nanoparticles as described above.
 この反応液を10000Gで20分間、遠心分離を行い、上澄みを除去して沈降物のみを回収した。その後、EDTAを2mmol/L含有するPBSを加えて沈降物を分散させた。そして、再度、10000Gで20分間、遠心分離を行って上澄みを除去して沈降物のみを回収した。沈降物の分散処理から遠心分離までの一連の操作による蛍光ナノ粒子の洗浄をさらに3回行った。そして、上記マレイミド基が粒子表面に存在し、かつ、TexasRed色素を内包した蛍光ナノ粒子を得た。また、該メラミン系粒子の平均粒径について走査型電子顕微鏡を用いて上述した方法により計測したところ、平均粒径が150nmであった。 This reaction solution was centrifuged at 10000 G for 20 minutes to remove the supernatant and collect only the sediment. Then, PBS containing 2 mmol / L of EDTA was added to disperse the precipitate. Then, again, centrifugation was performed at 10000 G for 20 minutes to remove the supernatant, and only the sediment was recovered. The fluorescent nanoparticles were washed three more times by a series of operations from the dispersion treatment of the sediment to the centrifugation. Then, fluorescent nanoparticles in which the maleimide group was present on the particle surface and contained a Texas Red dye were obtained. Further, when the average particle size of the melamine-based particles was measured by the above-mentioned method using a scanning electron microscope, the average particle size was 150 nm.
(6)ストレプトアビジンのチオール基修飾
 一方、当該マレイミド基が導入された蛍光ナノ粒子に結合可能なストレプトアビジンを以下のように調製した。
(6) Modification of Streptavidin to Thiol Group On the other hand, streptavidin capable of binding to fluorescent nanoparticles into which the maleimide group was introduced was prepared as follows.
 まず、1mg/mLに調整したストレプトアビジン(和光純薬工業社製)40μLに対して、64mg/mLに調整したトラウト試薬(サーモフィッシャー社製)70μLを4℃で1時間反応させた。すなわち、ストレプトアビジンのアミノ基に対して保護されたチオール基を導入した。 First, 40 μL of streptavidin (manufactured by Wako Pure Chemical Industries, Ltd.) adjusted to 1 mg / mL was reacted with 70 μL of a trout reagent (manufactured by Thermo Fisher) adjusted to 64 mg / mL at 4 ° C. for 1 hour. That is, a thiol group protected against the amino group of streptavidin was introduced.
 その後、公知のヒドロキシルアミン処理により、保護されたチオール基から遊離のチオール基(-SH)を生成して、ストレプトアビジンにチオール基(-SH)を導入する処理を行った。 Then, a free thiol group (-SH) was generated from the protected thiol group by a known hydroxylamine treatment, and a thiol group (-SH) was introduced into streptavidin.
 このストレプトアビジン溶液をゲルろ過カラム(Zeba Spin Desalting Columns:サーモフィッシャー社製)により4℃で脱塩し、上記蛍光ナノ粒子に結合可能なストレプトアビジンを得た。 This streptavidin solution was desalted at 4 ° C. using a gel filtration column (Zeba Spin Desalting Colors: manufactured by Thermo Fisher Scientific Co., Ltd.) to obtain streptavidin capable of binding to the fluorescent nanoparticles.
(7)マレイミド基とチオール基の結合反応
 このストレプトアビジン全量とEDTAを2mmol/L含有したPBSを用いて上記1nmol/Lに調整した蛍光ナノ粒子1mLとを混合し、4℃で1時間の条件で、両分子を結合する反応を行った。その後EDTAを2mmol/L含有したPBSを用いて遠心、洗浄を行いストレプトアビジンが結合した蛍光ナノ粒子のみを回収し、実施例1の蛍光ナノ粒子を得た。
(7) Bonding reaction of maleimide group and thiol group The total amount of this streptavidin and 1 mL of the fluorescent nanoparticles adjusted to 1 nmol / L above were mixed with PBS containing 2 mmol / L of EDTA, and the conditions were 1 hour at 4 ° C. Then, the reaction of binding both molecules was carried out. Then, the mixture was centrifuged and washed with PBS containing 2 mmol / L of EDTA, and only the fluorescent nanoparticles to which streptavidin was bound were recovered to obtain the fluorescent nanoparticles of Example 1.
 (実施例2:ギ酸処理省略、水除去洗浄、低温反応)
 実施例2では、上記の(2)重合工程において、ギ酸100μLを加えずに、加熱攪拌した。
(Example 2: Formic acid treatment omitted, water removal washing, low temperature reaction)
In Example 2, in the above-mentioned (2) polymerization step, 100 μL of formic acid was not added and the mixture was heated and stirred.
 また、実施例2では、上記の(4)洗浄工程を以下のように変更した。すなわち、反応液を10000Gで20分間、遠心分離を行い、上澄みを除去して沈降物のみを回収し、その後、1mLの水を加え、再度10000Gで20分間、遠心分離を行い、上澄みを除去して沈降物のみを回収した。次に、水とTHFとを体積比で1:1とした1mLの洗浄液を加え、再度10000Gで20分間、遠心分離を行い、上澄みを除去して沈降物のみを回収した。次に、水とTHFとを体積比で1:3として同様に沈降物のみを回収した。次に、水とTHFとを体積比で0:4として同様に沈降物を回収した。このように、徐々にTHFの量を多くした洗浄液を用いて水を除去するようにして洗浄した。それ以外は、実施例1と同様にして実施例2の蛍光ナノ粒子を得た。 Further, in Example 2, the above (4) cleaning step was changed as follows. That is, the reaction solution was centrifuged at 10000 G for 20 minutes, the supernatant was removed to collect only the sediment, then 1 mL of water was added, and the reaction solution was centrifuged again at 10000 G for 20 minutes to remove the supernatant. Only the sediment was collected. Next, 1 mL of a washing solution having a volume ratio of water and THF of 1: 1 was added, and centrifugation was performed again at 10000 G for 20 minutes to remove the supernatant and collect only the sediment. Next, the volume ratio of water and THF was set to 1: 3, and only the sediment was recovered in the same manner. Next, the sediment was recovered in the same manner with water and THF set to a volume ratio of 0: 4. In this way, washing was performed so as to remove water using a washing liquid in which the amount of THF was gradually increased. Except for this, fluorescent nanoparticles of Example 2 were obtained in the same manner as in Example 1.
