WO2021185214A1 - 一种在3d建模中远距离标定方法 - Google Patents
一种在3d建模中远距离标定方法 Download PDFInfo
- Publication number
- WO2021185214A1 WO2021185214A1 PCT/CN2021/080870 CN2021080870W WO2021185214A1 WO 2021185214 A1 WO2021185214 A1 WO 2021185214A1 CN 2021080870 W CN2021080870 W CN 2021080870W WO 2021185214 A1 WO2021185214 A1 WO 2021185214A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- target
- acquisition device
- image
- image acquisition
- calibration
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/80—Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
- G06T7/85—Stereo camera calibration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2200/00—Indexing scheme for image data processing or generation, in general
- G06T2200/08—Indexing scheme for image data processing or generation, in general involving all processing steps from image acquisition to 3D model generation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
Definitions
- the invention relates to the technical field of shape measurement, in particular to the technical field of 3D shape measurement.
- the camera is usually rotated relative to the target, or multiple cameras are set around the target to perform acquisition at the same time.
- the Digital Emily project of the University of Southern California uses a spherical bracket to fix hundreds of cameras at different positions and angles on the bracket to realize 3D collection and modeling of the human body.
- the distance between the camera and the target should be short, at least within the range that can be arranged, so that the camera can collect images of the target at different positions.
- a further problem is that even if 3D modeling is completed for these long-distance targets, how to obtain their accurate size so that the 3D model has an absolute size is still an unsolved problem.
- the prior art when modeling a distant building, in order to obtain its absolute size, the prior art usually sets a calibration object on or beside the building, and obtains the size of the 3D model of the building according to the size of the calibration object.
- not all situations allow us to place a calibration object near the target.
- the absolute size cannot be obtained, and the true size of the object cannot be obtained. For example, if you want to model a house on the other side of the river, you must place a calibration object on the house.
- the present invention is proposed to provide a calibration method that overcomes the above-mentioned problems or at least partially solves the above-mentioned problems.
- the present invention provides a calibration method in 3D modeling
- object A and object B are not in the field of view of the acquisition device at the same time;
- Object A is the calibrated object, and object B is the target; or object A is the target and object B is the calibrated object;
- the coordinates of the target are calibrated according to the coordinates of multiple calibration points.
- the intersection of the three images corresponding to the collection of three adjacent collection positions is not empty.
- the acquisition device is a 3D intelligent vision device, including an image acquisition device and a rotating device;
- the rotating device is used to drive the acquisition area of the image acquisition device to move relative to the target;
- the image acquisition device is used to acquire a set of images of the target object through the above-mentioned relative movement.
- the position when the image acquisition device rotates to acquire a group of images meets the following conditions:
- the acquisition device is a 3D intelligent image acquisition device
- two adjacent acquisition positions of the 3D intelligent image acquisition device meet the following conditions:
- it also includes the feature point extraction of the collected image, and feature point matching to obtain sparse feature points; input the matched feature point coordinates, and use the position and posture of the sparse 3D point cloud and the photographic image acquisition device to be calculated Data, obtain the sparse model three-dimensional point cloud of the object A and the object B and the model coordinate values of the position.
- the input pixel column number of marker points x i, y i can be calculated by the model coordinate system marked point coordinates (X i, Y i, Z i) ; According to the absolute coordinates of the marker points and the model coordinates (X T , Y T , Z T ) and (X i , Y i , Z i ), using the space similarity transformation formula, the 7 space coordinate transformations between the model coordinates and the absolute coordinates are solved parameter.
- the coordinates of the three-dimensional point cloud of object A and object B and the position and posture data of the camera can be converted to the absolute coordinate system, that is, the true object of the target can be obtained. size.
- the present invention also provides a 3D model construction device and method using the device and method.
- the absolute size calibration of long-distance target objects is achieved by continuous shooting during movement or rotation.
- FIG. 1 is a schematic diagram of a calibration object taken by a collection device in an embodiment of the present invention
- FIG. 2 is a schematic diagram of shooting during the rotation of the collection device in an embodiment of the present invention
- FIG. 3 is a schematic diagram of the acquisition device in the embodiment of the present invention turning to the direction of the target to shoot the target;
- FIG. 4 is a schematic diagram of shooting with a 3D intelligent vision device in an embodiment of the present invention.
- FIG. 5 is another schematic diagram of shooting with a 3D intelligent vision device in an embodiment of the present invention.
- Fig. 6 is a collection device with a rotating structure in the collection area moving device in an embodiment of the present invention
- FIG. 7 is a schematic diagram of the rotation and shooting of the airborne acquisition device in the embodiment of the present invention.
- FIG. 8 is a schematic diagram of a vehicle-mounted acquisition device driving and shooting in a straight line in an embodiment of the present invention.
- 1 target 1 target, 2 rotating device, 3 rotating device, 4 image acquisition device.
- the collection device collects multiple images of target B.
- step (3) the collection device continuously collects at a certain time/space interval during the movement, and the continuous collection should satisfy: the images P, Q, R collected by three adjacent collection positions should satisfy P ⁇ Q ⁇ R is not empty, so as to ensure that the information of the calibrated object can be used for the calibration of the target object.
- the specific method for 3D intelligent vision equipment to collect object images is: the motor drives the turntable to rotate, which drives the camera to rotate, so that the position of the optical axis of the camera moves in space.
- the image capture device 1 captures an image of a target every time interval L distance, and the turntable rotates 360° and the image capture device 1 captures n images.
- These images are images captured by the camera at different positions.
- the collection can be performed while the turntable is rotating, or the camera can be stopped after the camera is rotated to the corresponding collection position, and then continue to rotate to the next collection position after the collection is completed. In some cases, the state of the target object will change, so the speed of acquisition needs to be increased.
- the step (3) of the photographing camera position and attitude data inputted landmark pixel column number x i, y i, can be calculated by the model coordinate system marked point coordinates (X i, Y i, Z i ); According to the absolute coordinates of 4 (or more than 4) marker points and model coordinates (X T , Y T , Z T ) and (X i , Y i , Z i ), use the space similarity transformation formula to solve the model Seven space coordinate conversion parameters between coordinates and absolute coordinates; among them, ⁇ x, ⁇ y, ⁇ z, ⁇ , X 0 , Y 0 , and Z 0 are 7 parameters.
- the coordinates of the three-dimensional point cloud of A and B objects and the position and posture data of the camera can be converted to the absolute coordinate system, that is, the coordinates of the B object can be obtained. Real size and size.
- FIG. 4 which includes an image capture device 4, a rotating device 2 and a cylindrical casing.
- the image capturing device 4 is installed on the rotating device 2.
- the rotating device 2 is housed in a cylindrical casing and can be rotated freely in the cylindrical casing.
- the image acquisition device 4 is used to acquire a set of images of the target through the relative movement of the acquisition area of the image acquisition device 4 and the target; the acquisition area moving device is used to drive the acquisition area of the image acquisition device 4 to move relative to the target.
- the acquisition area is the effective field of view range of the image acquisition device.
- the image acquisition device 4 may be a camera, and the rotation device 2 may be a turntable.
- the camera is set on the turntable, and the optical axis of the camera is at a certain angle with the turntable surface, and the turntable surface is approximately parallel to the object to be collected.
- the turntable drives the camera to rotate, so that the camera collects images of the target at different positions.
- the camera is installed on the turntable through the angle adjustment device 4, which can be rotated to adjust the angle between the optical axis of the image acquisition device 4 and the turntable surface, and the adjustment range is -90° ⁇ 90°.
- the optical axis of the image acquisition device 1 can be offset in the direction of the central axis of the turntable, that is, the ⁇ can be adjusted in the direction of -90°.
- the optical axis of the image acquisition device 1 can be offset from the central axis of the turntable, that is, the ⁇ can be adjusted in the direction of 90°.
- the above adjustment can be done manually, or the 3D intelligent vision device can be provided with a distance measuring device to measure the distance from the target, and automatically adjust the ⁇ angle according to the distance.
- the turntable can be connected with a motor through a transmission device, and rotate under the drive of the motor, and drive the image acquisition device 1 to rotate.
- the transmission device can be a conventional mechanical structure such as a gear system or a transmission belt.
- multiple image collection devices 1 can be set on the turntable, as shown in FIG. 5.
- a plurality of image acquisition devices 4 are sequentially distributed along the circumference of the turntable.
- an image acquisition device 1 can be provided at both ends of any diameter of the turntable. It is also possible to arrange one image acquisition device 1 every 60° circumferential angle, and 6 image acquisition devices 4 are evenly arranged on the entire disk.
- the above-mentioned multiple image acquisition devices may be the same type of cameras or different types of cameras. For example, a visible light camera and an infrared camera are set on the turntable, so that images of different bands can be collected.
- the image acquisition device 4 is used to acquire an image of the target object, and it can be a fixed focus camera or a zoom camera. In particular, it can be a visible light camera or an infrared camera. Of course, it is understandable that any device with image acquisition function can be used and does not constitute a limitation of the present invention. For example, it can be CCD, CMOS, camera, video camera, industrial camera, monitor, camera, mobile phone, tablet, notebook, Mobile terminals, wearable devices, smart glasses, smart watches, smart bracelets, and all devices with image capture functions.
