WO2021185248A1 - 频率调试板、频率调试系统和调试电子设备的方法 - Google Patents

频率调试板、频率调试系统和调试电子设备的方法 Download PDF

Info

Publication number
WO2021185248A1
WO2021185248A1 PCT/CN2021/081085 CN2021081085W WO2021185248A1 WO 2021185248 A1 WO2021185248 A1 WO 2021185248A1 CN 2021081085 W CN2021081085 W CN 2021081085W WO 2021185248 A1 WO2021185248 A1 WO 2021185248A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
electronic device
debugging
antenna
switch
Prior art date
Application number
PCT/CN2021/081085
Other languages
English (en)
French (fr)
Inventor
邹祥祥
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/641,351 priority Critical patent/US11892486B2/en
Publication of WO2021185248A1 publication Critical patent/WO2021185248A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0871Complete apparatus or systems; circuits, e.g. receivers or amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2822Testing of electronic circuits specially adapted for particular applications not provided for elsewhere of microwave or radiofrequency circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/73Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for taking measurements, e.g. using sensing coils

Definitions

  • the present disclosure relates to the technical field of electronic equipment debugging, and in particular to a frequency debugging board, a frequency debugging system and a method for debugging electronic equipment.
  • NFC Near Field Communication
  • the frequency debugging board includes a bottom plate; a variable capacitor and a plurality of first probes arranged on the bottom plate, and a first probe is connected to both ends of the variable capacitor; A plurality of second probes and at least one switch, and any two adjacent second probes are connected by a switch.
  • the frequency debugging board further includes a controller provided on the bottom plate, the controller is respectively connected to the variable capacitor and the at least one switch, and is configured to change the The capacitance of the variable capacitor and the state of the at least one switch.
  • the frequency debugging board further includes a communication interface provided on the bottom plate, and the communication interface is connected to the controller.
  • the frequency debugging board further includes a shielding layer provided on the bottom plate; the plurality of first probes, the plurality of second probes, the at least one switch, and the control
  • the device and the communication interface are located on the first surface of the bottom plate, and the shielding layer is located on the second surface of the bottom plate.
  • the thickness direction is vertical.
  • the plurality of first probes and the plurality of second probes penetrate the bottom plate and the shielding layer, extend from the first surface to the second surface, and continue Extend to the outside of the bottom plate.
  • the frequency debugging system includes: an electronic device including an antenna to be tested and a capacitor to be tested; a test coil configured to receive a signal sent by the antenna to be tested; a frequency tester, the frequency The tester is connected to the test coil and is configured to detect the frequency of the signal from the antenna to be tested on the test coil, where the frequency of the signal is the operating frequency of the electronic device; a terminal, the The terminal is connected to the frequency tester and is configured to receive the operating frequency of the electronic device sent by the frequency tester, and determine whether the deviation between the operating frequency of the electronic device and the target frequency is within an allowable range
  • the frequency debugging board as described in the above embodiment, the frequency debugging board is connected to the terminal, and is set opposite to the side of the electronic device with the antenna to be tested and the capacitor to be tested, and is It is configured to receive an instruction sent by the terminal, and change the capacitance of the variable capacitor and/or the state of the at least one switch according to the instruction to adjust the operating
  • the plurality of first probes are connected to the capacitor under test, and the plurality of second probes are connected to different parts of the antenna under test.
  • the electronic device includes a plurality of first contacts, two ends of the capacitor to be tested are respectively connected to a first contact, and the plurality of first probes are connected to the plurality of first contacts.
  • One-to-one correspondence connection the electronic device includes a plurality of second contacts, each turn of the coil of the antenna to be tested is connected to a second contact, the plurality of second probes are connected to the plurality of second The contacts are connected in one-to-one correspondence.
  • the number of the plurality of second probes is the same as the number of turns of the antenna under test, and one second probe is correspondingly connected to one turn of the coil of the antenna under test.
  • the frequency debugging board in a case where the frequency debugging board includes a communication interface, the frequency debugging board is connected to the terminal through the communication interface to receive instructions sent by the terminal.
  • the shielding layer is located on a side of the frequency debugging board close to the electronic device.
  • the antenna under test is an antenna based on near field communication technology; or, the antenna under test is an antenna based on radio frequency identification technology.
  • the electronic device further includes a display panel
  • the display panel is one of the following display panels: an electronic paper display panel, a liquid crystal display panel, an organic electroluminescence display panel, or a quantum dot light emitting diode display panel.
  • the electronic device is at least one of the following: an electronic price tag, a mobile phone, a tablet computer, or a wearable device.
  • a method for debugging an electronic device using the frequency debugging system described in the foregoing embodiment includes: the test coil receives the signal sent by the antenna to be tested of the electronic device, and transmits the received signal to the frequency tester; the frequency tester detects the signal sent by the test coil The frequency of the signal is the working frequency of the electronic device, and the measured working frequency of the electronic device is transmitted to the terminal; the terminal judges the working frequency of the electronic device and the target frequency Whether the deviation is within the allowable range; if not, the terminal sends an instruction to the controller of the frequency debugging board to make the controller change the capacitance and/or of the variable capacitor of the frequency debugging board Or the state of the at least one switch, thereby adjusting the operating frequency of the electronic device, so that the deviation of the operating frequency of the electronic device from the target frequency is within an allowable range.
  • the controller changes the capacitance of the variable capacitor of the frequency debugging board and/or the state of at least one switch, thereby adjusting the operating frequency of the electronic device so that the operating frequency of the electronic device is the same as The deviation of the target frequency is within the allowable range, including: the operating frequency of the electronic device measured by the terminal according to the frequency tester, the initial capacitance of the capacitor under test, and the initial capacitance of the variable capacitor
  • the capacitance calculates the inductance of the antenna under test; if the inductance is greater than or equal to the inductance threshold, the controller changes the state of each switch in the frequency debugging board until the inductance is less than the inductance threshold; then adjusts the inductance Changing the capacitance of the capacitor causes the operating frequency of the electronic device to change accordingly until the deviation between the operating frequency of the electronic device and the target frequency is within an allowable range; if the inductance is less than the inductance threshold, the controller Changing the capacitance of the variable capacitor in the frequency debug
  • the initial capacitance of the variable capacitor is 0; the state of a switch includes an OPEN state and a CLOSE state, the OPEN state indicates that the switch is off, and the CLOSE state indicates that the switch is closed.
  • the terminal when the inductance of the antenna under test is less than the inductance threshold, the terminal records the state of each switch at this time; when the deviation between the operating frequency of the electronic device and the target frequency is within an allowable range Inside, the terminal records the target capacitance of the variable capacitor at this time.
  • the method further includes at least one of the following: soldering a capacitor with a target capacitance to the electronic device; or, soldering the antenna under test corresponding to the switch in the CLOSE state among the switches The second contact is turned on.
  • a computer-readable storage medium such as a non-transitory computer-readable storage medium.
  • the computer-readable storage medium stores computer program instructions that, when run on a processor, cause the processor to perform one or more steps in the method for debugging an electronic device as described in the above-mentioned embodiments .
  • FIG. 1 is a structural diagram of a frequency debugging system according to some embodiments
  • Figure 2 is a structural diagram of an electronic device according to some embodiments.
  • Fig. 3 is a structural diagram of a frequency debugging board according to some embodiments.
  • FIG. 4 is a structural diagram of another frequency debugging board according to some embodiments.
  • FIG. 5 is a structural diagram when debugging an electronic device according to some embodiments.
  • Fig. 6 is a flowchart of a method for debugging an electronic device according to some embodiments.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, “plurality” means two or more.
  • the expressions “coupled” and “connected” and their extensions may be used.
  • the term “connected” may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more components have direct physical or electrical contact.
  • the term “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited to the content of this document.
  • a and/or B includes the following three combinations: A only, B only, and the combination of A and B.
  • the term “if” is optionally interpreted as meaning “when” or “when” or “in response to determination” or “in response to detection.”
  • the phrase “if it is determined" or “if [the stated condition or event] is detected” is optionally interpreted to mean “when determining" or “in response to determining" Or “when [stated condition or event] is detected” or “in response to detecting [stated condition or event]”.
  • An electronic price tag is an electronic device with a function of sending and receiving information, which is mainly used in supermarkets, convenience stores, and pharmacies. It can interact with handheld terminals for data.
  • the working principle is: the handheld terminal sends the radio signal carrying the product data information to the electronic price tag, the electronic price tag receives the radio signal, and displays the product information contained in the radio signal on the display screen.
