JP6237194B2 - Dyeing method - Google Patents

Dyeing method Download PDF

Info

Publication number
JP6237194B2
JP6237194B2 JP2013260732A JP2013260732A JP6237194B2 JP 6237194 B2 JP6237194 B2 JP 6237194B2 JP 2013260732 A JP2013260732 A JP 2013260732A JP 2013260732 A JP2013260732 A JP 2013260732A JP 6237194 B2 JP6237194 B2 JP 6237194B2
Authority
JP
Japan
Prior art keywords
fluorescent
staining
particles
fluorescent particles
immunostaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013260732A
Other languages
Japanese (ja)
Other versions
JP2015117980A (en
Inventor
高橋 優
優 高橋
中野 寧
寧 中野
文徳 岡田
文徳 岡田
幸祐 権田
幸祐 権田
憲明 大内
憲明 大内
みか 渡邉
みか 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013260732A priority Critical patent/JP6237194B2/en
Publication of JP2015117980A publication Critical patent/JP2015117980A/en
Application granted granted Critical
Publication of JP6237194B2 publication Critical patent/JP6237194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は病理切片の染色方法に関し、特に免疫染色と形態観察染色とを共に実現しうる技術に関する。   The present invention relates to a method for staining a pathological section, and more particularly to a technique capable of realizing both immunostaining and morphological observation staining.

病理診断では、臓器摘出や針生検によって得た組織検体を厚さ数ミクロン程度に薄切して組織標本を作成し、様々な所見を得るために光学顕微鏡を用いて拡大観察することが広く行われている。多くの場合、標本は、採取した組織を固定するため脱水し、パラフィンブロック化した後、数μmの厚さに薄切りし、パラフィンを取り除いて作製される。ここで、標本は光を殆ど吸収および散乱せず無色透明に近いため、観察に先立って色素による染色を施すのが一般的である。   In pathological diagnosis, tissue specimens obtained by organ excision or needle biopsy are sliced to a thickness of several microns to create tissue specimens, and they are widely observed using an optical microscope to obtain various findings. It has been broken. In many cases, a specimen is prepared by dehydrating and collecting a paraffin block to fix the collected tissue, then slicing it to a thickness of several μm, and removing the paraffin. Here, since the specimen hardly absorbs and scatters light and is almost colorless and transparent, it is general that the specimen is stained with a dye prior to observation.

染色手法としては種々のものが提案されている。
特に組織標本に関しては、標本の形態を観察するための形態観察染色として、ヘマトキシリンおよびエオジンの2つの色素を用いるヘマトキシリン・エオジン染色(HE染色)が標準的に用いられ(非特許文献1、特許文献1〜2参照)、ヘマトキシリン染色(H染色)により細胞核・石灰部・軟骨組織・細菌・粘液が青藍色〜淡青色に染色され、エオジン染色(E染色)により細胞質・間質・各種線維・赤血球・角化細胞が赤〜濃赤色に染色される。病理医は、染色された組織標本の顕微鏡画像の中で、細胞の核の大きさや形の変化、組織としてのパターンの変化などの形態学的な情報、染色情報、をもとに診断を行っている。
Various dyeing techniques have been proposed.
Especially for tissue specimens, hematoxylin and eosin staining (HE staining) using two pigments of hematoxylin and eosin is used as a standard morphological observation stain for observing the morphology of the specimen (Non-patent Document 1, Patent Document). 1-2), cell nucleus, lime, cartilage tissue, bacteria and mucus are stained blue-blue to light blue by hematoxylin staining (H staining), and cytoplasm, stroma, various fibers, etc. by eosin staining (E staining) Red blood cells and keratinocytes are stained red to dark red. The pathologist makes a diagnosis based on morphological information such as changes in the size and shape of the cell nucleus and changes in the pattern of the tissue in the microscopic image of the stained tissue specimen, and staining information. ing.

他方、病理診断では、免疫染色と呼ばれる、組織標本の分子情報の発現を確認するための分子標的染色を施し、遺伝子やタンパクの発現異常といった機能異常を診断する免疫観察も行なわれている。
免疫染色では、たとえば蛍光染色法(蛍光標識法)が用いられる。蛍光染色法は、蛍光色素などの蛍光粒子で修飾した抗体を用いて、対象となる抗原を染色し観察することで抗原量を測る手法である。
On the other hand, in pathological diagnosis, immunological observation called immunostaining is performed, in which molecular target staining for confirming the expression of molecular information in a tissue specimen is performed to diagnose functional abnormalities such as abnormal expression of genes and proteins.
In immunostaining, for example, a fluorescent staining method (fluorescent labeling method) is used. The fluorescent staining method is a technique for measuring the amount of antigen by staining and observing an antigen of interest using an antibody modified with fluorescent particles such as a fluorescent dye.

近年では、同一の病理切片に対し、形態観察染色と蛍光染色法による免疫染色(蛍光免疫染色)とを共に行うことが試みられており、たとえば、HER2などの膜に発現するタンパクを検出する場合には、HE染色と蛍光免疫染色とを共に行っている。
かかる場合、細胞の形態観察と蛍光粒子の観察との両方を行いたいため、ある程度エオジンが発光する励起波長で蛍光粒子を励起させている。その際に、輝度の低い蛍光粒子(たとえばQ-dotなど)では、E染色により蛍光が埋もれてしまい輝点の観測が不可能となるため、E染色に埋もれない輝度を有する蛍光粒子を選択することが必要となってくる。現在用いられている蛍光粒子では、輝度がその粒子の体積に比例することから、HE染色時においてある程度大きな粒径を有する粒子が必要となっており、実際には粒径が150nm程度の粒子が用いられている。
In recent years, it has been attempted to perform both morphological observation staining and immunostaining by fluorescence staining (fluorescence immunostaining) on the same pathological section. For example, when detecting proteins expressed on membranes such as HER2 In addition, HE staining and fluorescent immunostaining are performed together.
In this case, since it is desired to perform both cell morphology observation and fluorescent particle observation, the fluorescent particles are excited at an excitation wavelength at which eosin emits light to some extent. At that time, fluorescent particles with low luminance (for example, Q-dot) are buried with fluorescence due to E staining, making it impossible to observe a bright spot. Therefore, fluorescent particles having luminance not buried in E staining are selected. It will be necessary. In the fluorescent particles currently used, since the luminance is proportional to the volume of the particles, particles having a somewhat large particle size are necessary at the time of HE staining, and in reality, particles having a particle size of about 150 nm are required. It is used.

特表2001−525580号公報Special table 2001-525580 gazette 特開2009−115599号公報JP 2009-115599 A

診断に役立つ免疫組織化学、文光堂Immunohistochemistry useful for diagnosis, Bunkodo

ところで、抗原の発現数の少ない病理切片においてはそれほど大きな問題とはならないが、抗原の発現数の多い病理切片では、抗原間の距離が150nm以下になることが考えられ問題が発生する。
たとえば、図5に示すとおり、蛍光粒子12とビオチン14とを直接結合した標識体10を作製し、標識体10を用いて、抗原20に1次抗体30とアビジン42で修飾した2次抗体40とを結合したものを免疫染色する方法では、蛍光粒子12が150nm程度の粒径を有しているため、蛍光粒子12同士の立体障害によって抗原20と結合できない蛍光粒子12が存在し、すべての抗原20を認識できなくなってしまう。
このような問題に対し、粒径の小さい蛍光粒子12のみを用いれば、抗原20間の距離が狭くても蛍光粒子12が認識可能となり、H染色のみの観察条件では輝点数が増加する。しかしながら、粒径の小さい蛍光粒子12では輝度自体が低いため、蛍光免疫染色とHE染色とを共に行うと、エオジンの蛍光より蛍光粒子12の蛍光のほうが弱く、輝点が確認できず、蛍光免疫染色による定量性が低下する。
By the way, although it is not a big problem in a pathological section with a small number of antigen expression, a problem arises in a pathological section with a large number of antigen expression because the distance between antigens may be 150 nm or less.
For example, as shown in FIG. 5, a labeled body 10 in which fluorescent particles 12 and biotin 14 are directly bound is prepared, and a secondary antibody 40 obtained by modifying the antigen 20 with a primary antibody 30 and an avidin 42 using the labeled body 10. In the method of immunostaining the combination of the fluorescent particles 12, since the fluorescent particles 12 have a particle size of about 150 nm, there are fluorescent particles 12 that cannot bind to the antigen 20 due to steric hindrance between the fluorescent particles 12, The antigen 20 cannot be recognized.
In response to such a problem, if only the fluorescent particles 12 having a small particle diameter are used, the fluorescent particles 12 can be recognized even when the distance between the antigens 20 is narrow, and the number of bright spots increases under the observation condition of only H staining. However, since the fluorescent particle 12 having a small particle size has low luminance itself, when both fluorescent immunostaining and HE staining are performed, the fluorescence of the fluorescent particle 12 is weaker than that of eosin, and the bright spot cannot be confirmed. Quantification by staining is reduced.

したがって、本発明の主な目的は、蛍光免疫染色と形態観察染色とを共に行う場合であっても、蛍光免疫染色による抗原の定量性を向上させることができる染色方法を提供することにある。   Therefore, a main object of the present invention is to provide a staining method capable of improving the quantitativeness of an antigen by fluorescent immunostaining even when both fluorescent immunostaining and morphological observation staining are performed.

