WO2021185263A1 - 一种风电叶片及其桁条加强结构与方法 - Google Patents

一种风电叶片及其桁条加强结构与方法 Download PDF

Info

Publication number
WO2021185263A1
WO2021185263A1 PCT/CN2021/081212 CN2021081212W WO2021185263A1 WO 2021185263 A1 WO2021185263 A1 WO 2021185263A1 CN 2021081212 W CN2021081212 W CN 2021081212W WO 2021185263 A1 WO2021185263 A1 WO 2021185263A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcement structure
stringer
blade
stringer reinforcement
web
Prior art date
Application number
PCT/CN2021/081212
Other languages
English (en)
French (fr)
Inventor
张振国
马锐
Original Assignee
上海电气风电集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海电气风电集团股份有限公司 filed Critical 上海电气风电集团股份有限公司
Publication of WO2021185263A1 publication Critical patent/WO2021185263A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of wind power blade manufacturing, in particular to a wind power blade and its stringer reinforcement structure and method.
  • the buckling and shear resistance of wind power blades are important indicators to measure their safety. With the rapid development of the wind power industry, the diameter of the rotor of the wind blade unit is getting longer and longer, and the blades are becoming more and more flexible. The design of wind power blades for buckling and shearing is more difficult.
  • the buckling and shear resistance of the wind turbine blade can be improved; however, the thickness of the core material of the shell and the thickness of the web fiber cloth cannot be increased indefinitely Otherwise, there will be the risk of impermeable resin infusion, causing serious manufacturing defects, which brings challenges to the buckling and shear resistance design of large-scale wind power flexible blades.
  • the purpose of the present invention is to provide a wind turbine blade and its stringer reinforcement structure and method.
  • the stringer reinforcement structure includes two parts: the main structure and the bonding flange. Arranging the stringer reinforcement structure at the appropriate position of the wind turbine blade can improve the blade The buckling resistance and shear resistance of the blade can not increase the thickness of the core material of the blade shell and the thickness of the web fiber cloth layer, and the reliability of the blade manufacturing quality can be improved.
  • a stringer reinforcement structure for wind power blades comprising a main structure in the middle and a connecting structure extending at both ends of the main structure respectively.
  • the main structure is an arched structure opposite to the connecting structure, and one or more stringers are reinforced
  • the connection structure of the structure is connected with the component to be strengthened, and the component to be strengthened is a component of the wind power blade whose buckling resistance and/or shear resistance is to be strengthened.
  • the main structure of the stringer reinforcement structure includes a core material layer of the middle layer and fiber cloth layers on the upper and lower surfaces of the core material layer, or the main structure of the stringer reinforcement structure includes inner and outer fiber cloth layers;
  • the fiber cloth layer is unidirectional cloth, biaxial cloth or triaxial cloth.
  • the connecting structure of the stringer reinforcement structure is an adhesive flange.
  • the connecting structure comprises a fiber cloth layer, and the fiber cloth layer is a unidirectional cloth, a biaxial cloth or a triaxial cloth.
  • the stringer reinforcement structure is a trapezoidal stringer reinforcement structure, and the angle formed between the main structure of the trapezoidal stringer reinforcement structure and the connecting structure is an obtuse angle or a right angle or an acute angle; or, the stringer reinforcement structure is An ⁇ -shaped beam reinforcement structure, the main structure of the ⁇ -shaped beam reinforcement structure is an arc shape or a symmetrical curve.
  • the component to be strengthened includes a blade shell and/or a web of a wind turbine blade.
  • the present invention also provides a wind power blade comprising a blade shell and a web, and the blade shell and/or web is provided with one or more stringer reinforcement structures as described above.
  • the stringer reinforcement structure is arranged on the front and/or back surface of the web, the connection structure of the string reinforcement structure is connected to the front surface and/or the back surface of the web, and the length of the string reinforcement structure
  • the direction and the length of the blade are at a certain angle; or, the stringer reinforcement structure is placed at the core material at the leading edge or the trailing edge of the inner side of the blade shell, and the length direction of the stringer reinforcement structure is the same as that of the blade.
  • the length direction is the same or there is a certain angle between the two.
  • the stringer reinforcement structure is arranged on the front and/or back of the web, and the angle range between the length direction of the stringer reinforcement structure and the length direction of the blade is between 20° and 90°;
  • the stringer reinforcement structure is placed at the core material at the leading edge or the trailing edge of the inner side of the blade shell, and the angle between the stringer reinforcement structure and the length direction of the blade is less than 20°.
  • the present invention also provides a method for adding a stringer reinforcement structure to the blade shell and/or web as described above.
  • the method includes the following processes:
  • the stringer reinforcement structure in the blade shell and/or web, respectively connect the blade shell and/or web with the connection structure of the stringer reinforcement structure;
  • the blade shell is moulded or the web is placed in the blade shell for moulding.
  • the present invention has the following beneficial effects:
  • the beam reinforcement structure of the present invention is placed in the blade shell.
  • the beam reinforcement structure is equivalent to increasing the effective thickness of the blade and improving the buckling resistance of the blade shell;
