JP2023109473A - fluorescent nanoparticles - Google Patents

fluorescent nanoparticles Download PDF

Info

Publication number
JP2023109473A
JP2023109473A JP2022011009A JP2022011009A JP2023109473A JP 2023109473 A JP2023109473 A JP 2023109473A JP 2022011009 A JP2022011009 A JP 2022011009A JP 2022011009 A JP2022011009 A JP 2022011009A JP 2023109473 A JP2023109473 A JP 2023109473A
Authority
JP
Japan
Prior art keywords
nanoparticles
fluorescent
fluorescent nanoparticles
resin
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022011009A
Other languages
Japanese (ja)
Inventor
義一 栗原
Yoshikazu Kurihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2022011009A priority Critical patent/JP2023109473A/en
Publication of JP2023109473A publication Critical patent/JP2023109473A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

To provide a fluorescent nanoparticles with good dispersibility.SOLUTION: A fluorescent nanoparticle is provided, comprising a nanoparticle containing a resin and fluorescent dye encapsulated in the resin, a sugar with a carboxyl group or salt thereof bound to the nanoparticle, a binding substance bound to the nanoparticle via the sugar and destined to bind to a target substance.SELECTED DRAWING: Figure 1

Description

本発明は、蛍光ナノ粒子に関する。 The present invention relates to fluorescent nanoparticles.

病理診断では、免疫染色(immunohistochemistry;IHC)やin situ hybridization(ISH)と呼ばれる、標本の分子情報の発現を確認するための分子を標的とした染色を施し、遺伝子やタンパク質の発現異常といった機能異常を診断する観察が行われている。免疫染色には、例えば、酵素を用いた色素染色法(DAB染色等)が用いられる。 In pathological diagnosis, immunohistochemistry (IHC) and in situ hybridization (ISH), which are called immunohistochemistry (IHC) and in situ hybridization (ISH), are performed to target molecules for confirming the expression of molecular information in specimens, and functional abnormalities such as gene and protein expression abnormalities are detected. Observations are being made to diagnose For immunostaining, for example, a dye staining method using an enzyme (DAB staining, etc.) is used.

しかしながら、DAB染色のような酵素標識による染色は、染色濃度が温度・時間などの環境条件により大きく左右されるため、染色濃度から実際の抗原等の量を見積もることが難しいという課題がある。そのため、病理診断における免疫観察では、酵素標識による染色の代わりに、蛍光標識を用いる蛍光標識法も行われている。 However, staining with an enzyme label such as DAB staining has the problem that the staining concentration is greatly affected by environmental conditions such as temperature and time, so it is difficult to estimate the actual amount of antigen etc. from the staining concentration. Therefore, in immunological observation in pathological diagnosis, a fluorescent labeling method using fluorescent labeling is also performed instead of staining with enzyme labeling.

この方法はDAB染色と比べて定量性に優れるという特徴がある。蛍光標識法は、蛍光色素で修飾された抗体を用いて対象となる抗原を染色して観察することで抗原量を測るものである。 This method is characterized by superior quantification compared to DAB staining. The fluorescence labeling method measures the amount of the antigen by staining the target antigen with an antibody modified with a fluorescent dye and observing the stain.

従来、蛍光標識に用いるものとして、蛍光色素を含む樹脂粒子に標的物質に結合する物質としてのストレプトアビジンを直接的に結合させた蛍光ナノ粒子を含む染色液が知られている。たとえば、特許文献1は、ストレプトアビジンが結合した蛍光ナノ粒子を開示している。 Conventionally, staining solutions containing fluorescent nanoparticles, which are obtained by directly binding streptavidin as a substance that binds to a target substance to resin particles containing a fluorescent dye, have been known for use in fluorescent labeling. For example, US Pat. No. 6,200,001 discloses streptavidin-conjugated fluorescent nanoparticles.

特表2008-543982号公報Japanese Patent Publication No. 2008-543982

上記の特許文献1に記載されているような蛍光ナノ粒子を用いて、高精度な染色を行うためには、蛍光ナノ粒子が凝集せず、良好な分散性を有することが好ましい。本発明の目的は、良好な分散性を有する蛍光ナノ粒子を提供することである。 In order to perform high-precision staining using the fluorescent nanoparticles described in Patent Document 1, it is preferable that the fluorescent nanoparticles do not aggregate and have good dispersibility. It is an object of the present invention to provide fluorescent nanoparticles with good dispersibility.

本発明の実施の形態に係る蛍光ナノ粒子は、樹脂および前記樹脂に内包された蛍光色素を含むナノ粒子と、前記ナノ粒子に結合した、カルボキシル基またはその塩を有する糖と、前記糖を介して前記ナノ粒子に結合した、標的物質に結合する結合物質と、を有する。 Fluorescent nanoparticles according to an embodiment of the present invention include nanoparticles containing a resin and a fluorescent dye encapsulated in the resin, a sugar having a carboxyl group or a salt thereof bonded to the nanoparticles, and and a binding substance that binds to a target substance and is bound to the nanoparticles by means of a binding substance.

本発明によれば、良好な分散性を有する蛍光ナノ粒子を提供することができる。 According to the present invention, fluorescent nanoparticles having good dispersibility can be provided.

図1Aは、蛍光ナノ粒子を示す模式図であり、図1Bは、蛍光ナノ粒子による標識の一例を示す模式図である。FIG. 1A is a schematic diagram showing fluorescent nanoparticles, and FIG. 1B is a schematic diagram showing an example of labeling with fluorescent nanoparticles. 図2は、本発明の実施の形態に係る蛍光ナノ粒子の製造方法を示す図である。FIG. 2 shows a method for producing fluorescent nanoparticles according to an embodiment of the present invention. 図3A~図3Cは実施例に係る蛍光ナノ粒子を用いた染色結果を示す図であり、図3D、図3Eは比較例に係る蛍光ナノ粒子を用いた染色結果を示す図である。3A to 3C are diagrams showing the results of staining using fluorescent nanoparticles according to Examples, and FIGS. 3D and 3E are diagrams showing the results of staining using fluorescent nanoparticles according to Comparative Examples.

[蛍光ナノ粒子]
図1Aは本発明の実施の形態に係る蛍光ナノ粒子10を模式的に示す図である。蛍光ナノ粒子10は、樹脂20および樹脂20に内包された蛍光色素30を含むナノ粒子40と、ナノ粒子40に結合した、カルボキシル基またはその塩を有する糖50と、糖50を介してナノ粒子40に結合した、標的物質100(図1B参照)に結合する結合物質60とを有する。蛍光ナノ粒子10は、観察対象を蛍光染色(蛍光標識)するために用いられる。
[Fluorescent nanoparticles]
FIG. 1A is a diagram schematically showing fluorescent nanoparticles 10 according to an embodiment of the present invention. Fluorescent nanoparticles 10 are composed of nanoparticles 40 containing resin 20 and fluorescent dye 30 encapsulated in resin 20, sugar 50 having a carboxyl group or a salt thereof bound to nanoparticles 40, and nanoparticles via sugar 50. 40 and a binding substance 60 that binds to the target substance 100 (see FIG. 1B). The fluorescent nanoparticles 10 are used for fluorescently staining (fluorescently labeling) an observation target.

図1Bは、蛍光ナノ粒子10による標識の一例を示す模式図である。図1Bでは、細胞70中の抗原に、一次抗体80が結合し、一次抗体80に二次抗体90が結合している。そして、二次抗体90は標的物質100で修飾されている。 FIG. 1B is a schematic diagram showing an example of labeling with fluorescent nanoparticles 10. FIG. In FIG. 1B, antigen in cell 70 is bound by primary antibody 80 and primary antibody 80 is bound by secondary antibody 90 . A secondary antibody 90 is modified with a target substance 100 .

蛍光ナノ粒子10の結合物質60は、上記の標的物質100に結合することで、観察対象(例えば抗原)を標識する。蛍光ナノ粒子10による標識は輝点として観察可能であるため、観察対象を定量的に評価することに適する。このような蛍光ナノ粒子10が、分散性が悪く、凝集する傾向があると、輝点が凝集した状態で観察されてしまい、定量的に評価することに支障をきたす。以下、蛍光ナノ粒子の各構成要素について説明する。 The binding substance 60 of the fluorescent nanoparticles 10 binds to the target substance 100 described above, thereby labeling an observation target (for example, an antigen). Since the label by the fluorescent nanoparticles 10 can be observed as a bright spot, it is suitable for quantitative evaluation of the observed object. If such fluorescent nanoparticles 10 have poor dispersibility and tend to aggregate, the bright spots are observed in an aggregated state, which hinders quantitative evaluation. Each component of the fluorescent nanoparticles will be described below.

(ナノ粒子)
ナノ粒子は蛍光ナノ粒子の母体である。ナノ粒子は、マトリックスとなる樹脂と、蛍光色素とを含む。
(Nanoparticles)
Nanoparticles are the matrix of fluorescent nanoparticles. The nanoparticles contain a matrix resin and a fluorescent dye.

ナノ粒子を構成する樹脂の種類は特に制限されない。たとえば、ナノ粒子を構成する樹脂として、次のような熱可塑性樹脂または熱硬化性樹脂を用いることができる。熱可塑性樹脂の例には、ポリスチレン、ポリアクリロニトリル、ポリフラン、または、これに類する樹脂が含まれる。熱硬化性樹脂の例には、ポリキシレン、ポリ乳酸、グリシジルメタクリレート、メラミン樹脂、ポリウレア、ポリベンゾグアナミン、ポリアミド、フェノール樹脂、多糖類またはこれに類する樹脂が含まれる。 The type of resin that constitutes the nanoparticles is not particularly limited. For example, the following thermoplastic resins or thermosetting resins can be used as resins constituting the nanoparticles. Examples of thermoplastic resins include polystyrene, polyacrylonitrile, polyfuran, or similar resins. Examples of thermosetting resins include polyxylene, polylactic acid, glycidyl methacrylate, melamine resins, polyureas, polybenzoguanamines, polyamides, phenolic resins, polysaccharides or the like.