 (比較例1:室温反応)
 比較例1では、上記の(6)ストレプトアビジンのチオール基修飾において、反応温度を室温とした。また、上記の(7)マレイミド基とチオール基の結合反応において、反応温度を室温とした。それ以外は実施例1と同様にして比較例1の蛍光ナノ粒子を得た。
(Comparative Example 1: Room temperature reaction)
In Comparative Example 1, the reaction temperature was set to room temperature in the above-mentioned (6) Streptavidin thiol group modification. Further, in the above-mentioned (7) bonding reaction of a maleimide group and a thiol group, the reaction temperature was set to room temperature. Fluorescent nanoparticles of Comparative Example 1 were obtained in the same manner as in Example 1 except for the above.
 (比較例2:ギ酸処理省略、室温反応)
 比較例2では、上記の(2)重合工程において、ギ酸100μLを加えずに、溶液温度を60℃に維持しつつ20分間さらに加熱攪拌した。また、上記の(6)ストレプトアビジンのチオール基修飾において、反応温度を室温とした。また、上記の(7)マレイミド基とチオール基の結合反応において、反応温度を室温とした。それ以外は実施例1と同様にして比較例2の蛍光ナノ粒子を得た。
(Comparative Example 2: Formic acid treatment omitted, room temperature reaction)
In Comparative Example 2, in the polymerization step (2) described above, 100 μL of formic acid was not added, and the solution was further heated and stirred for 20 minutes while maintaining the solution temperature at 60 ° C. Further, in the above-mentioned (6) thiol group modification of streptavidin, the reaction temperature was set to room temperature. Further, in the above-mentioned (7) bonding reaction of a maleimide group and a thiol group, the reaction temperature was set to room temperature. Fluorescent nanoparticles of Comparative Example 2 were obtained in the same manner as in Example 1 except for the above.
 (比較例3:水除去洗浄、室温反応)
 比較例3では、上記の(4)洗浄工程を以下のように変更した。すなわち、反応液を10000Gで20分間、遠心分離を行い、上澄みを除去して沈降物のみを回収し、その後、1mLの水を加え、再度10000Gで20分間、遠心分離を行い、上澄みを除去して沈降物のみを回収した。次に、水とTHFとを体積比で1:1とした1mLの洗浄液を加え、再度10000Gで20分間、遠心分離を行い、上澄みを除去して沈降物のみを回収した。次に、水とTHFとを体積比で2:2として同様に沈降物のみを回収した。次に、水とTHFとを体積比で1:3として同様に沈降物のみを回収した。次に、THF1mLを加え、同様にして沈降物を得た。このように、徐々にTHFの量を多くした洗浄液を用いて水を除去するように洗浄した。
(Comparative Example 3: Water removal washing, room temperature reaction)
In Comparative Example 3, the above (4) cleaning step was changed as follows. That is, the reaction solution was centrifuged at 10000 G for 20 minutes, the supernatant was removed to collect only the sediment, then 1 mL of water was added, and the reaction solution was centrifuged again at 10000 G for 20 minutes to remove the supernatant. Only the sediment was collected. Next, 1 mL of a washing solution having a volume ratio of water and THF of 1: 1 was added, and centrifugation was performed again at 10000 G for 20 minutes to remove the supernatant and collect only the sediment. Next, the volume ratio of water and THF was set to 2: 2 and only the sediment was recovered in the same manner. Next, the volume ratio of water and THF was set to 1: 3, and only the sediment was recovered in the same manner. Next, 1 mL of THF was added, and a precipitate was obtained in the same manner. In this way, washing was performed so as to remove water using a washing liquid in which the amount of THF was gradually increased.
 また、上記の(6)ストレプトアビジンのチオール基修飾において、反応温度を室温とした。また、上記の(7)マレイミド基とチオール基の結合反応において、反応温度を室温とした。それ以外は実施例1と同様にして比較例3の蛍光ナノ粒子を得た。 Further, in the above-mentioned (6) Streptavidin thiol group modification, the reaction temperature was set to room temperature. Further, in the above-mentioned (7) bonding reaction of a maleimide group and a thiol group, the reaction temperature was set to room temperature. Fluorescent nanoparticles of Comparative Example 3 were obtained in the same manner as in Example 1 except for the above.
 [蛍光ナノ粒子の評価]
 上記のようにして得た各蛍光ナノ粒子を以下のように評価した。
[Evaluation of fluorescent nanoparticles]
Each fluorescent nanoparticle obtained as described above was evaluated as follows.