  • the electronic price tag can be an electronic price tag based on RFID (Radio Frequency Identification, radio frequency identification), or an electronic price tag based on NFC.
  • RFID Radio Frequency Identification, radio frequency identification
  • NFC NFC
  • the working frequency of electronic equipment such as electronic price tags needs to be within a certain range. If it exceeds this range, the communication quality and communication distance of the electronic equipment will be greatly reduced.
  • an electronic price tag based on NFC its operating frequency needs to be in the range of (13.56 ⁇ 0.002) MHz. Therefore, in order to make the deviation between the working frequency of electronic price tags and other electronic devices and the target frequency (for example, the target frequency of NFC-based electronic price tags is 13.56MHz) within an allowable range, so as to ensure the communication quality and communication of electronic devices Distance, the working frequency of electronic equipment needs to be debugged.
  • the above allowable range is ⁇ 0.002 MHz, that is, the absolute value of the difference between the operating frequency of the electronic device and the target frequency is 0.002 MHz.
  • the frequency debugging system includes a terminal 10, a frequency tester 20 and a frequency debugging board 30 respectively connected to the terminal 10, a test coil 40 connected to the frequency tester 20, and electronics connected to the frequency debugging board 30.
  • Equipment 50 is a parameter that controls the frequency debugging system.
  • the electronic device 50 is located between the frequency debugging board 30 and the test coil 40, and the electronic device 50 may be an electronic price tag, a wearable device, a mobile phone, a tablet computer, or the like.
  • the test coil 40 is configured to receive the signal sent by the electronic device 50 and transmit the received signal to the frequency tester 20.
  • the frequency tester 20 is configured to detect the frequency of the signal transmitted by the test coil 40 so as to measure the operating frequency of the electronic device 50 and output the operating frequency of the electronic device 50 to the terminal 10.
  • the frequency tester 20 may be a vector network analyzer.
  • the terminal 10 is configured to receive the operating frequency of the electronic device 50 sent by the frequency tester 20, and if the deviation of the operating frequency of the electronic device 50 from the target frequency is outside the allowable range, it sends an instruction to the frequency debugging board 30 to pass The frequency debugging board 30 debugs the operating frequency of the electronic device 50 so that the deviation of the operating frequency of the electronic device 50 from the target frequency is within an allowable range.
  • the terminal 10 may be a notebook computer, a desktop computer, a tablet computer, a mobile phone, and the like.
  • the frequency debugging board 30 is configured to adjust the operating frequency of the electronic device 50 so that the deviation of the operating frequency of the electronic device 50 from the target frequency is within an allowable range.
  • the working frequency of the electronic device 50 is adjusted through the frequency debugging board 30 so that the deviation from the target frequency is within an allowable range, thereby ensuring the communication distance of the electronic device 50 and Communication quality.
  • the electronic device 50 includes a display panel 51 and a circuit board 52.
  • the circuit board 52 When viewed directly facing the display surface of the electronic device 50, the circuit board 52 is arranged behind the display panel 51.
  • the display panel 51 may be an electronic paper display panel (EPD), a liquid crystal display panel (LCD), an organic electroluminescence display panel (OLED), a quantum dot light emitting diode display panel (QLED), or the like.
  • the circuit board 52 includes an antenna 521 and a capacitor 522 connected to the antenna 521.
  • the antenna 521 is referred to as the antenna to be tested 521
  • the capacitor 522 is referred to as the capacitor to be tested 522.
  • the signal sent by the electronic device 50 received by the test coil 40 is the signal sent by the antenna 521 under test.
  • the antenna under test 521 and the capacitor under test 522 form an LC resonant circuit, and the resonant frequency of the circuit, that is, the operating frequency of the electronic device 50, is calculated using the following formula:
  • the operating frequency of the electronic device 50 can be adjusted by adjusting the inductance L of the antenna 521 under test or the capacitance C of the capacitor 522 under test.
  • the frequency debugging board 30 in order to realize the connection between the frequency debugging board 30 and the antenna under test 521 and the capacitor under test 522 in the electronic device 50, can change the inductance L of the antenna under test 521 and/or the capacitor under test 522.
  • the capacitance C of the capacitor 522 further adjusts the operating frequency of the electronic device 50.
  • the circuit board 52 also includes a plurality of first contacts 5221 arranged at both ends of the capacitor 522 under test, and arranged on the antenna 521 under test
  • the frequency debugging board 30 is connected to the capacitor under test 522 through the multiple first contacts 5221, and is connected to different parts of the antenna 521 under test through the multiple second contacts 5211.
  • the present disclosure does not limit the number of the plurality of first contacts 5221 and the plurality of second contacts 5211, which can be two, three, or more than three.
  • FIG. 2 shows two first contacts 5221 and Seven second contacts 5211.
  • the present disclosure does not limit the arrangement of the multiple second contacts 5211.
  • Multiple second contacts may be provided on part of the coil of the antenna to be tested 521, or each turn of the coil of the antenna to be tested 521 may be provided.
  • There is a second contact. 2 shows that each turn of the coil of the antenna under test 521 is provided with a second contact. At this time, the number of the plurality of second contacts 5211 is equal to the total number of turns of the antenna 521 under test.
  • the frequency debugging board 30 includes a bottom plate 31, a plurality of first probes 32, a plurality of second probes 33, at least one switch 34, and a variable capacitor disposed on the bottom plate 31. 35. Wherein, a first probe 32 is connected to both ends of the variable capacitor 35, and any two adjacent second probes 33 are connected through a switch 34.
  • the present disclosure does not limit the number of the plurality of first probes 32, the plurality of second probes 33, and the at least one switch 34.
  • the number of the plurality of first probes 32 can be two, three, or more than three; the number of the plurality of second probes 33 can be two, three, or more than three; the number of at least one switch 34 It can be one, two, or more than two.
  • FIG. 2 shows two first probes 32, seven second probes 33, and six switches 34.
  • the multiple first probes 32 on the frequency debugging board 30 are connected to the multiple first contacts 5221 at both ends of the capacitor 522 under test in a one-to-one correspondence, so that the variable capacitor 35 It is connected in parallel with the capacitor 522 to be tested.
  • the initial capacitance C1 of the capacitor under test 522 is 0.
  • the multiple second probes 33 on the frequency debugging board 30 are connected to the multiple second contacts on the antenna to be tested 521 in a one-to-one correspondence.
  • the number of turns changes the inductance L of the antenna 521 to be tested, thereby adjusting the operating frequency of the electronic device 50.
  • the at least one switch 34 includes a plurality of switches 34.
  • the switches 34 are numbered from bottom to top as 1, 2, 3, 4, 5...n, and the second probe 33 is numbered from bottom to top, respectively. It is 1, 2, 3, 4, 5...m, and the initial state of the switch 34 is the OPEN state.
  • any two second probes 33 are disconnected; when a switch 34 is in the CLOSE state, For example, the No. 1 switch 341 is closed, and the two adjacent second probes 33 connected through the No. 1 switch 341, that is, the No. 1 second probe 331 and the No.
  • the multiple second probes 33 It is connected to the multiple second contacts 5211 on the antenna under test 521 in a one-to-one correspondence. Therefore, the adjacent two-turn coils in the antenna under test 521 corresponding to the second probe No. 1 331 and the second probe No. 2 332
  • the connection reduces the number of turns for the antenna to be tested 521 to connect to the LC resonant circuit, thereby reducing the inductance of the antenna to be tested 521.
  • the size of the inductance is proportional to the number of turns of the coil. The fewer the number of coil turns, the smaller the inductance.
  • the frequency debugging board 30 provided by some embodiments of the present disclosure adjusts the capacitance of the variable capacitor 35 and the state of each switch 34 to adjust the inductance of the antenna 521 under test and the capacitance of the capacitor 522 under test in the electronic device 50, thereby adjusting the electronic
  • the operating frequency of the device 50 makes the deviation from the target frequency within an allowable range, which improves the debugging efficiency of the operating frequency of the electronic device 50 and facilitates the rectification of the circuit board 52 in the electronic device 50. It can be understood that after the circuit board 52 is rectified, the deviation of the operating frequency of the electronic device 50 from the target frequency is within an allowable range.
  • the frequency debugging board 30 further includes a controller 36, which is respectively connected to the variable capacitor 35 and each switch 34, and is configured to change the capacitance of the variable capacitor 35 and each switch 34.
  • the state of a switch 34 may be a single-chip microcomputer, an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or the like.
  • the controller 36 controls the capacitance of the variable capacitor 35 and the state of each switch 34 to automatically debug the working frequency of the electronic device 50, avoiding manual debugging, and further improving the debugging efficiency of the working frequency of the electronic device 50.
  • the frequency debugging board 30 further includes a communication interface 37 arranged on the bottom plate 31, and a communication interface 37 arranged on the side of the bottom plate 31 close to the electronic device 50 along the thickness direction of the bottom plate 31.
  • the communication interface 37 may be a wired or wireless interface, such as an Ethernet interface, a USB (Universal Serial Bus) interface, a wireless fidelity (Wireless Fidelity, Wi-Fi), Bluetooth, etc.
  • the communication interface 37 is connected to the controller 36, and the frequency debugging board 30 performs two-way communication with the terminal 10 through the communication interface 37, which is convenient for calling data and sending instructions.
  • the shielding layer 38 is, for example, a metal shielding layer.
  • variable capacitor 35, the plurality of first probes 32, the plurality of second probes 33, at least one switch 34, the controller 36, and the communication interface 37 are located on the first surface of the base plate 31, and the shielding layer 38 is located on the first surface of the base plate 31.
  • the first surface and the second surface are opposite and both are perpendicular to the thickness direction of the bottom plate 31.