  • the beam reinforcement structure is a hollow structure, and the amount of material is Compared with directly increasing the thickness of the core material of the blade shell, the material cost of the blade is reduced; because the thickness of the core material required for large-scale flexible blades is larger, if the thickness of the core material of the blade shell is directly increased, there is a higher Pouring risk;
  • the stringer reinforcement structure and the cured blade shell are bonded to form a whole through structural glue, which can control the thickness of the core material of the blade shell within a certain range, and then increase the part of the blade shell by adding the stringer reinforcement structure
  • the effective thickness of the blade can be improved to improve the buckling resistance of the blade, so that the risk of perfusion defects of the blade shell is reduced, and the reliability of the blade quality is improved;
  • the stringer reinforcement structure of the present invention is arranged on the web of the blade, and the web of the blade is mainly used to resist shear.
  • the stringer reinforcement structure can increase the effective cross-sectional area of the web and improve the shear resistance of the web Ability; Compared with the method of improving the shear resistance of the web by increasing the thickness of the web cloth layer, the local shear resistance of the web is selectively improved through the stringer reinforcement structure, and the cloth layer thickness of the web itself
  • the thickness of the core material can be controlled within a certain range, which can also effectively reduce the risk of web perfusion defects of large flexible blades.
  • Fig. 1 is a three-dimensional schematic diagram of a trapezoidal stringer reinforcement structure for wind power blades according to the present invention
  • Fig. 2 is a three-dimensional schematic diagram of the ⁇ -shaped beam reinforcement structure for wind power blades according to the present invention
  • Figure 3 is a cross-sectional view of the trapezoidal stringer reinforcement structure of the present invention.
  • Figure 4 is a cross-sectional view of the ⁇ -shaped beam reinforcement structure of the present invention.
  • Figures 5a-5b are schematic diagrams of the beam reinforcement structure of the present invention arranged on the blade web;
  • Figures 6a-6b are schematic diagrams of the stringer reinforcement structure of the present invention arranged on the blade shell.
  • the present invention provides a stringer reinforcement structure for wind turbine blades, which can be arranged on the blade shell 300 and the blade web 400 where the buckling resistance and shear resistance are weak, to Enhance the overall buckling and shear resistance of the blade.
  • the stringer reinforcement structure 1 includes a main structure 1-1 in the middle and bonding flanges 1-2 extending at both ends of the main structure 1-1, respectively.
  • the main structure 1-1 is an arched structure relative to the plane where the bonding flange 1-2 is located.
  • the stringer reinforcement structure 1 can be divided into the trapezoidal stringer reinforcement structure 100 (shown in Figures 1 and 3) in the first embodiment and the omega stringer in the second embodiment.
  • the bar reinforcement structure 200 (shown in FIGS. 2 and 4); however, the present invention is not limited to this, as long as it can meet the requirements of a stringer reinforcement structure that can enhance the overall buckling and shear resistance of the blade.
  • the trapezoidal stringer reinforcement structure 100 includes a main structure 11 and an adhesive flange 12.
  • the main structure 11 includes a core material 112 of an intermediate layer and a fiber cloth layer 111 on the upper and lower surfaces of the core material 112.
  • the core material of the middle layer is not necessary, and the core material can be added or not added according to the design requirements.
  • the bonding flange 12 of the beam reinforcement structure 100 includes a fiber cloth layer and does not include a core material.
  • the fiber cloth layer in the main structure 11 or the fiber cloth layer in the bonding flange 12 can be unidirectional cloth, biaxial cloth or triaxial cloth;
  • the core material 112 can be PET, PVC or Balsa wood, etc. .
  • the angle formed by the main structure 11 of the trapezoidal stringer reinforcement structure 100 and the bonding flange 12 may be an obtuse angle, a right angle or an acute angle, which is not limited in the present invention.
  • the ⁇ -shaped beam reinforcement structure 200 includes a main structure 21 and an adhesive flange 22.
  • the main structure 21 includes a core material 212 of an intermediate layer and a fiber cloth layer 211 on the upper and lower surfaces of the core material 212.
  • the core material of the middle layer is not necessary, and it can be selected to add core material or not to add core material according to design requirements.
  • the bonding flange 22 of the beam reinforcement structure 200 includes a fiber cloth layer and does not include a core material.
  • the fiber cloth layer in the main structure 21 or the fiber cloth layer in the bonding flange 22 can be unidirectional cloth, biaxial cloth or triaxial cloth;
  • the core material 212 can be PET, PVC or Balsa wood, etc. .
  • the shape of the main structure 21 of the ⁇ -shaped beam reinforcement structure 200 may be a circular arc or other forms of symmetrical curves, which is not limited in the present invention.
  • the Z axis in 6b is the direction perpendicular to the paper in Figure 6a, the X axis points from the pressure surface of the blade to the suction surface, and the Y axis points from the leading edge of the blade to the trailing edge.
  • a plurality of stringer reinforcement structures 1 are respectively arranged on the front side 40a (that is, the outer side of the vertical paper surface in Fig. 5a) and the back side 40b (that is, Fig. 5a) of the blade web.
  • the vertical paper face inside); among them, the solid lines shown in Figures 5a and 5b represent the beam reinforcement structure on the front of the web, and the dashed lines represent the beam reinforcement structure on the back of the web.