 (BCA法による蛍光ナノ粒子の性能評価)
 実施例1、2および比較例1~3の蛍光ナノ粒子のそれぞれについて、1つの蛍光ナノ粒子の表面に存在するストレプトアビジン量を、Pierce社の「Micro BCA Protein Assay kit」を用いたBCA法によってタンパク量として算出した。
(Performance evaluation of fluorescent nanoparticles by BCA method)
For each of the fluorescent nanoparticles of Examples 1 and 2 and Comparative Examples 1 to 3, the amount of streptavidin present on the surface of one fluorescent nanoparticles was determined by the BCA method using "Micro BCA Protein Assay kit" of Pierce. Calculated as the amount of protein.
 具体的には、ストレプトアビジン修飾前の蛍光ナノ粒子と、ストレプトアビジン修飾後の蛍光ナノ粒子とを用意し、それぞれBCA法によってタンパク質の量を測定した。測定においては、ストレプトアビジンが結合した蛍光ナノ粒子のPBS分散液(粒子濃度0.50nmol/L)150μL、ストレプトアビジンが未結合の蛍光ナノ粒子のPBS分散液(粒子濃度0.50nmol/L)150μLのそれぞれに、前記キットに付属しているビシンコニン酸(BCA)溶液と硫酸銅溶液を混合して添加し、562nmの吸光度を測定した。ストレプトアビジン修飾後の蛍光ナノ粒子における吸光度から、ストレプトアビジン修飾前の蛍光ナノ粒子における吸光度をバックグラウンドとして差し引き、その吸光度を標準曲線と比較して水溶液中の正味のタンパク質量(ストレプトアビジンの濃度)を決定した。 Specifically, fluorescent nanoparticles before streptavidin modification and fluorescent nanoparticles after streptavidin modification were prepared, and the amount of protein was measured by the BCA method for each. In the measurement, 150 μL of PBS dispersion of fluorescent nanoparticles bound with streptavidin (particle concentration 0.50 nmol / L) and 150 μL of PBS dispersion of fluorescent nanoparticles not bound with streptavidin (particle concentration 0.50 nmol / L). The bicinconic acid (BCA) solution and the copper sulfate solution included in the kit were mixed and added to each of the above, and the absorbance at 562 nm was measured. The absorbance of the fluorescent nanoparticles before streptavidin modification is subtracted from the absorbance of the fluorescent nanoparticles before streptavidin modification as the background, and the absorbance is compared with the standard curve to determine the net amount of protein in the aqueous solution (concentration of streptavidin). It was determined.
 BCA法によって測定したタンパク質量(ストレプトアビジンの濃度)と前記測定における蛍光ナノ粒子の仕込み量(蛍光ナノ粒子の濃度)の比に基づいて、1つの蛍光ナノ粒子あたりのストレプトアビジン分子数を算出した。算出結果を下記の表1に示す。 The number of streptavidin molecules per fluorescent nanoparticles was calculated based on the ratio of the amount of protein (streptavidin concentration) measured by the BCA method to the amount of fluorescent nanoparticles charged (concentration of fluorescent nanoparticles) in the measurement. .. The calculation results are shown in Table 1 below.
 (ビオチンプレート法による蛍光ナノ粒子の性能評価)
 実施例1~4および比較例の蛍光ナノ粒子のそれぞれについて、あらかじめビオチンが固定化された市販の96ウェルプレート(G-Biosciences社製、型番786-762)を用いて、活性を有するストレプトアビジン量を測定した。このウェルプレート(ウェルの内径約6mm)は、ビオチン分子が0.1pmol/mmの密度で28.3mmの面積にわたって固定化されている。
(Performance evaluation of fluorescent nanoparticles by biotin plate method)
Amount of streptavidin having activity for each of the fluorescent nanoparticles of Examples 1 to 4 and Comparative Example using a commercially available 96-well plate (manufactured by G-Biosciences, model number 786-762) in which biotin was immobilized in advance. Was measured. In this well plate (inner diameter of the well is about 6 mm), biotin molecules are immobilized at a density of 0.1 pmol / mm 2 over an area of 28.3 mm 2.
 具体的には、Tween20を0.05%含有するPBS(pH7.5)を用いて前記ウェルプレートの各ウェルを洗浄した後、BSAを1%含むPBSを各ウェルに200μL分注し、プレートを4℃環境にて一晩静置した。続いて、ウェル内のBSA含有PBSをすべて吸引し、ストレプトアビジン修飾後の蛍光ナノ粒子のPBS分散液(粒子濃度0.10nmol/L)100μLを分注し、4℃環境にて設置したプレートシェーカー(Biosan社製、型番PST-60HL)にプレートを設置して、500rpmにて撹拌しながら1h放置した。さらに、蛍光ナノ粒子のPBS分散液を全量吸引し、100μLのPBSをウェルに分注して、波長531nmの光照射に対する595nmにおける蛍光値をプレートリーダー(Perkinelmer社製、型番EnVision2104)にて測定した。蛍光測定にあたっては、各ウェルにつき繰り返し5回分の平均値を採用した。測定結果を下記の表1のプレートリーダー蛍光値に示す。 Specifically, after washing each well of the well plate with PBS containing 0.05% Tween 20 (pH 7.5), 200 μL of PBS containing 1% BSA was dispensed into each well to prepare the plate. It was allowed to stand overnight in an environment of 4 ° C. Subsequently, all the BSA-containing PBS in the well was aspirated, 100 μL of a PBS dispersion of streptavidin-modified fluorescent nanoparticles (particle concentration 0.10 nmol / L) was dispensed, and a plate shaker installed in an environment of 4 ° C. A plate was placed on (Biosan, model number PST-60HL) and left for 1 hour with stirring at 500 rpm. Further, the entire amount of the PBS dispersion of fluorescent nanoparticles was aspirated, 100 μL of PBS was dispensed into the wells, and the fluorescence value at 595 nm with respect to light irradiation at a wavelength of 531 nm was measured with a plate reader (manufactured by PerkinElmer, model number EnVision2104). .. In the fluorescence measurement, the average value for 5 times was repeatedly used for each well. The measurement results are shown in the plate reader fluorescence values in Table 1 below.