  • the shielding layer 38 can prevent the electrical signal on the frequency debugging board 30 from interfering with the electronic device 50.
  • the plurality of first probes 32 and the plurality of second probes 33 penetrate the bottom plate 31 and the shielding layer 38, extend from the first surface to the second surface, and continue to the bottom plate. External extension.
  • Some embodiments of the present disclosure also provide a method for debugging an electronic device using the above-mentioned frequency debugging system, which includes: the test coil 40 receives the signal sent by the antenna 521 under test in the electronic device 50, and transmits the received signal to the frequency The tester 20; the frequency tester 20 detects the frequency of the signal sent by the test coil 40, and the frequency of the signal is the operating frequency of the electronic device 50, and transmits the measured operating frequency of the electronic device 50 to the terminal 10; the terminal 10 judges the electronic Whether the deviation between the operating frequency of the device 50 and the target frequency is within the allowable range, for example, ⁇ 0.002 MHz; if not, the terminal 10 sends an instruction to the controller 36 of the frequency debugging board 30 to make the controller 36 The capacitance of the variable capacitor 35 of the frequency debugging board 30 and/or the state of the at least one switch 34 are changed to adjust the operating frequency of the electronic device 50 so that the deviation of the operating frequency of the electronic device 50 from the target frequency is within an allowable range.
  • the test antenna 521 and the capacitor under test 522 in the electronic device 50 can be adjusted according to the Inductance and capacitance, the circuit board 52 in the electronic device 50 is rectified. It can be understood that after the circuit board 52 is rectified, the deviation of the operating frequency of the electronic device 50 from the target frequency is within an allowable range.
  • the controller 36 changes the capacitance of the variable capacitor 35 of the frequency debugging board 30 and/or the state of the at least one switch 34, thereby adjusting the operating frequency of the electronic device 50 so that the operating frequency of the electronic device 50 is The deviation from the target frequency is within the allowable range, including: the operating frequency of the electronic device 50 measured by the terminal 10 according to the frequency tester 20, the initial capacitance of the capacitor to be tested 522 on the electronic device 50, and the frequency debugging board 30
  • the initial capacitance of the variable capacitor 35 is used to calculate the inductance of the antenna 521 to be tested.
  • the initial capacitance of the variable capacitor 35 may be 0; and it is determined whether the inductance is greater than or equal to a preset inductance threshold.
  • the inductance threshold is, for example, 5 microhenries (uH).
  • the controller 36 changes the state of each switch 34 in the frequency debugging board 30 to adjust the inductance of the antenna 521 under test until the inductance is less than the inductance threshold, and the terminal 10 records the status of each switch 34 at this time.
  • the terminal 10 records the variable capacitor at this time
  • the target capacitance of 35, the capacitor with the target capacitance is welded to the circuit board 52 of the electronic device 50, and the number of turns of the coil in the antenna 521 to be tested is reduced by welding or other methods according to the previously recorded state of each switch 34.
  • the circuit board 52 in the electronic device 50 has been rectified.
  • the controller 36 changes the capacitance of the variable capacitor 35 in the frequency debugging board 30, so that the operating frequency of the electronic device 50 changes accordingly until the operating frequency of the electronic device 50 is less than the target frequency.
  • the deviation is within the allowable range; the terminal 10 records the target capacitance of the variable capacitor 35 at this time, and solders the capacitor with the target capacitance to the circuit board 52 of the electronic device 50.
  • the circuit board 52 in the electronic device 50 has been rectified. Since the inductance is smaller than the inductance threshold, the number of turns of the coil in the antenna 521 under test may not be reduced.
  • the manufacturing process it is more convenient to change the capacitance of the capacitor 522 under test in the circuit board 52 than to change the inductance of the antenna 521 under test.
  • the antenna to be tested 521 that has been manufactured in the circuit board 52, it is easy to reduce the number of coil turns, but it is not easy to achieve an increase in the number of coil turns.
  • the inductance of the coil under test 521 may not be adjusted, thus The coil to be tested 521 will not be rectified. This simplifies the manufacturing process and improves production efficiency.
  • FIG. 5 is a schematic diagram of the structure when debugging an electronic device according to some embodiments of the disclosure.
  • Fig. 6 is a flowchart of a method for debugging an electronic device according to some embodiments of the present disclosure. As shown in FIG. 5 and FIG. 6, the method for debugging an electronic device may include the following steps:
  • step 601 the electronic device 50 is set in the debugging system as shown in FIG. 1 and FIG. 5, and the electronic device 50 is in an initial state.
  • the electronic device 50 may have a display panel 51 and a circuit board 52, and the circuit board 52 includes an antenna to be tested 521 and a capacitor 522 to be tested.
  • one side of the electronic device 50 is opposite to the test coil 40, and the other opposite side is opposite to the frequency debugging board 30; the test coil 40 is connected to the frequency tester 20; the frequency tester 20 and the frequency debugging board 30 are connected to the terminal 10.
  • the electronic device 50 is in the initial state, which may be that the initial capacitance of the variable capacitor 35 in the frequency debugging board 30 is 0, and each switch 34 is in the OPEN state.
  • the initial state of the electronic device 50 refers to the state before the electronic device 50 is debugged by the frequency debug board 30.
  • Step 602 as shown in FIG. 1, a frequency tester 20 is used to test the current operating frequency f of the electronic device 50.
  • the antenna to be tested 521 in the electronic device 50 sends a signal to the test coil 40, and the test coil 40 receives the signal, and transmits the received signal to the frequency tester 20.
  • the frequency tester 20 detects the frequency of the signal sent by the test coil 40 to obtain the current operating frequency of the electronic device 50.
  • the operating frequency of the electronic device 50 is the same as the frequency of the signal sent by the test coil 40.
  • step 603 the terminal 10 determines whether the deviation between the current operating frequency f of the electronic device 50 and the target frequency (such as 13.56 MHz, etc.) is within an allowable range (such as ⁇ 0.002 MHz); if so, step 609 is performed; if not, then Go to step 604.
  • the target frequency such as 13.56 MHz, etc.
  • step 604 the terminal 10 uses formula (1) to calculate the inductance of the antenna 521 to be tested based on the current operating frequency of the electronic device 50, the initial capacitance of the capacitor to be tested 522, and the initial capacitance of the variable capacitor 35, and determines whether the inductance is greater than or equal to Inductance threshold; if the inductance is greater than or equal to the inductance threshold, go to step 605; if the inductance is less than the inductance threshold, go to step 606.
  • the inductance threshold is, for example, 5 uH, and the inductance threshold can be adjusted according to different products or standards, which is not limited in some embodiments of the present disclosure.
  • the capacitor under test 522 in the electronic device 50 and the antenna under test 521 form an LC resonance circuit.
  • Increasing the number of coil turns of the antenna under test 521 can increase the inductance, so that the working distance of the antenna under test 521 is longer, but correspondingly, the capacitance of the capacitor under test 522 needs to be reduced.
  • the resonance frequency of the LC resonant circuit is 13.56MHz, if the inductance of the antenna 521 under test is too large (for example, more than 5uH), the value of the capacitance of the capacitor 522 under test is very small, which makes the matching of inductance and capacitance very difficult. difficulty.
  • step 605 the controller 36 changes the state of each switch 34 on the frequency debugging board 30, and adjusts the inductance of the antenna 521 to be tested until the inductance is less than the inductance threshold, and the terminal 10 records the state of each switch 34 at this time.
  • step 606 the controller 36 adjusts the capacitance of the variable capacitor 35 so that the operating frequency of the electronic device 50 changes accordingly until the deviation between the operating frequency of the electronic device 50 and the target frequency is within an allowable range, and the terminal 10 records that Change the target capacitance of capacitor 35.
  • step 607 the terminal 10 outputs the recorded state of each switch 34 and the target capacitance of the variable capacitor 35 through its own display panel.
  • step 608 the capacitor with the target capacitance is welded to the circuit board 52, and the second contact 5211 of the antenna under test 521 corresponding to the switch in the CLOSE state of each switch 34 is connected through solder.
  • Step 609 the debugging ends.
  • Some embodiments of the present disclosure can adjust the capacitance of the capacitor under test 522 of the electronic device 50 and the inductance of the antenna 521 under test by adjusting the capacitance of the variable capacitor 35 on the frequency debugging board 30 and the state of each switch 34, thereby adjusting the electronic device 50 to ensure that the deviation between the operating frequency of the electronic device 50 and the target frequency is within an allowable range.
  • the debugging efficiency of the operating frequency of the electronic device 50 is improved, and the circuit board 52 of the electronic device 50 can be easily rectified.
  • Some embodiments of the present disclosure provide a computer-readable storage medium (for example, a non-transitory computer-readable storage medium), the computer-readable storage medium stores computer program instructions, and when the computer program instructions run on a processor , Causing the processor to execute one or more steps in the method for debugging an electronic device as described in the foregoing embodiment.
  • a computer-readable storage medium for example, a non-transitory computer-readable storage medium
  • the foregoing computer-readable storage medium may include, but is not limited to: magnetic storage devices (for example, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (for example, CD (Compact Disk), DVD (Digital Versatile Disk, Digital universal disk), etc.), smart cards and flash memory devices (for example, EPROM (Erasable Programmable Read-Only Memory), cards, sticks or key drives, etc.).
  • Various computer-readable storage media described in this disclosure may represent one or more devices and/or other machine-readable storage media for storing information.
  • the term "machine-readable storage medium" may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