  • the beam reinforcement structure 1 is bonded and connected to the front and back surfaces of the web through its bonding flanges through structural glue.
  • the length direction of the stringer reinforcement structure 1 and the length direction of the blade are at a certain angle, for example, the angle range is between 20° and 90°.
  • Figure 5a is suitable for the case where a small number of stringer reinforcement structures needs to be used
  • Figure 5b is suitable for the case where a large number of stringer reinforcement structures need to be used.
  • the stringer reinforcement structure 1 When the stringer reinforcement structure 1 is arranged on the blade shell 300, a plurality of stringer reinforcement structures 1 are placed at the leading edge position on the inner side of the blade shell or the core material at the trailing edge position.
  • the length direction of the stringer reinforcement structure 1 is basically the same as the length direction of the blade.
  • the angle difference between the two is within 20°, that is, the angle formed between the length direction of the stringer reinforcement structure 1 and the length direction of the blade is less than 20°.
  • E is the Young's modulus of the material
  • I is the moment of inertia of the cross section of the rod
  • is the length coefficient, which is related to the constraint conditions at both ends of the rod
  • L is the length of the rod.
  • the present invention places the beam reinforcement structure 1 in the first embodiment and/or the second embodiment in the blade shell 300, which has the following effects: (1)
  • the beam reinforcement structure 1 is equivalent to increasing the effective thickness of the blade and improving The buckling resistance of the blade shell; (2)
  • the stringer reinforcement structure 1 is a hollow structure with a small amount of material. Compared with directly increasing the thickness of the core material of the blade shell 300, it reduces the material cost of the blade; (3) Because Large flexible blades require a large core material thickness. If the thickness of the core material of the blade shell is directly increased, there is a higher risk of perfusion; the stringer reinforcement structure 1 is bonded to the cured blade shell through structural glue to form a whole.
  • the thickness of the core material of the blade shell 300 can be controlled within a certain range, and then the partial effective thickness of the blade shell can be increased by adding the stringer reinforcement structure 1, thereby improving the buckling resistance of the blade, so that the risk of the perfusion defect of the blade shell is reduced , Improve the reliability of the blade quality.
  • the main function of the web 400 of the wind turbine blade is to resist shear
  • the beam reinforcement structure in the first embodiment and/or the second embodiment can be used: (1) The effective cross-sectional area of the web 400 can be increased, and the web 400 can be improved. (2) Compared with the method of improving the shear resistance of the web by increasing the thickness of the web layer, the present invention selectively improves the local shear resistance of the web through the stringer reinforcement structure Ability, the thickness of the web itself and the thickness of the core material can be controlled within a certain range, which can also effectively reduce the risk of web perfusion defects of large flexible blades.
  • stringer reinforcement structure of the present invention is not limited to the webs and blade shells of the above-mentioned wind turbine blades, but is also applicable to other components on the wind turbine blades that need to improve the buckling resistance or shear resistance. I won’t go into details here.
  • the present invention provides a method for adding a stringer reinforcement structure to a blade shell.
  • the steps of the method are as follows:
  • the position where the stringer needs to be added is the weak point on the blade shell against buckling;
  • the structure of the stringer can be an ⁇ -shaped stringer reinforced structure or a trapezoidal stringer reinforced structure, and the size of the stringer structure needs to be increased.
  • the position of the stringers and the requirements of anti-buckling are matched.
  • step S2 according to the stringer reinforcement structure and size designed in step S1, make a mold for the stringer reinforcement structure
  • the shell is closed and molded.
  • the present invention provides a method for adding a stringer reinforcement structure to a blade web.
  • the steps of the method are as follows:
  • T1 Determine the position of the stringer, the structure and size of the stringer in the web of the blade through design.
  • the arrangement of the stringer in the web can be as shown in Figure 5a or Figure 5b.
  • the position where the stringer needs to be added is the weak point of the blade web for shear resistance;
  • the structure of the stringer can be an ⁇ -shaped stringer reinforced structure or a trapezoidal stringer reinforced structure, and the size of the stringer structure needs to be increased.
  • the position of the beams and the requirements of shear resistance are matched.
  • Figure 5a is suitable for the case where the number of stringer reinforcement structures needs to be used is small
  • Figure 5b is suitable for the case where the number of stringer reinforcement structures needs to be used is large, that is, the number of stringer reinforcement structures is also adjusted according to actual needs. No restrictions.
  • the beam reinforcement structure is prefabricated in the mold of the beam reinforcement structure while the web is poured and solidified;
  • T6 Place the web in the shell for clamping and forming.
  • the method of the present invention for strengthening wind turbine blades by using the stringer reinforcement structure can not only improve the buckling resistance and shear resistance of the blade, but also not increase the thickness of the core material of the blade shell and the thickness of the web fiber layer. Reliability of blade manufacturing quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Wind Motors (AREA)