 また、上記のプレートリーダー蛍光値から、標的物質に結合する蛍光ナノ粒子の割合を検量線に基づいて求めた。検量線は、上記と同様に準備したウェルプレートに、ストレプトアビジン修飾後の蛍光ナノ粒子のPBS分散液(粒子濃度0pmol/L、1.56pmol/L、3.12pmol/L、6.25pmol/L、12.5pmol/L)を分注し、上記と同様に攪拌してから、波長531nmの光照射に対する595nmにおける蛍光値をプレートリーダー(Perkinelmer社製、型番EnVision2104)にて測定することにより作製した。蛍光測定にあたっては、各ウェルにつき繰り返し5回分の平均値を採用した。検量線に基づいて求めた標的物質に結合する蛍光ナノ粒子の割合を表1に示す。 Further, from the above plate reader fluorescence value, the proportion of fluorescent nanoparticles bound to the target substance was determined based on the calibration curve. The calibration curve was prepared on a well plate prepared in the same manner as above, and a PBS dispersion of fluorescent nanoparticles modified with streptavidin (particle concentration 0 pmol / L, 1.56 pmol / L, 3.12 pmol / L, 6.25 pmol / L). , 12.5 pmol / L) was dispensed, stirred in the same manner as above, and then the fluorescence value at 595 nm with respect to light irradiation at a wavelength of 531 nm was measured with a plate reader (manufactured by PerkinElmer, model number EnVision2104). .. In the fluorescence measurement, the average value for 5 times was repeatedly used for each well. Table 1 shows the ratio of fluorescent nanoparticles bound to the target substance determined based on the calibration curve.
 (蛍光ナノ粒子を用いた免疫染色)
 実施例1~4および比較例の蛍光ナノ粒子を用いて免疫染色を行った。
(Immunostaining using fluorescent nanoparticles)
Immunostaining was performed using the fluorescent nanoparticles of Examples 1 to 4 and Comparative Examples.
 具体的には、以下の手順で免疫染色を行った。 Specifically, immunostaining was performed according to the following procedure.
 ≪染色試薬を用いたIHC染色≫
 蛍光ナノ粒子と、以下のように作製したビオチン化2次抗体とを有する抗体試薬(病理診断用の染色試薬)を調製し、この染色試薬を用いて免疫染色を行った。
≪IHC staining using staining reagents≫
An antibody reagent (staining reagent for pathological diagnosis) having fluorescent nanoparticles and a biotinylated secondary antibody prepared as follows was prepared, and immunostaining was performed using this staining reagent.
 <ビオチン修飾された2次抗体の作製>
 まず、50mmol/LのTris-HCl溶液(pH7.5)に抗ウサギIgG抗体50μgを溶解した。該溶液に、最終濃度3mmol/LとなるようにDTT(dithiothretol)溶液を混合した。その後、該溶液を37℃で30分間反応させた。その後、脱塩カラムを用いてDTTで還元化した2次抗体を精製した。精製した抗体全量のうち200μLを50mmol/LのTris-HCl溶液(pH7.5)に溶解して抗体溶液を得た。その一方で、スペーサーの長さが30オングストロームであるリンカー試薬「(+)-Biotin-PEG6‐NH‐Mal」(PurePEG社製,製品番号2461006-250)を、DMSOを用いて0.4mmol/Lとなるように調整した。この溶液8.5μLを前記抗体溶液に添加し、混和して37℃で30分間反応させた。
<Preparation of biotin-modified secondary antibody>
First, 50 μg of anti-rabbit IgG antibody was dissolved in a 50 mmol / L Tris-HCl solution (pH 7.5). A DTT (dithiothretrol) solution was mixed with the solution so as to have a final concentration of 3 mmol / L. Then, the solution was reacted at 37 ° C. for 30 minutes. Then, a DTT-reduced secondary antibody was purified using a desalting column. 200 μL of the total amount of purified antibody was dissolved in 50 mmol / L Tris-HCl solution (pH 7.5) to obtain an antibody solution. On the other hand, a linker reagent "(+)-Biotin-PEG 6- NH-Mal" (manufactured by PurePEG, product number 246106-250) having a spacer length of 30 angstroms was used in 0.4 mmol / DMSO. It was adjusted to be L. 8.5 μL of this solution was added to the antibody solution, mixed and reacted at 37 ° C. for 30 minutes.
 この反応溶液を脱塩カラム「Zeba Spin Desalting Columns」に供して精製した。脱塩した反応溶液の波長300nmの吸収を分光高度計(日立製「F-7000」)により計測して反応溶液に含まれるタンパク質の量を算出した。50mmol/LのTris溶液により反応溶液を250μg/mLに調整し、該溶液をビオチン化2次抗体の溶液とした。 This reaction solution was purified by subjecting it to a desalting column "Zeba Spin Desalting Colors". The absorption of the desalted reaction solution at a wavelength of 300 nm was measured with a spectroscopic altimeter (“F-7000” manufactured by Hitachi) to calculate the amount of protein contained in the reaction solution. The reaction solution was adjusted to 250 μg / mL with a 50 mmol / L Tris solution, and the solution was used as a solution of the biotinylated secondary antibody.