上記課題を解決するため本発明によれば、
蛍光色素を樹脂中に内包した蛍光粒子であって平均粒径の異なる2種以上の前記蛍光粒子を、標識剤として用いる病理切片の染色方法において、
前記病理切片に対して第1の平均粒径であり且つ第1の蛍光色を発する第1の蛍光粒子を用いて特定の抗原を免疫染色する工程と、
前記病理切片に対して、平均粒径が前記第1の蛍光粒子の前記第1の平均粒径より小さい第2の平均粒径であり且つ前記第1の蛍光色と異なる第2の蛍光色を発する第2の蛍光粒子を用いて前記特定の抗原を免疫染色する工程と、
を有することを特徴とする染色方法が提供される。
In order to solve the above problems, according to the present invention,
In a staining method of a pathological section using two or more kinds of fluorescent particles having different average particle diameters, which are fluorescent particles encapsulating a fluorescent dye in a resin,
Immunostaining a specific antigen with the first fluorescent particles having a first average particle diameter and emitting a first fluorescent color with respect to the pathological section;
A second fluorescent color having an average particle size smaller than the first average particle size of the first fluorescent particles and different from the first fluorescent color is applied to the pathological section . Immunostaining the specific antigen using second fluorescent particles that emit ;
There is provided a staining method characterized by comprising:

本発明によれば、蛍光免疫染色と形態観察染色とを共に行う場合であっても、蛍光免疫染色による抗原の定量性を向上させることができる。   According to the present invention, even when both fluorescent immunostaining and morphological observation staining are performed, the antigen quantification by fluorescent immunostaining can be improved.

蛍光粒子の樹脂量と平均粒径との関係を概略的に示す図である。It is a figure which shows roughly the relationship between the resin amount of fluorescent particles, and an average particle diameter. エオジンの励起スペクトルと蛍光スペクトルとを概略的に示すスペクトル図である。It is a spectrum figure which shows roughly the excitation spectrum and fluorescence spectrum of eosin. 大径蛍光粒子と小径蛍光粒子とを用いた免疫染色時の粒子の挙動を概略的に示す模式図である。It is a schematic diagram schematically showing the behavior of particles during immunostaining using large fluorescent particles and small fluorescent particles. 本発明の実施例にかかる総タンパク量(抗原量)と輝点数との関係を示す図である。It is a figure which shows the relationship between the total protein amount (antigen amount) and the number of bright spots concerning the Example of this invention. 従来技術の問題点を説明するための図である。It is a figure for demonstrating the problem of a prior art.

以下、図面を参照しながら本発明の好ましい実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

本発明の好ましい実施形態にかかる染色方法は、基本的には(1)病理切片を平均粒径の大きい蛍光粒子を用いて免疫染色する工程と、(2)病理切片を平均粒径の小さい蛍光粒子を用いて免疫染色する工程と、(3)形態観察のための染色試薬を用いて病理切片を形態観察染色する工程とを、有している。
特に(1)、(2)の病理切片を免疫染色する工程では、互いに平均粒径の異なる蛍光粒子を標識剤として使用するようになっている。そして蛍光染色後の病理切片に対しては、励起光を照射してこれら蛍光粒子を蛍光発光させ、その病理切片から生体物質(抗原)を検出するようになっている。
The staining method according to a preferred embodiment of the present invention basically includes (1) a step of immunostaining a pathological section using fluorescent particles having a large average particle diameter, and (2) fluorescence having a small average particle diameter of the pathological section. A step of immunostaining using particles; and (3) a step of observing and staining a pathological section using a staining reagent for morphological observation.
In particular, in the step of immunostaining pathological sections (1) and (2), fluorescent particles having different average particle diameters are used as labeling agents. The pathological section after fluorescent staining is irradiated with excitation light to cause these fluorescent particles to emit fluorescence, and a biological substance (antigen) is detected from the pathological section.

(1)の免疫染色する工程と(2)の免疫染色する工程とでは、(1)の免疫染色する工程の処理を先に実行し、その後に(2)の免疫染色する工程の処理を実行する。なお、蛍光粒子の輝点の観察については、HE染色条件で、平均粒径の大きい蛍光粒子の輝点数をカウントし、その後に励起波長を切り替えることで平均粒径の小さい蛍光粒子の輝点数をカウントする。
他方、(1)、(2)の免疫染色する工程と(3)の形態観察染色する工程とでは、好ましくは(1)、(2)の免疫染色する工程の処理を先に実行し、その後に(3)の形態観察染色する工程の処理を実行するのがよいが、その順序(先後)は入れ替わってもよい。
In the immunostaining step (1) and the immunostaining step (2), the processing of the immunostaining step (1) is performed first, and then the processing of the immunostaining step (2) is performed. To do. For observation of bright spots of fluorescent particles, the number of bright spots of fluorescent particles with a large average particle diameter is counted under HE staining conditions, and then the number of bright spots of fluorescent particles with a small average particle diameter is changed by switching the excitation wavelength. Count.
On the other hand, in the immunostaining step (1) and (2) and the morphological observation staining step (3), preferably, the processing of the immunostaining step (1) and (2) is performed first, and then In addition, the process of (3) morphological observation dyeing process is preferably executed, but the order (first and second) may be changed.

免疫染色やそこで使用する蛍光粒子の特性や種類、形態観察染色などの詳細は下記のとおりである。   Details of immunostaining, the characteristics and types of fluorescent particles used therein, and morphological observation staining are as follows.

[免疫染色]
(i)染色方法
免疫染色では蛍光染色法が好適に用いられる。
蛍光染色法は抗原を蛍光粒子で染色する方法である。
染色の際には、蛍光粒子と1次抗体を直接結合した標識体を作製し、抗原を染色する方法(1次抗体法)、蛍光粒子と2次抗体を直接結合した標識体を作製し、抗原に1次抗体を結合したものを染色する方法(2次抗体法)、蛍光粒子とビオチンとを直接結合した標識体を作製し、抗原に1次抗体とアビジンで修飾した2次抗体とを結合したものを染色する方法(ビオチン−アビジン法、図5参照)などを用いることができる。
1次抗体は特に限定されず、免疫染色を行おうとする対象(抗原)によって変わる。たとえばHER2抗原の免疫染色を行う場合には、抗HER2抗体を用いる。
「抗原」は膜タンパク質や細胞質内のタンパク質などが好適な対象である。
2次抗体も特に限定されず、1次抗体によって変わる。たとえば抗マウス・ラビット・牛・ヤギ・羊・犬・チキンが挙げられる。
蛍光粒子と抗体やビオチンの結合は既存の如何なる方法を用いても構わない。たとえば、アミンとカルボン酸の反応によるアミド化、マレイミドとチオールの反応によるスルフィド化、アルデヒドとアミンの反応によるイミン化、エポキシとアミンの反応によるアミノ化などを用いることができる。
[Immunostaining]
(I) Staining method In immunostaining, a fluorescent staining method is preferably used.
The fluorescent staining method is a method of staining an antigen with fluorescent particles.
At the time of staining, a labeled body in which fluorescent particles and a primary antibody are directly bound is prepared, a method for staining an antigen (primary antibody method), a labeled body in which fluorescent particles and a secondary antibody are directly bound are prepared, A method in which a primary antibody bound to an antigen is stained (secondary antibody method), a labeled body in which fluorescent particles and biotin are directly bound is prepared, and a primary antibody and a secondary antibody modified with avidin are bound to the antigen. A method of staining the bound one (biotin-avidin method, see FIG. 5) or the like can be used.
The primary antibody is not particularly limited, and varies depending on the subject (antigen) to be immunostained. For example, when performing immunostaining of HER2 antigen, an anti-HER2 antibody is used.
“Antigen” is preferably a membrane protein or cytoplasmic protein.
The secondary antibody is not particularly limited and varies depending on the primary antibody. For example, anti-mouse, rabbit, cow, goat, sheep, dog, chicken.
Any existing method may be used for binding the fluorescent particles to the antibody or biotin. For example, amidation by reaction of amine and carboxylic acid, sulfidation by reaction of maleimide and thiol, imination by reaction of aldehyde and amine, amination by reaction of epoxy and amine can be used.

(ii)標識剤
免疫染色では、まず、標識剤として蛍光粒子を使用する。
本実施形態にかかる「蛍光粒子」とは、蛍光色素を樹脂中に内包した蛍光色素内包樹脂粒子である。
(Ii) Labeling agent In immunostaining, first, fluorescent particles are used as a labeling agent.
The “fluorescent particles” according to the present embodiment are fluorescent dye-containing resin particles in which a fluorescent dye is included in a resin.

