WO2021186658A1 - Methanol production system and methanol production method - Google Patents

Methanol production system and methanol production method Download PDF

Info

Publication number
WO2021186658A1
WO2021186658A1 PCT/JP2020/012205 JP2020012205W WO2021186658A1 WO 2021186658 A1 WO2021186658 A1 WO 2021186658A1 JP 2020012205 W JP2020012205 W JP 2020012205W WO 2021186658 A1 WO2021186658 A1 WO 2021186658A1
Authority
WO
WIPO (PCT)
Prior art keywords
methanol
carbon monoxide
gas
methanol production
carbon dioxide
Prior art date
Application number
PCT/JP2020/012205
Other languages
French (fr)
Japanese (ja)
Inventor
晃平 吉川
篤 宇根本
杉政 昌俊
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2020/012205 priority Critical patent/WO2021186658A1/en
Publication of WO2021186658A1 publication Critical patent/WO2021186658A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/04Methanol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a methanol production system and a methanol production method.
  • Patent Document 1 The technique described in Patent Document 1 is known as a method for producing carbon monoxide from carbon dioxide and producing methanol using the produced carbon monoxide.
  • the method for producing hydrogen described in Patent Document 1 is selected from (a) a metal selected from one of a group of metals belonging to Group IIIb of the Periodic Table and a group of metals belonging to Group IVa, or a group of both.
  • Patent Document 1 Since the reaction for synthesizing methanol from carbon monoxide is an exothermic reaction, the methanol discharged from the methanol production equipment has heat. Therefore, the technique described in Patent Document 1, which does not disclose the treatment of the discharged methanol, has room for improvement in terms of thermal efficiency.
  • the problem to be solved by the present invention is to provide a methanol production system and a methanol production method capable of improving thermal efficiency.
  • the methanol production system of the present invention comprises a carbon monoxide production apparatus for producing carbon monoxide from a first raw material gas containing carbon dioxide, and a carbon monoxide-containing gas containing carbon monoxide produced by the carbon monoxide production apparatus. It is provided with a methanol production apparatus for producing methanol using the above, and a first heat exchanger for transferring the heat of the produced gas containing methanol produced by the methanol production apparatus to the first raw material gas.
  • a carbon monoxide production apparatus for producing carbon monoxide from a first raw material gas containing carbon dioxide
  • a carbon monoxide-containing gas containing carbon monoxide produced by the carbon monoxide production apparatus It is provided with a methanol production apparatus for producing methanol using the above, and a first heat exchanger for transferring the heat of the produced gas containing methanol produced by the methanol production apparatus to the first raw material gas.
  • the present invention is not limited to the following contents and the illustrated contents, and can be arbitrarily modified and carried out within a range that does not significantly impair the effects of the present invention.
  • the present invention can be implemented by combining different embodiments. In the following description, the same members will be designated by the same reference numerals in different embodiments, and redundant description will be omitted.
  • FIG. 1 is a system diagram showing the methanol production system 100 of the first embodiment.
  • the methanol production system 100 produces carbon monoxide using carbon dioxide, and produces methanol using the produced carbon monoxide.
  • the methanol production system 100 includes a compression device 1, a first heat exchanger 2, a carbon monoxide production device 3, a compression device 4, a methanol production device 5, and a methanol recovery device 6.
  • the compression device 1 compresses the first raw material gas containing carbon dioxide.
  • the pressure of the first raw material gas can be set to a pressure suitable for carbon monoxide production in the carbon monoxide production apparatus 3 described later (for example, 800 hPa or more and 1200 hPa or less).
  • the first raw material gas is, for example, mixed with carbon dioxide and hydrogen stored in a carbon dioxide tank and a hydrogen tank (neither shown), and then supplied to the compression device 1 through the first raw material gas system 21.
  • the first source gas further contains hydrogen.
  • Hydrogen can be produced, for example, by electrolyzing water using renewable energy.
  • hydrogen for example, hydrogen generated by reforming can be used to carry out a Fischer-Tropsch reaction, and surplus hydrogen at that time can also be used.
  • the first heat exchanger 2 transfers the heat of the generated gas containing methanol produced by the methanol production apparatus 5 (described later) to the first raw material gas.
  • the first heat exchanger 2 is connected to the compression device 1 by the first raw material gas system 21. Details will be described later, but since methanol is produced by an exothermic reaction in the methanol production apparatus 5, the produced gas containing the produced methanol has heat. Therefore, in the first heat exchanger 2, the heat of the generated gas is used for heating the first raw material gas.
  • the heating is preferably performed so that the temperature of the first raw material gas is, for example, 200 ° C. or higher and 250 ° C. or lower. If necessary, an auxiliary heating facility may be provided.
  • the carbon monoxide production apparatus 3 produces carbon monoxide from the first raw material gas.
  • the carbon monoxide production apparatus 3 is connected to the first heat exchanger 2 by the first raw material gas system 21.
  • the carbon monoxide-containing gas containing the produced carbon monoxide can be obtained by the carbon monoxide production apparatus 3.
  • the carbon monoxide production apparatus 3 will be described with reference to FIG.
  • FIG. 2 is a schematic view showing the carbon monoxide production apparatus 3.
  • the carbon monoxide production apparatus 3 includes a reaction apparatus 31 and a decompression apparatus 32.
  • the reaction device 31 includes a granular reverse shift catalyst 34 and a granular adsorbent 35 inside a cylindrical housing 33 having openings 33a and 33b.
  • the adsorbent 35 is an example of the water removing mechanism 36, which will be described in detail later.
  • the reverse shift catalyst 34 and the adsorbent 35 are shown with a gap for simplification of the illustration.
  • the reverse shift catalyst 34 exhibits catalytic activity at, for example, 550 ° C. or lower (preferably 500 ° C. or lower), and promotes the reverse shift reaction represented by the following reaction formula (1).
  • the reaction represented by the formula (1) is an endothermic reaction. CO 2 + H 2 ⁇ CO + H 2 O... Reaction equation (1) That is, the carbon monoxide production apparatus 3 includes a reverse shift catalyst 34 that exhibits catalytic activity at 550 ° C. or lower. By including the reverse shift catalyst, carbon monoxide can be produced from carbon dioxide at a relatively low temperature such as 550 ° C. or lower.
  • the reverse shift catalyst 34 preferably contains at least one element of Cu, Co, or Mn as an active ingredient. By having these elements, carbon monoxide can be selectively produced, and the reverse shift reaction can proceed efficiently.
  • the precursor of the active ingredient include nitrates, acetates, chlorides, hydroxides and the like of each element.
  • an impregnation method, a coprecipitation method, a kneading method, a mechanical alloying method, a vapor deposition method and the like can be considered.
  • the form of the active ingredient is preferably an oxide or a metal alone.
  • Examples of the method for obtaining the oxide of the active ingredient include firing in a gas atmosphere containing oxygen such as in the atmosphere.
  • Examples of the method for obtaining the active component of a simple substance include a method in which firing is performed in the atmosphere to form an oxide, and then a reduction treatment is performed in a gas atmosphere containing hydrogen.
  • the active ingredient may be filled in the catalytic reaction vessel in the oxide state, and hydrogen gas may be circulated and reduced before the reverse shift reaction to be changed to the metallic state. ..
  • the reverse shift catalyst 34 preferably further contains an oxide containing at least one element selected from Si, Al, Zr, and Ce as a carrier component in addition to the active ingredient.
  • oxides containing Ce in particular promote redox. Therefore, from the viewpoint of promoting the oxidation and reduction of the active ingredient and improving the catalytic performance, the carrier component preferably contains an oxide containing Ce.
  • the carrier component is an oxide containing Ce and an oxide containing rare earth elements such as Zr, Y, La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Tb and Lu. Is more preferable.
  • the combination of the oxide containing Ce and the oxide containing a rare earth element can further promote the redox reaction.
  • the active ingredient is preferably 0.1% by mass or more, more preferably 1% by mass or more, and the upper limit thereof is preferably 30% by mass or less, based on the carrier component. More preferably, it is 10% by mass or less.
  • the reaction temperature is, for example, 550 ° C. or lower, preferably 500 ° C. or lower, and the lower limit thereof is, for example, 200 ° C. or higher, preferably 300 ° C. or higher.
  • the reaction pressure is, for example, 800 hPa or more, preferably 900 hPa or more, and the upper limit thereof is, for example, 1200 hPa or less, preferably 1100 hPa or less.
  • the reverse shift catalyst 34 was prepared, and the catalytic activity of the reverse shift catalyst 34 was evaluated.
  • the specific surface area 100 m 2 / g or more powdered CeO 2 10 g, and the nitrate Cu aqueous solution was impregnated and dried so as to be 10% by mass with respect to CeO 2 by weight of metal Cu terms.
  • a reduction treatment was carried out at 500 ° C. for 1 hour in a hydrogen atmosphere.
  • the production rates were 5%, 25%, and 50%, respectively, and it was found that carbon monoxide was produced from carbon dioxide by using the reverse shift catalyst 34.
  • reaction conditions such as reaction temperature and reaction pressure differ depending on the catalyst used in the reaction that produces carbon monoxide. Therefore, the reaction conditions may be appropriately determined depending on the type of catalyst used.
  • the adsorbent 35 is an example of a water removing mechanism 36 that removes water generated together with carbon monoxide, and in the illustrated example, the adsorbent 35 adsorbs the generated water. Therefore, the carbon monoxide production apparatus 3 includes a water removing mechanism 36, and the water removing mechanism 36 is an adsorbent 35 in the illustrated example.
  • the water removal mechanism 36 By providing the water removal mechanism 36, the chemical equilibrium in the reaction formula (1) can be moved to the right and the amount of carbon monoxide produced can be increased.
  • water in the reaction system can be removed by adsorbing water by the adsorbent 35.
  • the adsorbent 35 preferably contains an oxide containing at least one element selected from, for example, Si and Al, and more preferably contains a zeolite containing Si and Al.
  • the reverse shift catalyst 34 and the adsorbent 35 are housed inside a cylindrical housing 33 having both ends open.
  • the first raw material gas passes through the gap between the reverse shift catalyst 34 and the adsorbent 35 inside the housing 33 toward the opening 33b on the other end side. It flows.
  • carbon dioxide and hydrogen in the first raw material gas react on the surface of the reverse shift catalyst 34 to generate carbon monoxide and water as in the above reaction formula (1).
  • the produced carbon monoxide is taken out as a carbon monoxide-containing gas together with unreacted carbon dioxide and hydrogen through the opening 33b on the other side.
  • the generated water is adsorbed on the adsorbent 35.
  • the adsorption of water to the adsorbent 35 is continued, the amount of water adsorbed is saturated and the water cannot be removed. As a result, it becomes difficult for the chemical equilibrium in the above reaction formula (1) to move to the right, and the carbon monoxide production rate decreases. Therefore, for example, when the production rate of carbon monoxide becomes equal to or lower than a predetermined production rate, the adsorbent 35 is regenerated. As a result, water is separated from the adsorbent 35, and the adsorbent 35 can adsorb water again.
  • Regeneration of the adsorbent 35 is performed using the decompression device 32. Specifically, after the distribution of the first raw material gas to the reaction device 31 is stopped, the inside of the reaction device 31 is sealed by closing a valve (not shown) connected to the openings 33a and 33b. In this state, the inside of the reaction device 31 is depressurized by driving the decompression device 32 that communicates with the inside of the reaction device 31. As a result, water is separated from the adsorbent 35 and taken out of the reactor 31. After sufficiently desorbing water, the first raw material gas is circulated to the reactor 31 again to produce carbon monoxide.
  • the water removing mechanism 36 for removing water generated together with carbon monoxide may be a separation membrane that separates the generated water from the reverse shift catalyst 34.
  • the separation membrane is, for example, a membrane made of zeolite.
  • the separation membrane may be used in place of the above-mentioned adsorbent 35, or may be used together with the adsorbent 35. That is, the water removing mechanism 36 is preferably at least one of the above-mentioned adsorbent 35 and the separation membrane.
  • the compression device 4 compresses the carbon monoxide-containing gas obtained by the carbon monoxide production device 3.
