WO2021185010A1 - 一种辊压机辊面缺陷识别方法和装置 - Google Patents
一种辊压机辊面缺陷识别方法和装置 Download PDFInfo
- Publication number
- WO2021185010A1 WO2021185010A1 PCT/CN2021/076093 CN2021076093W WO2021185010A1 WO 2021185010 A1 WO2021185010 A1 WO 2021185010A1 CN 2021076093 W CN2021076093 W CN 2021076093W WO 2021185010 A1 WO2021185010 A1 WO 2021185010A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- roller surface
- roller
- area
- cloud data
- point cloud
- Prior art date
Links
- 230000007547 defect Effects 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000002159 abnormal effect Effects 0.000 claims abstract description 22
- 230000008859 change Effects 0.000 claims abstract description 18
- 238000005299 abrasion Methods 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 239000004568 cement Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/28—Measuring arrangements characterised by the use of optical techniques for measuring areas
- G01B11/285—Measuring arrangements characterised by the use of optical techniques for measuring areas using photoelectric detection means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/62—Analysis of geometric attributes of area, perimeter, diameter or volume
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/64—Analysis of geometric attributes of convexity or concavity
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
- G06T7/66—Analysis of geometric attributes of image moments or centre of gravity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8854—Grading and classifying of flaws
- G01N2021/8861—Determining coordinates of flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8854—Grading and classifying of flaws
- G01N2021/8874—Taking dimensions of defect into account
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/952—Inspecting the exterior surface of cylindrical bodies or wires
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
Definitions
- the invention relates to the technical field of roller surface defect detection, in particular to a method and device for identifying roller surface defects of a roller press.
- Roller press is widely used in building materials, cement, metallurgy, mining, chemical industry and other fields. It has the advantages of high efficiency, energy saving and environmental protection. Its working principle is shown in Figure 1 below. It mainly relies on two horizontally installed and synchronously rotating squeeze rollers for high pressure. The material layer is crushed. The squeezing force of the enclosed material layer in the process of being forced to move downward gradually increases to a large enough level, until it is crushed and squeezed into a dense cake to be discharged from the machine.
- Figure 2 shows the common defects of the roller surface of various roller presses: a) The roller surface is not uniformly worn due to the edges of the roller press. The effect is that the middle of the roll surface wears quickly, and the wear on both sides is slow. After long-term operation, the phenomenon of depression in the middle of the roll surface appears, making it impossible to extend the life of the roll surface by adjusting the roll gap. b) Roll surface pits. When metal foreign objects such as steel ball hammers enter the roller press, it is easy to cause partial damage to the roller surface. For example, pits appear on the roller surface. The roll surface is overhauled or scrapped.
- roller surface defects of roller presses there is no relevant technology, equipment and corresponding research on the identification of roller surface defects of roller presses.
- the roller surface is inspected manually. If defects are found, surfacing repair is performed. The inspection needs to remove the cover, which increases the labor intensity of the workers. It is often necessary to check and compare at multiple time points to determine whether the roller surface is needed. Repair, labor costs and time costs are high, and the accuracy and timeliness of manual observation is also poor.
- the invention provides a method and device for identifying defects on the roller surface of a roller press, which can solve the technical problems of low efficiency and large errors in manual inspection of the roller surface.
- a method for identifying defects on the roller surface of a roller press Based on the roller press, a three-dimensional coordinate system is established on the end surface of the roller press;
- the present invention also discloses a roller surface defect recognition device of a roller press, which includes the following modules:
- Three-dimensional scanner used to obtain the three-dimensional point cloud data of the roller surface of the roller press
- the calculation and judgment unit is used to perform the following steps:
- calculation and judgment unit is also used to perform the following steps:
- the roller surface defect recognition method of the present invention automatically calculates, recognizes and judges whether there are defects on the roller surface and the type of the defect based on the acquired three-dimensional point cloud data of the roller surface and comparison with the reference data. , Area, volume, location and other information, and then automatically judge the wear of the roller surface based on the defect identification information.