(ii−A)構成材料
蛍光色素としては、たとえば、ローダミン系色素分子、Alexa Fluor(インビトロジェン社製)系色素分子、BODIPY(インビトロジェン社製)系色素分子、Texas Red系色素分子、スクアリリウム系色素分子、シアニン系色素分子、ローダミン系色素分子、オキサジン系色素分子、芳香環系色素分子、カルボピロニン系色素分子などを挙げることができる。
具体的には、5−カルボキシ−ローダミン、6−カルボキシ−ローダミン、5,6−ジカルボキシ−ローダミン、ローダミン 6G、テトラメチルローダミン、X−ローダミン、及びAlexa Fluor 555、Alexa Fluor 568、Alexa Fluor 594、Alexa Fluor 610、Alexa Fluor 633、Alexa Fluor 635、Alexa Fluor 647、Alexa Fluor 660、Alexa Fluor 680、Alexa Fluor 700、Alexa Fluor 750、BODIPY FL,BODIPY TMR、BODIPY 493/503、BODIPY 530/550、BODIPY 558/568、BODIPY 564/570、BODIPY 576/589、BODIPY 581/591、BODIPY 630/650、BODIPY 650/665(以上インビトロジェン社製)、Cy5、Cy5.5、1,3−Bis[4−(dimethylamino)−2−hydroxyphenyl]−2,4−dihydroxycyclobutenediylium dihydroxide, bis、1,3−Bis[4−(dimethylamino)phenyl]−2,4−dihydroxycyclobutenediylium dihydroxide, bis、2−(4−(Diethylamino)−2−hydroxyphenyl)−4−(4−(diethyliminio)−2−hydroxycyclohexa−2,5−dienylidene)−3−oxocyclobut−1−enolate、2−(4−(Dibutylamino)−2−hydroxyphenyl)−4−(4−(dibutyliminio)−2−hydroxycyclohexa−2,5−dienylidene)−3−oxocyclobut−1−enolate、2−(8−Hydroxy−1,1,7,7−tetramethyl−1,2,3,5,6,7−hexahydropyrido[3,2,1−ij]quinolin−9−yl)−4−(8−hydroxy−1,1,7,7−tetramethyl−2,3,6,7−tetrahydro−1H−pyrido[3,2,1−ij]quinolinium−9(5H)−ylidene)−3−oxocyclobut−1−enolate、1−Butyl−2−[5−(1−butyl−1,3−dihydro−3,3−dimethyl−2H−indol−2−ylidene)−penta−1,3−dienyl]−3,3−dimethyl−3eiti−indolium hexafluorophosphate、1−Butyl−2−[5−(1−butyl−3,3−dimethyl−1,3−dihydro−indol−2−ylidene)−3−chloro−penta−1,3−dienyl]−3,3−dimethyl−3H−indolium hexafluorophosphate、3−Ethyl−2−[5−(3−ethyl−3H−benzothiazol−2−ylidene)−penta−1,3−dienyl]−benzothiazol−3−ium iodide、N, N-Di-(2, 6-diisopropylphenyl)-1, 6, 7, 12-(4-tert.butyl-phenoxy)-perylen-3, 4, 9, 10-tetracarbonacid diimide、N,N-Bis(2,6-diisopropylphenyl)-1,6,7,12-tetraphenoxyperylene-3,4:9,10-tetracarboxdiimide、N,N'-Bis(2,6-diisopropylphenyl)perylene-3,4:9,10-bis(dicarbimide)、Benzenesulfonic acid, 4,4',4'',4'''-[[2,9-bis[2,6-bis(1-methylethyl)phenyl]-1,2,3,8,9,10-hexahydro-1,3,8,10-tetraoxoanthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-5,6,12,13-tetrayl]tetrakis(oxy)]tetrakis-、Benzeneethanaminium, 4,4',4'',4'''-[[2,9-bis[2,6-bis(1-
methylethyl)phenyl]-1,2,3,8,9,10-hexahydro-1,3,8,10-tetraoxoanthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-5,6,12,13-tetrayl]tetrakis(oxy)]tetrakis[N,N,N-trimethyl-、ROX (X-Rhodamine,Rhodamine Red X)、DY-590、5-ROX、Spectrum Red、PYRROMETHENE650、Texas Red、BODIPY TR、DyLight 594、AlexaFluor 594、HiLyte594、HiLyteFluor TR、Cresyl violet、ATTO590、MFP590、DY-610、ATTO610、DY-615、Oxazine170、ATTO620、C-Phycocyanin、AlexaFluor 633、Phycocyanin、ATTO633、DY-630、DY-632、DY-633、MFP631、DyLight633、NorthernLights637、DY-631、DY-634、Nile Blue、APC(Allophycocyanin)、APC-XL、EVOblue30、SRfluor 680-CarboxylateLD700 PERCHLORATE、ATTO 655などを挙げることができる。
これら蛍光色素は、単独で用いられてもよいし、複数種が混合され用いられてもよい。
(Ii-A) Constituent material Examples of fluorescent dyes include rhodamine dye molecules, Alexa Fluor (Invitrogen) dye molecules, BODIPY (Invitrogen) dye molecules, Texas Red dye molecules, squarylium dye molecules. And cyanine dye molecules, rhodamine dye molecules, oxazine dye molecules, aromatic ring dye molecules, carbopyronine dye molecules, and the like.
Specifically, 5-carboxy-rhodamine, 6-carboxy-rhodamine, 5,6-dicarboxy-rhodamine, rhodamine 6G, tetramethylrhodamine, X-rhodamine, and Alexa Fluor 555, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 610, Alexa Fluor 633, Alexa Fluor 635, Alexa Fluor 647, Alexa Fluor 660, Alexa Fluor 680, Alexa Fluor 700, Alex 3 Fluor 750, BODIPY FL, BOD 50Y / 568, BODIPY 564/570, BODIPY 576/589 BODIPY 581/591, BODIPY 630/650, BODIPY 650/665 (manufactured by Invitrogen), Cy5, Cy5.5, 1,3-Bis [4- (dimethylamino) -2-hydroxyphenyldiethylenediphenyldienedihydidiethylene , Bis, 1,3-Bis [4- (dimethylamino) phenyl] -2,4-dihydroxycyclobutenedidium dihydride, bis, 2- (4- (Diethylamino) -2-hydroxyphenyl) -4- (4- (diethyl) -2) -Hydroxycyclohexa-2,5-diylenedene)- -Oxocyclobut-1-enolate, 2- (4- (Dibutylamino) -2-hydroxyphenyl) -4- (4- (dibutyliminio) -2-hydroxycyclohexa-2,5-diylenedene) -3-oxocyclobut-1-enolate -(8-Hydroxy-1,1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido [3,2,1-ij] quinolin-9-yl) -4- (8- hydroxy-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H-pyrido [3,2,1-ij] quinolinium-9 (5H) -ylidene) -3-oxocyc obut-1-enolate, 1-Butyl-2- [5- (1-butyl-1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene) -penta-1,3-dienyl]- 3,3-dimethyl-3 eiti-indolium hexafluorophosphate, 1-Butyl-2- [5- (1-butyyl-3,3-dimethyl-1,3-dihydro-indol-2-ylidene) -3-chloro-penta- 1,3-dienyl] -3,3-dimethyl-3H-indolelium hexafluorophosphate, 3-Ethyl-2- [5- (3-ethyl-3H-benzothiazol-2-ylidene) -p nta-1,3-dienyl] -benzothiazol-3-ium iodide, N, N-Di- (2,6-diisopropylphenyl) -1, 6, 7, 12- (4-tert.butyl-phenoxy) -perylen- 3, 4, 9, 10-tetracarbonacid diimide, N, N-Bis (2,6-diisopropylphenyl) -1,6,7,12-tetraphenoxyperylene-3,4: 9,10-tetracarboxdiimide, N, N'-Bis (2,6-diisopropylphenyl) perylene-3,4: 9,10-bis (dicarbimide), Benzenesulfonic acid, 4,4 ', 4'',4'''-[[2,9-bis [2,6 -bis (1-methylethyl) phenyl] -1,2,3,8,9,10-hexahydro-1,3,8,10-tetraoxoanthra [2,1,9-def: 6,5,10-d 'e'f'] diisoquinoline-5,6,12,13-tetrayl] tetrakis (oxy)] tetrakis-, Benzeneethanaminium, 4,4', 4 '', 4 '''-[[2,9-bis [2 , 6-bis (1-
methylethyl) phenyl] -1,2,3,8,9,10-hexahydro-1,3,8,10-tetraoxoanthra [2,1,9-def: 6,5,10-d'e'f '] diisoquinoline-5,6,12,13-tetrayl] tetrakis (oxy)] tetrakis [N, N, N-trimethyl-, ROX (X-Rhodamine, Rhodamine Red X), DY-590, 5-ROX, Spectrum Red, PYRROMETHENE650, Texas Red, BODIPY TR, DyLight 594, AlexaFluor 594, HiLyte594, HiLyteFluor TR, Cresyl violet, ATTO590, MFP590, DY-610, ATTO610, DY-615, Oxazine170, ATTO620, C-Phycocyanin, AlexaFluor 633, P633 , DY-630, DY-632, DY-633, MFP631, DyLight633, NorthernLights637, DY-631, DY-634, Nile Blue, APC (Allophycocyanin), APC-XL, EVOblue30, SRfluor 680-CarboxylateLD700 PERCHLORATE, ATTO 655, etc. Can be mentioned.
These fluorescent dyes may be used alone or as a mixture of plural kinds.