これらの樹脂の内、特に、メラミン樹脂、尿素樹脂が好ましい。特に、メラミン樹脂は、キシレン等の有機溶媒を用いる脱水、透徹、封入などの処理によっても、ナノ粒子に内包させた蛍光色素の溶出を抑制することができる点で好ましい。 Among these resins, melamine resins and urea resins are particularly preferred. In particular, the melamine resin is preferable because it can suppress the elution of the fluorescent dye encapsulated in the nanoparticles even by treatments such as dehydration, penetration, and encapsulation using an organic solvent such as xylene.

ナノ粒子は、その表面に直接的または間接的に糖および結合物質を有する。したがってナノ粒子は、これらを結合させるための官能基を備えることが好ましい。このような官能基としては、本発明の属する技術分野において様々な物質を結合させる場合と同様の官能基を利用することができるが、例えば、エポキシ基またはアミノ基が好ましい。 Nanoparticles have sugars and binding substances directly or indirectly on their surface. The nanoparticles are therefore preferably provided with functional groups for binding them. As such a functional group, the same functional group as in the technical field to which the present invention belongs can be used for binding various substances, but for example, an epoxy group or an amino group is preferable.

官能基を有するナノ粒子の調製方法は特に限定されるものではないが、例えば、ナノ粒子を構成する熱可塑性樹脂または熱硬化性樹脂を合成するためのモノマーとして、所定の官能基をあらかじめ側鎖に有する(コ)モノマーを(共)重合させるか、熱可塑性樹脂または熱硬化性樹脂の合成後に、それを構成している樹脂モノマー単位が有する官能基を試薬処理して前記所定の官能基に変換する方法を用いることができる。 The method for preparing nanoparticles having functional groups is not particularly limited. (co)polymerizing the (co)monomers in the above, or after synthesizing the thermoplastic resin or thermosetting resin, treating the functional groups of the resin monomer units constituting it with reagents to form the predetermined functional groups A method of conversion can be used.

熱可塑性樹脂を用いてナノ粒子を製造する場合の実施形態の例には、スチレンと共にグリシジルメタクリレートをモノマーとして用いて共重合させることにより、表面にエポキシ基を有するポリスチレン系樹脂のナノ粒子を製造する実施形態、あるいはスチレンと共にスチレンカルボン酸やスチレンスルホン酸を共重合させて、表面にカルボン酸、スルホン酸を有するポリスチレン系樹脂のナノ粒子を製造する実施形態、あるいはスチレンと共にアミノスルホン酸を共重合させて表面にアミノ基を有するポリスチレン系樹脂のナノ粒子を製造する実施形態が含まれる。なお、前記グリシジルメタクリレートが有するエポキシ基は、所定の処理によりアミノ基に変換することもできる。 An example of an embodiment in the case of producing nanoparticles using a thermoplastic resin is to produce nanoparticles of a polystyrene-based resin having epoxy groups on the surface by copolymerizing styrene and glycidyl methacrylate as monomers. An embodiment, or an embodiment in which styrene carboxylic acid or styrene sulfonic acid is copolymerized with styrene to produce polystyrene resin nanoparticles having carboxylic acid or sulfonic acid on the surface, or an amino sulfonic acid is copolymerized with styrene. An embodiment in which polystyrene-based resin nanoparticles having amino groups on the surface are produced by using a method is included. In addition, the epoxy group of the glycidyl methacrylate can be converted to an amino group by a predetermined treatment.

一方、熱硬化性樹脂を用いてナノ粒子を製造する場合の実施形態の例には、メラミン樹脂原料(例えば三和ケミカル社製MX-035)をモノマーとして用いて共重合させることにより、メラミン系樹脂のナノ粒子を製造する実施形態が含まれる。 On the other hand, in an embodiment of producing nanoparticles using a thermosetting resin, a melamine resin raw material (for example, MX-035 manufactured by Sanwa Chemical Co., Ltd.) is used as a monomer and copolymerized to obtain a melamine-based Included are embodiments that produce nanoparticles of resin.

(蛍光色素)
蛍光色素は、ナノ粒子に内包されている。蛍光色素は、蛍光色素を含む溶媒中で上記の樹脂のモノマーを重合させることでナノ粒子に内包される。
(Fluorescent dye)
A fluorescent dye is encapsulated in the nanoparticles. The fluorescent dye is encapsulated in the nanoparticles by polymerizing the above resin monomer in a solvent containing the fluorescent dye.

ナノ粒子に内包されている蛍光色素は、ナノ粒子に物理的または化学的な力で結合しされていると考えられる。 It is believed that the fluorescent dyes encapsulated in the nanoparticles are bound to the nanoparticles by physical or chemical forces.

蛍光色素の量は、蛍光ナノ粒子の全重量に対して、1%~10%であることが好ましい。蛍光色素の量が少ないと組織や細胞などの自家蛍光に対して十分な蛍光を確保することが出来ず、また撮影時の退色が問題となってくる。また、蛍光色素の量が多いと蛍光分子同士の分子間相互作用により濃度消光が起きて輝度が低下する。 The amount of fluorescent dye is preferably 1% to 10% with respect to the total weight of the fluorescent nanoparticles. If the amount of fluorescent dye is too small, sufficient fluorescence cannot be ensured against the autofluorescence of tissues and cells, and color fading during imaging becomes a problem. Further, when the amount of the fluorescent dye is large, concentration quenching occurs due to intermolecular interaction between fluorescent molecules, resulting in a decrease in luminance.

蛍光色素の例には、ローダミン系色素分子、BODIPY系色素分子、スクアリリウム系色素分子、芳香族炭化水素系色素分子、半導体ナノ粒子、または、これらの組合せが含まれる。 Examples of fluorescent dyes include rhodamine-based dye molecules, BODIPY-based dye molecules, squarylium-based dye molecules, aromatic hydrocarbon-based dye molecules, semiconductor nanoparticles, or combinations thereof.

ローダミン系色素分子などの蛍光色素は、比較的耐光性が高いため好ましく、なかでも芳香族炭化水素系色素分子に属するペリレン(perylene)やピレン(pyrene)、ペリレンジイミド(perylene diimide)が好ましい。 Fluorescent dyes such as rhodamine-based dye molecules are preferable because they have relatively high light resistance, and among them, perylene, pyrene, and perylene diimide belonging to aromatic hydrocarbon-based dye molecules are preferable.

ローダミン系色素分子の例には、5-カルボキシ-ローダミン、6-カルボキシ-ローダミン、5,6-ジカルボキシ-ローダミン、ローダミン 6G、テトラメチルローダミン、X-ローダミン、テキサスレッド、Spectrum Red、LD700 PERCHLORATE、それらの誘導体などが含まれる。 Examples of rhodamine dye molecules include 5-carboxy-rhodamine, 6-carboxy-rhodamine, 5,6-dicarboxy-rhodamine, rhodamine 6G, tetramethylrhodamine, X-rhodamine, Texas Red, Spectrum Red, LD700 PERCHLORATE, Derivatives thereof and the like are included.

BODIPY系色素分子の例には、BODIPY FL、BODIPY TMR、BODIPY 493/503、BODIPY 530/550、BODIPY 558/568、BODIPY 564/570、BODIPY 576/589、BODIPY 581/591、BODIPY 630/650、BODIPY 650/665(以上インビトロジェン社製)、それらの誘導体などが含まれる。 Examples of BODIPY-based dye molecules include BODIPY FL, BODIPY TMR, BODIPY 493/503, BODIPY 530/550, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, BODIPY 6 30/650, BODIPY 650/665 (manufactured by Invitrogen), derivatives thereof and the like are included.

スクアリリウム系色素分子の例には、SRfluor 680-Carboxylate、1,3-Bis[4-(dimethylamino)-2-hydroxyphenyl]-2,4-dihydroxycyclobutenediylium dihydroxide, bis、1,3-Bis[4-(dimethylamino)phenyl]-2,4-dihydroxycyclobutenediylium dihydroxide, bis、2-(4-(Diethylamino)-2-hydroxyphenyl)-4-(4-(diethyliminio)-2-hydroxycyclohexa-2,5-dienylidene)-3-oxocyclobut-1-enolate、2-(4-(Dibutylamino)-2-hydroxyphenyl)-4-(4-(dibutyliminio)-2-hydroxycyclohexa-2,5-dienylidene)-3-oxocyclobut-1-enolate、2-(8-Hydroxy-1,1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-9-yl)-4-(8-hydroxy-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H-pyrido[3,2,1-ij]quinolinium-9(5H)-ylidene)-3-oxocyclobut-1-enolate、それらの誘導体などが含まれる。 Examples of squarylium-based dye molecules include SRfluor 680-Carboxylate, 1,3-Bis[4-(dimethylamino)-2-hydroxyphenyl]-2,4-dihydroxycyclobutenediylium dihydroxide, bis, 1,3-Bis[4-( dimethylamino ) phenyl]-2,4-dihydroxycyclobutenediylium dihydroxide, bis, 2-(4-(Diethylamino)-2-hydroxyphenyl)-4-(4-(diethyliminio)-2-hydroxycyclohexa-2,5 -dienylidene) -3-oxocyclobut -1-enolate, 2-(4-(Dibutylamino)-2-hydroxyphenyl)-4-(4-(dibutylimino)-2-hydroxycyclohexa-2,5-dienylidene)-3-oxocyclobut-1-enolate, 2-( 8-Hydroxy-1,1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-9-yl)-4-(8-hydroxy- 1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H-pyrido[3,2,1-ij]quinolinium-9(5H)-ylidene)-3-oxocyclobut-1-enolate, Derivatives thereof and the like are included.