《蛍光免疫染色法》
 (1)脱パラフィン処理工程
 上記ビオチン化2次抗体等を用いて、ヒト乳がん由来培養細胞SK-BR-3(HER2(3+))の免疫染色と形態観察染色とを以下のように行った。染色用のスライドとして、HER2 IHCポジコンスライド(パソロジー研究所社製、以下コントロールスライド)を用いた。この組織アレイスライドを脱パラフィン処理した。
《Fluorescent immunostaining method》
(1) Deparaffinizing Step Using the above biotinylated secondary antibody and the like, immunostaining and morphological observation staining of human breast cancer-derived cultured cells SK-BR-3 (HER2 (3+)) were performed as follows. As a slide for staining, a HER2 IHC positive control slide (manufactured by Pasoroji Research Institute, hereinafter referred to as a control slide) was used. The tissue array slides were deparaffinized.
(2)賦活化処理工程
 コントロールスライドを脱パラフィン処理した後、水に置換する洗浄を行った。洗浄したコントロールスライドを10mmol/Lクエン酸緩衝液中(pH6.0)中で121℃、15分間オートクレーブ処理することで、抗原の賦活化処理を行った。賦活化処理後のコントロールスライドをPBSにより洗浄し、洗浄したコントロールスライドに対してBSAを1%含有するPBSを用いて1時間ブロッキング処理を行った。
(2) Activation treatment step The control slide was deparaffinized and then washed by replacing it with water. The washed control slide was autoclaved in 10 mmol / L citrate buffer (pH 6.0) at 121 ° C. for 15 minutes to activate the antigen. The control slides after the activation treatment were washed with PBS, and the washed control slides were blocked with PBS containing 1% BSA for 1 hour.
 (3)免疫染色処理工程
 (3-1)1次抗体反応
 ロシュ社製「抗HER2ウサギモノクロナール抗体(4B5)」の溶液を上述のブロッキング処理したコントロールスライドに対して4℃で1晩反応させた。
 (3-2)2次抗体反応
 1次抗体反応を行ったコントロールスライドをPBSで洗浄した後、1%BSA含有のPBSで2μg/mLに希釈した上記ビオチン化2次抗体と室温30分間反応させた。
 (3-3)
 2次抗体反応を行ったコントロールスライドに対して、1%BSA含有のPBSで0.02nmol/Lに希釈した前述の蛍光ナノ粒子を、中性のpH環境(pH6.9~7.4)室温の条件下で3時間反応させた。該反応後のコントロールスライドをPBSで洗浄した。
(3) Immunostaining treatment step (3-1) Primary antibody reaction A solution of "anti-HER2 rabbit monoclonal antibody (4B5)" manufactured by Roche was reacted overnight at 4 ° C. with the above-mentioned blocking-treated control slide. rice field.
(3-2) Secondary antibody reaction The control slide subjected to the primary antibody reaction was washed with PBS and then reacted with the biotinylated secondary antibody diluted to 2 μg / mL with PBS containing 1% BSA for 30 minutes at room temperature. rice field.
(3-3)
The above-mentioned fluorescent nanoparticles diluted to 0.02 nmol / L with PBS containing 1% BSA were added to the control slide subjected to the secondary antibody reaction at room temperature in a neutral pH environment (pH 6.9 to 7.4). The reaction was carried out for 3 hours under the conditions of. The control slides after the reaction were washed with PBS.
(4)形態観察染色工程
 免疫染色後、ヘマトキシリン・エオシン染色(HE染色)を行った。免疫染色した切片をマイヤーヘマトキシリン液で5分間染色してヘマトキシリン染色を行った。その後、コントロールスライドを45℃の流水で3分間洗浄した。次に、1%エオシン液で5分間染色してエオシン染色を行った。
(4) Morphological observation staining step After immunostaining, hematoxylin / eosin staining (HE staining) was performed. The immunostained sections were stained with Meyer hematoxylin solution for 5 minutes to perform hematoxylin staining. Then, the control slide was washed with running water at 45 ° C. for 3 minutes. Next, eosin staining was performed by staining with a 1% eosin solution for 5 minutes.
(5)固定処理工程
 免疫染色工程および形態観察染色工程を終えた組織切片に対して、純エタノールに5分間浸漬する操作を4回行い、洗浄・脱水を行った。続いて、キシレンに5分間浸漬する操作を4回行い、透徹を行った。最後に、封入剤(メルク社製「エンテランニュー」)を用いて、組織切片を封入して観察用のサンプルのコントロールスライドスライドとした。
(5) Fixation Treatment Step The tissue sections that had completed the immunostaining step and the morphological observation staining step were washed and dehydrated by immersing them in pure ethanol for 5 minutes four times. Subsequently, the operation of immersing in xylene for 5 minutes was performed four times to perform transparency. Finally, a tissue section was encapsulated using an encapsulant (“Enteran New” manufactured by Merck & Co., Inc.) to prepare a control slide slide of a sample for observation.