一种频率调试板,包括底板;设置在底板上的可变电容器和多个第一探针,可变电容器的两端分别连接有一个第一探针;设置在底板上的多个第二探针和至少一个开关,任意两个相邻的第二探针之间通过一个开关连接。

Description

频率调试板、频率调试系统和调试电子设备的方法
本申请要求于2020年3月16日提交的、申请号为202010183045.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及电子设备调试技术领域,尤其涉及一种频率调试板、频率调试系统和调试电子设备的方法。
背景技术
随着电子设备的越来越多元化,基于NFC(Near Field Communication,近场通信)的电子价签,因其系统结构简单、低成本、低功耗、安全性高、使用方便等特点,越来越受到欢迎。
发明内容
一方面,提供一种频率调试板。所述频率调试板包括底板;设置在所述底板上的可变电容器和多个第一探针,所述可变电容器的两端分别连接有一个第一探针;设置在所述底板上的多个第二探针和至少一个开关,任意两个相邻的第二探针之间通过一个开关连接。
在一些实施例中,所述频率调试板还包括设置在所述底板上的控制器,所述控制器分别与所述可变电容器、以及所述至少一个开关连接,被配置为改变所述可变电容器的电容以及所述至少一个开关的状态。
在一些实施例中,所述频率调试板还包括设置在所述底板上的通信接口,所述通信接口与所述控制器连接。
在一些实施例中,所述频率调试板还包括设置在所述底板上的屏蔽层;所述多个第一探针、所述多个第二探针、所述至少一个开关、所述控制器以及所述通信接口位于所述底板的第一表面上,所述屏蔽层位于所述底板的第二表面上,所述第一表面和所述第二表面相对、且均与所述底板的厚度方向垂直。
在一些实施例中,所述多个第一探针和所述多个第二探针穿透所述底板和所述屏蔽层,由所述第一表面延伸至所述第二表面,并继续向所述底板的外部延伸。
另一方面,提供一种频率调试系统。所述频率调试系统包括:电子设备,所述电子设备包括待测天线和待测电容器;测试线圈,所述测试线圈被配置为接收所述待测天线发送的信号;频率测试仪,所述频率测试仪与所述测试线圈连接,并被配置为检测所述测试线圈上的来自于所述待测天线的信号的 频率,所述信号的频率为所述电子设备的工作频率;终端,所述终端与所述频率测试仪连接,并被配置为接收所述频率测试仪发送的所述电子设备的工作频率,并判断所述电子设备的工作频率与目标频率的偏差是否处于可允许的范围内;如上述实施例所述的频率调试板,所述频率调试板与所述终端连接,并与所述电子设备的具有所述待测天线和所述待测电容器的一侧相对设置,且被配置为接收所述终端发送的指令,根据所述指令改变所述可变电容器的电容和/或所述至少一个开关的状态,以调整所述电子设备的工作频率,从而使所述电子设备的工作频率与所述目标频率的偏差处于可允许的范围内。
在一些实施例中,所述多个第一探针与所述待测电容器连接,所述多个第二探针与所述待测天线的不同部位连接。
在一些实施例中,所述电子设备包括多个第一触点,所述待测电容器的两端分别连接一个第一触点,所述多个第一探针与所述多个第一触点一一对应连接;所述电子设备包括多个第二触点,所述待测天线的每匝线圈分别连接一个第二触点,所述多个第二探针与所述多个第二触点一一对应连接。
在一些实施例中,所述多个第二探针的数量与所述待测天线的匝数相同,一个第二探针与所述待测天线的一匝线圈对应连接。
在一些实施例中,在所述频率调试板包括通信接口的情况下,所述频率调试板通过所述通信接口与所述终端连接,以接收所述终端发送的指令。
在一些实施例中,在所述频率调试板包括屏蔽层的情况下,所述屏蔽层位于所述频率调试板靠近所述电子设备的一侧。
在一些实施例中,所述待测天线为基于近场通信技术的天线;或,所述待测天线为基于射频识别技术的天线。
在一些实施例中,所述电子设备还包括显示面板,所述显示面板为以下显示面板中的一种:电子纸显示面板、液晶显示面板、有机电致发光显示面板、或量子点发光二极管显示面板。
在一些实施例中,所述电子设备为以下至少一种:电子价签、手机、平板电脑或可穿戴设备。
又一方面,提供一种采用如上述实施例所述的频率调试系统调试电子设备的方法。该方法包括:所述测试线圈接收所述电子设备的所述待测天线发送的信号,并将接收到的信号传输至所述频率测试仪;所述频率测试仪检测所述测试线圈发送的信号的频率,所述信号的频率为所述电子设备的工作频率,并将测得的所述电子设备的工作频率传输给所述终端;所述终端判断所 述电子设备的工作频率与目标频率的偏差是否处于可允许的范围内;若否,则所述终端向所述频率调试板的控制器发送指令,以使所述控制器改变所述频率调试板的所述可变电容器的电容和/或所述至少一个开关的状态,从而调整所述电子设备的工作频率,使得所述电子设备的工作频率与目标频率的偏差处于可允许的范围内。
在一些实施例中,所述控制器改变所述频率调试板的可变电容器的电容和/或至少一个开关的状态,从而调整所述电子设备的工作频率,使得所述电子设备的工作频率与目标频率的偏差处于可允许的范围内,包括:所述终端根据所述频率测试仪测得的所述电子设备的工作频率、所述待测电容器的初始电容,以及所述可变电容器的初始电容计算所述待测天线的电感;若所述电感大于等于电感阈值,则所述控制器改变所述频率调试板中的各个开关的状态,直至所述电感小于电感阈值;之后调整所述可变电容器的电容,使得所述电子设备的工作频率随之改变,直至所述电子设备的工作频率与目标频率的偏差处于可允许的范围内;若所述电感小于电感阈值,则所述控制器改变频率调试板中的可变电容器的电容,使得所述待测天线的工作频率随之改变,直至所述电子设备的工作频率与目标频率的偏差处于可允许的范围内。
在一些实施例中,所述可变电容器的初始电容为0;一个开关的状态包括OPEN状态和CLOSE状态,所述OPEN状态指示所述开关断开、所述CLOSE状态指示所述开关闭合。
在一些实施例中,当所述待测天线的电感小于所述电感阈值时,所述终端记录此时各个开关的状态;当所述电子设备的工作频率与目标频率的偏差处于可允许的范围内,所述终端记录此时所述可变电容器的目标电容。
在一些实施例中,所述方法还包括以下至少一者:将具有目标电容的电容器焊接到所述电子设备上;或,将各个开关中处于CLOSE状态的开关对应的所述待测天线中的第二触点导通。
又一方面,提供一种计算机可读存储介质,例如非暂态计算机可读存储介质。所述计算机可读存储介质存储有计算机程序指令,所述计算机程序指令在处理器上运行时,使得所述处理器执行如上述实施例所述的调试电子设备的方法中的一个或多个步骤。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还 可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的频率调试系统的结构图;
图2为根据一些实施例的电子设备的结构图;
图3为根据一些实施例的一种频率调试板的结构图;
图4为根据一些实施例的另一种频率调试板的结构图;
图5为根据一些实施例的调试电子设备时的结构图;
图6根据一些实施例的一种调试电子设备的方法的流程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以 上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
电子价签是一种带有信息收发功能的电子设备,主要用于超市、便利店、药房,其能够与手持终端进行数据交互。工作原理为:手持终端将载有商品数据信息的无线电信号发送至电子价签,电子价签接收无线电信号,并将无线电信号所载有的商品信息通过显示屏显示出来。
电子价签可以是基于RFID(Radio Frequency Identification,射频识别)的电子价签,也可以是基于NFC的电子价签。
电子价签等电子设备的工作频率需要在某个范围内,如果超出该范围,电子设备的通讯质量和通讯距离都会大打折扣。例如,基于NFC的电子价签,其工作频率需要在(13.56±0.002)MHz的范围内。因此,为了使电子价签等电子设备的工作频率与目标频率(例如,基于NFC的电子价签的目标频率为13.56MHz)的偏差处于可允许的范围内,从而保证电子设备的通讯质量和通讯距离,需要对电子设备的工作频率进行调试。例如,上述可允许的范围为±0.002MHz,即电子设备的工作频率与目标频率之差的绝对值为0.002MHz。