内包用の樹脂としては、たとえば、ポリスチレン、ポリアミド、ポリ乳酸、ポリアクリロニトリル、ポリグリシジルメタクリレート、ポリメラミン、ポリウレア、ポリベンゾグアナミン、ポリフラン、ポリキシレン、フェノール樹脂などがあり、安定に蛍光色素を内包できるものが使用される。
蛍光色素の内包には、原料であるモノマーに蛍光色素の分子を結合させて粒子を合成する方法、樹脂に蛍光色素を吸着させて導入する方法など、樹脂中への蛍光色素の導入はいかなる方法を用いても構わない。
Examples of encapsulating resins include polystyrene, polyamide, polylactic acid, polyacrylonitrile, polyglycidyl methacrylate, polymelamine, polyurea, polybenzoguanamine, polyfuran, polyxylene, and phenol resin, which can stably encapsulate fluorescent dyes. Is used.
For the encapsulation of fluorescent dyes, any method of introducing fluorescent dyes into a resin, such as a method of synthesizing particles by binding fluorescent dye molecules to monomers as raw materials, or a method of adsorbing and introducing fluorescent dyes into resin May be used.

(ii−B)平均粒径などの特性
次に、免疫染色では、互いに平均粒径の異なる2種以上の蛍光粒子を用いる。「平均粒径」とは、走査型電子顕微鏡(SEM)を用いて電子顕微鏡写真を撮影し十分な数(本実施形態では1000個)の粒子について断面積を計測し、各計測値を円の面積としたときの円の直径の算術平均である。
これら蛍光粒子間では、いずれも蛍光色素内包樹脂粒子が使用され、蛍光色素は異なっていてもよいし同じでもよく、内包用の樹脂も異なっていてもよいし同じでもよい。
(Ii-B) Characteristics such as average particle diameter Next, in immunostaining, two or more kinds of fluorescent particles having different average particle diameters are used. “Average particle size” means that a scanning electron microscope (SEM) is used to take an electron micrograph to measure the cross-sectional area of a sufficient number of particles (1000 particles in this embodiment), and each measured value is a circle. Arithmetic average of the diameter of the circle when the area is taken.
Among these fluorescent particles, fluorescent dye-encapsulating resin particles are used, and the fluorescent dyes may be different or the same, and the encapsulating resins may be different or the same.

平均粒径の大きい蛍光粒子(大径蛍光粒子)としては、好ましくはペリレンジイミド(PI)をポリメラミン中に内包したPI色素内包ポリメラミン粒子や、PIをポリスチレン中に内包したPI色素内包ポリスチレン粒子が使用され、より好ましくはPI色素内包ポリメラミン粒子が使用される。HE染色時に必要な輝度の観点から、大径蛍光粒子の平均粒径は、好ましくは120-180nm(120nm以上で180nm以下)である。
平均粒径の小さい蛍光粒子(小径蛍光粒子)としては、好ましくはCy5をポリメラミン中に内包したCy5色素内包ポリメラミン粒子や、Cy5をポリスチレン中に内包したCy5色素内包ポリスチレン粒子が使用され、より好ましくはCy5色素内包ポリメラミン粒子が使用される。大径蛍光粒子の平均粒径との関係から、小径蛍光粒子の平均粒径(上限値)は、好ましくは80nm以下である。汎用顕微鏡において、HE染色時に輝点としてカウントできる必要があるという観点から、小径蛍光粒子の平均粒径(下限値)は、好ましくは20nm以上である。
As fluorescent particles having a large average particle size (large fluorescent particles), PI dye-containing polymelamine particles containing perylene diimide (PI) in polymelamine, or PI dye-containing polystyrene particles containing PI in polystyrene More preferably, PI dye-containing polymelamine particles are used. From the viewpoint of luminance necessary for HE staining, the average particle diameter of the large fluorescent particles is preferably 120-180 nm (120 nm or more and 180 nm or less).
As the fluorescent particles having a small average particle diameter (small fluorescent particles), Cy5 dye-encapsulated polymelamine particles in which Cy5 is encapsulated in polymelamine, and Cy5 dye-encapsulated polystyrene particles in which Cy5 is encapsulated in polystyrene are used. Preferably, Cy5 dye-encapsulated polymelamine particles are used. From the relationship with the average particle diameter of the large fluorescent particles, the average particle diameter (upper limit) of the small fluorescent particles is preferably 80 nm or less. In the general-purpose microscope, the average particle diameter (lower limit value) of the small-diameter fluorescent particles is preferably 20 nm or more from the viewpoint that it is necessary to be counted as a bright spot at the time of HE staining.

平均粒径の異なる蛍光粒子の作製(粒径制御)にあたっては、合成時の内包用の樹脂量と蛍光色素量とを一定として、樹脂量を増減することにより、平均粒径の異なる蛍光粒子が合成可能である。たとえば、内包用の樹脂量と蛍光色素量との比を0.04とした場合の蛍光粒子の平均粒径の分布例を、図1に示す。   When producing fluorescent particles with different average particle sizes (particle size control), the amount of encapsulated resin and the amount of fluorescent dye at the time of synthesis are fixed, and the amount of resin is increased or decreased to obtain fluorescent particles with different average particle sizes. It can be synthesized. For example, FIG. 1 shows an example of the distribution of the average particle diameter of fluorescent particles when the ratio of the amount of resin for encapsulation and the amount of fluorescent dye is 0.04.

(ii−C)励起・発光波長
HE染色に用いられるエオジンは顕微鏡観察条件によっては蛍光を放つ。エオジン吸収波長は多くの蛍光標識体の励起波長と重複するため、HE染色に用いたエオジンの発光が蛍光標識体の観察を妨害しうるという課題がある。
エオジンの蛍光スペクトル(励起波長520nm)と励起スペクトル(蛍光波長540nm)を、図2に示す。励起スペクトルより、エオジンは350nm未満の波長域および450nmを超えかつ550nm未満の波長域で効率よく励起されることがわかる。
従って、本実施形態にかかる蛍光粒子は、この波長域を回避した350〜450nmの波長域かまたは550nm以上の長波長域の光で励起される必要がある。
好ましくは、大径蛍光粒子の蛍光色素については580nm付近の波長の光で励起する蛍光色素を使用し、小径蛍光粒子の蛍光色素については600nm以上の波長の光で励起する蛍光色素を使用する。
(Ii-C) Excitation / emission wavelength
Eosin used for HE staining emits fluorescence depending on the microscopic observation conditions. Since the eosin absorption wavelength overlaps with the excitation wavelength of many fluorescent labels, there is a problem that the emission of eosin used for HE staining can interfere with the observation of the fluorescent label.
The fluorescence spectrum (excitation wavelength 520 nm) and excitation spectrum (fluorescence wavelength 540 nm) of eosin are shown in FIG. From the excitation spectrum, it can be seen that eosin is efficiently excited in the wavelength region below 350 nm and in the wavelength region above 450 nm and below 550 nm.
Therefore, the fluorescent particles according to the present embodiment need to be excited by light having a wavelength range of 350 to 450 nm avoiding this wavelength range or a long wavelength range of 550 nm or more.
Preferably, a fluorescent dye that is excited by light having a wavelength of about 580 nm is used for the fluorescent dye of the large diameter fluorescent particle, and a fluorescent dye that is excited by light having a wavelength of 600 nm or more is used for the fluorescent dye of the small diameter fluorescent particle.

[形態観察染色]
形態観察染色のうち、特に組織標本に関しては、標本の形態を観察するための形態観察染色として、ヘマトキシリンおよびエオジンの2つの色素を用いるHE染色が標準的に用いられているが、これに限定されるものではない。他の形態観察染色としては、例えば細胞診に用いられるパパニコロウ染色(Pap染色)等がある。
また、HE染色では、H染色により細胞核・石灰部・軟骨組織・細菌・粘液が青藍色〜淡青色に染色され、E染色により細胞質・間質・各種線維・赤血球・角化細胞が赤〜濃赤色に染色されるが、これに限定されるものではない。ヘマトキシリン類縁体やヘマトキシリンと同様の吸収波長を持つ色素により細胞核・石灰部・軟骨組織・細菌・粘液が青藍色〜淡青色に染色され、エオジン類縁体やエオジンと類似の吸収波長を持つ色素により細胞質・間質・各種線維・赤血球・角化細胞が赤〜濃赤色に染色されてもよい。
[Morphological observation staining]
Among morphological observation stains, especially for tissue specimens, HE staining using two dyes, hematoxylin and eosin, is standardly used as a morphological observation stain for observing the morphology of the specimen, but it is limited to this. It is not something. Examples of other morphological observation staining include Papanicolaou staining (Pap staining) used for cytology.
In HE staining, the nucleus, lime, cartilage tissue, bacteria, and mucus are stained blue-blue to light blue by H staining, and cytoplasm, stroma, various fibers, erythrocytes, and keratinocytes are red by E staining. Although it is dyed dark red, it is not limited to this. Cell nucleus, lime, cartilage tissue, bacteria, and mucus are stained blue-blue to light blue with a dye having the same absorption wavelength as that of hematoxylin analog or hematoxylin, and eosin analog or a dye having an absorption wavelength similar to that of eosin. Cytoplasm, stroma, various fibers, erythrocytes, and keratinocytes may be stained red to deep red.