芳香族炭化水素系色素分子の例には、N, N-Bis-(2,6-diisopropylphenyl)-1,6,7,12-(4-tert-butylphenoxy)-perylene-3,4,9,10-tetracarbonacid diimide、N,N’-Bis(2,6-diisopropylphenyl)-1,6,7,12-tetraphenoxyperylene-3,4:9,10-tetracarboxdiimide、N,N’-Bis(2,6-diisopropylphenyl)perylene-3,4,9,10-bis(dicarbimide)、16,N,N'-Bis(2,6-dimethylphenyl)perylene-3,4,9,10-tetracarboxylic diimide、4,4’-[(8,16-Dihydro-8,16-dioxodibenzo[a,j]perylene-2,10-diyl)dioxy]dibutyric acid、2,10-Dihydroxy-dibenzo[a,j]perylene-8,16-dione、2,10-Bis(3-aminopropoxy)dibenzo[a,j]perylene-8,16-dione, 3,3'-[(8,16-Dihydro-8,16-dioxodibenzo[a,j]perylen-2,10-diyl)dioxy]dipropylamine、17-BIS(Octyloxy)Anthra[9,1,2-cde-]Benzo[RST]Pentaphene-5-10-Dione、Octadecanoicacid, 5,10-dihydro-5,10-dioxoanthra[9,1,2-cde]benzo[rst]pentaphene-16,17-diylester、Dihydroxydibenzanthrone、Benzenesulfonic acid, 4,4’,4’’,4’’’-[[2,9-bis[2,6-bis(1-methylethyl)phenyl]-1,2,3,8,9,10-hexahydro-1,3,8,10-tetraoxoanthra[2,1,9-def:6,5,10-d’e’f’]diisoquinoline-5,6,12,13-tetrayl]tetrakis(oxy)]tetrakis-,Benzeneethanaminium、 4,4’,4’’,4’’’-[[2,9-bis[2,6-bis(1-methylethyl)phenyl]-1,2,3,8,9,10-hexahydro-1,3,8,10-tetraoxoanthra[2,1,9-def:6,5,10-d‘e’f‘]diisoquinoline-5,6,12,13-tetrayl]tetrakis(oxy)]tetrakis[N,N,N-trimethyl-]、それらの誘導体などが含まれる。 Examples of aromatic hydrocarbon dye molecules include N,N-Bis-(2,6-diisopropylphenyl)-1,6,7,12-(4-tert-butylphenyl)-perylene-3,4,9, 10-tetracarbonacid diimide, N,N'-Bis (2,6-diisopropylphenyl)-1,6,7,12-tetraphenylene-3,4: 9,10-tetracarboxdiimide, N,N'-Bis(2,6- diisopropylphenyl)perylene-3,4,9,10-bis(dicarbimide), 16,N,N'-Bis(2,6-dimethylphenyl)perylene-3,4,9,10-tetracarboxylic diimide, 4,4'- [(8,16-Dihydro-8,16-dioxodibenzo[a,j]perylene-2,10-diyl)dioxy]dibutyric acid, 2,10-Dihydroxy-dibenzo[a,j]perylene-8,16-dione , 2,10-Bis(3-aminopropoxy)dibenzo[a,j]perylene-8,16-dione, 3,3′-[(8,16-Dihydro-8,16-dioxodibenzo[a,j]perylene- 2,10-diyl)dioxy]dipropylamine, 17-BIS(Octyloxy)Anthra[9,1,2-cde-]Benzo[RST]Pentaphene-5-10-Dione, Octadecanoicacid, 5,10-dihydro-5,10 -dioxoanthra[9,1,2-cde]benzo[rst]pentaphene-16,17-diylester, Dihydroxydibenzothrone, Benzenesulfonic acid, 4,4',4'',4'''-[[2,9-bis[ 2,6-bis(1-methylethyl)phenyl]-1,2,3,8,9,10-hexahydro-1,3,8,10-tetraoxoanthra[2,1,9-def: 6,5,10 -d'e'f']diisoquinoline-5,6,12,13-tetrayl]tetrakis(oxy)]tetrakis-, Benzeneethanaminium, 4,4',4'',4'''-[[2,9- bis[2,6-bis(1-methylethyl)phenyl]-1,2,3,8,9,10-hexahydro-1,3,8,10-tetraoxoanthra[2,1,9-def:6,5 , 10-d'e'f']diisoquinoline-5,6,12,13-tetrayl]tetrakis(oxy)]tetrakis[N,N,N-trimethyl-], derivatives thereof and the like.

半導体ナノ粒子を構成する半導体の種類は、蛍光を放出できるものであれば特に限定されない。半導体ナノ粒子を構成する半導体は、例えばII-VI族化合物半導体、III-V族化合物半導体、またはIV族半導体である。半導体ナノ粒子を構成する半導体の例には、CdSe、CdS、CdTe、ZnSe、ZnS、ZnTe、InP、InN、InAs、InGaP、GaP、GaAs、SiおよびGeが含まれる。 The type of semiconductor that constitutes the semiconductor nanoparticles is not particularly limited as long as it can emit fluorescence. Semiconductors constituting semiconductor nanoparticles are, for example, II-VI group compound semiconductors, III-V group compound semiconductors, or IV group semiconductors. Examples of semiconductors that make up the semiconductor nanoparticles include CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, InP, InN, InAs, InGaP, GaP, GaAs, Si and Ge.

(糖)
糖はナノ粒子の表面に結合している。図1Aに示されるように、糖50は水酸基(-OH)を有するので、これが良好な分散性を有する蛍光ナノ粒子が得られる一因と推定される。
(sugar)
Sugars are attached to the surface of the nanoparticles. As shown in FIG. 1A, the sugar 50 has a hydroxyl group (—OH), which is presumed to be a factor in obtaining fluorescent nanoparticles with good dispersibility.

また、本実施の形態において、糖は、カルボキシル基またはその塩を有する。カルボキシル基またはその塩は、条件によって、負の電荷を帯びることができる。これにより、蛍光ナノ粒子の間に反発力が生じさせることができる。これも良好な分散性を有する蛍光ナノ粒子が得られる一因と推定される。 Also, in this embodiment, the sugar has a carboxyl group or a salt thereof. A carboxyl group or a salt thereof can be negatively charged depending on the conditions. Thereby, a repulsive force can be generated between the fluorescent nanoparticles. This is also presumed to be a factor in obtaining fluorescent nanoparticles with good dispersibility.

また、カルボキシル基またはその塩は、糖50をナノ粒子40へ結合させることと、糖50に結合物質60を結合させることにも役立つ(図1A参照)。具体的には、糖が有するカルボキシル基またはその塩と、ナノ粒子/結合物質が有する官能基との間に結合が形成される。結合の例には、アミド結合が含まれる。 The carboxyl group or salt thereof also serves to bind sugar 50 to nanoparticle 40 and bind substance 60 to sugar 50 (see FIG. 1A). Specifically, a bond is formed between the carboxyl group of the sugar or its salt and the functional group of the nanoparticle/binding substance. Examples of bonds include amide bonds.

糖の種類は、カルボキシル基またはその塩を有する糖であれば特に限定されない。カルボキシル基またはその塩を有する糖の例には、カルボキシアルキルデキストラン、カルボキシメチルデキストラン、カルボキシエチルデキストラン、カルボキシルメチルセルロース、カルボキシメチルでんぷん、カルボキシメチルキチン、カルボキシメチルキトサン、サクシニルキトサン、サクシニルカルボキシメチルキトサン、またはこれらの塩が含まれる。 The type of sugar is not particularly limited as long as it has a carboxyl group or a salt thereof. Examples of sugars having a carboxyl group or a salt thereof include carboxyalkyldextran, carboxymethyldextran, carboxyethyldextran, carboxymethylcellulose, carboxymethylstarch, carboxymethylchitin, carboxymethylchitosan, succinylchitosan, succinylcarboxymethylchitosan, or these. contains salt of

(結合物質)
図1Aに示されるように、本実施の形態に係る蛍光ナノ粒子10は、糖50を介してナノ粒子40に結合した結合物質60を有する。結合物質60の種類は、観察対象に直接または間接的に結合した標的物質100に結合することができれば特に制限されない。
(binding substance)
As shown in FIG. 1A, fluorescent nanoparticles 10 according to this embodiment have binding substances 60 bound to nanoparticles 40 via sugars 50 . The type of binding substance 60 is not particularly limited as long as it can bind to the target substance 100 directly or indirectly bound to the observation target.

結合物質の量は、標的物質に十分に結合させるという観点から、粒径や結合物質の大きさにもよるが蛍光ナノ粒子1分子に対して、50個~1000個程度であることが好ましい。 From the viewpoint of sufficient binding to the target substance, the amount of the binding substance is preferably about 50 to 1000 per fluorescent nanoparticle molecule, depending on the particle size and the size of the binding substance.

結合物質の例には、アビジン、ストレプトアビジン、ニュートラアビジン、抗体、核酸が含まれる。 Examples of binding substances include avidin, streptavidin, neutravidin, antibodies, nucleic acids.

標的物質およびそれに結合する結合物質の組み合わせの例には、ビオチン-アビジン、ビオチン-ストレプトアビジン、ビオチン-ニュートラアビジン、抗原-抗体、核酸-核酸、抗体-核酸の組み合わせが含まれる。標的物質と結合物質との間の結合は、特異的な結合であることが好ましい。ここで特異的な結合とは、本発明の属する技術分野における一般的な用語として解釈することが可能であるが、結合定数(K)またはその逆数である解離定数(K)によって定義することも可能である。 Examples of combinations of target substances and binding substances that bind thereto include biotin-avidin, biotin-streptavidin, biotin-neutravidin, antigen-antibody, nucleic acid-nucleic acid, antibody-nucleic acid combinations. The binding between the target substance and the binding substance is preferably specific binding. Here, the specific binding, which can be interpreted as a general term in the technical field to which the present invention belongs, is defined by the association constant (K A ) or its reciprocal dissociation constant (K D ). is also possible.