  • the compression device 4 is supplied to the carbon monoxide production device 3 by the carbon monoxide-containing gas system 22. Since the reaction proceeds at, for example, 550 ° C. or lower in the carbon monoxide production apparatus 3, the temperature of the carbon monoxide-containing gas discharged from the carbon monoxide production apparatus 3 is lowered to some extent. Therefore, the load on the compression device 4 to which the carbon monoxide-containing gas is supplied can be reduced. Hydrogen is appropriately supplied to the carbon monoxide-containing gas supplied to the compression device 4.
  • the methanol production apparatus 5 produces methanol using a carbon monoxide-containing gas containing carbon monoxide produced by the carbon monoxide production apparatus 3.
  • the methanol production apparatus 5 is connected to the compression apparatus 4 by the carbon monoxide-containing gas system 22.
  • the carbon monoxide-containing gas is heated as needed.
  • the produced methanol is taken out as a produced gas together with unreacted carbon monoxide, carbon dioxide and hydrogen.
  • the methanol production apparatus 5 includes a methanol production catalyst (not shown) in the illustrated example, and the following reaction formula (2), which is an exothermic reaction, proceeds. CO + 2H 2 ⁇ CH 3 OH... Reaction equation (2)
  • a catalyst composed of copper oxide-zinc oxide-alumina can be used as the methanol production catalyst.
  • the reaction conditions are not particularly limited, but when a methanol catalyst composed of copper oxide-zinc oxide-alumina is used, the temperature can be, for example, 150 ° C. or higher and 350 ° C. or lower, 5 MPa or higher and 15 MPa or lower.
  • the produced gas obtained by the methanol production apparatus 5 is supplied to the first heat exchanger 2 through the first produced gas system 23.
  • the methanol production reaction generated in the methanol production apparatus 5 is an exothermic reaction, and the produced gas discharged from the methanol production apparatus 5 has heat.
  • the carbon monoxide production reaction generated in the carbon monoxide production apparatus 3 is an endothermic reaction, it is preferable that the temperature of the first raw material gas supplied to the carbon monoxide production apparatus 3 is high. Therefore, in the methanol production system 100, the first heat exchanger 2 is installed in the front stage in the flow direction of the first raw material gas of the carbon monoxide production apparatus 3, and the temperature of the first raw material gas is raised by using the heat of the generated gas. NS. As a result, the heat of the generated gas discharged from the methanol production apparatus 5 can be effectively utilized, and the thermal efficiency of the methanol production system 100 can be improved.
  • the methanol recovery device 6 condenses and recovers the methanol in the produced gas by cooling the produced gas after heat transfer to the first raw material gas in the first heat exchanger 2.
  • the methanol recovery device 6 After providing the methanol recovery device 6 after the first heat exchanger 2, the amount of heat lost in the methanol production system 100 can be reduced by cooling the generated gas whose temperature has dropped due to the heat exchange in the first heat exchanger 2. .. Thereby, the thermal efficiency of the entire methanol production system 100 can be improved.
  • the methanol recovery device 6 is connected to the first heat exchanger 2 by the first production gas system 23.
  • the methanol recovery device 6 is, for example, a gas-liquid separator equipped with a cooler, and methanol is recovered as a liquid.
  • the recovered methanol can be used as a liquid fuel, a solvent, or the like.
  • other components in the generated gas that did not condense are discharged as residual gas.
  • Other components in the produced gas that did not condense are, for example, carbon monoxide, carbon dioxide, hydrogen, and the like.
  • FIG. 3 is a flowchart showing the methanol production method of the first embodiment (hereinafter, simply referred to as the production method of the first embodiment).
  • the production method of the first embodiment can be carried out in the methanol production system 100 shown in FIG. 1 above. Therefore, the manufacturing method of the first embodiment will be described with reference to FIG. 1 as appropriate.
  • the production method of the first embodiment includes carbon monoxide production step S1, methanol production step S2, and first heat exchange step S3.
  • the carbon monoxide production step S1, the methanol production step S2, and the first heat exchange step S3 are not performed individually but simultaneously, but for convenience of explanation and illustration. Therefore, each step is shown in order.
  • the carbon monoxide production step S1 is to produce carbon monoxide from the first raw material gas containing carbon dioxide.
  • the carbon monoxide production step S1 is performed by the carbon monoxide production apparatus 3.
  • the reaction conditions in the carbon monoxide production step S1 the contents described in the carbon monoxide production apparatus 3 can be applied.
  • Methanol production step S2 produces methanol using the carbon monoxide-containing gas containing carbon monoxide produced in the carbon monoxide production step S1.
  • the methanol production step S2 is performed by the methanol production apparatus 5.
  • the reaction conditions in the methanol production step S2 the contents described in the methanol production apparatus 5 can be applied.
  • the first heat exchange step S3 transfers the heat of the generated gas containing methanol produced in the methanol production step S2 to the first raw material gas.
  • the first heat exchange step S3 is performed by the first heat exchanger 2.
  • the heat generated in the exothermic reaction of methanol production can be used for the endothermic reaction of carbon monoxide production.
  • the amount of heat lost as a whole can be reduced and the thermal efficiency can be improved.
  • FIG. 4 is a system diagram showing the methanol production system 200 of the second embodiment.
  • the methanol production system 200 includes a merging system 25, a second heat exchanger 7, and a second production gas system 24, in addition to the configuration of the methanol production system 100 (FIG. 1).
  • the merging system 25 merges the residual gas after methanol recovery by the methanol recovery device 6 with the carbon monoxide-containing gas obtained by the carbon monoxide production device 3.
  • methanol can be produced by the methanol production apparatus 5 by using the unreacted components in the residual gas together with the carbon monoxide-containing gas.
  • the second heat exchanger 7 transfers the heat of the generated gas to the carbon monoxide-containing gas.
  • the second heat exchanger 7 is connected to each of the methanol production device 5 and the methanol recovery device 6 by the second production gas system 24.
  • the merging system 25 is connected to the upstream side of the second heat exchanger 7 in the flow direction of carbon monoxide gas.
  • the temperature of the carbon monoxide-containing gas decreases due to the confluence of the residual gas whose temperature has decreased due to cooling in the methanol recovery device 6. Therefore, the carbon monoxide-containing gas whose temperature has decreased can be raised by the second heat exchanger 7, and the raised carbon monoxide-containing gas can be supplied to the methanol production apparatus 5. As a result, the reaction using the carbon monoxide-containing gas in the methanol production apparatus 5 can be stabilized. At this time, the carbon monoxide-containing gas after merging may be supplementarily heated if necessary.
  • the flow rate ratio of the flow rate of the produced gas flowing through the first produced gas system 23 to the flow rate of the produced gas flowing through the second produced gas system 24 depends on, for example, the temperature of the produced gas, the residual gas, the carbon monoxide-containing gas, or the like. Can be changed as appropriate. Although not shown, the flow rate ratio can be changed by adjusting the opening degree of the valve provided in the first generated gas system 23 and the valve provided in the second generated gas system 24, for example.
  • FIG. 5 is a system diagram showing the methanol production system 300 of the third embodiment.
  • the methanol production system 300 includes a merging system 25, a third heat exchanger 8, and a third production gas system 26 in addition to the configuration of the methanol production system 100 (FIG. 1).
  • the third heat exchanger 8 transfers the heat of the produced gas obtained by the methanol production apparatus 5 to the residual gas after the methanol recovery by the methanol recovery apparatus 6.
  • the third heat exchanger 8 is connected to each of the methanol production device 5 and the methanol recovery device 6 by the third production gas system 26.
  • the residual gas may be supplementarily heated if necessary.
  • the temperature drop of the carbon monoxide-containing gas can be suppressed.
  • the carbon monoxide-containing gas after the residual gas merge can be supplied to the methanol production apparatus 5 as it is.
  • FIG. 6 is a system diagram showing the methanol production system 400 of the fourth embodiment.
  • the methanol production system 400 includes a carbon dioxide recovery device 9, a fourth production gas system 27, and a second raw material gas system 28, in addition to the configuration of the methanol production system 100 (FIG. 1).
  • the carbon dioxide recovery device 9 recovers carbon dioxide used for the first raw material gas from the second raw material gas containing carbon dioxide.
  • the carbon dioxide capture device 9 will be described with reference to FIG. 7.
  • FIG. 7 is a schematic view showing the carbon dioxide capture device 9.
  • the carbon dioxide recovery device 9 includes a recovery device 91, a desorption device 92, and a fourth heat exchanger 93.
  • the recovery device 91 recovers carbon dioxide into an alkaline aqueous solution by contacting a second raw material gas containing carbon dioxide with an alkaline aqueous solution. Carbon dioxide is absorbed by the alkaline aqueous solution by contact with the alkaline aqueous solution.
  • the second raw material gas is supplied to the recovery device 91 through the second raw material gas system 28.
  • the second raw material gas is, for example, combustion exhaust gas in a thermal power plant or the like.
  • the alkaline aqueous solution is, for example, an ammonia aqueous solution, an amine aqueous solution, or the like.
  • the recovery device 91 is, for example, an absorption tower.
  • the second raw material gas rises inside the absorption tower.
  • the carbon dioxide in the second raw material gas is absorbed by the alkaline aqueous solution.
  • the gas remaining after the absorption of carbon dioxide is discharged from the top of the absorption tower as off-gas.
  • the alkaline aqueous solution from which carbon dioxide has been recovered is supplied from the recovery device 91 to the desorption device 92 through the alkaline aqueous solution system 29.
  • the desorption device 92 uses the heat of the produced gas obtained in the methanol production device 5 (FIG. 6) to desorb carbon dioxide by heating an alkaline aqueous solution in which carbon dioxide is recovered.
  • the detachment device 92 is, for example, a regeneration tower.
  • the fourth heat exchanger 93 generates steam by transferring the heat of the produced gas supplied through the fourth produced gas system 27 to the water flowing through the heat medium system 30. Therefore, the desorption device 92 desorbs carbon dioxide by using the heat of the generated gas supplied through the fourth heat exchanger 93.
  • the fourth heat exchanger 93 is, for example, a reboiler.
  • the alkaline aqueous solution in which carbon dioxide is recovered is supplied from the recovery device 91 to the desorption device 92 through the alkaline aqueous solution system 29.
  • This alkaline aqueous solution is sprinkled inside the desorption device 92.
  • steam is generated by transferring the heat of the generated gas to the water extracted from the desorption device 92 through the heat medium system 30.
  • the generated steam is supplied to the desorption device 92 through the heat medium system 30, and is discharged into the desorption device 92 below the watering portion of the alkaline aqueous solution.
  • the alkaline aqueous solution sprinkled by the release of steam is heated, and carbon dioxide is desorbed from the alkaline aqueous solution.
  • the desorbed carbon dioxide is extracted from the top of the regeneration tower and merges with hydrogen to obtain the first raw material gas.
  • the alkaline aqueous solution after carbon dioxide desorption accumulates in the lower part of the regeneration tower.
  • a part of the accumulated alkaline aqueous solution is extracted through the heat medium system 30 and heated by the fourth heat exchanger 93. Further, another part of the accumulated alkaline aqueous solution is extracted through the alkaline aqueous solution system 29 and returned to the recovery device 91.
  • the carbon dioxide contained in the first raw material gas includes the carbon dioxide recovered by the carbon dioxide recovery device 9.
  • carbon dioxide used for producing carbon monoxide can be recovered from the second raw material gas by utilizing the heat of the produced gas obtained by the methanol producing apparatus 5.
  • the heat of the generated gas was used to change the liquid water into steam, but the heat of the generated gas is, for example, another heat exchanger (for example, illustrated). It may be used to further raise the temperature of the steam produced using the non-reboiler).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided is a methanol production system capable of improving thermal efficiency. This methanol production system (100) is characterized by comprising a carbon monoxide production device (3) which produces carbon monoxide from a first feed gas, which includes carbon dioxide, a methanol production device (5) which produces methanol from a carbon-monoxide-containing gas produced by the carbon monoxide production device (3), and a first heat exchanger (2), which conducts the heat possessed by a methanol-containing product gas produced by the methanol production device (5), to the first feed gas.