在此基础上,本公开一些实施例提供了一种频率调试系统。如图1所示,该频率调试系统包括终端10、分别与终端10连接的频率测试仪20和频率调试板30、与频率测试仪20连接的测试线圈40、以及与频率调试板30连接的电子设备50。
在一些实施例中,电子设备50位于频率调试板30与测试线圈40之间,电子设备50可以为电子价签、可穿戴设备、手机、平板电脑等。
测试线圈40被配置为接收电子设备50发送的信号,并将接收到的信号传输至频率测试仪20。
频率测试仪20被配置为检测测试线圈40传输的信号的频率,从而测得电子设备50的工作频率,并将电子设备50的工作频率输出至终端10。在一 些实施例中,频率测试仪20可以为矢量网络分析仪。
终端10被配置为接收频率测试仪20发送的电子设备50的工作频率,如果电子设备50的工作频率与目标频率的偏差处于可允许的范围之外,则向频率调试板30发送指令,从而通过频率调试板30调试电子设备50的工作频率,以使电子设备50的工作频率与目标频率的偏差处于可允许的范围内。在一些实施例中,终端10可以为笔记本电脑、台式机、平板电脑、手机等。
频率调试板30被配置对电子设备50的工作频率进行调试,以使电子设备50的工作频率与目标频率的偏差处于可允许的范围内。
本公开一些实施例提供的频率调试系统,通过频率调试板30对电子设备50的工作频率进行调试,以使其与目标频率的偏差处于可允许的范围内,从而保证电子设备50的通讯距离和通讯质量。
在一些实施例中,如图2和图5所示,电子设备50包括显示面板51和电路板52。以正对电子设备50的显示面观察,电路板52设置在显示面板51的后方。示例地,显示面板51可以为电子纸显示面板(EPD)、液晶显示面板(LCD)、有机电致发光显示面板(OLED)、量子点发光二极管显示面板(QLED)等。电路板52包括天线521和与天线521连接的电容器522。当对电子设备50的工作频率进行调试时,天线521被称为待测天线521、电容器522被称为待测电容器522。在对电子设备50的工作频率进行调试时,测试线圈40接收到的电子设备50发送的信号,即为待测天线521发送的信号。待测天线521与待测电容器522组成LC谐振电路,该电路的谐振频率,也即电子设备50的工作频率采用如下公式计算:
Figure PCTCN2021081085-appb-000001
根据上述公式可知,可以通过调整待测天线521的电感L或者待测电容器522的电容C来调整电子设备50的工作频率。
在一些实施例中,为了实现频率调试板30与电子设备50中的待测天线521和待测电容器522的连接,使得频率调试板30可通过改变待测天线521的电感L和/或待测电容器522的电容C,进而调整电子设备50的工作频率,如图2所示,电路板52还包括设置在待测电容器522两端的多个第一触点5221,以及设置在待测天线521上的多个第二触点5211,频率调试板30通过多个第一触点5221与待测电容器522连接,通过多个第二触点5211与待测天线521的不同部位连接。
本公开对多个第一触点5221和多个第二触点5211的数量不作限定,其 可以为两个、三个或者多于三个,图2示出了两个第一触点5221和七个第二触点5211。
本公开对多个第二触点5211的设置方式不作限定,可以在待测天线521的部分线圈上设有多个第二触点,也可以在待测天线521的每一匝线圈上均设有一个第二触点。图2示出了待测天线521的每一匝线圈上均设有一个第二触点,此时,多个第二触点5211的数量与待测天线521的总匝数相等。
在一些实施例中,如图3所示,频率调试板30包括底板31,设置在底板31上的多个第一探针32、多个第二探针33、至少一个开关34和可变电容器35。其中,可变电容器35的两端各连接有一个第一探针32,任意两个相邻的第二探针33之间通过一个开关34连接。
本公开对多个第一探针32、多个第二探针33和至少一个开关34的数量不作限定。多个第一探针32的数量可以为两个、三个或者多于三个;多个第二探针33的数量可以为两个、三个或者多于三个;至少一个开关34的数量可以为一个、两个或者多于两个。示例地,图2示出了两个第一探针32、七个第二探针33和六个开关34。
在对电子设备50的工作频率进行调试时,频率调试板30上的多个第一探针32与待测电容器522两端的多个第一触点5221一一对应连接,从而使得可变电容器35与待测电容器522并联。此时,待测电容器522的电容C为其初始电容C1与可变电容器35的电容C2之和,即C=C1+C2。由于待测电容器522的初始电容C1为固定值,通过改变可变电容器35的电容C2,从而改变待测电容器522的电容C,进而调整电子设备50的工作频率。
在一些实施例中,待测电容器522的初始电容C1为0,此时,待测电容器522的电容C为可变电容器35的电容C2,即C=C2。
频率调试板30上的多个第二探针33与待测天线521上的多个第二触点一一对应连接,通过控制各个开关34的状态,即打开或者关闭,改变待测天线521的匝数,从而改变待测天线521的电感L,进而调整电子设备50的工作频率。
以待测天线521的每一匝线圈上均设有一个第二触点5211为例,此时,至少一个开关34包括多个开关34。为了方便区分,在图3所示的状态中,自下而上对开关34进行编号分别为1、2、3、4、5……n,自下而上对第二探针33进行编号分别为1、2、3、4、5……m,开关34的初始状态均为OPEN状态,此时,任意两个第二探针33之间均断开;当有开关34处于CLOSE状态时,例如1号开关341关闭,通过1号开关341连接的相邻两个第二探针33, 即1号第二探针331和2号第二探针332连通,由于多个第二探针33与待测天线521上的多个第二触点5211一一对应连接,因此,待测天线521中与1号第二探针331和2号第二探针332对应的相邻的两匝线圈连接,减少了待测天线521接入LC谐振电路的匝数,从而减小了待测天线521的电感。一般而言,电感的大小与线圈的匝数成正比关系,线圈匝数越少,电感越小。
当仅有一个开关34关闭时,对应
Figure PCTCN2021081085-appb-000002
种情况;当有两个开关34关闭时,对应
Figure PCTCN2021081085-appb-000003
种情况;当有三个开关34关闭时,对应
Figure PCTCN2021081085-appb-000004
种情况;…;即开关34的状态共有
Figure PCTCN2021081085-appb-000005
种,每种状态对应一个电感。
本公开一些实施例提供的频率调试板30,通过调整可变电容器35的电容和各个开关34的状态,从而调整电子设备50中待测天线521的电感和待测电容器522的电容,进而调整电子设备50的工作频率,使其与目标频率的偏差处于可允许的范围内,提高了电子设备50的工作频率的调试效率,方便对电子设备50中的电路板52进行整改。可以明白的是,经过对电路板52进行整改后,电子设备50的工作频率与目标频率的偏差处于可允许的范围内。
在一些实施例中,如图4所示,频率调试板30还包括控制器36,控制器36分别与可变电容器35和每个开关34连接,被配置为改变可变电容器35的电容以及每个开关34的状态。控制器36可以是单片机、特定应用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(Field-Programmable Gate Array,FPGA)等。通过控制器36控制可变电容器35的电容大小和每个开关34的状态,自动地进行电子设备50的工作频率的调试,避免了手动调试,进一步提高了电子设备50的工作频率的调试效率。
在一些实施例中,如图4和图5所示,频率调试板30还包括设置在底板31上的通信接口37,以及沿底板31的厚度方向,设置在底板31靠近电子设备50一侧的屏蔽层38。通信接口37可以是有线或无线接口,例如以太网接口、USB(Universal Serial Bus)接口、无线保真(Wireless Fidelity,Wi-Fi)、蓝牙等。通信接口37与控制器36连接,频率调试板30通过通信接口37与终端10进行双向通信,便于调用数据、发送指令等。屏蔽层38例如为金属屏蔽层。可变电容器35、多个第一探针32、多个第二探针33、至少一个开关34、控制器36以及通信接口37位于底板31的第一表面上,屏蔽层38位于底板31的第二表面上,第一表面和第二表面相对、且均与底板31的厚度方向垂直。屏蔽层38可以避免频率调试板30上的电信号对电子设备50产生干扰。在一些实施例中,多个第一探针32和多个第二探针33穿透底板31和屏蔽层38,由所述第一表面延伸至所述第二表面,并继续向所述底板的外部延 伸。
本公开一些实施例还提供了一种采用上述的频率调试系统调试电子设备的方法,包括:测试线圈40接收电子设备50中的待测天线521发送的信号,并将接收到的信号传输至频率测试仪20;频率测试仪20检测测试线圈40发送的信号的频率,该信号的频率为电子设备50的工作频率,并将测得的电子设备50的工作频率传输给终端10;终端10判断电子设备50的工作频率与目标频率的偏差是否处于可允许的范围内,可允许的范围例如为±0.002MHz;若否,则终端10向频率调试板30的控制器36发送指令,使得控制器36改变频率调试板30的可变电容器35的电容和/或至少一个开关34的状态,从而调整电子设备50的工作频率,使得电子设备50的工作频率与目标频率的偏差处于可允许的范围内。
可以预期的是,在通过频率调试板30将电子设备50的工作频率与目标频率的偏差调试到可允许的范围内时,可以根据电子设备50中待测天线521和待测电容器522此时的电感和电容,对电子设备50中的电路板52进行整改。可以明白的是,经过对电路板52进行整改后,电子设备50的工作频率与目标频率的偏差处于可允许的范围内。
在一些实施例中,上述步骤,控制器36改变频率调试板30的可变电容器35的电容和/或至少一个开关34的状态,从而调整电子设备50的工作频率,使得电子设备50的工作频率与目标频率的偏差处于可允许的范围内,包括:终端10根据频率测试仪20测得的电子设备50的工作频率、电子设备50上的待测电容器522的初始电容和频率调试板30的可变电容器35的初始电容计算待测天线521的电感,可变电容器35的初始电容可以为0;并判断所述电感是否大于等于预先设定的电感阈值。该电感阈值例如为5微亨(uH)。
若所述电感大于等于电感阈值,则控制器36改变频率调试板30中的各个开关34的状态以调整待测天线521的电感,直至电感小于电感阈值,终端10记录下此时各个开关34的状态;之后调整可变电容器35的电容,使得电子设备50的工作频率随之改变,直至电子设备50的工作频率与目标频率的偏差处于可允许的范围内;终端10记录下此时可变电容器35的目标电容,将具有该目标电容的电容器焊接到所述电子设备50的电路板52上,以及根据之前记录的各个开关34的状态通过焊接等方法减少待测天线521中线圈的匝数。其结果是,实现了对电子设备50中的电路板52的整改。
若所述电感小于所述电感阈值,则控制器36改变频率调试板30中的可变电容器35的电容,使得电子设备50的工作频率随之改变,直至电子设备 50的工作频率与目标频率的偏差处于可允许的范围内;终端10记录下此时所述可变电容器35的目标电容,将具有该目标电容的电容器焊接到电子设备50的电路板52上。其结果是,实现了对电子设备50中的电路板52的整改。由于所述电感小于所述电感阈值,因此可以不减少待测天线521中线圈的匝数。
在制作工艺上,改变电路板52中的待测电容器522的电容比改变待测天线521的电感更方便。此外在制作工艺上,对于电路板52中已经制作好的待测天线521而言,容易实现其线圈匝数的减少、但不容易实现其线圈匝数的增多。鉴于线圈匝数与电感之间的关系(匝数越少、电感越小),因此当计算得到的待测天线521的电感小于所述电感阈值时,可以不调整待测线圈521的电感,从而不对待测线圈521进行整改。由此简化了制作工艺,提高了生产效率。
图5为本公开一些实施例的调试电子设备时的结构示意图。图6本公开一些实施例的一种调试电子设备的方法的流程图。如图5和图6所示,所述调试电子设备的方法可以包括以下步骤:
步骤601,将电子设备50设置于如图1和图5所示的调试系统中,电子设备50处于初始状态。
电子设备50可以具有显示面板51和电路板52,电路板52包括待测天线521和待测电容器522。
将电子设备50设置于调试系统中时,电子设备50一侧与测试线圈40相对、另一相对侧与频率调试板30相对;测试线圈40连接频率测试仪20;频率测试仪20和频率调试板30均连接终端10。
将频率调试板30中的多个第一探针32与待测电容器522的多个第一触点5221一一对应连接,并将频率调试板30中的多个第二探针33与待测天线521的多个第二触点5211一一对应连接。
电子设备50处于初始状态,可以是频率调试板30中的可变电容器35的初始电容为0,且各个开关34均处于OPEN状态。也就是说,电子设备50的初始状态指的是电子设备50被频率调试板30调试之前的状态。
步骤602,如图1所示,采用频率测试仪20测试电子设备50当前的工作频率f。
电子设备50中的待测天线521向测试线圈40发送信号,测试线圈40接收该信号,并将接收到的信号传输至频率测试仪20。频率测试仪20检测测试线圈40发送的信号的频率,从而获得电子设备50当前的工作频率。电子设备50的工作频率与测试线圈40发送的信号的频率相同。
步骤603,终端10判断电子设备50当前的工作频率f与目标频率(比如13.56MHz等)的偏差是否处于可允许的范围(比如±0.002MHz)内;若是,则执行步骤609;若否,则执行步骤604。
步骤604,终端10根据电子设备50当前的工作频率、待测电容器522的初始电容和可变电容器35的初始电容,采用公式(1)计算出待测天线521的电感,并判断电感是否大于等于电感阈值;若电感大于等于电感阈值,则执行步骤605;若电感小于所述电感阈值,则执行步骤606。
电感阈值例如为5uH,且电感阈值可以根据不同产品或标准进行调整,本公开一些实施例对此不作限制。
电子设备50中的待测电容器522与待测天线521形成LC谐振电路。增加待测天线521的线圈匝数可以增加电感,使得待测天线521工作距离更远,但相对应地,待测电容器522的电容则需要减小。在LC谐振电路的谐振频率为13.56MHz时,如果待测天线521的电感太大(例如超过5uH)时,待测电容器522的电容的取值很小,这使得电感和电容的匹配变得很困难。所以,将待测天线521的电感的取值范围控制在0.3uH~5uH范围内,例如0.3uH、0.5uH、1uH、1.5uH、2uH、2.5uH、3uH、3.5uH、4uH、4.5uH、5uH,这样电感和电容匹配较易实现。
步骤605,通过控制器36改变频率调试板30上的各个开关34的状态,调整待测天线521的电感,直至电感小于所述电感阈值,终端10记录此时各个开关34的状态。
步骤606,通过控制器36调整可变电容器35的电容使得电子设备50的工作频率随之改变,直至电子设备50的工作频率与目标频率的偏差处于可允许的范围内,终端10记录此时可变电容器35的目标电容。
步骤607,终端10通过其自身的显示面板输出所记录的各个开关34的状态和可变电容器35的目标电容。
步骤608,将具有该目标电容的电容器焊接到电路板52上,并将各个开关34中处于CLOSE状态的开关对应的待测天线521中的第二触点5211通过焊锡导通。
步骤609,调试结束。
本公开一些实施例通过调整频率调试板30上的可变电容器35的电容和各个开关34的状态,可以调整电子设备50的待测电容器522的电容和待测天线521的电感,从而调整电子设备50的工作频率,以保证电子设备50的工作频率与目标频率的偏差处于可允许的范围内。
由此,提高了电子设备50的工作频率的调试效率,能够方便地对电子设备50的电路板52进行整改。
本公开的一些实施例提供了一种计算机可读存储介质(例如,非暂态计算机可读存储介质),该计算机可读存储介质中存储有计算机程序指令,计算机程序指令在处理器上运行时,使得处理器执行如上述实施例所述的调试电子设备的方法中的一个或多个步骤。
示例性的,上述计算机可读存储介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。本公开描述的各种计算机可读存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读存储介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
上述计算机可读存储介质的有益效果和上述一些实施例所述的调试电子设备的方法的有益效果相同,此处不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种频率调试板,包括:
    底板;
    设置在所述底板上的可变电容器和多个第一探针,所述可变电容器的两端分别连接有一个第一探针;
    设置在所述底板上的多个第二探针和至少一个开关,任意两个相邻的第二探针之间通过一个开关连接。
  2. 根据权利要求1所述的频率调试板,还包括设置在所述底板上的控制器,所述控制器分别与所述可变电容器、以及所述至少一个开关连接,被配置为改变所述可变电容器的电容以及所述至少一个开关的状态。
  3. 根据权利要求2所述的频率调试板,还包括设置在所述底板上的通信接口,所述通信接口与所述控制器连接。
  4. 根据权利要求3所述的频率调试板,还包括设置在所述底板上的屏蔽层;
    所述多个第一探针、所述多个第二探针、所述至少一个开关、所述控制器以及所述通信接口位于所述底板的第一表面上,所述屏蔽层位于所述底板的第二表面上,所述第一表面和所述第二表面相对、且均与所述底板的厚度方向垂直。
  5. 根据权利要求4所述的频率调试板,其中,所述多个第一探针和所述多个第二探针穿透所述底板和所述屏蔽层,由所述第一表面延伸至所述第二表面,并继续向所述底板的外部延伸。
  6. 一种频率调试系统,包括:
    电子设备,所述电子设备包括待测天线和待测电容器;
    测试线圈,所述测试线圈被配置为接收所述待测天线发送的信号;
    频率测试仪,所述频率测试仪与所述测试线圈连接,并被配置为检测所述测试线圈上的来自于所述待测天线的信号的频率,所述信号的频率为所述电子设备的工作频率;
    终端,所述终端与所述频率测试仪连接,并被配置为接收所述频率测试仪发送的所述电子设备的工作频率,并判断所述电子设备的工作频率与目标频率的偏差是否处于可允许的范围内;
    如权利要求1-5中任一项所述的频率调试板,所述频率调试板与所述终端连接,并与所述电子设备的具有所述待测天线和所述待测电容器的一侧相对设置,且被配置为接收所述终端发送的指令,根据所述指令改变所述可变电 容器的电容和/或所述至少一个开关的状态,以调整所述电子设备的工作频率,从而使所述电子设备的工作频率与所述目标频率的偏差处于可允许的范围内。
  7. 根据权利要求6所述的频率调试系统,其中,所述多个第一探针与所述待测电容器连接,所述多个第二探针与所述待测天线的不同部位连接。
  8. 根据权利要求7所述的频率调试系统,其中,所述电子设备包括多个第一触点,所述待测电容器的两端分别连接一个第一触点,所述多个第一探针与所述多个第一触点一一对应连接;
    所述电子设备包括多个第二触点,所述待测天线的每匝线圈分别连接一个第二触点,所述多个第二探针与所述多个第二触点一一对应连接。
  9. 根据权利要求7所述的频率调试系统,其中,所述多个第二探针的数量与所述待测天线的匝数相同,一个第二探针与所述待测天线的一匝线圈对应连接。
  10. 根据权利要求6所述的频率调试系统,其中,在所述频率调试板包括通信接口的情况下,所述频率调试板通过所述通信接口与所述终端连接,以接收所述终端发送的指令。
  11. 根据权利要求6所述的频率调试系统,其中,在所述频率调试板包括屏蔽层的情况下,所述屏蔽层位于所述频率调试板靠近所述电子设备的一侧。
  12. 根据权利要求6所述的频率调试系统,其中,所述待测天线为基于近场通信技术的天线;或,所述待测天线为基于射频识别技术的天线。
  13. 根据权利要求6所述的频率调试系统,其中,所述电子设备还包括显示面板,所述显示面板为以下显示面板中的一种:电子纸显示面板、液晶显示面板、有机电致发光显示面板、或量子点发光二极管显示面板。
  14. 根据权利要求6所述的频率调试系统,其中,所述电子设备为以下至少一种:电子价签、手机、平板电脑或可穿戴设备。
  15. 一种采用如权利要求6-14中任一项所述的频率调试系统调试电子设备的方法,其中,所述方法包括:
    所述测试线圈接收所述电子设备的所述待测天线发送的信号,并将接收到的信号传输至所述频率测试仪;
    所述频率测试仪检测所述测试线圈发送的信号的频率,所述信号的频率为所述电子设备的工作频率,并将测得的所述电子设备的工作频率传输给所述终端;
    所述终端判断所述电子设备的工作频率与目标频率的偏差是否处于可允许的范围内;
    若否,则所述终端向所述频率调试板的控制器发送指令,以使所述控制器改变所述频率调试板的所述可变电容器的电容和/或所述至少一个开关的状态,从而调整所述电子设备的工作频率,使得所述电子设备的工作频率与目标频率的偏差处于可允许的范围内。
  16. 根据权利要求15所述的调试电子设备的方法,其中,所述控制器改变所述频率调试板的可变电容器的电容和/或至少一个开关的状态,从而调整所述电子设备的工作频率,使得所述电子设备的工作频率与目标频率的偏差处于可允许的范围内,包括:
    所述终端根据所述频率测试仪测得的所述电子设备的工作频率、所述待测电容器的初始电容,以及所述可变电容器的初始电容计算所述待测天线的电感;
    若所述电感大于等于电感阈值,则所述控制器改变所述频率调试板中的各个开关的状态,直至所述电感小于电感阈值;之后调整所述可变电容器的电容,使得所述电子设备的工作频率随之改变,直至所述电子设备的工作频率与目标频率的偏差处于可允许的范围内;
    若所述电感小于电感阈值,则所述控制器改变频率调试板中的可变电容器的电容,使得所述待测天线的工作频率随之改变,直至所述电子设备的工作频率与目标频率的偏差处于可允许的范围内。
  17. 根据权利要求16所述的调试电子设备的方法,其中,所述可变电容器的初始电容为0;
    一个开关的状态包括OPEN状态和CLOSE状态,所述OPEN状态指示所述开关断开、所述CLOSE状态指示所述开关闭合。
  18. 根据权利要求17所述的调试电子设备的方法,其中,
    当所述待测天线的电感小于所述电感阈值时,所述终端记录此时各个开关的状态;
    当所述电子设备的工作频率与目标频率的偏差处于可允许的范围内,所述终端记录此时所述可变电容器的目标电容。
  19. 根据权利要求18所述的调试电子设备的方法,所述方法还包括以下至少一者:
    将具有目标电容的电容器焊接到所述电子设备上;或,
    将各个开关中处于CLOSE状态的开关对应的所述待测天线中的第二触 点导通。
  20. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机程序指令,所述计算机程序指令在处理器上运行时,使得所述处理器执行如权利要求15-19任一项所述的调试电子设备的方法中的一个或多个步骤。
PCT/CN2021/081085 2020-03-16 2021-03-16 频率调试板、频率调试系统和调试电子设备的方法 WO2021185248A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/641,351 US11892486B2 (en) 2020-03-16 2021-03-16 Frequency debugging board, frequency debugging system, and method for debugging electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010183045.2A CN111244632B (zh) 2020-03-16 2020-03-16 一种频率调试板、频率调试系统和调试电子设备的方法
CN202010183045.2 2020-03-16

Publications (1)

Publication Number Publication Date
WO2021185248A1 true WO2021185248A1 (zh) 2021-09-23

Family

ID=70872063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081085 WO2021185248A1 (zh) 2020-03-16 2021-03-16 频率调试板、频率调试系统和调试电子设备的方法

Country Status (3)

Country Link
US (1) US11892486B2 (zh)
CN (1) CN111244632B (zh)
WO (1) WO2021185248A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244632B (zh) * 2020-03-16 2022-03-08 京东方科技集团股份有限公司 一种频率调试板、频率调试系统和调试电子设备的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020183013A1 (en) * 2001-05-25 2002-12-05 Auckland David T. Programmable radio frequency sub-system with integrated antennas and filters and wireless communication device using same
CN202383276U (zh) * 2011-12-28 2012-08-15 上海辰光医疗科技股份有限公司 磁共振柔性线圈巴伦调试装置
CN105391503A (zh) * 2015-10-21 2016-03-09 深圳市三极天线技术有限公司 一种适用于近场通讯的检测方法
CN107925160A (zh) * 2015-09-22 2018-04-17 华为技术有限公司 自适应孔径可调天线的系统和方法
CN111244632A (zh) * 2020-03-16 2020-06-05 京东方科技集团股份有限公司 一种频率调试板、频率调试系统和调试电子设备的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2776781B1 (fr) * 1998-03-31 2000-05-05 Gemplus Card Int Dispositif de controle de l'impedance ramenee sur l'antenne d'une etiquette electromagnetique
JP2000284010A (ja) * 1999-03-31 2000-10-13 Kokusai Electric Co Ltd アンテナ特性調整装置
FR2847089B1 (fr) * 2002-11-12 2005-02-04 Inside Technologies Circuit d'antenne accordable, notamment pour lecteur de circuit integre sans contact
CN101483419A (zh) * 2008-01-08 2009-07-15 上海晨兴电子科技有限公司 用于调试射频匹配电路的装置及其使用方法
CN101303379A (zh) * 2008-05-07 2008-11-12 中国电子科技集团公司第十研究所 单端口测试微波腔体滤波器级间耦合系数的测量方法
CN101290607B (zh) * 2008-05-31 2010-06-16 青岛海信电器股份有限公司 一种芯片调试接口装置
CN202025039U (zh) * 2010-12-24 2011-11-02 中科院杭州射频识别技术研发中心 超高频射频识别电子标签天线大规模生产在线测试使用设备
GB2496387B (en) * 2011-11-08 2014-02-26 Cambridge Silicon Radio Ltd A near field communications reader
CN102636741A (zh) * 2012-04-27 2012-08-15 北京星河康帝思科技开发有限公司 电路板测试方法和系统
CN202564547U (zh) * 2012-05-11 2012-11-28 北京握奇数据系统有限公司 一种天线、电子标签、阅读器
US11748590B2 (en) * 2020-12-18 2023-09-05 Nxp B.V. RFID tag with impedance tuning,and method of impedance tuning of an RRID tag

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020183013A1 (en) * 2001-05-25 2002-12-05 Auckland David T. Programmable radio frequency sub-system with integrated antennas and filters and wireless communication device using same
CN202383276U (zh) * 2011-12-28 2012-08-15 上海辰光医疗科技股份有限公司 磁共振柔性线圈巴伦调试装置
CN107925160A (zh) * 2015-09-22 2018-04-17 华为技术有限公司 自适应孔径可调天线的系统和方法
CN105391503A (zh) * 2015-10-21 2016-03-09 深圳市三极天线技术有限公司 一种适用于近场通讯的检测方法
CN111244632A (zh) * 2020-03-16 2020-06-05 京东方科技集团股份有限公司 一种频率调试板、频率调试系统和调试电子设备的方法

Also Published As

Publication number Publication date
CN111244632A (zh) 2020-06-05
US11892486B2 (en) 2024-02-06
CN111244632B (zh) 2022-03-08
US20220357378A1 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
US9564940B2 (en) Method and apparatus for displaying information about wireless charging pad in electronic device
EP2487805B1 (en) Near field communication apparatus, display control method, and program
US9124307B2 (en) Wireless power transmission system with foreign-substance detection
KR101016529B1 (ko) 정보 처리 장치 및 방법
KR20180108317A (ko) 무선 전력 송신 장치 및 거치 형태에 따른 무선 전력 송신 방법
US8838024B2 (en) Near field communication apparatus, display control method, and program
US9600991B2 (en) System and method for measuring physiological parameters
US10511190B2 (en) Power transmission apparatus wirelessly transmitting power to power receiving apparatus
US20180233954A1 (en) Wireless Charging System With Inductance Imaging
KR20130103296A (ko) 송신 장치, 수신 장치 및 통신 시스템
WO2021185248A1 (zh) 频率调试板、频率调试系统和调试电子设备的方法
US20180150666A1 (en) Temperature Data Processing Method and System
CN109001505B (zh) 一种对终端的sar传感器进行温度补偿的方法及终端
US9306629B2 (en) Mobile device using information acquired via near field communication
KR20150094153A (ko) 전자 장치 및 전자 장치의 네트워크 연결 방법
US9407307B2 (en) Transponder positioning aid
US11675446B2 (en) Touch device for passive resonant stylus, driving method for the same and touch system
US10116355B2 (en) Power supply apparatus, power receiving apparatus, and control method thereof
US20140113554A1 (en) Assistance for positioning a transponder
US20170163848A1 (en) Communication apparatus and control method for communication apparatus
US20180375206A1 (en) Electric composite detection antenna
WO2019024630A1 (zh) 天线检测装置、系统及方法
CN205725880U (zh) 一种折叠式双屏移动设备
EP4160420A1 (en) Identification card conversion method and system, storage medium and terminal device
US20240178882A1 (en) Data Interaction Apparatus and Interaction Method thereof, Electronic Device, and Storage Medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21772210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21772210

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21772210

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 20.04.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21772210

Country of ref document: EP

Kind code of ref document: A1