(6)観察・計測工程
 固定化処理工程を終えたコントロールスライドに対して所定の励起光を照射して、蛍光を発光させた。その状態のコントロールスライドを蛍光顕微鏡(オリンパス社製「BX-53」)、顕微鏡用デジタルカメラ(オリンパス社製「DP73」)により観察および撮像を行った。上記励起光の波長は、光学フィルターに通すことで575~600nmに設定した。また、観察する蛍光の波長についても、光学フィルターを通すことで612~692nmに設定した。顕微鏡観察、画像取得時の励起波長の条件は、580nmの励起では視野中心部付近の照射エネルギーが900W/cm2となるようにした。画像取得時の露光時間は、画像の輝度が飽和しないように任意に設定(例えば4000μ秒に設定)して撮像した。SK-BR-3の輝点数(PIDスコア)は、400倍で撮像した画像をもとにImageJ FindMaxima法により計測した1000細胞の平均値とした。観察結果を図2に示す。図2A~Eはそれぞれ実施例1、2、比較例1~3の蛍光ナノ粒子を用いた場合の観察結果を示す。また、実施例1、2、比較例1~3の蛍光ナノ粒子を用いた場合の細胞一つあたりの輝点数(PIDスコア)の計測結果を表1に示す。
(6) Observation / Measurement Step The control slide after the immobilization treatment step was irradiated with a predetermined excitation light to emit fluorescence. The control slide in that state was observed and imaged with a fluorescence microscope (“BX-53” manufactured by Olympus Corporation) and a digital camera for a microscope (“DP73” manufactured by Olympus Corporation). The wavelength of the excitation light was set to 575 to 600 nm by passing it through an optical filter. The wavelength of fluorescence to be observed was also set to 612 to 692 nm by passing through an optical filter. The conditions of the excitation wavelength at the time of microscopic observation and image acquisition were such that the irradiation energy near the center of the visual field was 900 W / cm 2 when excited at 580 nm. The exposure time at the time of image acquisition was arbitrarily set (for example, set to 4000 μsec) so that the brightness of the image was not saturated, and the image was taken. The number of bright spots (PID score) of SK-BR-3 was taken as the average value of 1000 cells measured by the ImageJ FindMaxima method based on the image taken at 400 times. The observation results are shown in FIG. 2A to 2E show the observation results when the fluorescent nanoparticles of Examples 1 and 2 and Comparative Examples 1 to 3 were used, respectively. Table 1 shows the measurement results of the number of bright spots (PID score) per cell when the fluorescent nanoparticles of Examples 1 and 2 and Comparative Examples 1 to 3 were used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [表1について]
 実施例1、2ではチオール基を導入する工程と、チオール基とマレイミド基とを反応させる工程とを低温で行ったのに対して比較例1ではこの反応を室温で行った。これにより実施例1では各評価(BCA法、ビオチンプレート法、免疫染色、標的物質に結合する割合)において、比較例1より高い値が得られた。これは実施例1、2では、低温で反応させたためストレプトアビジンが失活せず、高い活性を有していたためと考えられる。
[About Table 1]
In Examples 1 and 2, the step of introducing the thiol group and the step of reacting the thiol group with the maleimide group were carried out at a low temperature, whereas in Comparative Example 1, this reaction was carried out at room temperature. As a result, in Example 1, higher values were obtained in each evaluation (BCA method, biotin plate method, immunostaining, rate of binding to the target substance) than in Comparative Example 1. It is considered that this is because streptavidin was not inactivated and had high activity in Examples 1 and 2 because the reaction was carried out at a low temperature.
 実施例2では、ギ酸処理を行わずに蛍光ナノ粒子にアミノ基を導入し、さらに洗浄工程において徐々に有機溶媒の量を多くした洗浄液を用いて水を除去するようにして洗浄し、さらにチオール基を導入する工程と、チオール基とマレイミド基とを反応させる工程とを低温で行った。これにより実施例2は、実施例1、比較例1~3のいずれよりも各評価においてより高い値が得られた。 In Example 2, an amino group was introduced into the fluorescent nanoparticles without treatment with formic acid, and the washing was carried out by using a washing liquid in which the amount of the organic solvent was gradually increased in the washing step so as to remove water, and further thiol. The step of introducing the group and the step of reacting the thiol group with the maleimide group were carried out at a low temperature. As a result, in Example 2, a higher value was obtained in each evaluation than in any of Example 1 and Comparative Examples 1 to 3.
 [相関について]
 上記の表1のBCA法による蛍光ナノ粒子の性能評価と免疫染色の結果との相関を図3Aのグラフに示す。図3Aのグラフの横軸は、表1に示される、免疫染色して得られたPIDスコア(細胞あたりの輝点数)であり、縦軸は、表1に示される、BCA法で得られた蛍光ナノ粒子1粒子あたりのストレプトアビジン分子数である。
[Correlation]
The correlation between the performance evaluation of the fluorescent nanoparticles by the BCA method in Table 1 and the result of immunostaining is shown in the graph of FIG. 3A. The horizontal axis of the graph of FIG. 3A is the PID score (number of bright spots per cell) obtained by immunostaining shown in Table 1, and the vertical axis is obtained by the BCA method shown in Table 1. The number of streptavidin molecules per fluorescent nanoparticle.
 また、上記の表1のビオチンプレート法による蛍光ナノ粒子の性能評価と免疫染色の結果との相関を図3Bのグラフに示す。図3Bのグラフの横軸は、表1に示される、免疫染色して得られたPIDスコア(細胞あたりの輝点数)であり、縦軸は、表1に示される、ビオチンプレート法で得られたプレートリーダー蛍光値である。 The graph of FIG. 3B shows the correlation between the performance evaluation of the fluorescent nanoparticles by the biotin plate method in Table 1 above and the result of immunostaining. The horizontal axis of the graph of FIG. 3B is the PID score (number of bright spots per cell) obtained by immunostaining shown in Table 1, and the vertical axis is obtained by the biotin plate method shown in Table 1. It is a plate reader fluorescence value.