Description

メタノール製造システム及びメタノール製造方法Methanol production system and methanol production method
 本発明は、メタノール製造システム及びメタノール製造方法に関する。 The present invention relates to a methanol production system and a methanol production method.
 二酸化炭素から一酸化炭素を製造し、製造された一酸化炭素を用いてメタノールを製造する方法として、特許文献1に記載の技術が知られている。特許文献1に記載のメタノールの製造方法は、(a)周期律表第IIIb族に属する金属群及びIVa族に属する金属群のいずれか一方の群から選ばれた金属若しくは双方の群からそれぞれ選ばれた金属の酸化物と酸化亜鉛との複合体からなる担体又は酸化亜鉛単味からなる担体に周期律表VIII族のNi、Fe、Co、Ru、Rh、Pt及びPdと周期律表VI族のMo及びWとのうちから選ばれた少なくとも1種類の金属を担持させて得られる触媒の存在下で、二酸化炭素と水素とを含む原料ガスを反応させる反応工程と、(b)次いで、メタノール合成触媒を用い、水素化反応によりメタノールを合成する反応工程とを備えている。 The technique described in Patent Document 1 is known as a method for producing carbon monoxide from carbon dioxide and producing methanol using the produced carbon monoxide. The method for producing hydrogen described in Patent Document 1 is selected from (a) a metal selected from one of a group of metals belonging to Group IIIb of the Periodic Table and a group of metals belonging to Group IVa, or a group of both. A carrier composed of a composite of a metal oxide and zinc oxide or a carrier composed of a simple zinc oxide, and Ni, Fe, Co, Ru, Rh, Pt and Pd of Group VIII of the Periodic Table and Group VI of the Periodic Table. A reaction step of reacting a raw material gas containing carbon dioxide and hydrogen in the presence of a catalyst obtained by supporting at least one metal selected from Mo and W, and (b) then methanol. It is equipped with a reaction step of synthesizing methanol by a hydrogenation reaction using a synthesis catalyst.
特開平8-176034号公報(特に請求項1参照)Japanese Unexamined Patent Publication No. 8-176034 (see particular claim 1)
 一酸化炭素からメタノールを合成する反応は発熱反応であるため、メタノール製造装置から排出されるメタノールは熱を有する。このため、排出されたメタノールに対する処理について開示されていない特許文献1に記載の技術では、熱効率の点で向上の余地がある。 Since the reaction for synthesizing methanol from carbon monoxide is an exothermic reaction, the methanol discharged from the methanol production equipment has heat. Therefore, the technique described in Patent Document 1, which does not disclose the treatment of the discharged methanol, has room for improvement in terms of thermal efficiency.
 本発明が解決しようとする課題は、熱効率を向上可能なメタノール製造システム及びメタノール製造方法の提供である。 The problem to be solved by the present invention is to provide a methanol production system and a methanol production method capable of improving thermal efficiency.
 本発明のメタノール製造システムは、二酸化炭素を含む第1原料ガスから一酸化炭素を製造する一酸化炭素製造装置と、前記一酸化炭素製造装置で製造された一酸化炭素を含む一酸化炭素含有ガスを用いてメタノールを製造するメタノール製造装置と、前記メタノール製造装置で製造されたメタノールを含む生成ガスが有する熱を前記第1原料ガスに伝熱する第1熱交換器と、を備える。その他の解決手段は発明を実施するための形態において後記する。 The methanol production system of the present invention comprises a carbon monoxide production apparatus for producing carbon monoxide from a first raw material gas containing carbon dioxide, and a carbon monoxide-containing gas containing carbon monoxide produced by the carbon monoxide production apparatus. It is provided with a methanol production apparatus for producing methanol using the above, and a first heat exchanger for transferring the heat of the produced gas containing methanol produced by the methanol production apparatus to the first raw material gas. Other solutions will be described later in the form for carrying out the invention.
 本発明によれば、熱効率を向上可能なメタノール製造システム及びメタノール製造方法を提供できる。 According to the present invention, it is possible to provide a methanol production system and a methanol production method capable of improving thermal efficiency.
第1実施形態のメタノール製造システムを示す系統図である。It is a system diagram which shows the methanol production system of 1st Embodiment. 一酸化炭素製造装置を示す模式図である。It is a schematic diagram which shows the carbon monoxide production apparatus. 第1実施形態のメタノール製造方法を示すフローチャートである。It is a flowchart which shows the methanol production method of 1st Embodiment. 第2実施形態のメタノール製造システムを示す系統図である。It is a system diagram which shows the methanol production system of 2nd Embodiment. 第3実施形態のメタノール製造システムを示す系統図である。It is a system diagram which shows the methanol production system of 3rd Embodiment. 第4実施形態のメタノール製造システムを示す系統図である。It is a system diagram which shows the methanol production system of 4th Embodiment. 二酸化炭素回収装置を示す模式図である。It is a schematic diagram which shows the carbon dioxide capture apparatus.
 以下、本発明を実施するための形態(本実施形態)を説明する。ただし、本発明は以下の内容及び図示の内容になんら限定されず、本発明の効果を著しく損なわない範囲で任意に変形して実施できる。本発明は、異なる実施形態同士を組み合わせて実施できる。以下の記載において、異なる実施形態において同じ部材については同じ符号を付し、重複する説明は省略する。 Hereinafter, a mode for carrying out the present invention (the present embodiment) will be described. However, the present invention is not limited to the following contents and the illustrated contents, and can be arbitrarily modified and carried out within a range that does not significantly impair the effects of the present invention. The present invention can be implemented by combining different embodiments. In the following description, the same members will be designated by the same reference numerals in different embodiments, and redundant description will be omitted.
 図1は、第1実施形態のメタノール製造システム100を示す系統図である。メタノール製造システム100は、二酸化炭素を使用して一酸化炭素を製造し、製造した一酸化炭素を使用してメタノールを製造するものである。メタノール製造システム100は、圧縮装置1と、第1熱交換器2と、一酸化炭素製造装置3と、圧縮装置4と、メタノール製造装置5と、メタノール回収装置6とを備える。 FIG. 1 is a system diagram showing the methanol production system 100 of the first embodiment. The methanol production system 100 produces carbon monoxide using carbon dioxide, and produces methanol using the produced carbon monoxide. The methanol production system 100 includes a compression device 1, a first heat exchanger 2, a carbon monoxide production device 3, a compression device 4, a methanol production device 5, and a methanol recovery device 6.
 圧縮装置1は、二酸化炭素を含む第1原料ガスを圧縮するものである。第1原料ガスの圧縮により、第1原料ガスの圧力を、後記する一酸化炭素製造装置3での一酸化炭素製造に好適な圧力(例えば800hPa以上1200hPa以下)にすることができる。第1原料ガスは、例えば二酸化炭素タンク及び水素タンク(いずれも図示しない)に貯留された二酸化炭素及び水素が混合された後、第1原料ガス系統21を通じて圧縮装置1に供給される。 The compression device 1 compresses the first raw material gas containing carbon dioxide. By compressing the first raw material gas, the pressure of the first raw material gas can be set to a pressure suitable for carbon monoxide production in the carbon monoxide production apparatus 3 described later (for example, 800 hPa or more and 1200 hPa or less). The first raw material gas is, for example, mixed with carbon dioxide and hydrogen stored in a carbon dioxide tank and a hydrogen tank (neither shown), and then supplied to the compression device 1 through the first raw material gas system 21.
 二酸化炭素は、例えば、火力発電所、製鉄所、改質炉等において生じたものを使用できる。図示の例では、第1原料ガスは更に水素を含む。水素は、例えば、再生可能エネルギを使用した水の電気分解により生成できる。また、水素は、例えば、改質により生じた水素を使用してフィッシャー・トロプシュ反応を行い、その際の余剰の水素を使用することもできる。 As carbon dioxide, for example, carbon dioxide generated in a thermal power plant, a steel mill, a reforming furnace, etc. can be used. In the illustrated example, the first source gas further contains hydrogen. Hydrogen can be produced, for example, by electrolyzing water using renewable energy. Further, for hydrogen, for example, hydrogen generated by reforming can be used to carry out a Fischer-Tropsch reaction, and surplus hydrogen at that time can also be used.
 第1熱交換器2は、メタノール製造装置5(後記する)で製造されたメタノールを含む生成ガスが有する熱を、第1原料ガスに伝熱するものである。第1熱交換器2は、第1原料ガス系統21により圧縮装置1に接続される。詳細は後記するが、メタノール製造装置5では発熱反応によってメタノールが生成するため、生成したメタノールを含む生成ガスは熱を有する。そこで、第1熱交換器2では、生成ガスが有する熱が、第1原料ガスの加熱に使用される。加熱は、第1原料ガスの温度が例えば200℃以上250℃以下になる程度に行われることが好ましい。なお、必要に応じて補助的な加熱設備が備えられてもよい。 The first heat exchanger 2 transfers the heat of the generated gas containing methanol produced by the methanol production apparatus 5 (described later) to the first raw material gas. The first heat exchanger 2 is connected to the compression device 1 by the first raw material gas system 21. Details will be described later, but since methanol is produced by an exothermic reaction in the methanol production apparatus 5, the produced gas containing the produced methanol has heat. Therefore, in the first heat exchanger 2, the heat of the generated gas is used for heating the first raw material gas. The heating is preferably performed so that the temperature of the first raw material gas is, for example, 200 ° C. or higher and 250 ° C. or lower. If necessary, an auxiliary heating facility may be provided.
 一酸化炭素製造装置3は、第1原料ガスから一酸化炭素を製造するものである。一酸化炭素製造装置3は、第1原料ガス系統21により第1熱交換器2に接続される。一酸化炭素製造装置3により、生成した一酸化炭素を含む一酸化炭素含有ガスが得られる。一酸化炭素製造装置3について、図2を参照して説明する。 The carbon monoxide production apparatus 3 produces carbon monoxide from the first raw material gas. The carbon monoxide production apparatus 3 is connected to the first heat exchanger 2 by the first raw material gas system 21. The carbon monoxide-containing gas containing the produced carbon monoxide can be obtained by the carbon monoxide production apparatus 3. The carbon monoxide production apparatus 3 will be described with reference to FIG.
 図2は、一酸化炭素製造装置3を示す模式図である。一酸化炭素製造装置3は、反応装置31と、減圧装置32とを含む。反応装置31は、開口33a,33bを備える筒状の筐体33の内部に、粒状の逆シフト触媒34と、粒状の吸着材35とを含む。吸着材35は、詳細は後記するが、水除去機構36の一例である。図2では、図示の簡略化のために、逆シフト触媒34及び吸着材35は間隙を有して図示される。 FIG. 2 is a schematic view showing the carbon monoxide production apparatus 3. The carbon monoxide production apparatus 3 includes a reaction apparatus 31 and a decompression apparatus 32. The reaction device 31 includes a granular reverse shift catalyst 34 and a granular adsorbent 35 inside a cylindrical housing 33 having openings 33a and 33b. The adsorbent 35 is an example of the water removing mechanism 36, which will be described in detail later. In FIG. 2, the reverse shift catalyst 34 and the adsorbent 35 are shown with a gap for simplification of the illustration.
 逆シフト触媒34は、例えば550℃以下(好ましくは500℃以下)で触媒活性を示すものであり、以下の反応式(1)で示される逆シフト反応を促進するものである。式(1)で示される反応は、吸熱反応である。
 CO+H → CO+HO …反応式(1)
 即ち、一酸化炭素製造装置3は、550℃以下で触媒活性を示す逆シフト触媒34を含む。逆シフト触媒を含むことで、550℃以下のような比較的低温において、二酸化炭素から一酸化炭素を製造できる。
The reverse shift catalyst 34 exhibits catalytic activity at, for example, 550 ° C. or lower (preferably 500 ° C. or lower), and promotes the reverse shift reaction represented by the following reaction formula (1). The reaction represented by the formula (1) is an endothermic reaction.
CO 2 + H 2 → CO + H 2 O… Reaction equation (1)
That is, the carbon monoxide production apparatus 3 includes a reverse shift catalyst 34 that exhibits catalytic activity at 550 ° C. or lower. By including the reverse shift catalyst, carbon monoxide can be produced from carbon dioxide at a relatively low temperature such as 550 ° C. or lower.