- the present invention is more intelligent, more accurate and efficient.
- Figure 1 Schematic diagram of squeezing and crushing by roller press
- Figure 2a shows the uneven wear of the roller surface
- Figure 2b shows the defect of the pits on the roller surface
- Figure 3 is a schematic diagram of the method of the present invention.
- Figure 4 is a schematic diagram of the coordinates of the roller surface of the present invention.
- the method for identifying defects on the roller surface of a roller press in this embodiment is based on the roller press and establishes a three-dimensional coordinate system on the end surface of the roller press;
- roller surface When ⁇ H is greater than a certain value, the roller surface is set to be unevenly worn.
- X represents the coordinate value of the point along the width of the roller surface
- Y represents the coordinate value of the point along the circumferential direction
- the method for identifying defects on the roller surface of the roller press automatically calculates, recognizes and judges whether there are defects on the roller surface and the type of the defect based on the acquired three-dimensional point cloud data of the roller surface and through comparison with the reference data. , Area, volume, location and other information, and then automatically judge the wear of the roller surface based on the defect identification information. Compared with manual detection, it is smarter, more accurate and more efficient.
- the present invention also discloses a roller surface defect recognition device of a roller press, which includes the following modules:
- Three-dimensional scanner used to obtain the three-dimensional point cloud data of the roller surface of the roller press
- the calculation and judgment unit is used to perform the following steps:
- calculation and judgment unit is also used to perform the following steps:
- the device provided in the embodiment of the present invention corresponds to the method provided in the embodiment of the present invention, and the explanations, examples, and beneficial effects of related content can refer to the corresponding parts in the foregoing method.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- Quality & Reliability (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Signal Processing (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
Claims (6)
- 一种辊压机辊面缺陷识别方法,基于辊压机,其特征在于:在辊压机的端面建立三维坐标系;包括以下步骤:将首次获取的辊面三维点云数据A0设为基准数据;获取辊面磨损后的三维点云数据A1,对于同一X、Y点,其高度值Z的变化设为ΔZ;当ΔZ大于设定值时,设为异常点;连接相邻异常点,区域连接面积大于设定值时,将该区域设为凹坑缺陷;自动计算凹坑缺陷的面积S、平均高度差ΔZ_A、体积V、中心位置。
- 根据权利要求1所述的辊压机辊面缺陷识别方法,其特征在于:还包括:对于三维点云数据A 1,当X=xm不变,Y从y1至yn变化,计算x m圆周的平均高度H m;计算最大平均高度H max与最小平均高度H min的差值ΔH;当ΔH大于设定值时,辊面设为不均匀磨损。
- 根据权利要求2所述的辊压机辊面缺陷识别方法,其特征在于:将首次三维点云数据设为该辊面的基准数据;当辊面出现缺陷后对辊面进行扫描,获取三维点云数据 对于同一个点,对比磨损前后的三维数据,其二维平面坐标X、Y值不会改变,改变的仅仅是Z值,此时将此次扫描结果与基准数据相减,可得到该点的高度差ΔZ=Z 0-Z 1,当高度差ΔZ≥5mm时,将该点设置为异常点;