すなわち、本発明で用いられる結合物質は、染色対象が有する標的物質に対する結合定数(K)が1×10~1×1015の範囲にあることが好ましい。結合定数(K)が当該範囲内にある場合は、その標的物質は、結合物質と特異的に結合する物質として取り扱うことができる。 That is, the binding substance used in the present invention preferably has a binding constant (K A ) for the target substance of the object to be stained in the range of 1×10 5 to 1×10 15 . If the binding constant (K A ) is within this range, the target substance can be treated as a substance that specifically binds to the binding substance.

(平均粒子径)
蛍光ナノ粒子の平均粒子径は、汎用の蛍光顕微鏡でも好適に輝点の観察を可能とする観点から、好ましくは30~300nmであり、より好ましくは40nm~200nmである。平均粒子径が300nmを超える場合、染色後の観察の際に細胞1個当たりの輝点数が減って輝点観察がしにくくなり、逆に平均粒子径が30nm未満の場合、細胞1個当たりの輝点数が増えて輝点観察がしにくくなるからである。
(Average particle size)
The average particle diameter of the fluorescent nanoparticles is preferably 30 to 300 nm, more preferably 40 to 200 nm, from the viewpoint of enabling suitable observation of bright spots even with a general-purpose fluorescence microscope. If the average particle diameter exceeds 300 nm, the number of bright spots per cell decreases during observation after staining, making it difficult to observe the bright spots. This is because the number of bright spots increases, making it difficult to observe the bright spots.

また、蛍光ナノ粒子10の平均粒子径は、分散性を良好にするという観点(後述する分散性の指標であるPdIが0.1以下となるという観点)から、30nm以上であることが好ましく、40nm以上であることがさらに好ましい。 In addition, the average particle diameter of the fluorescent nanoparticles 10 is preferably 30 nm or more from the viewpoint of improving the dispersibility (the viewpoint that PdI, which is an index of dispersibility described later, is 0.1 or less), It is more preferably 40 nm or more.

なお、平均粒子径は走査型電子顕微鏡で撮影した画像(SEM画像)に写っている各粒子(100個以上)の長径を測定し、その平均値とすることができる。 The average particle size can be obtained by measuring the long axis of each particle (100 or more particles) shown in an image (SEM image) taken with a scanning electron microscope and taking the average value.

(効果)
本実施の形態に係る蛍光ナノ粒子は、ナノ粒子の表面に、カルボキシル基またはその塩を有する糖が結合しているため、分散性が高い。したがって、本実施の形態に係る蛍光ナノ粒子を用いることで高精度な蛍光染色(蛍光標識)を行うことが可能となり、観察対象を高精度に観察または定量することも可能となる。
(effect)
The fluorescent nanoparticles according to the present embodiment have high dispersibility because sugars having a carboxyl group or a salt thereof are bound to the surfaces of the nanoparticles. Therefore, by using the fluorescent nanoparticles according to the present embodiment, it becomes possible to perform fluorescent staining (fluorescent labeling) with high precision, and it is possible to observe or quantify the observation target with high precision.

以下、本実施の形態に係る発明について実施例を参照して詳細に説明するが、本実施の形態に係る発明はこれらの実施例により限定されない。 Hereinafter, the invention according to this embodiment will be described in detail with reference to examples, but the invention according to this embodiment is not limited to these examples.

[蛍光ナノ粒子の製造]
図2は、実施例に係る蛍光ナノ粒子の製造方法を模式的に示す。図2を参照しつつ蛍光ナノ粒子の製造について説明する。
[Production of fluorescent nanoparticles]
FIG. 2 schematically shows a method for producing fluorescent nanoparticles according to an example. The production of fluorescent nanoparticles will be described with reference to FIG.

蛍光ナノ粒子の製造は以下のように実施した。 The production of fluorescent nanoparticles was carried out as follows.

(シード粒子の作製)
蛍光色素であるペリレンジイミド4.4mgを水20mLに溶解して得られた溶液に乳化重合用乳化剤である「エマルゲン(登録商標)430」(ポリオキシエチレンオレイルエーテル、花王(株)製)の5質量%水溶液を2mL加えた。この溶液をホットスターラー上で撹拌しながら70℃まで昇温させた後、この溶液にメラミン樹脂原料である「ニカラックMX-035」(日本カーバイド工業(株)製)を固形分量として0.14g加えた。さらに、この溶液に酸触媒であるドデシルベンゼンスルホン酸(関東化学(株)製)の10質量%水溶液を0.70mL加え、70℃に加熱して50分間撹拌し、さらに90℃に昇温して20分間撹拌して、メラミン樹脂の合成を行った。
(Preparation of seed particles)
To a solution obtained by dissolving 4.4 mg of perylene diimide, which is a fluorescent dye, in 20 mL of water, 5 of "Emulgen (registered trademark) 430" (polyoxyethylene oleyl ether, manufactured by Kao Corporation), which is an emulsifier for emulsion polymerization, was added. 2 mL of a mass % aqueous solution was added. After heating this solution to 70° C. while stirring it on a hot stirrer, 0.14 g of solid content of “Nikalac MX-035” (manufactured by Nippon Carbide Industry Co., Ltd.), which is a raw material for melamine resin, is added to this solution. rice field. Furthermore, 0.70 mL of a 10% by mass aqueous solution of dodecylbenzenesulfonic acid (manufactured by Kanto Kagaku Co., Ltd.), which is an acid catalyst, was added to this solution, heated to 70°C, stirred for 50 minutes, and further heated to 90°C. The mixture was stirred for 20 minutes to synthesize a melamine resin.

得られた樹脂粒子の分散液からの樹脂粒子の分離、さらに樹脂粒子に付着する余剰の樹脂原料や蛍光色素等の不純物を除くための洗浄を次のように行った。上記分散液を遠心分離機(クボタ(株)製マイクロ冷却遠心機3740)にて20000Gで90分間遠心分離し、上澄みを除去した後、分離された粒子に超純水を加え、超音波照射を行って再分散した。遠心分離、上澄み除去および超純水への再分散による処理を5回繰り返した。得られた樹脂粒子をシード粒子1とした。シード粒子の平均粒子径は20nm、粒子径の変動係数は12%であった。 The resin particles were separated from the resulting resin particle dispersion, and the resin particles were washed to remove excess resin raw materials and impurities such as fluorescent dyes adhering to the resin particles as follows. The above dispersion is centrifuged at 20000 G for 90 minutes in a centrifuge (Micro refrigerated centrifuge 3740 manufactured by Kubota Corporation), and after removing the supernatant, ultrapure water is added to the separated particles, and ultrasonic irradiation is performed. Went and re-dispersed. The treatment by centrifugation, supernatant removal and redispersion in ultrapure water was repeated five times. The obtained resin particles were referred to as seed particles 1. The seed particles had an average particle size of 20 nm and a coefficient of variation of the particle size of 12%.

(50nm狙いの蛍光ナノ粒子の製造)
蛍光色素であるペリレンジイミド1.9mgを水20mLに加えて溶解して得られた溶液に乳化重合用乳化剤である「エマルゲン(登録商標)430」(ポリオキシエチレンオレイルエーテル、花王(株)製)の5質量%水溶液を2mL加えた。この溶液をホットスターラー上で撹拌しながら70℃まで昇温させた後、この溶液にシード粒子1を5.0×1014個加え、得られた分散液にメラミン樹脂原料である「ニカラックMX-035」(日本カーバイド工業(株)製)を固形分量として0.06g加えた。この分散液に、酸触媒であるスルファミン酸(関東化学(株)製)の2.47質量%水溶液と酸触媒であるドデシルベンゼンスルホン酸の10質量%水溶液とを1:3の比率で混合して得られた酸溶液を0.70mL加え、70℃に加熱して50分間攪拌し、さらに90℃に昇温して20分間撹拌して、メラミン樹脂の合成を行った。
(Production of fluorescent nanoparticles aiming at 50 nm)
Emulgen (registered trademark) 430 (polyoxyethylene oleyl ether, manufactured by Kao Corporation), an emulsifier for emulsion polymerization, was added to a solution obtained by adding 1.9 mg of perylene diimide, a fluorescent dye, to 20 mL of water and dissolving it. 2 mL of a 5% by mass aqueous solution of was added. After raising the temperature of this solution to 70° C. while stirring it on a hot stirrer, 5.0×10 14 seed particles 1 are added to this solution, and the resulting dispersion liquid is a raw material for melamine resin, “Nicalac MX- 035" (manufactured by Nippon Carbide Industry Co., Ltd.) was added in an amount of 0.06 g as a solid content. This dispersion was mixed with a 2.47% by mass aqueous solution of sulfamic acid (manufactured by Kanto Kagaku Co., Ltd.) as an acid catalyst and a 10% by mass aqueous solution of dodecylbenzenesulfonic acid as an acid catalyst at a ratio of 1:3. 0.70 mL of the acid solution obtained above was added, heated to 70° C. and stirred for 50 minutes, and further heated to 90° C. and stirred for 20 minutes to synthesize a melamine resin.

得られた樹脂粒子の分散液からの樹脂粒子の分離、さらに樹脂粒子に付着する余剰の樹脂原料や蛍光色素等の不純物を除くための洗浄を次のように行った。上記分散液を遠心分離機(クボタ(株)製マイクロ冷却遠心機3740)にて20000Gで90分間遠心分離し、上澄みを除去した後、分離された粒子に超純水を加え、超音波照射を行って再分散した。遠心分離、上澄み除去および超純水への再分散による処理を5回繰り返した。このようにして図2の上段に示されるように、蛍光色素30を内包するナノ粒子40を得た。 The resin particles were separated from the resulting resin particle dispersion, and the resin particles were washed to remove excess resin raw materials and impurities such as fluorescent dyes adhering to the resin particles as follows. The above dispersion is centrifuged at 20000 G for 90 minutes in a centrifuge (Micro refrigerated centrifuge 3740 manufactured by Kubota Corporation), and after removing the supernatant, ultrapure water is added to the separated particles, and ultrasonic irradiation is performed. Went and re-dispersed. The treatment by centrifugation, supernatant removal and redispersion in ultrapure water was repeated five times. In this way, nanoparticles 40 encapsulating the fluorescent dye 30 were obtained as shown in the upper part of FIG.