以上の本実施形態によれば、大径蛍光粒子を用いて免疫染色した後に、小径蛍光粒子を用いて免疫染色するため、大径蛍光粒子の立体障害で染色できなかった部位の染色を行うことができる(図3参照)。かかる場合において、小径蛍光粒子の励起波長と発光波長が600nm以上であるため、輝点の輝度が低くても、エオジンの蛍光による影響を受けず、輝点(抗原)を認識することができる。
したがって、HE染色における視認性を維持したまま、抗原数が多く蛍光粒子の立体障害が問題となってくるような病理切片においても、より多くの抗原を認識可能となり、結果として蛍光免疫染色と形態観察染色とを共に行う場合であっても、蛍光免疫染色による抗原の定量性を向上させることができる。
According to the present embodiment described above, after immunostaining using large-diameter fluorescent particles, immunostaining is performed using small-diameter fluorescent particles, and therefore, staining of a portion that cannot be stained due to steric hindrance of the large-diameter fluorescent particles is performed. (See FIG. 3). In such a case, since the excitation wavelength and emission wavelength of the small-diameter fluorescent particles are 600 nm or more, even if the brightness of the bright spot is low, the bright spot (antigen) can be recognized without being affected by the fluorescence of eosin.
Therefore, it is possible to recognize more antigens even in pathological sections where the number of antigens is large and the steric hindrance of fluorescent particles becomes a problem while maintaining the visibility in HE staining. Even when observation staining is performed together, it is possible to improve the antigen quantification by fluorescent immunostaining.

(1)蛍光粒子/標識体サンプルの作製
蛍光粒子としてPI色素内包ポリメラミン粒子を、標識体としてストレプトアビジンが結合したPI色素内包ポリメラミン粒子を、下記のとおり作製した。
N,N’−Bis(2,6−diisopropylphenyl)−1,6,7,12−tetraphenoxyperylene−3,4:9,10−tetracarboxdiimideを濃硫酸で処理し、ペリレンジイミドスルホン酸誘導体を作製した。これを酸クロリドに変換してペリレンジイミドスルホン酸クロリド誘導体とした。
ペリレンジイミドスルホン酸クロリド誘導体14.4mgを水22.5mLに加えた後、ホットスターラ―上で70℃20分間加熱し、メラミン樹脂ニカラックMX−035(日本カーバイド工業社製)0.65g(粒径150nm)を加え、さらに5分間加熱撹拌した。ギ酸100μLを加え、60℃20分間で加熱攪拌した後、室温放冷した。冷却後、反応混合物を遠心用チューブに入れて遠心分離機に12,000rpmで20分間かけ、上澄み除去した。この洗浄をエタノールと水で行なった。
得られた粒子0.1mgをEtOH(エタノール)1.5mL中に分散し、アミンプロピルトリメトキシシランLS−3150(信越化学工業社製)2μLを加えて8時間反応させて表面アミノ化処理を行なった。
得られた色素内包ナノ粒子を、EDTA(エチレンジアミン四酢酸)を2mM含有したPBS(リン酸緩衝液生理的食塩水)を用いて3nMに調整し、この溶液に最終濃度10mMとなるようSM(PEG)12(サーモサイエンティフィック社製、succinimidyl−[(N−maleomidopropionamid)−dodecaethyleneglycol]ester)を混合し、1時間反応させた。この混合液を10,000Gで20分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行うことで末端にマレイミド基が付いた蛍光色素内包樹脂粒子(蛍光粒子)を得た。
一方、ストレプトアビジン(和光純薬社製)をN−succinimidyl S−acetylthioacetate(SATA)を用いてチオール基付加処理を行ったのち、ゲルろ過カラムによるろ過を行い、蛍光色素内包樹脂粒子に結合可能なストレプトアビジン溶液を得た。
上記の蛍光色素内包樹脂粒子とストレプトアビジンとを、EDTAを2mM含有したPBS中で混合し、1時間反応させた。10mMメルカプトエタノールを添加し、反応を停止させた。得られた溶液を遠心フィルターで濃縮後、精製用ゲルろ過カラムを用いて未反応ストレプトアビジン等を除去し、ストレプトアビジン結合PI色素内包ポリメラミン粒子A(標識体)を得た。
このような製造方法において、PI量とポリメラミン量とを一定としてポリメラミン量を増減させ、ストレプトアビジン結合PI色素内包ポリメラミン粒子のサンプルB〜Hを作製した(表1参照)。
(1) Preparation of Fluorescent Particle / Labeled Body Sample PI dye-encapsulated polymelamine particles as fluorescent particles and PI dye-encapsulated polymelamine particles bound with streptavidin as labeled bodies were prepared as follows.
N, N′-Bis (2,6-diisopropylphenyl) -1,6,7,12-tetraphenylperylene-3,4: 9,10-tetracarboxdiimide was treated with concentrated sulfuric acid to produce a perylene diimide sulfonic acid derivative. This was converted to an acid chloride to obtain a perylene diimide sulfonic acid chloride derivative.
14.4 mg of perylene diimide sulfonic acid chloride derivative was added to 22.5 mL of water, and then heated on a hot stirrer at 70 ° C. for 20 minutes to give 0.65 g of melamine resin Nicalak MX-035 (Nippon Carbide Industries, Ltd.) 150 nm), and the mixture was further heated and stirred for 5 minutes. After adding 100 μL of formic acid and heating and stirring at 60 ° C. for 20 minutes, the mixture was allowed to cool to room temperature. After cooling, the reaction mixture was placed in a centrifuge tube and placed in a centrifuge for 20 minutes at 12,000 rpm, and the supernatant was removed. This washing was performed with ethanol and water.
0.1 mg of the obtained particles are dispersed in 1.5 mL of EtOH (ethanol), and 2 μL of aminepropyltrimethoxysilane LS-3150 (manufactured by Shin-Etsu Chemical Co., Ltd.) is added and reacted for 8 hours for surface amination treatment. It was.
The obtained dye-encapsulated nanoparticles were adjusted to 3 nM using PBS (phosphate buffered saline) containing 2 mM of EDTA (ethylenediaminetetraacetic acid), and SM (PEG) was added to this solution to a final concentration of 10 mM. ) 12 (manufactured by Thermo Scientific, succinimidyl-[(N-maleidopropionamid) -dodecaethyleneglycol] ester) was mixed and allowed to react for 1 hour. The mixture was centrifuged at 10,000 G for 20 minutes, the supernatant was removed, PBS containing 2 mM of EDTA was added, the precipitate was dispersed, and centrifuged again. Washing by the same procedure was performed three times to obtain fluorescent dye-containing resin particles (fluorescent particles) having a maleimide group at the end.
On the other hand, streptavidin (manufactured by Wako Pure Chemical Industries, Ltd.) can be bound to fluorescent dye-encapsulated resin particles after performing thiol group addition treatment using N-succinimidyl S-acetylthioacetate (SATA), followed by filtration through a gel filtration column. A streptavidin solution was obtained.
The fluorescent dye-containing resin particles and streptavidin were mixed in PBS containing 2 mM EDTA and allowed to react for 1 hour. 10 mM mercaptoethanol was added to stop the reaction. After the obtained solution was concentrated with a centrifugal filter, unreacted streptavidin and the like were removed using a gel filtration column for purification to obtain streptavidin-binding PI dye-encapsulated polymelamine particles A (labeled body).
In such a production method, the amount of polymelamine was increased or decreased with the amount of PI and the amount of polymelamine kept constant, and samples B to H of streptavidin-binding PI dye-encapsulated polymelamine particles were prepared (see Table 1).

