WO2017164355A1 - Method for producing particles for pathological staining use, particles for pathological staining use, and washing method - Google Patents
Method for producing particles for pathological staining use, particles for pathological staining use, and washing method Download PDFInfo
- Publication number
- WO2017164355A1 WO2017164355A1 PCT/JP2017/011943 JP2017011943W WO2017164355A1 WO 2017164355 A1 WO2017164355 A1 WO 2017164355A1 JP 2017011943 W JP2017011943 W JP 2017011943W WO 2017164355 A1 WO2017164355 A1 WO 2017164355A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- staining
- particle
- particles
- pathological
- pathological staining
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
Definitions
- the present invention relates to a method for producing pathological staining particles, a particle for pathological staining, and a washing method, and more specifically, a method for producing particles that are used for pathological staining and have good reproducibility of bright spot sensitivity and number of bright spots.
- the present invention relates to a treatment for washing pathological staining particles and staining slides produced by the method using an acidic aqueous solution.
- pathological diagnosis is performed as one of medical diagnosis.
- a pathologist diagnoses a disease from data indicating the result of a biopsy performed on a tissue piece collected from a human body by pathological diagnosis, and informs a clinician whether treatment or surgery is necessary.
- the medical doctor decides the drug treatment policy, and the surgical doctor decides whether or not to perform the operation.
- immunostaining is performed on the tissue sections and the like of the subject.
- an antigen is fluorescently labeled by specifically binding a fluorescently labeled antibody to an in vivo molecule (antigen) whose expression level is increased or decreased depending on the presence or absence of the disease, and the amount of fluorescent signal is used to determine the disease. Quantifying the amount of antigen associated with.
- a method enzyme antibody method using an antibody labeled with an enzyme that generates a dye when a predetermined substrate is added has been employed.
- an immunostaining method fluorescent antibody method
- a modified scaffold is created by modifying the surface of a particle for pathological staining in which a fluorescent dye is encapsulated in the particle or fixed on the particle surface, and the antibody is directly or indirectly bound to this modified scaffold.
- a technique for binding to an antigen and binding it to an antigen In this technique, in order to obtain effective data, it is required that the sensitivity of the bright spot observed based on the fluorescent label and the reproducibility of the number of bright spots are good.
- the sensitivity of the bright spot and the reproducibility of the bright spot number depend on the modified scaffold containing an amino group on the particle surface.
- the sensitivity of the bright spot and the reproducibility of the number of bright spots especially the sensitivity of the bright spot at low expression and the reproducibility of the number of bright spots are improved. It was difficult to do.
- Patent Document 1 discloses that nanoparticles and a ligand interaction agent are associated with each other, the ligand interaction agent is crosslinked with a crosslinking agent such as hexamethoxymethylmelamine, and then the surface modification is performed on the ligand interaction agent.
- a crosslinking agent such as hexamethoxymethylmelamine
- a method of binding a ligand is disclosed.
- the nanoparticle contains a fluorescent dye in this method and is used as a particle for pathological staining, the amount of the modified scaffold cannot be increased, and the improvement of the sensitivity of the bright spot and the reproducibility of the number of bright spots is not possible. It was difficult.
- tissue section (tissue specimen) is prepared by slicing a tissue specimen obtained by organectomy or needle biopsy to a thickness of several microns, and the tissue section is subjected to a predetermined staining process.
- observation using an optical microscope or a fluorescence microscope is widely performed.
- particles containing fluorescent dyes as described above for fluorescent labeling unlike conventional immunostaining methods using an enzyme, the dyes do not mix.
- staining for cell morphology observation can be performed simultaneously.
- tissue sections are prepared by dehydrating and fixing paraffin blocks to fix the collected tissues, then slicing them to a thickness of several ⁇ m and removing the paraffin.
- tissue slice hardly absorbs and scatters light and is almost colorless and transparent
- morphological observation staining for observing the cell morphology of the tissue slice, for example, two dyes of hematoxylin and eosin is used prior to the above observation. Hematoxylin and eosin staining (HE staining) is standard. Examples of other morphological observation staining include Papanicolaou staining (Pap staining) used in cytodiagnosis, for example.
- HE staining which is standard for observing the morphology of cells or tissues
- the cell nucleus, lime, cartilage tissue, bacteria, and mucus are colored blue-blue to light by hematoxylin staining. It is stained blue, and cytoplasm, stroma, various fibers, erythrocytes, and keratinocytes are stained red to dark red by eosin staining.
- the tissue sections thus immunostained are sealed with a mounting medium containing an anti-fading agent, and then a fluorescence image is taken while irradiating with a predetermined excitation light.
- the eosin stained image can also be taken as a fluorescence image). Then, the captured fluorescent image labeled with the antigen protein and the (fluorescence) image for cell morphology observation that can specify the position of the cell membrane are superimposed, and the bright spots observed in the cell membrane region per cell are superimposed. The number is measured, and whether or not the antigen protein is abnormally expressed is determined by the value.
- Patent Document 2 International Publication WO2013 / 035703 pamphlet
- Patent Document 3 International Publication WO2013 / 147081 pamphlet
- the present invention relates to a method for producing particles for pathological staining with good sensitivity of bright spots and reproducibility of the number of bright spots, in particular, particles for pathological staining with good sensitivity and reproducibility of the number of bright spots at low expression ( Hereinafter, it is referred to as “the manufacturing method of the present invention”).
- a second object of the present invention is to provide particles for pathological staining.
- the pathological staining particles used in the tissue evaluation method by the conventional immunostaining method are used in combination with a staining solution (for example, a hematoxylin solution and / or an eosin solution which is a staining solution for morphological observation).
- a staining solution for example, a hematoxylin solution and / or an eosin solution which is a staining solution for morphological observation
- the present invention performs a process (fluorescent labeling process) for labeling a target biological substance contained in a tissue section on a specimen slide with a particle for pathological staining by an immunostaining method, and subsequently the tissue section subjected to the fluorescent labeling process. It is a third object to provide a method capable of suppressing a decrease in luminance and variation in luminance of a stained slide even when a treatment (staining treatment) is performed for staining the specimen with a staining liquid for morphological observation.
- the present invention for achieving the above object is as follows: Provided is a method for producing particles for pathological staining in which particles are produced by condensation polymerization of a compound represented by the following general formula (1).
- R 1 is each independently a hydrogen atom, CH 2 OR 2 or CH 2 OH, R 2 is an organic group, and at least one of R 1 is CH 2 OH.
- the present invention provides particles for pathological staining having particles containing a polycondensation product of a compound represented by the following general formula (1).
- R 1 is each independently a hydrogen atom, CH 2 OR 2 or CH 2 OH, R 2 is an organic group, and at least one of R 1 is CH 2 OH.
- a process of fluorescently labeling a target biological substance contained in a tissue section on a specimen slide with the aforementioned pathological staining particles by immunostaining.
- a method for washing a stained slide in which the fluorescently labeled tissue section is stained with a staining solution for morphology observation (staining process), and the stained tissue section is washed with an acidic aqueous solution (washing process). provide.
- the sensitivity of the bright spot and the reproducibility of the number of bright spots observed based on the fluorescent label in particular, the sensitivity of the bright spot at low expression and the reproducibility of the number of bright spots are good. Certain particles for pathological staining can be produced.
- the particles for pathological staining of the present invention are excellent in the sensitivity of the bright spot and the reproducibility of the number of bright spots observed based on the fluorescent label, and particularly reproduce the sensitivity of the bright spot and the number of bright spots at low expression. As described above, according to the present invention, it is possible to provide particles for pathological staining exhibiting excellent diagnostic ability capable of well reproducing the sensitivity of bright spots and the number of bright spots at low expression.
- the staining slide prepared using the pathological staining particles of the present invention is washed with an acidic aqueous solution, so that the specimen slide can be stained with a morphological observation staining solution such as hematoxylin. Variations in luminance can be reduced and luminance reduction can be suppressed.
- the present invention is a method for producing particles for pathological staining in which particles are produced by condensation polymerization of a compound represented by the following general formula (1) (hereinafter also referred to as compound (1)). Moreover, the particle
- R 1 s are each independently a hydrogen atom, CH 2 OR 2 or CH 2 OH, and R 2 is an organic group.
- the organic group is not particularly limited as long as the compound (1) can undergo polycondensation, and examples thereof include an alkyl group, and specific examples include a methyl group and an ethyl group.
- the compound represented by the formula (1) preferably has 1 to 6 CH 2 OH groups in one molecule and has 2 to 6 CH 2 OH groups.
- the total of CH 2 OH and CH 2 OR 2 is preferably 4 to 6, more preferably 5 to 6, and particularly preferably 6.
- R 1 is a CH 2 OH
- R 1 of the six R 1 in Formula (1) is no problem even CH 2 OH.
- Two R 1 possessed by one amino group out of the three amino groups contained in the formula (1) may be both CH 2 OH, and one of the two R 1 possessed by one amino group is CH 2 OH, and one of the two R 1 possessed by the other one amino group may be CH 2 OH.
- formula (1) has three amino groups contained in the two having each one of R 1 is may be CH 2 OH, are two of R 1 are both CH 2 OH having one amino group, one of the two R 1 with the other one amino group May be CH 2 OH. Even if four of R 1 is a CH 2 OH, which R 1 of the six R 1 is not may be a CH 2 OH, formula (1) has two amino groups contained in the two having each may R 1 is a both CH 2 OH, are two of R 1 are both CH 2 OH having one amino group, one is CH of the two R 1 with the other two amino groups, each It may be 2 OH.
- the number and bonding position thereof are not limited as long as at least one of R 1 is CH 2 OH.
- examples of the compound in which one of R 1 is CH 2 OH include compounds represented by the following formula (2) or (3), and three of R 1 are CH 2 OH.
- the compound represented by following formula (4) is mentioned.
- compound (1) may be used alone or in combination of two or more compounds (1) represented by different chemical formulas. That is, a mixture of two or more compounds selected from the compound (1) may be used.
- particles for pathological staining produced from melamine resin have been produced by polycondensing a compound represented by the following formula (5).
- the compound represented by the following formula (5) (hereinafter also referred to as compound (5)) has an OCH 3 group but does not have an OH group, and therefore, melamine resin particles obtained by polycondensing compound (5). Also has an OCH 3 group but no OH group.
- compound (5) When an antibody is bound to melamine resin particles, generally, a bifunctional amine is reacted with melamine resin particles, and the particle surface is modified with a group containing an amino group to form a modified scaffold, and the antibody is directly or directly attached to the modified scaffold. Join indirectly. Since the bifunctional amine does not easily react with the OCH 3 group, a large amount of the modified scaffold cannot be introduced into the melamine resin particles obtained by condensation polymerization of the compound (5).
- the method for producing particles for pathological staining of the present invention produces particles by condensation polymerization of compound (1).
- Compound (1) has at least one CH 2 OH group as described above.
- the melamine resin particles obtained by polycondensation of the compound (1) necessarily have OH groups based on CH 2 OH groups that were not involved in the polycondensation. Since the OH group easily reacts with the bifunctional amine, it is easy to react the bifunctional amine with the melamine resin particles obtained by condensation polymerization of the compound (1) to produce a modified scaffold. It is possible to introduce a large amount of modified scaffolds.
- the pathological dyeing particles produced from the melamine resin containing the fluorescent dye obtained by the production method of the present invention have good sensitivity and reproducibility of the number of bright spots observed based on the fluorescent label. Become.
- the melamine resin particles preferably have many OH groups.
- six of R 1 of formula (1) the one is always CH 2 OH, preferably more two are CH 2 OH, and most preferably all six is CH 2 OH.
- Compound (1) is methylolated with formaldehyde melamine, yet its reaction with methylol compound and R compound represented by 2 OH, methylolated, and the extent of the reaction between the compound represented by the methylol compound and R 2 OH It can be synthesized by adjusting. If methylolation is strongly performed, the number of CH 2 OH groups introduced into the product can be increased, and if methylolation is weakened, the number of CH 2 OH groups introduced into the product can be decreased. it can.
- the reaction between the methylolated compound and the compound represented by R 2 OH is not carried out or if it is weakened, the number of remaining CH 2 OH groups can be increased, and the reaction with the compound represented by R 2 OH If it is carried out strongly, the number of remaining CH 2 OH groups can be reduced.
- the melamine resin used in the method for producing a particle for pathological staining of the present invention includes, for example, R 1 which is CH 2 OR 2 among compounds (1), and the compound in which R 2 is an alkyl group includes melamine and formaldehyde Can be synthesized by synthesizing methylol melamine by the reaction with, and further etherifying the methylol melamine with an alcohol represented by R 2 OH.
- Reaction conditions for polycondensation of the compound represented by the formula (1) may be in accordance with conventionally known synthesis conditions for melamine resins.
- the phosphor-integrated nanoparticles are nano-sized (with a diameter of less than 1 ⁇ m) that are integrated by encapsulating a plurality of phosphors, such as the fluorescent dyes described later, in a base material or attaching them to the surface. It is a particulate phosphor.
- the compound (1) can be polycondensed in the presence of a fluorescent dye. When polycondensation is performed in this manner, the compound (1) undergoes polycondensation while wrapping the fluorescent dye, so that melamine resin particles containing the fluorescent dye can be obtained. Moreover, since the melamine resin has a fine network structure, the encapsulated fluorescent dye is unlikely to leak from the melamine resin particles.
- Another embodiment of the production method of the present invention includes a method for producing particles for pathological staining in which a fluorescent dye is added to and contained in particles obtained by condensation polymerization of compound (1).
- a fluorescent dye is added to and contained in particles obtained by condensation polymerization of compound (1).
- staining can be obtained.
- the phosphor-integrated nanoparticles refer to particulate phosphors that are integrated by encapsulating a fluorescent dye in a melamine resin or attaching it to the surface.
- the use of such phosphor-integrated nanoparticles in immunostaining is equivalent to the use of a single fluorescent molecule labeled with a target biomolecule as compared with the case where the fluorescent substance is used alone (a single fluorescent dye molecule). It is preferable because the intensity of the fluorescence emitted from the light can be increased, noise such as autofluorescence of the cells and distinguishability from other dyes can be enhanced, and fading caused by irradiation with excitation light can be suppressed.
- the fluorescent dye is not particularly limited, but is preferably an organic fluorescent dye from the viewpoint of immunostaining, such as rhodamine dyes, BODIPY (registered trademark, manufactured by Invitrogen), squarylium dyes, aromatic dyes, and the like. Can be mentioned.
- aromatic dyes such as aromatic hydrocarbon dyes, rhodamine dyes and the like are preferable because of their relatively high light resistance, and among them, perylene, pyrene, and perylene belonging to aromatic dyes.
- Diimide is preferred.
- rhodamine dyes and perylene diimide are excellent in quantum yield, light absorption, and the like, and are excellent in luminous efficiency. Therefore, resin particles containing these have excellent emission intensity compared to resin particles containing other dyes.
- rhodamine dyes include 5-carboxy-rhodamine, 6-carboxy-rhodamine, 5,6-dicarboxy-rhodamine, rhodamine 6G, tetramethylrhodamine, X-rhodamine, Texas Red, Spectrum Red, LD700 PERCHLORATE, those Derivatives and the like.
- BODIPY dye examples include BODIPY FL, BODIPY TMR, BODIPY 493/503, BODIPY 530/550, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, 3061 BODIPY 650/665 (manufactured by Invitrogen), derivatives thereof and the like.
- squarylium-based dye examples include SRfluor680-Carboxylate, 1,3-Bis [4- (dimethylamino) -2-hydroxyphenyl] -2,4-dihydroxycyclobutenedidium dihydroxide, bis, 1,3-bis (1,3-Bis (1,3-Bis) phenyl] -2,4-dihydroxycyclobutenedidium dihydroxide, bis, 2- (4- (Diethylamino) -2-hydroxyphenyl) -4- (4- (diethyliminothio) -2-hydroxy-cyclodioxy-3cyclo-cyclodioxy-3cyclo-cyclodioxy-3cyclo-cyclodioxy-3cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cycl
- aromatic hydrocarbon dye examples include N, N-Bis- (2,6-diisopropylphenyl) -1,6,7,12- (4-tert-butylphenoxy) -perylene-3,4,9, 10-tetracarbonacidimide, N, N′-Bis (2,6-diisopropyphenyl) -1,6,7,12-tetraphenoxyperylene-3, 4: 9,10-tetracarbodiimide, N, N′-bis (2,6-pylido (2,6-pylidine) ) Perylene-3,4,9,10-bis (dicarbimide), 16, N, N'-Bis (2,6-dimethylphenyl) perylene-3,4,9,10-tetracarb xylicimide, 4,4 ′-[(8,16-Dihydro-8,16-dioxodibenzo [a, j] perylene-2,10-diyl) dioxy]
- the amount of the fluorescent dye added is usually 17 to 27 mg, preferably 20 to 25 mg, relative to 1 g of compound (1).
- the average particle size of the pathological staining particles produced by polycondensation of the compound (1) is usually 10 to 500 nm, preferably 50 to 200 nm.
- the variation coefficient of the average particle diameter is preferably 5 to 20%, more preferably 5 to 15%.
- the average particle size of the particles and the coefficient of variation thereof shown in the present invention are obtained by performing SEM observation of the particles, arbitrarily measuring the particle size of 1000 particles from the obtained SEM image, and calculating the average particle from the measured values. The diameter and its coefficient of variation.
- the melamine resin particles obtained by polycondensation of the compound represented by the formula (1) are reacted with a bifunctional amine to form an amino group serving as a modified scaffold on the surface of the particles.
- a group containing can be introduced.
- the bifunctional amine is not particularly limited as long as a modified scaffold capable of directly or indirectly binding an antibody can be introduced. From the viewpoint of efficient antibody binding, methanediamine, polyethylene glycol diamine, etc. Is preferred. Moreover, it can replace with the said bifunctional amine and can also use another amination reagent. Examples of other amination reagents include aminopropyltrimethoxysilane and aminopropyltriethoxysilane.
- the reaction of the bifunctional amine with the melamine resin particles may be performed according to the conventionally known reaction conditions of the bifunctional amine with the melamine resin particles.
- Particles having a group containing an amino group serving as a modified scaffold on the surface obtained by reacting a melamine resin particle obtained by polycondensation of compound (1) with a bifunctional amine are prepared according to a conventional method.
- the antibody can be directly or indirectly bound to the.
- bonded the antibody can be used for an immuno-staining according to a conventional method.
- the sensitivity of the bright spots observed based on the fluorescent label and the reproducibility of the number of bright spots are good. Is obtained. In particular, even with low expression where satisfactory data could not be obtained with conventional pathological staining particles, good sensitivity of the bright spot and reproducibility of the number of bright spots can be obtained.
- the particles for pathological staining of the present invention can be obtained by the above production method.
- the particle for pathological staining of the present invention can suppress the variation in the luminance of the fluorescent dye and the decrease in luminance by the staining slide cleaning method of the present invention, which will be described later. It is unclear whether it is brought about. Although it can be presumed that the structure of the surface of the particle for pathological staining has an influence, it is difficult to clearly show the necessary structure in order to exhibit the effect obtained by the method for washing a staining slide of the present invention.
- the particles for pathological staining produced by the method for producing particles for pathological staining of the present invention are used for, for example, a process (fluorescent labeling process) for labeling a target biological substance contained in a tissue section on a specimen slide by immunostaining. Subsequently, a staining slide is produced by performing a process (staining process) for staining the tissue section that has been subjected to the fluorescent labeling process with a staining solution for morphology observation.
- the pathological staining particles (hereinafter also referred to as staining particles or simply referred to as particles) produced by the method for producing pathological staining particles of the present invention are used, for example, in a staining slide by performing the following treatment. be able to.
- a process of labeling a target biological substance contained in a tissue section on a specimen slide with the pathological staining particles of the present invention fluorescence labeling process
- a process of staining the fluorescently labeled tissue section with a staining solution for morphology observation Staining process
- staining slide is produced by the process (washing
- an acidic aqueous solution as the washing solution.
- an acidic aqueous solution when the specimen slide is stained with a staining solution such as hematoxylin or hematoxylin-eosin, the variation in luminance of the particles for pathological staining is further reduced, and further reduction in luminance can be suppressed.
- a fluorescent image with improved signal accuracy corresponding to the target protein can be obtained, and the expression level of the target protein can be more accurately evaluated, leading to an increase in the reliability of pathological diagnosis.
- the reason why the above effect can be obtained by washing the specimen slide with an acidic aqueous solution is not clear, but is presumed as follows. That is, it is speculated that the staining liquid for morphological observation such as hematoxylin and eosin is adsorbed to the particles for pathological staining, resulting in a decrease in brightness and variations, and the pathological staining particles of the morphological observation staining liquid by washing with an acidic aqueous solution. It is considered that the adsorption to the surface is suppressed, the brightness of the particles for pathological staining is kept relatively high, and variation is also suppressed.
- the staining liquid for morphological observation such as hematoxylin and eosin
- the acidic aqueous solution used in the washing treatment performed when preparing a staining slide using the pathological staining particles prepared by the method for producing pathological staining particles of the present invention has a pH of 2 or more and less than 7.
- the pH is 3 or more and 6.5 or less.
- the entire process for producing the staining slide can be mainly classified into “specimen pretreatment process”, “staining process”, and “specimen posttreatment process”.
- the above-mentioned “specimen pretreatment step” generally includes deparaffinization treatment, antigen activation treatment, washing treatment and the like.
- a treatment for fluorescent labeling based on an immunostaining method that is, a primary antibody treatment depending on whether the target biological substance is directly labeled or indirectly labeled Secondary antibody processing, fluorescent labeling processing, morphology observation staining processing, and the like are included.
- the above “specimen post-treatment process” includes a washing process, an encapsulation process, and a solvent replacement process and a dehydration process as necessary.
- the fluorescence labeling process included in the “staining step” is a process of labeling a target protein with a pathological staining particle based on an immunostaining method.
- the specimen slide that has undergone the activation process is immersed in the labeling solution for immunostaining, and one or more labeling agents in the labeling solution are targeted directly or indirectly. Label by binding to protein (antigen).
- the target protein is not particularly limited, but typically, it can be a target gene for pathological diagnosis based on immunostaining, such as HER2, TOP2A, HER3, EGFR, P53, MET, and other various types.
- HER2, TOP2A, HER3, EGFR, P53, MET and other various types.
- biomarker genes proteins derived from cancer / tumor-related genes
- cancer-related proteins such as cancer growth factors, transcription regulatory factors, growth regulatory factor receptors, and transcription regulatory factor receptors. be able to. Therefore, the antibody described below can also be prepared based on a known technique as having the binding ability suitable for the target protein (antigen) as described above, and can also be obtained as a commercial product.
- a method of preparing a fluorescently labeled primary antibody in which a phosphor and a primary antibody are linked, and directly fluorescently labeling and staining the target protein with the fluorescently labeled primary antibody (primary antibody method); Prepare a primary antibody and a fluorescently labeled secondary antibody in which a fluorescent label and a secondary antibody are linked, react the primary antibody with the target protein, and then react the fluorescently labeled secondary antibody with the primary antibody
- secondary antibody method Prepare a biotin-modified primary antibody in which a primary antibody and biotin are linked, and an avidin-modified phosphor in which a phosphor and avidin or streptavidin are linked.
- a hapten is used instead of biotin and avidin.
- Low molecular weight substances such as dicoxygenin and anti-dicoxygenin antibodies, FITC (fluorescein isothiocyanate) and anti-FITC antigens, and other substances with similar specific reactivity may also be utilized. it can.
- the immunostaining treatment may be performed according to standard procedures and processing conditions for each of the various methods described above.
- a specimen slide on which a specimen is placed may be immersed in one or more reagents according to the immunostaining method under an appropriate temperature and time condition (for example, overnight at 4 ° C.).