[蛍光ナノ粒子の平均粒子径の測定]
蛍光ナノ粒子の分散液を基板上で室温にて一晩静置して乾燥させ、SEM(S-4800、日立ハイテク社製)を用いて観察および画像撮影を行った。得られた画像から任意の粒子1000個の粒子径を計測し、平均粒子径と粒子径の変動係数を算出した。上記のようにして得られたナノ粒子の粒子径は53.6nm、粒子径の変動係数は12%であった。
[Measurement of average particle size of fluorescent nanoparticles]
The dispersion of fluorescent nanoparticles was allowed to stand overnight on the substrate at room temperature to dry, and then observed and imaged using an SEM (S-4800, manufactured by Hitachi High-Tech Co., Ltd.). The particle diameter of 1000 arbitrary particles was measured from the obtained image, and the average particle diameter and the coefficient of variation of the particle diameter were calculated. The nanoparticles obtained as described above had a particle diameter of 53.6 nm and a coefficient of variation of the particle diameter of 12%.

(65nm狙いの蛍光ナノ粒子の製造)
上記の「(50nm狙いの蛍光ナノ粒子の製造)」において、蛍光色素ペリレンジイミドの量を2.5mg、エマルゲン430の5質量%水溶液の量を2.6mL、ニカラックMX-035の量を0.08gにて使用したこと以外は同様にして蛍光ナノ粒子を作製した。また、上記と同様の方法にて測定したナノ粒子の平均粒子径は65.9nm、粒子径の変動係数は10%であった。
(Production of fluorescent nanoparticles aimed at 65 nm)
In the above "(Production of fluorescent nanoparticles aimed at 50 nm)", the amount of fluorescent dye perylene diimide was 2.5 mg, the amount of 5% by mass Emulgen 430 aqueous solution was 2.6 mL, and the amount of Nicalac MX-035 was 0.5 mg. Fluorescent nanoparticles were made in the same manner, except that they were used in 08g. The nanoparticles had an average particle size of 65.9 nm and a variation coefficient of 10%, as measured by the same method as above.

(80nm狙いの蛍光ナノ粒子の製造)
上記の「(50nm狙いの蛍光ナノ粒子の製造)」において、蛍光色素ペリレンジイミドの量を3.0mg、エマルゲン430の5質量%水溶液の量を3.2mL、ニカラックMX-035の量を0.1gにて使用したこと以外は同様にして蛍光ナノ粒子を作製した。上記と同様の方法にて測定したナノ粒子の平均粒子径は83nm、粒子径の変動係数は9%であった。
(Production of fluorescent nanoparticles aimed at 80 nm)
In the above "(Production of Fluorescent Nanoparticles Aimed at 50 nm)", the amount of the fluorescent dye perylene diimide was 3.0 mg, the amount of the 5% by mass Emulgen 430 aqueous solution was 3.2 mL, and the amount of Nicalac MX-035 was 0.2 mL. Fluorescent nanoparticles were produced in the same manner except that 1 g was used. The nanoparticles had an average particle size of 83 nm and a variation coefficient of 9%, which were measured in the same manner as above.

(130nm狙いの蛍光ナノ粒子の製造)
上記の「(50nm狙いの蛍光ナノ粒子の製造)」において、蛍光色素ペリレンジイミドの量を4.9mg、エマルゲン430の5質量%水溶液の量を5.2mL、ニカラックMX-035の量を0.16gにて使用したこと以外は同様にして蛍光ナノ粒子を作製した。上記と同様の方法にて測定したナノ粒子の平均粒子径は132.6nm、粒子径の変動係数は9%であった。
(Production of fluorescent nanoparticles aimed at 130 nm)
In the above "(Production of fluorescent nanoparticles aimed at 50 nm)", the amount of the fluorescent dye perylene diimide was 4.9 mg, the amount of the 5 mass% aqueous solution of Emulgen 430 was 5.2 mL, and the amount of Nicalac MX-035 was 0.9 mg. Fluorescent nanoparticles were made in the same way, except that 16 g was used. The nanoparticles had an average particle size of 132.6 nm and a variation coefficient of 9%, which were measured by the same method as above.

蛍光ナノ粒子に対する表面修飾は以下のように実施した。 Surface modification of the fluorescent nanoparticles was performed as follows.

実施例1 デキストラン×ストレプトアビジン修飾ナノ粒子の製造
図2の中段は、ナノ粒子40の表面に糖50が結合し、さらに糖50が有するカルボキシル基が、N-ヒドロキシスクシイミド(NHS)によって活性化された様子を示す。このような状態のナノ粒子は以下のようにして得た。
Example 1 Production of Dextran×Streptavidin-Modified Nanoparticles The middle part of FIG. It shows how it is converted. Nanoparticles in such a state were obtained as follows.

まず、カルボキシメチルデキストラン(CMD、名糖産業社製)1mgをMES緩衝液1mlに溶解した。次に、N-ヒドロキシスクシイミド11.5mgおよび1-エチル-3-(-3-ジメチルアミノプロピル)カルボジイミド塩酸塩19.2mgを加えて、室温にて攪拌した。このようにして、CMDのカルボキシル基をNHSで活性化した。 First, 1 mg of carboxymethyl dextran (CMD, manufactured by Meito Sangyo Co., Ltd.) was dissolved in 1 ml of MES buffer. Next, 11.5 mg of N-hydroxysuccinimide and 19.2 mg of 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide hydrochloride were added and stirred at room temperature. Thus, the carboxyl groups of CMD were activated with NHS.

次に、活性化されたカルボキシル基を有するCMD中に、上記で製造したナノ粒子1mgを加えて、室温にて攪拌した。このようにすることで、NHSで活性化されたカルボキシル基と、ナノ粒子の表面の、メラミン樹脂に由来するアミノ基との間でアミド結合を形成させて、ナノ粒子の表面にデキストランを結合させた。なお、NHSで活性化されたカルボキシル基のうちナノ粒子に結合しなかったものが、図2の中段に示されるようにナノ粒子の表面に存在すると考えられる。 Next, 1 mg of the nanoparticles produced above was added to CMD having an activated carboxyl group and stirred at room temperature. By doing so, an amide bond is formed between the NHS-activated carboxyl group and the amino group derived from the melamine resin on the surface of the nanoparticles, and the dextran is bound to the surface of the nanoparticles. rice field. It is considered that those of the NHS-activated carboxyl groups that did not bind to the nanoparticles are present on the surfaces of the nanoparticles as shown in the middle of FIG.

結合物質の結合
図2の下段は、糖50を介してナノ粒子に結合した結合物質60を有する蛍光ナノ粒子10を示す。このような蛍光ナノ粒子は以下のようにして得た。
Binding Substance Binding The bottom row of FIG. 2 shows a fluorescent nanoparticle 10 having a binding substance 60 bound to the nanoparticle via a sugar 50 . Such fluorescent nanoparticles were obtained as follows.

上記で得たナノ粒子の反応液を15000rpmで20分間、遠心分離を行い、上澄みを除去して沈降物のみを回収した。その後、1mLのMES緩衝液を加え、再度15000rpmで20分間、遠心分離を行い、上澄みを除去して沈降物のみを回収した。この操作を2回繰り返した後、沈殿物に酢酸緩衝液を1mL加えてストレプトアビジン0.15mgを加えて、室温にて攪拌した。このようにすることで、NHSで活性化されたカルボキシル基と、ストレプトアビジンが有するアミノ基との間でアミド結合を形成させ、ストレプトアビジンをナノ粒子に結合させた。その後、1mLのTris-HCl緩衝液を加え、再度15000rpmで20分間、遠心分離を行い、上澄みを除去して沈降物のみを回収した。この操作を2回繰り返した後、1%BSAを含むPBS中に保存することで、実施例1の蛍光ナノ粒子を得た。 The nanoparticle reaction solution obtained above was centrifuged at 15000 rpm for 20 minutes, the supernatant was removed, and only the sediment was recovered. Then, 1 mL of MES buffer was added, centrifugation was performed again at 15000 rpm for 20 minutes, and the supernatant was removed to collect only the sediment. After repeating this operation twice, 1 mL of acetate buffer was added to the precipitate, 0.15 mg of streptavidin was added, and the mixture was stirred at room temperature. In this way, an amide bond was formed between the NHS-activated carboxyl group and the amino group of streptavidin, and streptavidin was bound to the nanoparticles. After that, 1 mL of Tris-HCl buffer was added, centrifugation was performed again at 15000 rpm for 20 minutes, and the supernatant was removed to collect only the sediment. After repeating this operation twice, the fluorescent nanoparticles of Example 1 were obtained by storing in PBS containing 1% BSA.

実施例2 セルロース×ストレプトアビジン修飾ナノ粒子の製造
実施例1のデキストラン修飾ナノ粒子の製造において、CMDをカルボキシメチルセルロース(CMC、東京化成工業社製)1mgに変更した以外は同様の方法にて作製した。
Example 2 Production of Cellulose x Streptavidin-Modified Nanoparticles Production of dextran-modified nanoparticles in Example 1 was carried out in the same manner, except that CMD was changed to 1 mg of carboxymethyl cellulose (CMC, manufactured by Tokyo Chemical Industry Co., Ltd.). .

実施例3 デキストラン×核酸修飾ナノ粒子の製造
実施例1のデキストラン修飾ナノ粒子の製造において、CMD結合後、MES緩衝液による洗浄操作の後に、5’末端をアミノ基で修飾した30merのPoly (dC)を2uMとなるように加えて室温にて1時間撹拌した。その後、1mLのTris-HCl緩衝液を加え、再度15000rpmで20分間、遠心分離を行い、上澄みを除去して沈降物のみを回収した。この操作を2回繰り返した後、1%BSAを含むPBS中に保存することで、実施例3の蛍光ナノ粒子を得た。
Example 3 Production of Dextran x Nucleic Acid-Modified Nanoparticles In the production of dextran-modified nanoparticles in Example 1, after CMD binding, after washing with MES buffer, 30-mer Poly (dC ) was added to 2 uM and stirred at room temperature for 1 hour. After that, 1 mL of Tris-HCl buffer was added, centrifugation was performed again at 15000 rpm for 20 minutes, and the supernatant was removed to collect only the sediment. After repeating this operation twice, the fluorescent nanoparticles of Example 3 were obtained by storing in PBS containing 1% BSA.