- the rotating device can also be in various forms such as a rotating arm, a rotating beam, and a rotating bracket, as long as it can drive the image acquisition device to rotate.
- the optical axis of the image acquisition device 1 and the rotating surface have a certain included angle ⁇ .
- the light source is distributed distributed around the lens of the image acquisition device, for example, the light source is a ring LED light on the periphery of the lens, which is located on the turntable; it can also be arranged on the cross section of the cylindrical housing. Since in some applications, the collected object is a human body, it is necessary to control the intensity of the light source to avoid causing discomfort to the human body.
- a soft light device such as a soft light housing, can be arranged on the light path of the light source. Or directly use the LED surface light source, not only the light is softer, but also the light is more uniform. More preferably, an OLED light source can be used, which is smaller in size, has softer light, and has flexible characteristics that can be attached to curved surfaces.
- the light source can also be set in other positions that can provide uniform illumination for the target.
- the light source can also be a smart light source, that is, the light source parameters are automatically adjusted according to the target object and ambient light conditions.
- the optical axis direction of the image acquisition device does not change relative to the target object at different acquisition positions, and is usually roughly perpendicular to the surface of the target object.
- the position of two adjacent image acquisition devices 1 or the image acquisition device 1 Two adjacent collection locations meet the following conditions:
- d takes the length of the rectangle; when the above two positions are along the width direction of the photosensitive element of the image capture device, d is the width of the rectangle.
- the distance from the photosensitive element to the surface of the target along the optical axis is taken as M.
- L should be the linear distance between the optical centers of the two image capture devices, but because the position of the optical centers of the image capture device 1 is not easy to determine in some cases, the image capture device 1 can also be used in some cases.
- the center of the photosensitive element, the geometric center of the image capture device 1, the axis center of the image capture device and the pan/tilt (or platform, bracket), and the center of the lens near or far It is within the acceptable range, so the above-mentioned range is also within the protection scope of the present invention.
- the adjacent acquisition positions in the present invention refer to two adjacent positions on the moving track where the acquisition action occurs when the image acquisition device moves relative to the target. This is usually easy to understand for the movement of the image capture device. However, when the target object moves and causes the two to move relatively, at this time, the movement of the target object should be converted into the target object's immobility according to the relativity of the movement, and the image acquisition device moves. At this time, measure the two adjacent positions of the image acquisition device where the acquisition action occurs in the transformed movement track.
- the moving device of the collection area is a rotating structure
- the target 1 is fixed at a certain position, and the rotating device 3 drives the image acquisition device 4 to rotate around the target 1.
- the rotating device 3 can drive the image acquisition device 4 to rotate around the target 1 through a rotating arm.
- this kind of rotation is not necessarily a complete circular motion, and it can only be rotated by a certain angle according to the collection needs.
- this rotation does not necessarily have to be a circular motion, and the motion trajectory of the image acquisition device 4 can be other curved trajectories, as long as it is ensured that the camera shoots the object from different angles.
- the rotation device 3 can also drive the image acquisition device 4 to rotate, as shown in FIG.
- the rotating device 3 can be in various forms such as a cantilever, a turntable, or a track, or it can be hand-held, vehicle-mounted or air-borne, so that the image acquisition device 4 can move.
- the camera can also be fixed, and the stage carrying the target object can be rotated, so that the direction of the target object facing the image capture device is constantly changing, so that the image capture device can capture images of the target object from different angles.
- the calculation can still be performed according to the situation converted into the movement of the image acquisition device, so that the movement conforms to the corresponding empirical formula (the details will be described in detail below). For example, in a scenario where the stage rotates, it can be assumed that the stage does not move but the image capture device rotates.
- the rotation speed is deduced, and the rotation speed of the stage is deduced to facilitate the rotation speed control and realize 3D acquisition.
- this kind of scene is not commonly used, and it is more commonly used to rotate the image capture device.
- the acquisition area moving device is an optical scanning device, so that when the image acquisition device does not move or rotate, the acquisition area of the image acquisition device moves relative to the target.
- the collection area moving device also includes a light deflection unit, which is mechanically driven to rotate, or is electrically driven to cause light path deflection, or is arranged in multiple groups in space, so as to obtain images of the target object from different angles.
- the light deflection unit may typically be a mirror, which rotates so that images of the target object in different directions are collected.
- the rotation of the optical axis in this case can be regarded as the rotation of the virtual position of the image acquisition device.
- the image acquisition device is used to acquire an image of a target object, and it can be a fixed focus camera or a zoom camera. In particular, it can be a visible light camera or an infrared camera. Of course, it is understandable that any device with image acquisition function can be used and does not constitute a limitation of the present invention. For example, it can be CCD, CMOS, camera, video camera, industrial camera, monitor, camera, mobile phone, tablet, notebook, Mobile terminals, wearable devices, smart glasses, smart watches, smart bracelets, and all devices with image capture functions.
- the device also includes a processor, also called a processing unit, for synthesizing a 3D model of the target object according to a 3D synthesis algorithm according to the multiple images collected by the image acquisition device to obtain 3D information of the target object.
- a processor also called a processing unit
- the moving device of the collection area is a translational structure
- the image acquisition device can move relative to the target in a linear trajectory.
- the image acquisition device is located on a straight track or on a car or drone traveling in a straight line, please refer to FIG.
- the linear track can also be replaced by a linear cantilever.
- the mobile device in the acquisition area is an irregular movement structure
- the movement of the collection area is irregular, such as when the image collection device is held in hand, or when the vehicle or airborne, when the travel route is irregular, it is difficult to move on a strict trajectory at this time, and the movement trajectory of the image collection device is difficult to be accurate predict. Therefore, in this case, how to ensure that the captured images can be accurately and stably synthesized 3D models is a big problem, and no one has mentioned it yet.
- a more common method is to take more photos and use the redundancy of the number of photos to solve the problem. But the result of this synthesis is not stable.
- the present invention proposes a method for improving the synthesis effect and shortening the synthesis time by limiting the movement distance of the camera for two shots.
- a sensor can be installed in the mobile terminal or the image acquisition device 4, and the linear distance that the image acquisition device moves during two shots can be measured by the sensor.
- L specifically, the following conditions
- an alarm is issued to the user.
- the alarm includes sound or light alarm to the user.
- it can also be displayed on the screen of the mobile phone when the user moves the image acquisition device, or voice prompts the user in real time to move the distance and the maximum distance L that can be moved.
- Sensors that implement this function include: rangefinders, gyroscopes, accelerometers, positioning sensors, and/or combinations thereof.
- multiple cameras can also be set at different positions around the target, so that images of different angles of the target can be captured at the same time.
- the optical axis direction of the image acquisition device changes relative to the target at different acquisition positions.
- two adjacent image acquisition devices The position of the image acquisition device, or two adjacent acquisition positions of the image acquisition device meet the following conditions:
- d takes the length of the rectangle; when the above two positions are along the width direction of the photosensitive element of the image capture device, d is the width of the rectangle.
- the distance from the photosensitive element to the surface of the target along the optical axis is taken as T.
- L is A n, A n + 1 linear distance two optical center of the image pickup apparatus, and A n, A n + 1 two adjacent image pickup apparatus 4
- it is not limited to 4 adjacent positions, and more positions can be used for average calculation.
- L should be the linear distance between the optical centers of the two image capture devices.
- the photosensitive of the image capture devices can also be used in some cases.
- the center of the component, the geometric center of the image capture device, the center of the axis connecting the image capture device and the pan/tilt (or platform, bracket), the center of the proximal or distal lens surface instead of Within the acceptable range, therefore, the above-mentioned range is also within the protection scope of the present invention.
- parameters such as object size and field of view are used as a method for estimating the position of the camera, and the positional relationship between the two cameras is also expressed by angle. Since the angle is not easy to measure in actual use, it is more inconvenient in actual use. And, the size of the object will change with the change of the measuring object. For example, after collecting the 3D information of an office building, and then collecting the pavilion, it is necessary to re-measure the size and re-calculate. The above-mentioned inconvenient measurement and multiple re-measurements will cause measurement errors, resulting in errors in the estimation of the camera position.
- this solution gives the empirical conditions that the camera position needs to meet, which not only avoids measuring angles that are difficult to accurately measure, but also does not need to directly measure the size of the object.
- d and f are the fixed parameters of the camera.
- T is only a straight line distance, which can be easily measured by traditional measuring methods, such as rulers and laser rangefinders. Therefore, the empirical formula of the present invention makes the preparation process convenient and quick, and at the same time improves the accuracy of the arrangement of the camera position, so that the camera can be set in an optimized position, thereby taking into account the 3D synthesis accuracy and speed at the same time.
- the method of the present invention can directly replace the lens to calculate the conventional parameter f to obtain the camera position; similarly, when collecting different objects, due to the different size of the object, the measurement of the object size is also More cumbersome.
- the method of the present invention there is no need to measure the size of the object, and the camera position can be determined more conveniently.
- the camera position determined by the present invention can take into account the synthesis time and the synthesis effect. Therefore, the above empirical condition is one of the invention points of the present invention.
- the rotation movement of the present invention is that during the acquisition process, the previous position acquisition plane and the next position acquisition plane cross instead of being parallel, or the optical axis of the image acquisition device at the previous position crosses the optical axis of the image acquisition position at the next position. Instead of parallel. That is to say, the movement of the acquisition area of the image acquisition device around or partly around the target object can be regarded as the relative rotation of the two.
- the examples of the present invention enumerate more rotational motions with tracks, it can be understood that as long as non-parallel motion occurs between the acquisition area of the image acquisition device and the target, it is in the category of rotation, and the present invention can be used. Qualification.
- the protection scope of the present invention is not limited to the orbital rotation in the embodiment.
- the adjacent acquisition positions in the present invention refer to two adjacent positions on the moving track where the acquisition action occurs when the image acquisition device moves relative to the target. This is usually easy to understand for the movement of the image capture device. However, when the target object moves and causes the two to move relatively, at this time, the movement of the target object should be converted into the target object's immobility according to the relativity of the movement, and the image acquisition device moves. At this time, measure the two adjacent positions of the image acquisition device where the acquisition action occurs in the transformed movement track.
- the processor also called a processing unit, is used to synthesize a 3D model of the target object according to a 3D synthesis algorithm according to a plurality of images collected by the image acquisition device to obtain 3D information of the target object.
- the image acquisition device 1 sends the acquired multiple images to a processing unit, and the processing unit obtains the 3D information of the target object according to the multiple images in the above-mentioned set of images.
- the processing unit can be directly arranged in the housing where the image acquisition device 1 is located, or it can be connected to the image acquisition device through a data line or in a wireless manner.
- the processing unit can be used as the processing unit, and the image data collected by the image acquisition device 1 is transmitted to it for 3D synthesis.
- the data of the image acquisition device 1 can also be transmitted to a cloud platform, and the powerful computing capability of the cloud platform can be used for 3D synthesis.
- g(x, y) is the gray value of the original image at (x, y)
- f(x, y) is the gray value of the original image after being enhanced by the Wallis filter
- m g is the local gray value of the original image Degree mean
- s g is the local gray-scale standard deviation of the original image
- m f is the local gray-scale target value of the transformed image
- s f is the local gray-scale standard deviation target value of the transformed image.
- c ⁇ (0,1) is the expansion constant of the image variance
- b ⁇ (0,1) is the image brightness coefficient constant.
- the filter can greatly enhance the image texture patterns of different scales in the image, so the number and accuracy of feature points can be improved when extracting the point features of the image, and the reliability and accuracy of the matching result can be improved in the photo feature matching.
- the SURF feature matching method mainly includes three processes, feature point detection, feature point description and feature point matching. This method uses Hessian matrix to detect feature points, uses Box Filters to replace second-order Gaussian filtering, and uses integral images to accelerate convolution to increase the calculation speed and reduce the dimensionality of local image feature descriptors. To speed up the matching speed.
- the main steps include 1 constructing the Hessian matrix to generate all points of interest for feature extraction.
- the purpose of constructing the Hessian matrix is to generate stable edge points (mutation points) of the image; 2 constructing the scale space feature point positioning, which will be processed by the Hessian matrix Compare each pixel point with 26 points in the neighborhood of two-dimensional image space and scale space, and initially locate the key points, and then filter out the key points with weaker energy and the key points that are incorrectly positioned to filter out the final stable 3
- the main direction of the feature point is determined by using the Harr wavelet feature in the circular neighborhood of the statistical feature point.
- the sum of the horizontal and vertical harr wavelet features of all points in the 60-degree fan is counted, and then the fan is rotated at an interval of 0.2 radians and the harr wavelet eigenvalues in the area are counted again.
- the direction of the sector with the largest value is taken as the main direction of the feature point;
- 4 Generate a 64-dimensional feature point description vector, take a 4*4 rectangular area block around the feature point, but the obtained rectangular area direction is along the main direction of the feature point direction.
- Each sub-region counts 25 pixels of haar wavelet features in the horizontal and vertical directions, where the horizontal and vertical directions are relative to the main direction.
- Input the matching feature point coordinates use the beam method to adjust the sparse target 3D point cloud and the position and posture data of the camera to obtain the sparse target model 3D point cloud and position model coordinates;
- sparse feature points as initial values, dense matching of multi-view photos is performed to obtain dense point cloud data.
- the process has four main steps: stereo pair selection, depth map calculation, depth map optimization, and depth map fusion. For each image in the input data set, we select a reference image to form a stereo pair for calculating the depth map. Therefore, we can get rough depth maps of all images. These depth maps may contain noise and errors. We use its neighborhood depth map for consistency checking to optimize the depth map of each image. Finally, depth map fusion is performed to obtain a three-dimensional point cloud of the entire scene.
- the main process includes: 1The texture data is obtained through the image reconstruction target's surface triangle grid; 2The visibility analysis of the reconstructed model triangle. Use the image calibration information to calculate the visible image set of each triangle and the optimal reference image; 3The triangle surface clustering generates texture patches. According to the visible image set of the triangle surface, the optimal reference image and the neighborhood topology relationship of the triangle surface, the triangle surface cluster is generated into a number of reference image texture patches; 4The texture patches are automatically sorted to generate texture images. Sort the generated texture patches according to their size relationship, generate the texture image with the smallest enclosing area, and obtain the texture mapping coordinates of each triangle.
- the image capture device captures images
- the image acquisition device can also collect video data, directly use the video data or intercept images from the video data for 3D synthesis.
- the shooting position of the corresponding frame of the video data or the captured image used in the synthesis still satisfies the above empirical formula.
- the above-mentioned target object, target object, and object all represent objects for which three-dimensional information is pre-acquired. It can be a physical object, or it can be a combination of multiple objects. For example, it can be a building, a bridge, etc.
- the three-dimensional information of the target includes a three-dimensional image, a three-dimensional point cloud, a three-dimensional grid, a local three-dimensional feature, a three-dimensional size, and all parameters with a three-dimensional feature of the target.
- the so-called three-dimensional in the present invention refers to three-direction information of XYZ, especially depth information, which is essentially different from only two-dimensional plane information. It is also essentially different from the definitions called three-dimensional, panoramic, holographic, and three-dimensional, but actually only include two-dimensional information, especially depth information.
- the acquisition area mentioned in the present invention refers to the range that can be photographed by an image acquisition device (for example, a camera).
- the image acquisition device in the present invention can be CCD, CMOS, camera, video camera, industrial camera, monitor, camera, mobile phone, tablet, notebook, mobile terminal, wearable device, smart glasses, smart watch, smart bracelet and belt All devices with image capture function.
- modules or units or components in the embodiments can be combined into one module or unit or component, and in addition, they can be divided into multiple sub-modules or sub-units or sub-components. Except that at least some of such features and/or processes or units are mutually exclusive, any combination can be used to compare all the features disclosed in this specification (including the accompanying claims, abstract and drawings) and any method or methods disclosed in this manner or All the processes or units of the equipment are combined. Unless expressly stated otherwise, each feature disclosed in this specification (including the accompanying claims, abstract and drawings) may be replaced by an alternative feature providing the same, equivalent or similar purpose.
- the various component embodiments of the present invention may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
- a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions based on some or all of the components in the device of the present invention according to the embodiments of the present invention.
- DSP digital signal processor
- the present invention can also be implemented as a device or device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
- Such a program for realizing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals.
- Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Graphics (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本发明提供了一种3D建模中的标定方法,(1)采集物体A的图像;(2)移动和/或转动采集设备,直至物体B进入采集范围,在采集设备移动和/或转动过程中采集多个背景图像;(3)采集物体B的图像;其中物体A与物体B没有同时在采集设备的视场内;物体A为标定物,物体B为目标物;或物体A为目标物,物体B为标定物;标定物上具有多个标定点;根据多个标定点的坐标标定目标物的坐标。通过移动或转动过程中连续拍摄的方法实现远距离目标物体的绝对尺寸标定。
Description
本发明涉及形貌测量技术领域,特别涉及3D形貌测量技术领域。
目前在利用视觉方式进行3D采集和测量时,通常使得相机相对目标物转动,或在目标物周边设置多个相机同时进行采集。例如南加州大学的Digital Emily项目,采用球型支架,在支架上不同位置不同角度固定了上百个相机,从而实现人体的3D采集和建模。然而无论哪种方式,都需要相机与目标物距离较短,至少应当在可布置的范围内,这样才能形成相机在不同位置采集目标物图像。
然而在一些应用中,无法环绕目标物进行图像的采集。例如监控探头在采集被监控区域时,由于区域较大、距离较远,且采集对象不固定,因此难以围绕目标对象设置相机,或使得相机围绕目标对象转动。在这种情形下如何进行目标对象的3D采集与建模是亟待解决的问题。
更进一步的问题,对于这些远距离的目标即使完成3D建模,如何得到其准确的尺寸,从而使得3D模型具有绝对的尺寸也是没有解决的问题。例如对远处一个建筑进行建模时,为了获得其绝对尺寸,现有技术通常是在建筑上或旁边设置标定物,根据标定物的大小从而获得建筑物3D模型的大小。然而并不是所有情况都允许我们去目标物附近放置标定物,此时即使获得3D模型,也无法获得绝对尺寸,也就无法获知物体的真实大小。例如,在河对岸的一个房屋,如果要对其进行建模必须要在房屋上放置标定物,然而如果无法过河将难以完成这个工作。除了距离远之外,也存在距离并不远,但目标物上由于某种原因无法放置标定物,例如在进行人体的采集时,无法在人体上放置标定物,此时如何获得人体模型的绝对尺寸成为巨大的问题。
此外,在现有技术中也曾提出使用包括旋转角度、目标物尺寸、物距的经验公式限定相机位置,从而兼顾合成速度和效果。然而在实际应用中发现:除非有精确量角装置,否则用户对角度并不敏感,难以准确确定角度;目标物尺寸难以准确确定,例如上述河边房屋的3D模型构建的场景中。并且测量的误差导致相机位置设定误差,从而会影响采集合成速度和效果;准确度和速度还 需要进一步提高。
因此,目前急需解决以下技术问题:①能够采集较远距离,非特定目标的3D信息;②同时兼顾合成速度和合成精度。③能够准确、方便获得较远物体或不宜放置标定物的物体的三维绝对尺寸。
发明内容
鉴于上述问题,提出了本发明提供一种克服上述问题或者至少部分地解决上述问题的标定方法。
本发明提供了一种3D建模中的标定方法,
(1)采集物体A的图像;
(2)移动和/或转动采集设备,直至物体B进入采集范围,在采集设备移动和/或转动过程中采集多个背景图像;
(3)采集物体B的图像;
其中物体A与物体B没有同时在采集设备的视场内;
物体A为标定物,物体B为目标物;或物体A为目标物,物体B为标定物;
标定物上具有多个标定点;
根据多个标定点的坐标标定目标物的坐标。
可选的,在采集设备移动或转动过程中,满足如下条件:相邻三个采集位置对应采集的三个图像的交集非空。
可选的,采集设备为3D智能视觉设备,包括图像采集装置和转动装置;
转动装置,用于驱动图像采集装置的采集区域与目标物产生相对运动;
图像采集装置,用于通过上述相对运动采集目标物一组图像。
可选的,图像采集装置转动采集一组图像时的位置符合如下条件:
其中L为相邻两个采集位置图像采集装置光心的直线距离;f为图像采集装置的焦距;d为图像采集装置感光元件的矩形长度;M为图像采集装置感光元件沿着光轴到目标物表面的距离;μ为经验系数。
可选的,采集设备为3D智能图像采集设备时,3D智能图像采集设备的相邻两个采集位置符合如下条件:
其中L为相邻两个采集位置图像采集装置光心的直线距离;f为图像采集装置的焦距;d为图像采集装置感光元件的矩形长度或宽度;T为图像采集装置感光元件沿着光轴到目标物表面的距离;δ为调整系数。
可选的,还包括对采集的图像进行特征点提取,并进行特征点匹配,获取稀疏特征点;输入匹配的特征点坐标,利用解算稀疏的三维点云和拍照图像采集设备的位置和姿态数据,获得物体A与物体B的稀疏的模型三维点云和位置的模型坐标值。
可选的,导入标定物上的标志点的绝对坐标X
T、Y
T、Z
T和已做好的标志点的图片模板,然后将标志点的图片模板与输入的所有照片进行模板匹配,获得输入照片中所有包含标志点的像素行列号x
i、y
i。
可选的,还包括根据拍照相机的位置和姿态数据,输入标志点的像素行列号x
i、y
i,可解算出其标志点的模型坐标系下坐标(X
i、Y
i、Z
i);根据标志点绝对坐标和模型坐标(X
T、Y
T、Z
T)与(X
i、Y
i、Z
i),利用空间相似变换公式,解算出模型坐标与绝对坐标的7个空间坐标转换参数。
可选的,还包括利用解算的7个参数,则可将物体A和物体B的三维点云和拍照相机的位置和姿态数据的坐标转换到绝对坐标系下,即获得了目标物体的真实尺寸。
可选的,获得目标物的绝对尺寸。
本发明还提供一种使用所述设备和方法的3D模型构建设备及方法。
发明点及技术效果
1、通过移动或转动过程中连续拍摄的方法实现远距离目标物体的绝对尺寸标定。
2、通过优化相机采集图片的位置,保证能够同时提高合成速度和合成精度。优化相机采集位置时,无需测量角度,无需测量目标尺寸,适用性更强。
3、首次提出通过相机光轴与转盘呈一定夹角而非平行的方式转动来采集目标物图像,实现3D合成和建模,而无需绕目标物转动,提高了场景的适应性。
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本实用新型的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例中的采集设备拍摄标定物的示意图;
图2为本发明实施例中的采集设备转动过程中拍摄的示意图;
图3为本发明实施例中的采集设备转到目标物方向拍摄目标物的示意图;
图4为本发明实施例中利用3D智能视觉设备拍摄的示意图;
图5为本发明实施例中利用3D智能视觉设备拍摄的另一示意图;
图6为本发明实施例中采集区域移动装置为旋转结构的采集设备;
图7为本发明实施例中机载采集装置自转拍摄的示意图;
图8为本发明实施例中车载采集装置直线行驶拍摄的示意图;
其中,1目标物,2转动装置,3旋转装置,4图像采集装置。
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
3D采集标定流程
请参考图1-图3,当要采集的目标物为B时,此时可以在B的周边放置标定物A,但很多情况下无法将标定物A放置在目标物B附近。此时可以:
(1)选择远离目标物B一段距离设置标定物A。
(2)利用采集设备拍摄标定物A的图像。
(3)移动和/或转动采集设备整体,连续拍摄,直到移动和/或转动到目标物B进入采集设备视场
(4)可以将采集设备对准目标物B后,停止其整体转动。
(5)采集设备采集目标物B多个图像。
当然,先拍摄B的图像,再移动拍摄,直至拍摄A的图像也是可以的。过程与上述相反而已。
在步骤(3)中,采集设备在移动过程中以一定时间/空间间隔连续采集,其中连续的采集应当满足:相邻三个采集位置所采集的图像P、Q、R应当满足P∩Q∩R非空,这样才能保证标定物的信息能够用于目标物的标定。
3D智能视觉设备采集物体图像的具体方法为:电机驱动转盘转动,带动相机转动,从而使得相机的光轴位置在空间内发生移动。例如每间隔L距离图像采集装置1采集一次目标物的图像,转盘转动360°图像采集装置1会采集n张图像,这些图像是相机在不同位置采集到的图像。可以在转盘转动的同时进行采集,也可以在相机转动到对应采集位置后停止转动,采集完毕后再继续转动到下一个采集位置。由于在某些场合下,目标物状态会发生变化,因此需要提高采集的速度,否则图像采集装置1采集到的目标物在不同图像中状态不同会导致无法3D合成和建模。此时可以通过两种方法解决:①在转盘上设置n个图像采集装置,这样一次可以拍摄n张图像,在下一个位置又可以获得n张图像。②为了同时节约成本,虽然图像采集装置1数量不增加,但转盘转速可以加快,但这样需要将图像采集装置1的快门调节成较快的模式,否则将会导致图像模糊。而快门速度的提高需要较好的光源照明条件。因此,需要提供较好的光源或具有较好的自然光的场景可以使用该方法。当然,除了3D智能视觉设备外,通常的图像采集设备也可以用于上述标定,它们的具体结构夏下面将详细记载。任意采集设备的上述移动可以通过手持、轨道、无人机机载、车辆承载等多种方式。
标定方法
(1)通过拍照设备,在不同拍摄角度下获取A与B的照片,先拍摄A(或B),在移动相机一直进行拍摄,直到拍摄到B(或A),拍摄照片数不少于3张;
(2)在拍摄的标定物A上,均匀布设4个(或者4个以上)坐标已知的标志点,在同时保证多张(多于3张)照片拍摄到已量测好的标志点,该标志点是静态的,固定不动的。
(3)对所有拍摄照片进行特征点提取,并进行特征点匹配。获取稀疏特征点。输入匹配的特征点坐标,利用解算稀疏的三维点云和拍照相机的位置和姿态数据,即获得了A物体与B物体的稀疏的模型三维点云和位置的模型坐标值。
(4)导入标志点的绝对坐标X
T、Y
T、Z
T和已做好的标志点的图片模板,然后将标志点的图片模板与输入的所有照片进行模板匹配,获得输入照片中所有包含标志点的像素行列号x
i、y
i(或者通过人工从照片上量测的方式获得标志点的像素行列号x
i、y
i);
(5)根据步骤(3)的拍照相机的位置和姿态数据,输入标志点的像素行列号x
i、y