 逆シフト触媒34は、Cu、Co、又はMnの少なくとも何れか1つの元素を活性成分として含むことが好ましい。これらの元素を有することで、一酸化炭素を選択的に製造でき、逆シフト反応を効率的に進行できる。活性成分の前駆体としては、各元素の硝酸塩、酢酸塩、塩化物、水酸化物等が挙げられる。これらの元素の添加方法としては、含浸法、共沈法、混練法、メカニカルアロイング法、蒸着法等が考えられる。 The reverse shift catalyst 34 preferably contains at least one element of Cu, Co, or Mn as an active ingredient. By having these elements, carbon monoxide can be selectively produced, and the reverse shift reaction can proceed efficiently. Examples of the precursor of the active ingredient include nitrates, acetates, chlorides, hydroxides and the like of each element. As a method for adding these elements, an impregnation method, a coprecipitation method, a kneading method, a mechanical alloying method, a vapor deposition method and the like can be considered.
 活性成分の形態としては、酸化物又は金属単体であることが好ましい。活性成分の酸化物を得る方法としては、大気下等の酸素を含むガス雰囲気下における焼成等が挙げられる。金属単体の活性成分を得る方法としては、大気下における焼成を行い、酸化物を形成した後に、水素を含むガス雰囲気下における還元処理を行う方法等が挙げられる。また、保管安定性の観点において、活性成分を酸化物の状態としたまま触媒反応容器に充填し、逆シフト反応を行う前に水素ガスを流通させて還元し、金属状態に変化させても良い。 The form of the active ingredient is preferably an oxide or a metal alone. Examples of the method for obtaining the oxide of the active ingredient include firing in a gas atmosphere containing oxygen such as in the atmosphere. Examples of the method for obtaining the active component of a simple substance include a method in which firing is performed in the atmosphere to form an oxide, and then a reduction treatment is performed in a gas atmosphere containing hydrogen. Further, from the viewpoint of storage stability, the active ingredient may be filled in the catalytic reaction vessel in the oxide state, and hydrogen gas may be circulated and reduced before the reverse shift reaction to be changed to the metallic state. ..
 逆シフト触媒34は、活性成分に加えて更に、担体成分としてSi、Al、Zr、Ceから選ばれる少なくとも1種類の元素を含む酸化物を含むことが好ましい。これらの担体成分の中でも特にCeを含む酸化物は酸化還元を促進する。このため、活性成分の酸化及び還元を促進し、触媒性能の向上の観点から、担体成分はCeを含む酸化物を含むことが好ましい。 The reverse shift catalyst 34 preferably further contains an oxide containing at least one element selected from Si, Al, Zr, and Ce as a carrier component in addition to the active ingredient. Among these carrier components, oxides containing Ce in particular promote redox. Therefore, from the viewpoint of promoting the oxidation and reduction of the active ingredient and improving the catalytic performance, the carrier component preferably contains an oxide containing Ce.
 担体成分はCeを含む酸化物と、更にZr、Y、La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Tb、Lu等の希土類元素を含む酸化物であることがより好ましい。Ceを含む酸化物と希土類元素を含む酸化物との組み合わせにより、酸化還元反応を更に促進できる。 The carrier component is an oxide containing Ce and an oxide containing rare earth elements such as Zr, Y, La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Tb and Lu. Is more preferable. The combination of the oxide containing Ce and the oxide containing a rare earth element can further promote the redox reaction.
 活性成分と担体成分との組成比としては、担体成分に対して活性成分が好ましくは0.1質量%以上、より好ましくは1質量%以上、また、その上限は、好ましくは30質量%以下、より好ましくは10重量%以下である。 As for the composition ratio of the active ingredient and the carrier component, the active ingredient is preferably 0.1% by mass or more, more preferably 1% by mass or more, and the upper limit thereof is preferably 30% by mass or less, based on the carrier component. More preferably, it is 10% by mass or less.
 上記の逆シフト触媒34を用いる場合、反応温度は上記のように例えば550℃以下、好ましくは500℃以下、その下限は、例えば200℃以上、好ましくは300℃以上である。反応圧力は、例えば800hPa以上、好ましくは900hPa以上、その上限は、例えば1200hPa以下、好ましくは1100hPa以下である。 When the above-mentioned reverse shift catalyst 34 is used, the reaction temperature is, for example, 550 ° C. or lower, preferably 500 ° C. or lower, and the lower limit thereof is, for example, 200 ° C. or higher, preferably 300 ° C. or higher. The reaction pressure is, for example, 800 hPa or more, preferably 900 hPa or more, and the upper limit thereof is, for example, 1200 hPa or less, preferably 1100 hPa or less.
 ここで、上記逆シフト触媒34を作製し、逆シフト触媒34の触媒活性を評価した。比表面積が100m/g以上の粉状CeO 10gに、金属Cu換算でCeO重量に対し10質量%となるよう硝酸Cu水溶液を含浸及び乾燥させた。その後、大気雰囲気下、500℃にて1時間焼成した後、水素雰囲気下、500℃にて1時間還元処理を実施した。そして、作製した逆シフト触媒34を用いて、反応温度200℃、300℃、500℃のそれぞれにおいて、一酸化炭素の生成率(=出口CO/入り口CO。モル比)を算出した。この結果、生成率はそれぞれ5%、25%、50%であり、上記逆シフト触媒34の使用により、二酸化炭素から一酸化炭素が生成することがわかった。 Here, the reverse shift catalyst 34 was prepared, and the catalytic activity of the reverse shift catalyst 34 was evaluated. The specific surface area of 100 m 2 / g or more powdered CeO 2 10 g, and the nitrate Cu aqueous solution was impregnated and dried so as to be 10% by mass with respect to CeO 2 by weight of metal Cu terms. Then, after firing at 500 ° C. for 1 hour in an air atmosphere, a reduction treatment was carried out at 500 ° C. for 1 hour in a hydrogen atmosphere. Then, using the prepared reverse shift catalyst 34, the carbon monoxide production rate (= outlet CO / inlet CO. Mole ratio) was calculated at each of the reaction temperatures of 200 ° C., 300 ° C., and 500 ° C. As a result, the production rates were 5%, 25%, and 50%, respectively, and it was found that carbon monoxide was produced from carbon dioxide by using the reverse shift catalyst 34.
 また、活性成分をCo又はMnに変えたこと以外は同様にして生成率を測定したところ、Coの場合には生成率はそれぞれ3%、10%、50%、Mnの場合には生成率はそれぞれ1%、3%、50%であった。従って、Cu、Co、又はMnの少なくとも何れか1つの元素を活性成分として含む逆シフト触媒34により、例えば550℃以下という温度で一酸化炭素を製造できることがわかった。 Moreover, when the production rate was measured in the same manner except that the active ingredient was changed to Co or Mn, the production rate was 3%, 10% and 50% in the case of Co, respectively, and the production rate was in the case of Mn. It was 1%, 3% and 50%, respectively. Therefore, it was found that carbon monoxide can be produced, for example, at a temperature of 550 ° C. or lower by using a reverse shift catalyst 34 containing at least one element of Cu, Co, or Mn as an active ingredient.
 なお、一酸化炭素を生じさせる反応に使用する触媒により、反応温度、反応圧力等の反応条件は異なる。このため、反応条件は、使用する触媒の種類によって適宜決定すればよい。 The reaction conditions such as reaction temperature and reaction pressure differ depending on the catalyst used in the reaction that produces carbon monoxide. Therefore, the reaction conditions may be appropriately determined depending on the type of catalyst used.
 吸着材35は、一酸化炭素とともに生成した水を除去する水除去機構36の一例であり、図示の例では、生成した水を吸着するものである。従って、一酸化炭素製造装置3は水除去機構36を備えており、水除去機構36は図示の例では吸着材35である。水除去機構36を備えることで、上記反応式(1)における化学平衡を右に移動させて、一酸化炭素の生成量を増加できる。吸着材35を備えることで、吸着材35による水の吸着により反応系の水を除去できる。 The adsorbent 35 is an example of a water removing mechanism 36 that removes water generated together with carbon monoxide, and in the illustrated example, the adsorbent 35 adsorbs the generated water. Therefore, the carbon monoxide production apparatus 3 includes a water removing mechanism 36, and the water removing mechanism 36 is an adsorbent 35 in the illustrated example. By providing the water removal mechanism 36, the chemical equilibrium in the reaction formula (1) can be moved to the right and the amount of carbon monoxide produced can be increased. By providing the adsorbent 35, water in the reaction system can be removed by adsorbing water by the adsorbent 35.
 吸着材35は、例えばSi、Alから選ばれる少なくとも1種類の元素を含む酸化物を含むことが好ましく、中でも、Si及びAlを含むゼオライトを含むことが好ましい。 The adsorbent 35 preferably contains an oxide containing at least one element selected from, for example, Si and Al, and more preferably contains a zeolite containing Si and Al.
 逆シフト触媒34及び吸着材35は、両端が開口した筒状の筐体33の内部に収容される。一端側の開口33aから第1原料ガスが供給されると、第1原料ガスは、筐体33の内部を逆シフト触媒34及び吸着材35のすき間を通って他端側の開口33bに向かって流れる。このとき、逆シフト触媒34の表面で第1原料ガス中の二酸化炭素及び水素が反応し、上記反応式(1)のように一酸化炭素及び水が生成する。生成した一酸化炭素は、未反応の二酸化炭素及び水素とともに、一酸化炭素含有ガスとして他方側の開口33bを通じて取り出される。一方で、生成した水は、吸着材35に吸着される。 The reverse shift catalyst 34 and the adsorbent 35 are housed inside a cylindrical housing 33 having both ends open. When the first raw material gas is supplied from the opening 33a on one end side, the first raw material gas passes through the gap between the reverse shift catalyst 34 and the adsorbent 35 inside the housing 33 toward the opening 33b on the other end side. It flows. At this time, carbon dioxide and hydrogen in the first raw material gas react on the surface of the reverse shift catalyst 34 to generate carbon monoxide and water as in the above reaction formula (1). The produced carbon monoxide is taken out as a carbon monoxide-containing gas together with unreacted carbon dioxide and hydrogen through the opening 33b on the other side. On the other hand, the generated water is adsorbed on the adsorbent 35.
 吸着材35への水の吸着が継続されると、水の吸着量が飽和して水が除去されなくなる。この結果、上記反応式(1)における化学平衡が右に移動し難くなり、一酸化炭素の生成率が減少する。そこで、例えば一酸化炭素の生成率が所定の生成率以下になったときに、吸着材35の再生が行われる。これにより、吸着材35から水が脱離し、再度吸着材35が水を吸着できる。 If the adsorption of water to the adsorbent 35 is continued, the amount of water adsorbed is saturated and the water cannot be removed. As a result, it becomes difficult for the chemical equilibrium in the above reaction formula (1) to move to the right, and the carbon monoxide production rate decreases. Therefore, for example, when the production rate of carbon monoxide becomes equal to or lower than a predetermined production rate, the adsorbent 35 is regenerated. As a result, water is separated from the adsorbent 35, and the adsorbent 35 can adsorb water again.
 吸着材35の再生は、減圧装置32を使用して行われる。具体的には、第1原料ガスの反応装置31への流通停止後、開口33a,33bに繋がる弁(図示しない)の閉弁により、反応装置31の内部が密閉される。この状態で、反応装置31の内部と連通する減圧装置32の駆動により、反応装置31の内部が減圧される。これにより、吸着材35から水が脱離し、反応装置31の外部に取り出される。十分に水を脱離させた後、再度第1原料ガスの反応装置31への流通が行われ、一酸化炭素が製造される。 Regeneration of the adsorbent 35 is performed using the decompression device 32. Specifically, after the distribution of the first raw material gas to the reaction device 31 is stopped, the inside of the reaction device 31 is sealed by closing a valve (not shown) connected to the openings 33a and 33b. In this state, the inside of the reaction device 31 is depressurized by driving the decompression device 32 that communicates with the inside of the reaction device 31. As a result, water is separated from the adsorbent 35 and taken out of the reactor 31. After sufficiently desorbing water, the first raw material gas is circulated to the reactor 31 again to produce carbon monoxide.
 なお、一酸化炭素とともに生成した水を除去する水除去機構36は、図示はしないが、生成した水を逆シフト触媒34から分離する分離膜であってもよい。分離膜は例えばゼオライトにより構成された膜である。分離膜は、上記の吸着材35に代えて使用されてもよく、吸着材35とともに使用されてもよい。即ち、水除去機構36は、上記の吸着材35又は分離膜の少なくともいずれか一方であることが好ましい。 Although not shown, the water removing mechanism 36 for removing water generated together with carbon monoxide may be a separation membrane that separates the generated water from the reverse shift catalyst 34. The separation membrane is, for example, a membrane made of zeolite. The separation membrane may be used in place of the above-mentioned adsorbent 35, or may be used together with the adsorbent 35. That is, the water removing mechanism 36 is preferably at least one of the above-mentioned adsorbent 35 and the separation membrane.