- reagents necessary for immunostaining that is, fluorescently labeled primary / secondary antibodies, biotin-modified primary / secondary antibodies, avidin-modified secondary antibodies / phosphors, etc. are dissolved, and blocking agents such as BSA as necessary
- a solution such as a buffer solution to which is added can be prepared according to a known method, and can also be obtained as a commercial product.
- the specimen slide After the treatment with the labeling solution, the specimen slide is preferably immersed and washed in a washing solution such as PBS.
- a washing solution such as PBS.
- the temperature of the washing treatment using PBS performed after the treatment with the labeling solution is room temperature, and the time is 3 to 30 minutes. If necessary, PBS may be exchanged during immersion.
- the “morphological observation staining process” included in the “staining process” will be described.
- the specimen slide is labeled with a pathological staining particle as a labeling substance in the “staining step” above, the specimen slide is obtained in order to obtain cell or tissue shape and positional information of each part of the cell. It is dyed with a staining liquid for morphology observation.
- staining liquid for morphological observation examples include hematoxylin staining liquid, eosin staining liquid, and Papanicolaou (Pap) staining liquid.
- Mayer's hematoxylin solution composition example: hematoxylin 1.0 g / potassium alum 50 g / sodium iodate 0.2 g / chloral hydrate 50 g / citric acid 1.0 g / distilled water 1,000 ml
- Mayer hematoxylin solution (x2) composition example: hematoxylin 2.0g / potassium alum 50g / sodium iodate 0.4g / chlorate hydrate 50g / citric acid 1.0g / distilled water 1,000ml
- caratach hematoxylin solution composition example: hematoxylin 1.0g / potassium alum 50g / sodium iodate 0.2) g / glycerin 200 ml / distilled water 800 ml
- gil hematoxylin solution No.
- composition example hematoxylin 2.0 g / aluminum sulfate 14-18 water 17.6 g / sodium iodate 0.2 g / ethylene glycol 250 ml / glacial acetic acid 20 ml / distilled 730 ml of water) and Lily Meyer's hematoxylin solution (example composition: 5.0 g of hematoxylin / 50 g of ammonium alum) Sodium periodate 0.5 g / glycerin 300 ml / glacial acetic acid 20 ml / distilled water 700 ml) and the like.
- eosin stain 1% eosin Y solution (composition example: eosin Y 5.0 g / distilled water 500 ml / acetic acid few drops), 0.1% eosin Y ethanol solution (composition example: 10% eosin Y solution 5 ml / 95% ethanol 495 ml), 0. 5% eosin Y ethanol solution (composition example: 10% eosin Y solution 25ml / 95% ethanol 475ml), eosin alcohol solution, acid extract (acid extract eosin solution 100ml / 95% ethanol 800ml / acetic acid 8ml) .
- composition example: eosin Y solution composition example: eosin Y 5.0 g / distilled water 500 ml / acetic acid few drops
- 0.1% eosin Y ethanol solution composition example: 10% eosin Y solution 5 ml /
- the staining process using the morphology observation staining solution may be performed according to a general procedure. For example, in the case of staining with hematoxylin and eosin (HE), treatment is performed by staining with Mayer's hematoxylin solution for 5 minutes, washing with running water at 45 ° C. for 3 minutes, and then staining with 1% eosin solution for 5 minutes.
- HE hematoxylin and eosin
- the cleaning process performed in the “sample post-treatment process” is a process performed before the solvent replacement process (or before the dehydration process when the dehydration process is an optional process before the solvent replacement process).
- the stained specimen slide is washed with a predetermined acidic aqueous solution.
- the staining liquid binds not only to the tissue but also to the pathological staining particles, and deactivates the fluorescence.
- the degree of binding between the staining solution and the pathological staining particles varies depending on the type of the pathological staining particles, it is considered that the luminance varies.
- washing treatment with a predetermined acidic aqueous solution weakens the bond between the pathological staining particles and the staining liquid, suppresses the deactivation of fluorescence, and enables observation of the pathological staining particles.
- the staining liquid remains bound to the pathological staining particles, and it is estimated that the luminance decreases.
- the specimen slide may be washed after the specimen slide is treated with various solutions.
- the washing treatment using an acidic aqueous solution uses a staining liquid for morphology observation. This refers to what is performed after the dyeing process for morphological observation and before the solvent replacement process (if the dehydration process is an optional step before the solvent replacement process).
- the acidic aqueous solution used for the “cleaning treatment” can be prepared by mixing acid and water in an appropriate ratio.
- the pH range of the acidic aqueous solution is preferably 2 or more and less than 7 and more preferably pH 3 or more and 6.5 or less in consideration of the effect of suppressing the decrease in brightness and variation.
- the acid As long as the acid is well mixed with water (has compatibility), it can be used regardless of whether it is an organic acid or an inorganic acid.
- the organic acid include formic acid, acetic acid, citric acid, and oxalic acid.
- the inorganic acid include hydrochloric acid, nitric acid, phosphoric acid, and sulfuric acid. In particular, hydrochloric acid, citric acid and the like are preferably used.
- the method of washing treatment using an acidic aqueous solution is not particularly limited, but in general, the staining slide may be immersed in an acidic aqueous solution contained in a container.
- the immersion in the acidic aqueous solution is usually performed at room temperature, and the immersion time is usually 1 second to 30 minutes, preferably 5 seconds to 15 minutes. Operations such as immersion may be repeated a plurality of times.
- N, N′-Bis (2,6-diisopropylphenyl) -1,6,7,12-tetraphenylperylene-3,4: 9,10-tetracarboxdiimide was treated with concentrated sulfuric acid to produce a perylene diimide sulfonic acid derivative. This was converted to an acid chloride to obtain a perylene diimide sulfonic acid chloride derivative.
- a mixed solution of EDTA containing 2 mM of EDTA (ethylenediaminetetraacetic acid) and PBS (phosphate buffered saline) was added to the particles subjected to surface amination treatment to adjust the particle concentration to 3 nM.
- This dispersion was mixed with SM (PEG) 12 (manufactured by Thermo Scientific, succinimidyl-[(N-maleidopropionamid) -dodecaethyleneglycol] ester) so as to have a final concentration of 10 mM, and reacted for 1 hour.
- the mixture is centrifuged at 10,000 G for 20 minutes, and the supernatant is removed.
- streptavidin manufactured by Wako Pure Chemical Industries, Ltd.
- SATA N-succinimidyl S-acetylthioacetate
- PI dye-containing polymelamine particles having a maleimide group and streptavidin were mixed in a mixed solution of EDTA containing 2 mM of EDTA and PBS, and reacted for 1 hour. 10 mM mercaptoethanol was added to the reaction solution to stop the reaction. After the obtained solution was concentrated with a centrifugal filter, unreacted streptavidin and the like were removed using a gel filtration column for purification to obtain streptavidin-binding PI dye-containing polymelamine particles (pathological staining particles).
- the pathological section was immunostained using streptavidin-conjugated PI dye-containing polymelamine particles (labeled body) prepared using the melamine resin produced in Production Example 1, and then morphological observation staining (H staining) was performed. Carried out. Immunostaining and morphological observation staining were performed as follows.
- the cultured cells were deparaffinized with xylene and washed with water.
- the washed cultured cell slide was autoclaved in a 10 mM citrate buffer (pH 6.0) at 121 ° C. for 5 minutes to activate the antigen.
- the cultured cell slide after the activation treatment was washed with PBS buffer, and then subjected to blocking treatment with 1% BSA-containing PBS buffer for 1 hour in a wet box. After blocking treatment, anti-HER2 rabbit monoclonal antibody (4B5) (manufactured by Ventana) diluted to 0.05 nM with 1% BSA-containing PBS buffer was reacted with the sections for 2 hours.
- 4B5 anti-HER2 rabbit monoclonal antibody
- H staining morphological observation staining
- the immunostained cultured cell slide was stained with Mayer's hematoxylin solution for 5 minutes, and hematoxylin staining (H staining) was performed to obtain a stained slide.
- the sections were then washed with running water at 45 ° C. for 3 minutes.
- the tissue sections subjected to immunostaining and morphological observation staining were irradiated with predetermined excitation light to emit fluorescence.
- the tissue section in this state was observed with a fluorescence microscope (BX-53, manufactured by Olympus) and imaged.
- the bright spot was measured by the ImageJ FindMaxima method (exposure time was 400 ms and NoiseTolerance was 60).
- the wavelength of the excitation light was set to 575 to 600 nm with respect to the PI dye-containing polymelamine particles by passing through an optical filter.
- the range of the wavelength (nm) of fluorescence to be observed was also set to 612 to 682 nm by passing through an optical filter.
- the excitation wavelength condition for microscopic observation and image acquisition was such that the irradiation energy near the center of the visual field was 900 W / cm 2 .
- the exposure time at the time of image acquisition was arbitrarily set (for example, set to 400 milliseconds) so as not to saturate the brightness of the image.
- Examples 2 to 7 were carried out in the same manner as in Example 1 except that the melamine resins produced in Production Examples 2 to 7 were used in place of the melamine resin produced in Production Example 1.
- the SN ratio is shown in Table 1. The determination was performed in the same manner as in Example 1. [Comparative Examples 1 and 2] Comparative Examples 1 and 2 were carried out in the same manner as in Example 1 except that the melamine resins produced in Production Examples 8 and 9 were used in place of the melamine resin produced in Production Example 1.
- Table 1 shows the SN ratio. The determination was performed in the same manner as in Example 1.
- Examples 8 to 11 Sensitivity and reproducibility of bright spots when the particles produced in Production Examples 1 to 4 were used and washed after morphological observation staining with a hematoxylin staining solution
- the above-described H staining was carried out in the same manner as in Examples 1 to 4, and staining slides were obtained. After the H staining treatment, each staining slide was washed according to the following procedures (i) to (ii).
- a pH 7 cleaning solution was prepared. Pure water was used as the cleaning liquid having a pH of 7.
- Each staining slide subjected to the staining process for morphology observation was immersed in a cleaning solution at room temperature for 4 minutes to perform a cleaning process.
- the stained slide in this state was observed and imaged with the aforementioned fluorescence microscope (OLYMPUS "BX-53") and the aforementioned microscope digital camera (OLYMPUS "DP73").
- the excitation light was set to 575 to 600 nm by passing through an optical filter.
- the range of the wavelength (nm) of fluorescence to be observed was also set to 612 to 692 nm by passing through an optical filter.
- the conditions of the excitation wavelength during microscopic observation and image acquisition were such that the irradiation energy near the center of the field of view was 900 W / cm 2 for excitation at 580 nm.
- the exposure time at the time of image acquisition was arbitrarily set so as not to saturate the brightness of the image (for example, set to 4000 ⁇ sec) and imaged.
- the number of bright spots of the HER2 (3+) tissue was an average value of 1000 cells measured by the ImageJ FindMaxims method based on an image captured at 400 times.
- a pathological staining particle per cell was calculated from one captured image, and a coefficient of variation (CV) was calculated as an index representing variation.
- Example 3 Sensitivity and reproducibility of bright spots when the particles produced in Production Example 9 are used and washed after morphological observation staining with a hematoxylin staining solution
- Example 8 The same operation as in Example 8 was performed except that a slide sample prepared under the same conditions as those of the slide prepared in Comparative Example 2 was used.
- Examples 12 to 17 Sensitivity and reproducibility of bright spots when washed with acidic aqueous solutions having different pH after morphological observation staining with hematoxylin staining solution
- Example 4 was performed until the aforementioned H staining, and a staining slide was obtained.
- each staining slide was performed in the same manner as in Example 8 except that the washing treatment was changed to the following procedures (i) to (ii).
- (I) Six types of cleaning liquids having a pH of 1, 2, 3, 4, 5, or 6 were prepared. A washing solution having a pH of 1 to 6 was prepared by diluting 1M hydrochloric acid.
- (Ii) Each staining slide subjected to the staining process for morphology observation was immersed in each cleaning solution at room temperature for 4 minutes to perform the cleaning process.
- Table 2 shows the results of Examples 8 to 11 and Comparative Example 3.
- the stained slides of Examples 8 to 11 gave good results with a judgment of ⁇ or higher.
- the stained slide of Example 11 using the particles produced in Production Example 4 had a large number of bright spots (S / N ratio) and small variation in luminance (CV). Then, about the Example mentioned later, it implemented by producing the dyeing
- the PID score is an average value of analysis results obtained by counting the number of bright spots of 10 stained slides prepared using SK-BR-3 cultured cells.
- “ ⁇ ” indicates that the evaluation item is not implemented.
- Specimen pretreatment step (1-1) Deparaffinization As a specimen slide of a HER2-positive stained control specimen (Cosmo Bio CB-A712 series), deparaffinization is performed according to the following procedures (i) to (iii). Processed. (I) Immerse the specimen slide in a container containing xylene at room temperature for 30 minutes. The xylene was changed three times during the process. (Ii) The specimen slide is immersed in a container containing ethanol at room temperature for 30 minutes. The ethanol was changed three times during the process. (Iii) The specimen slide was immersed in a container containing water for 30 minutes. The water was changed three times along the way.
- surface represents the PID score of the dyeing
- the PID score is an average value of analysis results obtained by counting the number of bright spots of 10 stained slides prepared using specimen slides of HER2-positive stained control specimens derived from the same patient.
- Table 3 shows the results of Examples 18 to 27.
- an acidic cleaning solution having a pH of 1 to 6 is used, a larger number of pathological staining particles are observed than when a neutral or alkaline cleaning solution having a pH of 7 to 10 is used. It can be seen that the luminance variation (CV) is small.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
A method for producing particles for pathological staining use, comprising polycondensing a compound represented by general formula (1) to produce the particles. In formula (1), R1's independently represent a hydrogen atom, CH2OR2 or CH2OH, and R2 represents an organic group, wherein at least one of R1's represents CH2OH.
Description
本発明は、病理染色用粒子の製造方法、病理染色用粒子および洗浄方法に関し、詳しくは、病理染色に用いられる、輝点の感度及び輝点数の再現性が良好な粒子の製造方法、当該製造方法により作製された病理染色用粒子、および染色スライドを、酸性水溶液を用いて洗浄する処理に関する。
The present invention relates to a method for producing pathological staining particles, a particle for pathological staining, and a washing method, and more specifically, a method for producing particles that are used for pathological staining and have good reproducibility of bright spot sensitivity and number of bright spots. The present invention relates to a treatment for washing pathological staining particles and staining slides produced by the method using an acidic aqueous solution.
従来、医学的診断の1つとして病理診断が行なわれている。病理医は、病理診断により、人体から採取した組織片に対して行った生体検査の結果を示すデータから病気を診断し、治療や手術の要不要を臨床医に伝える。患者の状態と病理診断によって、内科系医師は薬物治療方針、外科系の医師は手術を行うか否かを決定する。
Conventionally, pathological diagnosis is performed as one of medical diagnosis. A pathologist diagnoses a disease from data indicating the result of a biopsy performed on a tissue piece collected from a human body by pathological diagnosis, and informs a clinician whether treatment or surgery is necessary. Depending on the patient's condition and pathological diagnosis, the medical doctor decides the drug treatment policy, and the surgical doctor decides whether or not to perform the operation.
被験者が対象疾患に罹患しているか否かを判断するためのデータを提供するために、被験者の組織切片等について免疫染色が行われている。この免疫染色では、例えば、前記罹患の有無によって発現量が増減する生体内の分子(抗原)に、蛍光標識した抗体を特異的に結合させることにより抗原を蛍光標識し、蛍光シグナルの量から疾患に関連する抗原の量を定量することが行われる。これにより、被験者が対象の疾患に罹患しているか否かを診断するためのデータが提供される。従来の免疫染色法は、所定の基質を添加したときに色素を生成する酵素で標識した抗体を利用する方法(酵素抗体法)が採用されていた。近年、より識別性に優れる蛍光体で標識した抗体を利用する免疫染色法(蛍光抗体法)が利用されるようになった。蛍光標識した抗体を抗原に結合させる技術として、蛍光色素を粒子に内包または粒子表面に固定させた病理染色用粒子の表面を修飾して修飾足場を作り、この修飾足場に抗体を直接的または間接的に結合させ、これを抗原に結合させる技術が知られている。この技術においては、有効なデータを得るために、蛍光標識に基づき観察される輝点の感度及び輝点数の再現性が良好であることが要求される。
In order to provide data for determining whether or not the subject is suffering from the target disease, immunostaining is performed on the tissue sections and the like of the subject. In this immunostaining, for example, an antigen is fluorescently labeled by specifically binding a fluorescently labeled antibody to an in vivo molecule (antigen) whose expression level is increased or decreased depending on the presence or absence of the disease, and the amount of fluorescent signal is used to determine the disease. Quantifying the amount of antigen associated with. Thereby, data for diagnosing whether or not the subject suffers from the target disease is provided. As a conventional immunostaining method, a method (enzyme antibody method) using an antibody labeled with an enzyme that generates a dye when a predetermined substrate is added has been employed. In recent years, an immunostaining method (fluorescent antibody method) using an antibody labeled with a fluorescent substance having better discrimination has been used. As a technique for binding fluorescently labeled antibodies to antigens, a modified scaffold is created by modifying the surface of a particle for pathological staining in which a fluorescent dye is encapsulated in the particle or fixed on the particle surface, and the antibody is directly or indirectly bound to this modified scaffold. There is known a technique for binding to an antigen and binding it to an antigen. In this technique, in order to obtain effective data, it is required that the sensitivity of the bright spot observed based on the fluorescent label and the reproducibility of the number of bright spots are good.
この輝点の感度及び輝点数の再現性の良否は、粒子表面のアミノ基を含む修飾足場に依存していることが知られている。しかし、従来の病理染色技術においては、この修飾足場の量を増やすことが難しいので、輝点の感度及び輝点数の再現性、特に低発現での輝点の感度及び輝点数の再現性を向上させることは困難であった。
It is known that the sensitivity of the bright spot and the reproducibility of the bright spot number depend on the modified scaffold containing an amino group on the particle surface. However, since it is difficult to increase the amount of this modified scaffold in the conventional pathological staining technology, the sensitivity of the bright spot and the reproducibility of the number of bright spots, especially the sensitivity of the bright spot at low expression and the reproducibility of the number of bright spots are improved. It was difficult to do.
粒子を表面修飾する方法として、特許文献1に、ナノ粒子とリガンド相互作用剤を会合させ、ヘキサメトキシメチルメラミンなどの架橋剤でリガンド相互作用剤を架橋させた後、リガンド相互作用剤に表面修飾リガンドを結合させる方法が開示されている。しかし、この方法においてナノ粒子に蛍光色素を含有させて病理染色用粒子として用いても、修飾足場の量を増やすことはできず、輝点の感度及び輝点数の再現性の向上を図ることは困難であった。
As a method for surface modification of particles, Patent Document 1 discloses that nanoparticles and a ligand interaction agent are associated with each other, the ligand interaction agent is crosslinked with a crosslinking agent such as hexamethoxymethylmelamine, and then the surface modification is performed on the ligand interaction agent. A method of binding a ligand is disclosed. However, even if the nanoparticle contains a fluorescent dye in this method and is used as a particle for pathological staining, the amount of the modified scaffold cannot be increased, and the improvement of the sensitivity of the bright spot and the reproducibility of the number of bright spots is not possible. It was difficult.
前記診断のためのデータを提供するために、臓器摘出や針生検によって得た組織検体を厚さ数ミクロン程度に薄切して組織切片(組織標本)を作成し、組織切片に所定の染色処理を行った後、様々な所見を得るために光学顕微鏡や蛍光顕微鏡を用いて観察することが広く行われている。ここで、蛍光標識のために前述したような蛍光色素を内包した粒子を用いる場合、従来の酵素を利用する免疫染色法と違って色素が混合するということがないので、一枚の組織切片上で、免疫染色法による染色処理に加えて、細胞の形態観察用の染色処理を同時に行うことができる。多くの場合、組織切片は、採取した組織を固定するため脱水し、パラフィンブロック化した後、数μmの厚さに薄切りし、パラフィンを取り除いて作製される。ここで、組織切片は光を殆ど吸収および散乱せず無色透明に近いため、上記観察に先立って、組織切片の細胞形態を観察するための形態観察染色、例えばヘマトキシリンおよびエオジンの2つの色素を用いるヘマトキシリン・エオジン染色(HE染色)が標準的に行われる。他の形態観察染色としては、例えば細胞診で用いられるパパニコロウ染色(Pap染色)等が挙げられる。
In order to provide the data for the diagnosis, a tissue section (tissue specimen) is prepared by slicing a tissue specimen obtained by organectomy or needle biopsy to a thickness of several microns, and the tissue section is subjected to a predetermined staining process. In order to obtain various findings after observation, observation using an optical microscope or a fluorescence microscope is widely performed. Here, when using particles containing fluorescent dyes as described above for fluorescent labeling, unlike conventional immunostaining methods using an enzyme, the dyes do not mix. Thus, in addition to staining by immunostaining, staining for cell morphology observation can be performed simultaneously. In many cases, tissue sections are prepared by dehydrating and fixing paraffin blocks to fix the collected tissues, then slicing them to a thickness of several μm and removing the paraffin. Here, since the tissue slice hardly absorbs and scatters light and is almost colorless and transparent, morphological observation staining for observing the cell morphology of the tissue slice, for example, two dyes of hematoxylin and eosin is used prior to the above observation. Hematoxylin and eosin staining (HE staining) is standard. Examples of other morphological observation staining include Papanicolaou staining (Pap staining) used in cytodiagnosis, for example.
例えば、細胞または組織の形態観察用に標準的に用いられているヘマトキシリン・エオジン染色(HE染色)を利用する場合、ヘマトキシリン染色により細胞核・石灰部・軟骨組織・細菌・粘液が青藍色~淡青色に染色され、エオジン染色により細胞質・間質・各種線維・赤血球・角化細胞が赤~濃赤色に染色される。このようにして免疫染色された組織切片は、褪色防止剤を含有する封入剤を用いて封入処理をした後、所定の励起光を照射しながら蛍光画像が撮影され、さらに明視野において形態観察用の染色画像が撮影される(なお、エオジンは蛍光を発するので、エオジンの染色画像は蛍光画像として撮影することも可能である)。そして、撮影された抗原タンパクが標識された蛍光画像と、細胞膜の位置を特定できる細胞の形態観察用の(蛍光)画像とを重ねあわせ、一細胞あたりの細胞膜領域内に観察される輝点の数を計測し、その値によって抗原タンパクが異常発現しているか否かが判定される。
For example, when hematoxylin and eosin staining (HE staining), which is standard for observing the morphology of cells or tissues, is used, the cell nucleus, lime, cartilage tissue, bacteria, and mucus are colored blue-blue to light by hematoxylin staining. It is stained blue, and cytoplasm, stroma, various fibers, erythrocytes, and keratinocytes are stained red to dark red by eosin staining. The tissue sections thus immunostained are sealed with a mounting medium containing an anti-fading agent, and then a fluorescence image is taken while irradiating with a predetermined excitation light. (Since eosin emits fluorescence, the eosin stained image can also be taken as a fluorescence image). Then, the captured fluorescent image labeled with the antigen protein and the (fluorescence) image for cell morphology observation that can specify the position of the cell membrane are superimposed, and the bright spots observed in the cell membrane region per cell are superimposed. The number is measured, and whether or not the antigen protein is abnormally expressed is determined by the value.
上記のような免疫染色法(蛍光抗体法)と同時に形態観察染色処理が行われる実施形態においても、蛍光体として蛍光色素内包ナノ粒子を用いることが好適であり、そのような実施形態は、例えば、特許文献2(国際公開WO2013/035703号パンフレット)、特許文献3(国際公開WO2013/147081号パンフレット)などを参照することができる。
In the embodiment in which the morphological observation staining process is performed simultaneously with the immunostaining method (fluorescent antibody method) as described above, it is preferable to use fluorescent dye-containing nanoparticles as a phosphor. Patent Document 2 (International Publication WO2013 / 035703 pamphlet), Patent Document 3 (International Publication WO2013 / 147081 pamphlet) and the like can be referred to.