i,可解算出其标志点的模型坐标系下坐标(X
i、Y
i、Z
i);根据4个(或者4个以上)标志点绝对坐标和模型坐标(X
T、Y
T、Z
T)与(X
i、Y
i、Z
i),利用空间相似变换公式,解算出模型坐标与绝对坐标的7个空间坐标转换参数;其中εx、εy、εz、λ、X
0、Y
0、Z
0为7个参数。
(6)利用步骤(5)解算的7个参数,则可将A物体和B物体的三维点云和拍照相机的位置和姿态数据的坐标转换到绝对坐标系下,即获得了B物体的真实尺寸和大小。
利用3D智能视觉设备
请参考图4,包括图像采集装置4、转动装置2和筒状外壳。如图4,图像采集装置4安装在转动装置2上,转动装置2容纳在筒状外壳内,并且可以在筒状外壳内自由转动。
图像采集装置4用于通过图像采集装置4的采集区域与目标物相对运动采集目标物一组图像;采集区域移动装置,用于驱动图像采集装置4的采集区域与目标物产生相对运动。采集区域为图像采集装置的有效视场范围。
图像采集装置4可以为相机,旋转装置2可以为转盘。相机设置在转盘上,且相机光轴与转盘面呈一定夹角,转盘面与待采集目标物近似平行。转盘带动相机转动,从而使得相机在不同位置采集目标物的图像。
进一步,相机通过角度调整装置4安装在转盘上,角度调整装置4可以转 动从而调整图像采集装置4的光轴与转盘面的夹角,调节范围为-90°<γ<90°。在拍摄较近目标物时,可以使得图像采集装置1光轴向转盘中心轴方向偏移,即将γ向-90°方向调节。而在拍摄腔体内部时,可以使得图像采集装置1光轴向偏离转盘中心轴方向偏移,即将γ向90°方向调节。上述调节可以手动完成,也可以给3D智能视觉设备设置测距装置,测量其距离目标物的距离,根据该距离来自动调整γ角度。
转盘可通过传动装置与电机连接,在电机的驱动下转动,并带动图像采集装置1转动。传动装置可以为齿轮系统或传动带等常规机械结构。
为了提高采集效率,转盘上可以设置多个图像采集装置1,如图5。多个图像采集装置4沿转盘圆周依次分布。例如可以在转盘任意一条直径两端分别设置一个图像采集装置1。也可以每隔60°圆周角设置一个图像采集装置1,整个圆盘均匀设置6个图像采集装置4。上述多个图像采集装置可以为同一类型相机,也可以为不同类型相机。例如在转盘上设置一个可见光相机及一个红外相机,从而能够采集不同波段图像。
图像采集装置4用于采集目标物的图像,其可以为定焦相机,或变焦相机。特别是即可以为可见光相机,也可以为红外相机。当然,可以理解的是任何具有图像采集功能的装置均可以使用,并不构成对本发明的限定,例如可以为CCD、CMOS、相机、摄像机、工业相机、监视器、摄像头、手机、平板、笔记本、移动终端、可穿戴设备、智能眼镜、智能手表、智能手环以及带有图像采集功能所有设备。
转动装置除了转盘,也可以为转动臂、转动梁、转动支架等多种形式,只要能够带动图像采集装置转动即可。无论使用哪种方式,图像采集装置1的光轴与转动面均具有一定的夹角γ。
通常情况下,光源位于图像采集装置的镜头周边分散式分布,例如光源为在镜头周边的环形LED灯,位于转盘上;也可以设置在筒状外壳的横截面上。由于在一些应用中,被采集对象为人体,因此需要控制光源强度,避免造成人体不适。特别是可以在光源的光路上设置柔光装置,例如为柔光外壳。或者直接采用LED面光源,不仅光线比较柔和,而且发光更为均匀。更佳地,可以采用OLED光源,体积更小,光线更加柔和,并且具有柔性特性,可以贴附于弯曲的表面。光源也可以设置于其他能够为目标物提供均匀照明的位置。光源也可以为智能光源,即根据目标物及环境光的情况自动调整光源参数。
在进行3D采集时,图像采集装置在不同采集位置光轴方向相对于目标物 不发生变化,通常大致垂直于目标物表面,此时相邻两个图像采集装置1的位置,或图像采集装置1相邻两个采集位置满足如下条件:
μ<0.482
其中L为相邻两个采集位置图像采集装置1光心的直线距离;f为图像采集装置的焦距;d为图像采集装置感光元件(CCD)的矩形长度;M为图像采集装置感光元件沿着光轴到目标物表面的距离;μ为经验系数。
当上述两个位置是沿图像采集装置1感光元件长度方向时,d取矩形长度;当上述两个位置是沿图像采集装置感光元件宽度方向时,d取矩形宽度。
图像采集装置在上述两个位置中的任何一个位置时,感光元件沿着光轴到目标物表面的距离作为M。
如上所述,L应当为两个图像采集装置光心的直线距离,但由于图像采集装置1光心位置在某些情况下并不容易确定,因此在某些情况下也可以使用图像采集装置1的感光元件中心、图像采集装置1的几何中心、图像采集装置与云台(或平台、支架)连接的轴中心、镜头近端或远端表面的中心替代,经过试验发现由此带来的误差是在可接受的范围内的,因此上述范围也在本发明的保护范围之内。
利用本发明装置,进行实验,得到了如下实验结果。
从上述实验结果及大量实验经验可以得出,μ的值应当满足μ<0.482,此时已经能够合成部分3D模型,虽然有一部分无法自动合成,但是在要求不高的情况下也是可以接受的,并且可以通过手动或者更换算法的方式弥补无法合成 的部分。特别是μ的值满足μ<0.357时,能够最佳地兼顾合成效果和合成时间的平衡;为了获得更好的合成效果可以选择μ<0.198,此时合成时间会上升,但合成质量更好。而当μ为0.5078时,已经无法合成。但这里应当注意,以上范围仅仅是最佳实施例,并不构成对保护范围的限定。
以上数据仅为验证该公式条件所做实验得到的,并不对发明构成限定。即使没有这些数据,也不影响该公式的客观性。本领域技术人员可以根据需要调整设备参数和步骤细节进行实验,得到其他数据也是符合该公式条件的。
本发明所述的相邻采集位置是指,在图像采集装置相对目标物移动时,移动轨迹上的发生采集动作的两个相邻位置。这通常对于图像采集装置运动容易理解。但对于目标物发生移动导致两者相对移动时,此时应当根据运动的相对性,将目标物的运动转化为目标物不动,而图像采集装置运动。此时再衡量图像采集装置在转化后的移动轨迹中发生采集动作的两个相邻位置。
利用3D图像采集设备
(1)采集区域移动装置为旋转结构
如图6所示,目标物1固定于某一位置,旋转装置3驱动图像采集装置4围绕目标物1转动。旋转装置3可以通过旋转臂带动图像采集装置4围绕目标物1转动。当然这种转动并不一定是完整的圆周运动,可以根据采集需要只转动一定角度。并且这种转动也不一定必须为圆周运动,图像采集装置4的运动轨迹可以为其它曲线轨迹,只要保证相机从不同角度拍摄物体即可。
旋转装置3也可以驱动图像采集装置4自转,如图7,通过自转使得图像采集装置4能够从不同角度采集目标物图像。
旋转装置3可以为悬臂、转台、轨道等多种形态,也可以手持、使用车载或机载,使得图像采集装置4能够产生运动即可。
除了上述方式,在某些情况下也可以将相机固定,承载目标物的载物台转动,使得目标物面向图像采集装置的方向时刻变化,从而使得图像采集装置能够从不同角度采集目标物图像。但此时计算时,仍然可以按照转化为图像采集装置运动的情况下来进行计算,从而使得运动符合相应经验公式(具体下面将详细阐述)。例如,载物台转动的场景下,可以假设载物台不动,而图像采集装置旋转。通过利用经验公式设定图像采集装置旋转时拍摄位置的距离,从而推导出其转速,从而反推出载物台转速,以方便进行转速控制,实现3D采集。当然,这种场景并不常用,更为常用的还是转动图像采集装置。
另外,为了使得图像采集装置能够采集目标物不同方向的图像,也可以保持图像采集装置和目标物均静止,通过旋转图像采集装置的光轴来实现。例如:采集区域移动装置为光学扫描装置,使得图像采集装置不移动或转动的情况下,图像采集装置的采集区域与目标物产生相对运动。采集区域移动装置还包括光线偏转单元,光线偏转单元被机械驱动发生转动,或被电学驱动导致光路偏折,或本身为多组在空间的排布,从而实现从不同角度获得目标物的图像。光线偏转单元典型地可以为反射镜,通过转动使得目标物不同方向的图像被采集。或直接于空间布置环绕目标物的反射镜,依次使得反射镜的光进入图像采集装置中。与前述类似,这种情况下光轴的转动可以看作是图像采集装置虚拟位置的转动,通过这种转换的方法,假设为图像采集装置转动,从而利用下述经验公式进行计算。
图像采集装置用于采集目标物的图像,其可以为定焦相机,或变焦相机。特别是即可以为可见光相机,也可以为红外相机。当然,可以理解的是任何具有图像采集功能的装置均可以使用,并不构成对本发明的限定,例如可以为CCD、CMOS、相机、摄像机、工业相机、监视器、摄像头、手机、平板、笔记本、移动终端、可穿戴设备、智能眼镜、智能手表、智能手环以及带有图像采集功能所有设备。
设备还包括处理器,也称处理单元,用以根据图像采集装置采集的多个图像,根据3D合成算法,合成目标物3D模型,得到目标物3D信息。
(2)采集区域移动装置为平动结构
除了上述旋转结构外,图像采集装置可以以直线轨迹相对目标物运动。例如图像采集装置位于直线轨道上或位于直线行驶的汽车或无人机上,请参考图8,沿直线轨道依次经过目标物进行拍摄,在过程中图像采集装置4保持不转动。其中直线轨道也可以用直线悬臂代替。但更佳的是,在图像采集装置整体沿直线轨迹运动时,其进行一定的转动,从而使得图像采集装置的光轴朝向目标物。
(3)采集区域移动装置为无规则运动结构
有时,采集区域移动并不规则,例如在手持图像采集装置时,或车载或机载时,行进路线为不规则路线时,此时难以以严格的轨道进行运动,图像采集装置的运动轨迹难以准确预测。因此在这种情况下如何保证拍摄图像能够准确、稳定地合成3D模型是一大难题,目前还未有人提及。更常见的方法是多拍照片,用照片数量的冗余来解决该问题。但这样合成结果并不稳定。虽然目前也有一些通过限定相机转动角度的方式提高合成效果,但实际上用户对于角度并 不敏感,即使给出优选角度,在手持拍摄的情况下用户也很难操作。因此本发明提出了通过限定两次拍照相机移动距离的方式来提高合成效果、缩短合成时间的方法。
在无规则运动的情况下,可以在移动终端或图像采集装置4中设置传感器,通过传感器测量图像采集装置两次拍摄时移动的直线距离,在移动距离不满足上述关于L(具体下述条件)的经验条件时,向用户发出报警。所述报警包括向用户发出声音或灯光报警。当然,也可以在用户移动图像采集装置时,手机屏幕上显示,或语音实时提示用户移动的距离,以及可移动的最大距离L。实现该功能的传感器包括:测距仪、陀螺仪、加速度计、定位传感器和/或它们的组合。
(4)多相机方式
可以了解,除了通过相机与目标物相对运动从而使得相机可以拍摄目标物不同角度的图像外,还可以再目标物周围不同位置设置多个相机,从而可以实现同时拍摄目标物不同角度的图像。
采集区域相对目标物运动时,特别是图像采集装置围绕目标物转动,在进行3D采集时,图像采集装置在不同采集位置光轴方向相对于目标物发生变化,此时相邻两个图像采集装置的位置,或图像采集装置相邻两个采集位置满足如下条件:
δ<0.603
其中L为相邻两个采集位置图像采集装置光心的直线距离;f为图像采集装置的焦距;d为图像采集装置感光元件(CCD)的矩形长度或宽度;T为图像采集装置感光元件沿着光轴到目标物表面的距离;δ为调整系数。
当上述两个位置是沿图像采集装置感光元件长度方向时,d取矩形长度;当上述两个位置是沿图像采集装置感光元件宽度方向时,d取矩形宽度。
图像采集装置在两个位置中的任何一个位置时,感光元件沿着光轴到目标 物表面的距离作为T。除了这种方法外,在另一种情况下,L为A
n、A
n+1两个图像采集装置光心的直线距离,与A
n、A
n+1两个图像采集装置4相邻的A
n-1、A
n+2两个图像采集装置和A
n、A
n+1两个图像采集装置各自感光元件沿着光轴到目标物1表面的距离分别为T
n-1、T
n、T
n+1、T
n+2,T=(T
n-1+T
n+T
n+1+T
n+2)/4。当然可以不只限于相邻4个位置,也可以用更多的位置进行平均值计算。
利用本发明装置,进行实验,得到了如下实验结果。
更换相机镜头,再次实验,得到了如下实验结果。
更换相机镜头,再次实验,得到了如下实验结果。
如上所述,L应当为两个图像采集装置光心的直线距离,但由于图像采集装置光心位置在某些情况下并不容易确定,因此在某些情况下也可以使用图像采集装置的感光元件中心、图像采集装置的几何中心、图像采集装置与云台(或平台、支架)连接的轴中心、镜头近端或远端表面的中心替代,经过试验发现由此带来的误差是在可接受的范围内的,因此上述范围也在本发明的保护范围之内。
通常情况下,现有技术中均采用物体尺寸、视场角等参数作为推算相机位置的方式,并且两个相机之间的位置关系也采用角度表达。由于角度在实际使用过程中并不好测量,因此在实际使用时较为不便。并且,物体尺寸会随着测量物体的变化而改变。例如,在进行一座办公楼3D信息采集后,再进行凉亭采集时,就需要重新测量尺寸,重新推算。上述不方便的测量以及多次重新测量都会带来测量的误差,从而导致相机位置推算错误。而本方案根据大量实验数据,给出了相机位置需要满足的经验条件,不仅避免测量难以准确测量的角度,而且不需要直接测量物体大小尺寸。经验条件中d、f均为相机固定参数,在购买相机、镜头时,厂家即会给出相应参数,无需测量。而T仅为一个直线距离,用传统测量方法,例如直尺、激光测距仪均可以很便捷的测量得到。因此,本发明的经验公式使得准备过程变得方便快捷,同时也提高了相机位置的排布准确度,使得相机能够设置在优化的位置中,从而在同时兼顾了3D合成 精度和速度。
从上述实验结果及大量实验经验可以得出,δ的值应当满足δ<0.603,此时已经能够合成部分3D模型,虽然有一部分无法自动合成,但是在要求不高的情况下也是可以接受的,并且可以通过手动或者更换算法的方式弥补无法合成的部分。特别是δ的值满足δ<0.410时,能够最佳地兼顾合成效果和合成时间的平衡;为了获得更好的合成效果可以选择δ<0.356,此时合成时间会上升,但合成质量更好。当然为了进一步提高合成效果,可以选择δ<0.311。而当δ为0.681时,已经无法合成。但这里应当注意,以上范围仅仅是最佳实施例,并不构成对保护范围的限定。
并且从上述实验可以看出,对于相机拍照位置的确定,只需要获取相机参数(焦距f、CCD尺寸)、相机CCD与物体表面的距离T即可根据上述公式得到,这使得在进行设备设计和调试时变得容易。由于相机参数(焦距f、CCD尺寸)在相机购买时就已经确定,并且是产品说明中就会标示的,很容易获得。因此根据上述公式很容易就能够计算得到相机位置,而不需要再进行繁琐的视场角测量和物体尺寸测量。特别是在一些场合中,需要更换相机镜头,那么本发明的方法直接更换镜头常规参数f计算即可得到相机位置;同理,在采集不同物体时,由于物体大小不同,对于物体尺寸的测量也较为繁琐。而使用本发明的方法,无需进行物体尺寸测量,能够更为便捷地确定相机位置。并且使用本发明确定的相机位置,能够兼顾合成时间和合成效果。因此,上述经验条件是本发明的发明点之一。
以上数据仅为验证该公式条件所做实验得到的,并不对发明构成限定。即使没有这些数据,也不影响该公式的客观性。本领域技术人员可以根据需要调整设备参数和步骤细节进行实验,得到其他数据也是符合该公式条件的。
本发明所述的转动运动,为在采集过程中前一位置采集平面和后一位置采集平面发生交叉而不是平行,或前一位置图像采集装置光轴和后一位置图像采集位置光轴发生交叉而不是平行。也就是说,图像采集装置的采集区域环绕或部分环绕目标物运动,均可以认为是两者相对转动。虽然本发明实施例中列举更多的为有轨道的转动运动,但是可以理解,只要图像采集设备的采集区域和目标物之间发生非平行的运动,均是转动范畴,均可以使用本发明的限定条件。本发明保护范围并不限定于实施例中的有轨道转动。
本发明所述的相邻采集位置是指,在图像采集装置相对目标物移动时,移动轨迹上的发生采集动作的两个相邻位置。这通常对于图像采集装置运动容易理解。但对于目标物发生移动导致两者相对移动时,此时应当根据运动的相对性,将目标物的运动转化为目标物不动,而图像采集装置运动。此时再衡量图像采集装置在转化后的移动轨迹中发生采集动作的两个相邻位置。
3D合成建模装置及方法
处理器,也称处理单元,用以根据图像采集装置采集的多个图像,根据3D合成算法,合成目标物3D模型,得到目标物3D信息。图像采集装置1将采集到的多个图像发送给处理单元,处理单元根据上述所述一组图像中的多个图像得到目标物的3D信息。当然,处理单元可以直接设置在图像采集装置1所在的壳体内,也可以通过数据线或通过无线方式与图像采集装置连接。例如可以使用独立的计算机、服务器及集群服务器等作为处理单元,图像采集装置1采集到的图像数据传输至其上,进行3D合成。同时,也可以将图像采集装置1的数据传输至云平台,利用云平台的强大计算能力进行3D合成。
处理单元中执行如下方法:
1、对所有输入照片进行图像增强处理。采用下述滤波器增强原始照片的反差和同时压制噪声。
式中:g(x,y)为原始影像在(x,y)处灰度值,f(x,y)为经过Wallis滤波器增 强后该处的灰度值,m
g为原始影像局部灰度均值,s
g为原始影像局部灰度标准偏差,m
f为变换后的影像局部灰度目标值,s
f为变换后影像局部灰度标准偏差目标值。c∈(0,1)为影像方差的扩展常数,b∈(0,1)为影像亮度系数常数。
该滤波器可以大大增强影像中不同尺度的影像纹理模式,所以在提取影像的点特征时可以提高特征点的数量和精度,在照片特征匹配中则提高了匹配结果可靠性和精度。
2、对输入的所有图像进行特征点提取,并进行特征点匹配,获取稀疏特征点。采用SURF算子对照片进行特征点提取与匹配。SURF特征匹配方法主要包含三个过程,特征点检测、特征点描述和特征点匹配。该方法使用Hessian矩阵来检测特征点,用箱式滤波器(Box Filters)来代替二阶高斯滤波,用积分图像来加速卷积以提高计算速度,并减少了局部影像特征描述符的维数,来加快匹配速度。主要步骤包括①构建Hessian矩阵,生成所有的兴趣点,用于特征提取,构建Hessian矩阵的目的是为了生成图像稳定的边缘点(突变点);②构建尺度空间特征点定位,将经过Hessian矩阵处理的每个像素点与二维图像空间和尺度空间邻域内的26个点进行比较,初步定位出关键点,再经过滤除能量比较弱的关键点以及错误定位的关键点,筛选出最终的稳定的特征点;③特征点主方向的确定,采用的是统计特征点圆形邻域内的harr小波特征。即在特征点的圆形邻域内,统计60度扇形内所有点的水平、垂直harr小波特征总和,然后扇形以0.2弧度大小的间隔进行旋转并再次统计该区域内harr小波特征值之后,最后将值最大的那个扇形的方向作为该特征点的主方向;④生成64维特征点描述向量,特征点周围取一个4*4的矩形区域块,但是所取得矩形区域方向是沿着特征点的主方向。每个子区域统计25个像素的水平方向和垂直方向的haar小波特征,这里的水平和垂直方向都是相对主方向而言的。该haar小波特征为水平方向值之后、垂直方向值之后、水平方向绝对值之后以及垂直方向绝对值之和4个方向,把这4个值作为每个子块区域的特征向量,所以一共有4*4*4=64维向量作为Surf特征的描述子;⑤特征点匹配,通过计算两个特征点间的欧式距离来确定匹配度,欧氏距离越短,代表两个特征点的匹配度越好。
3、输入匹配的特征点坐标,利用光束法平差,解算稀疏的目标物三维点云和拍照相机的位置和姿态数据,即获得了稀疏目标物模型三维点云和位置的模型坐标值;以稀疏特征点为初值,进行多视照片稠密匹配,获取得到密集点云数据。该过程主要有四个步骤:立体像对选择、深度图计算、深度图优化、深 度图融合。针对输入数据集里的每一张影像,我们选择一张参考影像形成一个立体像对,用于计算深度图。因此我们可以得到所有影像的粗略的深度图,这些深度图可能包含噪声和错误,我们利用它的邻域深度图进行一致性检查,来优化每一张影像的深度图。最后进行深度图融合,得到整个场景的三维点云。
4、利用密集点云进行目标物曲面重建。包括定义八叉树、设置函数空间、创建向量场、求解泊松方程、提取等值面几个过程。由梯度关系得到采样点和指示函数的积分关系,根据积分关系获得点云的向量场,计算指示函数梯度场的逼近,构成泊松方程。根据泊松方程使用矩阵迭代求出近似解,采用移动方体算法提取等值面,对所测点云重构出被测物体的模型。
5、目标物模型的全自动纹理贴图。表面模型构建完成后,进行纹理贴图。主要过程包括:①纹理数据获取通过图像重建目标的表面三角面格网;②重建模型三角面的可见性分析。利用图像的标定信息计算每个三角面的可见图像集以及最优参考图像;③三角面聚类生成纹理贴片。根据三角面的可见图像集、最优参考图像以及三角面的邻域拓扑关系,将三角面聚类生成为若干参考图像纹理贴片;④纹理贴片自动排序生成纹理图像。对生成的纹理贴片,按照其大小关系进行排序,生成包围面积最小的纹理图像,得到每个三角面的纹理映射坐标。
虽然上述实施例中记载图像采集装置采集图像,但不应理解为仅适用于单张图片构成的图片组,这只是为了便于理解而采用的说明方式。图像采集装置也可以采集视频数据,直接利用视频数据或从视频数据中截取图像进行3D合成。但合成时所利用的视频数据相应帧或截取的图像的拍摄位置,依然满足上述经验公式。
上述目标物体、目标物、及物体皆表示预获取三维信息的对象。可以为一实体物体,也可以为多个物体组成物。例如可以为大楼、桥梁等。所述目标物的三维信息包括三维图像、三维点云、三维网格、局部三维特征、三维尺寸及一切带有目标物三维特征的参数。本实用新型里所谓的三维是指具有XYZ三个方向信息,特别是具有深度信息,与只有二维平面信息具有本质区别。也与一些称为三维、全景、全息、三维,但实际上只包括二维信息,特别是不包括深度信息的定义有本质区别。
本发明所说的采集区域是指图像采集装置(例如相机)能够拍摄的范围。 本发明中的图像采集装置可以为CCD、CMOS、相机、摄像机、工业相机、监视器、摄像头、手机、平板、笔记本、移动终端、可穿戴设备、智能眼镜、智能手表、智能手环以及带有图像采集功能所有设备。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本实用新型的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本公开并帮助理解各个发明方面中的一个或多个,在上面对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的基于本发明装置中的一些或者全部部件的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序 (例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。
Claims (11)
- 一种3D建模中的标定方法,其特征在于:(1)采集物体A的图像;(2)移动和/或转动采集设备,直至物体B进入采集范围,在采集设备移动和/或转动过程中采集多个背景图像;(3)采集物体B的图像;其中物体A与物体B没有同时在采集设备的视场内;物体A为标定物,物体B为目标物;或物体A为目标物,物体B为标定物;标定物上具有多个标定点;根据多个标定点的坐标标定目标物的坐标,包括:对所有拍摄照片进行特征点提取,并进行特征点匹配,获得A物体与B物体的模型坐标值;根据标定点绝对坐标和模型坐标标定目标物的绝对坐标。在采集设备移动或转动过程中,满足如下条件:相邻三个采集位置对应采集的三个图像的交集非空。
- 如权利要求1所述的方法,其特征在于:采集设备为3D智能视觉设备,包括图像采集装置和转动装置;转动装置,用于驱动图像采集装置的采集区域与目标物产生相对运动;图像采集装置,用于通过上述相对运动采集目标物一组图像。
- 如权利要求1所述的方法,其特征在于:还包括对采集的图像进行特征点提取,并进行特征点匹配,获取稀疏特征点;输入匹配的特征点坐标,利用解算稀疏的三维点云和拍照图像采集设备的位置和姿态数据,获得物体A与物体B的稀疏的模型三维点云和位置的模型坐标值。
- 如权利要求5所述的方法,其特征在于:导入标定物上的标定点的绝对坐标X T、Y T、Z T和已做好的标定点的图片模板,然后将标定点的图片模板与输入的所有照片进行模板匹配,获得输入照片中所有包含标定点的像素行列号x i、y i。
- 如权利要求5所述的方法,其特征在于:还包括根据拍照相机的位置和姿态数据,输入标定点的像素行列号x i、y i,可解算出其标定点的模型坐标系下坐标(X i、Y i、Z i);根据标定点绝对坐标和模型坐标(X T、Y T、Z T)与(X i、Y i、Z i),利用空间相似变换公式,解算出模型坐标与绝对坐标的7个空间坐标转换参数。
- 如权利要求7所述的方法,其特征在于:还包括利用解算的7个参数,则可将物体A和物体B的三维点云和拍照相机的位置和姿态数据的坐标转换到绝对坐标系下,即获得了目标物体的真实尺寸。
- 如权利要求1所述的方法,其特征在于:获得目标物的绝对尺寸。
- 一种3D模型构建设备,其特征在于:使用如权利要求1-9任一所述方法。
- 一种3D模型构建方法,其特征在于:使用如权利要求1-9任一所述方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010183304.1A CN111429523B (zh) | 2020-03-16 | 2020-03-16 | 一种在3d建模中远距离标定方法 |
CN202010183304.1 | 2020-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021185214A1 true WO2021185214A1 (zh) | 2021-09-23 |
Family
ID=71553523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/080870 WO2021185214A1 (zh) | 2020-03-16 | 2021-03-15 | 一种在3d建模中远距离标定方法 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN111429523B (zh) |
WO (1) | WO2021185214A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024156022A1 (en) * | 2023-01-24 | 2024-08-02 | Visionary Machines Pty Ltd | Systems and methods for calibrating cameras and camera arrays |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111429523B (zh) * | 2020-03-16 | 2021-06-15 | 天目爱视(北京)科技有限公司 | 一种在3d建模中远距离标定方法 |
CN112303423B (zh) * | 2020-10-15 | 2022-10-25 | 天目爱视(北京)科技有限公司 | 一种转动稳定的智能三维信息采集设备 |
CN112254669B (zh) * | 2020-10-15 | 2022-09-16 | 天目爱视(北京)科技有限公司 | 一种多偏置角度的智能视觉3d信息采集设备 |
WO2022078417A1 (zh) * | 2020-10-15 | 2022-04-21 | 左忠斌 | 一种自转式智能视觉3d信息采集设备 |
CN112082486B (zh) * | 2020-10-15 | 2022-05-27 | 天目爱视(北京)科技有限公司 | 一种手持式智能3d信息采集设备 |
CN112254673B (zh) * | 2020-10-15 | 2022-02-15 | 天目爱视(北京)科技有限公司 | 一种自转式智能视觉3d信息采集设备 |
CN112492292B (zh) * | 2020-11-27 | 2023-04-11 | 天目爱视(北京)科技有限公司 | 一种自由姿态的智能视觉3d信息采集设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100085437A1 (en) * | 2008-10-07 | 2010-04-08 | The Boeing Company | Method and system involving controlling a video camera to track a movable target object |
CN105865326A (zh) * | 2015-01-21 | 2016-08-17 | 成都理想境界科技有限公司 | 实物尺寸测量方法及图像数据库数据采集方法 |
CN109035379A (zh) * | 2018-09-10 | 2018-12-18 | 天目爱视(北京)科技有限公司 | 一种目标物360°3d测量及信息获取装置 |
CN109146949A (zh) * | 2018-09-05 | 2019-01-04 | 天目爱视(北京)科技有限公司 | 一种基于视频数据的3d测量及信息获取装置 |
CN111429523A (zh) * | 2020-03-16 | 2020-07-17 | 天目爱视(北京)科技有限公司 | 一种在3d建模中远距离标定方法 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE518620C2 (sv) * | 2000-11-16 | 2002-10-29 | Ericsson Telefon Ab L M | Scenkonstruktion och kamerakalibrering med robust användning av "cheiralitet" |
JP2013501304A (ja) * | 2009-08-04 | 2013-01-10 | アイキュー ビジョン テクノロジーズ リミテッド | 対象物抽出のためのシステム及び方法 |
CN101833791B (zh) * | 2010-05-11 | 2012-04-18 | 成都索贝数码科技股份有限公司 | 一种单摄像机下的场景建模方法及系统 |
CN102661717A (zh) * | 2012-05-09 | 2012-09-12 | 河北省电力建设调整试验所 | 铁塔单目视觉测量方法 |
CN102867414B (zh) * | 2012-08-18 | 2014-12-10 | 湖南大学 | 一种基于ptz摄像机快速标定的车辆排队长度测量方法 |
CN103617649B (zh) * | 2013-11-05 | 2016-05-11 | 北京江宜科技有限公司 | 一种基于相机自标定技术的河工模型地形测量方法 |
CN104748746B (zh) * | 2013-12-29 | 2017-11-03 | 刘进 | 智能机姿态测定及虚拟现实漫游方法 |
CN103868460B (zh) * | 2014-03-13 | 2016-10-05 | 桂林电子科技大学 | 基于视差优化算法的双目立体视觉自动测量方法 |
CN104299261B (zh) * | 2014-09-10 | 2017-01-25 | 深圳大学 | 人体三维成像方法及系统 |
CN104346833A (zh) * | 2014-10-28 | 2015-02-11 | 燕山大学 | 一种基于单目视觉的车辆重构算法 |
CN104316335B (zh) * | 2014-11-19 | 2017-01-18 | 烟台开发区海德科技有限公司 | 3d汽车车轮定位仪多相机标定系统及多相机标定方法 |
CN105046715B (zh) * | 2015-09-16 | 2019-01-11 | 北京理工大学 | 一种基于空间解析几何的线阵相机标定方法 |
CN105550670B (zh) * | 2016-01-27 | 2019-07-12 | 兰州理工大学 | 一种目标物体动态跟踪与测量定位方法 |
CN107194962B (zh) * | 2017-04-01 | 2020-06-05 | 深圳市速腾聚创科技有限公司 | 点云与平面图像融合方法及装置 |
CN107578464B (zh) * | 2017-06-30 | 2021-01-29 | 长沙湘计海盾科技有限公司 | 一种基于线激光扫描的传送带工件三维轮廓测量方法 |
CN107977996B (zh) * | 2017-10-20 | 2019-12-10 | 西安电子科技大学 | 基于靶标标定定位模型的空间目标定位方法 |
CN207556477U (zh) * | 2017-12-20 | 2018-06-29 | 北京卓立汉光仪器有限公司 | 一种表面形貌测量装置 |
WO2019127508A1 (zh) * | 2017-12-29 | 2019-07-04 | 深圳配天智能技术研究院有限公司 | 智能终端及其3d成像方法、3d成像系统 |
CN108470149A (zh) * | 2018-02-14 | 2018-08-31 | 天目爱视(北京)科技有限公司 | 一种基于光场相机的3d四维数据采集方法及装置 |
CN108288291A (zh) * | 2018-06-07 | 2018-07-17 | 北京轻威科技有限责任公司 | 基于单点标定物的多相机标定 |
CN109242898B (zh) * | 2018-08-30 | 2022-03-22 | 华强方特(深圳)电影有限公司 | 一种基于图像序列的三维建模方法及系统 |
CN208653473U (zh) * | 2018-09-05 | 2019-03-26 | 天目爱视(北京)科技有限公司 | 图像采集设备、3d信息比对装置、配套物生成装置 |
CN109801302A (zh) * | 2018-12-14 | 2019-05-24 | 华南理工大学 | 一种基于双目视觉的高压输电线路异物检测方法 |
CN109903327B (zh) * | 2019-03-04 | 2021-08-31 | 西安电子科技大学 | 一种稀疏点云的目标物尺寸测量方法 |
CN110288713B (zh) * | 2019-07-03 | 2022-12-23 | 北京机械设备研究所 | 一种基于多目视觉的快速三维模型重建方法及系统 |
CN110443853B (zh) * | 2019-07-19 | 2022-01-28 | 广东虚拟现实科技有限公司 | 基于双目摄像头的标定方法、装置、终端设备及存储介质 |
CN110428494A (zh) * | 2019-07-25 | 2019-11-08 | 螳螂慧视科技有限公司 | 三维建模的处理方法、设备与系统 |
CN110503694A (zh) * | 2019-08-08 | 2019-11-26 | Oppo广东移动通信有限公司 | 多摄像头标定方法、装置、存储介质及电子设备 |
CN110675455B (zh) * | 2019-08-30 | 2023-09-22 | 的卢技术有限公司 | 一种基于自然场景的车身环视相机自标定方法和系统 |
CN110763152B (zh) * | 2019-10-09 | 2021-08-20 | 哈尔滨工程大学 | 一种水下主动旋转结构光三维视觉测量装置及测量方法 |
-
2020
- 2020-03-16 CN CN202010183304.1A patent/CN111429523B/zh active Active
- 2020-03-16 CN CN202110636162.4A patent/CN113327291B/zh active Active
-
2021
- 2021-03-15 WO PCT/CN2021/080870 patent/WO2021185214A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100085437A1 (en) * | 2008-10-07 | 2010-04-08 | The Boeing Company | Method and system involving controlling a video camera to track a movable target object |
CN105865326A (zh) * | 2015-01-21 | 2016-08-17 | 成都理想境界科技有限公司 | 实物尺寸测量方法及图像数据库数据采集方法 |
CN109146949A (zh) * | 2018-09-05 | 2019-01-04 | 天目爱视(北京)科技有限公司 | 一种基于视频数据的3d测量及信息获取装置 |
CN109035379A (zh) * | 2018-09-10 | 2018-12-18 | 天目爱视(北京)科技有限公司 | 一种目标物360°3d测量及信息获取装置 |
CN111429523A (zh) * | 2020-03-16 | 2020-07-17 | 天目爱视(北京)科技有限公司 | 一种在3d建模中远距离标定方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024156022A1 (en) * | 2023-01-24 | 2024-08-02 | Visionary Machines Pty Ltd | Systems and methods for calibrating cameras and camera arrays |
Also Published As
Publication number | Publication date |
---|---|
CN113327291B (zh) | 2024-03-22 |
CN113327291A (zh) | 2021-08-31 |
CN111429523A (zh) | 2020-07-17 |
CN111429523B (zh) | 2021-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021185218A1 (zh) | 一种在运动过程中获取物体3d坐标及尺寸的方法 | |
WO2021185214A1 (zh) | 一种在3d建模中远距离标定方法 | |
WO2021185217A1 (zh) | 一种基于多激光测距和测角的标定方法 | |
CN111060023B (zh) | 一种高精度3d信息采集的设备及方法 | |
CN111292364B (zh) | 一种三维模型构建过程中图像快速匹配的方法 | |
WO2021185220A1 (zh) | 一种基于坐标测量的三维模型构建及测量方法 | |
WO2021185216A1 (zh) | 一种基于多激光测距的标定方法 | |
WO2021185215A1 (zh) | 一种在3d建模中多相机共同标定方法 | |
CN111292239B (zh) | 一种三维模型拼接设备及方法 | |
CN111076674B (zh) | 一种近距离目标物3d采集设备 | |
CN111060008B (zh) | 一种3d智能视觉设备 | |
WO2022078442A1 (zh) | 一种基于光扫描和智能视觉融合的3d信息采集方法 | |
CN112016570A (zh) | 用于背景板同步旋转采集中的三维模型生成方法 | |
CN111340959B (zh) | 一种基于直方图匹配的三维模型无缝纹理贴图方法 | |
CN111208138B (zh) | 一种智能木料识别装置 | |
CN113538552B (zh) | 一种基于图像排序的3d信息合成图像匹配的方法 | |
WO2021115297A1 (zh) | 3d信息采集的设备及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21772362 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21772362 Country of ref document: EP Kind code of ref document: A1 |