 図1に戻って、圧縮装置4は、一酸化炭素製造装置3により得られた一酸化炭素含有ガスを圧縮するものである。圧縮装置4は、一酸化炭素含有ガス系統22により一酸化炭素製造装置3に供給される。一酸化炭素製造装置3において例えば550℃以下で反応が進行するため、一酸化炭素製造装置3から排出される一酸化炭素含有ガスの温度はある程度低くなる。このため、一酸化炭素含有ガスが供給される圧縮装置4の負荷を低減できる。なお、圧縮装置4に供給される一酸化炭素含有ガスには、適宜水素が供給される。 Returning to FIG. 1, the compression device 4 compresses the carbon monoxide-containing gas obtained by the carbon monoxide production device 3. The compression device 4 is supplied to the carbon monoxide production device 3 by the carbon monoxide-containing gas system 22. Since the reaction proceeds at, for example, 550 ° C. or lower in the carbon monoxide production apparatus 3, the temperature of the carbon monoxide-containing gas discharged from the carbon monoxide production apparatus 3 is lowered to some extent. Therefore, the load on the compression device 4 to which the carbon monoxide-containing gas is supplied can be reduced. Hydrogen is appropriately supplied to the carbon monoxide-containing gas supplied to the compression device 4.
 メタノール製造装置5は、一酸化炭素製造装置3で製造された一酸化炭素を含む一酸化炭素含有ガスを用いてメタノールを製造するものである。メタノール製造装置5は、一酸化炭素含有ガス系統22により圧縮装置4に接続される。一酸化炭素含有ガスは、必要に応じて加熱される。生成したメタノールは、未反応の一酸化炭素、二酸化炭素及び水素とともに生成ガスとして取り出される。メタノール製造装置5は、図示の例ではメタノール製造触媒(図示しない)を備え、発熱反応である以下の反応式(2)が進行する。
 CO+2H→CHOH …反応式(2)
The methanol production apparatus 5 produces methanol using a carbon monoxide-containing gas containing carbon monoxide produced by the carbon monoxide production apparatus 3. The methanol production apparatus 5 is connected to the compression apparatus 4 by the carbon monoxide-containing gas system 22. The carbon monoxide-containing gas is heated as needed. The produced methanol is taken out as a produced gas together with unreacted carbon monoxide, carbon dioxide and hydrogen. The methanol production apparatus 5 includes a methanol production catalyst (not shown) in the illustrated example, and the following reaction formula (2), which is an exothermic reaction, proceeds.
CO + 2H 2 → CH 3 OH… Reaction equation (2)
 メタノール製造触媒は、例えば、酸化銅-酸化亜鉛-アルミナにより構成される触媒を使用できる。また、反応条件は特に制限されないが、酸化銅-酸化亜鉛-アルミナにより構成されるメタノール触媒を使用する場合、例えば150℃以上350℃以下、5MPa以上15MPa以下にできる。 As the methanol production catalyst, for example, a catalyst composed of copper oxide-zinc oxide-alumina can be used. The reaction conditions are not particularly limited, but when a methanol catalyst composed of copper oxide-zinc oxide-alumina is used, the temperature can be, for example, 150 ° C. or higher and 350 ° C. or lower, 5 MPa or higher and 15 MPa or lower.
 メタノール製造装置5で得られた生成ガスは、第1生成ガス系統23を通じ、第1熱交換器2に供給される。メタノール製造装置5で生じるメタノール生成反応が発熱反応であり、メタノール製造装置5から排出される生成ガスは熱を有する。一方で、上記の一酸化炭素製造装置3で生じる一酸化炭素生成反応は吸熱反応であるから、一酸化炭素製造装置3に供給される第1原料ガスの温度は高いことが好ましい。そこで、メタノール製造システム100では、一酸化炭素製造装置3の第1原料ガス流れ方向で前段に第1熱交換器2が設置され、生成ガスが有する熱を用いて第1原料ガスが昇温される。これにより、メタノール製造装置5から排出された生成ガスの熱を有効利用でき、メタノール製造システム100の熱効率を向上できる。 The produced gas obtained by the methanol production apparatus 5 is supplied to the first heat exchanger 2 through the first produced gas system 23. The methanol production reaction generated in the methanol production apparatus 5 is an exothermic reaction, and the produced gas discharged from the methanol production apparatus 5 has heat. On the other hand, since the carbon monoxide production reaction generated in the carbon monoxide production apparatus 3 is an endothermic reaction, it is preferable that the temperature of the first raw material gas supplied to the carbon monoxide production apparatus 3 is high. Therefore, in the methanol production system 100, the first heat exchanger 2 is installed in the front stage in the flow direction of the first raw material gas of the carbon monoxide production apparatus 3, and the temperature of the first raw material gas is raised by using the heat of the generated gas. NS. As a result, the heat of the generated gas discharged from the methanol production apparatus 5 can be effectively utilized, and the thermal efficiency of the methanol production system 100 can be improved.
 メタノール回収装置6は、第1熱交換器2における第1原料ガスへの伝熱後の生成ガスの冷却により、生成ガス中のメタノールを凝縮させて回収するものである。第1熱交換器2の後段にメタノール回収装置6を備えることで、第1熱交換器2での熱交換により温度が低下した生成ガスの冷却により、メタノール製造システム100において失われる熱量を減少できる。これにより、メタノール製造システム100全体での熱効率を向上できる。 The methanol recovery device 6 condenses and recovers the methanol in the produced gas by cooling the produced gas after heat transfer to the first raw material gas in the first heat exchanger 2. By providing the methanol recovery device 6 after the first heat exchanger 2, the amount of heat lost in the methanol production system 100 can be reduced by cooling the generated gas whose temperature has dropped due to the heat exchange in the first heat exchanger 2. .. Thereby, the thermal efficiency of the entire methanol production system 100 can be improved.
 メタノール回収装置6は、第1生成ガス系統23により第1熱交換器2に接続される。メタノール回収装置6は、いずれも図示しないが例えば冷却器を備えた気液分離器であり、メタノールは液体として回収される。回収したメタノールは、液体燃料、溶媒等に使用できる。一方で、凝縮しなかった生成ガス中の他成分は残ガスとして排出される。なお、凝縮しなかった生成ガス中の他成分は、例えば、一酸化炭素、二酸化炭素及び水素等である。 The methanol recovery device 6 is connected to the first heat exchanger 2 by the first production gas system 23. Although not shown, the methanol recovery device 6 is, for example, a gas-liquid separator equipped with a cooler, and methanol is recovered as a liquid. The recovered methanol can be used as a liquid fuel, a solvent, or the like. On the other hand, other components in the generated gas that did not condense are discharged as residual gas. Other components in the produced gas that did not condense are, for example, carbon monoxide, carbon dioxide, hydrogen, and the like.
 図3は、第1実施形態のメタノール製造方法(以下、単に第1実施形態の製造方法という)を示すフローチャートである。第1実施形態の製造方法は、上記の図1に示したメタノール製造システム100において実行できる。そこで、図1を適宜併せて参照しながら、第1実施形態の製造方法を説明する。 FIG. 3 is a flowchart showing the methanol production method of the first embodiment (hereinafter, simply referred to as the production method of the first embodiment). The production method of the first embodiment can be carried out in the methanol production system 100 shown in FIG. 1 above. Therefore, the manufacturing method of the first embodiment will be described with reference to FIG. 1 as appropriate.
 第1実施形態の製造方法は、一酸化炭素製造ステップS1と、メタノール製造ステップS2と、第1熱交換ステップS3とを含む。なお、第1実施形態の製造方法では、一酸化炭素製造ステップS1と、メタノール製造ステップS2と、第1熱交換ステップS3とが個別に行われるのではなく同時に行われるが、説明及び図示の便宜のため、各ステップを順番に図示している。 The production method of the first embodiment includes carbon monoxide production step S1, methanol production step S2, and first heat exchange step S3. In the production method of the first embodiment, the carbon monoxide production step S1, the methanol production step S2, and the first heat exchange step S3 are not performed individually but simultaneously, but for convenience of explanation and illustration. Therefore, each step is shown in order.
 一酸化炭素製造ステップS1は、二酸化炭素を含む第1原料ガスから一酸化炭素を製造するものである。一酸化炭素製造ステップS1は、一酸化炭素製造装置3によって行われる。一酸化炭素製造ステップS1における反応条件は、一酸化炭素製造装置3において説明した内容を適用できる。 The carbon monoxide production step S1 is to produce carbon monoxide from the first raw material gas containing carbon dioxide. The carbon monoxide production step S1 is performed by the carbon monoxide production apparatus 3. As the reaction conditions in the carbon monoxide production step S1, the contents described in the carbon monoxide production apparatus 3 can be applied.
 メタノール製造ステップS2は、一酸化炭素製造ステップS1で製造された一酸化炭素を含む一酸化炭素含有ガスを用いてメタノールを製造するものである。メタノール製造ステップS2は、メタノール製造装置5によって行われる。メタノール製造ステップS2における反応条件は、メタノール製造装置5において説明した内容を適用できる。 Methanol production step S2 produces methanol using the carbon monoxide-containing gas containing carbon monoxide produced in the carbon monoxide production step S1. The methanol production step S2 is performed by the methanol production apparatus 5. As the reaction conditions in the methanol production step S2, the contents described in the methanol production apparatus 5 can be applied.
 第1熱交換ステップS3は、メタノール製造ステップS2で製造されたメタノールを含む生成ガスが有する熱を第1原料ガスに伝熱するものである。第1熱交換ステップS3は、第1熱交換器2によって行われる。 The first heat exchange step S3 transfers the heat of the generated gas containing methanol produced in the methanol production step S2 to the first raw material gas. The first heat exchange step S3 is performed by the first heat exchanger 2.
 メタノール製造システム100及び第1実施形態の製造方法によれば、発熱反応であるメタノール製造において生じた熱を、吸熱反応である一酸化炭素製造に使用できる。これにより、全体として失われる熱量を削減し、熱効率を向上できる。 According to the methanol production system 100 and the production method of the first embodiment, the heat generated in the exothermic reaction of methanol production can be used for the endothermic reaction of carbon monoxide production. As a result, the amount of heat lost as a whole can be reduced and the thermal efficiency can be improved.
 図4は、第2実施形態のメタノール製造システム200を示す系統図である。メタノール製造システム200は、メタノール製造システム100(図1)の構成に加え、合流系統25、第2熱交換器7及び第2生成ガス系統24を備える。 FIG. 4 is a system diagram showing the methanol production system 200 of the second embodiment. The methanol production system 200 includes a merging system 25, a second heat exchanger 7, and a second production gas system 24, in addition to the configuration of the methanol production system 100 (FIG. 1).
 合流系統25は、メタノール回収装置6でのメタノール回収後の残ガスを、一酸化炭素製造装置3で得られた一酸化炭素含有ガスに合流させるものである。合流系統25を備えることで、残ガス中の未反応成分を一酸化炭素含有ガスとともに使用して、メタノール製造装置5でメタノールを製造できる。 The merging system 25 merges the residual gas after methanol recovery by the methanol recovery device 6 with the carbon monoxide-containing gas obtained by the carbon monoxide production device 3. By providing the merging system 25, methanol can be produced by the methanol production apparatus 5 by using the unreacted components in the residual gas together with the carbon monoxide-containing gas.
 第2熱交換器7は、生成ガスが有する熱を一酸化炭素含有ガスにも伝熱するものである。第2熱交換器7は、メタノール製造装置5及びメタノール回収装置6のそれぞれに対し、第2生成ガス系統24により接続される。上記の合流系統25は、一酸化炭素ガスの流れ方向において第2熱交換器7の上流側に接続される。 The second heat exchanger 7 transfers the heat of the generated gas to the carbon monoxide-containing gas. The second heat exchanger 7 is connected to each of the methanol production device 5 and the methanol recovery device 6 by the second production gas system 24. The merging system 25 is connected to the upstream side of the second heat exchanger 7 in the flow direction of carbon monoxide gas.
 一酸化炭素含有ガスの温度は、メタノール回収装置6での冷却によって温度が低下した残ガスの合流により、低下する。このため、温度が低下した一酸化炭素含有ガスを第2熱交換器7によって昇温でき、昇温した一酸化炭素含有ガスをメタノール製造装置5に供給できる。この結果、メタノール製造装置5での一酸化炭素含有ガスを用いた反応を安定化できる。このとき、合流後の一酸化炭素含有ガスは、必要に応じて補助的に加熱されてもよい。 The temperature of the carbon monoxide-containing gas decreases due to the confluence of the residual gas whose temperature has decreased due to cooling in the methanol recovery device 6. Therefore, the carbon monoxide-containing gas whose temperature has decreased can be raised by the second heat exchanger 7, and the raised carbon monoxide-containing gas can be supplied to the methanol production apparatus 5. As a result, the reaction using the carbon monoxide-containing gas in the methanol production apparatus 5 can be stabilized. At this time, the carbon monoxide-containing gas after merging may be supplementarily heated if necessary.