 図3Aと図3Bとを比べると、図3Bの方がより相関が高い。すなわち、ビオチンプレート法の方が、BCA法よりも蛍光ナノ粒子の性能を正しく評価できていることがわかる。 Comparing FIG. 3A and FIG. 3B, FIG. 3B has a higher correlation. That is, it can be seen that the biotin plate method can correctly evaluate the performance of the fluorescent nanoparticles than the BCA method.
 具体的には、例えば、上記の表1に示すように比較例3の蛍光ナノ粒子と、実施例2の蛍光ナノ粒子とをBCA法によって性能評価すると、その値はそれぞれ321.9と320.8であり、あまり差がない。しかし、この比較例3、実施例2の蛍光ナノ粒子を用いて実際に免疫染色するとPIDスコアは451.7と854.8とであり、大きな差がある。 Specifically, for example, as shown in Table 1 above, when the performance of the fluorescent nanoparticles of Comparative Example 3 and the fluorescent nanoparticles of Example 2 were evaluated by the BCA method, the values were 321.9 and 320, respectively. It is 8, and there is not much difference. However, when immunostaining is actually performed using the fluorescent nanoparticles of Comparative Examples 3 and 2, the PID scores are 451.7 and 854.8, which are significantly different.
 これに対して、比較例3の蛍光ナノ粒子と、実施例2の蛍光ナノ粒子とをビオチンプレート法によって性能評価すると、その値はそれぞれ64089と130599であり、大きな差があり、これはPIDスコアである451.7と854.8とに対応している。 On the other hand, when the performance of the fluorescent nanoparticles of Comparative Example 3 and the fluorescent nanoparticles of Example 2 were evaluated by the biotin plate method, the values were 64089 and 130599, respectively, and there was a large difference, which was the PID score. It corresponds to 451.7 and 854.8.
 つまり、BCA法では活性を有するストレプトアビジンを正しく評価できていないのに対して、ビオチンプレート法では活性を有するストレプトアビジンを正しく評価することができていることがわかる。 That is, it can be seen that the BCA method cannot correctly evaluate the active streptavidin, whereas the biotin plate method can correctly evaluate the active streptavidin.
 本出願は、2020年3月19日出願の特願2020-049733に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2020-049733 filed on March 19, 2020. All the contents described in the application specification and drawings are incorporated in the specification of the present application.
 本実施の形態に係る蛍光ナノ粒子は、高感度であるため蛍光イメージングなどに有用である。 The fluorescent nanoparticles according to this embodiment are useful for fluorescence imaging and the like because of their high sensitivity.

Claims (7)

  1.  標的物質に結合する標的物質認識物質が表面に担持された蛍光ナノ粒子であって、
     100pmol/Lの濃度で前記蛍光ナノ粒子を含む100μLの液体を、0.1pmol/mmの密度で28.3mmの面積にわたって前記標的物質が固定化された基板に接触させ、4℃で1時間攪拌させた際の前記標的物質に結合する前記蛍光ナノ粒子の割合が1.5%以上である、
     蛍光ナノ粒子。
    Fluorescent nanoparticles on which a target substance recognition substance that binds to a target substance is supported on the surface.
    The 100μL of liquid containing the fluorescent nanoparticles at a concentration of 100 pmol / L, is brought into contact with the substrate on which the target substance is immobilized over an area of 28.3 mm 2 at a density of 0.1pmol / mm 2, 1 at 4 ° C. The proportion of the fluorescent nanoparticles bound to the target substance when agitated for a time is 1.5% or more.
    Fluorescent nanoparticles.
  2.  前記標的物質認識物質は、アビジン、ストレプトアビジンおよびニュートラアビジンからなる群より選ばれる少なくとも1種である、請求項1に記載の蛍光ナノ粒子。 The fluorescent nanoparticles according to claim 1, wherein the target substance recognizing substance is at least one selected from the group consisting of avidin, streptavidin and neutravidin.
  3.  前記標的物質はビオチンである、請求項1または2に記載の蛍光ナノ粒子。 The fluorescent nanoparticles according to claim 1 or 2, wherein the target substance is biotin.
  4.  標的物質に結合する標的物質認識物質が表面に担持された蛍光ナノ粒子の製造方法であって、
     マレイミド基が導入された蛍光ナノ粒子を準備する工程と、
     前記標的物質認識物質にチオール基を導入する工程と、
     前記蛍光ナノ粒子に導入されたマレイミド基と前記標的物質認識物質に導入されたチオール基とを反応させる工程と、
     を有し、
     前記チオール基を導入する工程と、前記マレイミド基と前記チオール基とを反応させる工程とは0℃~8℃で行われる、
     蛍光ナノ粒子の製造方法。
    A method for producing fluorescent nanoparticles in which a target substance recognition substance that binds to a target substance is supported on the surface.
    The process of preparing fluorescent nanoparticles with maleimide groups introduced,
    The step of introducing a thiol group into the target substance recognition substance and
    A step of reacting the maleimide group introduced into the fluorescent nanoparticles with the thiol group introduced into the target substance recognizing substance, and
    Have,
    The step of introducing the thiol group and the step of reacting the maleimide group with the thiol group are carried out at 0 ° C. to 8 ° C.
    Method for producing fluorescent nanoparticles.
  5.  前記マレイミド基が導入された前記蛍光ナノ粒子を準備する工程は、
     ギ酸処理をされていない蛍光ナノ粒子にアミノ基を導入する工程と、
     前記蛍光ナノ粒子に導入された前記アミノ基に、マレイミド基およびN-ヒドロキシコハク酸イミド基を含む化合物の前記N-ヒドロキシコハク酸イミド基を反応させる工程と、を有する、
     請求項4に記載の蛍光ナノ粒子の製造方法。
    The step of preparing the fluorescent nanoparticles into which the maleimide group has been introduced is
    The process of introducing an amino group into fluorescent nanoparticles that have not been treated with formic acid,
    It comprises a step of reacting the amino group introduced into the fluorescent nanoparticles with the N-hydroxysuccinimide group of a compound containing a maleimide group and an N-hydroxysuccinimide group.
    The method for producing fluorescent nanoparticles according to claim 4.
  6.  前記マレイミド基が導入された前記蛍光ナノ粒子を準備する工程は、
     前記蛍光ナノ粒子にアミノ基を導入する工程の後、かつ前記アミノ基に前記N-ヒドロキシコハク酸イミド基を反応させる工程の前に、前記アミノ基を導入された前記蛍光ナノ粒子を有機溶媒で洗浄して水を除去する工程をさらに有する、
     請求項5に記載の蛍光ナノ粒子の製造方法。
    The step of preparing the fluorescent nanoparticles into which the maleimide group has been introduced is
    After the step of introducing an amino group into the fluorescent nanoparticles and before the step of reacting the amino group with the N-hydroxysuccinimide group, the fluorescent nanoparticles introduced with the amino group are subjected to an organic solvent. Further having a step of washing and removing water,
    The method for producing fluorescent nanoparticles according to claim 5.
  7.  前記標的物質認識物質は、アビジン、ストレプトアビジンおよびニュートラアビジンからなる群より選ばれる少なくとも1種である、請求項4~6のいずれか一項に記載の蛍光ナノ粒子の製造方法。 The method for producing fluorescent nanoparticles according to any one of claims 4 to 6, wherein the target substance recognizing substance is at least one selected from the group consisting of avidin, streptavidin and neutravidin.
PCT/JP2020/046420 2020-03-19 2020-12-11 Fluorescent nanoparticles and method for manufacturing fluorescent nanoparticles WO2021186813A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022508058A JPWO2021186813A1 (en) 2020-03-19 2020-12-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-049733 2020-03-19
JP2020049733 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021186813A1 true WO2021186813A1 (en) 2021-09-23

Family

ID=77769483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046420 WO2021186813A1 (en) 2020-03-19 2020-12-11 Fluorescent nanoparticles and method for manufacturing fluorescent nanoparticles

Country Status (2)

Country Link
JP (1) JPWO2021186813A1 (en)
WO (1) WO2021186813A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245899A (en) * 2002-02-22 2003-09-02 Tama Tlo Kk Optical driving method for biofunctional molecule, and micro-nanomachine
WO2015141856A1 (en) * 2014-03-20 2015-09-24 コニカミノルタ株式会社 Probe reagent and fish using probe reagent
JP2018068276A (en) * 2016-04-25 2018-05-10 株式会社リコー Inspection device and production method thereof, inspection method, inspection kit and transfer medium for inspection device production method
JP2019503416A (en) * 2015-12-29 2019-02-07 ロレアル Fluorescent particulate material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003245899A (en) * 2002-02-22 2003-09-02 Tama Tlo Kk Optical driving method for biofunctional molecule, and micro-nanomachine
WO2015141856A1 (en) * 2014-03-20 2015-09-24 コニカミノルタ株式会社 Probe reagent and fish using probe reagent
JP2019503416A (en) * 2015-12-29 2019-02-07 ロレアル Fluorescent particulate material
JP2018068276A (en) * 2016-04-25 2018-05-10 株式会社リコー Inspection device and production method thereof, inspection method, inspection kit and transfer medium for inspection device production method

Also Published As

Publication number Publication date
JPWO2021186813A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
US11054417B2 (en) Fluorescent nanoparticles for biomolecular staining and manufacturing method for same
US10551386B2 (en) Biological substance detection method
JP7147724B2 (en) Staining agent for tissue staining, method for producing staining agent for tissue staining, and tissue staining kit containing staining agent for tissue staining
EP2613138B1 (en) Biological substance detection method
EP3810721B1 (en) Fluorescent particles with molecularly imprinted fluorescent polymer shells for cell staining applications in cytometry and microscopy
JP6536706B2 (en) Resin particles for fluorescent labeling
WO2015133523A1 (en) Integrated phosphor nanoparticle marking agent, and fluorescent immunostaining method employing same
JP6614161B2 (en) Phosphor integrated nanoparticles used for fluorescence observation
Zhang et al. Preparation of fluorescence-encoded microspheres in a core–shell structure for suspension arrays
JP6237194B2 (en) Dyeing method
WO2021186813A1 (en) Fluorescent nanoparticles and method for manufacturing fluorescent nanoparticles
CN112831156A (en) Polymer dot and preparation method and application thereof
JP6187170B2 (en) Fluorescent dye-containing resin particles, fluorescent dye-containing resin particle set for tissue multiple staining containing the fluorescent dye-containing resin particles, and tissue multiple staining method using the fluorescent dye-containing resin particles
JP2023109473A (en) fluorescent nanoparticles
JP6447679B2 (en) Fluorescent dye-containing resin particles and fluorescent dye-containing resin particle set for tissue multiple staining containing the fluorescent dye-containing resin particles
US20190033181A1 (en) Staining agent for staining tissue, production method for staining agent for staining tissue and tissue staining kit including staining agent for staining tissue
WO2021230134A1 (en) Image formation method
JP2019174492A (en) Phosphor integrated nanoparticle used for fluorescence observation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925146

Country of ref document: EP

Kind code of ref document: A1