本発明は、輝点の感度及び輝点数の再現性が良好な病理染色用粒子、特に、低発現での輝点の感度及び輝点数の再現性が良好な病理染色用粒子を製造する方法(以下、「本発明の製造方法」と称する。)を提供することを目的とする。また、本発明は、病理染色用粒子を提供することを第2の目的とする。
The present invention relates to a method for producing particles for pathological staining with good sensitivity of bright spots and reproducibility of the number of bright spots, in particular, particles for pathological staining with good sensitivity and reproducibility of the number of bright spots at low expression ( Hereinafter, it is referred to as “the manufacturing method of the present invention”). A second object of the present invention is to provide particles for pathological staining.
従来の免疫染色法による組織評価法で使用される病理染色用粒子は、染色液(例えば、形態観察用染色液であるヘマトキシリン溶液および/またはエオジン溶液)と併用される場合、顕微鏡画像の観察において、病理染色用輝度の低下が生じたりする問題があった。また、病理染色用粒子の輝度低下率は染色液による染色処理ごとに異なり一定ではないため、染色後の病理染色用粒子の輝度のばらつきが大きくなってしまう(つまり一律に補正することができない)という問題もあった。
When the pathological staining particles used in the tissue evaluation method by the conventional immunostaining method are used in combination with a staining solution (for example, a hematoxylin solution and / or an eosin solution which is a staining solution for morphological observation), There is a problem that the luminance for pathological staining is lowered. In addition, the luminance reduction rate of the pathological staining particles varies depending on the staining treatment with the staining solution and is not constant, so that the variation in the luminance of the stained pathological staining particles becomes large (that is, cannot be corrected uniformly). There was also a problem.
すなわち、本発明は、免疫染色法により、検体スライド上の組織切片に含まれる目的生体物質を病理染色用粒子で標識する処理(蛍光標識処理)を行い、続いて前記蛍光標識処理された組織切片を形態観察用染色液で染色する処理(染色処理)を行っても、染色スライドの輝度の低下および輝度のばらつきを抑制することのできる方法を提供することを第3の目的とする。
That is, the present invention performs a process (fluorescent labeling process) for labeling a target biological substance contained in a tissue section on a specimen slide with a particle for pathological staining by an immunostaining method, and subsequently the tissue section subjected to the fluorescent labeling process. It is a third object to provide a method capable of suppressing a decrease in luminance and variation in luminance of a stained slide even when a treatment (staining treatment) is performed for staining the specimen with a staining liquid for morphological observation.
前記目的を達成する本発明は、一つの側面において、
下記一般式(1)で表わされる化合物を縮重合して粒子を製造する病理染色用粒子の製造方法を提供する。 In one aspect, the present invention for achieving the above object is as follows:
Provided is a method for producing particles for pathological staining in which particles are produced by condensation polymerization of a compound represented by the following general formula (1).
下記一般式(1)で表わされる化合物を縮重合して粒子を製造する病理染色用粒子の製造方法を提供する。 In one aspect, the present invention for achieving the above object is as follows:
Provided is a method for producing particles for pathological staining in which particles are produced by condensation polymerization of a compound represented by the following general formula (1).
また、本発明は別の側面において、下記一般式(1)で表わされる化合物の縮重合物を含有する粒子を有する病理染色用粒子を提供する。
In another aspect, the present invention provides particles for pathological staining having particles containing a polycondensation product of a compound represented by the following general formula (1).
本発明はさらなる側面において、免疫染色法により、検体スライド上の組織切片に含まれる目的生体物質を、前記の病理染色用粒子で蛍光標識する処理(蛍光標識処理)、
前記蛍光標識処理された組織切片を形態観察用染色液で染色する処理(染色処理)、および
染色処理された組織切片を酸性水溶液で洗浄する処理(洗浄処理)を行う、染色スライドの洗浄方法を提供する。
In a further aspect of the present invention, a process of fluorescently labeling a target biological substance contained in a tissue section on a specimen slide with the aforementioned pathological staining particles (fluorescence labeling process) by immunostaining.
A method for washing a stained slide in which the fluorescently labeled tissue section is stained with a staining solution for morphology observation (staining process), and the stained tissue section is washed with an acidic aqueous solution (washing process). provide.
本発明の病理染色用粒子の製造方法によれば、蛍光標識に基づき観察される輝点の感度及び輝点数の再現性、特に低発現での輝点の感度及び輝点数の再現性が良好である病理染色用粒子を製造することができる。
According to the method for producing pathological staining particles of the present invention, the sensitivity of the bright spot and the reproducibility of the number of bright spots observed based on the fluorescent label, in particular, the sensitivity of the bright spot at low expression and the reproducibility of the number of bright spots are good. Certain particles for pathological staining can be produced.
本発明の病理染色用粒子は、蛍光標識に基づき観察される輝点の感度及び輝点数の再現性に優れ、特に低発現での輝点の感度及び輝点数を良好に再現する。この様に、本発明によれば低発現での輝点の感度及び輝点数を良好に再現することが可能な優れた診断性を発現する病理染色用粒子の提供を可能にする。
The particles for pathological staining of the present invention are excellent in the sensitivity of the bright spot and the reproducibility of the number of bright spots observed based on the fluorescent label, and particularly reproduce the sensitivity of the bright spot and the number of bright spots at low expression. As described above, according to the present invention, it is possible to provide particles for pathological staining exhibiting excellent diagnostic ability capable of well reproducing the sensitivity of bright spots and the number of bright spots at low expression.
また、本発明の病理染色用粒子を使用して作製した染色スライドを、酸性水溶液で洗浄処理することにより、検体スライドにヘマトキシリン等の形態観察用染色液を用いて染色しても、染色スライドの輝度のばらつきが低減され、輝度低下を抑制できる。
In addition, the staining slide prepared using the pathological staining particles of the present invention is washed with an acidic aqueous solution, so that the specimen slide can be stained with a morphological observation staining solution such as hematoxylin. Variations in luminance can be reduced and luminance reduction can be suppressed.
それにより、目的タンパク質に対応するシグナル精度が向上した蛍光画像を取得し、目的とするタンパク質の発現レベルをより正確に評価することができるようになり、病理診断の信頼性向上につながる。
This makes it possible to acquire a fluorescent image with improved signal accuracy corresponding to the target protein, and more accurately evaluate the expression level of the target protein, leading to improved reliability of pathological diagnosis.
本発明は、下記一般式(1)で表わされる化合物(以下、化合物(1)ともいう)を縮重合して粒子を製造する病理染色用粒子の製造方法である。また、本発明の病理染色用粒子は、化合物(1)の縮重合物を含有する粒子を有する。
The present invention is a method for producing particles for pathological staining in which particles are produced by condensation polymerization of a compound represented by the following general formula (1) (hereinafter also referred to as compound (1)). Moreover, the particle | grains for pathological staining of this invention have the particle | grains containing the polycondensation product of a compound (1).
6個のR1のうち、少なくとも1つはCH2OHであり、好ましくは少なくとも2つはCH2OHである。つまり、式(1)で表わされる化合物は1分子中に1~6個のCH2OH基を有し、2~6個のCH2OH基を有することが好ましい。6個のR1において、CH2OHと、CH2OR2との合計は4~6が好ましく、5~6がより好ましく、6が特に好ましい。
Of the six R 1 , at least one is CH 2 OH, preferably at least two are CH 2 OH. That is, the compound represented by the formula (1) preferably has 1 to 6 CH 2 OH groups in one molecule and has 2 to 6 CH 2 OH groups. In the six R 1 s , the total of CH 2 OH and CH 2 OR 2 is preferably 4 to 6, more preferably 5 to 6, and particularly preferably 6.
R1の2つがCH2OHである場合、式(1)における6個のR1のうちどのR1がCH2OHであっても差し支えない。式(1)に含まれる3つのアミノ基のうちの1つのアミノ基が有する2つのR1がともにCH2OHであってもよく、1つのアミノ基が有する2つのR1のうちの一方がCH2OHであり、他の1つのアミノ基が有する2つのR1のうちの一方がCH2OHであってもよい。R1の3つがCH2OHである場合も、6個のR1のうちどのR1がCH2OHであっても構わず、式(1)に含まれる3つのアミノ基がそれぞれ有する2つのR1のうちの一方がCH2OHであってもよく、1つのアミノ基が有する2つのR1がともにCH2OHであり、他の1つのアミノ基が有する2つのR1のうちの一方がCH2OHであってもよい。R1の4つがCH2OHである場合も、6個のR1のうちどのR1がCH2OHであっても構わず、式(1)に含まれる2つのアミノ基がそれぞれ有する2つのR1がともにCH2OHであってもよく、1つのアミノ基が有する2つのR1がともにCH2OHであり、他の2つのアミノ基がそれぞれ有する2つのR1のうちの一方がCH2OHであってもよい。
If two of R 1 is a CH 2 OH, which R 1 of the six R 1 in Formula (1) is no problem even CH 2 OH. Two R 1 possessed by one amino group out of the three amino groups contained in the formula (1) may be both CH 2 OH, and one of the two R 1 possessed by one amino group is CH 2 OH, and one of the two R 1 possessed by the other one amino group may be CH 2 OH. Even if three of R 1 is a CH 2 OH, which R 1 of the six R 1 is not may be a CH 2 OH, formula (1) has three amino groups contained in the two having each one of R 1 is may be CH 2 OH, are two of R 1 are both CH 2 OH having one amino group, one of the two R 1 with the other one amino group May be CH 2 OH. Even if four of R 1 is a CH 2 OH, which R 1 of the six R 1 is not may be a CH 2 OH, formula (1) has two amino groups contained in the two having each may R 1 is a both CH 2 OH, are two of R 1 are both CH 2 OH having one amino group, one is CH of the two R 1 with the other two amino groups, each It may be 2 OH.
式(1)のR1が表わす水素原子及びCH2OR2についても、R1の少なくとも1つがCH2OHである限り、その個数及び結合位置に制限はない。
As for the hydrogen atom and CH 2 OR 2 represented by R 1 in formula (1), the number and bonding position thereof are not limited as long as at least one of R 1 is CH 2 OH.
式(1)で表わされる化合物において、R1の1つがCH2OHである化合物の例としては下記式(2)または(3)で表わされる化合物が挙げられ、R1の3つがCH2OHである化合物の例としては下記式(4)で表わされる化合物が挙げられる。
In the compound represented by the formula (1), examples of the compound in which one of R 1 is CH 2 OH include compounds represented by the following formula (2) or (3), and three of R 1 are CH 2 OH. As an example of the compound which is, the compound represented by following formula (4) is mentioned.
従来、メラミン樹脂から作製される病理染色用粒子は、下記式(5)で表わされる化合物を縮重合することにより製造されていた。
Conventionally, particles for pathological staining produced from melamine resin have been produced by polycondensing a compound represented by the following formula (5).
これに対し、本発明の病理染色用粒子の製造方法は、化合物(1)を縮重合して粒子を製造する。化合物(1)は前述のとおりCH2OH基を少なくとも1つ有する。このため、化合物(1)を縮重合することにより得られるメラミン樹脂粒子は、縮重合に関与しなかったCH2OH基に基づくOH基を必然的に有する。OH基は二官能アミンと容易に反応するので、化合物(1)を縮重合して得られたメラミン樹脂粒子に二官能アミンを反応させて、修飾足場を作ることは容易であり、メラミン樹脂粒子に修飾足場を多量に導入することが可能である。このため、化合物(1)を縮重合して得られた病理染色用粒子には多くの抗体を結合させることができ、病理染色用粒子における蛍光色素の密度を高めることができる。その結果として、本発明の製造方法によって得られる、蛍光色素を含む、メラミン樹脂から作製される病理染色用粒子は、蛍光標識に基づき観察される輝点の感度及び輝点数の再現性が良好となる。
On the other hand, the method for producing particles for pathological staining of the present invention produces particles by condensation polymerization of compound (1). Compound (1) has at least one CH 2 OH group as described above. For this reason, the melamine resin particles obtained by polycondensation of the compound (1) necessarily have OH groups based on CH 2 OH groups that were not involved in the polycondensation. Since the OH group easily reacts with the bifunctional amine, it is easy to react the bifunctional amine with the melamine resin particles obtained by condensation polymerization of the compound (1) to produce a modified scaffold. It is possible to introduce a large amount of modified scaffolds. Therefore, many antibodies can be bound to the pathological staining particles obtained by polycondensation of the compound (1), and the density of the fluorescent dye in the pathological staining particles can be increased. As a result, the pathological dyeing particles produced from the melamine resin containing the fluorescent dye obtained by the production method of the present invention have good sensitivity and reproducibility of the number of bright spots observed based on the fluorescent label. Become.
以上の説明からわかるとおり、修飾足場を多量に導入するために、メラミン樹脂粒子はOH基を多く有していることが好ましい。化合物(1)が多くのCH2OH基を有しているほど、縮重合に関与しなかったCH2OH基に基づくOH基が多く残存するので、本発明の製造方法において化合物(1)は多くのCH2OH基を有しているほど好ましい。このため、式(1)の6個のR1は、1つは必ずCH2OHであり、2つがCH2OHであるほうが好ましく、6つすべてがCH2OHであることが最も好ましい。
As can be seen from the above description, in order to introduce a large amount of the modified scaffold, the melamine resin particles preferably have many OH groups. The more the compound (1) has more CH 2 OH groups, the more OH groups based on the CH 2 OH groups that did not participate in the condensation polymerization remain. Therefore, in the production method of the present invention, the compound (1) It is more preferable to have many CH 2 OH groups. Thus, six of R 1 of formula (1), the one is always CH 2 OH, preferably more two are CH 2 OH, and most preferably all six is CH 2 OH.
化合物(1)は、メラミンのホルムアルデヒドによるメチロール化、さらにそのメチロール化物とR2OHで表わされる化合物との反応において、メチロール化、及びメチロール化物とR2OHで表わされる化合物との反応の程度を調整することにより合成することができる。メチロール化を強く行えば生成物中に導入されるCH2OH基の数を多くすることができ、メチロール化を弱く行えば生成物中に導入されるCH2OH基の数を少なくすることができる。さらにそのメチロール化物とR2OHで表わされる化合物との反応を行わないか、または弱く行えば残存するCH2OH基の個数を多くすることができ、R2OHで表わされる化合物との反応を強く行えば残存するCH2OH基の個数を少なくすることができる。
Compound (1) is methylolated with formaldehyde melamine, yet its reaction with methylol compound and R compound represented by 2 OH, methylolated, and the extent of the reaction between the compound represented by the methylol compound and R 2 OH It can be synthesized by adjusting. If methylolation is strongly performed, the number of CH 2 OH groups introduced into the product can be increased, and if methylolation is weakened, the number of CH 2 OH groups introduced into the product can be decreased. it can. Further, if the reaction between the methylolated compound and the compound represented by R 2 OH is not carried out or if it is weakened, the number of remaining CH 2 OH groups can be increased, and the reaction with the compound represented by R 2 OH If it is carried out strongly, the number of remaining CH 2 OH groups can be reduced.
本発明の病理染色用粒子の製造方法で使用するメラミン樹脂は、例えば、化合物(1)のうち、CH2OR2であるR1を含み、R2がアルキル基である化合物は、メラミンとホルムアルデヒドとの反応によりメチロールメラミンを合成し、さらにそのメチロールメラミンをR2OHで表わされるアルコールでエーテル化することにより合成することができる。
The melamine resin used in the method for producing a particle for pathological staining of the present invention includes, for example, R 1 which is CH 2 OR 2 among compounds (1), and the compound in which R 2 is an alkyl group includes melamine and formaldehyde Can be synthesized by synthesizing methylol melamine by the reaction with, and further etherifying the methylol melamine with an alcohol represented by R 2 OH.
これらの反応は、常法に従い行うことができる。
These reactions can be performed according to a conventional method.
式(1)で表わされる化合物を縮重合する際の反応条件は、従来知られているメラミン樹脂の合成条件に従えばよい。
Reaction conditions for polycondensation of the compound represented by the formula (1) may be in accordance with conventionally known synthesis conditions for melamine resins.
蛍光体集積ナノ粒子は、後述する蛍光色素のような蛍光体を複数個、母体となる物質に内包したり表面に付着させたりすることで集積化した、ナノサイズの(直径が1μm未満の)粒子状の蛍光体である。本発明の製造方法において、蛍光色素の存在下において化合物(1)を縮重合することができる。このように縮重合を行うと、化合物(1)が蛍光色素を包み込みながら縮重合するので、蛍光色素を含有するメラミン樹脂粒子を得ることができる。また、メラミン樹脂は微細な網目構造を有するので、包み込まれた蛍光色素はメラミン樹脂粒子から漏出しにくい。
The phosphor-integrated nanoparticles are nano-sized (with a diameter of less than 1 μm) that are integrated by encapsulating a plurality of phosphors, such as the fluorescent dyes described later, in a base material or attaching them to the surface. It is a particulate phosphor. In the production method of the present invention, the compound (1) can be polycondensed in the presence of a fluorescent dye. When polycondensation is performed in this manner, the compound (1) undergoes polycondensation while wrapping the fluorescent dye, so that melamine resin particles containing the fluorescent dye can be obtained. Moreover, since the melamine resin has a fine network structure, the encapsulated fluorescent dye is unlikely to leak from the melamine resin particles.
また、本発明の製造方法の別の態様としては、化合物(1)を縮重合して得られる粒子に、蛍光色素を添加、含有させる病理染色用粒子の製造方法が挙げられる。このような縮重合の後に、蛍光色素を添加、含有させることにより、メラミン樹脂表面に蛍光色素を吸着ないし、メラミン樹脂内部に蛍光色素を内包させることが可能である。このような方法で、病理染色用粒子である、蛍光色素を有するメラミン樹脂粒子を得ることができる。
Another embodiment of the production method of the present invention includes a method for producing particles for pathological staining in which a fluorescent dye is added to and contained in particles obtained by condensation polymerization of compound (1). By adding and containing a fluorescent dye after such condensation polymerization, it is possible to adsorb the fluorescent dye on the surface of the melamine resin or to enclose the fluorescent dye inside the melamine resin. By such a method, the melamine resin particle | grains which have a fluorescent pigment | dye which are particles for pathological dyeing | staining can be obtained.
したがって、本発明においては、蛍光体集積ナノ粒子は、蛍光色素をメラミン樹脂に内包したり表面に付着させたりすることで集積化した、粒子状の蛍光体のことを指す。免疫染色においてこのような蛍光体集積ナノ粒子を用いることは、蛍光体を単独で(蛍光色素を一分子で)用いる場合と比較して、目的とする生体分子を標識した蛍光標識体1つあたりが発する蛍光の強度を増強し、細胞の自家蛍光等のノイズや他の色素との識別性を高めることができること、また励起光の照射による褪色を抑制することができることから好ましい。
Therefore, in the present invention, the phosphor-integrated nanoparticles refer to particulate phosphors that are integrated by encapsulating a fluorescent dye in a melamine resin or attaching it to the surface. The use of such phosphor-integrated nanoparticles in immunostaining is equivalent to the use of a single fluorescent molecule labeled with a target biomolecule as compared with the case where the fluorescent substance is used alone (a single fluorescent dye molecule). It is preferable because the intensity of the fluorescence emitted from the light can be increased, noise such as autofluorescence of the cells and distinguishability from other dyes can be enhanced, and fading caused by irradiation with excitation light can be suppressed.
前記蛍光色素としては、特に制限がないが、免疫染色の観点から、有機蛍光色素が好ましく、例えば、ローダミン系色素、BODIPY(登録商標、インビトロジェン社製)、スクアリリウム系色素、芳香族系色素等が挙げられる。
The fluorescent dye is not particularly limited, but is preferably an organic fluorescent dye from the viewpoint of immunostaining, such as rhodamine dyes, BODIPY (registered trademark, manufactured by Invitrogen), squarylium dyes, aromatic dyes, and the like. Can be mentioned.
このうち、芳香族炭化水素系色素などの芳香族系色素、ローダミン系色素などは、比較的耐光性が高いので好ましく、なかでも芳香族系色素に属するペリレン(perylene)やピレン(Pyrene)、ペリレンジイミド(perylene diimide)が好ましい。さらにローダミン系色素やペリレンジイミドは量子収率や吸光等が優れており、発光効率が優れるので、これらを含有した樹脂粒子は、他の色素を含有した樹脂粒子と比べて発光強度が優れる。
Among these, aromatic dyes such as aromatic hydrocarbon dyes, rhodamine dyes and the like are preferable because of their relatively high light resistance, and among them, perylene, pyrene, and perylene belonging to aromatic dyes. Diimide is preferred. Furthermore, rhodamine dyes and perylene diimide are excellent in quantum yield, light absorption, and the like, and are excellent in luminous efficiency. Therefore, resin particles containing these have excellent emission intensity compared to resin particles containing other dyes.
ローダミン系色素の具体例としては、5-カルボキシ-ローダミン、6-カルボキシ-ローダミン、5,6-ジカルボキシ-ローダミン、ローダミン 6G、テトラメチルローダミン、X-ローダミン、テキサスレッド、SpectrumRed、LD700PERCHLORATE、それらの誘導体などが挙げられる。
Specific examples of rhodamine dyes include 5-carboxy-rhodamine, 6-carboxy-rhodamine, 5,6-dicarboxy-rhodamine, rhodamine 6G, tetramethylrhodamine, X-rhodamine, Texas Red, Spectrum Red, LD700 PERCHLORATE, those Derivatives and the like.
BODIPY系色素の具体例としては、BODIPY FL、BODIPY TMR、BODIPY 493/503、BODIPY 530/550、BODIPY 558/568、BODIPY 564/570、BODIPY 576/589、BODIPY 581/591、BODIPY 630/650、BODIPY 650/665(以上インビトロジェン社製)、それらの誘導体などが挙げられる。
Specific examples of the BODIPY dye include BODIPY FL, BODIPY TMR, BODIPY 493/503, BODIPY 530/550, BODIPY 558/568, BODIPY 564/570, BODIPY 576/589, BODIPY 581/591, 3061 BODIPY 650/665 (manufactured by Invitrogen), derivatives thereof and the like.
スクアリリウム系色素の具体例としては、SRfluor680-Carboxylate、1,3-Bis[4-(dimethylamino)-2-hydroxyphenyl]-2,4-dihydroxycyclobutenediylium dihydroxide, bis、1,3-Bis[4-(dimethylamino)phenyl]-2,4-dihydroxycyclobutenediylium dihydroxide, bis、2-(4-(Diethylamino)-2-hydroxyphenyl)-4-(4-(diethyliminio)-2-hydroxycyclohexa-2,5-dienylidene)-3-oxocyclobut-1-enolate、2-(4-(Dibutylamino)-2-hydroxyphenyl)-4-(4-(dibutyliminio)-2-hydroxycyclohexa-2,5-dienylidene)-3-oxocyclobut-1-enolate、2-(8-Hydroxy-1,1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-9-yl)-4-(8-hydroxy-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H-pyrido[3,2,1-ij]quinolinium-9(5H)-ylidene)-3-oxocyclobut-1-enolate、それらの誘導体などが挙げられる。
Specific examples of the squarylium-based dye include SRfluor680-Carboxylate, 1,3-Bis [4- (dimethylamino) -2-hydroxyphenyl] -2,4-dihydroxycyclobutenedidium dihydroxide, bis, 1,3-bis (1,3-Bis (1,3-Bis) phenyl] -2,4-dihydroxycyclobutenedidium dihydroxide, bis, 2- (4- (Diethylamino) -2-hydroxyphenyl) -4- (4- (diethyliminothio) -2-hydroxy-cyclodioxy-3cyclo-cyclodioxy-3cyclo-cyclodioxy-3cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo-cyclo) 1-enolat , 2- (4- (Dibutylamino) -2-hydroxyphenyl) -4- (4- (dibutylimino) -2-hydroxycyclohexa-2,5-diylenedene) -3-oxoxyclobut-1-enolate, 2- (8-Hydroxy- 1,1,7,7-tetramethyl-1,2,3,5,6,7-hexahydropyrido [3,2,1-ij] quinolin-9-yl) -4- (8-hydroxy-1,1, 7,7-tetramethyl-2,3,6,7-tetrahydro-1H-pyrido [3,2,1-ij] quinolinium-9 (5H) -ylidene) -3-oxocyclobut-1-enolate, induction thereof And the like.