(比較例1の蛍光ナノ粒子)
比較例1は、糖および結合物質が結合していない蛍光ナノ粒子とした。
(Fluorescent nanoparticles of Comparative Example 1)
Comparative Example 1 was fluorescent nanoparticles to which sugars and binding substances were not bound.

(比較例2の蛍光ナノ粒子)
比較例2の蛍光ナノ粒子は、糖50の代わりにポリエチレングリコールを有する点で、実施例1の蛍光ナノ粒子と異なる。このような比較例2の蛍光ナノ粒子は以下のようにして得た。
(Fluorescent nanoparticles of Comparative Example 2)
The fluorescent nanoparticles of Comparative Example 2 differ from the fluorescent nanoparticles of Example 1 in that they have polyethylene glycol instead of sugar 50 . Such fluorescent nanoparticles of Comparative Example 2 were obtained as follows.

ポリエチレングリコールの結合
ナノ粒子1mgを純水1mL中に懸濁し、1,2-Bis(2-aminoethoxy)ethane(BAEE)20μLと混合し、70℃で1時間反応させた。
Binding of Polyethylene Glycol 1 mg of nanoparticles was suspended in 1 mL of pure water, mixed with 20 μL of 1,2-Bis(2-aminoethoxy)ethane (BAEE), and reacted at 70° C. for 1 hour.

次に、この反応液を15000rpmで20分間、遠心分離を行い、上澄みを除去して沈降物のみを回収した。その後、1mLの水を加え、再度15000rpmで20分間、遠心分離を行い、上澄みを除去して沈降物のみを回収した。この操作をさらに2回行い、合計で3回の水洗浄を行った。次に、沈降物に1mLのTHFを加え、再度15000rpmで20分間、遠心分離を行い、上澄みを除去して沈降物を回収した。 Next, this reaction solution was centrifuged at 15,000 rpm for 20 minutes, the supernatant was removed, and only the sediment was recovered. After that, 1 mL of water was added, centrifugation was performed again at 15000 rpm for 20 minutes, and the supernatant was removed to collect only the sediment. This operation was carried out two more times for a total of three water washings. Next, 1 mL of THF was added to the sediment, centrifugation was performed again at 15000 rpm for 20 minutes, and the supernatant was removed to collect the sediment.

得られた蛍光ナノ粒子を、THFを用いて3nmol/Lに調整した。 The resulting fluorescent nanoparticles were adjusted to 3 nmol/L using THF.

ナノ粒子の溶液に、最終濃度10mmol/LとなるようにNHS-PEG12-マレイミドを混合して、室温℃で1時間反応した。 NHS-PEG12-maleimide was mixed with the nanoparticle solution to a final concentration of 10 mmol/L, and reacted at room temperature for 1 hour.

この反応液を15000rpmで20分間、遠心分離を行い、上澄みを除去して沈降物のみを回収した。その後、EDTAを2mmol/L含有するPBSを加えて沈降物を分散させた。そして、再度、15000rpmで20分間、遠心分離を行って上澄みを除去して沈降物のみを回収した。沈降物の分散処理から遠心分離までの一連の操作によるナノ粒子の洗浄をさらに3回行った。そして、上記マレイミドあるいはNHS基が粒子表面に存在したナノ粒子を得た。この沈殿物にりん酸緩衝液を1mL加えてストレプトアビジン0.15mgを加えて、室温にて攪拌した。このようにすることで、マレイミド基またはNHS基と、ストレプトアビジンが有するアミノ基との間でアミド結合を形成させ、ストレプトアビジンをナノ粒子に結合させた。その後、1mLのりん酸緩衝液を加え、再度15000rpmで20分間、遠心分離を行い、上澄みを除去して沈降物のみを回収した。この操作を2回繰り返した後、1%BSAを含むPBS中に保存することで、比較例2の蛍光ナノ粒子を得た。 This reaction solution was centrifuged at 15,000 rpm for 20 minutes, the supernatant was removed, and only the sediment was recovered. After that, PBS containing 2 mmol/L of EDTA was added to disperse the sediment. Then, centrifugation was performed again at 15000 rpm for 20 minutes to remove the supernatant and collect only the sediment. The nanoparticles were further washed three times by a series of operations from dispersing the sediment to centrifugation. Then, nanoparticles were obtained in which the maleimide or NHS groups were present on the particle surface. 1 mL of phosphate buffer was added to the precipitate, 0.15 mg of streptavidin was added, and the mixture was stirred at room temperature. By doing so, an amide bond was formed between the maleimide group or NHS group and the amino group of streptavidin, and streptavidin was bound to the nanoparticles. Then, 1 mL of phosphate buffer was added, centrifugation was performed again at 15000 rpm for 20 minutes, the supernatant was removed, and only the sediment was recovered. After repeating this operation twice, the fluorescent nanoparticles of Comparative Example 2 were obtained by storing in PBS containing 1% BSA.

[蛍光ナノ粒子の評価]
上記のようにして得た実施例および比較例の蛍光ナノ粒子の分散性を以下のよう評価した。
[Evaluation of fluorescent nanoparticles]
The dispersibility of the fluorescent nanoparticles of Examples and Comparative Examples obtained as described above was evaluated as follows.

(PdIによる分散性の評価)
実施例および比較例の蛍光ナノ粒子のそれぞれについて、Malvern Panalytical社製のゼータサイザーナノを用いて動的光散乱法によりPdIを測定した。PdIは、以下の式で表される粒子径分布の広がりを示す無次元指標であり、分散性の評価に利用できる。
(Evaluation of dispersibility by PdI)
For each of the fluorescent nanoparticles of Examples and Comparative Examples, PdI was measured by a dynamic light scattering method using Zetasizer Nano manufactured by Malvern Panalytical. PdI is a dimensionless index indicating the spread of the particle size distribution represented by the following formula, and can be used to evaluate dispersibility.

PdI=(標準偏差(σ)/平均粒子径(μ)) PdI = (standard deviation (σ) / average particle size (μ)) 2

蛍光ナノ粒子の粒子径のばらつきが小さい場合、PdIは、粒子の分散性の度合いを示しており、値が小さいほど粒子が凝集せずに、分散していることを表している。一般に、PdIは0.1以下であれば、粒子の分散性が良好であると考えられる。 When the particle size variation of the fluorescent nanoparticles is small, PdI indicates the degree of dispersibility of the particles, and the smaller the value, the more the particles are dispersed without aggregation. In general, when PdI is 0.1 or less, the dispersibility of particles is considered to be good.

PdIの測定は具体的には以下のようにして行った。
蛍光ナノ粒子の分散液を10mMりん酸緩衝液(pH7.2)にて希釈し、Malvern Panalytical社製のディスポーザブルセル(DTS1070)に750uL加えた。ディスポーザブルセルを同社製のゼータサイザーナノにセットし、測定角度を173°として測定を実施した。測定回数は3回とし、3回の平均値ならびに標準偏差を算出した。
PdI was specifically measured as follows.
The dispersion of fluorescent nanoparticles was diluted with 10 mM phosphate buffer (pH 7.2), and 750 uL of the diluted solution was added to a disposable cell (DTS1070) manufactured by Malvern Panalytical. The disposable cell was set in Zetasizer Nano manufactured by the same company, and the measurement was performed at a measurement angle of 173°. The number of measurements was 3, and the average value and standard deviation of the 3 measurements were calculated.

表1は、上記の様にして測定した、PdIと、SEMによる粒子の平均粒子径との関係を示す表である。 Table 1 is a table showing the relationship between PdI measured as described above and the average particle size of particles measured by SEM.

Figure 2023109473000002
Figure 2023109473000002

表1からわかるように、実施例1、2、3の蛍光ナノ粒子では、いずれの平均粒子径でもPdIは0.1以下であり、分散性が良好であった。これは、実際の免疫染色で用いる中性緩衝液中での分散度合いを表しており、免疫染色実施時に凝集しづらい可能性を示唆している。また、実施例1、2の結果から、糖の種類は特定の種類に限定されず、カルボキシル化されている糖であれば分散性が良好な粒子を得られることが分かった。さらに、実施例1と、実施例3の結果からは結合物質60がタンパク質に限定されず、核酸が修飾されていても同様に分散性が良好な粒子を得られることが分かった。 As can be seen from Table 1, the fluorescent nanoparticles of Examples 1, 2, and 3 had a PdI of 0.1 or less at any average particle size, and had good dispersibility. This indicates the degree of dispersion in a neutral buffer solution used in actual immunostaining, and suggests the possibility of less aggregation during immunostaining. Moreover, from the results of Examples 1 and 2, it was found that the type of sugar is not limited to a specific type, and particles with good dispersibility can be obtained as long as the sugar is carboxylated. Furthermore, from the results of Examples 1 and 3, it was found that even if the binding substance 60 is not limited to proteins, and nucleic acids are modified, particles with good dispersibility can be obtained.

一方、比較例1においてはいずれの粒径においてもPdIが0.1を大きく上回り中性緩衝液中での分散性に乏しいことを示唆する結果となった。また、比較例2の蛍光ナノ粒子では、平均粒子径が132.6nmであるときのみPdIが0.1以下であり、PEGを表面修飾することで分散性は改善傾向であったが、分散性が十分とは言えない結果であった。 On the other hand, in Comparative Example 1, the PdI was much higher than 0.1 at any particle size, suggesting poor dispersibility in a neutral buffer solution. In addition, in the fluorescent nanoparticles of Comparative Example 2, the PdI was 0.1 or less only when the average particle diameter was 132.6 nm, and the dispersibility tended to be improved by surface modification with PEG. However, the results were not sufficient.