 第1生成ガス系統23を流れる生成ガスの流量と、第2生成ガス系統24を流れる生成ガスの流量との流量比は、例えば、生成ガス、残ガス及び一酸化炭素含有ガス等の温度に応じて適宜変更できる。流量比の変更は、例えば、いずれも図示しないが、第1生成ガス系統23に備えられた弁、及び、第2生成ガス系統24に備えられた弁の開度調整により行うことができる。 The flow rate ratio of the flow rate of the produced gas flowing through the first produced gas system 23 to the flow rate of the produced gas flowing through the second produced gas system 24 depends on, for example, the temperature of the produced gas, the residual gas, the carbon monoxide-containing gas, or the like. Can be changed as appropriate. Although not shown, the flow rate ratio can be changed by adjusting the opening degree of the valve provided in the first generated gas system 23 and the valve provided in the second generated gas system 24, for example.
 図5は、第3実施形態のメタノール製造システム300を示す系統図である。メタノール製造システム300は、メタノール製造システム100(図1)の構成に加え、合流系統25、第3熱交換器8及び第3生成ガス系統26を備える。 FIG. 5 is a system diagram showing the methanol production system 300 of the third embodiment. The methanol production system 300 includes a merging system 25, a third heat exchanger 8, and a third production gas system 26 in addition to the configuration of the methanol production system 100 (FIG. 1).
 第3熱交換器8は、メタノール製造装置5で得られた生成ガスが有する熱を、メタノール回収装置6でのメタノール回収後の残ガスに伝熱するものである。第3熱交換器8は、メタノール製造装置5及びメタノール回収装置6のそれぞれに対し、第3生成ガス系統26により接続される。残ガスは、必要に応じて補助的に加熱されてもよい。 The third heat exchanger 8 transfers the heat of the produced gas obtained by the methanol production apparatus 5 to the residual gas after the methanol recovery by the methanol recovery apparatus 6. The third heat exchanger 8 is connected to each of the methanol production device 5 and the methanol recovery device 6 by the third production gas system 26. The residual gas may be supplementarily heated if necessary.
 第3熱交換器8によって予熱された残ガスの一酸化炭素含有ガスへの合流により、一酸化炭素含有ガスの温度低下を抑制できる。これにより、一酸化炭素含有ガスが既にメタノール製造装置5での反応温度に適した温度になっている場合、残ガス合流後の一酸化炭素含有ガスをそのままメタノール製造装置5に供給できる。 By merging the residual gas preheated by the third heat exchanger 8 with the carbon monoxide-containing gas, the temperature drop of the carbon monoxide-containing gas can be suppressed. As a result, when the carbon monoxide-containing gas has already reached a temperature suitable for the reaction temperature in the methanol production apparatus 5, the carbon monoxide-containing gas after the residual gas merge can be supplied to the methanol production apparatus 5 as it is.
 図6は、第4実施形態のメタノール製造システム400を示す系統図である。メタノール製造システム400は、メタノール製造システム100(図1)の構成に加え、二酸化炭素回収装置9、第4生成ガス系統27及び第2原料ガス系統28を備える。 FIG. 6 is a system diagram showing the methanol production system 400 of the fourth embodiment. The methanol production system 400 includes a carbon dioxide recovery device 9, a fourth production gas system 27, and a second raw material gas system 28, in addition to the configuration of the methanol production system 100 (FIG. 1).
 二酸化炭素回収装置9は、二酸化炭素を含む第2原料ガスから上記第1原料ガスに使用される二酸化炭素を回収するものである。二酸化炭素回収装置9について、図7を参照しながら説明する。 The carbon dioxide recovery device 9 recovers carbon dioxide used for the first raw material gas from the second raw material gas containing carbon dioxide. The carbon dioxide capture device 9 will be described with reference to FIG. 7.
 図7は、二酸化炭素回収装置9を示す模式図である。二酸化炭素回収装置9は、回収装置91と、脱離装置92と、第4熱交換器93とを備える。回収装置91は、二酸化炭素を含む第2原料ガスとアルカリ水溶液との接触によって二酸化炭素をアルカリ水溶液に回収するものである。二酸化炭素は、アルカリ水溶液との接触によりアルカリ水溶液に吸収される。第2原料ガスは、第2原料ガス系統28を通じて回収装置91に供給される。第2原料ガスは、例えば火力発電所等における燃焼排ガスである。アルカリ水溶液は、例えばアンモニア水溶液、アミン水溶液等である。 FIG. 7 is a schematic view showing the carbon dioxide capture device 9. The carbon dioxide recovery device 9 includes a recovery device 91, a desorption device 92, and a fourth heat exchanger 93. The recovery device 91 recovers carbon dioxide into an alkaline aqueous solution by contacting a second raw material gas containing carbon dioxide with an alkaline aqueous solution. Carbon dioxide is absorbed by the alkaline aqueous solution by contact with the alkaline aqueous solution. The second raw material gas is supplied to the recovery device 91 through the second raw material gas system 28. The second raw material gas is, for example, combustion exhaust gas in a thermal power plant or the like. The alkaline aqueous solution is, for example, an ammonia aqueous solution, an amine aqueous solution, or the like.
 回収装置91は、例えば吸収塔である。例えば、吸収塔の下方から第2原料ガスが導入されると、第2原料ガスは吸収塔内部を上昇する。そして、アルカリ水溶液を吸収塔の上方から内部に散水することで、第2原料ガス中の二酸化炭素がアルカリ水溶液に吸収される。二酸化炭素吸収後に残存したガスは、オフガスとして吸収塔の塔頂から排出される。二酸化炭素を回収したアルカリ水溶液は、アルカリ水溶液系統29を通じ、回収装置91から脱離装置92に供給される。 The recovery device 91 is, for example, an absorption tower. For example, when the second raw material gas is introduced from below the absorption tower, the second raw material gas rises inside the absorption tower. Then, by sprinkling the alkaline aqueous solution from above the absorption tower into the inside, the carbon dioxide in the second raw material gas is absorbed by the alkaline aqueous solution. The gas remaining after the absorption of carbon dioxide is discharged from the top of the absorption tower as off-gas. The alkaline aqueous solution from which carbon dioxide has been recovered is supplied from the recovery device 91 to the desorption device 92 through the alkaline aqueous solution system 29.
 脱離装置92は、メタノール製造装置5(図6)で得られた生成ガスが有する熱を用い、二酸化炭素を回収したアルカリ水溶液の加熱によって二酸化炭素を脱離させるものである。脱離装置92は、例えば再生塔である。また、第4熱交換器93は、第4生成ガス系統27を通じて供給された生成ガスの熱を、熱媒体系統30を流れる水に伝熱することで蒸気を生成するものである。従って、脱離装置92は、第4熱交換器93を介して供給された生成ガスの熱を用いて、二酸化炭素を脱離させる。第4熱交換器93は例えばリボイラである。 The desorption device 92 uses the heat of the produced gas obtained in the methanol production device 5 (FIG. 6) to desorb carbon dioxide by heating an alkaline aqueous solution in which carbon dioxide is recovered. The detachment device 92 is, for example, a regeneration tower. Further, the fourth heat exchanger 93 generates steam by transferring the heat of the produced gas supplied through the fourth produced gas system 27 to the water flowing through the heat medium system 30. Therefore, the desorption device 92 desorbs carbon dioxide by using the heat of the generated gas supplied through the fourth heat exchanger 93. The fourth heat exchanger 93 is, for example, a reboiler.
 脱離装置92には、上記のように、アルカリ水溶液系統29を通じて、二酸化炭素を回収したアルカリ水溶液が回収装置91から供給される。このアルカリ水溶液は、脱離装置92の内部に散水される。一方で、第4熱交換器93では、熱媒体系統30を通じて脱離装置92から抜き出された水に生成ガスの熱が伝熱されることで、蒸気が生成する。生成した蒸気は、熱媒体系統30を通じて脱離装置92に供給され、アルカリ水溶液の散水箇所よりも下方側で脱離装置92の内部に放出される。蒸気の放出により散水されたアルカリ水溶液が加熱され、アルカリ水溶液から二酸化炭素が脱離する。脱離した二酸化炭素は、再生塔の塔頂から抜き出され、水素と合流し第1原料ガスが得られる。一方で、二酸化炭素脱離後のアルカリ水溶液は再生塔の下部に溜まる。溜まったアルカリ水溶液の一部は熱媒体系統30を通じて抜き出され、第4熱交換器93で加熱される。また、溜まったアルカリ水溶液の別の一部はアルカリ水溶液系統29を通じて抜き出され、回収装置91に戻される。 As described above, the alkaline aqueous solution in which carbon dioxide is recovered is supplied from the recovery device 91 to the desorption device 92 through the alkaline aqueous solution system 29. This alkaline aqueous solution is sprinkled inside the desorption device 92. On the other hand, in the fourth heat exchanger 93, steam is generated by transferring the heat of the generated gas to the water extracted from the desorption device 92 through the heat medium system 30. The generated steam is supplied to the desorption device 92 through the heat medium system 30, and is discharged into the desorption device 92 below the watering portion of the alkaline aqueous solution. The alkaline aqueous solution sprinkled by the release of steam is heated, and carbon dioxide is desorbed from the alkaline aqueous solution. The desorbed carbon dioxide is extracted from the top of the regeneration tower and merges with hydrogen to obtain the first raw material gas. On the other hand, the alkaline aqueous solution after carbon dioxide desorption accumulates in the lower part of the regeneration tower. A part of the accumulated alkaline aqueous solution is extracted through the heat medium system 30 and heated by the fourth heat exchanger 93. Further, another part of the accumulated alkaline aqueous solution is extracted through the alkaline aqueous solution system 29 and returned to the recovery device 91.
 このように、メタノール製造システム400(図7)では、第1原料ガスに含まれる二酸化炭素は、二酸化炭素回収装置9により回収した二酸化炭素を含む。このようにすることで、メタノール製造装置5で得られた生成ガスの熱を利用して、一酸化炭素の製造に使用する二酸化炭素を第2原料ガスから回収できる。 As described above, in the methanol production system 400 (FIG. 7), the carbon dioxide contained in the first raw material gas includes the carbon dioxide recovered by the carbon dioxide recovery device 9. By doing so, carbon dioxide used for producing carbon monoxide can be recovered from the second raw material gas by utilizing the heat of the produced gas obtained by the methanol producing apparatus 5.
 なお、第4熱交換器93では、上記の例では液体の水を蒸気に変化させるために生成ガスの熱が使用されたが、生成ガスの熱は、例えば、別の熱交換器(例えば図示しないリボイラ)を用いて生成した蒸気の温度を、更に昇温させるために使用されてもよい。 In the fourth heat exchanger 93, in the above example, the heat of the generated gas was used to change the liquid water into steam, but the heat of the generated gas is, for example, another heat exchanger (for example, illustrated). It may be used to further raise the temperature of the steam produced using the non-reboiler).
1 圧縮装置
100,200,300,400 メタノール製造システム
2 第1熱交換器
21 第1原料ガス系統
22 一酸化炭素含有ガス系統
23 第1生成ガス系統
24 第2生成ガス系統
25 合流系統
26 第3生成ガス系統
27 第4生成ガス系統
28 第2原料ガス系統
3 一酸化炭素製造装置
30 熱媒体系統
31 反応装置
32 減圧装置
33 筐体
33a 開口
33b 開口
34 逆シフト触媒
35 吸着材
36 水除去機構
4 圧縮装置
5 メタノール製造装置
6 メタノール回収装置
7 第2熱交換器
8 第3熱交換器
9 二酸化炭素回収装置
91 回収装置
92 脱離装置
93 第4熱交換器
S1 一酸化炭素製造ステップ
S2 メタノール製造ステップ
S3 第1熱交換ステップ
1 Compressor 100, 200, 300, 400 Methanol production system 2 1st heat exchanger 21 1st raw material gas system 22 Carbon monoxide-containing gas system 23 1st production gas system 24 2nd production gas system 25 Confluence system 26 3rd Production gas system 27 4th production gas system 28 2nd raw material gas system 3 Carbon monoxide production device 30 Heat medium system 31 Reaction device 32 Decompression device 33 Housing 33a Opening 33b Opening 34 Reverse shift catalyst 35 Adsorbent 36 Water removal mechanism 4 Compressor 5 Methanol production device 6 Methanol recovery device 7 Second heat exchanger 8 Third heat exchanger 9 Carbon dioxide recovery device 91 Recovery device 92 Desorption device 93 Fourth heat exchanger S1 Carbon monoxide production step S2 Methanol production step S3 1st heat exchange step