芳香族炭化水素系色素の具体例としては、N, N-Bis-(2,6-diisopropylphenyl)-1,6,7,12-(4-tert-butylphenoxy)-perylene-3,4,9,10-tetracarbonaciddiimide、N,N'-Bis(2,6-diisopropylphenyl)-1,6,7,12-tetraphenoxyperylene-3,4:9,10-tetracarboxdiimide、N,N'-Bis(2,6-diisopropylphenyl)perylene-3,4,9,10-bis(dicarbimide)、16,N,N'-Bis(2,6-dimethylphenyl)perylene-3,4,9,10-tetracarboxylicdiimide、4,4'-[(8,16-Dihydro-8,16-dioxodibenzo[a,j]perylene-2,10-diyl)dioxy]dibutyric acid、2,10-Dihydroxy-dibenzo[a,j]perylene-8,16-dione、2,10-Bis(3-aminopropoxy)dibenzo[a,j]perylene-8,16-dione, 3,3'-[(8,16-Dihydro-8,16-dioxodibenzo[a,j]perylen-2,10-diyl)dioxy]dipropylamine、17-BIS(Octyloxy)Anthra[9,1,2-cde-]Benzo[RST]Pentaphene-5-10-Dione、Octadecanoicacid, 5,10-dihydro-5,10-dioxoanthra[9,1,2-cde]benzo[rst]pentaphene-16,17-diylester、Dihydroxydibenzanthrone、Benzenesulfonicacid, 4,4',4'',4'''-[[2,9-bis[2,6-bis(1-methylethyl)phenyl]-1,2,3,8,9,10-hexahydro-1,3,8,10-tetraoxoanthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-5,6,12,13-tetrayl]tetrakis(oxy)]tetrakis-,Benzeneethanaminium、4,4',4'',4'''-[[2,9-bis[2,6-bis(1-methylethyl)phenyl]-1,2,3,8,9,10-hexahydro-1,3,8,10-tetraoxoanthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-5,6,12,13-tetrayl]tetrakis(oxy)]tetrakis[N,N,N-trimethyl-]、それらの誘導体などが挙げられる。
Specific examples of the aromatic hydrocarbon dye include N, N-Bis- (2,6-diisopropylphenyl) -1,6,7,12- (4-tert-butylphenoxy) -perylene-3,4,9, 10-tetracarbonacidimide, N, N′-Bis (2,6-diisopropyphenyl) -1,6,7,12-tetraphenoxyperylene-3, 4: 9,10-tetracarbodiimide, N, N′-bis (2,6-pylido (2,6-pylidine) ) Perylene-3,4,9,10-bis (dicarbimide), 16, N, N'-Bis (2,6-dimethylphenyl) perylene-3,4,9,10-tetracarb xylicimide, 4,4 ′-[(8,16-Dihydro-8,16-dioxodibenzo [a, j] perylene-2,10-diyl) dioxy] dibutylic acid, 2,10-Dihydroxy-dibenzo [a, j] perylene-8,16-dione, 2,10-Bis (3-aminopropoxy) dibenzo [a, j] perylene-8,16-dione, 3,3 '-[(8,16-Dihydro-8,16-dioxodibenzo [a, j] perylene-2,10-diyl) dioxy] dipropylamine, 17-BIS (Octyloxy) Anthra [9,1,2-cde-] Benzo [RST] Pentaphene-5-10-Dione, Octade canoicacid, 5,10-dihydro-5,10-dioxanthanth [9,1,2-cde] benzo [rst] pentaphene-16,17-diylester, Dihydroxydibenzanthrone, Benzensulfonicacid, 4,4 ', 4' '-[[2,9-bis [2,6-bis (1-methylethyl) phenyl] -1,2,3,8,9,10-hexahydro-1,3,8,10-tetraoxanthra [2,1 , 9-def: 6,5,10-d'e'f '] diisoquinoline-5,6,12,13-tetrayl] tetrakis (oxy)] tetrakis-, Benzenethanamine, 4,4', 4 '', 4 '' '-[[2,9-bis [2, 6-bis (1-methylethyl) phenyl] -1,2,3,8,9,10-hexahydro-1,3,8,10-tetraoxoanthra [2,1,9-def: 6,5,10-d 'e'f'] diisoquinoline-5,6,12,13-tetrayl] tetrakis (oxy)] tetrakis [N, N, N-trimethyl-], and derivatives thereof.
蛍光色素の添加量は、化合物(1)1gに対し、通常17~27mg、好ましくは20~25mgである。
The amount of the fluorescent dye added is usually 17 to 27 mg, preferably 20 to 25 mg, relative to 1 g of compound (1).
以上のように化合物(1)を縮重合して製造された病理染色用粒子の平均粒子径は、通常10~500nmであり、50~200nmであることが好ましい。平均粒子径の変動係数は5~20%であることが好ましく、5~15%であることがより好ましい。本発明において示される粒子の平均粒子径及びその変動係数は、粒子のSEM観察を行い、得られたSEM像から任意に粒子1000個の粒子径を計測し、その計測値から算出された平均粒子径及びその変動係数である。
As described above, the average particle size of the pathological staining particles produced by polycondensation of the compound (1) is usually 10 to 500 nm, preferably 50 to 200 nm. The variation coefficient of the average particle diameter is preferably 5 to 20%, more preferably 5 to 15%. The average particle size of the particles and the coefficient of variation thereof shown in the present invention are obtained by performing SEM observation of the particles, arbitrarily measuring the particle size of 1000 particles from the obtained SEM image, and calculating the average particle from the measured values. The diameter and its coefficient of variation.
本発明の製造方法においては、前述のとおり、式(1)で表わされる化合物を縮重合して得られたメラミン樹脂粒子に二官能アミンを反応させて、粒子の表面に修飾足場となるアミノ基を含む基を導入することができる。
In the production method of the present invention, as described above, the melamine resin particles obtained by polycondensation of the compound represented by the formula (1) are reacted with a bifunctional amine to form an amino group serving as a modified scaffold on the surface of the particles. A group containing can be introduced.
前記二官能アミンとしては、直接的または間接的に抗体を結合させることができる修飾足場を導入できれば特に制限はないが、抗体の効率的な結合などの観点から、特にメタンジアミン及びポリエチレングリコールジアミン等が好適である。また、前記二官能アミンに換えて、その他のアミノ化試薬を用いることもできる。その他のアミノ化試薬としては、例えばアミノプロピルトリメトキシシラン、アミノプロピルトリエトキシシランが挙げられる。
The bifunctional amine is not particularly limited as long as a modified scaffold capable of directly or indirectly binding an antibody can be introduced. From the viewpoint of efficient antibody binding, methanediamine, polyethylene glycol diamine, etc. Is preferred. Moreover, it can replace with the said bifunctional amine and can also use another amination reagent. Examples of other amination reagents include aminopropyltrimethoxysilane and aminopropyltriethoxysilane.
メラミン樹脂粒子に対する二官能アミンの反応は、従来知られているメラミン樹脂粒子に対する二官能アミンの反応条件に従えばよい。
The reaction of the bifunctional amine with the melamine resin particles may be performed according to the conventionally known reaction conditions of the bifunctional amine with the melamine resin particles.
化合物(1)を縮重合して得られたメラミン樹脂粒子に二官能アミンを反応させて得られた、表面に修飾足場となるアミノ基を含む基を有する粒子は、常法に従い、その修飾足場に抗体を直接的または間接的に結合させることができる。このように抗体を結合させた粒子は、常法に従い免疫染色に供することができる。前述のとおり、化合物(1)を縮重合して得られた病理染色用粒子を用いて免疫染色を行えば、蛍光標識に基づき観察される輝点の良好な感度及び輝点数の良好な再現性が得られる。特に、従来の病理染色用粒子では満足できるデータが得られなかった低発現においても、良好な輝点の感度及び輝点数の再現性が得られる。
Particles having a group containing an amino group serving as a modified scaffold on the surface obtained by reacting a melamine resin particle obtained by polycondensation of compound (1) with a bifunctional amine are prepared according to a conventional method. The antibody can be directly or indirectly bound to the. Thus, the particle | grains which couple | bonded the antibody can be used for an immuno-staining according to a conventional method. As described above, when immunostaining is performed using the pathological staining particles obtained by polycondensation of the compound (1), the sensitivity of the bright spots observed based on the fluorescent label and the reproducibility of the number of bright spots are good. Is obtained. In particular, even with low expression where satisfactory data could not be obtained with conventional pathological staining particles, good sensitivity of the bright spot and reproducibility of the number of bright spots can be obtained.
また、本発明の病理染色用粒子は、上記製造方法によって得ることができる。本発明の病理染色用粒子は、後述する本発明の染色スライドの洗浄方法により、蛍光色素の輝度のばらつきの低減、輝度低下を抑制することができるが、この効果がどのような作用機序によってもたらされているかは不明である。恐らく、病理染色用粒子表面の構造が影響していることは推測できるものの、本発明の染色スライドの洗浄方法により得られる効果を発揮するために、必要な構造を明確に示すことは難しい。
Further, the particles for pathological staining of the present invention can be obtained by the above production method. The particle for pathological staining of the present invention can suppress the variation in the luminance of the fluorescent dye and the decrease in luminance by the staining slide cleaning method of the present invention, which will be described later. It is unclear whether it is brought about. Although it can be presumed that the structure of the surface of the particle for pathological staining has an influence, it is difficult to clearly show the necessary structure in order to exhibit the effect obtained by the method for washing a staining slide of the present invention.
本発明の病理染色用粒子の製造方法で作製された病理染色用粒子は、たとえば、免疫染色法により、検体スライド上の組織切片に含まれる目的生体物質を標識する処理(蛍光標識処理)に使用され、続いて前記蛍光標識処理された組織切片を形態観察用染色液で染色する処理(染色処理)を行うことにより染色スライドが作製される。
The particles for pathological staining produced by the method for producing particles for pathological staining of the present invention are used for, for example, a process (fluorescent labeling process) for labeling a target biological substance contained in a tissue section on a specimen slide by immunostaining. Subsequently, a staining slide is produced by performing a process (staining process) for staining the tissue section that has been subjected to the fluorescent labeling process with a staining solution for morphology observation.
本発明の病理染色用粒子の製造方法で作製される病理染色用粒子(以下、染色用粒子、あるいは、簡単に粒子、ともいう)は、たとえば、以下の処理を行うことにより染色スライドに使用することができる。
The pathological staining particles (hereinafter also referred to as staining particles or simply referred to as particles) produced by the method for producing pathological staining particles of the present invention are used, for example, in a staining slide by performing the following treatment. be able to.
すなわち、検体スライド上の組織切片に含まれる目的生体物質を本発明の病理染色用粒子で標識する処理(蛍光標識処理)、前記蛍光標識処理された組織切片を形態観察用染色液で染色する処理(染色処理)、さらに、染色処理された組織切片を洗浄する処理(洗浄処理)することにより、染色スライドが作製される。
That is, a process of labeling a target biological substance contained in a tissue section on a specimen slide with the pathological staining particles of the present invention (fluorescence labeling process), and a process of staining the fluorescently labeled tissue section with a staining solution for morphology observation (Staining process) Furthermore, the dyeing | staining slide is produced by the process (washing | cleaning process) which wash | cleans the tissue section dye | stained.
ここで、染色処理された組織切片を洗浄処理する際、洗浄液に酸性水溶液を用いることが好ましい。酸性水溶液を用いた洗浄により、検体スライドにヘマトキシリン、あるいはヘマトキシリン-エオジン等の染色液を用いた染色を行った際、病理染色用粒子の輝度のばらつきがより低減され、輝度低下のさらなる抑制を可能にする。それにより、目的タンパク質に対応するシグナル精度が向上した蛍光画像を取得し、目的とするタンパク質の発現レベルをより正確に評価することができ、病理診断の信頼性を高めることにつながる。
Here, when washing the stained tissue section, it is preferable to use an acidic aqueous solution as the washing solution. By washing with an acidic aqueous solution, when the specimen slide is stained with a staining solution such as hematoxylin or hematoxylin-eosin, the variation in luminance of the particles for pathological staining is further reduced, and further reduction in luminance can be suppressed. To. As a result, a fluorescent image with improved signal accuracy corresponding to the target protein can be obtained, and the expression level of the target protein can be more accurately evaluated, leading to an increase in the reliability of pathological diagnosis.
この様に、上記のような手順で検体スライドの染色を行った場合、検体スライドを酸性水溶液で洗浄処理することにより、上記効果が得られる理由は明らかではないが以下の様に推測される。すなわち、ヘマトキシリンやエオジン等の形態観察用染色液が病理染色用粒子に吸着して、輝度の低下やばらつきが発生するものと推測され、酸性水溶液による洗浄により形態観察用染色液の病理染色用粒子への吸着が抑制されて、病理染色用粒子の輝度が比較的高く保たれ、かつ、ばらつきも抑制されるものと考えられる。
Thus, when the specimen slide is stained by the procedure as described above, the reason why the above effect can be obtained by washing the specimen slide with an acidic aqueous solution is not clear, but is presumed as follows. That is, it is speculated that the staining liquid for morphological observation such as hematoxylin and eosin is adsorbed to the particles for pathological staining, resulting in a decrease in brightness and variations, and the pathological staining particles of the morphological observation staining liquid by washing with an acidic aqueous solution. It is considered that the adsorption to the surface is suppressed, the brightness of the particles for pathological staining is kept relatively high, and variation is also suppressed.
本発明の病理染色用粒子の製造方法で作製される病理染色用粒子を使用して染色スライドを作製する際に行われる洗浄処理で使用される酸性水溶液は、pHが2以上7未満のものが好ましく、pHが3以上6.5以下のものがより好ましい。
(染色スライドの作製方法)
以下、染色スライドの作製方法について説明する。 The acidic aqueous solution used in the washing treatment performed when preparing a staining slide using the pathological staining particles prepared by the method for producing pathological staining particles of the present invention has a pH of 2 or more and less than 7. Preferably, the pH is 3 or more and 6.5 or less.
(Preparation method of stained slide)
Hereinafter, a method for producing a stained slide will be described.
(染色スライドの作製方法)
以下、染色スライドの作製方法について説明する。 The acidic aqueous solution used in the washing treatment performed when preparing a staining slide using the pathological staining particles prepared by the method for producing pathological staining particles of the present invention has a pH of 2 or more and less than 7. Preferably, the pH is 3 or more and 6.5 or less.
(Preparation method of stained slide)
Hereinafter, a method for producing a stained slide will be described.
染色スライドを作製するための工程全体は、主に「標本前処理工程」、「染色工程」および「標本後処理工程」に分類することができる。
The entire process for producing the staining slide can be mainly classified into “specimen pretreatment process”, “staining process”, and “specimen posttreatment process”.
上記「標本前処理工程」には、一般的に、脱パラフィン処理、抗原賦活化処理、洗浄処理などが含まれる。
The above-mentioned “specimen pretreatment step” generally includes deparaffinization treatment, antigen activation treatment, washing treatment and the like.
上記「染色工程」には、免疫染色法に基づき蛍光標識を行う処理(免疫染色処理)、すなわち目的生体物質を直接的に標識するか、間接的に標識するかに応じた、1次抗体処理、2次抗体処理、蛍光標識処理、形態観察用染色処理などが含まれる。
In the “staining step”, a treatment for fluorescent labeling based on an immunostaining method (immunostaining treatment), that is, a primary antibody treatment depending on whether the target biological substance is directly labeled or indirectly labeled Secondary antibody processing, fluorescent labeling processing, morphology observation staining processing, and the like are included.
上記「標本後処理工程」には、洗浄処理、封入処理、必要に応じて溶媒置換処理および脱水処理が含まれる。
The above “specimen post-treatment process” includes a washing process, an encapsulation process, and a solvent replacement process and a dehydration process as necessary.
以下、本発明を実施するために必要な処理についてさらに説明する。本明細書に特に記載されていない事項、例えば、免疫染色法に基づいて染色されたスライドを完成するために必要とされる工程及び処理の全般的な事項や、完成した染色スライドを用いた観察・撮影工程、撮影された画像を用いた画像処理・分析工程などについては、特許文献2~3の記載事項およびその他の一般的な技術的事項に準じた適切なものとすることができる。
Hereinafter, processing necessary for carrying out the present invention will be further described. Items not specifically described in the present specification, for example, general items and processes required to complete a slide stained based on an immunostaining method, and observation using the completed stained slide The photographing process, the image processing / analysis process using the photographed image, and the like can be appropriate according to the descriptions in Patent Documents 2 to 3 and other general technical matters.
以下、「染色工程」に含まれる「蛍光標識処理」(免疫染色処理)と「形態観察用染色処理」について説明する。
Hereinafter, the “fluorescence labeling process” (immune staining process) and the “morphological observation staining process” included in the “staining process” will be described.
<蛍光標識処理(免疫染色処理)>
上記「染色工程」に含まれる蛍光標識処理は、免疫染色法に基づいて目的とするタンパク質を病理染色用粒子で標識する処理である。 <Fluorescent labeling treatment (immunostaining treatment)>
The fluorescence labeling process included in the “staining step” is a process of labeling a target protein with a pathological staining particle based on an immunostaining method.
上記「染色工程」に含まれる蛍光標識処理は、免疫染色法に基づいて目的とするタンパク質を病理染色用粒子で標識する処理である。 <Fluorescent labeling treatment (immunostaining treatment)>
The fluorescence labeling process included in the “staining step” is a process of labeling a target protein with a pathological staining particle based on an immunostaining method.
標識処理を免疫染色法に基づいて行う場合、賦活化処理を経た検体スライドを免疫染色用の標識液に浸漬し、標識液中の1または複数の標識剤を直接的または間接的に標的とするタンパク質(抗原)に結合させて標識化する。
When performing the labeling process based on the immunostaining method, the specimen slide that has undergone the activation process is immersed in the labeling solution for immunostaining, and one or more labeling agents in the labeling solution are targeted directly or indirectly. Label by binding to protein (antigen).
標的タンパク質(抗原)は特に限定されるものではないが、典型的には、免疫染色法に基づく病理診断の対象となり得る遺伝子、例えばHER2、TOP2A、HER3、EGFR、P53、MET、その他の各種のがん・腫瘍関連遺伝子(いわゆるバイオマーカー遺伝子)由来のタンパク質、さらにはがんの増殖因子、転写制御因子、増殖制御因子受容体、転写制御因子受容体等のがんに関連するタンパク質から選択することができる。したがって、次に述べる抗体も、上記のような標的タンパク質(抗原)に適した結合能を有するものとして、公知の手法に基づいて作製することが可能であり、市販品として入手することもできる。
The target protein (antigen) is not particularly limited, but typically, it can be a target gene for pathological diagnosis based on immunostaining, such as HER2, TOP2A, HER3, EGFR, P53, MET, and other various types. Select from proteins derived from cancer / tumor-related genes (so-called biomarker genes), as well as cancer-related proteins such as cancer growth factors, transcription regulatory factors, growth regulatory factor receptors, and transcription regulatory factor receptors. be able to. Therefore, the antibody described below can also be prepared based on a known technique as having the binding ability suitable for the target protein (antigen) as described above, and can also be obtained as a commercial product.
免疫染色処理には様々な手法があり、目的とするタンパク質を蛍光標識して病理診断等に用いることのできるよう組織切片を染色することができれば特に限定されるものではないが、代表的には次のようなものが挙げられる:
蛍光体と1次抗体を連結した蛍光標識1次抗体を用意し、その蛍光標識1次抗体で目的タンパク質を直接的に蛍光標識し染色する方法(1次抗体法);
1次抗体、および蛍光標識体と2次抗体を連結した蛍光標識2次抗体を用意し、目的タンパク質に1次抗体を反応させた後、その1次抗体に蛍光標識2次抗体を反応させることで、目的タンパク質を間接的に蛍光標識し染色する方法(2次抗体法)
1次抗体とビオチンを連結したビオチン修飾1次抗体、および蛍光体とアビジンないしストレプトアビジンを連結したアビジン修飾蛍光体を用意し、目的タンパク質にビオチン修飾1次抗体を反応させた後、さらにアビジン修飾蛍光体を反応させて、アビジン-ビオチン反応を利用して目的タンパク質を間接的に蛍光標識し染色する方法(アビジン-ビオチン併用1次抗体法);
1次抗体、2次抗体とビオチンを連結したビオチン修飾2次抗体、および蛍光体とアビジンないしストレプトアビジンを連結したアビジン修飾蛍光体を用意し、目的タンパク質に1次抗体を反応させ、次いでビオチン修飾2次抗体を反応させた後、さらにアビジン修飾蛍光体を反応させて、アビジン-ビオチン反応を利用して目的タンパク質を間接的に蛍光標識し染色する方法(アビジン-ビオチン併用2次抗体法)。 There are various methods for immunostaining, and it is not particularly limited as long as it can stain a tissue section so that the target protein can be fluorescently labeled and used for pathological diagnosis etc. Some examples include:
A method of preparing a fluorescently labeled primary antibody in which a phosphor and a primary antibody are linked, and directly fluorescently labeling and staining the target protein with the fluorescently labeled primary antibody (primary antibody method);
Prepare a primary antibody and a fluorescently labeled secondary antibody in which a fluorescent label and a secondary antibody are linked, react the primary antibody with the target protein, and then react the fluorescently labeled secondary antibody with the primary antibody Indirectly fluorescently labeling and staining the target protein (secondary antibody method)
Prepare a biotin-modified primary antibody in which a primary antibody and biotin are linked, and an avidin-modified phosphor in which a phosphor and avidin or streptavidin are linked. After reacting the target protein with a biotin-modified primary antibody, further avidin modification A method in which a fluorescent substance is reacted and the target protein is indirectly fluorescently labeled and stained using the avidin-biotin reaction (primary antibody method using avidin-biotin in combination);
Prepare a primary antibody, a biotin-modified secondary antibody in which a secondary antibody and biotin are linked, and an avidin-modified phosphor in which a fluorophore and avidin or streptavidin are linked, react the primary antibody with the target protein, and then modify the biotin A method in which a secondary antibody is reacted, and then an avidin-modified phosphor is further reacted, and the target protein is indirectly fluorescently labeled and stained using the avidin-biotin reaction (second antibody method combined with avidin-biotin).
蛍光体と1次抗体を連結した蛍光標識1次抗体を用意し、その蛍光標識1次抗体で目的タンパク質を直接的に蛍光標識し染色する方法(1次抗体法);
1次抗体、および蛍光標識体と2次抗体を連結した蛍光標識2次抗体を用意し、目的タンパク質に1次抗体を反応させた後、その1次抗体に蛍光標識2次抗体を反応させることで、目的タンパク質を間接的に蛍光標識し染色する方法(2次抗体法)
1次抗体とビオチンを連結したビオチン修飾1次抗体、および蛍光体とアビジンないしストレプトアビジンを連結したアビジン修飾蛍光体を用意し、目的タンパク質にビオチン修飾1次抗体を反応させた後、さらにアビジン修飾蛍光体を反応させて、アビジン-ビオチン反応を利用して目的タンパク質を間接的に蛍光標識し染色する方法(アビジン-ビオチン併用1次抗体法);
1次抗体、2次抗体とビオチンを連結したビオチン修飾2次抗体、および蛍光体とアビジンないしストレプトアビジンを連結したアビジン修飾蛍光体を用意し、目的タンパク質に1次抗体を反応させ、次いでビオチン修飾2次抗体を反応させた後、さらにアビジン修飾蛍光体を反応させて、アビジン-ビオチン反応を利用して目的タンパク質を間接的に蛍光標識し染色する方法(アビジン-ビオチン併用2次抗体法)。 There are various methods for immunostaining, and it is not particularly limited as long as it can stain a tissue section so that the target protein can be fluorescently labeled and used for pathological diagnosis etc. Some examples include:
A method of preparing a fluorescently labeled primary antibody in which a phosphor and a primary antibody are linked, and directly fluorescently labeling and staining the target protein with the fluorescently labeled primary antibody (primary antibody method);
Prepare a primary antibody and a fluorescently labeled secondary antibody in which a fluorescent label and a secondary antibody are linked, react the primary antibody with the target protein, and then react the fluorescently labeled secondary antibody with the primary antibody Indirectly fluorescently labeling and staining the target protein (secondary antibody method)
Prepare a biotin-modified primary antibody in which a primary antibody and biotin are linked, and an avidin-modified phosphor in which a phosphor and avidin or streptavidin are linked. After reacting the target protein with a biotin-modified primary antibody, further avidin modification A method in which a fluorescent substance is reacted and the target protein is indirectly fluorescently labeled and stained using the avidin-biotin reaction (primary antibody method using avidin-biotin in combination);
Prepare a primary antibody, a biotin-modified secondary antibody in which a secondary antibody and biotin are linked, and an avidin-modified phosphor in which a fluorophore and avidin or streptavidin are linked, react the primary antibody with the target protein, and then modify the biotin A method in which a secondary antibody is reacted, and then an avidin-modified phosphor is further reacted, and the target protein is indirectly fluorescently labeled and stained using the avidin-biotin reaction (second antibody method combined with avidin-biotin).
なお、上記のアビジン-ビオチン併用1次抗体法またはアビジン-ビオチン併用2次抗体法において、ビオチンおよびアビジンの代わりに、ハプテン(免疫原性を有さないが抗原性を示し抗体と反応しうる比較的分子量の低い物質)および抗ハプテン抗体、たとえばジコキシゲニンおよび抗ジコキシゲニン抗体、FITC(フルオレセインイソチオシアネート)および抗FITC抗原、さらには同様の特異的な反応性を有するその他の物質の組み合わせを利用することもできる。
In the above-described primary antibody method using avidin-biotin combination or secondary antibody method using avidin-biotin, a hapten is used instead of biotin and avidin. Low molecular weight substances) and anti-hapten antibodies, such as dicoxygenin and anti-dicoxygenin antibodies, FITC (fluorescein isothiocyanate) and anti-FITC antigens, and other substances with similar specific reactivity may also be utilized. it can.
免疫染色処理は、上述した各種手法のそれぞれに標準的な手順および処理条件に従って行えばよい。一般的には、検体を載置した検体スライドを免疫染色法に応じた1種類または2種類以上の試薬に、適切な温度および時間条件の下(例えば4℃で一晩)、浸漬すればよい。免疫染色に必要な各種の試薬、すなわち蛍光標識1次/2次抗体、ビオチン修飾1次/2次抗体、アビジン修飾2次抗体/蛍光体などが溶解し、必要に応じてBSA等のブロッキング剤が添加された緩衝液等の溶液は、公知の方法にしたがって作製することが可能であり、市販品として入手することもできる。
The immunostaining treatment may be performed according to standard procedures and processing conditions for each of the various methods described above. In general, a specimen slide on which a specimen is placed may be immersed in one or more reagents according to the immunostaining method under an appropriate temperature and time condition (for example, overnight at 4 ° C.). . Various reagents necessary for immunostaining, that is, fluorescently labeled primary / secondary antibodies, biotin-modified primary / secondary antibodies, avidin-modified secondary antibodies / phosphors, etc. are dissolved, and blocking agents such as BSA as necessary A solution such as a buffer solution to which is added can be prepared according to a known method, and can also be obtained as a commercial product.
標識液を用いた処理後、好ましくは検体スライドをPBS等の洗浄液に浸漬して洗浄する。通常、この標識液での処理後に行われるPBSを用いた洗浄処理の温度は室温であり、時間は3~30分である。必要により、浸漬途中でPBSを交換してもよい。
After the treatment with the labeling solution, the specimen slide is preferably immersed and washed in a washing solution such as PBS. Usually, the temperature of the washing treatment using PBS performed after the treatment with the labeling solution is room temperature, and the time is 3 to 30 minutes. If necessary, PBS may be exchanged during immersion.
<形態観察用染色処理>
次に、上記「染色工程」に含まれる「形態観察用染色処理」について説明する。「形態観察用染色処理」は、上記「染色工程」において、標識物質として病理染色用粒子で検体スライドを標識した後、細胞ないし組織の形状や細胞の各部の位置情報を得るために検体スライドを形態観察用染色液で染色するものである。 <Dyeing treatment for morphology observation>
Next, the “morphological observation staining process” included in the “staining process” will be described. In the “staining process for morphological observation”, after the specimen slide is labeled with a pathological staining particle as a labeling substance in the “staining step” above, the specimen slide is obtained in order to obtain cell or tissue shape and positional information of each part of the cell. It is dyed with a staining liquid for morphology observation.
次に、上記「染色工程」に含まれる「形態観察用染色処理」について説明する。「形態観察用染色処理」は、上記「染色工程」において、標識物質として病理染色用粒子で検体スライドを標識した後、細胞ないし組織の形状や細胞の各部の位置情報を得るために検体スライドを形態観察用染色液で染色するものである。 <Dyeing treatment for morphology observation>
Next, the “morphological observation staining process” included in the “staining process” will be described. In the “staining process for morphological observation”, after the specimen slide is labeled with a pathological staining particle as a labeling substance in the “staining step” above, the specimen slide is obtained in order to obtain cell or tissue shape and positional information of each part of the cell. It is dyed with a staining liquid for morphology observation.
形態観察用染色液としては、例えばヘマトキシリン染色液、エオジン染色液、パパニコロウ(Pap)染色液が挙げられる。
Examples of the staining liquid for morphological observation include hematoxylin staining liquid, eosin staining liquid, and Papanicolaou (Pap) staining liquid.
ヘマトキシリン染色液としては、
マイヤーヘマトキシリン液(組成例:ヘマトキシリン1.0g/カリウムミョウバン50g/よう素酸ナトリウム0.2g/抱水クロラール50g/くえん酸1.0g/蒸留水1,000ml)、マイヤーヘマトキシリン液(×2)(組成例:ヘマトキシリン2.0g/カリウムミョウバン50g/よう素酸ナトリウム0.4g/抱水クロラール50g/くえん酸1.0g/蒸留水1,000ml)、カラッチヘマトキシリン液(組成例:ヘマトキシリン1.0g/カリウムミョウバン50g/よう素酸ナトリウム0.2g/グリセリン200ml/蒸留水800ml)、ギルヘマトキシリン液(No.1,組成例:ヘマトキシリン2.0g/硫酸アルミニウム14~18水17.6g/よう素酸ナトリウム0.2g/エチレングリコール250ml/氷酢酸20ml/蒸留水730ml)、および、リリーマイヤーヘマトキシリン液(組成例:ヘマトキシリン5.0g/アンモニウムミョウバン50g/よう素酸ナトリウム0.5g/グリセリン300ml/氷酢酸20ml/蒸留水700ml)が挙げられる。 As hematoxylin staining solution,
Mayer's hematoxylin solution (composition example: hematoxylin 1.0 g / potassium alum 50 g / sodium iodate 0.2 g / chloral hydrate 50 g / citric acid 1.0 g / distilled water 1,000 ml), Mayer hematoxylin solution (x2) (composition example: hematoxylin 2.0g / potassium alum 50g / sodium iodate 0.4g / chlorate hydrate 50g / citric acid 1.0g / distilled water 1,000ml), caratach hematoxylin solution (composition example: hematoxylin 1.0g / potassium alum 50g / sodium iodate 0.2) g / glycerin 200 ml / distilled water 800 ml), gil hematoxylin solution (No. 1, composition example: hematoxylin 2.0 g / aluminum sulfate 14-18 water 17.6 g / sodium iodate 0.2 g / ethylene glycol 250 ml / glacial acetic acid 20 ml / distilled 730 ml of water) and Lily Meyer's hematoxylin solution (example composition: 5.0 g of hematoxylin / 50 g of ammonium alum) Sodium periodate 0.5 g / glycerin 300 ml / glacial acetic acid 20 ml / distilled water 700 ml) and the like.
マイヤーヘマトキシリン液(組成例:ヘマトキシリン1.0g/カリウムミョウバン50g/よう素酸ナトリウム0.2g/抱水クロラール50g/くえん酸1.0g/蒸留水1,000ml)、マイヤーヘマトキシリン液(×2)(組成例:ヘマトキシリン2.0g/カリウムミョウバン50g/よう素酸ナトリウム0.4g/抱水クロラール50g/くえん酸1.0g/蒸留水1,000ml)、カラッチヘマトキシリン液(組成例:ヘマトキシリン1.0g/カリウムミョウバン50g/よう素酸ナトリウム0.2g/グリセリン200ml/蒸留水800ml)、ギルヘマトキシリン液(No.1,組成例:ヘマトキシリン2.0g/硫酸アルミニウム14~18水17.6g/よう素酸ナトリウム0.2g/エチレングリコール250ml/氷酢酸20ml/蒸留水730ml)、および、リリーマイヤーヘマトキシリン液(組成例:ヘマトキシリン5.0g/アンモニウムミョウバン50g/よう素酸ナトリウム0.5g/グリセリン300ml/氷酢酸20ml/蒸留水700ml)が挙げられる。 As hematoxylin staining solution,
Mayer's hematoxylin solution (composition example: hematoxylin 1.0 g / potassium alum 50 g / sodium iodate 0.2 g / chloral hydrate 50 g / citric acid 1.0 g / distilled water 1,000 ml), Mayer hematoxylin solution (x2) (composition example: hematoxylin 2.0g / potassium alum 50g / sodium iodate 0.4g / chlorate hydrate 50g / citric acid 1.0g / distilled water 1,000ml), caratach hematoxylin solution (composition example: hematoxylin 1.0g / potassium alum 50g / sodium iodate 0.2) g / glycerin 200 ml / distilled water 800 ml), gil hematoxylin solution (No. 1, composition example: hematoxylin 2.0 g / aluminum sulfate 14-18 water 17.6 g / sodium iodate 0.2 g / ethylene glycol 250 ml / glacial acetic acid 20 ml / distilled 730 ml of water) and Lily Meyer's hematoxylin solution (example composition: 5.0 g of hematoxylin / 50 g of ammonium alum) Sodium periodate 0.5 g / glycerin 300 ml / glacial acetic acid 20 ml / distilled water 700 ml) and the like.
エオシン染色液としては、
1%エオシンY溶液(組成例:エオシンY5.0g/蒸留水500ml/酢酸数滴)、0.1%エオシンYエタノール溶液(組成例:10%エオシンY溶液5ml/95%エタノール495ml)、0.5%エオシンYエタノール溶液(組成例:10%エオシンY溶液25ml/95%エタノール475ml)、および、エオシンアルコール液、酸抽出品(酸抽出エオシン液100ml/95%エタノール800ml/酢酸8ml)が挙げられる。 As eosin stain,
1% eosin Y solution (composition example: eosin Y 5.0 g / distilled water 500 ml / acetic acid few drops), 0.1% eosin Y ethanol solution (composition example: 10% eosin Y solution 5 ml / 95% ethanol 495 ml), 0. 5% eosin Y ethanol solution (composition example: 10% eosin Y solution 25ml / 95% ethanol 475ml), eosin alcohol solution, acid extract (acid extract eosin solution 100ml / 95% ethanol 800ml / acetic acid 8ml) .
1%エオシンY溶液(組成例:エオシンY5.0g/蒸留水500ml/酢酸数滴)、0.1%エオシンYエタノール溶液(組成例:10%エオシンY溶液5ml/95%エタノール495ml)、0.5%エオシンYエタノール溶液(組成例:10%エオシンY溶液25ml/95%エタノール475ml)、および、エオシンアルコール液、酸抽出品(酸抽出エオシン液100ml/95%エタノール800ml/酢酸8ml)が挙げられる。 As eosin stain,
1% eosin Y solution (composition example: eosin Y 5.0 g / distilled water 500 ml / acetic acid few drops), 0.1% eosin Y ethanol solution (composition example: 10% eosin Y solution 5 ml / 95% ethanol 495 ml), 0. 5% eosin Y ethanol solution (composition example: 10% eosin Y solution 25ml / 95% ethanol 475ml), eosin alcohol solution, acid extract (acid extract eosin solution 100ml / 95% ethanol 800ml / acetic acid 8ml) .
形態観察用染色液を用いた染色処理は、一般的な手順に従って行えばよい。例えば、ヘマトキシリン・エオジン(HE)染色の場合、マイヤーヘマトキシリン液で5分間染色し、45℃の流水で3分間洗浄した後、1%エオシン液で5分間染色するといった処理が行われる。
The staining process using the morphology observation staining solution may be performed according to a general procedure. For example, in the case of staining with hematoxylin and eosin (HE), treatment is performed by staining with Mayer's hematoxylin solution for 5 minutes, washing with running water at 45 ° C. for 3 minutes, and then staining with 1% eosin solution for 5 minutes.
<洗浄処理>
上記「標本後処理工程」で行われる洗浄処理は、溶媒置換処理の前に(溶媒置換処理の前に任意工程である脱水処理が行われる場合は脱水処理の前に)行われる処理であって、所定の酸性水溶液を用いて、染色された検体スライドを洗浄する処理である。 <Cleaning process>
The cleaning process performed in the “sample post-treatment process” is a process performed before the solvent replacement process (or before the dehydration process when the dehydration process is an optional process before the solvent replacement process). In this process, the stained specimen slide is washed with a predetermined acidic aqueous solution.
上記「標本後処理工程」で行われる洗浄処理は、溶媒置換処理の前に(溶媒置換処理の前に任意工程である脱水処理が行われる場合は脱水処理の前に)行われる処理であって、所定の酸性水溶液を用いて、染色された検体スライドを洗浄する処理である。 <Cleaning process>
The cleaning process performed in the “sample post-treatment process” is a process performed before the solvent replacement process (or before the dehydration process when the dehydration process is an optional process before the solvent replacement process). In this process, the stained specimen slide is washed with a predetermined acidic aqueous solution.
前述のヘマトキシリンやエオシンのような形態観察用染色液を用いて形態観察用染色処理を行った後、このような洗浄処理を行う場合、病理染色用粒子に結合した染色液を除去、洗浄することが可能となるものと考えられる。すなわち、染色液は組織のみならず病理染色用粒子にも結合し、その蛍光を失活させる。また、染色液と病理染色用粒子の結合の程度も病理染色用粒子の種類によって異なるため、輝度のばらつきが生じるものと考えられる。所定の酸性水溶液による洗浄処理により、病理染色用粒子と染色液との結合が弱められて蛍光の失活が抑制され、病理染色用粒子の観察が可能となるものと考えられる。
After performing a morphological observation staining treatment using a morphological observation staining solution such as hematoxylin or eosin described above, when performing such a cleaning treatment, remove and wash the staining solution bound to the pathological staining particles. Is considered possible. That is, the staining liquid binds not only to the tissue but also to the pathological staining particles, and deactivates the fluorescence. In addition, since the degree of binding between the staining solution and the pathological staining particles varies depending on the type of the pathological staining particles, it is considered that the luminance varies. It is considered that the washing treatment with a predetermined acidic aqueous solution weakens the bond between the pathological staining particles and the staining liquid, suppresses the deactivation of fluorescence, and enables observation of the pathological staining particles.
一方、中性~アルカリ性の水溶液を用いた場合、染色液が病理染色用粒子に結合したままとなるため、輝度が低下するものと推測される。
On the other hand, when a neutral to alkaline aqueous solution is used, the staining liquid remains bound to the pathological staining particles, and it is estimated that the luminance decreases.
なお、検体スライドの作製過程では、各種の溶液で検体スライドを処理した後にその検体スライドの洗浄が行われる場合があるが、ここでいう酸性水溶液を用いる洗浄処理は、形態観察用染色液を用いた形態観察用染色処理の後、溶媒置換処理の前に(溶媒置換処理の前に任意工程である脱水処理が行われる場合は脱水処理の前に)行うものを指す。
In the preparation process of the specimen slide, the specimen slide may be washed after the specimen slide is treated with various solutions. The washing treatment using an acidic aqueous solution here uses a staining liquid for morphology observation. This refers to what is performed after the dyeing process for morphological observation and before the solvent replacement process (if the dehydration process is an optional step before the solvent replacement process).
(酸性水溶液)
上記「洗浄処理」に使用される酸性水溶液は、酸と水とを適切な割合で混合することによって調製することができる。酸性水溶液のpHの範囲は、輝度の低下およびばらつきを抑制する効果を考慮すると、2以上7未満が好ましく、pH3以上6.5以下がより好ましい。酸性水溶液のpHを好ましくは2以上7未満、より好ましくはpH3~6.5とすることにより、病理染色用粒子の輝度のばらつきを抑制する効果が十分に保持され、輝度の低下を低減する効果が発現される。 (Acidic aqueous solution)
The acidic aqueous solution used for the “cleaning treatment” can be prepared by mixing acid and water in an appropriate ratio. The pH range of the acidic aqueous solution is preferably 2 or more and less than 7 and more preferably pH 3 or more and 6.5 or less in consideration of the effect of suppressing the decrease in brightness and variation. By setting the pH of the acidic aqueous solution to preferably 2 or more and less than 7, more preferably pH 3 to 6.5, the effect of suppressing variation in luminance of the particles for pathological staining is sufficiently maintained, and the effect of reducing the decrease in luminance Is expressed.
上記「洗浄処理」に使用される酸性水溶液は、酸と水とを適切な割合で混合することによって調製することができる。酸性水溶液のpHの範囲は、輝度の低下およびばらつきを抑制する効果を考慮すると、2以上7未満が好ましく、pH3以上6.5以下がより好ましい。酸性水溶液のpHを好ましくは2以上7未満、より好ましくはpH3~6.5とすることにより、病理染色用粒子の輝度のばらつきを抑制する効果が十分に保持され、輝度の低下を低減する効果が発現される。 (Acidic aqueous solution)
The acidic aqueous solution used for the “cleaning treatment” can be prepared by mixing acid and water in an appropriate ratio. The pH range of the acidic aqueous solution is preferably 2 or more and less than 7 and more preferably pH 3 or more and 6.5 or less in consideration of the effect of suppressing the decrease in brightness and variation. By setting the pH of the acidic aqueous solution to preferably 2 or more and less than 7, more preferably pH 3 to 6.5, the effect of suppressing variation in luminance of the particles for pathological staining is sufficiently maintained, and the effect of reducing the decrease in luminance Is expressed.
酸は水とよく混ざる(相溶性を有する)ものであれば、有機酸・無機酸を問わず使用が可能である。有機酸としては、例えばギ酸、酢酸、クエン酸またはシュウ酸等が挙げられ、無機酸としては、例えば塩酸、硝酸、リン酸または硫酸等が挙げられる。特に、塩酸、クエン酸等が好適に用いられる。
As long as the acid is well mixed with water (has compatibility), it can be used regardless of whether it is an organic acid or an inorganic acid. Examples of the organic acid include formic acid, acetic acid, citric acid, and oxalic acid. Examples of the inorganic acid include hydrochloric acid, nitric acid, phosphoric acid, and sulfuric acid. In particular, hydrochloric acid, citric acid and the like are preferably used.
酸性水溶液を用いた洗浄処理の手法は特に限定されるものではないが、一般的には、容器に収容された酸性水溶液に染色スライドを浸漬するようにして行えばよい。酸性水溶液への浸漬は、通常は室温で行えばよく、浸漬時間は、通常1秒~30分間、好ましくは5秒~15分間である。浸漬等の操作は、複数回繰り返してもよい。
The method of washing treatment using an acidic aqueous solution is not particularly limited, but in general, the staining slide may be immersed in an acidic aqueous solution contained in a container. The immersion in the acidic aqueous solution is usually performed at room temperature, and the immersion time is usually 1 second to 30 minutes, preferably 5 seconds to 15 minutes. Operations such as immersion may be repeated a plurality of times.
[製造例1]
メラミンとホルムアルデヒドとを、メラミン 1、ホルムアルデヒド 6のモル比で混合し、この混合液に水酸化ナトリウムをpH9~14になるように加え、70℃で30分間加熱反応を行った。その後、その反応物とメタノールを、反応物1、メタノール1のモル比で混合し、この混合液に硫酸をpH0~3になるように加え、85℃で30分間加熱反応を行い、メラミン樹脂を得た。
[製造例2]
メラミンとホルムアルデヒドとを、メラミン 1、ホルムアルデヒド 5のモル比で混合し、この混合液に水酸化ナトリウムをpH9~14になるように加え、70℃で30分間加熱反応を行った。その後、その反応物とメタノールを、反応物1、メタノール1のモル比で混合し、この混合液に硫酸をpH0~3になるように加え、85℃で30分間加熱反応を行い、メラミン樹脂を得た。 [Production Example 1]
Melamine and formaldehyde were mixed at a molar ratio of melamine 1 and formaldehyde 6, sodium hydroxide was added to this mixture so as to have a pH of 9 to 14, and a heating reaction was performed at 70 ° C. for 30 minutes. Thereafter, the reactant and methanol are mixed in a molar ratio of reactant 1 and methanol 1, sulfuric acid is added to the mixture so as to have a pH of 0 to 3, and a heating reaction is performed at 85 ° C. for 30 minutes to obtain a melamine resin. Obtained.
[Production Example 2]
Melamine and formaldehyde were mixed at a molar ratio of melamine 1 and formaldehyde 5, sodium hydroxide was added to the mixture so as to have a pH of 9 to 14, and a heating reaction was performed at 70 ° C. for 30 minutes. Thereafter, the reactant and methanol are mixed in a molar ratio of reactant 1 and methanol 1, sulfuric acid is added to the mixture so as to have a pH of 0 to 3, and a heating reaction is performed at 85 ° C. for 30 minutes to obtain a melamine resin. Obtained.
メラミンとホルムアルデヒドとを、メラミン 1、ホルムアルデヒド 6のモル比で混合し、この混合液に水酸化ナトリウムをpH9~14になるように加え、70℃で30分間加熱反応を行った。その後、その反応物とメタノールを、反応物1、メタノール1のモル比で混合し、この混合液に硫酸をpH0~3になるように加え、85℃で30分間加熱反応を行い、メラミン樹脂を得た。
[製造例2]
メラミンとホルムアルデヒドとを、メラミン 1、ホルムアルデヒド 5のモル比で混合し、この混合液に水酸化ナトリウムをpH9~14になるように加え、70℃で30分間加熱反応を行った。その後、その反応物とメタノールを、反応物1、メタノール1のモル比で混合し、この混合液に硫酸をpH0~3になるように加え、85℃で30分間加熱反応を行い、メラミン樹脂を得た。 [Production Example 1]
Melamine and formaldehyde were mixed at a molar ratio of melamine 1 and formaldehyde 6, sodium hydroxide was added to this mixture so as to have a pH of 9 to 14, and a heating reaction was performed at 70 ° C. for 30 minutes. Thereafter, the reactant and methanol are mixed in a molar ratio of reactant 1 and methanol 1, sulfuric acid is added to the mixture so as to have a pH of 0 to 3, and a heating reaction is performed at 85 ° C. for 30 minutes to obtain a melamine resin. Obtained.
[Production Example 2]
Melamine and formaldehyde were mixed at a molar ratio of melamine 1 and formaldehyde 5, sodium hydroxide was added to the mixture so as to have a pH of 9 to 14, and a heating reaction was performed at 70 ° C. for 30 minutes. Thereafter, the reactant and methanol are mixed in a molar ratio of reactant 1 and methanol 1, sulfuric acid is added to the mixture so as to have a pH of 0 to 3, and a heating reaction is performed at 85 ° C. for 30 minutes to obtain a melamine resin. Obtained.
[製造例3]
メラミンとホルムアルデヒドとを、メラミン1、ホルムアルデヒド6のモル比で混合し、この混合液に水酸化ナトリウムをpH9~14になるように加え、70℃で30分間加熱反応を行った。その後、その反応物とメタノールを、反応物 1、メタノール2のモル比で混合し、この混合液に硫酸をpH0~3になるように加え、85℃で30分間加熱反応を行い、メラミン樹脂を得た。
[製造例4]
メラミンとホルムアルデヒドを、メラミン 1、ホルムアルデヒド 6のモル比で混合し、この混合液に水酸化ナトリウムをpH9~14になるように加え、70℃で30分間、加熱反応を行った。その後、その反応物と、メタノールを、反応物 1、メタノール 3のモル比で混合し、この混合液に硫酸をpH0~3になるように加え、85℃で30分間加熱反応を行い、メラミン樹脂を得た。 [Production Example 3]
Melamine and formaldehyde were mixed in a molar ratio of melamine 1 and formaldehyde 6, sodium hydroxide was added to the mixture so as to have a pH of 9 to 14, and a reaction was performed at 70 ° C. for 30 minutes. Thereafter, the reactant and methanol are mixed in a molar ratio of reactant 1 and methanol 2, and sulfuric acid is added to the mixture so as to have a pH of 0 to 3, followed by a heating reaction at 85 ° C. for 30 minutes to obtain a melamine resin. Obtained.
[Production Example 4]
Melamine and formaldehyde were mixed at a molar ratio of melamine 1 and formaldehyde 6, sodium hydroxide was added to this mixture so as to have a pH of 9 to 14, and a heating reaction was performed at 70 ° C. for 30 minutes. Thereafter, the reactant and methanol are mixed in a molar ratio of reactant 1 and methanol 3, and sulfuric acid is added to the mixture so as to have a pH of 0 to 3, followed by heating at 85 ° C. for 30 minutes, and melamine resin. Got.
メラミンとホルムアルデヒドとを、メラミン1、ホルムアルデヒド6のモル比で混合し、この混合液に水酸化ナトリウムをpH9~14になるように加え、70℃で30分間加熱反応を行った。その後、その反応物とメタノールを、反応物 1、メタノール2のモル比で混合し、この混合液に硫酸をpH0~3になるように加え、85℃で30分間加熱反応を行い、メラミン樹脂を得た。
[製造例4]
メラミンとホルムアルデヒドを、メラミン 1、ホルムアルデヒド 6のモル比で混合し、この混合液に水酸化ナトリウムをpH9~14になるように加え、70℃で30分間、加熱反応を行った。その後、その反応物と、メタノールを、反応物 1、メタノール 3のモル比で混合し、この混合液に硫酸をpH0~3になるように加え、85℃で30分間加熱反応を行い、メラミン樹脂を得た。 [Production Example 3]
Melamine and formaldehyde were mixed in a molar ratio of melamine 1 and formaldehyde 6, sodium hydroxide was added to the mixture so as to have a pH of 9 to 14, and a reaction was performed at 70 ° C. for 30 minutes. Thereafter, the reactant and methanol are mixed in a molar ratio of reactant 1 and methanol 2, and sulfuric acid is added to the mixture so as to have a pH of 0 to 3, followed by a heating reaction at 85 ° C. for 30 minutes to obtain a melamine resin. Obtained.
[Production Example 4]
Melamine and formaldehyde were mixed at a molar ratio of melamine 1 and formaldehyde 6, sodium hydroxide was added to this mixture so as to have a pH of 9 to 14, and a heating reaction was performed at 70 ° C. for 30 minutes. Thereafter, the reactant and methanol are mixed in a molar ratio of reactant 1 and methanol 3, and sulfuric acid is added to the mixture so as to have a pH of 0 to 3, followed by heating at 85 ° C. for 30 minutes, and melamine resin. Got.
[製造例5]
メラミンとホルムアルデヒドを、メラミン 1、ホルムアルデヒド 6のモル比で混合し、この混合液に水酸化ナトリウムをpH9~14になるように加え、70℃で30分間、加熱反応を行った。その後、その反応物とメタノールを、反応物 1、メタノール 4のモル比で混合し、この混合液に硫酸をpH0~3になるように加え、85℃で30分間加熱反応を行い、メラミン樹脂を得た。
[製造例6]
メラミンとホルムアルデヒドを、メラミン 1、ホルムアルデヒド 6のモル比で混合し、この混合液に水酸化ナトリウムをpH9~14になるように加え、70℃で30分間、加熱反応を行った。その後、その反応物とメタノールを、反応物 1、メタノール 5のモル比で混合し、この混合液に硫酸をpH0~3になるように加え、85℃で30分間加熱反応を行い、メラミン樹脂を得た。 [Production Example 5]
Melamine and formaldehyde were mixed at a molar ratio of melamine 1 and formaldehyde 6, sodium hydroxide was added to this mixture so as to have a pH of 9 to 14, and a heating reaction was performed at 70 ° C. for 30 minutes. Thereafter, the reaction product and methanol are mixed in a molar ratio of reaction product 1 and methanol 4, and sulfuric acid is added to this mixed solution so that the pH becomes 0 to 3, and a heating reaction is performed at 85 ° C. for 30 minutes to obtain a melamine resin. Obtained.
[Production Example 6]
Melamine and formaldehyde were mixed at a molar ratio of melamine 1 and formaldehyde 6, sodium hydroxide was added to this mixture so as to have a pH of 9 to 14, and a heating reaction was performed at 70 ° C. for 30 minutes. Thereafter, the reactant and methanol are mixed in a molar ratio of reactant 1 and methanol 5, and sulfuric acid is added to the mixture so as to have a pH of 0 to 3, followed by a heating reaction at 85 ° C. for 30 minutes to obtain a melamine resin. Obtained.
メラミンとホルムアルデヒドを、メラミン 1、ホルムアルデヒド 6のモル比で混合し、この混合液に水酸化ナトリウムをpH9~14になるように加え、70℃で30分間、加熱反応を行った。その後、その反応物とメタノールを、反応物 1、メタノール 4のモル比で混合し、この混合液に硫酸をpH0~3になるように加え、85℃で30分間加熱反応を行い、メラミン樹脂を得た。
[製造例6]
メラミンとホルムアルデヒドを、メラミン 1、ホルムアルデヒド 6のモル比で混合し、この混合液に水酸化ナトリウムをpH9~14になるように加え、70℃で30分間、加熱反応を行った。その後、その反応物とメタノールを、反応物 1、メタノール 5のモル比で混合し、この混合液に硫酸をpH0~3になるように加え、85℃で30分間加熱反応を行い、メラミン樹脂を得た。 [Production Example 5]
Melamine and formaldehyde were mixed at a molar ratio of melamine 1 and formaldehyde 6, sodium hydroxide was added to this mixture so as to have a pH of 9 to 14, and a heating reaction was performed at 70 ° C. for 30 minutes. Thereafter, the reaction product and methanol are mixed in a molar ratio of reaction product 1 and methanol 4, and sulfuric acid is added to this mixed solution so that the pH becomes 0 to 3, and a heating reaction is performed at 85 ° C. for 30 minutes to obtain a melamine resin. Obtained.
[Production Example 6]
Melamine and formaldehyde were mixed at a molar ratio of melamine 1 and formaldehyde 6, sodium hydroxide was added to this mixture so as to have a pH of 9 to 14, and a heating reaction was performed at 70 ° C. for 30 minutes. Thereafter, the reactant and methanol are mixed in a molar ratio of reactant 1 and methanol 5, and sulfuric acid is added to the mixture so as to have a pH of 0 to 3, followed by a heating reaction at 85 ° C. for 30 minutes to obtain a melamine resin. Obtained.
[製造例7]
メラミンとホルムアルデヒドを、メラミン 1、ホルムアルデヒド 6のモル比で混合し、この混合液に水酸化ナトリウムをpH9~14になるように加え、70℃で30分間加熱反応を行った。その後、その反応物とメタノールを、反応物 1、メタノール 6のモル比で混合し、この混合液に硫酸をpH0~3になるように加え、85℃で30分間加熱反応を行い、メラミン樹脂を得た。
[製造例8]
メラミンとホルムアルデヒドを、メラミン 1、ホルムアルデヒド 6のモル比で混合し、この混合液に水酸化ナトリウムをpH9~14になるように加え、70℃で30分間加熱反応を行い、メラミン樹脂を得た。 [Production Example 7]
Melamine and formaldehyde were mixed in a molar ratio of melamine 1 and formaldehyde 6, sodium hydroxide was added to the mixture so as to have a pH of 9 to 14, and a heating reaction was performed at 70 ° C. for 30 minutes. Thereafter, the reaction product and methanol are mixed in a molar ratio of reaction product 1 and methanol 6, and sulfuric acid is added to the mixture so that the pH becomes 0 to 3, and a heating reaction is performed at 85 ° C. for 30 minutes to obtain a melamine resin. Obtained.
[Production Example 8]
Melamine and formaldehyde were mixed in a molar ratio of melamine 1 and formaldehyde 6, sodium hydroxide was added to the mixture so as to have a pH of 9 to 14, and a reaction was performed at 70 ° C. for 30 minutes to obtain a melamine resin.
メラミンとホルムアルデヒドを、メラミン 1、ホルムアルデヒド 6のモル比で混合し、この混合液に水酸化ナトリウムをpH9~14になるように加え、70℃で30分間加熱反応を行った。その後、その反応物とメタノールを、反応物 1、メタノール 6のモル比で混合し、この混合液に硫酸をpH0~3になるように加え、85℃で30分間加熱反応を行い、メラミン樹脂を得た。
[製造例8]
メラミンとホルムアルデヒドを、メラミン 1、ホルムアルデヒド 6のモル比で混合し、この混合液に水酸化ナトリウムをpH9~14になるように加え、70℃で30分間加熱反応を行い、メラミン樹脂を得た。 [Production Example 7]
Melamine and formaldehyde were mixed in a molar ratio of melamine 1 and formaldehyde 6, sodium hydroxide was added to the mixture so as to have a pH of 9 to 14, and a heating reaction was performed at 70 ° C. for 30 minutes. Thereafter, the reaction product and methanol are mixed in a molar ratio of reaction product 1 and methanol 6, and sulfuric acid is added to the mixture so that the pH becomes 0 to 3, and a heating reaction is performed at 85 ° C. for 30 minutes to obtain a melamine resin. Obtained.
[Production Example 8]
Melamine and formaldehyde were mixed in a molar ratio of melamine 1 and formaldehyde 6, sodium hydroxide was added to the mixture so as to have a pH of 9 to 14, and a reaction was performed at 70 ° C. for 30 minutes to obtain a melamine resin.
[製造例9]
メラミンとホルムアルデヒドを、メラミン 1、ホルムアルデヒド 4のモル比で混合し、この混合液に水酸化ナトリウムをpH9~14になるように加え、70℃で30分間加熱反応を行い、メラミン樹脂を得た。 [Production Example 9]
Melamine and formaldehyde were mixed in a molar ratio of melamine 1 and formaldehyde 4, sodium hydroxide was added to this mixture so as to have a pH of 9 to 14, and a reaction was performed at 70 ° C. for 30 minutes to obtain a melamine resin.
メラミンとホルムアルデヒドを、メラミン 1、ホルムアルデヒド 4のモル比で混合し、この混合液に水酸化ナトリウムをpH9~14になるように加え、70℃で30分間加熱反応を行い、メラミン樹脂を得た。 [Production Example 9]
Melamine and formaldehyde were mixed in a molar ratio of melamine 1 and formaldehyde 4, sodium hydroxide was added to this mixture so as to have a pH of 9 to 14, and a reaction was performed at 70 ° C. for 30 minutes to obtain a melamine resin.
製造例1~9のメラミン樹脂の製造に使用された化合物のOH基およびメトキシ基の数をH-NMR、熱分析および元素分析で測定し、その結果を表1に示した。
(病理染色用粒子の輝点の感度および再現性評価)
[実施例1]
〔病理染色用粒子の製造〕
蛍光粒子としてPI色素含有ポリメラミン粒子を、下記のとおり作製した。 The numbers of OH groups and methoxy groups of the compounds used in the production of the melamine resins of Production Examples 1 to 9 were measured by H-NMR, thermal analysis and elemental analysis. The results are shown in Table 1.
(Sensitivity and reproducibility evaluation of bright spots of particles for pathological staining)
[Example 1]
[Manufacture of particles for pathological staining]
PI dye-containing polymelamine particles were produced as fluorescent particles as follows.
(病理染色用粒子の輝点の感度および再現性評価)
[実施例1]
〔病理染色用粒子の製造〕
蛍光粒子としてPI色素含有ポリメラミン粒子を、下記のとおり作製した。 The numbers of OH groups and methoxy groups of the compounds used in the production of the melamine resins of Production Examples 1 to 9 were measured by H-NMR, thermal analysis and elemental analysis. The results are shown in Table 1.
(Sensitivity and reproducibility evaluation of bright spots of particles for pathological staining)
[Example 1]
[Manufacture of particles for pathological staining]
PI dye-containing polymelamine particles were produced as fluorescent particles as follows.
N,N'-Bis(2,6-diisopropylphenyl)-1,6,7,12-tetraphenoxyperylene-3,4:9,10-tetracarboxdiimideを濃硫酸で処理し、ペリレンジイミドスルホン酸誘導体を作製した。これを酸クロリドに変換してペリレンジイミドスルホン酸クロリド誘導体とした。
N, N′-Bis (2,6-diisopropylphenyl) -1,6,7,12-tetraphenylperylene-3,4: 9,10-tetracarboxdiimide was treated with concentrated sulfuric acid to produce a perylene diimide sulfonic acid derivative. This was converted to an acid chloride to obtain a perylene diimide sulfonic acid chloride derivative.
ペリレンジイミドスルホン酸クロリド誘導体14.4mgを水22.5mLに加えた後、ホットスターラ―上で、70℃で20分間加熱し、この溶液に製造例1で製造されたメラミン樹脂0.65g加え、さらに5分間加熱撹拌した。この分散液にギ酸100μLを加え、60℃で20分間加熱攪拌した後、室温放冷した。冷却後、反応混合物を遠心用チューブに入れて12,000rpmで20分間遠心分離を行い、上澄みを除去した。得られたPI色素含有ポリメラミン粒子をエタノールと水とで洗浄した。
After adding 14.4 mg of perylene diimidesulfonic acid chloride derivative to 22.5 mL of water, the mixture was heated on a hot stirrer at 70 ° C. for 20 minutes, and 0.65 g of the melamine resin prepared in Preparation Example 1 was added to this solution. The mixture was further stirred with heating for 5 minutes. 100 μL of formic acid was added to this dispersion, heated and stirred at 60 ° C. for 20 minutes, and then allowed to cool to room temperature. After cooling, the reaction mixture was placed in a centrifuge tube and centrifuged at 12,000 rpm for 20 minutes, and the supernatant was removed. The obtained PI pigment-containing polymelamine particles were washed with ethanol and water.
〔病理染色用粒子への抗体の結合〕
得られたPI色素含有ポリメラミン粒子0.1mgをエタノール1.5mL中に分散し、この分散液にアミノプロピルトリメトキシシランLS-3150(信越化学工業社製)2μLを加えて8時間反応させて、表面アミノ化処理を行なった。 [Binding of antibodies to particles for pathological staining]
0.1 mg of the obtained PI dye-containing polymelamine particles were dispersed in 1.5 mL of ethanol, and 2 μL of aminopropyltrimethoxysilane LS-3150 (manufactured by Shin-Etsu Chemical Co., Ltd.) was added to this dispersion and reacted for 8 hours. A surface amination treatment was performed.
得られたPI色素含有ポリメラミン粒子0.1mgをエタノール1.5mL中に分散し、この分散液にアミノプロピルトリメトキシシランLS-3150(信越化学工業社製)2μLを加えて8時間反応させて、表面アミノ化処理を行なった。 [Binding of antibodies to particles for pathological staining]
0.1 mg of the obtained PI dye-containing polymelamine particles were dispersed in 1.5 mL of ethanol, and 2 μL of aminopropyltrimethoxysilane LS-3150 (manufactured by Shin-Etsu Chemical Co., Ltd.) was added to this dispersion and reacted for 8 hours. A surface amination treatment was performed.
表面アミノ化処理がなされた粒子に、EDTA(エチレンジアミン四酢酸)を2mM含有したEDTAとPBS(リン酸緩衝液生理的食塩水)との混合溶液を加えて、粒子の濃度を3nMに調整した。この分散液に最終濃度が10mMとなるようSM(PEG)12(サーモサイエンティフィック社製、succinimidyl-[(N-maleomidopropionamid)-dodecaethyleneglycol]ester)を混合し、1時間反応させた。この混合液を10,000Gで20分間遠心分離を行い、上澄みを除去した後、沈降物に、EDTAを2mM含有したEDTAとPBSとの混合溶液を加え、沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行うことで末端にマレイミド基を有するPI色素含有ポリメラミン粒子(蛍光粒子)を得た。
A mixed solution of EDTA containing 2 mM of EDTA (ethylenediaminetetraacetic acid) and PBS (phosphate buffered saline) was added to the particles subjected to surface amination treatment to adjust the particle concentration to 3 nM. This dispersion was mixed with SM (PEG) 12 (manufactured by Thermo Scientific, succinimidyl-[(N-maleidopropionamid) -dodecaethyleneglycol] ester) so as to have a final concentration of 10 mM, and reacted for 1 hour. The mixture is centrifuged at 10,000 G for 20 minutes, and the supernatant is removed. Then, a mixed solution of EDTA and PBS containing 2 mM of EDTA is added to the precipitate, the precipitate is dispersed, and centrifuged again. went. By performing washing by the same procedure three times, PI dye-containing polymelamine particles (fluorescent particles) having a maleimide group at the terminal were obtained.
一方、ストレプトアビジン(和光純薬社製)を、N-succinimidyl S-acetylthioacetate(SATA)を用いてチオール基付加処理を行ったのち、ゲルろ過カラムによるろ過を行い、PI色素含有ポリメラミン粒子に結合可能なストレプトアビジン溶液を得た。
On the other hand, streptavidin (manufactured by Wako Pure Chemical Industries, Ltd.) is subjected to thiol group addition treatment using N-succinimidyl S-acetylthioacetate (SATA), followed by filtration through a gel filtration column to bind to PI dye-containing polymelamine particles A possible streptavidin solution was obtained.
上記のマレイミド基を有するPI色素含有ポリメラミン粒子とストレプトアビジンとを、EDTAを2mM含有したEDTAとPBSとの混合溶液中で混合し、1時間反応させた。反応液に10mMメルカプトエタノールを添加し、反応を停止させた。得られた溶液を遠心フィルターで濃縮後、精製用ゲルろ過カラムを用いて未反応ストレプトアビジン等を除去し、ストレプトアビジン結合PI色素含有ポリメラミン粒子(病理染色用粒子)を得た。
〔免疫染色(免疫組織化学(IHC)法)〕
病理切片として、あらかじめELISAで総タンパク量を測定しているものを使用し、抗原はHER2を用い、判定には、SK-BR-3とMDA-MB-231の培養細胞を用いた。 The above-mentioned PI dye-containing polymelamine particles having a maleimide group and streptavidin were mixed in a mixed solution of EDTA containing 2 mM of EDTA and PBS, and reacted for 1 hour. 10 mM mercaptoethanol was added to the reaction solution to stop the reaction. After the obtained solution was concentrated with a centrifugal filter, unreacted streptavidin and the like were removed using a gel filtration column for purification to obtain streptavidin-binding PI dye-containing polymelamine particles (pathological staining particles).
[Immunostaining (Immunohistochemistry (IHC) method)]
As a pathological section, one whose total protein amount was previously measured by ELISA was used, HER2 was used as the antigen, and cultured cells of SK-BR-3 and MDA-MB-231 were used for the determination.
〔免疫染色(免疫組織化学(IHC)法)〕
病理切片として、あらかじめELISAで総タンパク量を測定しているものを使用し、抗原はHER2を用い、判定には、SK-BR-3とMDA-MB-231の培養細胞を用いた。 The above-mentioned PI dye-containing polymelamine particles having a maleimide group and streptavidin were mixed in a mixed solution of EDTA containing 2 mM of EDTA and PBS, and reacted for 1 hour. 10 mM mercaptoethanol was added to the reaction solution to stop the reaction. After the obtained solution was concentrated with a centrifugal filter, unreacted streptavidin and the like were removed using a gel filtration column for purification to obtain streptavidin-binding PI dye-containing polymelamine particles (pathological staining particles).
[Immunostaining (Immunohistochemistry (IHC) method)]
As a pathological section, one whose total protein amount was previously measured by ELISA was used, HER2 was used as the antigen, and cultured cells of SK-BR-3 and MDA-MB-231 were used for the determination.
その後、上記病理切片を、製造例1で製造されたメラミン樹脂を用いて作成したストレプトアビジン結合PI色素含有ポリメラミン粒子(標識体)を用い、免疫染色し、その後形態観察染色(H染色)を実施した。免疫染色と形態観察染色は下記のとおりに実施した。
Thereafter, the pathological section was immunostained using streptavidin-conjugated PI dye-containing polymelamine particles (labeled body) prepared using the melamine resin produced in Production Example 1, and then morphological observation staining (H staining) was performed. Carried out. Immunostaining and morphological observation staining were performed as follows.
培養細胞をキシレンにより脱パラフィン処理した後、水に置換する洗浄を行った。洗浄した培養細胞スライドを10mMクエン酸緩衝液(pH6.0)中で、121℃で5分間オートクレーブ処理することで、抗原の賦活化処理を行った。賦活化処理後の培養細胞スライドを、PBS緩衝液を用いて洗浄した後、湿潤箱中で1時間、1%BSA含有PBS緩衝液を用いてブロッキング処理を行った。ブロッキング処理後、1%BSA含有PBS緩衝液で0.05nMに希釈した抗HER2ウサギモノクローナル抗体(4B5)(ベンタナ社製)を切片と2時間反応させた。これをPBS緩衝液で洗浄後、1%BSA含有PBS緩衝液で2μg/mLに希釈した、4B5に結合することのできるビオチン標識抗ウサギモノクローナル抗体と30分反応させた。この反応後、1%BSA含有PBS緩衝液で0.2nMに希釈した前述のストレプトアビジン結合PI色素含有ポリメラミン粒子を切片と、中性のpH環境(pH6.9~7.4)、室温の条件下で3時間反応させた。その後、前述の処理を行った培養細胞スライドを、PBS緩衝液(pH7.0)を用いて洗浄した。
The cultured cells were deparaffinized with xylene and washed with water. The washed cultured cell slide was autoclaved in a 10 mM citrate buffer (pH 6.0) at 121 ° C. for 5 minutes to activate the antigen. The cultured cell slide after the activation treatment was washed with PBS buffer, and then subjected to blocking treatment with 1% BSA-containing PBS buffer for 1 hour in a wet box. After blocking treatment, anti-HER2 rabbit monoclonal antibody (4B5) (manufactured by Ventana) diluted to 0.05 nM with 1% BSA-containing PBS buffer was reacted with the sections for 2 hours. This was washed with PBS buffer and then reacted with a biotin-labeled anti-rabbit monoclonal antibody capable of binding to 4B5 diluted to 2 μg / mL with 1% BSA-containing PBS buffer for 30 minutes. After this reaction, the aforementioned streptavidin-conjugated PI dye-containing polymelamine particles diluted to 0.2 nM with 1% BSA-containing PBS buffer were cut into sections, neutral pH environment (pH 6.9 to 7.4), room temperature The reaction was carried out for 3 hours under the conditions. Then, the cultured cell slide which performed the above-mentioned process was wash | cleaned using PBS buffer solution (pH 7.0).
以上の免疫染色を行った後、形態観察染色(H染色)を行った。免疫染色した培養細胞スライドをマイヤーヘマトキシリン液で5分間染色してヘマトキシリン染色(H染色)を行い、染色スライドを得た。その後、該切片を45℃の流水で3分間洗浄した。
After performing the above immunostaining, morphological observation staining (H staining) was performed. The immunostained cultured cell slide was stained with Mayer's hematoxylin solution for 5 minutes, and hematoxylin staining (H staining) was performed to obtain a stained slide. The sections were then washed with running water at 45 ° C. for 3 minutes.
ヘマトキシリン染色後、純エタノールに5分間漬ける操作4回行い、洗浄および脱水を行った。続いてキシレンに5分間漬ける操作を4回行い、透徹を行った。最後に、封入剤(「エンテランニュー」、Merck社製)を用いて組織切片を封入して観察用のサンプルスライドとした。
[観察工程]
ヘマトキシリン染色後のSK-BR-3とMDA-MB-231の輝点数をカウントし、(SK-BR-3の輝点数/MDA-MB231の輝点数)をSN比とし表1に示した。SN比が15未満である場合は×、15以上20未満である場合は○、20以上である場合は◎と判定した。 After staining with hematoxylin, an operation of immersing in pure ethanol for 5 minutes was performed 4 times, followed by washing and dehydration. Subsequently, the operation of immersing in xylene for 5 minutes was carried out 4 times to perform clearing. Finally, the tissue section was encapsulated using an encapsulant (“Enterlan New”, manufactured by Merck) to prepare a sample slide for observation.
[Observation process]
The number of bright spots of SK-BR-3 and MDA-MB-231 after staining with hematoxylin was counted, and the SN ratio was shown in Table 1 as (number of bright spots of SK-BR-3 / number of bright spots of MDA-MB231). When the SN ratio was less than 15, it was judged as x, when it was 15 or more and less than 20, it was judged as ◯, and when it was 20 or more, it was judged as ◎.
[観察工程]
ヘマトキシリン染色後のSK-BR-3とMDA-MB-231の輝点数をカウントし、(SK-BR-3の輝点数/MDA-MB231の輝点数)をSN比とし表1に示した。SN比が15未満である場合は×、15以上20未満である場合は○、20以上である場合は◎と判定した。 After staining with hematoxylin, an operation of immersing in pure ethanol for 5 minutes was performed 4 times, followed by washing and dehydration. Subsequently, the operation of immersing in xylene for 5 minutes was carried out 4 times to perform clearing. Finally, the tissue section was encapsulated using an encapsulant (“Enterlan New”, manufactured by Merck) to prepare a sample slide for observation.
[Observation process]
The number of bright spots of SK-BR-3 and MDA-MB-231 after staining with hematoxylin was counted, and the SN ratio was shown in Table 1 as (number of bright spots of SK-BR-3 / number of bright spots of MDA-MB231). When the SN ratio was less than 15, it was judged as x, when it was 15 or more and less than 20, it was judged as ◯, and when it was 20 or more, it was judged as ◎.
免疫染色および形態観察染色した組織切片に対して所定の励起光を照射して蛍光を発光させた。その状態の組織切片を蛍光顕微鏡(BX-53,オリンパス社製)により観察し、撮像した。また、輝点計測は、ImageJ FindMaxima法により計測した(露光時間400m秒でNoiseToleranceは60)。上記励起光の波長は、光学フィルターに通すことで、PI色素含有ポリメラミン粒子に対して575~600nmに設定した。また、観察する蛍光の波長(nm)の範囲についても、光学フィルターに通すことで、612~682nmに設定した。顕微鏡観察、画像取得時の励起波長条件は視野中心部付近の照射エネルギーが900W/cm2となるようにした。画像取得時の露光時間は画像の輝度が飽和しないように任意に設定(例えば400m秒に設定)して撮像した。
[実施例2~7]
製造例1で製造されたメラミン樹脂に替えて、製造例2~7で製造されたメラミン樹脂をそれぞれ使用したこと以外は実施例1と同様に行うことにより、実施例2~7を実施した。 The tissue sections subjected to immunostaining and morphological observation staining were irradiated with predetermined excitation light to emit fluorescence. The tissue section in this state was observed with a fluorescence microscope (BX-53, manufactured by Olympus) and imaged. The bright spot was measured by the ImageJ FindMaxima method (exposure time was 400 ms and NoiseTolerance was 60). The wavelength of the excitation light was set to 575 to 600 nm with respect to the PI dye-containing polymelamine particles by passing through an optical filter. The range of the wavelength (nm) of fluorescence to be observed was also set to 612 to 682 nm by passing through an optical filter. The excitation wavelength condition for microscopic observation and image acquisition was such that the irradiation energy near the center of the visual field was 900 W / cm 2 . The exposure time at the time of image acquisition was arbitrarily set (for example, set to 400 milliseconds) so as not to saturate the brightness of the image.
[Examples 2 to 7]
Examples 2 to 7 were carried out in the same manner as in Example 1 except that the melamine resins produced in Production Examples 2 to 7 were used in place of the melamine resin produced in Production Example 1.
[実施例2~7]
製造例1で製造されたメラミン樹脂に替えて、製造例2~7で製造されたメラミン樹脂をそれぞれ使用したこと以外は実施例1と同様に行うことにより、実施例2~7を実施した。 The tissue sections subjected to immunostaining and morphological observation staining were irradiated with predetermined excitation light to emit fluorescence. The tissue section in this state was observed with a fluorescence microscope (BX-53, manufactured by Olympus) and imaged. The bright spot was measured by the ImageJ FindMaxima method (exposure time was 400 ms and NoiseTolerance was 60). The wavelength of the excitation light was set to 575 to 600 nm with respect to the PI dye-containing polymelamine particles by passing through an optical filter. The range of the wavelength (nm) of fluorescence to be observed was also set to 612 to 682 nm by passing through an optical filter. The excitation wavelength condition for microscopic observation and image acquisition was such that the irradiation energy near the center of the visual field was 900 W / cm 2 . The exposure time at the time of image acquisition was arbitrarily set (for example, set to 400 milliseconds) so as not to saturate the brightness of the image.
[Examples 2 to 7]
Examples 2 to 7 were carried out in the same manner as in Example 1 except that the melamine resins produced in Production Examples 2 to 7 were used in place of the melamine resin produced in Production Example 1.
SN比を表1に示す。実施例1と同様に判定を行った。
[比較例1および2]
製造例1で製造されたメラミン樹脂に替えて、製造例8および9で製造されたメラミン樹脂をそれぞれ使用したこと以外は実施例1と同様に行うことにより、比較例1および2を実施した。 The SN ratio is shown in Table 1. The determination was performed in the same manner as in Example 1.
[Comparative Examples 1 and 2]
Comparative Examples 1 and 2 were carried out in the same manner as in Example 1 except that the melamine resins produced in Production Examples 8 and 9 were used in place of the melamine resin produced in Production Example 1.
[比較例1および2]
製造例1で製造されたメラミン樹脂に替えて、製造例8および9で製造されたメラミン樹脂をそれぞれ使用したこと以外は実施例1と同様に行うことにより、比較例1および2を実施した。 The SN ratio is shown in Table 1. The determination was performed in the same manner as in Example 1.
[Comparative Examples 1 and 2]
Comparative Examples 1 and 2 were carried out in the same manner as in Example 1 except that the melamine resins produced in Production Examples 8 and 9 were used in place of the melamine resin produced in Production Example 1.
SN比を表1に示す。実施例1と同様に判定を行った。
Table 1 shows the SN ratio. The determination was performed in the same manner as in Example 1.
前述のH染色までは実施例1~4と同様に行い、染色スライドを得た。
H染色処理後、各染色スライドに以下の(i)~(ii)の手順で洗浄処理を行った。
(i)pH7の洗浄液を調製した。pHが7の洗浄液としては、純水を用いた。
(ii)形態観察用染色処理を行った各染色スライドをそれぞれ、常温で洗浄液に4分間浸漬して、洗浄処理を行った。
The above-described H staining was carried out in the same manner as in Examples 1 to 4, and staining slides were obtained.
After the H staining treatment, each staining slide was washed according to the following procedures (i) to (ii).
(I) A pH 7 cleaning solution was prepared. Pure water was used as the cleaning liquid having a pH of 7.
(Ii) Each staining slide subjected to the staining process for morphology observation was immersed in a cleaning solution at room temperature for 4 minutes to perform a cleaning process.
(脱水処理)
洗浄処理が行われた各染色スライドに対して、脱水エタノールに5分間浸漬した。この操作を4回繰り返し、脱水処理を行った。 (Dehydration treatment)
Each stained slide subjected to the washing treatment was immersed in dehydrated ethanol for 5 minutes. This operation was repeated 4 times to perform dehydration treatment.
洗浄処理が行われた各染色スライドに対して、脱水エタノールに5分間浸漬した。この操作を4回繰り返し、脱水処理を行った。 (Dehydration treatment)
Each stained slide subjected to the washing treatment was immersed in dehydrated ethanol for 5 minutes. This operation was repeated 4 times to perform dehydration treatment.
(溶媒置換処理)
脱水処理が行われた各染色スライドを、常温で2~10秒、キシレンに浸漬することで、溶媒置換処理を行った。この操作を4回繰り返した。 (Solvent replacement process)
Each dyed slide subjected to the dehydration treatment was immersed in xylene at room temperature for 2 to 10 seconds to perform a solvent replacement treatment. This operation was repeated 4 times.
脱水処理が行われた各染色スライドを、常温で2~10秒、キシレンに浸漬することで、溶媒置換処理を行った。この操作を4回繰り返した。 (Solvent replacement process)
Each dyed slide subjected to the dehydration treatment was immersed in xylene at room temperature for 2 to 10 seconds to perform a solvent replacement treatment. This operation was repeated 4 times.
(封入処理)
染色スライドを以下の(i)~(ii)の手順で、封入処理を行った。
(i)溶媒置換処理が行われた染色スライドを常温でエンテランニュー(メルク社)を滴下した後、カバーガラスを被せ、常温で10分間、風乾することで、封入処理を行った。
(ii)その後、シグナルの計測まで、封入処理が行われた染色スライドを遮光して保存した。 (Encapsulation processing)
The staining slide was encapsulated by the following procedures (i) to (ii).
(I) After the dyeing slide subjected to the solvent replacement treatment was dropped with Enteran New (Merck) at room temperature, it was covered with a cover glass and air-dried at room temperature for 10 minutes to perform an encapsulation treatment.
(Ii) Thereafter, the stained slide subjected to the encapsulation treatment was stored in the dark until the signal was measured.
染色スライドを以下の(i)~(ii)の手順で、封入処理を行った。
(i)溶媒置換処理が行われた染色スライドを常温でエンテランニュー(メルク社)を滴下した後、カバーガラスを被せ、常温で10分間、風乾することで、封入処理を行った。
(ii)その後、シグナルの計測まで、封入処理が行われた染色スライドを遮光して保存した。 (Encapsulation processing)
The staining slide was encapsulated by the following procedures (i) to (ii).
(I) After the dyeing slide subjected to the solvent replacement treatment was dropped with Enteran New (Merck) at room temperature, it was covered with a cover glass and air-dried at room temperature for 10 minutes to perform an encapsulation treatment.
(Ii) Thereafter, the stained slide subjected to the encapsulation treatment was stored in the dark until the signal was measured.
<蛍光画像の撮影および分析>
封入処理を終えた各染色スライドに対して所定の励起光を照射して、蛍光を発光させた。その状態の染色スライドを、前述した蛍光顕微鏡(オリンパス社製「BX-53」)、および前述した顕微鏡用デジタルカメラ(オリンパス社製「DP73」)により観察および撮像を行った。上記励起光は、光学フィルターに通すことで575~600nmに設定した。また、観察する蛍光の波長(nm)の範囲についても、光学フィルターを通すことで612~692nmに設定した。顕微鏡観察、画像取得時の励起波長の条件は、580nmの励起では視野中心部付近の照射エネルギーが900W/cm2となるようにした。画像取得時の露光時間は、画像の輝度が飽和しないように任意に設定(例えば4000μ秒に設定)して撮像した。HER2(3+)の組織の輝点数は、400倍で撮像した画像をもとにImageJ FindMaxims法により計測した1000細胞の平均値とした。また、撮像した1枚の画像から、1細胞当たりの病理染色用粒子を算出し、ばらつきを表す指標として変動係数(CV)を算出した。
(比較例3;製造例9で作製した粒子を使用し、ヘマトキシリン染色液による形態観察染色後に洗浄処理を行った場合の輝点の感度および再現性)
前述の比較例2で作製したスライドと同様の条件で作製したスライド試料を使用した以外は、実施例8と同様に実施した。
(実施例12~17;ヘマトキシリン染色液による形態観察染色後のpHの異なる酸性水溶液による洗浄処理を行った場合の輝点の感度および再現性)
前述のH染色までは実施例4と同様に行い、染色スライドを得た。H染色処理後、各染色スライドで、以下の(i)~(ii)の手順に変更した洗浄処理を行ったこと以外は、実施例8と同様に実施した。(i)pHが1,2,3,4,5または6の6種の洗浄液を調製した。pHが1~6の洗浄液は、1Mの塩酸を希釈して調製した。
(ii)形態観察用染色処理を行った各染色スライドをそれぞれ、常温で各洗浄液に4分間浸漬して、洗浄処理を行った。 <Fluorescence image capture and analysis>
Fluorescence was emitted by irradiating a predetermined excitation light to each stained slide after the encapsulation treatment. The stained slide in this state was observed and imaged with the aforementioned fluorescence microscope (OLYMPUS "BX-53") and the aforementioned microscope digital camera (OLYMPUS "DP73"). The excitation light was set to 575 to 600 nm by passing through an optical filter. The range of the wavelength (nm) of fluorescence to be observed was also set to 612 to 692 nm by passing through an optical filter. The conditions of the excitation wavelength during microscopic observation and image acquisition were such that the irradiation energy near the center of the field of view was 900 W / cm 2 for excitation at 580 nm. The exposure time at the time of image acquisition was arbitrarily set so as not to saturate the brightness of the image (for example, set to 4000 μsec) and imaged. The number of bright spots of the HER2 (3+) tissue was an average value of 1000 cells measured by the ImageJ FindMaxims method based on an image captured at 400 times. In addition, a pathological staining particle per cell was calculated from one captured image, and a coefficient of variation (CV) was calculated as an index representing variation.
(Comparative Example 3; Sensitivity and reproducibility of bright spots when the particles produced in Production Example 9 are used and washed after morphological observation staining with a hematoxylin staining solution)
The same operation as in Example 8 was performed except that a slide sample prepared under the same conditions as those of the slide prepared in Comparative Example 2 was used.
(Examples 12 to 17: Sensitivity and reproducibility of bright spots when washed with acidic aqueous solutions having different pH after morphological observation staining with hematoxylin staining solution)
The same procedure as in Example 4 was performed until the aforementioned H staining, and a staining slide was obtained. After the H staining treatment, each staining slide was performed in the same manner as in Example 8 except that the washing treatment was changed to the following procedures (i) to (ii). (I) Six types of cleaning liquids having a pH of 1, 2, 3, 4, 5, or 6 were prepared. A washing solution having a pH of 1 to 6 was prepared by diluting 1M hydrochloric acid.
(Ii) Each staining slide subjected to the staining process for morphology observation was immersed in each cleaning solution at room temperature for 4 minutes to perform the cleaning process.
封入処理を終えた各染色スライドに対して所定の励起光を照射して、蛍光を発光させた。その状態の染色スライドを、前述した蛍光顕微鏡(オリンパス社製「BX-53」)、および前述した顕微鏡用デジタルカメラ(オリンパス社製「DP73」)により観察および撮像を行った。上記励起光は、光学フィルターに通すことで575~600nmに設定した。また、観察する蛍光の波長(nm)の範囲についても、光学フィルターを通すことで612~692nmに設定した。顕微鏡観察、画像取得時の励起波長の条件は、580nmの励起では視野中心部付近の照射エネルギーが900W/cm2となるようにした。画像取得時の露光時間は、画像の輝度が飽和しないように任意に設定(例えば4000μ秒に設定)して撮像した。HER2(3+)の組織の輝点数は、400倍で撮像した画像をもとにImageJ FindMaxims法により計測した1000細胞の平均値とした。また、撮像した1枚の画像から、1細胞当たりの病理染色用粒子を算出し、ばらつきを表す指標として変動係数(CV)を算出した。
(比較例3;製造例9で作製した粒子を使用し、ヘマトキシリン染色液による形態観察染色後に洗浄処理を行った場合の輝点の感度および再現性)
前述の比較例2で作製したスライドと同様の条件で作製したスライド試料を使用した以外は、実施例8と同様に実施した。
(実施例12~17;ヘマトキシリン染色液による形態観察染色後のpHの異なる酸性水溶液による洗浄処理を行った場合の輝点の感度および再現性)
前述のH染色までは実施例4と同様に行い、染色スライドを得た。H染色処理後、各染色スライドで、以下の(i)~(ii)の手順に変更した洗浄処理を行ったこと以外は、実施例8と同様に実施した。(i)pHが1,2,3,4,5または6の6種の洗浄液を調製した。pHが1~6の洗浄液は、1Mの塩酸を希釈して調製した。
(ii)形態観察用染色処理を行った各染色スライドをそれぞれ、常温で各洗浄液に4分間浸漬して、洗浄処理を行った。 <Fluorescence image capture and analysis>
Fluorescence was emitted by irradiating a predetermined excitation light to each stained slide after the encapsulation treatment. The stained slide in this state was observed and imaged with the aforementioned fluorescence microscope (OLYMPUS "BX-53") and the aforementioned microscope digital camera (OLYMPUS "DP73"). The excitation light was set to 575 to 600 nm by passing through an optical filter. The range of the wavelength (nm) of fluorescence to be observed was also set to 612 to 692 nm by passing through an optical filter. The conditions of the excitation wavelength during microscopic observation and image acquisition were such that the irradiation energy near the center of the field of view was 900 W / cm 2 for excitation at 580 nm. The exposure time at the time of image acquisition was arbitrarily set so as not to saturate the brightness of the image (for example, set to 4000 μsec) and imaged. The number of bright spots of the HER2 (3+) tissue was an average value of 1000 cells measured by the ImageJ FindMaxims method based on an image captured at 400 times. In addition, a pathological staining particle per cell was calculated from one captured image, and a coefficient of variation (CV) was calculated as an index representing variation.
(Comparative Example 3; Sensitivity and reproducibility of bright spots when the particles produced in Production Example 9 are used and washed after morphological observation staining with a hematoxylin staining solution)
The same operation as in Example 8 was performed except that a slide sample prepared under the same conditions as those of the slide prepared in Comparative Example 2 was used.
(Examples 12 to 17: Sensitivity and reproducibility of bright spots when washed with acidic aqueous solutions having different pH after morphological observation staining with hematoxylin staining solution)
The same procedure as in Example 4 was performed until the aforementioned H staining, and a staining slide was obtained. After the H staining treatment, each staining slide was performed in the same manner as in Example 8 except that the washing treatment was changed to the following procedures (i) to (ii). (I) Six types of cleaning liquids having a pH of 1, 2, 3, 4, 5, or 6 were prepared. A washing solution having a pH of 1 to 6 was prepared by diluting 1M hydrochloric acid.
(Ii) Each staining slide subjected to the staining process for morphology observation was immersed in each cleaning solution at room temperature for 4 minutes to perform the cleaning process.
実施例8~11および比較例3の結果を表2に示す。実施例8~11の染色スライドは、判定が○以上の良好な結果となった。特に、製造例4で作製した粒子を使用した実施例11の染色スライドは、輝点数(SN比)が多く、また輝度のばらつき(CV)が小さかった。そこで、後述の実施例については、製造例4で作製した粒子を使用した染色スライドを作製することで、実施した。
Table 2 shows the results of Examples 8 to 11 and Comparative Example 3. The stained slides of Examples 8 to 11 gave good results with a judgment of ◯ or higher. In particular, the stained slide of Example 11 using the particles produced in Production Example 4 had a large number of bright spots (S / N ratio) and small variation in luminance (CV). Then, about the Example mentioned later, it implemented by producing the dyeing | staining slide using the particle | grains produced in manufacture example 4. FIG.
実施例12~17の結果を表2に示す。pHが1~6の酸性の洗浄液を用いた場合、pHが7の中性の洗浄液を用いた場合に比べ、観察される病理染色用粒子の個数が多く、また病理染色用粒子の輝度のばらつき(CV)が小さいことが分かる。
The results of Examples 12 to 17 are shown in Table 2. When an acidic cleaning solution with a pH of 1 to 6 is used, the number of pathological staining particles observed is larger than when a neutral cleaning solution with a pH of 7 is used, and the variation in luminance of the pathological staining particles It can be seen that (CV) is small.
(実施例18-27;ヘマトキシリンーエオジン染色液による形態観察染色後の酸性水溶液による洗浄処理を行った場合の輝点の感度および再現性)
(1)標本前処理工程
(1-1)脱パラフィン処理
HER2陽性染色対照標本の検体スライドとして(コスモバイオ社 CB-A712のシリーズ)を、以下の(i)~(iii)の手順で脱パラフィン処理を行った。
(i)キシレンを入れた容器に検体スライドを30分間、常温で浸漬する。途中3回キシレンを交換した。(ii)エタノールを入れた容器に検体スライドを常温で、30分間浸漬する。途中3回エタノールを交換した。(iii)水を入れた容器に検体スライドを30分浸漬させた。途中3回水を交換した。 (Examples 18-27: Sensitivity and reproducibility of bright spots when washed with acidic aqueous solution after morphological observation staining with hematoxylin-eosin staining solution)
(1) Specimen pretreatment step (1-1) Deparaffinization As a specimen slide of a HER2-positive stained control specimen (Cosmo Bio CB-A712 series), deparaffinization is performed according to the following procedures (i) to (iii). Processed.
(I) Immerse the specimen slide in a container containing xylene at room temperature for 30 minutes. The xylene was changed three times during the process. (Ii) The specimen slide is immersed in a container containing ethanol at room temperature for 30 minutes. The ethanol was changed three times during the process. (Iii) The specimen slide was immersed in a container containing water for 30 minutes. The water was changed three times along the way.
(1)標本前処理工程
(1-1)脱パラフィン処理
HER2陽性染色対照標本の検体スライドとして(コスモバイオ社 CB-A712のシリーズ)を、以下の(i)~(iii)の手順で脱パラフィン処理を行った。
(i)キシレンを入れた容器に検体スライドを30分間、常温で浸漬する。途中3回キシレンを交換した。(ii)エタノールを入れた容器に検体スライドを常温で、30分間浸漬する。途中3回エタノールを交換した。(iii)水を入れた容器に検体スライドを30分浸漬させた。途中3回水を交換した。 (Examples 18-27: Sensitivity and reproducibility of bright spots when washed with acidic aqueous solution after morphological observation staining with hematoxylin-eosin staining solution)
(1) Specimen pretreatment step (1-1) Deparaffinization As a specimen slide of a HER2-positive stained control specimen (Cosmo Bio CB-A712 series), deparaffinization is performed according to the following procedures (i) to (iii). Processed.
(I) Immerse the specimen slide in a container containing xylene at room temperature for 30 minutes. The xylene was changed three times during the process. (Ii) The specimen slide is immersed in a container containing ethanol at room temperature for 30 minutes. The ethanol was changed three times during the process. (Iii) The specimen slide was immersed in a container containing water for 30 minutes. The water was changed three times along the way.