Abstract

一种用于风电叶片及其桁条加强结构(1),包含中间的主结构(1-1)和分别在主结构(1-1)两侧端延伸的连接结构,主结构(1-1)是相对连接结构的拱起结构,一个或多个桁条加强结构(1)的连接结构与待加强部件连接,待加强部件为风电叶片上腹板(400)和/或叶片壳体(300)。该桁条加强结构(1)既能够提高叶片的抗屈曲和抗剪切能力,又能够不增加叶片壳体芯材厚度和腹板纤维布层厚度,提高叶片制造质量的可靠性。还包括一种为叶片增加桁条加强结构的方法。

Description

一种风电叶片及其桁条加强结构与方法 技术领域
本发明涉及风电叶片制造领域,特别涉及一种风电叶片及其桁条加强结构与方法。
背景技术
风电叶片的抗屈曲和抗剪切性能是衡量其安全性至关重要的指标。随着风电行业的飞速发展,风力叶片机组的风轮直径越来越长,叶片变得越来越柔,风电叶片抗屈曲和抗剪切设计难度增加。
通过增加叶片壳体的芯材厚度和腹板的纤维布层的厚度,可以提高风电叶片抗屈曲和抗剪切能力;但是,壳体芯材厚度和腹板纤维布层厚度不能无限制的增加,否则会存在树脂灌注不透的风险,造成严重的制造缺陷,这给大型风电柔性叶片的抗屈曲和抗剪切设计带来了挑战。
目前,大型风电柔性叶片需要具有足够的抗屈曲和抗剪切能力,虽然增加叶片壳体芯材厚度和腹板纤维布层厚度可以提高叶片的抗屈曲和抗剪切能力,但是会带来巨大的制造风险,形成树脂灌注不透的严重缺陷,因此,研发一种利用桁条加强结构加强风电叶片的方法,既能够提高叶片的抗屈曲和抗剪切能力,又能够不增加叶片壳体芯材厚度和腹板纤维布层厚度,提高叶片制造质量的可靠性,实为必要。
发明的公开
本发明的目的在于提供一种风电叶片及其桁条加强结构与方法,桁条加强结构包含主结构和粘接法兰两部分,将桁条加强结构布置在风电叶片适当位置,既能够提高叶片的抗屈曲和抗剪切能力,又能够不增加叶片壳体芯材厚度和腹板纤维布层厚度,提高叶片制造质量的可靠性。
为了达到上述目的,本发明通过以下技术方案实现:
一种用于风电叶片的桁条加强结构,包含中间的主结构和分别在主结构两侧端延伸的连接结构,所述主结构是相对连接结构的拱起结构,一个或多个桁条加强结构的连接结构与待加强部件连接,所述待加强部件为所述风电叶片上抗屈曲和/或抗剪切能力待增强的部件。
优选地,所述桁条加强结构的主结构包含中间层的芯材层和芯材层上下表面的纤维布层,或者,所述桁条加强结构的主结构包含内外侧的纤维布层;
所述纤维布层为单向布或双轴布或三轴布。
优选地,所述桁条加强结构的连接结构为粘接法兰。
优选地,所述连接结构包含纤维布层,所述纤维布层为单向布或双轴布或三轴布。
优选地,所述桁条加强结构为梯形桁条加强结构,所述梯形桁条加强结构的主结构与连接结构之间形成的角度为钝角或直角或锐角;或者,所述桁条加强结构为Ω型桁条加强结构,所述Ω型桁条加强结构的主结构为圆弧状或对称型曲线。
优选地,所述待加强部件包含风电叶片的叶片壳体和/或腹板。
本发明还提供了一种风电叶片,包含叶片壳体和腹板,所述叶片壳体和/或腹板上设有如上文所述的一个或多个桁条加强结构。
优选地,所述桁条加强结构布置在腹板的正面和/或背面,所述桁条加强结构的连接结构与腹板的正面表面和/或背面表面连接,所述桁条加强结构的长度方向与叶片的长度方向之间呈一定角度;或者,所述桁条加强结构置于叶片壳体内侧的前缘位置或者后缘位置的芯材处,所述桁条加强结构的长度方向与叶片的长度方向一致或两者之间呈一定角度。
优选地,所述桁条加强结构布置在腹板的正面和/或背面,所述桁条加强结构的长度方向与叶片的长度方向之间所呈的角度范围在20°到90°之间;
或者,所述桁条加强结构置于叶片壳体内侧的前缘位置或者后缘位置的芯材处,所述桁条加强结构与叶片的长度方向之间所呈的角度小于20°。
本发明又提供了一种为上文所述的叶片壳体和/或腹板增加桁条加强结构的方法,该方法包含以下过程:
确定叶片壳体和/或腹板上待增加桁条加强结构的位置,以及待增加的桁 条加强结构的结构形态与尺寸;
制作所述桁条加强结构的模具;
进行叶片壳体和/或腹板的铺层,以及灌注固化,并在桁条加强结构的模具中预制桁条加强结构;
根据桁条加强结构在叶片壳体和/或腹板中的定位,将叶片壳体和/或腹板分别与桁条加强结构的连接结构进行连接;
叶片壳体合模成型或者腹板放置于叶片壳体中进行合模成型。
与现有技术相比,本发明的有益效果在于:
(1)本发明的桁条加强结构放置在叶片壳体中,桁条加强结构相当于增加了叶片的有效厚度,提高了叶片壳体的抗屈曲能力;桁条加强结构为空心结构,材料用量较少,相比于直接提高叶片壳体芯材的厚度,减少了叶片的材料成本;因为大型柔性叶片需要的芯材厚度较大,如果直接提高叶片壳体芯材的厚度,存在较高的灌注风险;该桁条加强结构与固化后的叶片壳体通过结构胶粘接形成整体,可以将叶片壳体的芯材厚度控制在一定范围内,然后通过增加桁条加强结构提高叶片壳体局部的有效厚度,从而提高叶片的抗屈曲能力,这样叶片壳体的灌注缺陷风险降低,提高了叶片质量的可靠性;
(2)本发明的桁条加强结构布置在叶片的腹板,叶片的腹板主要作用为抗剪切,该桁条加强结构可以增加腹板的有效横截面积,提高腹板的抗剪切能力;相比于通过提高腹板布层的厚度来提高腹板抗剪切能力的方法,通过桁条加强结构有选择性地提高腹板局部的抗剪切能力,腹板本身的布层厚度和芯材厚度可以控制在一定范围内,同样可以有效地降低大型柔性叶片的腹板灌注缺陷风险。
附图的简要说明
图1为本发明的用于风电叶片的梯形桁条加强结构立体示意图;
图2为本发明的用于风电叶片的Ω型桁条加强结构立体示意图;
图3为本发明的梯形桁条加强结构的截面图;
图4为本发明的Ω型桁条加强结构的截面图;
图5a-图5b为本发明的桁条加强结构布置在叶片腹板的示意图;
图6a-图6b为本发明的桁条加强结构布置在叶片壳体的示意图。
实现本发明的最佳方式
为了使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1-图6所示,本发明提供的一种用于风电叶片的桁条加强结构,可布置在叶片壳体300和叶片腹板400上抗屈曲和抗剪切能力的薄弱处,以增强叶片整体的抗屈曲和抗剪切能力。如图1-图2所示,该桁条加强结构1包含中间的主结构1-1和分别在主结构1-1两侧端延伸的粘接法兰1-2。所述主结构1-1是相对于粘接法兰1-2所在平面的拱起结构。示例地,根据主结构1-1的截面形状,可以将桁条加强结构1分为实施一中的梯形桁条加强结构100(图1和图3所示)和实施例二中的Ω型桁条加强结构200(图2和图4所示);但本发明并不仅限于此,只要能满足增强叶片整体的抗屈曲和抗剪切能力的桁条加强结构均可。
实施例一:
如图1和图3结合所示,本实施例一中,所述梯形桁条加强结构100包含主结构11和粘接法兰12。所述主结构11包含中间层的芯材112和芯材112上下表面的纤维布层111。其中,中间层的芯材不是必须的,可根据设计需要选择添加芯材或不添加芯材。桁条加强结构100的粘接法兰12包含纤维布层,不含有芯材。
对于上述主结构11中的纤维布层或者粘接法兰12中的纤维布层,其可为单向布或双轴布或三轴布;上述芯材112可为PET、PVC或Balsa木等。
示例地,所述梯形桁条加强结构100的主结构11与粘接法兰12形成的角度可为钝角、直角或锐角,本发明对此不做限制。
实施例二中:
如图2和图4结合所示,本实施例二中,所述Ω型桁条加强结构200包含主结构21和粘接法兰22。所述主结构21包含中间层的芯材212和芯材212上下表面的纤维布层211。其中,中间层的芯材不是必须的,可根据设计需 要选择添加芯材或不添加芯材。桁条加强结构200的粘接法兰22包含纤维布层,不含有芯材。
对于上述主结构21中的纤维布层或者粘接法兰22中的纤维布层,其可为单向布或双轴布或三轴布;上述芯材212可为PET、PVC或Balsa木等。
示例地,所述Ω型桁条加强结构200的主结构21的形状可为圆弧或其他形式的对称型曲线,本发明对此不做限制。
实施例三:
将实施例一和/或实施例二中的桁条加强结构1(例如桁条加强结构100或200)与固化成型的叶片壳体300和/或叶片腹板400利用粘接法兰12或22,通过结构胶进行粘接,如图5a-5b以及图6a-图6b所示。图中所示的X轴、Y轴和Z轴方向的标记是为了更容易理解本实施例,且图中的Z轴所在方向为叶片长度方向,叶片长度方向是指叶根指向叶尖,图6b中的Z轴是图6a中垂直纸面的方向,X轴从叶片压力面指向吸力面,Y轴从叶片前缘指向后缘。
当桁条加强结构1在腹板400上布置时,将多个桁条加强结构1分别布置在叶片腹板的正面40a(即图5a中垂直纸面向外一侧)和背面40b(即图5a中垂直纸面向里一侧);其中,图5a和图5b所示的实线表示腹板正面的桁条加强结构,虚线表示腹板背面的桁条加强结构。桁条加强结构1通过其粘接法兰与腹板的正面、反面通过结构胶进行粘接连接。示例地,桁条加强结构1的长度方向与叶片的长度方向呈一定的角度,例如该角度范围在20°到90°之间。图5a适用于需要使用桁条加强结构数量较少的情况,图5b适用于需要使用的桁条加强结构数量较多的情况。
当桁条加强结构1在叶片壳体300上布置时,将多个桁条加强结构1置于叶片壳体内侧的前缘位置处或者后缘位置的芯材处。示例地,桁条加强结构1的长度方向与叶片的长度方向基本一致,例如两者的角度差别在20°以内,即桁条加强结构1的长度方向与叶片的长度方向之间形成的角度小于20°。
由于细长压杆临界力的欧拉公式为:
Figure PCTCN2021081212-appb-000001
式(1)中,E为材料的杨氏模量;I为杆的横截面的惯性矩;μ为长度系数,与杆两端的约束条件相关;L为杆的长度。其中,以环形截面杆为例,其截面惯性矩为:
Figure PCTCN2021081212-appb-000002
式(2)中,b为矩形横截面的宽度;h为矩形横截面的厚度。
由以上公式(1)和(2)可知,对于矩形截面的细长杆,其抗屈曲能力与厚度的三次方成正比,因此,提高叶片壳体的厚度可以明显提高其抗屈曲能力。
本发明将实施例一和/或实施例二中的桁条加强结构1放置在叶片壳体300中,具有如下效果:(1)桁条加强结构1相当于增加了叶片的有效厚度,提高了叶片壳体的抗屈曲能力;(2)桁条加强结构1为空心结构,材料用量较少,相比于直接提高叶片壳体300芯材的厚度,减少了叶片的材料成本;(3)因为大型柔性叶片需要的芯材厚度较大,如果直接提高叶片壳体芯材的厚度,存在较高的灌注风险;桁条加强结构1是与固化后的叶片壳体通过结构胶粘接形成整体,可以将叶片壳体300的芯材厚度控制在一定范围内,然后通过增加桁条加强结构1提高叶片壳体局部的有效厚度,从而提高叶片的抗屈曲能力,这样叶片壳体的灌注缺陷风险降低,提高了叶片质量的可靠性。
另外,风电叶片的腹板400主要作用为抗剪切,利用实施例一和/或实施例二中的桁条加强结构:(1)可以增加腹板400的有效横截面积,提高腹板400的抗剪切能力;(2)相比于通过提高腹板布层的厚度来提高腹板抗剪切能力的方法,本发明通过桁条加强结构有选择性地提高腹板局部的抗剪切能力,腹板本身的布层厚度和芯材厚度可以控制在一定范围内,同样可以有效地降低大型柔性叶片的腹板灌注缺陷风险。
值得说明的是,本发明的桁条加强结构不仅限于上述的风电叶片的腹板和叶片壳体,同样也适用于风电叶片上的其他需要提高抗屈曲或抗剪切能力的部件,本发明在此不做赘述。
实施例四:
本发明提供了一种为叶片壳体增加桁条加强结构的方法,该方法的步骤如下:
S1、通过设计确定叶片壳体中需要增加桁条加强结构的位置、桁条的结 构和尺寸;
其中,需要增加桁条的位置是叶片壳体上抗屈曲的薄弱处;桁条的结构可以是Ω型桁条加强结构,或者是梯形桁条加强结构,且桁条的结构的尺寸与需要增加桁条的位置、抗屈曲的要求等相匹配。
S2、根据步骤S1中设计的桁条加强结构和尺寸,制作桁条加强结构的模具;
S3、进行叶片壳体铺层,灌注固化;
S4、叶片壳体灌注固化的同时,在桁条加强结构的模具中预制桁条加强结构;
S5、根据桁条加强结构在叶片壳体中的定位,将叶片壳体和桁条加强结构的粘接法兰通过结构胶进行粘接;
S6、壳体合模成型。
本发明提供了一种为叶片腹板增加桁条加强结构的方法,该方法的步骤如下:
T1、通过设计确定叶片腹板中需要增加桁条的位置、桁条的结构和尺寸,腹板中的桁条的布置可如图5a或图5b所示。其中,需要增加桁条的位置是叶片腹板抗剪切的薄弱处;桁条的结构可以是Ω型桁条加强结构,或者是梯形桁条加强结构,且桁条的结构的尺寸与需要增加桁条的位置、抗剪切的要求等相匹配。图5a适用于需要使用桁条加强结构数量较少的情况,图5b适用于需要使用的桁条加强结构数量较多的情况,即桁条加强结构数量也是根据实际需要进行调整,本发明对此不做限制。
T2、根据布置步骤T1设计的桁条加强结构和尺寸,制作桁条加强结构的模具;
T3、进行叶片腹板铺层,灌注固化;
T4、腹板灌注固化的同时在桁条加强结构的模具中预制桁条加强结构;
T5、根据桁条加强结构在叶片腹板中的定位,将腹板和桁条加强结构的粘接法兰通过结构胶进行粘接;
T6、将腹板放置于壳体中进行合模成型。
综上所述,本发明利用桁条加强结构加强风电叶片的方法,既能够提高叶片的抗屈曲和抗剪切能力,又能够不增加叶片壳体芯材厚度和腹板纤维布 层厚度,提高叶片制造质量的可靠性。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (10)