Claims (17)

  1.  二酸化炭素を含む第1原料ガスから一酸化炭素を製造する一酸化炭素製造装置と、
     前記一酸化炭素製造装置で製造された一酸化炭素を含む一酸化炭素含有ガスを用いてメタノールを製造するメタノール製造装置と、
     前記メタノール製造装置で製造されたメタノールを含む生成ガスが有する熱を前記第1原料ガスに伝熱する第1熱交換器と、を備える
     ことを特徴とするメタノール製造システム。
    A carbon monoxide production device that produces carbon monoxide from the first raw material gas containing carbon dioxide,
    A methanol production apparatus for producing methanol using a carbon monoxide-containing gas containing carbon monoxide produced by the carbon monoxide production apparatus, and a methanol production apparatus.
    A methanol production system including a first heat exchanger that transfers heat of a product gas containing methanol produced by the methanol production apparatus to the first raw material gas.
  2.  前記第1熱交換器における前記第1原料ガスへの伝熱後の前記生成ガスの冷却により、前記生成ガス中のメタノールを凝縮させて回収するメタノール回収装置を備える
     ことを特徴とする請求項1に記載のメタノール製造システム。
    Claim 1 is provided with a methanol recovery device for condensing and recovering methanol in the produced gas by cooling the produced gas after heat transfer to the first raw material gas in the first heat exchanger. The methanol production system according to.
  3.  前記メタノール回収装置でのメタノール回収後の残ガスを前記一酸化炭素含有ガスに合流させる合流系統を備える
     ことを特徴とする請求項2に記載のメタノール製造システム。
    The methanol production system according to claim 2, further comprising a merging system for merging the residual gas after methanol recovery by the methanol recovery device with the carbon monoxide-containing gas.
  4.  前記生成ガスが有する熱を前記一酸化炭素含有ガスにも伝熱する第2熱交換器を備え、
     前記合流系統は、前記一酸化炭素含有ガスの流れ方向において前記第2熱交換器の上流側に接続される
     ことを特徴とする請求項3に記載のメタノール製造システム。
    A second heat exchanger that transfers the heat of the produced gas to the carbon monoxide-containing gas is also provided.
    The methanol production system according to claim 3, wherein the merging system is connected to the upstream side of the second heat exchanger in the flow direction of the carbon monoxide-containing gas.
  5.  前記生成ガスが有する熱を前記メタノール回収装置でのメタノール回収後の残ガスに伝熱する第3熱交換器を備える
     ことを特徴とする請求項3に記載のメタノール製造システム。
    The methanol production system according to claim 3, further comprising a third heat exchanger that transfers the heat of the produced gas to the residual gas after the methanol recovery by the methanol recovery device.
  6.  二酸化炭素を含む第2原料ガスから前記第1原料ガスに使用される二酸化炭素を回収する二酸化炭素回収装置を備え、
     前記第1原料ガスに含まれる二酸化炭素は、前記二酸化炭素回収装置により回収した二酸化炭素を含む
     ことを特徴とする請求項1又は2に記載のメタノール製造システム。
    A carbon dioxide recovery device for recovering carbon dioxide used in the first raw material gas from a second raw material gas containing carbon dioxide is provided.
    The methanol production system according to claim 1 or 2, wherein the carbon dioxide contained in the first raw material gas includes carbon dioxide recovered by the carbon dioxide recovery device.
  7.  前記二酸化炭素回収装置は、
     前記第2原料ガスとアルカリ水溶液との接触によって二酸化炭素を前記アルカリ水溶液に回収する回収装置と、
     前記生成ガスが有する熱を用い、二酸化炭素を回収した前記アルカリ水溶液の加熱によって二酸化炭素を脱離させる脱離装置とを備える
     ことを特徴とする請求項6に記載のメタノール製造システム。
    The carbon dioxide capture device
    A recovery device that recovers carbon dioxide into the alkaline aqueous solution by contact between the second raw material gas and the alkaline aqueous solution.
    The methanol production system according to claim 6, further comprising a desorption device that desorbs carbon dioxide by heating the alkaline aqueous solution that recovers carbon dioxide using the heat of the produced gas.
  8.  前記一酸化炭素製造装置は、550℃以下で触媒活性を示す逆シフト触媒を含む
     ことを特徴とする請求項1又は2に記載のメタノール製造システム。
    The methanol production system according to claim 1 or 2, wherein the carbon monoxide production apparatus includes a reverse shift catalyst exhibiting catalytic activity at 550 ° C. or lower.
  9.  前記逆シフト触媒は、Cu、Co、又はMnの少なくとも何れか1つの元素を活性成分として含む
     ことを特徴とする請求項8に記載のメタノール製造システム。
    The methanol production system according to claim 8, wherein the reverse shift catalyst contains at least one element of Cu, Co, or Mn as an active ingredient.
  10.  前記逆シフト触媒は、前記活性成分に加えて更に、担体成分としてSi、Al、Zr、Ceから選ばれる少なくとも1種類の元素を含む酸化物を含む
     ことを特徴とする請求項9に記載のメタノール製造システム。
    The methanol according to claim 9, wherein the reverse shift catalyst further contains an oxide containing at least one element selected from Si, Al, Zr, and Ce as a carrier component in addition to the active component. Manufacturing system.
  11.  前記担体成分は、Ceを含む酸化物を含む
     ことを特徴とする請求項10に記載のメタノール製造システム。
    The methanol production system according to claim 10, wherein the carrier component contains an oxide containing Ce.
  12.  前記一酸化炭素含有ガスを圧縮する圧縮装置を備える
     ことを特徴とする請求項8に記載のメタノール製造システム。
    The methanol production system according to claim 8, further comprising a compression device for compressing the carbon monoxide-containing gas.
  13.  前記第1原料ガスは二酸化炭素に加えて更に水素を含み、
     前記一酸化炭素製造装置は、一酸化炭素とともに生成した水を除去する水除去機構を備える
     ことを特徴とする請求項8に記載のメタノール製造システム。
    The first raw material gas contains hydrogen in addition to carbon dioxide, and contains hydrogen.
    The methanol production system according to claim 8, wherein the carbon monoxide production apparatus includes a water removal mechanism for removing water generated together with carbon monoxide.
  14.  前記水除去機構は、生成した水を吸着する吸着材、又は、生成した水を前記逆シフト触媒から分離する分離膜の少なくともいずれか一方である
     ことを特徴とする請求項13に記載のメタノール製造システム。
    The methanol production according to claim 13, wherein the water removing mechanism is at least one of an adsorbent that adsorbs the produced water and a separation membrane that separates the produced water from the reverse shift catalyst. system.
  15.  前記吸着材は、Si、Alから選ばれる少なくとも1種類の元素を含む酸化物を含む
     ことを特徴とする請求項14に記載のメタノール製造システム。
    The methanol production system according to claim 14, wherein the adsorbent contains an oxide containing at least one element selected from Si and Al.
  16.  前記吸着材は、Si及びAlを含むゼオライトを含む
     ことを特徴とする請求項15に記載のメタノール製造システム。
    The methanol production system according to claim 15, wherein the adsorbent contains a zeolite containing Si and Al.
  17.  二酸化炭素を含む第1原料ガスから一酸化炭素を製造する一酸化炭素製造ステップと、
     前記一酸化炭素製造ステップで製造された一酸化炭素を含む一酸化炭素含有ガスを用いてメタノールを製造するメタノール製造ステップと、
     前記メタノール製造ステップで製造されたメタノールを含む生成ガスが有する熱を前記第1原料ガスに伝熱する第1熱交換ステップと、を含む
     ことを特徴とするメタノール製造方法
    A carbon monoxide production step for producing carbon monoxide from a first raw material gas containing carbon dioxide,
    A methanol production step of producing methanol using a carbon monoxide-containing gas containing carbon monoxide produced in the carbon monoxide production step, and a methanol production step.
    A method for producing methanol, which comprises a first heat exchange step of transferring heat contained in a production gas containing methanol produced in the methanol production step to the first raw material gas.
PCT/JP2020/012205 2020-03-19 2020-03-19 Methanol production system and methanol production method WO2021186658A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/012205 WO2021186658A1 (en) 2020-03-19 2020-03-19 Methanol production system and methanol production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/012205 WO2021186658A1 (en) 2020-03-19 2020-03-19 Methanol production system and methanol production method