(1-2)賦活化処理
検体スライドを脱パラフィン処理した後、以下の(i)~(v)の手順で賦活化処理を行った。
(i)検体スライドを水に置換する洗浄を行った。(ii)10mMクエン酸緩衝液(pH6.0)に検体スライドを30分浸漬させた。(iii)121℃で10分、オートクレーブ処理を行った。(iv)PBSを入れた容器に、オートクレーブ処理後の検体スライドを30分浸漬し、洗浄した。(v)1%BSA含有PBSを検体スライドに載せて、1時間、ブロッキング処理を行った。 (1-2) Activation Treatment After the specimen slide was deparaffinized, activation treatment was performed according to the following procedures (i) to (v).
(I) The specimen slide was washed with water. (Ii) The specimen slide was immersed in a 10 mM citrate buffer (pH 6.0) for 30 minutes. (Iii) The autoclave process was performed at 121 degreeC for 10 minutes. (Iv) The specimen slide after the autoclave treatment was immersed in a container containing PBS for 30 minutes and washed. (V) 1% BSA-containing PBS was placed on the specimen slide and subjected to blocking treatment for 1 hour.
検体スライドを脱パラフィン処理した後、以下の(i)~(v)の手順で賦活化処理を行った。
(i)検体スライドを水に置換する洗浄を行った。(ii)10mMクエン酸緩衝液(pH6.0)に検体スライドを30分浸漬させた。(iii)121℃で10分、オートクレーブ処理を行った。(iv)PBSを入れた容器に、オートクレーブ処理後の検体スライドを30分浸漬し、洗浄した。(v)1%BSA含有PBSを検体スライドに載せて、1時間、ブロッキング処理を行った。 (1-2) Activation Treatment After the specimen slide was deparaffinized, activation treatment was performed according to the following procedures (i) to (v).
(I) The specimen slide was washed with water. (Ii) The specimen slide was immersed in a 10 mM citrate buffer (pH 6.0) for 30 minutes. (Iii) The autoclave process was performed at 121 degreeC for 10 minutes. (Iv) The specimen slide after the autoclave treatment was immersed in a container containing PBS for 30 minutes and washed. (V) 1% BSA-containing PBS was placed on the specimen slide and subjected to blocking treatment for 1 hour.
(2)免疫染色工程
(2-1)1次抗体処理
検体スライドを賦活化処理した後、1次抗体処理を行った。BSAを1%含有するPBSを用いて、ベンタナ社製「抗HER2ウサギモノクロナール抗体(4B5)」を0.05nMに調製し、該1次抗体の溶液を上述のブロッキング処理した検体スライドに対して4℃で1晩反応させた。 (2) Immunostaining step (2-1) Primary antibody treatment After the specimen slide was activated, the primary antibody treatment was performed. Using PBS containing 1% BSA, “anti-HER2 rabbit monoclonal antibody (4B5)” manufactured by Ventana was prepared at 0.05 nM, and the solution of the primary antibody was applied to the above-mentioned blocking-treated specimen slide. The reaction was allowed to proceed overnight at 4 ° C.
(2-1)1次抗体処理
検体スライドを賦活化処理した後、1次抗体処理を行った。BSAを1%含有するPBSを用いて、ベンタナ社製「抗HER2ウサギモノクロナール抗体(4B5)」を0.05nMに調製し、該1次抗体の溶液を上述のブロッキング処理した検体スライドに対して4℃で1晩反応させた。 (2) Immunostaining step (2-1) Primary antibody treatment After the specimen slide was activated, the primary antibody treatment was performed. Using PBS containing 1% BSA, “anti-HER2 rabbit monoclonal antibody (4B5)” manufactured by Ventana was prepared at 0.05 nM, and the solution of the primary antibody was applied to the above-mentioned blocking-treated specimen slide. The reaction was allowed to proceed overnight at 4 ° C.
(2-2)2次抗体処理
1次抗体処理を行った検体スライドをPBSで洗浄した後、1%BSA含有のPBSで6μg/mLに希釈した、上記ビオチン修飾2次抗体溶液と室温で30分間反応させた。 (2-2) Secondary antibody treatment The specimen slide treated with the primary antibody was washed with PBS, and then diluted to 6 μg / mL with PBS containing 1% BSA, and the biotin-modified secondary antibody solution and 30 at room temperature. Reacted for 1 minute.
1次抗体処理を行った検体スライドをPBSで洗浄した後、1%BSA含有のPBSで6μg/mLに希釈した、上記ビオチン修飾2次抗体溶液と室温で30分間反応させた。 (2-2) Secondary antibody treatment The specimen slide treated with the primary antibody was washed with PBS, and then diluted to 6 μg / mL with PBS containing 1% BSA, and the biotin-modified secondary antibody solution and 30 at room temperature. Reacted for 1 minute.
(2-3)蛍光標識処理
2次抗体処理を行った検体スライドを以下の(i)~(ii)の手順で、免疫染色法による蛍光標識処理を行った。
(i)検体スライドに対して、1%BSA含有のPBSで0.02nMに希釈した実施例4で作製した病理染色用粒子を、中性のpH環境(pH6.9~7.4)室温の条件下で3時間反応させた。
(ii)該反応後の検体スライドをPBSで洗浄した。 (2-3) Fluorescence labeling treatment Specimen slides subjected to secondary antibody treatment were subjected to fluorescence labeling treatment by immunostaining in the following procedures (i) to (ii).
(I) The pathological staining particles prepared in Example 4 diluted to 0.02 nM with PBS containing 1% BSA on the specimen slide were placed in a neutral pH environment (pH 6.9 to 7.4) at room temperature. The reaction was carried out for 3 hours under the conditions.
(Ii) The specimen slide after the reaction was washed with PBS.
2次抗体処理を行った検体スライドを以下の(i)~(ii)の手順で、免疫染色法による蛍光標識処理を行った。
(i)検体スライドに対して、1%BSA含有のPBSで0.02nMに希釈した実施例4で作製した病理染色用粒子を、中性のpH環境(pH6.9~7.4)室温の条件下で3時間反応させた。
(ii)該反応後の検体スライドをPBSで洗浄した。 (2-3) Fluorescence labeling treatment Specimen slides subjected to secondary antibody treatment were subjected to fluorescence labeling treatment by immunostaining in the following procedures (i) to (ii).
(I) The pathological staining particles prepared in Example 4 diluted to 0.02 nM with PBS containing 1% BSA on the specimen slide were placed in a neutral pH environment (pH 6.9 to 7.4) at room temperature. The reaction was carried out for 3 hours under the conditions.
(Ii) The specimen slide after the reaction was washed with PBS.
(2-4)形態観察用染色処理
蛍光標識処理を行った検体スライドを以下の(i)~(ii)の手順で、形態観察染色処理(ヘマトキシリンーエオシン染色)を行った。(i)抗体により蛍光標識処理されたスライドをマイヤーヘマトキシリン液で5分間染色してヘマトキシリン染色を行った。その後、該スライドを45℃の流水で3分間洗浄した。
(ii)次に、1%エオシン液で5分間染色してエオシン染色を行い、染色スライドを作製した。当該形態観察染色処理後、10枚の染色スライドを以下の(i)~(ii)の手順で洗浄処理を行った。
(i)pHが1,2,3,4,5,6,7,8,9または10の10種の洗浄液を調製した。pHが1~6の洗浄液は、1Mの塩酸を希釈して調製した。pHが7の洗浄液としては、純水を用いた。pHが8~10の洗浄液は、28%アンモニア水溶液を希釈して調製した。
(ii)形態観察用染色処理を行った10枚の染色スライドをそれぞれ、常温で各洗浄液に10分間浸漬して、洗浄処理を行った。 (2-4) Staining Process for Morphological Observation The specimen slide subjected to the fluorescent labeling process was subjected to the morphological observation staining process (hematoxylin-eosin staining) according to the following procedures (i) to (ii). (I) The slide that was fluorescently labeled with the antibody was stained with Mayer's hematoxylin solution for 5 minutes to perform hematoxylin staining. The slide was then washed with running water at 45 ° C. for 3 minutes.
(Ii) Next, eosin staining was performed by staining with 1% eosin solution for 5 minutes to prepare a stained slide. After the morphological observation staining treatment, 10 staining slides were washed according to the following procedures (i) to (ii).
(I) Ten types of cleaning solutions having pH of 1,2,3,4,5,6,7,8,9 or 10 were prepared. A washing solution having a pH of 1 to 6 was prepared by diluting 1M hydrochloric acid. Pure water was used as the cleaning liquid having a pH of 7. A cleaning solution having a pH of 8 to 10 was prepared by diluting a 28% aqueous ammonia solution.
(Ii) Each of the 10 stained slides subjected to the staining process for morphology observation was immersed in each cleaning solution at room temperature for 10 minutes to perform the cleaning process.
蛍光標識処理を行った検体スライドを以下の(i)~(ii)の手順で、形態観察染色処理(ヘマトキシリンーエオシン染色)を行った。(i)抗体により蛍光標識処理されたスライドをマイヤーヘマトキシリン液で5分間染色してヘマトキシリン染色を行った。その後、該スライドを45℃の流水で3分間洗浄した。
(ii)次に、1%エオシン液で5分間染色してエオシン染色を行い、染色スライドを作製した。当該形態観察染色処理後、10枚の染色スライドを以下の(i)~(ii)の手順で洗浄処理を行った。
(i)pHが1,2,3,4,5,6,7,8,9または10の10種の洗浄液を調製した。pHが1~6の洗浄液は、1Mの塩酸を希釈して調製した。pHが7の洗浄液としては、純水を用いた。pHが8~10の洗浄液は、28%アンモニア水溶液を希釈して調製した。
(ii)形態観察用染色処理を行った10枚の染色スライドをそれぞれ、常温で各洗浄液に10分間浸漬して、洗浄処理を行った。 (2-4) Staining Process for Morphological Observation The specimen slide subjected to the fluorescent labeling process was subjected to the morphological observation staining process (hematoxylin-eosin staining) according to the following procedures (i) to (ii). (I) The slide that was fluorescently labeled with the antibody was stained with Mayer's hematoxylin solution for 5 minutes to perform hematoxylin staining. The slide was then washed with running water at 45 ° C. for 3 minutes.
(Ii) Next, eosin staining was performed by staining with 1% eosin solution for 5 minutes to prepare a stained slide. After the morphological observation staining treatment, 10 staining slides were washed according to the following procedures (i) to (ii).
(I) Ten types of cleaning solutions having pH of 1,2,3,4,5,6,7,8,9 or 10 were prepared. A washing solution having a pH of 1 to 6 was prepared by diluting 1M hydrochloric acid. Pure water was used as the cleaning liquid having a pH of 7. A cleaning solution having a pH of 8 to 10 was prepared by diluting a 28% aqueous ammonia solution.
(Ii) Each of the 10 stained slides subjected to the staining process for morphology observation was immersed in each cleaning solution at room temperature for 10 minutes to perform the cleaning process.
(脱水処理)
洗浄処理が行われた各染色スライドに対して、脱水エタノールに5分間浸漬した。この操作を4回繰り返し、脱水処理を行った。 (Dehydration treatment)
Each stained slide subjected to the washing treatment was immersed in dehydrated ethanol for 5 minutes. This operation was repeated 4 times to perform dehydration treatment.
洗浄処理が行われた各染色スライドに対して、脱水エタノールに5分間浸漬した。この操作を4回繰り返し、脱水処理を行った。 (Dehydration treatment)
Each stained slide subjected to the washing treatment was immersed in dehydrated ethanol for 5 minutes. This operation was repeated 4 times to perform dehydration treatment.
(溶媒置換処理)
脱水処理が行われた各染色スライドを、常温で2~10秒、キシレンに浸漬することで、溶媒置換処理を行った。この操作を4回繰り返した。 (Solvent replacement process)
Each dyed slide subjected to the dehydration treatment was immersed in xylene at room temperature for 2 to 10 seconds to perform a solvent replacement treatment. This operation was repeated 4 times.
脱水処理が行われた各染色スライドを、常温で2~10秒、キシレンに浸漬することで、溶媒置換処理を行った。この操作を4回繰り返した。 (Solvent replacement process)
Each dyed slide subjected to the dehydration treatment was immersed in xylene at room temperature for 2 to 10 seconds to perform a solvent replacement treatment. This operation was repeated 4 times.
(封入処理)
染色スライドを以下の(i)~(ii)の手順で、封入処理を行った。
(i)溶媒置換処理が行われた染色スライドを常温でエンテランニュー(メルク社)を滴下した後、カバーガラスを被せ、常温で10分間、風乾することで、封入処理を行った。
(ii)その後、シグナルの計測まで、封入処理が行われた染色スライドを遮光して保存した。 (Encapsulation processing)
The staining slide was encapsulated by the following procedures (i) to (ii).
(I) After the dyeing slide subjected to the solvent replacement treatment was dropped with Enteran New (Merck) at room temperature, it was covered with a cover glass and air-dried at room temperature for 10 minutes to perform an encapsulation treatment.
(Ii) Thereafter, the stained slide subjected to the encapsulation treatment was stored in the dark until the signal was measured.
染色スライドを以下の(i)~(ii)の手順で、封入処理を行った。
(i)溶媒置換処理が行われた染色スライドを常温でエンテランニュー(メルク社)を滴下した後、カバーガラスを被せ、常温で10分間、風乾することで、封入処理を行った。
(ii)その後、シグナルの計測まで、封入処理が行われた染色スライドを遮光して保存した。 (Encapsulation processing)
The staining slide was encapsulated by the following procedures (i) to (ii).
(I) After the dyeing slide subjected to the solvent replacement treatment was dropped with Enteran New (Merck) at room temperature, it was covered with a cover glass and air-dried at room temperature for 10 minutes to perform an encapsulation treatment.
(Ii) Thereafter, the stained slide subjected to the encapsulation treatment was stored in the dark until the signal was measured.
<蛍光画像の撮影および分析>は前記[0105]に記載の方法と同様に実施した。
<Fluorescence image capturing and analysis> was performed in the same manner as described in [0105] above.
実施例18~27の結果を表3に示す。pHが1~6の酸性の洗浄液を用いた場合、pHが7~10の中性またはアルカリ性の洗浄液を用いた場合に比べ、観察される病理染色用粒子の個数が多く、また病理染色用粒子の輝度のばらつき(CV)が小さいことが分かる。
Table 3 shows the results of Examples 18 to 27. When an acidic cleaning solution having a pH of 1 to 6 is used, a larger number of pathological staining particles are observed than when a neutral or alkaline cleaning solution having a pH of 7 to 10 is used. It can be seen that the luminance variation (CV) is small.
Claims (19)
- 下記一般式(1)で表わされる化合物を縮重合して粒子を製造する病理染色用粒子の製造方法。
- 前記式(1)において、R1の少なくとも2つはCH2OHである請求項1に記載の病理染色用粒子の製造方法。 The method for producing a particle for pathological staining according to claim 1, wherein in the formula (1), at least two of R 1 are CH 2 OH.
- 前記一般式(1)で表される化合物を縮重合して得られる粒子に、蛍光色素を添加、含有させる請求項1または2に記載の病理染色用粒子の製造方法。 The method for producing particles for pathological staining according to claim 1 or 2, wherein a fluorescent dye is added to and contained in particles obtained by condensation polymerization of the compound represented by the general formula (1).
- 前記蛍光色素の存在下において前記式(1)で表わされる化合物を縮重合して、蛍光色素を含有する粒子を製造する請求項1または2に記載の病理染色用粒子の製造方法。 The method for producing particles for pathological staining according to claim 1 or 2, wherein particles containing the fluorescent dye are produced by condensation polymerization of the compound represented by the formula (1) in the presence of the fluorescent dye.
- 前記蛍光色素はローダミンまたは芳香族系色素である請求項3または4に記載の病理染色用粒子の製造方法。 The method for producing particles for pathological staining according to claim 3 or 4, wherein the fluorescent dye is rhodamine or an aromatic dye.
- 前記式(1)で表わされる化合物を縮重合して得られた粒子に二官能アミンを反応させて、前記粒子の表面を、アミノ基を含む基で修飾する請求項1~5のいずれかに記載の病理染色用粒子の製造方法。 6. The particle obtained by condensation polymerization of the compound represented by the formula (1) is reacted with a bifunctional amine to modify the surface of the particle with a group containing an amino group. The manufacturing method of the particle | grains for pathological dyeing of description.
- 前記二官能アミンはメタンジアミンまたはポリエチレングリコールジアミンである請求項6に記載の病理染色用粒子の製造方法。 The method for producing a particle for pathological staining according to claim 6, wherein the bifunctional amine is methanediamine or polyethylene glycol diamine.
- 前記病理染色用粒子が蛍光体集積ナノ粒子であって、その平均粒子径が10nm~500nmである、請求項3~7のいずれかに記載の病理染色用粒子の製造方法。 The method for producing particles for pathological staining according to any one of claims 3 to 7, wherein the particles for pathological staining are phosphor-integrated nanoparticles, and the average particle diameter thereof is 10 nm to 500 nm.
- 下記一般式(1)で表わされる化合物の縮重合物を含有する粒子を有する病理染色用粒子。
- 前記式(1)において、R1の少なくとも2つはCH2OHである請求項9に記載の病理染色用粒子。 The pathological staining particle according to claim 9, wherein in the formula (1), at least two of R 1 are CH 2 OH.
- 前記病理染色用粒子が、一般式(1)で表される化合物の縮重合物を含有する粒子に、蛍光色素を含有させた粒子である請求項9または10に記載の病理染色用粒子。 The particle for pathological staining according to claim 9 or 10, wherein the particle for pathological staining is a particle in which a fluorescent dye is contained in a particle containing a polycondensate of the compound represented by the general formula (1).
- 前記蛍光色素がローダミンまたは芳香族系色素である請求項11に記載の病理染色用粒子。 The particle for pathological staining according to claim 11, wherein the fluorescent dye is rhodamine or an aromatic dye.
- 前記式(1)で表わされる化合物の縮重合物を含有する粒子の表面にアミノ基を含む基が存在する請求項9~12のいずれかに記載の病理染色用粒子。 The pathological staining particle according to any one of claims 9 to 12, wherein a group containing an amino group is present on the surface of the particle containing the condensation polymer of the compound represented by the formula (1).
- 前記粒子の表面に存在するアミノ基を含む基がメタンジアミンまたはポリエチレングリコールジアミンに由来する構造を有する請求項13に記載の病理染色用粒子。 The particle for pathological staining according to claim 13, wherein the group containing an amino group present on the surface of the particle has a structure derived from methanediamine or polyethylene glycol diamine.
- 前記病理染色用粒子が蛍光体集積ナノ粒子であり、その平均粒子径が10nm~500nmである、請求項9~14のいずれかに記載の病理染色用粒子。 The particle for pathological staining according to any one of claims 9 to 14, wherein the particle for pathological staining is a phosphor-integrated nanoparticle, and an average particle diameter thereof is 10 nm to 500 nm.
- 免疫染色法により、検体スライド上の組織切片に含まれる目的生体物質を、請求項9~15のいずれかに記載の病理染色用粒子で蛍光標識する処理(蛍光標識処理)、
前記蛍光標識処理された組織切片を形態観察用染色液で染色する処理(染色処理)、および
染色処理された組織切片を酸性水溶液で洗浄する処理(洗浄処理)を行う、染色スライドの洗浄方法。 A process of fluorescently labeling a target biological substance contained in a tissue section on a specimen slide with the pathological staining particles according to any one of claims 9 to 15 by an immunostaining method (fluorescence labeling process),
A method for washing a stained slide, comprising performing a process of staining the fluorescently labeled tissue section with a staining solution for morphology observation (staining process), and a process of cleaning the stained tissue section with an acidic aqueous solution (cleaning process). - 前記酸性水溶液のpHが2以上7未満である、請求項16に記載の染色スライドの洗浄方法。 The method for washing a stained slide according to claim 16, wherein the pH of the acidic aqueous solution is 2 or more and less than 7.
- 前記酸性水溶液のpHが3以上6.5以下である、請求項16または17に記載の染色スライドの洗浄方法。 The method for washing a stained slide according to claim 16 or 17, wherein the acidic aqueous solution has a pH of 3 or more and 6.5 or less.
- 前記染色液がヘマトキシリンおよび/またはエオジンより選択される、請求項16~18のいずれかに記載の染色スライドの洗浄方法。 The method for washing a staining slide according to any one of claims 16 to 18, wherein the staining solution is selected from hematoxylin and / or eosin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018507432A JP6806138B2 (en) | 2016-03-24 | 2017-03-24 | Manufacturing method of particles for pathological staining, particles for pathological staining and washing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-059909 | 2016-03-24 | ||
JP2016059909 | 2016-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017164355A1 true WO2017164355A1 (en) | 2017-09-28 |
Family
ID=59900570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/011943 WO2017164355A1 (en) | 2016-03-24 | 2017-03-24 | Method for producing particles for pathological staining use, particles for pathological staining use, and washing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6806138B2 (en) |
WO (1) | WO2017164355A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009168955A (en) * | 2008-01-11 | 2009-07-30 | Toyo Ink Mfg Co Ltd | Color composition for color filter |
WO2013035703A1 (en) * | 2011-09-09 | 2013-03-14 | コニカミノルタエムジー株式会社 | Biological substance detection method |
WO2016013541A1 (en) * | 2014-07-23 | 2016-01-28 | コニカミノルタ株式会社 | Labeling reagent containing a molecularly targeted drug |
-
2017
- 2017-03-24 WO PCT/JP2017/011943 patent/WO2017164355A1/en active Application Filing
- 2017-03-24 JP JP2018507432A patent/JP6806138B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009168955A (en) * | 2008-01-11 | 2009-07-30 | Toyo Ink Mfg Co Ltd | Color composition for color filter |
WO2013035703A1 (en) * | 2011-09-09 | 2013-03-14 | コニカミノルタエムジー株式会社 | Biological substance detection method |
WO2016013541A1 (en) * | 2014-07-23 | 2016-01-28 | コニカミノルタ株式会社 | Labeling reagent containing a molecularly targeted drug |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017164355A1 (en) | 2019-02-07 |
JP6806138B2 (en) | 2021-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7147724B2 (en) | Staining agent for tissue staining, method for producing staining agent for tissue staining, and tissue staining kit containing staining agent for tissue staining | |
JP6112169B2 (en) | Fluorescent label for detection of biological materials | |
JP5974892B2 (en) | Biological substance detection method | |
JP6296050B2 (en) | Resin particles for fluorescent labeling | |
JP6236881B2 (en) | Immunostaining method, fluorescent immunostaining pretreatment liquid and immunostaining kit | |
JP6241239B2 (en) | Fluorescent dye-encapsulated nanoparticles, method for producing fluorescent dye-encapsulated nanoparticles, fluorescent labeling agent, and fluorescent immunostaining method | |
JP6237194B2 (en) | Dyeing method | |
JP6286966B2 (en) | RESIN PARTICLE FOR FLUORESCENT LABELING, PROCESS FOR PRODUCING THE SAME, AND FLUORESCENT LABELING AGENT FOR IMMUNO STAINING CONTAINING THE SAME | |
JP6658330B2 (en) | How to prevent dissociation of fluorescent nanoparticles from tissue sections | |
JP6583011B2 (en) | Method for washing immunostained slides using acidic aqueous solution | |
WO2017164355A1 (en) | Method for producing particles for pathological staining use, particles for pathological staining use, and washing method | |
JP6524833B2 (en) | Method for encapsulating FISH or immunostaining slide using phosphor-accumulated nanoparticles | |
JP6834981B2 (en) | Fluorescent substance-accumulated nanoparticles and labeling agents using them | |
US20190033181A1 (en) | Staining agent for staining tissue, production method for staining agent for staining tissue and tissue staining kit including staining agent for staining tissue | |
WO2021230134A1 (en) | Image formation method | |
WO2022196203A1 (en) | Image formation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018507432 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17770395 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17770395 Country of ref document: EP Kind code of ref document: A1 |