- 一种辊压机辊面缺陷识别装置,其特征在于:包括以下模块:三维扫描仪,用于获取辊压机的辊面三维点云数据;计算判断单元,用于执行以下步骤:将三维扫描仪首次获取的辊面三维点云数据A0设为基准数据;使用三维扫描仪获取辊面磨损后的三维点云数据A1,对于同一X、Y点,其高度值Z的变化设为ΔZ;当ΔZ大于设定值时,设为异常点;连接相邻异常点,区域连接面积大于设定值时,将该区域设为凹坑缺陷;自动计算凹坑缺陷的面积S、平均高度差ΔZ_A、体积V、中心位置。
- 根据权利要求5所述的一种辊压机辊面缺陷识别装置,其特征在于:计算判断单元,还用于执行以下步骤:对于三维点云数据A 1,当X=xm不变,Y从y1至yn变化,计算x m圆周的平均高度H m;计算最大平均高度H max与最小平均高度H min的差值ΔH;当ΔH大于设定值时,辊面设为不均匀磨损。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE212021000130.0U DE212021000130U1 (de) | 2020-03-20 | 2021-02-08 | Vorrichtung zur Erkennung von Defekten auf der Walzenoberfläche einer Walzenpresse |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010202708.0A CN111402245B (zh) | 2020-03-20 | 2020-03-20 | 一种辊压机辊面缺陷识别方法和装置 |
CN202010202708.0 | 2020-03-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021185010A1 true WO2021185010A1 (zh) | 2021-09-23 |
Family
ID=71435281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/076093 WO2021185010A1 (zh) | 2020-03-20 | 2021-02-08 | 一种辊压机辊面缺陷识别方法和装置 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN111402245B (zh) |
DE (1) | DE212021000130U1 (zh) |
WO (1) | WO2021185010A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116786202A (zh) * | 2023-07-10 | 2023-09-22 | 中建材(合肥)粉体科技装备有限公司 | 一种辊压机通过量实时检测系统和检测方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111402245B (zh) * | 2020-03-20 | 2024-02-27 | 中建材(合肥)粉体科技装备有限公司 | 一种辊压机辊面缺陷识别方法和装置 |
US11703457B2 (en) * | 2020-12-29 | 2023-07-18 | Industrial Technology Research Institute | Structure diagnosis system and structure diagnosis method |
CN112669460B (zh) * | 2020-12-31 | 2023-07-25 | 新拓三维技术(深圳)有限公司 | 一种工件缺陷检测方法、系统及计算机可读存储介质 |
CN114324038A (zh) * | 2021-09-26 | 2022-04-12 | 中国海洋石油集团有限公司 | 一种冲蚀测量系统及其检测方法 |
CN114279386B (zh) * | 2021-12-22 | 2024-02-23 | 惠州锂威新能源科技有限公司 | 一种对辊磨损的检测方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106373127A (zh) * | 2016-09-14 | 2017-02-01 | 东北林业大学 | 用于木材树种及表面缺陷的激光扫描并行检测方法 |
WO2018136262A1 (en) * | 2017-01-20 | 2018-07-26 | Aquifi, Inc. | Systems and methods for defect detection |
TW201915479A (zh) * | 2017-09-20 | 2019-04-16 | 正修學校財團法人正修科技大學 | 畫作缺陷檢測方法 |
CN111402245A (zh) * | 2020-03-20 | 2020-07-10 | 中建材(合肥)粉体科技装备有限公司 | 一种辊压机辊面缺陷识别方法和装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6086099B2 (ja) * | 2014-07-10 | 2017-03-01 | Jfeスチール株式会社 | 表面形状測定装置及びその方法 |
US11017679B2 (en) * | 2017-01-13 | 2021-05-25 | Skydio, Inc. | Unmanned aerial vehicle visual point cloud navigation |
CN108982513B (zh) * | 2018-07-11 | 2021-05-07 | 天津工业大学 | 一种基于线激光扫描的高精度三维连接器针脚缺陷检测方法 |
CN110030951B (zh) * | 2019-05-14 | 2020-02-11 | 武汉大学 | 一种基于三维激光扫描技术的引水竖井缺陷检测方法 |
-
2020
- 2020-03-20 CN CN202010202708.0A patent/CN111402245B/zh active Active
-
2021
- 2021-02-08 DE DE212021000130.0U patent/DE212021000130U1/de active Active
- 2021-02-08 WO PCT/CN2021/076093 patent/WO2021185010A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106373127A (zh) * | 2016-09-14 | 2017-02-01 | 东北林业大学 | 用于木材树种及表面缺陷的激光扫描并行检测方法 |