(2)染色方法
病理切片として、あらかじめELISAで総タンパク量を測定している培養細胞を使用した。抗原はHER2を用いた。
その後、上記病理切片を、サンプルA〜Hを用いて免疫染色し、その後形態観察染色(H染色およびHE染色)を実施した。免疫染色と形態観察染色は下記のとおりに実施した。
培養細胞を脱パラフィン処理した後、水に置換する洗浄を行った。洗浄した培養細胞スライドを10mMクエン酸緩衝液(pH6.0)中で121℃、5分間オートクレーブ処理することで、抗原の不活性化処理を行った。
不活性化処理後の培養細胞スライドを、PBS緩衝液を用いて洗浄した後、湿潤箱中で1時間1%BSA含有PBS緩衝液を用いてブロッキング処理を行った。ブロッキング処理後、1%BSA含有PBS緩衝液で0.05nMに希釈した抗HER2ウサギモノクローナル抗体(4B5)(ベンタナ社製)を組織切片と2時間反応させた。これをPBS緩衝液で洗浄後、1%BSA含有PBS緩衝液で2μg/mLに希釈した4B5に結合するビオチン標識抗ウサギモノクロナール抗体と30分反応させた。この反応後、1%BSA含有PBS緩衝液で0.2nMに希釈した前述の蛍光色素内包樹脂粒子を組織切片と、中性のpH環境(pH6.9〜7.4)、室温の条件下で3時間反応させた。小径粒子を反応させる際には、上記反応後、培養細胞スライドをPBS緩衝液を用いて洗浄した後、1%BSA含有PBS緩衝液で0.2nMに希釈した小径粒子を用いて湿潤箱中で反応される。その後、培養細胞スライドを、PBS緩衝液を用いて洗浄した。
免疫染色後、形態観察染色(H染色およびHE染色)を行った。免疫染色した培養細胞スライドをマイヤーヘマトキシリン液で5分間染色してヘマトキシリン染色を行った(H染色)。その後、該切片を45℃の流水で3分間洗浄した。次に、1%エオジン液で5分間染色してエオジン染色を行った(HE染色)。
H染色後またはHE染色後、純エタノールに5分間漬ける操作4回行い、洗浄・脱水を行った。続いてキシレンに5分間漬ける操作を4回行い、透徹を行った。最後に、封入剤(「エンテランニュー」、Merck社製)を用いて組織切片を封入して観察用のサンプルスライドとした。
(2) Staining method Cultured cells whose total protein amount was previously measured by ELISA were used as pathological sections. HER2 was used as the antigen.
Thereafter, the pathological section was immunostained using Samples A to H, and then morphological observation staining (H staining and HE staining) was performed. Immunostaining and morphological observation staining were performed as follows.
The cultured cells were deparaffinized and then washed with water. The washed cultured cell slide was autoclaved at 121 ° C. for 5 minutes in 10 mM citrate buffer (pH 6.0) to inactivate the antigen.
The cultured cell slide after the inactivation treatment was washed with PBS buffer, and then subjected to blocking treatment with 1% BSA-containing PBS buffer for 1 hour in a wet box. After blocking treatment, anti-HER2 rabbit monoclonal antibody (4B5) (manufactured by Ventana) diluted to 0.05 nM with PBS buffer containing 1% BSA was reacted with the tissue section for 2 hours. This was washed with PBS buffer, and reacted with a biotin-labeled anti-rabbit monoclonal antibody that binds to 4B5 diluted to 2 μg / mL with PBS buffer containing 1% BSA for 30 minutes. After this reaction, the above-mentioned fluorescent dye-containing resin particles diluted to 0.2 nM with PBS buffer containing 1% BSA were subjected to a tissue section, a neutral pH environment (pH 6.9 to 7.4), and room temperature conditions. The reaction was performed for 3 hours. When reacting small-diameter particles, after the above reaction, the cultured cell slide was washed with PBS buffer, and then diluted in 0.2 nM with 1% BSA-containing PBS buffer in a wet box. Reacted. The cultured cell slide was then washed with PBS buffer.
After immunostaining, morphological observation staining (H staining and HE staining) was performed. The immunostained cultured cell slide was stained with Mayer's hematoxylin solution for 5 minutes to perform hematoxylin staining (H staining). The sections were then washed with running water at 45 ° C. for 3 minutes. Next, eosin staining was performed by staining with 1% eosin solution for 5 minutes (HE staining).
After H staining or HE staining, an operation of immersing in pure ethanol for 5 minutes was performed 4 times to perform washing and dehydration. Subsequently, the operation of immersing in xylene for 5 minutes was carried out 4 times to perform clearing. Finally, the tissue section was encapsulated using an encapsulant (“Enterlan New”, manufactured by Merck) to prepare a sample slide for observation.

(3)輝点数のカウント
H染色後の輝点数とHE染色後の輝点数とを下記のとおりにカウントした。
免疫染色および形態観察染色した組織切片に対して所定の励起光を照射して蛍光を発光させた。その状態の組織切片を蛍光顕微鏡(BX−53,オリンパス社製)により観察および撮像を行った。また、輝点計測は、ImageJ FindMaxima法により計測した(露光時間400m秒でNoiseToleranceは60)。上記励起光は、光学フィルターに通すことで、PI色素内包ポリメラミン粒子に対して575〜600nmに設定した。また、観察する蛍光の波長(nm)の範囲についても、光学フィルターに通すことで、612〜682nmに設定した。顕微鏡観察、画像取得時の励起波長条件は視野中心部付近の照射エネルギーが900W/cmとなるようにした。画像取得時の露光時間は画像の輝度が飽和しないように任意に設定(例えば400m秒に設定)して撮像した。
H染色後の輝点数とHE染色後の輝点数とをカウントした結果を表1に示す。
(3) Counting the number of bright spots The number of bright spots after H staining and the number of bright spots after HE staining were counted as follows.
The tissue sections subjected to immunostaining and morphological observation staining were irradiated with predetermined excitation light to emit fluorescence. The tissue section in that state was observed and imaged with a fluorescence microscope (BX-53, Olympus). The bright spot was measured by the ImageJ FindMaxima method (exposure time was 400 ms and NoiseTolerance was 60). The said excitation light was set to 575-600 nm with respect to PI pigment | dye inclusion polymelamine particle | grains by letting it pass through an optical filter. Moreover, the range of the wavelength (nm) of the fluorescence to be observed was set to 612 to 682 nm by passing through an optical filter. The excitation wavelength condition for microscopic observation and image acquisition was such that the irradiation energy near the center of the visual field was 900 W / cm 2 . The exposure time at the time of image acquisition was arbitrarily set (for example, set to 400 milliseconds) so as not to saturate the brightness of the image.
Table 1 shows the results of counting the number of bright spots after H staining and the number of bright spots after HE staining.

Figure 0006237194
Figure 0006237194

(4)まとめ
表1に示すとおり、H染色時の輝点数に着目して、サンプルAからサンプルHにかけて順に確認すると、サンプルFからサンプルGにかけて当該輝点数が著しく減少している。この結果から、小径蛍光粒子を用いた抗原の定量化にあたり、蛍光粒子の平均粒径(下限値)は好ましくは20nm以上であると判断される。
他方、H染色時の輝点数とHE染色時の輝点数とに着目して、サンプルAからサンプルHにかけてサンプルごとにこれら輝点数の差を確認すると、サンプルDにおいて輝点数の差が著しく大きくなっている。この結果から、小径蛍光粒子を用いた抗原の定量化にあたり、蛍光粒子の平均粒径(上限値)は好ましくは80nm以下であると判断される。
(4) Summary As shown in Table 1, paying attention to the number of bright spots at the time of H staining and confirming sequentially from sample A to sample H, the number of bright spots is significantly reduced from sample F to sample G. From this result, it is determined that the average particle diameter (lower limit value) of the fluorescent particles is preferably 20 nm or more in quantifying the antigen using the small-diameter fluorescent particles.
On the other hand, paying attention to the number of bright spots at the time of H staining and the number of bright spots at the time of HE staining, when the difference in the number of bright spots from sample A to sample H is confirmed for each sample, the difference in the number of bright spots in sample D becomes remarkably large. ing. From this result, it is determined that the average particle diameter (upper limit) of the fluorescent particles is preferably 80 nm or less in quantifying the antigen using the small fluorescent particles.

(1)蛍光粒子/標識体サンプルの作製
表2〜表5に示すとおり、大径蛍光粒子または小径蛍光粒子を含むストレプトアビジン結合蛍光色素内包樹脂粒子のサンプルを作製した。
サンプル1−1、2−1、3−1、4−1では、標識体として市販(インヴィトロジェン社製)のストレプトアビジン結合Qdot655を用いた。
サンプル1−2〜1−11、2−2〜2−11、3−2〜3−11、4−2〜4−11では、[実施例1]と同様にして標識体を作製した。なお、免疫染色において1番目に使用する標識体として[実施例1]と同様にPIを使用しサンプル作製し、2番目に使用する標識体としてPIを単にCy5に変更しサンプル作製した(平均粒径はCy5量とポリメラミン量とを一定としてポリメラミン量を増減させ制御した。)。
(1) Preparation of fluorescent particle / labeled body sample As shown in Tables 2 to 5, samples of streptavidin-binding fluorescent dye-containing resin particles containing large fluorescent particles or small fluorescent particles were prepared.
In samples 1-1, 2-1, 3-1, and 4-1, commercially available (manufactured by Invitrogen) streptavidin-conjugated Qdot 655 was used.
In Samples 1-2 to 1-11, 2-2 to 2-11, 3-2 to 3-11, and 4-2 to 4-11, labeled bodies were produced in the same manner as in [Example 1]. As in [Example 1], a sample was prepared using PI as the first label used in immunostaining, and the sample was prepared by simply changing PI to Cy5 as the second label used (average particle size). The diameter was controlled by increasing / decreasing the amount of polymelamine while keeping the amount of Cy5 and the amount of polymelamine constant.