  1. 一种用于风电叶片的桁条加强结构,其特征在于,包含中间的主结构和分别在所述主结构两侧端延伸的连接结构,所述主结构是相对连接结构的拱起结构,一个或多个桁条加强结构的连接结构与风电叶片上的待加强部件连接,所述待加强部件为风电叶片上抗屈曲和/或抗剪切能力待增强的部件。
  2. 如权利要求1所述的桁条加强结构,其特征在于,
    所述桁条加强结构的主结构包含中间层的芯材层和芯材层上下表面的纤维布层,或者,所述桁条加强结构的主结构包含内外侧的纤维布层;
    所述纤维布层为单向布或双轴布或三轴布。
  3. 如权利要求1所述的桁条加强结构,其特征在于,
    所述桁条加强结构的连接结构为粘接法兰。
  4. 如权利要求1所述的桁条加强结构,其特征在于,
    所述连接结构包含纤维布层,所述纤维布层为单向布或双轴布或三轴布。
  5. 如权利要求1所述的桁条加强结构,其特征在于,
    所述桁条加强结构为梯形桁条加强结构,所述梯形桁条加强结构的主结构与连接结构之间形成的角度为钝角或直角或锐角;
    或者,所述桁条加强结构为Ω型桁条加强结构,所述Ω型桁条加强结构的主结构为圆弧状或对称型曲线。
  6. 如权利要求1~5中任意一项所述的桁条加强结构,其特征在于,
    所述待加强部件包含风电叶片的叶片壳体和/或腹板。
  7. 一种风电叶片,包含叶片壳体和腹板,其特征在于,所述叶片壳体和/或腹板上设有如权利要求1~6中任意一项所述的一个或多个桁条加强结构。
  8. 如权利要求7所述的风电叶片,其特征在于,
    所述桁条加强结构布置在腹板的正面和/或背面,所述桁条加强结构的连接结构与腹板的正面表面和/或背面表面连接,所述桁条加强结构的长度方向与叶片的长度方向之间呈一定角度;
    或者,所述桁条加强结构置于叶片壳体内侧的前缘位置或者后缘位置的芯材处,所述桁条加强结构的长度方向与叶片的长度方向之间呈一定角度。
  9. 如权利要求7所述的风电叶片,其特征在于,
    所述桁条加强结构布置在腹板的正面和/或背面,所述桁条加强结构的长度方向与叶片的长度方向之间所呈的角度范围在20°到90°之间;
    或者,所述桁条加强结构置于叶片壳体内侧的前缘位置或者后缘位置的芯材处,所述桁条加强结构与叶片的长度方向之间所呈的角度小于20°。
  10. 一种为如权利要求7~9中任意一项所述的叶片壳体和/或腹板增加桁条加强结构的方法,其特征在于,该方法包含以下过程:
    确定叶片壳体和/或腹板上待增加桁条加强结构的位置,以及待增加的桁条加强结构的结构形态与尺寸;
    制作所述桁条加强结构的模具;
    进行叶片壳体和/或腹板的铺层,以及灌注固化,并在桁条加强结构的模具中预制桁条加强结构;
    根据桁条加强结构在叶片壳体和/或腹板中的定位,将叶片壳体和/或腹板分别与桁条加强结构的连接结构进行连接;
    叶片壳体合模成型或者腹板放置于叶片壳体中进行合模成型。
PCT/CN2021/081212 2020-03-19 2021-03-17 一种风电叶片及其桁条加强结构与方法 WO2021185263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010195783.9 2020-03-19
CN202010195783.9A CN111396244A (zh) 2020-03-19 2020-03-19 一种风电叶片及其桁条加强结构与方法