一般的に、粒子は、平均粒子径が小さいほど比表面積が大きくなるため、凝集しやすくなる。比較例2のPEGを表面修飾した蛍光ナノ粒子では、平均粒子径が90nm以下の場合はPdIが0.1超となり粒子が凝集してしまっていたが、実施例の蛍光ナノ粒子では、平均粒子径が90nm以下であってもPdIが0.1以下となり粒子がほとんど凝集しなかった。 In general, the smaller the average particle diameter, the larger the specific surface area of the particles, which makes them more likely to agglomerate. In the fluorescent nanoparticles surface-modified with PEG of Comparative Example 2, when the average particle diameter was 90 nm or less, PdI exceeded 0.1 and the particles aggregated. Even if the diameter was 90 nm or less, the PdI was 0.1 or less, and the particles hardly aggregated.

(免疫染色による分散性の評価)
実施例および比較例の蛍光ナノ粒子を用いて蛍光免疫染色を行い、蛍光ナノ粒子の分散性の評価を行った。
(Evaluation of dispersibility by immunostaining)
Fluorescent immunostaining was performed using the fluorescent nanoparticles of Examples and Comparative Examples to evaluate the dispersibility of the fluorescent nanoparticles.

具体的には、以下の手順で免疫染色を行った。 Specifically, immunostaining was performed by the following procedure.

≪蛍光ナノ粒子を用いたIHC染色≫
蛍光ナノ粒子と、以下のように作製したビオチン標識2次抗体とを有する抗体試薬(病理診断用の染色試薬)を調製し、この染色試薬を用いて免疫染色を行った。
<<IHC staining using fluorescent nanoparticles>>
An antibody reagent (staining reagent for pathological diagnosis) containing fluorescent nanoparticles and a biotin-labeled secondary antibody prepared as follows was prepared, and immunostaining was performed using this staining reagent.

<ビオチン修飾された2次抗体の作製>
比較例1、2、実施例1、2にて使用する2次抗体は以下のように作製した。
まず、50mmol/LのTris-HCl溶液(pH7.5)に抗ウサギIgG抗体50μgを溶解した。該溶液に、最終濃度3mmol/LとなるようにDTT(dithiothretol)溶液を混合した。その後、該溶液を37℃で30分間反応させた。その後、脱塩カラムを用いてDTTで還元化した2次抗体を精製した。精製した抗体全量のうち200μLを50mmol/LのTris-HCl溶液(pH7.5)に溶解して抗体溶液を得た。その一方で、スペーサーの長さが30オングストロームであるリンカー試薬「(+)-Biotin-PEG-NH-Mal」(PurePEG社製、製品番号2461006-250)を、DMSOを用いて0.4mmol/Lとなるように調整した。この溶液8.5μLを前記抗体溶液に添加し、混和して37℃で30分間反応させた。
<Preparation of biotin-modified secondary antibody>
Secondary antibodies used in Comparative Examples 1 and 2 and Examples 1 and 2 were prepared as follows.
First, 50 μg of anti-rabbit IgG antibody was dissolved in a 50 mmol/L Tris-HCl solution (pH 7.5). A DTT (dithiothretol) solution was mixed with the solution to a final concentration of 3 mmol/L. The solution was then reacted at 37°C for 30 minutes. The DTT-reduced secondary antibody was then purified using a desalting column. 200 μL of the total purified antibody was dissolved in a 50 mmol/L Tris-HCl solution (pH 7.5) to obtain an antibody solution. On the other hand, a linker reagent "(+)-Biotin-PEG 6 -NH-Mal" (manufactured by PurePEG, product number 2461006-250) having a spacer length of 30 angstroms was added to 0.4 mmol/ml using DMSO. Adjusted to be L. 8.5 μL of this solution was added to the antibody solution, mixed and allowed to react at 37° C. for 30 minutes.

この反応溶液を脱塩カラム「Zeba Spin Desalting Columns」に供して精製した。脱塩した反応溶液の波長300nmの吸収を分光高度計(日立製「F-7000」)により計測して反応溶液に含まれるタンパク質の量を算出した。50mmol/LのTris溶液により反応溶液を250μg/mLに調整し、該溶液をビオチン標識2次抗体の溶液とした。 This reaction solution was subjected to a desalting column "Zeba Spin Desalting Columns" for purification. The absorption of the desalted reaction solution at a wavelength of 300 nm was measured with a spectrophotometer (Hitachi "F-7000") to calculate the amount of protein contained in the reaction solution. The reaction solution was adjusted to 250 μg/mL with a 50 mmol/L Tris solution, and this solution was used as a biotin-labeled secondary antibody solution.

<核酸修飾された2次抗体の作製>
実施例3にて使用する2次抗体は以下のように作製した。
まず、50mmol/LのTris-HCl溶液(pH7.5)に抗ウサギIgG抗体50μgを溶解した。該溶液に、最終濃度3mmol/LとなるようにDTT(dithiothretol)溶液を混合した。その後、該溶液を37℃で30分間反応させた。その後、脱塩カラムを用いてDTTで還元化した2次抗体を精製した。精製した抗体全量のうち200μLを50mmol/LのTris-HCl溶液(pH7.5)に溶解して抗体溶液を得た。その一方で、5’末端をマレイミドにて標識した30merのPoly (dG)をDMSOを用いて0.4mmol/Lとなるように調整した。この溶液8.5μLを前記抗体溶液に添加し、混和して37℃で30分間反応させた。
<Preparation of nucleic acid-modified secondary antibody>
The secondary antibody used in Example 3 was produced as follows.
First, 50 μg of anti-rabbit IgG antibody was dissolved in a 50 mmol/L Tris-HCl solution (pH 7.5). A DTT (dithiothretol) solution was mixed with the solution to a final concentration of 3 mmol/L. The solution was then reacted at 37°C for 30 minutes. The DTT-reduced secondary antibody was then purified using a desalting column. 200 μL of the total purified antibody was dissolved in a 50 mmol/L Tris-HCl solution (pH 7.5) to obtain an antibody solution. On the other hand, 30-mer Poly (dG) labeled with maleimide at the 5' end was adjusted to 0.4 mmol/L using DMSO. 8.5 μL of this solution was added to the antibody solution, mixed and allowed to react at 37° C. for 30 minutes.

この反応溶液を脱塩カラム「Zeba Spin Desalting Columns」に供して精製した。脱塩した反応溶液の波長300nmの吸収を分光高度計(日立製「F-7000」)により計測して反応溶液に含まれるタンパク質の量を算出した。50mmol/LのTris溶液により反応溶液を250μg/mLに調整し、該溶液を標識2次抗体の溶液とした。 This reaction solution was subjected to a desalting column "Zeba Spin Desalting Columns" for purification. The absorption of the desalted reaction solution at a wavelength of 300 nm was measured with a spectrophotometer (Hitachi "F-7000") to calculate the amount of protein contained in the reaction solution. The reaction solution was adjusted to 250 μg/mL with a 50 mmol/L Tris solution, and this solution was used as a labeled secondary antibody solution.

<蛍光免疫染色法>
(1)脱パラフィン処理工程
上記ビオチン標識2次抗体等を用いて、ヒト乳がん由来培養細胞ZR-75-1の免疫染色と形態観察染色とを以下のように行った。染色用のスライドとして、HER2 IHCポジコンスライド(パソロジー研究所社製、以下切片スライド)を用いた。この切片スライドを脱パラフィン処理した。
<Fluorescent immunostaining method>
(1) Deparaffinization Step Immunostaining and morphological observation staining of human breast cancer-derived cultured cells ZR-75-1 were performed using the above biotin-labeled secondary antibody and the like as follows. As a slide for staining, HER2 IHC positive control slide (manufactured by Pathology Institute, hereinafter referred to as section slide) was used. The sectioned slides were deparaffinized.

(2)賦活化処理工程
切片スライドを脱パラフィン処理した後、水に置換する洗浄を行った。洗浄した切片スライドを10mmol/Lクエン酸緩衝液中(pH6.0)で121℃、15分間オートクレーブ処理することで、抗原の賦活化処理を行った。賦活化処理後の切片スライドをPBSにより洗浄し、洗浄した切片スライドに対してBSAを1%含有するPBSを用いて1時間ブロッキング処理を行った。
(2) Activation Treatment Step After deparaffinization of the section slide, washing was performed by substituting with water. Antigen retrieval was performed by autoclaving the washed section slides in a 10 mmol/L citrate buffer (pH 6.0) at 121° C. for 15 minutes. After the activation treatment, the section slides were washed with PBS, and the washed section slides were blocked with PBS containing 1% BSA for 1 hour.

(3)免疫染色処理工程
(3-1)1次抗体反応
ロシュ社製「抗HER2ウサギモノクロナール抗体(4B5)」の溶液を上述のブロッキング処理した切片スライドに対して4℃で1晩反応させた。該反応後の切片スライドをPBSで洗浄した。
(3-2)2次抗体反応
1次抗体反応を行った切片スライドをPBSで洗浄した後、1%BSA含有のPBSで2μg/mLに希釈した上記ビオチン標識2次抗体もしくは核酸標識2次抗体と室温で30分間反応させた。該反応後の切片スライドをPBSで洗浄した。
(3-3)蛍光ナノ粒子との反応
2次抗体反応を行った切片スライドに対して、1%BSA含有のPBSで0.12nmol/Lに希釈した前述の蛍光ナノ粒子を、中性のpH環境(pH6.9~7.4)、室温の条件下で2時間反応させた。該反応後の切片スライドをPBSで洗浄した。
(3) Immunostaining process (3-1) Primary antibody reaction A solution of Roche's "anti-HER2 rabbit monoclonal antibody (4B5)" was allowed to react with the above-described blocked section slide at 4°C overnight. rice field. Section slides after the reaction were washed with PBS.
(3-2) Secondary antibody reaction After washing the section slide subjected to the primary antibody reaction with PBS, the biotin-labeled secondary antibody or nucleic acid-labeled secondary antibody diluted to 2 μg/mL with PBS containing 1% BSA and reacted at room temperature for 30 minutes. Section slides after the reaction were washed with PBS.
(3-3) Reaction with Fluorescent Nanoparticles The above-described fluorescent nanoparticles diluted to 0.12 nmol/L with PBS containing 1% BSA were added to the section slides subjected to the secondary antibody reaction at a neutral pH. The reaction was carried out for 2 hours under ambient conditions (pH 6.9 to 7.4) and room temperature. Section slides after the reaction were washed with PBS.