サンプル1−12〜1−14、2−12〜2−14、3−12〜3−14、4−12〜4−14では、下記のとおり、蛍光粒子としてPI色素内包ポリスチレン粒子を、標識体としてストレプトアビジンが結合したPI色素内包ポリスチレン粒子を、それぞれ作製した。
PI色素内包ポリスチレン粒子はソープフリー乳化重合法により作製した。[実施例1]のPI蛍光色素を4−アミノスチレン(東京化成工業社製)と室温条件で1時間混合し、色素結合スチレンを作製した。アルゴンバブリングした純水中5mLにグリシジルメタクリレート(東京化成工業社製)0.18gとスチレン(和光純薬社製)0.05g、ジビニルベンゼン0.05g、上記色素結合スチレン0.005gを加えた。撹拌しながら70℃に昇温し、水溶性アゾ重合開始剤であるV−50(和光純薬社性)を0.012g加え、12時間反応した。反応液を10000Gで20分遠心分離し、粒子を回収した。回収した粒子を純水に分散し再度遠心分離で回収する事で精製を行なった。得られた粒子を過剰のアンモニア水に加え、粒子末端のエポキシ基をアミノ基へと変換し、末端にアミノ基を持つ色素内包ポリスチレンナノ粒子を得た。
得られた色素内包ナノ粒子を、EDTA(エチレンジアミン四酢酸)を2mM含有したPBS(リン酸緩衝液生理的食塩水)を用いて3nMに調整し、この溶液に最終濃度10mMとなるようSM(PEG)12(サーモサイエンティフィック社製、succinimidyl−[(N−maleomidopropionamid)−dodecaethyleneglycol]ester)を混合し、1時間反応させた。この混合液を10,000Gで20分遠心分離を行い、上澄みを除去した後、EDTAを2mM含有したPBSを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行うことで末端にマレイミド基が付いた蛍光色素内包樹脂粒子(蛍光粒子)を得た。
一方、ストレプトアビジン(和光純薬社製)をN−succinimidyl S−acetylthioacetate(SATA)を用いてチオール基付加処理を行ったのち、ゲルろ過カラムによるろ過を行い、蛍光色素内包樹脂粒子に結合可能なストレプトアビジン溶液を得た。
上記の蛍光色素内包樹脂粒子とストレプトアビジンとを、EDTAを2mM含有したPBS中で混合し、1時間反応させた。10mMメルカプトエタノールを添加し、反応を停止させた。得られた溶液を遠心フィルターで濃縮後、精製用ゲルろ過カラムを用いて未反応ストレプトアビジン等を除去し、ストレプトアビジン結合PI色素内包ポリスチレン粒子(標識体)を得た。
なお、サンプル1−12〜1−14、2−12〜2−14、3−12〜3−14、4−12〜4−14でも、免疫染色において2番目に使用する標識体としてPIを単にCy5に変更しサンプル作製した(平均粒径はCy5量とポリスチレン量とを一定としてポリスチレン量を増減させ制御した。)。
In Samples 1-12 to 1-14, 2-12 to 2-14, 3-12 to 3-14, and 4-12 to 4-14, as described below, PI dye-containing polystyrene particles were labeled as fluorescent particles. As above, PI dye-encapsulated polystyrene particles bound with streptavidin were prepared.
PI dye-containing polystyrene particles were prepared by a soap-free emulsion polymerization method. The PI fluorescent dye of [Example 1] was mixed with 4-aminostyrene (manufactured by Tokyo Kasei Kogyo Co., Ltd.) for 1 hour at room temperature to prepare dye-bound styrene. 0.18 g of glycidyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.05 g of styrene (manufactured by Wako Pure Chemical Industries, Ltd.), 0.05 g of divinylbenzene, and 0.005 g of the above dye-bound styrene were added to 5 mL of pure water subjected to argon bubbling. While stirring, the temperature was raised to 70 ° C., 0.012 g of water-soluble azo polymerization initiator V-50 (Wako Pure Chemical Industries, Ltd.) was added and reacted for 12 hours. The reaction solution was centrifuged at 10,000 G for 20 minutes to collect particles. Purification was performed by dispersing the collected particles in pure water and collecting them again by centrifugation. The obtained particles were added to excess ammonia water to convert the epoxy group at the end of the particle into an amino group, thereby obtaining dye-encapsulated polystyrene nanoparticles having an amino group at the end.
The obtained dye-encapsulated nanoparticles were adjusted to 3 nM using PBS (phosphate buffered saline) containing 2 mM of EDTA (ethylenediaminetetraacetic acid), and SM (PEG) was added to this solution to a final concentration of 10 mM. ) 12 (manufactured by Thermo Scientific, succinimidyl-[(N-maleidopropionamid) -dodecaethyleneglycol] ester) was mixed and allowed to react for 1 hour. The mixture was centrifuged at 10,000 G for 20 minutes, the supernatant was removed, PBS containing 2 mM of EDTA was added, the precipitate was dispersed, and centrifuged again. Washing by the same procedure was performed three times to obtain fluorescent dye-containing resin particles (fluorescent particles) having a maleimide group at the end.
On the other hand, streptavidin (manufactured by Wako Pure Chemical Industries, Ltd.) can be bound to fluorescent dye-encapsulated resin particles after performing thiol group addition treatment using N-succinimidyl S-acetylthioacetate (SATA), followed by filtration through a gel filtration column. A streptavidin solution was obtained.
The fluorescent dye-containing resin particles and streptavidin were mixed in PBS containing 2 mM EDTA and allowed to react for 1 hour. 10 mM mercaptoethanol was added to stop the reaction. After concentrating the obtained solution with a centrifugal filter, unreacted streptavidin and the like were removed using a gel filtration column for purification to obtain streptavidin-binding PI dye-encapsulated polystyrene particles (labeled body).
In Samples 1-12 to 1-14, 2-12 to 2-14, 3-12 to 3-14, and 4-12 to 4-14, PI is simply used as a label used second in immunostaining. Samples were prepared by changing to Cy5 (average particle size was controlled by increasing / decreasing the amount of polystyrene while keeping the amount of Cy5 and polystyrene constant).

(2)染色方法と輝点数のカウント
[実施例1]と同様にして、免疫染色と形態観察染色とを実施し、H染色後の輝点数とHE染色後の輝点数とをカウントした。
なお、免疫染色にあたっては、大径蛍光粒子(PI色素内包樹脂粒子)を反応させた後に、PBSで3回洗浄し、小径蛍光粒子(Cy5色素内包樹脂粒子)を反応させた。輝点数のカウントにあたっては、励起光は、光学フィルターに通すことで、PI、Cy5色素内包樹脂粒子それぞれに対して575〜600nm、635〜650nmに設定し、観察する蛍光の波長(nm)の範囲についても、光学フィルターに通すことで、それぞれ612〜682nm、650〜700nmに設定した。
H染色後の輝点数とHE染色後の輝点数とをカウントした結果を表2〜表5に示す。
(2) Staining method and counting of the number of bright spots In the same manner as in [Example 1], immunostaining and morphological observation staining were performed, and the number of bright spots after H staining and the number of bright spots after HE staining were counted.
In immunostaining, large-diameter fluorescent particles (PI dye-containing resin particles) were reacted, then washed three times with PBS, and small-diameter fluorescent particles (Cy5 dye-containing resin particles) were reacted. In counting the number of bright spots, the excitation light is passed through an optical filter to set 575 to 600 nm and 635 to 650 nm for the PI and Cy5 dye-containing resin particles, respectively, and the range of the wavelength (nm) of the fluorescence to be observed Also, the film was passed through an optical filter and set to 612 to 682 nm and 650 to 700 nm, respectively.
The results of counting the number of bright spots after H staining and the number of bright spots after HE staining are shown in Tables 2 to 5.

表2はELISA測定による総HER2タンパク量が36.1μg/mlの結果を、表3はELISA測定による総HER2タンパク量が78.0μg/mlの結果を、表4はELISA測定による総HER2タンパク量が150.8μg/mlの結果を、表5はELISA測定による総HER2タンパク量が701.8μg/mlの結果を、それぞれ示す。   Table 2 shows the total HER2 protein amount by ELISA measurement of 36.1 μg / ml, Table 3 shows the total HER2 protein amount by ELISA measurement of 78.0 μg / ml, and Table 4 shows the total HER2 protein amount by ELISA measurement of 150.8 Table 5 shows the results of μg / ml, and Table 5 shows the results of total HER2 protein amount of 701.8 μg / ml as measured by ELISA.

Figure 0006237194
Figure 0006237194

Figure 0006237194
Figure 0006237194

Figure 0006237194
Figure 0006237194

Figure 0006237194
Figure 0006237194

表2〜表5、図4に示すとおり、サンプル1−1、2−1、3−1、4−1では、小径の標識剤(Qdot655)のみで免疫染色しており、H染色時の輝点数は抗原の定量化にあたりより正確な値であると考えられるが、輝点そのものの輝度が低いため、HE染色時においてはエオジンの蛍光の影響を受け輝点数が激減している。
なお、表2〜表5では、サンプル1−1、2−1、3−1、4−1におけるH染色時の輝点数が、抗原の定量化にあたりより正確な値であって理想的な値をとり、合計輝点数がこの値に近いほど、抗原の定量化が向上していると判断することができる。
サンプル1−2、2−2、3−2、4−2では、先に小径蛍光粒子で免疫染色しその後に大径蛍光粒子で免疫染色しており、HE染色時において小径蛍光粒子による輝点数が少なく、抗原の定量化が向上しているとはいえない。
As shown in Tables 2 to 5 and FIG. 4, Samples 1-1, 2-1, 3-1, and 4-1 were immunostained only with a small-diameter labeling agent (Qdot655), and the brightness at H staining was high. The score is considered to be a more accurate value for quantification of the antigen, but since the brightness of the bright spot itself is low, the bright spot number is drastically reduced due to the influence of eosin fluorescence during HE staining.
In Tables 2 to 5, the number of bright spots at the time of H staining in Samples 1-1, 2-1, 3-1, 4-1 is a more accurate value and ideal value for quantification of the antigen. It can be determined that the closer the total number of bright spots is to this value, the better the antigen quantification.
In Samples 1-2, 2-2, 3-2, and 4-2, immunostaining was first performed with small-diameter fluorescent particles, followed by immunostaining with large-diameter fluorescent particles. Therefore, it cannot be said that the quantification of the antigen is improved.