WO2018136262A1 (en) * | 2017-01-20 | 2018-07-26 | Aquifi, Inc. | Systems and methods for defect detection |
TW201915479A (zh) * | 2017-09-20 | 2019-04-16 | 正修學校財團法人正修科技大學 | 畫作缺陷檢測方法 |
CN111402245A (zh) * | 2020-03-20 | 2020-07-10 | 中建材(合肥)粉体科技装备有限公司 | 一种辊压机辊面缺陷识别方法和装置 |
Non-Patent Citations (2)
Title |
---|
WU, QINGHUA: "Study on Theory and Application of3D Surface Defect On-line Detecting Based on Line - structured Laser Scanning", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, INFORMATION SCIENCES, 15 October 2014 (2014-10-15), pages 4 - 6, XP055851407, ISSN: 1674-022X * |
YUAN, XIAOCUI: "Key Techniques Research on Data Processing for the Defect Inspection of Product Surfaces Based on Machine Vision", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, INFORMATION SCIENCES, 15 July 2016 (2016-07-15), pages 5 - 8, XP055851410, ISSN: 1674-022X * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116786202A (zh) * | 2023-07-10 | 2023-09-22 | 中建材(合肥)粉体科技装备有限公司 | 一种辊压机通过量实时检测系统和检测方法 |
CN116786202B (zh) * | 2023-07-10 | 2024-04-30 | 中建材(合肥)粉体科技装备有限公司 | 一种辊压机通过量实时检测系统和检测方法 |
Also Published As
Publication number | Publication date |
---|---|
DE212021000130U1 (de) | 2022-03-22 |
CN111402245B (zh) | 2024-02-27 |
CN111402245A (zh) | 2020-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021185010A1 (zh) | 一种辊压机辊面缺陷识别方法和装置 | |
CN111103291A (zh) | 基于产品焊缝特征的图像识别与质量智能评价系统 | |
CN111230593B (zh) | 一种基于动态图像序列的铣刀磨损量视觉测量方法 | |
CN109141232A (zh) | 一种基于机器视觉的盘类铸件在线检测方法 | |
CN112697803A (zh) | 一种基于机器视觉的板带钢表面缺陷检测方法及装置 | |
Xu et al. | Fast on-machine profile characterization for grinding wheels and error compensation of wheel dressing | |
CN112529884B (zh) | 一种基于压痕特征图像识别的焊点质量评价方法 | |
CN102496161A (zh) | 一种印刷电路板图像的轮廓提取方法 | |
CN115375686A (zh) | 一种基于图像处理的玻璃边缘瑕疵检测方法 | |
CN112258444A (zh) | 一种电梯钢丝绳检测方法 | |
CN112907556A (zh) | 一种基于机器视觉的旋转刀具磨损量自动测量方法 | |
CN117890389A (zh) | 精烧制品表面质量在线检测方法、设备及其存储介质 | |
CN113910007A (zh) | 一种热轧支承辊裂纹处置方法 | |
CN112345540B (zh) | 一种基于圆形结构光检测内孔过盈配合表面拆卸损伤的检测方法 | |
CN117606566A (zh) | 一种基于检斤数据的钢铁生产评测系统 | |
CN107677677A (zh) | 一种连铸坯偏析程度定量化表征方法 | |
CN206105516U (zh) | 一种非接触式刀片磨损的在线检测设备 | |
CN117333727A (zh) | 一种基于可视化图像处理技术的输送带磨损区域识别分析系统 | |
CN115937755B (zh) | 一种拖拉机变速箱立铣刀片视觉检测方法 | |
Li et al. | Research on straightness detection of steel strip edge based on machine vision | |
CN113547281A (zh) | 一种平整辊表面裂纹修复、无损检测的方法 | |
CN114897846A (zh) | 一种基于机器视觉的点阵目标规律性检测方法 | |
CN110038915A (zh) | 对接焊的带钢板型控制系统 | |
CN114359366A (zh) | 一种机器视觉测量方法及其在轴承工件测量上的应用 | |
CN209697738U (zh) | 一种提高中厚板在线表检视野清晰度的辅助装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21770586 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21770586 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21770586 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.07.2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21770586 Country of ref document: EP Kind code of ref document: A1 |