Publications (1)

Publication Number Publication Date
WO2021185263A1 true WO2021185263A1 (zh) 2021-09-23

Family

ID=71434369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081212 WO2021185263A1 (zh) 2020-03-19 2021-03-17 一种风电叶片及其桁条加强结构与方法

Country Status (2)

Country Link
CN (1) CN111396244A (zh)
WO (1) WO2021185263A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111396244A (zh) * 2020-03-19 2020-07-10 上海电气风电集团股份有限公司 一种风电叶片及其桁条加强结构与方法
WO2022236724A1 (zh) * 2021-05-12 2022-11-17 远景能源有限公司 一种具有加强条的风机叶片及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316466A (ja) * 2003-04-11 2004-11-11 Sekisui Chem Co Ltd 風力発電用ブレード
JP2011032986A (ja) * 2009-08-05 2011-02-17 Nitto Denko Corp 風力発電機ブレード用制振シート、風力発電機ブレードの制振構造、風力発電機および風力発電機ブレードの制振方法
JP2012122359A (ja) * 2010-12-06 2012-06-28 Mitsubishi Heavy Ind Ltd 風力発電装置のナセル屋根構造
CN202545139U (zh) * 2012-04-25 2012-11-21 国电联合动力技术有限公司 一种带加强筋结构的抗屈曲风力发电机风轮叶片
WO2017056683A1 (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 繊維強化シート及び構造体
JP2017207001A (ja) * 2016-05-18 2017-11-24 株式会社日本製鋼所 風車用ブレード、風車、風車用ブレードの製造方法および風車用ブレード接合構造
CN206939050U (zh) * 2017-06-26 2018-01-30 中国航空工业集团公司沈阳飞机设计研究所 一种轻质高承载复合材料蒙皮整体结构
CN111396244A (zh) * 2020-03-19 2020-07-10 上海电气风电集团股份有限公司 一种风电叶片及其桁条加强结构与方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1401996B1 (it) * 2010-09-30 2013-08-28 Wilic Sarl Metodo per realizzare un longherone tubolare di una pala di una turbina eolica

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316466A (ja) * 2003-04-11 2004-11-11 Sekisui Chem Co Ltd 風力発電用ブレード
JP2011032986A (ja) * 2009-08-05 2011-02-17 Nitto Denko Corp 風力発電機ブレード用制振シート、風力発電機ブレードの制振構造、風力発電機および風力発電機ブレードの制振方法
JP2012122359A (ja) * 2010-12-06 2012-06-28 Mitsubishi Heavy Ind Ltd 風力発電装置のナセル屋根構造
CN202545139U (zh) * 2012-04-25 2012-11-21 国电联合动力技术有限公司 一种带加强筋结构的抗屈曲风力发电机风轮叶片
WO2017056683A1 (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 繊維強化シート及び構造体
JP2017207001A (ja) * 2016-05-18 2017-11-24 株式会社日本製鋼所 風車用ブレード、風車、風車用ブレードの製造方法および風車用ブレード接合構造
CN206939050U (zh) * 2017-06-26 2018-01-30 中国航空工业集团公司沈阳飞机设计研究所 一种轻质高承载复合材料蒙皮整体结构
CN111396244A (zh) * 2020-03-19 2020-07-10 上海电气风电集团股份有限公司 一种风电叶片及其桁条加强结构与方法

Also Published As

Publication number Publication date
CN111396244A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2021185263A1 (zh) 一种风电叶片及其桁条加强结构与方法
BR112016029061B1 (pt) Sistema de ponta para uma pá de turbina eólica
US10066491B2 (en) Fibre composite component for the rotor blade of a wind turbine
ES2625946T3 (es) Palas de turbina eólica y método de fabricación de las mismas
US11396154B2 (en) Modular wind turbine blade and associated method of manufacture
US20130189114A1 (en) Method of manufacturing a wind turbine blade and a wind turbine blade
JP6446455B2 (ja) 接合され且つ調整可能な複合材アセンブリ
EP2778393A2 (en) Wind turbine blade design and associated manufacturing methods using rectangular spars
BR112013000158B1 (pt) pá de turbina eólica e método de produção de uma pá
US20110211971A1 (en) Rotor blade for a wind power plant, wind power plant and method for the production of a rotor blade
US20110052408A1 (en) Swept blades utilizing asymmetric double biased fabrics
CN207647684U (zh) 风力发电机组叶片组成部件、叶片及风力发电机组
BR112016001551B1 (pt) Pá de turbina eólica tendo uma linha de ligação adjacente a um painel sanduíche da pá
BR102013018440A2 (pt) Elementos de flexão e reforço compósitos laminados com o reforço de folhas metálicas entre camadas
CN105473847A (zh) 具有结合在一起的多个分段的风轮机叶片
KR20110100192A (ko) 풍력 터빈 날개 및 이를 사용하는 풍력 터빈 발전장치
ES2936471T3 (es) Método para fabricar una estructura aeronáutica
WO2022007610A1 (zh) 一种带凹型结构的风电叶片用轻量化主梁及制作、主梁结构组合、风电叶片及其制作方法
US20110052407A1 (en) Swept blades utilizing asymmetric double biased fabrics
BR112012020393B1 (pt) Processo para a produção de uma pá de rotor, e, pá de rotor de instalação de energia eólica
CN109311252A (zh) 制造风力涡轮机叶片的方法
CN106985413B (zh) 一种用于泡沫夹芯复合材料结构翼梢小翼的成型工装
BR112020009619A2 (pt) painel da pá de rotor e método para fabricar um painel da pá de rotor
BR112018013009B1 (pt) Lâminas de turbina eólica e métodos de fabricação relacionados
BR112012033209B1 (pt) junção compósita reduzida de entalhes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771397

Country of ref document: EP

Kind code of ref document: A1