これに対し、サンプル1−3〜1−11、2−3〜2−11、3−3〜3−11、4−3〜4−11では、先に大径蛍光粒子で免疫染色しその後に小径蛍光粒子で免疫染色しており、HE染色時において小径蛍光粒子による輝点数が多く、抗原の定量化が向上しているといえる。
このような結果から、蛍光染色と形態観察染色とを共に行う場合、蛍光染色による抗原の定量性を向上させるには、先に大径蛍光粒子で免疫染色しその後に小径蛍光粒子で免疫染色することが有用であることがわかる。
さらに、サンプル1−6〜1−8、2−6〜2−8、3−6〜3−8、4−6〜4−8と、サンプル1−12〜1−14、2−12〜2−14、3−12〜3−14、4−12〜4−14との比較から、前者のサンプル群のほうがHE染色時における小径蛍光粒子による輝点数が多く、蛍光粒子の内包用の樹脂としては、ポリスチレンよりもポリメラミンのほうが好適であることがわかる。
On the other hand, in samples 1-3 to 1-11, 2-3 to 2-11, 3-3 to 3-11, 4-3 to 4-11, immunostaining was first performed with large fluorescent particles, and then Immunostaining is performed with small-diameter fluorescent particles, and the number of bright spots due to the small-diameter fluorescent particles is large at the time of HE staining, and it can be said that quantification of the antigen is improved.
From these results, when both fluorescent staining and morphological observation staining are performed, in order to improve antigen quantification by fluorescent staining, immunostaining is first performed with large fluorescent particles, and then immunostained with small fluorescent particles. It turns out that is useful.
Furthermore, Samples 1-6 to 1-8, 2-6 to 2-8, 3-6 to 3-8, 4-6 to 4-8, Samples 1-12 to 1-14, and 2-12 to 2-2 -14, 3-12 to 3-14, 4-12 to 4-14, the former sample group has more bright spots due to small-diameter fluorescent particles at the time of HE staining, as a resin for encapsulating fluorescent particles It can be seen that polymelamine is more preferable than polystyrene.

10 標識体
12 蛍光粒子
14 ビオチン
20 抗原
30 1次抗体
40 2次抗体
42 アビジン
10 Label 12 Fluorescent Particle 14 Biotin 20 Antigen 30 Primary Antibody 40 Secondary Antibody 42 Avidin

Claims (6)

蛍光色素を樹脂中に内包した蛍光粒子であって平均粒径の異なる2種以上の前記蛍光粒子を、標識剤として用いる病理切片の染色方法において、
前記病理切片に対して第1の平均粒径であり且つ第1の蛍光色を発する第1の蛍光粒子を用いて特定の抗原を免疫染色する工程と、
前記病理切片に対して、平均粒径が前記第1の蛍光粒子の前記第1の平均粒径より小さい第2の平均粒径であり且つ前記第1の蛍光色と異なる第2の蛍光色を発する第2の蛍光粒子を用いて前記特定の抗原を免疫染色する工程と、
を有することを特徴とする染色方法。
In a staining method of a pathological section using two or more kinds of fluorescent particles having different average particle diameters, which are fluorescent particles encapsulating a fluorescent dye in a resin,
Immunostaining a specific antigen with the first fluorescent particles having a first average particle diameter and emitting a first fluorescent color with respect to the pathological section;
A second fluorescent color having an average particle size smaller than the first average particle size of the first fluorescent particles and different from the first fluorescent color is applied to the pathological section . Immunostaining the specific antigen using second fluorescent particles that emit ;
A staining method characterized by comprising:
請求項1に記載の染色方法において、
前記第1の蛍光粒子と前記第2の蛍光粒子とで平均粒径の差が40nm以上であることを特徴とする染色方法。
The staining method according to claim 1, wherein
The staining method, wherein a difference in average particle diameter between the first fluorescent particles and the second fluorescent particles is 40 nm or more.
請求項1または2に記載の染色方法において、
前記第1の蛍光粒子の平均粒径が120〜200nmであることを特徴とする染色方法。
The staining method according to claim 1 or 2,
An average particle diameter of the first fluorescent particles is 120 to 200 nm.
請求項1〜3のいずれか一項に記載の染色方法において、
前記第1の蛍光粒子の平均粒径が120〜200nmであり、
前記第2の蛍光粒子の平均粒径が20〜80nmであることを特徴とする染色方法。
In the dyeing | staining method as described in any one of Claims 1-3,
The average particle diameter of the first fluorescent particles is 120 to 200 nm,
The staining method, wherein the average particle diameter of the second fluorescent particles is 20 to 80 nm.
請求項1〜4のいずれか一項に記載の染色方法において、
前記病理切片を、ヘマトキシリン・エオジン染色する工程をさらに有し、
前記第1の蛍光粒子として580nm付近の波長の光で励起する蛍光粒子を使用し、前記第2の蛍光粒子として600nm以上の波長の光で励起する蛍光粒子を使用することを特徴とする染色方法。
In the dyeing | staining method as described in any one of Claims 1-4,
Further comprising the step of staining the pathological section with hematoxylin and eosin,
A staining method characterized in that fluorescent particles excited by light having a wavelength of about 580 nm are used as the first fluorescent particles, and fluorescent particles excited by light having a wavelength of 600 nm or more are used as the second fluorescent particles. .
請求項1〜5のいずれか一項に記載の染色方法において、
前記第1の蛍光粒子を用いて特定の抗原を免疫染色する工程の後に、前記第2の蛍光粒子を用いて前記特定の抗原を免疫染色する工程を行うことを特徴とする染色方法
In the dyeing | staining method as described in any one of Claims 1-5,
A staining method comprising performing a step of immunostaining the specific antigen using the second fluorescent particles after the step of immunostaining the specific antigen using the first fluorescent particles .
JP2013260732A 2013-12-18 2013-12-18 Dyeing method Active JP6237194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013260732A JP6237194B2 (en) 2013-12-18 2013-12-18 Dyeing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013260732A JP6237194B2 (en) 2013-12-18 2013-12-18 Dyeing method

Publications (2)

Publication Number Publication Date
JP2015117980A JP2015117980A (en) 2015-06-25
JP6237194B2 true JP6237194B2 (en) 2017-11-29

Family

ID=53530834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013260732A Active JP6237194B2 (en) 2013-12-18 2013-12-18 Dyeing method

Country Status (1)

Country Link
JP (1) JP6237194B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019161653A1 (en) * 2018-02-26 2019-08-29 深圳达盟生物科技有限公司 Method for staining pathological sections

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6372370B2 (en) * 2015-01-23 2018-08-15 コニカミノルタ株式会社 Biological substance quantification method, image processing apparatus, and program
WO2018185943A1 (en) 2017-04-07 2018-10-11 コニカミノルタ株式会社 Fluorescent premix particles, fluorescent stain containing same, and fluorescent staining method in which these are used
EP3608665A4 (en) 2017-04-07 2020-04-22 Konica Minolta, Inc. Method for manufacturing purified product of protein-modified phosphor-integrated particle, method for manufacturing fluorescent staining liquid, purified product of protein-modified phosphor-integrated particle, and filter for purifying fluorescent staining liquid and protein-modified phosphor-integrated particle
EP3865555A4 (en) * 2018-10-10 2022-01-26 Konica Minolta, Inc. Light-emitting colorant-containing particle, and labeling agent for pathological diagnosis

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106470A (en) * 1990-08-28 1992-04-08 Hitachi Ltd Particulate immune measurement method and apparatus
JP3652029B2 (en) * 1996-10-16 2005-05-25 積水化学工業株式会社 Highly sensitive immunoassay
DE60040603D1 (en) * 1999-08-17 2008-12-04 Luminex Corp METHOD FOR ANALYZING A MULTIPLE OF SAMPLES OF VARIOUS ORIGIN ON AN ANALYTE
JP2005077301A (en) * 2003-09-02 2005-03-24 Asahi Kasei Corp Immunological detection carrier and measuring method
JP5152917B2 (en) * 2008-11-04 2013-02-27 富士フイルム株式会社 Detection method, detection sample cell and detection kit
EP3225990B1 (en) * 2010-08-30 2020-07-08 Konica Minolta, Inc. Particle for staining a tissue
US10551378B2 (en) * 2011-09-09 2020-02-04 Konica Minolta, Inc. Tissue staining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019161653A1 (en) * 2018-02-26 2019-08-29 深圳达盟生物科技有限公司 Method for staining pathological sections

Also Published As

Publication number Publication date
JP2015117980A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP6112169B2 (en) Fluorescent label for detection of biological materials
JP5974892B2 (en) Biological substance detection method
JP7147724B2 (en) Staining agent for tissue staining, method for producing staining agent for tissue staining, and tissue staining kit containing staining agent for tissue staining
JP6237194B2 (en) Dyeing method
JP6296050B2 (en) Resin particles for fluorescent labeling
JP6241239B2 (en) Fluorescent dye-encapsulated nanoparticles, method for producing fluorescent dye-encapsulated nanoparticles, fluorescent labeling agent, and fluorescent immunostaining method
JPWO2013147081A1 (en) Biological substance detection method
JP6107244B2 (en) Fluorescent dye labeling resin particles, production method thereof, and tissue immunostaining kit containing the particles
JP6424826B2 (en) Determination of biological substances in tissue sections
WO2016152244A1 (en) Method and system for detecting target biological substance
WO2012124763A1 (en) Tissue evaluation method
JP6583011B2 (en) Method for washing immunostained slides using acidic aqueous solution
WO2017014196A1 (en) Target biological substance analysis method and analysis system
US20180231466A1 (en) Biological substance detection method
WO2017164355A1 (en) Method for producing particles for pathological staining use, particles for pathological staining use, and washing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6237194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150