(4)形態観察染色工程
免疫染色後、ヘマトキシリン染色を行った。免疫染色した切片をマイヤーヘマトキシリン液で5分間染色してヘマトキシリン染色を行った。その後、切片スライドを流水で3分間洗浄した。
(4) Morphological Observation Staining Step After immunostaining, hematoxylin staining was performed. Hematoxylin staining was performed by staining the immunostained sections with Mayer's hematoxylin solution for 5 minutes. Section slides were then washed under running water for 3 minutes.

(5)封入処理工程
免疫染色工程および形態観察染色工程を終えた切片に対して、純エタノールに5分間浸漬する操作を4回行い、洗浄・脱水を行った。続いて、キシレンに5分間浸漬する操作を4回行い、透徹を行った。最後に、封入剤(武藤化学社製「マリノール」)を用いて、組織切片を封入して観察用のスライドとした。
(5) Encapsulation Treatment Step The sections that had undergone the immunostaining step and the morphological observation staining step were washed and dehydrated by immersing them in pure ethanol for 5 minutes four times. Subsequently, an operation of immersion in xylene for 5 minutes was performed four times to carry out penetration. Finally, a mounting medium (“Marinol” manufactured by Muto Kagaku Co., Ltd.) was used to mount the tissue section to obtain a slide for observation.

(6)観察
封入処理工程を終えたスライドに対して所定の励起光を照射して、蛍光を発光させた。その状態のスライドを蛍光顕微鏡(オリンパス社製「BX53」)、顕微鏡用デジタルカメラ(オリンパス社製「DP80」)により観察および撮像を行った。上記励起光の波長は、光学フィルターに通すことで575~600nmに設定した。また、観察する蛍光の波長についても、光学フィルターを通すことで612~692nmに設定した。顕微鏡観察、画像取得時の励起波長の条件は、580nmの励起では視野中心部付近の照射エネルギーが900W/cm2となるようにした。画像取得時の露光時間は、画像の輝度が飽和しないように任意に設定(例えば4000μ秒に設定)して撮像した。
(6) Observation A predetermined excitation light was applied to the slide that had undergone the encapsulation process to cause fluorescence to be emitted. The slide in that state was observed and photographed with a fluorescence microscope ("BX53" manufactured by Olympus) and a digital camera for microscope ("DP80" manufactured by Olympus). The wavelength of the excitation light was set to 575-600 nm by passing it through an optical filter. The wavelength of fluorescence to be observed was also set to 612 to 692 nm by passing through an optical filter. The conditions for the excitation wavelength during microscopic observation and image acquisition were such that the irradiation energy near the center of the field of view was 900 W/cm 2 at excitation of 580 nm. The exposure time during image acquisition was arbitrarily set (for example, set to 4000 μsec) so as not to saturate the brightness of the image.

撮像結果を図3Aから図3Eに示す。図3A、3B、3Cはそれぞれ実施例1、2、3の蛍光ナノ粒子を用いた場合の撮像結果を示し、図3Dおよび3Eはそれぞれ比較例1、2の蛍光ナノ粒子を用いた場合の撮像結果を示している。 The imaging results are shown in FIGS. 3A to 3E. 3A, 3B, and 3C show the imaging results when using the fluorescent nanoparticles of Examples 1, 2, and 3, respectively, and FIGS. 3D and 3E show the imaging results when using the fluorescent nanoparticles of Comparative Examples 1 and 2, respectively. shows the results.

図3A、3B、3Cでは、蛍光ナノ粒子の凝集による輝点の凝集が見られなかった。これに対して、図3Eの矢印で示されているように、比較例の蛍光ナノ粒子を用いた場合では、輝点の凝集が見られた。図3Dは表面修飾を実施する前の粒子であるため蛍光は全く検出されなかった。 In Figures 3A, 3B, and 3C, no aggregation of bright spots due to aggregation of fluorescent nanoparticles was observed. On the other hand, as indicated by the arrow in FIG. 3E, aggregation of bright spots was observed when the fluorescent nanoparticles of the comparative example were used. Since FIG. 3D shows the particles before surface modification, no fluorescence was detected.

本実施の形態に係る蛍光ナノ粒子は、良好な分散性を有するため、蛍光イメージングなどに有用である。 The fluorescent nanoparticles according to the present embodiment are useful for fluorescence imaging and the like because they have good dispersibility.

10 蛍光ナノ粒子
20 樹脂
30 蛍光色素
40 ナノ粒子
50 糖
60 結合物質
70 細胞
80 一次抗体
90 二次抗体
100 標的物質
10 fluorescent nanoparticles 20 resin 30 fluorescent dye 40 nanoparticles 50 sugar 60 binding substance 70 cells 80 primary antibody 90 secondary antibody 100 target substance

Claims (6)

樹脂および前記樹脂に内包された蛍光色素を含むナノ粒子と、
前記ナノ粒子に結合した、カルボキシル基またはその塩を有する糖と、
前記糖を介して前記ナノ粒子に結合した、標的物質に結合する結合物質と、
を有する、
蛍光ナノ粒子。
Nanoparticles containing a resin and a fluorescent dye encapsulated in the resin;
a sugar having a carboxyl group or a salt thereof bound to the nanoparticles;
a binding substance that binds to a target substance and is bound to the nanoparticles via the sugar;
having
fluorescent nanoparticles.
前記樹脂は、メラミン樹脂または尿素樹脂である、請求項1に記載の蛍光ナノ粒子。 Fluorescent nanoparticles according to claim 1, wherein the resin is melamine resin or urea resin. 前記糖は、カルボキシメチルデキストラン、カルボキシルメチルセルロース、カルボキシメチルでんぷん、カルボキシメチルキチン、カルボキシメチルキトサン、サクシニルキトサン、サクシニルカルボキシメチルキトサンまたはこれらの塩である、請求項1または2に記載の蛍光ナノ粒子。 Fluorescent nanoparticles according to claim 1 or 2, wherein the sugar is carboxymethyldextran, carboxymethylcellulose, carboxymethylstarch, carboxymethylchitin, carboxymethylchitosan, succinylchitosan, succinylcarboxymethylchitosan or salts thereof. 前記結合物質は、アビジン、ストレプトアビジン、ニュートラアビジン、抗体または核酸である、請求項1~3のいずれか一項に記載の蛍光ナノ粒子。 Fluorescent nanoparticles according to any one of claims 1 to 3, wherein the binding substance is avidin, streptavidin, neutravidin, an antibody or a nucleic acid. PdIが0.1以下である、請求項1~4のいずれか一項に記載の蛍光ナノ粒子。 Fluorescent nanoparticles according to any one of claims 1 to 4, wherein PdI is 0.1 or less. 平均粒子径が30nm以上300nm以下である、請求項1~5のいずれか一項に記載の蛍光ナノ粒子。 The fluorescent nanoparticles according to any one of claims 1 to 5, having an average particle size of 30 nm or more and 300 nm or less.
JP2022011009A 2022-01-27 2022-01-27 fluorescent nanoparticles Pending JP2023109473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022011009A JP2023109473A (en) 2022-01-27 2022-01-27 fluorescent nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022011009A JP2023109473A (en) 2022-01-27 2022-01-27 fluorescent nanoparticles

Publications (1)

Publication Number Publication Date
JP2023109473A true JP2023109473A (en) 2023-08-08

Family

ID=87522578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022011009A Pending JP2023109473A (en) 2022-01-27 2022-01-27 fluorescent nanoparticles

Country Status (1)

Country Link
JP (1) JP2023109473A (en)

Similar Documents

Publication Publication Date Title
JP7147724B2 (en) Staining agent for tissue staining, method for producing staining agent for tissue staining, and tissue staining kit containing staining agent for tissue staining
JP6354754B2 (en) Fluorescent nanoparticles for biomolecule staining and method for producing the same
JP5974892B2 (en) Biological substance detection method
JP6112169B2 (en) Fluorescent label for detection of biological materials
EP2833140B1 (en) Method for detecting biological material
JP6236881B2 (en) Immunostaining method, fluorescent immunostaining pretreatment liquid and immunostaining kit
WO2015045962A1 (en) Method for determining quantity of biological material in tissue section
JP6187170B2 (en) Fluorescent dye-containing resin particles, fluorescent dye-containing resin particle set for tissue multiple staining containing the fluorescent dye-containing resin particles, and tissue multiple staining method using the fluorescent dye-containing resin particles
JP2023109473A (en) fluorescent nanoparticles
JP6583011B2 (en) Method for washing immunostained slides using acidic aqueous solution
Jiang et al. Detection of Staphylococcus aureus using acridine orange-doped silica nanoparticles as a fluorescent label
JP6303313B2 (en) Reagent bottles for aqueous dispersions, pathological stains and automatic stainers
WO2021186813A1 (en) Fluorescent nanoparticles and method for manufacturing fluorescent nanoparticles
JP6780657B2 (en) Method for producing dye-containing thermosetting resin particles
JP6447679B2 (en) Fluorescent dye-containing resin particles and fluorescent dye-containing resin particle set for tissue multiple staining containing the fluorescent dye-containing resin particles
JP6406253B2 (en) Pathological stain
WO2017104476A1 (en) Fluorescent substance-accumulated nanoparticles and labeling agent using same
JP6806138B2 (en) Manufacturing method of particles for pathological staining, particles for pathological staining and washing method
US20190033181A1 (en) Staining agent for staining tissue, production method for staining agent for staining tissue and tissue staining kit including staining agent for staining tissue