Publications (1)

Publication Number Publication Date
WO2021186658A1 true WO2021186658A1 (en) 2021-09-23

Family

ID=77768418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012205 WO2021186658A1 (en) 2020-03-19 2020-03-19 Methanol production system and methanol production method

Country Status (1)

Country Link
WO (1) WO2021186658A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162696A1 (en) * 2022-02-25 2023-08-31 Eneos株式会社 Hydrocarbon production device and hydrocarbon production method
WO2024004464A1 (en) * 2022-06-30 2024-01-04 三菱瓦斯化学株式会社 Methanol production method and methanol production device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235799A (en) * 1979-04-16 1980-11-25 Stiles Alvin B Production of methanol
JPH0852304A (en) * 1994-07-06 1996-02-27 Rhone Poulenc Chim Method of drying gaseous or liquid mixture using adsorbing device composed of alumina and molecular sieve
JPH08176034A (en) * 1994-12-22 1996-07-09 Cosmo Sogo Kenkyusho:Kk Synthesis of methanol
JP2002226870A (en) * 2001-01-29 2002-08-14 Takeshi Hatanaka Method and equipment for producing methanol
WO2016152698A1 (en) * 2015-03-20 2016-09-29 積水化学工業株式会社 Method and device for producing organic substance
WO2019116484A1 (en) * 2017-12-14 2019-06-20 三菱重工エンジニアリング株式会社 Co-production plant for olefin and methanol, and co-production method for olefin and methanol

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235799A (en) * 1979-04-16 1980-11-25 Stiles Alvin B Production of methanol
JPH0852304A (en) * 1994-07-06 1996-02-27 Rhone Poulenc Chim Method of drying gaseous or liquid mixture using adsorbing device composed of alumina and molecular sieve
JPH08176034A (en) * 1994-12-22 1996-07-09 Cosmo Sogo Kenkyusho:Kk Synthesis of methanol
JP2002226870A (en) * 2001-01-29 2002-08-14 Takeshi Hatanaka Method and equipment for producing methanol
WO2016152698A1 (en) * 2015-03-20 2016-09-29 積水化学工業株式会社 Method and device for producing organic substance
WO2019116484A1 (en) * 2017-12-14 2019-06-20 三菱重工エンジニアリング株式会社 Co-production plant for olefin and methanol, and co-production method for olefin and methanol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162696A1 (en) * 2022-02-25 2023-08-31 Eneos株式会社 Hydrocarbon production device and hydrocarbon production method
WO2024004464A1 (en) * 2022-06-30 2024-01-04 三菱瓦斯化学株式会社 Methanol production method and methanol production device

Similar Documents

Publication Publication Date Title
KR102622341B1 (en) Device and Process for simultaneous carbon dioxide capture and hydrogen production with hybrid process of hydrogen separation and carbon dioxide sorption
JP4745299B2 (en) Adsorption / desorption material of ammonia using a combination of specific metal halides, separation method and storage method
JP5705156B2 (en) Gas purification method and coal gasification plant
WO2007106139A2 (en) Hydrogen purification process and system
WO2019073867A1 (en) Methane producing system
WO2021186658A1 (en) Methanol production system and methanol production method
WO2007032518A1 (en) Method for manufacturing hydrogen
KR102075627B1 (en) Pd-based metal dense hydrogen permeation membrane using a Ni-based porous support with methanation catalyst function
JP2002212575A (en) High-level treating apparatus for purified coke oven gas and utilization method
US20080299424A1 (en) Carbon monoxide clean-up in a pem fuel cell system
CN110559800A (en) Intermediate-temperature hydrogen storage alloy preparation and pressure swing adsorption purification method
JP5614808B2 (en) Helium gas purification method and purification apparatus
Hao et al. Elevated temperature pressure swing adsorption using LaNi4. 3Al0. 7 for efficient hydrogen separation
JP5535990B2 (en) Shift catalyst, gas purification method and equipment
CN103466546B (en) Intermediate temperate pressure swing adsorption method for using bifunctional adsorbent in adsorption enhanced type vapor reforming and water-vapor transformation reactions
KR102438075B1 (en) Carbon dioxide capture and direct utilization process using bi-functional catal-sorbent
WO2017183388A1 (en) Internal combustion engine
JP2005256899A (en) Hydrogen storage and/or derivation device
JP2005041749A (en) Enhancing method of co shift reaction, and manufacturing method of hydrogen gas or gas reduced in co content using it
EP0737646B1 (en) Process for operating equilibrium-controlled reactions
KR102344813B1 (en) Device and Process for hydrogen production using pre-reformer and membrane reformer
JP2002326810A (en) Separation method and apparatus of ammonia using a metallic halide
WO2021085422A1 (en) Carbon monoxide production apparatus, chemical plant, and plant
WO2024080190A1 (en) Carbon dioxide adsorbent, use of carbon dioxide adsorbent, method for isolating carbon dioxide, plant for recovering/reserving carbon dioxide, and method for recovering/reserving carbon dioxide
KR102579471B1 (en) System and process for producing syngas and carbon monoxide using dioxide dry sorbents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP