WO2021184936A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021184936A1
WO2021184936A1 PCT/CN2021/071209 CN2021071209W WO2021184936A1 WO 2021184936 A1 WO2021184936 A1 WO 2021184936A1 CN 2021071209 W CN2021071209 W CN 2021071209W WO 2021184936 A1 WO2021184936 A1 WO 2021184936A1
Authority
WO
WIPO (PCT)
Prior art keywords
target information
field
rnti
information
pdcch
Prior art date
Application number
PCT/CN2021/071209
Other languages
English (en)
French (fr)
Inventor
骆喆
张云昊
陈雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010548502.3A external-priority patent/CN113498216A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021184936A1 publication Critical patent/WO2021184936A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of communication, and in particular to a communication method and device.
  • the state of user equipment may include a connected state, an idle state, and an inactive state.
  • the base station For the UE in the connected state, the base station will assign a cell-radio network temporary identifier (C-RNTI) that takes effect in the cell served by the current base station to the UE.
  • C-RNTI cell-radio network temporary identifier
  • the UE uses the C-RNTI for unicast data transmission, thereby ensuring the safety and reliability of the communication between the UE and the base station.
  • the UE in the inactive state does not have a C-RNTI, but only an inactive-radio network temporary identifier (I-RNTI).
  • a UE in the inactive state may also perform unicast data transmission with the base station. .
  • the UE in the inactive state lacks the identity of the physical layer of the UE. If the UE in the inactive state performs unicast data transmission with the base station, the safety and reliability of the communication between the UE and the base station cannot be guaranteed. For example, other UEs may obtain scheduling information of the UE and perform wrong actions, or a malicious UE may eavesdrop on unicast data sent or received by the UE.
  • the embodiments of the present application provide a communication method and device, which can improve the security and reliability of uplink or downlink data transmission.
  • the first aspect of the embodiments of the present application provides a communication method, which may be executed by a terminal device, or may be executed by a component of the terminal device (for example, a processor, a chip, or a chip system, etc.).
  • the method includes: acquiring an inactive wireless network temporary identifier I-RNTI; generating first target information and second target information according to the I-RNTI; monitoring the physical downlink control channel PDCCH according to the first target information and the second target information.
  • the first target information and the second target information are generated according to the I-RNTI, and the physical downlink control channel PDCCH is monitored according to the first target information and the second target information, which can prevent the DCI of the terminal device on the PDCCH from being used by other terminals.
  • the malicious acquisition of equipment improves the security and reliability of downlink data transmission.
  • the first target information in the above steps is used to descramble the cyclic redundancy check CRC information of the downlink control information DCI, and the second target information is used to obtain the PDCCH In the search space, DCI is carried on the PDCCH.
  • the blind detection range of the PDCCH can be reduced by using the first and second target information, thereby reducing the power consumption of the terminal device.
  • the first target information in the above steps is used for descrambling the cyclic redundancy check CRC information of the downlink control information DCI
  • the second target information is used for descrambling PDCCH
  • DCI is carried on the PDCCH.
  • the first and second target information can prevent other terminal devices from maliciously receiving the DCI of the terminal device, thereby improving the security and reliability of downlink data transmission.
  • the first target information in the above steps is used to descramble the PDCCH, and the second target information is used to obtain the search space of the PDCCH.
  • the first and second target information can prevent other terminal devices from maliciously receiving the DCI of the terminal device, thereby improving the security and reliability of downlink data transmission.
  • the above steps further include: generating third target information according to the I-RNTI, the first target information is used to obtain the search space of the PDCCH, and the second target information is used to The PDCCH is descrambled, and the third target information is used to descramble the cyclic redundancy check CRC information of the downlink control information DCI, and the DCI is carried on the PDCCH.
  • the first, second, and third target information can prevent other terminal devices from maliciously receiving the DCI of the terminal device, thereby improving the security and reliability of downlink data transmission.
  • the above steps further include: generating fourth target information according to the I-RNTI; scrambling the physical uplink shared channel PUSCH or the physical uplink control channel PUCCH according to the fourth target information .
  • the security and reliability of uplink data transmission between the non-connected terminal device and the network device can be improved.
  • the foregoing steps further include: generating fifth target information according to the I-RNTI; and descrambling the physical downlink shared channel PDSCH according to the fifth target information.
  • descrambling the PDSCH with the fifth target information can prevent other terminal devices from receiving the downlink data of the terminal device, thereby improving the security and reliability of downlink data transmission.
  • the foregoing steps further include: acquiring a target identifier .
  • Generating the first target information and the second target information according to the I-RNTI includes: generating the first target information and the second target information according to the I-RNTI and the target identifier.
  • the probability of repetition of target information of different terminals is reduced.
  • the target identifier in the foregoing steps includes at least one of an international mobile subscriber identity code IMSI and a base station identifier .
  • the probability of duplication of target information of different terminals can be avoided by using the dedicated IMSI, thereby improving the security of the target information.
  • the I-RNTI in the above steps includes a first field and a second field, the first field indicates information related to the terminal, and the second field indicates information related to the network device Related information.
  • the first field indicates information related to the terminal, that is, the target information is related to the terminal, so that the target information generated by each terminal is different in most cases, so each terminal device monitors the PDCCH used
  • the target information is different, which can prevent other terminal devices from receiving the downlink data of the terminal device, and improve the security and reliability of downlink data transmission.
  • the I-RNTI in the above steps further includes a third field, which indicates information related to the public land-based mobile network PLMN and/or operator .
  • PLMN and/or operator-related information is added to reduce the probability of duplication of target information for different terminals.
  • the generating of the first target information and the second target information according to the I-RNTI in the foregoing steps includes: generating the first target information and the second target information according to the third field. Target information.
  • the time required to obtain or process the second field and the first field can be reduced, which is beneficial to reducing time. Delay, improve the efficiency of generating target information.
  • the generating of the first target information and the second target information according to the I-RNTI in the foregoing steps includes: generating the second target information according to the first field or the second field One target information and second target information.
  • the duration is conducive to reducing the time delay and improving the efficiency of generating target information.
  • the second aspect of the embodiments of the present application provides a communication method, which may be executed by a network device, or may be executed by a component of the network device (for example, a processor, a chip, or a chip system, etc.).
  • the method includes: obtaining an inactive wireless network temporary identifier I-RNTI; generating first target information and second target information according to the I-RNTI; sending DCI on a physical downlink control channel PDCCH according to the first target information and the second target information.
  • the first target information and the second target information are generated according to the I-RNTI, and the DCI of the terminal device on the PDCCH can be avoided by other terminals on the physical downlink control channel PDCCH according to the first target information and the second target information.
  • Equipment acquisition Improve the security and reliability of downlink data transmission.
  • the first target information in the above steps is used to scramble the cyclic redundancy check CRC information of the downlink control information DCI, and the second target information is used to obtain the PDCCH Search space.
  • sending DCI on the search space by using the first and second target information can narrow the range of blind detection of the PDCCH by the terminal device, thereby reducing the power consumption of the terminal device.
  • the first target information in the above steps is used to scramble the cyclic redundancy check CRC information of the downlink control information DCI, and the second target information is used to scramble PDCCH.
  • the first and second target information can prevent other terminal devices from maliciously receiving the DCI sent by the network device to a specific terminal device, thereby improving the security and reliability of downlink data transmission.
  • the first target information in the above steps is used to scramble the PDCCH, and the second target information is used to obtain the search space of the PDCCH.
  • the first and second target information can prevent other terminal devices from maliciously receiving the DCI sent by the network device to a specific terminal device, thereby improving the security and reliability of downlink data transmission.
  • the above steps further include: the network device generates third target information according to the I-RNTI, the first target information is used to obtain the search space of the PDCCH, and the second target information Used to scramble the PDCCH, and the third target information is used to scramble the cyclic redundancy check CRC information of the downlink control information DCI.
  • the first, second, and third target information can prevent other terminal devices from maliciously receiving the DCI sent by the network device to a specific terminal device, which improves the security and reliability of downlink data transmission.
  • the above steps further include: generating fourth target information according to the I-RNTI; descrambling the physical uplink shared channel PUSCH or the physical uplink control channel PUCCH according to the fourth target information .
  • the security and reliability of uplink data transmission between the network device and the non-connected terminal device can be improved.
  • the foregoing steps further include: generating fifth target information according to the I-RNTI; and scrambling the physical downlink shared channel PDSCH according to the fifth target information.
  • scrambling the PDSCH with the fifth target information can prevent other terminal devices from receiving the downlink data sent by the network device to a specific terminal device, thereby improving the security and reliability of downlink data transmission.
  • the foregoing steps further include: acquiring a target identifier .
  • Generating the first target information and the second target information according to the I-RNTI includes: generating the first target information and the second target information according to the I-RNTI and the target identifier.
  • the probability of repetition of target information of different terminals is reduced.
  • the target identifier in the foregoing steps includes at least one of an international mobile subscriber identity code IMSI and a base station identifier .
  • the probability of duplication of target information of different terminals can be avoided by using the dedicated IMSI, thereby improving the security of the target information.
  • the I-RNTI in the above steps includes a first field and a second field, the first field indicates information related to the terminal, and the second field indicates information related to the network device. Related information.
  • the network device is based on different target information. Sending DCI to different terminal devices can prevent other terminal devices from receiving downlink data sent by the network device to a specific terminal device, thereby improving the security and reliability of downlink data transmission.
  • the I-RNTI in the above steps further includes a third field, which indicates information related to the public land-based mobile network PLMN and/or operator .
  • PLMN and/or operator-related information is added to reduce the probability of duplication of target information for different terminals.
  • the generating of the first target information and the second target information according to the I-RNTI in the foregoing steps includes: generating the first target information and the second target information according to the third field. Target information.
  • the time required to obtain or process the second field and the first field can be reduced, which is beneficial to reducing time. Delay, improve the efficiency of generating target information.
  • the generating of the first target information and the second target information according to the I-RNTI in the foregoing steps includes: generating the second target information according to the first field or the second field One target information and second target information.
  • a third aspect of the present application provides a communication device, and the communication device may be a terminal device. It can also be a component of a terminal device (such as a processor, a chip, or a chip system), and the communication device includes:
  • the acquiring unit is used to acquire the temporary identifier I-RNTI of the inactive wireless network
  • a generating unit configured to generate the first target information and the second target information according to the I-RNTI
  • the monitoring unit is configured to monitor the physical downlink control channel PDCCH according to the first target information and the second target information.
  • the first target information is used to descramble the cyclic redundancy check CRC information of the downlink control information DCI
  • the second target information is used to obtain the search space of the PDCCH
  • the DCI is carried on the PDCCH.
  • the first target information is used to descramble the cyclic redundancy check CRC information of the downlink control information DCI
  • the second target information is used to descramble the PDCCH
  • the DCI bears On the PDCCH.
  • the first target information is used to descramble the PDCCH
  • the second target information is used to obtain the search space of the PDCCH.
  • the generating unit is further configured to generate third target information according to the I-RNTI, the first target information is used to obtain the search space of the PDCCH, and the second target information is used to For descrambling the PDCCH, the third target information is used to descramble the cyclic redundancy check CRC information of the downlink control information DCI, and the DCI is carried on the PDCCH.
  • the generating unit is further configured to generate fourth target information according to the I-RNTI.
  • the terminal equipment further includes a scrambling unit, which is used to scramble the physical uplink shared channel PUSCH or the physical uplink control channel PUCCH according to the fourth target information.
  • the generating unit is further configured to generate fifth target information according to the I-RNTI.
  • the terminal device further includes a descrambling unit, configured to descramble the physical downlink shared channel PDSCH according to the fifth target information.
  • the acquiring unit is further configured to acquire the target identifier.
  • the generating unit is specifically configured to generate the first target information and the second target information according to the I-RNTI and the target identifier.
  • the target identifier includes at least one of an International Mobile Subscriber Identity Code IMSI and a base station identifier .
  • the I-RNTI includes a first field and a second field, the first field indicates information related to the terminal, and the second field indicates information related to the network device.
  • the I-RNTI further includes a third field, and the third field indicates information related to the public land-based mobile network PLMN and/or operator.
  • the generating unit is specifically configured to generate the first target information and the second target information according to the third field.
  • the generating unit is specifically configured to generate the first target information and the second target information according to the first field or the second field.
  • the fourth aspect of the present application provides a communication device, and the communication device may be a network device. It may also be a component of a network device (for example, a processor, a chip, or a chip system), and the communication device includes:
  • the acquiring unit is used to acquire the temporary identifier I-RNTI of the inactive wireless network
  • a generating unit configured to generate the first target information and the second target information according to the I-RNTI
  • the sending unit is configured to send DCI on the physical downlink control channel PDCCH according to the first target information and the second target information.
  • the first target information is used to scramble the cyclic redundancy check CRC information of the downlink control information DCI
  • the second target information is used to obtain the search space of the PDCCH.
  • the first target information is used to scramble the cyclic redundancy check CRC information of the downlink control information DCI
  • the second target information is used to scramble the PDCCH.
  • the first target information is used to scramble the PDCCH
  • the second target information is used to obtain the search space of the PDCCH.
  • the generating unit is further configured to generate third target information according to the I-RNTI, the first target information is used to obtain the search space of the PDCCH, and the second target information is used to For scrambling the PDCCH, the third target information is used to scramble the cyclic redundancy check CRC information of the downlink control information DCI.
  • the generating unit is further configured to generate fourth target information according to the I-RNTI.
  • the network device further includes a descrambling unit, configured to descramble the physical uplink shared channel PUSCH or the physical uplink control channel PUCCH according to the fourth target information.
  • the generating unit is further configured to generate fifth target information according to the I-RNTI.
  • the network equipment further includes: a scrambling unit, configured to scramble the physical downlink shared channel PDSCH according to the fifth target information.
  • the acquiring unit is further configured to acquire an international mobile subscriber identity code IMSI.
  • the generating unit is specifically configured to generate the first target information and the second target information according to the I-RNTI and the ISMI.
  • the I-RNTI includes a first field and a second field, the first field indicates information related to the terminal, and the second field indicates information related to the network device.
  • the I-RNTI further includes a third field, and the third field indicates information related to the public land-based mobile network PLMN.
  • the generating unit is specifically configured to generate the first target information and the second target information according to the first field or the second field.
  • a fifth aspect of the embodiments of the present application provides a communication device, and the communication device may be a terminal device. It may also be a component of a terminal device (for example, a processor, a chip, or a chip system), and the communication device executes the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • a sixth aspect of the embodiments of the present application provides a communication device, and the communication device may be a network device. It may also be a component of a network device (for example, a processor, a chip, or a chip system), and the communication device executes the foregoing second aspect or the method in any possible implementation manner of the second aspect.
  • a network device for example, a processor, a chip, or a chip system
  • the seventh aspect of the present application provides a computer-readable medium on which a computer program or instruction is stored.
  • the computer program or instruction runs on a computer, the computer executes the foregoing first aspect or any possible implementation of the first aspect. Or make the computer execute the method in the foregoing second aspect or any possible implementation manner of the second aspect.
  • An eighth aspect of the present application provides a communication device, including: a processor, the processor is coupled with a memory, the memory is used to store a program or instruction, when the program or instruction is executed by the processor,
  • the device implements the foregoing first aspect or the method in any possible implementation manner of the first aspect.
  • a ninth aspect of the present application provides a communication device, including: a processor, the processor is coupled with a memory, the memory is used to store a program or instruction, when the program or instruction is executed by the processor,
  • the device implements the foregoing second aspect or any possible implementation of the second aspect.
  • Fig. 1 is a schematic diagram of a communication system in an embodiment of the application
  • FIGS. 2 to 4 are schematic diagrams of the flow of several communication methods in the embodiments of this application.
  • 5a-9 are several schematic diagrams of generating target information in an embodiment of this application.
  • the embodiments of the present application provide a communication method and device. Used to improve the security and reliability of data transmission.
  • Wireless communication systems may include but are not limited to long term evolution (LTE) systems, new radio (NR) systems, and future evolution communication systems, etc. , The future evolution of communication systems such as future networks or sixth-generation communication systems.
  • LTE long term evolution
  • NR new radio
  • future evolution communication systems etc.
  • the future evolution of communication systems such as future networks or sixth-generation communication systems.
  • Figure 1 shows a schematic diagram of a communication system.
  • the communication system may include a network device 101 and terminal devices 102 to 104 that can communicate with the network device 101.
  • FIG. 1 only one network device 101 and three terminal devices 102 to 104 are taken as an example for schematic illustration.
  • the communication system in the embodiment of the present application may have more network devices 101 and terminal devices, and there may also be one or more terminal devices.
  • the embodiments of the present application do not limit the number of network devices 101 and terminal devices.
  • a network device is a device deployed in a wireless access network to provide a wireless communication function for terminal devices.
  • the network equipment may include various forms of base stations: macro base stations, micro base stations (also called small stations), relay stations, access points, and so on.
  • the names of network devices may be different, such as eNB or eNodeB (Evolutional NodeB) in LTE (Long Term Evolution).
  • the network device may also be a wireless controller in a CRAN (Cloud Radio Access Network) scenario.
  • the network device may also be a base station device in a 5G network or a network device in a future evolved network.
  • the network device can also be a wearable device or a vehicle-mounted device.
  • the network device may also be a transmission and reception point (TRP).
  • TRP transmission and reception point
  • Network equipment can also refer to a general term for all equipment on the network side. For example, when multiple TRPs are used to transmit data to a terminal device, the multiple TRPs are collectively referred to as network equipment.
  • the terminal device is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as a ship, etc.); it can also be deployed In the air (for example, on airplanes, balloons, satellites, etc.).
  • the terminal equipment can be a mobile phone, a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and an industrial control (industrial control) terminal device.
  • Terminal equipment can sometimes also be referred to as terminal, user equipment (UE), access terminal equipment, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile Equipment, UE agent or UE device, etc.
  • the terminal device can also be fixed or mobile.
  • the UE can be in the radio resource control connected (RRC-connected) state, the radio resource control idle (RRC-idle) state, or the radio resource control inactive state (radio resource control inactive, RRC-inactive) state.
  • RRC-connected radio resource control connected
  • RRC-idle radio resource control idle
  • RRC inactive radio resource control inactive, RRC-inactive
  • the base station When the UE is in the RRC-connected state, there is a connection between the UE and the base station. At this time, the base station knows that the UE is within the coverage area of the base station or is within the management range of the base station. For example, the base station knows that the UE is within the coverage area of a cell managed by the base station.
  • the core network knows the coverage or management range of which base station the UE is in, and the core network knows through which base station the UE can be located or found.
  • the base station and the UE can perform data channel and/or control channel transmission, so that the UE's unicast information can be transmitted.
  • the base station may send a physical downlink control channel (PDCCH) and/or a physical downlink shared channel (PDSCH) to the UE.
  • the UE may send a physical uplink shared channel (PUSCH) and/or a physical uplink control channel (PUCCH) to the base station.
  • PDCCH physical downlink control channel
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the base station When the UE is in the RRC-idle state, there is no connection between the UE and the base station. At this time, the base station does not know whether the UE is within the coverage area of the base station or whether it is within the management range of the base station. For example, the base station does not know whether the UE is within the coverage area of the cell managed by the base station.
  • the core network does not know which base station the UE is within the coverage or management range, and the core network does not know which base station can locate or find the UE.
  • the UE may receive one or more of a paging message, a synchronization signal, a broadcast message, or system information from the base station. At this time, the UE cannot perform unicast data transmission with the base station.
  • the base station When the UE is in the RRC-inactive state, there is no connection between the UE and the base station. At this time, the base station does not know whether the UE is within the coverage area of the base station or whether it is within the management range of the base station. For example, the base station does not know whether the UE is within the coverage area of the cell managed by the base station.
  • the core network knows the coverage or management range of which base station the UE is in, and the core network knows through which base station the UE can be located or found.
  • the UE may receive one or more of a paging message, a synchronization signal, a broadcast message, or system information from the base station.
  • UEs in the RRC-inactive state may also unicast with the base station. data transmission.
  • the UE in the RRC-inactive state lacks the identity of the physical layer of the UE. If the UE in the RRC-inactive state performs unicast data transmission with the base station, the safety and reliability of the communication between the UE and the base station cannot be guaranteed. For example, other UEs may obtain scheduling information of the UE and perform wrong actions, or a malicious UE may eavesdrop on unicast data sent or received by the UE.
  • the base station For UEs in the RRC-connected state, the base station will assign a cell-radio network temporary identifier (C-RNTI) that takes effect in the cell served by the current base station to the UE.
  • C-RNTI cell-radio network temporary identifier
  • the UE uses the C-RNTI for unicast data transmission, thereby ensuring the safety and reliability of the communication between the UE and the base station.
  • the UE in the RRC-inactive state does not have a C-RNTI, but only an inactive-radio network temporary identifier (I-RNTI).
  • the embodiment of the application proposes a method for unicast data transmission using I-RNTI, which ensures the security and reliability of data communication between the UE and the base station when there is no C-RNTI.
  • the network device is a base station and the terminal device is a UE as an example for schematic illustration.
  • the communication method in the embodiment of the present application will be described below in conjunction with the communication system in FIG. 1.
  • an embodiment provided by the embodiment of the present application includes: step 201 to step 206.
  • step 201 the network device obtains the I-RNTI.
  • the I-RNTI in the embodiment of the present application may include a field that is related to at least one of the UE, the base station, and the operator identity.
  • the I-RNTI may include the first field and the second field.
  • the first field is related to the UE.
  • the first field is a specific number or identifier of the UE (for example, a UE specific reference).
  • the second device is related to the base station.
  • the second field is the number or identification (gNB ID) of the base station.
  • the I-RNTI may also include a third field.
  • the third field in the embodiment of this application may be related to a public land mobile network (PLMN) or an operator identifier. It is understandable that in practical applications In the third field, the third field may also be other identifiers or other types. For example, the third field includes the type identifier of the UE, and the third field is not limited here. For the convenience of description, only the third field is related to the public land mobile network (PLMN) as an example for description.
  • PLMN public land mobile network
  • the first type of I-RNTI includes 20 bits in the first field and 20 bits in the second field.
  • the second type of I-RNTI includes 24 bits in the first field and 16 bits in the second field.
  • the third type of I-RNTI includes 20 bits in the first field, 16 bits in the second field, and 4 bits in the third field.
  • the fourth type of I-RNTI includes 40 bits of the first field.
  • I-RNTI may include 40 bits, or may include bits of other values, which is not specifically limited here.
  • the embodiments of this application mainly take the first type of I-RNTI (including the 20-bit first field and the 20-bit second field) as an example for schematic description.
  • I-RNTI including the 20-bit first field and the 20-bit second field
  • second, third, and fourth I-RNTIs
  • the base station may obtain the I-RNTI from the core network or other base stations, or may generate the I-RNTI by itself.
  • step 202 the terminal device obtains the I-RNTI.
  • the base station may send configuration information to the terminal, and the configuration information contains I-RNTI information. After the UE obtains the configuration information, it can obtain the I-RNTI from the configuration information.
  • step 203 the terminal device generates target information according to the I-RNTI.
  • the terminal device can generate target information according to certain fields in the I-RNTI.
  • the terminal device can generate target information according to the first field and the second field in the I-RNTI (as shown in Figure 5a, Figure 6 to Figure 9).
  • the non-connected UE may extract multiple bits from the first field and the second field to obtain target information.
  • the base station can extract the target information once, or extract multiple times to obtain the target information, and the specific number of extractions is not limited here.
  • the target information includes M bits extracted from the first field by the unconnected UE and K bits extracted from the second field, where M is an integer greater than or equal to 1 and less than or equal to N, and N is an integer greater than or equal to 2.
  • K is an integer greater than or equal to 0 and less than or equal to NM.
  • N 16 and 10 as an example for schematic illustration.
  • which bits are extracted in the first field, and which bits are extracted in the second field are not specifically limited here. For example, extracting from the first bit of the first field or extracting from the first field The middle bit starts to be extracted, from the middle bit of the second field or from the first bit of the second field.
  • the bits extracted from the first field may be symmetrical to the bits extracted from the second field or not. Symmetrical, the details are not limited here.
  • Table 2 shows several types of target information including first field bits and second field bits.
  • the first type of target information 15bits 1bits
  • the second type of target information 14bits 2bits
  • the third type of target information 13bits 3bits
  • Fifth target information 11bits 5bits
  • the sixth target information 10bits 6bits Seventh target information 9bits 7bits
  • the eighth target information 8bits 8bits Ninth target information 16bits 0bit
  • the target information in Table 2 is just a simple example, not all methods of extracting target information. There are other ways of extracting target information, such as extracting 7 bits from the first field and 9 bits from the second field to form the target information. Not limited. If the bits extracted from the first field are more than the bits extracted from the second field, it is beneficial to avoid conflicts with the target information extracted by the UE.
  • the terminal device can generate target information according to the first field, the second field, and the third field in the I-RNTI (as shown in Fig. 5b).
  • the I-RNTI includes 20 bits in the first field, 16 bits in the second field, and 4 bits in the third field (the third I-RNTI).
  • the UE extracts M bits from the first field and extracts M bits from the second field. Extract K bits, and extract NKM bits from the third field, where N is an integer greater than or equal to 2, M is an integer greater than or equal to 1 and less than or equal to N, and K is an integer greater than or equal to 0 and less than or equal to NM.
  • the terminal device can generate target information according to certain fields in the I-RNTI in multiple ways, that is, the I-RNTI can also include the fourth field and/or the fifth field, etc.
  • the I-RNTI can also include the fourth field and/or the fifth field, etc.
  • the above two are just examples. , The details are not limited here.
  • the terminal device can obtain the target identifier, and generate the first target information and the second target information according to the I-RNTI and the target identifier (as shown in Fig. 5c).
  • the UE may obtain the target identifier from devices such as core network equipment, base stations, or other network elements, which is not specifically limited here.
  • the target identifier given in the embodiment of this application may include the international mobile subscriber identity (IMSI), the identity (cell id) corresponding to the base station to which the terminal device has established a connection, the identifier configured by the core network for the terminal device, Currently, one or more of the identities (cell IDs) corresponding to the base station that the UE needs to communicate with are not specifically limited here. In the following, only the target identifier including the IMSI is taken as an example for schematic description.
  • the certain field that does not belong to I-RNTI is IMSI.
  • the terminal device can generate target information according to a certain field (for example, the first field) in the I-RNTI (as shown in Fig. 5d and Fig. 5e).
  • the UE when the I-RNTI includes multiple fields, the UE generates target information based on one of the multiple fields (the first field, the second field, or the third field), or the I-RNTI includes only one field. Generating target information, etc., are not specifically limited here.
  • the I-RNTI includes 40 bits of the first field (the fourth type of I-RNTI), and the UE extracts N bits from the first field, where N is an integer greater than or equal to 2.
  • the terminal device to generate target information according to the I-RNTI, and the above three are just examples, and the details are not limited here.
  • the target information in the embodiments of the present application can be used to scramble and descramble the cyclic redundancy check CRC information of downlink control information (DCI), obtain the search space of the PDCCH, and scramble the PDCCH, PDSCH, PUCCH, or PUSCH.
  • DCI downlink control information
  • the target information in the embodiment of the present application includes first target information and second target information.
  • the functions of the first target information and the second target information can be one of the following situations:
  • the first target information is used to descramble the CRC information of the DCI, and the second target information is used to obtain the search space of the PDCCH.
  • the first target information is used to descramble the CRC information of the DCI
  • the second target information is used to descramble the PDCCH.
  • the first target information is used to descramble the PDCCH, and the second target information is used to obtain the search space of the PDCCH.
  • the target information is shown in FIG. 5b.
  • the target information is shown in FIG. 5e.
  • the target information further includes third target information, the first target information is used to obtain the search space of the PDCCH, the second target information is used to descramble the PDCCH, and the third target information is used to descramble the CRC information of the DCI.
  • the third target information includes a third bit string (or third field) c3 and a fourth bit string (or fourth field) d. That is, 8 bits are extracted from the first field and 8 bits are extracted from the second field to form a 16-bit bit string c3. Extract 8 bits from the first field and extract 8 bits from the second field to form a fourth bit string d of 16 bits. Specifically, the first to eighth bits are extracted from the first field and the first to eighth bits are extracted from the second field to form a 16-bit third bit string c3. It extracts the 9th to 16th bits from the first field and extracts the 9th to 16th bits from the second field to form the fourth bit string d of 16 bits.
  • the target information further includes fourth target information and/or fifth target information.
  • the sixth bit string (or sixth field) f of 10 bits is extracted from the first field. Specifically, the first to eleventh bits are extracted from the first field and the first to fifth bits are extracted from the second field to form the fifth bit string e of 16 bits. The 11th to 20th bits are extracted from the first field to form a sixth bit string f of 10 bits.
  • the 16-bit first bit string a (a0, a1, and a2), the second bit string b (b0, b1, b2, and b3), the third bit string c (c1, c2, and c3), the first bit string
  • the four-bit string d and the fifth bit string e may be the same or different.
  • the first field is related to the UE, in order to reduce the probability of collision with other UEs, on the one hand, more bits can be extracted from the first field, on the other hand: the extraction of multiple target information minimizes overlap, so that the first All bits in the field and the second field are allocated to multiple target information. As shown in FIG. 6 to FIG. 8, the 20 bits of the first field and the 20 bits of the second field are extracted at least once.
  • the target information generated in the embodiment of the present application has other methods besides the methods shown in FIG. 5a to FIG. 9, which are not specifically limited here.
  • the extraction rules in the embodiment of the present application (which positions of the first field are extracted and which positions of the second field are extracted) are just examples.
  • the specific extraction rules are based on actual needs and are not limited here.
  • step 204 the network device generates target information according to the I-RNTI.
  • the manner in which the network device generates the target information according to the I-RNTI is similar to the manner in which the non-connected UE generates the target information according to the I-RNTI in step 203, and will not be repeated here.
  • step 205 the network device sends DCI on the physical downlink control channel PDCCH according to the target information.
  • the target information is used to obtain at least any two of the search space of the PDCCH, the CRC information of the scrambled DCI, and the scrambled PDCCH.
  • the target information is used to obtain the search space of the PDCCH and the CRC information of the scrambled DCI (that is, the first target information is used to obtain the search space of the PDCCH, and the second target information is used to scramble the CRC information of the DCI) as an example.
  • the first target information is used to obtain the search space of the PDCCH
  • the second target information is used to scramble the CRC information of the DCI
  • the base station obtains the search space of the PDCCH according to the first bit string (that is, the first target information), that is, the base station determines which candidate positions to send the DCI at.
  • the search space of the PDCCH can also be understood as a candidate position for carrying DCI.
  • the search space of the PDCCH may satisfy formula one, for example:
  • CCE control channel elements
  • the value corresponding to the bit string in the embodiment of the present application can be understood as the decimal value corresponding to the bit string.
  • the base station can also use the first bit string to obtain the PDCCH search space according to other formulas, which is not specifically limited here.
  • the base station scrambles the CRC information of the DCI according to the second bit string (that is, the second target information).
  • the scrambled CRC information can satisfy formula two, for example:
  • a 0 , a 1 ... a 23 represent each bit in the CRC
  • B 0 , B 1 ... B 15 represent each bit in the second bit string b
  • d 0 , d 1 ... d 23 represents each bit in the CRC after scrambling.
  • the base station can also use the second bit string to scramble the CRC information of the DCI according to other formulas, which is not specifically limited here.
  • the base station obtains the initial value C init of the scrambling code sequence according to the third bit string, where the initial value C init may satisfy formula 3, for example. Or obtain the initial value C init of the scrambling code sequence according to the third bit string and the fourth bit string, where the initial value C init may satisfy formula 4, for example.
  • the base station can obtain a pseudo-random code to scramble the PDCCH according to C init through a predefined pseudo-random function generator, that is, scramble the DCI carried on the PDCCH.
  • n id is the ID of the cell, which is, for example, the cell served by the base station, and C is the value corresponding to the third bit string.
  • C is the value corresponding to the third bit string
  • D is the value corresponding to the fourth bit string.
  • the base station can also use the third bit string and/or the fourth bit string to obtain the initial value C init of the scrambling code sequence according to other formulas, specifically here Not limited.
  • step 206 the terminal device monitors the PDCCH according to the target information.
  • step 205 only the target information is used to obtain the search space of the PDCCH and the CRC information of the descrambling DCI (that is, the first target information is used to obtain the search space of the PDCCH, and the second target information is used to descramble the CRC information of the DCI. ) Is taken as an example for schematic illustration.
  • the non-connected UE monitors the PDCCH according to the target information, and tries to receive the downlink control information. That is, the UE determines the search space of the PDCCH according to the first bit string, and the search space of the PDCCH can also be understood as a candidate position for carrying DCI. Among them, the search space of the PDCCH may satisfy formula one, for example. After determining the candidate position, the UE may try to receive the DCI at the corresponding candidate position. The UE descrambles the CRC information of the DCI according to the second bit string, where the CRC information after descrambling may satisfy formula 2, for example.
  • the non-connected UE obtains the initial value C init of the first scrambling code sequence according to the third bit string, where the initial value C init may satisfy formula 3, for example. Or obtain the initial value C init of the scrambling code sequence according to the third bit string and the fourth bit string, where the initial value C init may satisfy formula 4, for example.
  • the UE can obtain a pseudo-random code through a predefined pseudo-random function generator to descramble the PDCCH, that is, descramble the DCI carried on the PDCCH, and try to receive the DCI.
  • the network device sends the downlink shared information on the physical downlink shared channel PDSCH according to the target information.
  • the base station obtains the initial value C init of the scrambling code sequence according to the fifth bit string and/or the sixth bit string, where the initial value C init may satisfy Formula 5, for example.
  • a pseudo-random code can be obtained through a predefined pseudo-random function generator to scramble the PDSCH, that is, to scramble the downlink shared information carried on the PDSCH.
  • C init E ⁇ 2 15 +F+q ⁇ 2 14 .
  • Multi-stream transmission means multiple input multiple output (MIMO) Technology (ie, multi-antenna technology) transmits multiple data on the same time-frequency resource.
  • MIMO multiple input multiple output
  • the base station can also use the fifth bit string and/or the sixth bit string to scramble the downlink shared information according to other formulas, which is not specifically limited here.
  • the terminal device receives the PDSCH according to the target information.
  • the non-connected state according to the target UE receives PDSCH information, receiving a downlink shared information, i.e. the initial value to obtain the scrambling sequence C init bit sequence e according to the fifth and / or sixth bit string f, where the initial value C init For example, formula five can be satisfied.
  • the UE can obtain a pseudo-random code through a predefined pseudo-random function generator to descramble the PDSCH.
  • the terminal device scrambles the uplink channel according to the target information.
  • the uplink channel in the embodiment of the present application is, for example, PUCCH or PUSCH.
  • the non-connected UE scrambles the PUCCH or PUSCH according to the target information (which may be the fourth target information), that is, the UE obtains the initial value C init of the scrambling code sequence according to the fifth bit string and/or the sixth bit string, where The initial value C init may satisfy formula 5, for example.
  • the UE can obtain a pseudo-random code to scramble the PUCCH or PUSCH through a predefined pseudo-random function generator, that is, scramble the uplink information carried on the PUCCH or PUSCH.
  • the terminal device sends uplink information on the uplink channel.
  • the uplink information may be the uplink information sent by the unconnected UE to the base station according to the received DCI, and the uplink information may also be unrelated to the received DCI, which is not specifically limited here.
  • the network device descrambles the uplink channel according to the target information.
  • the base station obtains the initial value C init of the scrambling code sequence according to the fifth bit string and/or the sixth bit string (that is, the fourth target information), where the initial value C init may satisfy Formula 5, for example.
  • the base station can obtain a pseudo-random code to descramble the PUCCH or PUSCH according to C init through a predefined pseudo-random function generator, that is, to descramble the uplink information carried on the PUCCH or PUSCH.
  • Steps 209-211 in the embodiment of this application may be before steps 207-208, steps 209-211 may also be after steps 207-208, and steps 209-211 and steps 207-208 may also be performed at the same time.
  • This application does not Make a limit.
  • Step 201 in the embodiment of the present application may be before step 202, and may also be after step 202.
  • Step 201 and step 202 may also be performed at the same time, which is not limited in the present application.
  • Step 203 in the embodiment of the present application may be before step 204, and may also be after step 204.
  • Step 203 and step 204 may also be performed at the same time, which is not limited in the present application.
  • the base station and the UE generate target information according to the I-RNTI, and add and descramble the downlink control information according to the target information. Since the first field is related to the UE, more bits can be extracted from the first field, or all bits can be extracted from the first field and the second field, so that all the bits in the first field and the second field are allocated Among the multiple target information, as shown in FIG. 6 to FIG. 8, the 20 bits of the first field and the 20 bits of the second field are extracted at least once. On the one hand, it improves the security and reliability of downlink control information transmission. On the other hand, it reduces the probability of collision with other UE target information.
  • step 301 the network device obtains the I-RNTI.
  • step 302 the terminal device obtains the I-RNTI.
  • step 303 the terminal device generates target information according to the I-RNTI.
  • step 304 the network device generates target information according to the I-RNTI.
  • the network device sends DCI on the physical downlink control channel PDCCH according to the target information.
  • the terminal device monitors the PDCCH according to the target information.
  • Steps 301 and 306 in this embodiment are similar to steps 201 and 206 in the aforementioned embodiment shown in FIG. 2 and will not be repeated here.
  • step 307 the network device sends the downlink shared information on the physical downlink shared channel PDSCH according to the target information.
  • the base station obtains the initial value C init of the scrambling code sequence according to the fifth bit string and/or the sixth bit string, where the initial value C init may satisfy Formula 5, for example.
  • the base station can obtain a pseudo-random code to scramble the PDSCH according to C init through a predefined pseudo-random function generator, that is, scramble the downlink shared information carried on the PDSCH.
  • step 308 the terminal device receives the PDSCH according to the target information.
  • the non-connected UE receives the PDSCH according to the target information, and tries to receive the downlink shared information, that is, obtains the initial value C init of the scrambling code sequence according to the fifth bit string e and/or the sixth bit string f, where the initial value C init may satisfy, for example, Formula five.
  • the UE can obtain a pseudo-random code through a predefined pseudo-random function generator to descramble the PDSCH.
  • the terminal device scrambles the uplink channel according to the target information.
  • the terminal device sends uplink information to the network device on the uplink channel.
  • the network device descrambles the uplink channel according to the target information.
  • Steps 309 and 311 in this embodiment are similar to steps 209 and 211 in the foregoing embodiment shown in FIG. 2, and will not be repeated here.
  • Steps 309-311 in the embodiment of this application may be before steps 307-308, steps 309-311 may also be after steps 307-308, and steps 309-311 and steps 307-308 may also be performed at the same time.
  • Step 301 in the embodiment of the present application may be before step 302, or may be after step 302, and step 301 and step 302 may also be performed at the same time, which is not limited in the present application.
  • Step 303 in the embodiment of the present application may be before step 304, step 303 may also be after step 304, and step 303 and step 304 may also be performed at the same time, which is not limited in the present application.
  • the base station and the UE generate target information according to the I-RNTI, and descramble the downlink shared information according to the target information. Since the first field is related to the UE, more bits can be extracted from the first field, or all bits can be extracted from the first field and the second field, so that all the bits in the first field and the second field are allocated Among the multiple target information, as shown in FIG. 6 to FIG. 8, the 20 bits of the first field and the 20 bits of the second field are extracted at least once. On the one hand, it improves the security and reliability of downlink shared information transmission. On the other hand, it reduces the probability of collision with other UE target information.
  • step 401 to step 404 includes: step 401 to step 404, and step 409 to step 411.
  • step 401 the network device obtains the I-RNTI.
  • step 402 the terminal device obtains the I-RNTI.
  • step 403 the terminal device generates target information according to the I-RNTI.
  • step 404 the network device generates target information according to the I-RNTI.
  • the network device sends DCI on the physical downlink control channel PDCCH according to the target information.
  • the terminal device monitors the PDCCH according to the target information.
  • the network device sends the downlink shared information on the physical downlink shared channel PDSCH according to the target information.
  • the terminal device receives the PDSCH according to the target information.
  • Steps 401 and 408 in this embodiment are similar to steps 201 and 208 in the aforementioned embodiment shown in FIG. 2, and will not be repeated here.
  • step 409 the terminal device scrambles the uplink channel according to the target information.
  • step 410 the terminal device sends uplink information to the network device on the uplink channel.
  • step 411 the network device descrambles the uplink channel according to the target information.
  • Steps 409 and 411 in this embodiment are similar to steps 209 and 211 in the foregoing embodiment shown in FIG. 2, and will not be repeated here.
  • Steps 409-411 in the embodiment of this application can be before steps 407-408, steps 409-411 can also be after steps 407-408, and steps 409-411 and steps 407-408 can also be performed at the same time.
  • Step 401 in the embodiment of the present application may be before step 402, step 401 may also be after step 402, and step 401 and step 402 may also be performed at the same time, which is not limited in the present application.
  • Step 403 in the embodiment of the present application may be before step 404, or may be after step 404, and step 403 and step 404 may also be performed at the same time, which is not limited in the present application.
  • the base station and the UE generate target information according to the I-RNTI, and add and descramble the uplink information according to the target information. Since the first field is related to the UE, more bits can be extracted from the first field, or all bits can be extracted from the first field and the second field, so that all the bits in the first field and the second field are allocated Among the multiple target information, as shown in FIG. 6 to FIG. 8, the 20 bits of the first field and the 20 bits of the second field are extracted at least once. On the one hand, it improves the security and reliability of uplink information transmission. On the other hand, it reduces the probability of collision with other UE target information.
  • the embodiments of the present application also provide corresponding devices, including corresponding modules for executing the foregoing embodiments.
  • the module can be software, hardware, or a combination of software and hardware.
  • the communication device may be a terminal device. It can also be a component of a terminal device (such as a processor, a chip, or a chip system), and the communication device includes:
  • the acquiring unit 1001 is configured to acquire the temporary identifier I-RNTI of the inactive wireless network.
  • the generating unit 1002 is configured to generate the first target information and the second target information according to the I-RNTI.
  • the monitoring unit 1003 is configured to monitor the physical downlink control channel PDCCH according to the first target information and the second target information.
  • each unit in the communication device is similar to those described in the foregoing embodiment shown in FIG. 2, FIG. 3, or FIG. 4, and will not be repeated here.
  • the generating unit 1002 generates the first target information and the second target information according to the I-RNTI, and the monitoring unit 1003 monitors the physical downlink control channel PDCCH according to the first target information and the second target information. Improve the security and reliability of downlink data transmission.
  • the communication device may be a terminal device. It can also be a component of a terminal device (such as a processor, a chip, or a chip system), and the communication device includes:
  • the obtaining unit 1101 is configured to obtain the inactive wireless network temporary identifier I-RNTI.
  • the generating unit 1102 is configured to generate the first target information and the second target information according to the I-RNTI.
  • the monitoring unit 1103 is configured to monitor the physical downlink control channel PDCCH according to the first target information and the second target information.
  • the descrambling unit 1104 is configured to descramble the physical downlink shared channel PDSCH according to the fifth target information.
  • the scrambling unit 1105 is configured to scramble the physical uplink shared channel PUSCH or the physical uplink control channel PUCCH according to the fourth target information.
  • the obtaining unit 1101 is also used to obtain a target identifier.
  • the generating unit 1102 is further configured to generate fourth target information and/or fifth target information according to the I-RNTI.
  • each unit in the communication device is similar to those described in the foregoing embodiment shown in FIG. 2, FIG. 3, or FIG. 4, and will not be repeated here.
  • the generating unit 1102 generates the first target information and the second target information according to the I-RNTI, and the monitoring unit 1103 monitors the physical downlink control channel PDCCH according to the first target information and the second target information.
  • the scrambling unit 1105 scrambles the physical uplink shared channel PUSCH or the physical uplink control channel PUCCH according to the fourth target information. Improve the security and reliability of uplink data transmission.
  • the communication device may be a network device. It may also be a component of a network device (for example, a processor, a chip, or a chip system), and the communication device includes:
  • the acquiring unit 1201 is configured to acquire the temporary identifier I-RNTI of the inactive wireless network.
  • the generating unit 1202 is configured to generate the first target information and the second target information according to the I-RNTI.
  • the sending unit 1203 is configured to send DCI on the physical downlink control channel PDCCH according to the first target information and the second target information.
  • each unit in the communication device is similar to those described in the foregoing embodiment shown in FIG. 2, FIG. 3, or FIG. 4, and will not be repeated here.
  • the generating unit 1202 generates the first target information and the second target information according to the I-RNTI, and the sending unit 1203 sends DCI on the physical downlink control channel PDCCH according to the first target information and the second target information.
  • the generating unit 1202 generates the first target information and the second target information according to the I-RNTI
  • the sending unit 1203 sends DCI on the physical downlink control channel PDCCH according to the first target information and the second target information.
  • the communication device may be a network device. It may also be a component of a network device (for example, a processor, a chip, or a chip system), and the communication device includes:
  • the acquiring unit 1301 is configured to acquire the temporary identifier I-RNTI of the inactive wireless network.
  • the generating unit 1302 is configured to generate the first target information and the second target information according to the I-RNTI.
  • the sending unit 1303 is configured to send DCI on the physical downlink control channel PDCCH according to the first target information and the second target information.
  • the scrambling unit 1304 is configured to scramble the physical downlink shared channel PDSCH according to the fifth target information.
  • the descrambling unit 1305 is configured to descramble the physical uplink shared channel PUSCH or the physical uplink control channel PUCCH according to the fourth target information.
  • the obtaining unit 1301 is also used to obtain a target identifier.
  • the generating unit 1302 is further configured to generate fourth target information and/or fifth target information according to the I-RNTI.
  • each unit in the communication device is similar to those described in the foregoing embodiment shown in FIG. 2, FIG. 3, or FIG. 4, and will not be repeated here.
  • the generating unit 1302 generates the first target information and the second target information according to the I-RNTI, and the sending unit 1303 sends DCI on the physical downlink control channel PDCCH according to the first target information and the second target information.
  • the descrambling unit 1305 descrambles the physical uplink shared channel PUSCH or the physical uplink control channel PUCCH according to the fourth target information. Improve the security and reliability of uplink data transmission.
  • Figure 14 shows a schematic diagram of the structure of a device.
  • the apparatus 1400 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the network device to implement the foregoing method, or a chip, a chip system, or a processor that supports the terminal device to implement the foregoing method.
  • the device can be used to implement the method described in the foregoing method embodiment, and for details, please refer to the description in the foregoing method embodiment.
  • the device 1400 may include one or more processors 1401, and the processor 1401 may also be referred to as a processing unit, which may implement certain control functions.
  • the processor 1401 may be a general-purpose processor, a special-purpose processor, or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminals, terminal chips, DU or CU, etc.), execute software programs, and process The data of the software program.
  • the processor 1401 may also store instructions and/or data 1403, and the instructions and/or data 1403 may be executed by the processor, so that the apparatus 1400 executes the methods described in the foregoing method embodiments.
  • the processor 1401 may include a transceiver unit for implementing receiving and sending functions.
  • the transceiver unit may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces, or interface circuits used to implement the receiving and transmitting functions can be separate or integrated.
  • the foregoing transceiver circuit, interface, or interface circuit can be used for code/data reading and writing, or the foregoing transceiver circuit, interface, or interface circuit can be used for signal transmission or transmission.
  • the apparatus 1400 may include a circuit, which may implement the sending or receiving or communication functions in the foregoing method embodiments.
  • the apparatus 1400 may include one or more memories 1402, on which instructions 1404 may be stored, and the instructions may be executed on a processor, so that the apparatus 1400 executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the processor and memory can be set separately or integrated together. For example, the corresponding relationship described in the foregoing method embodiment may be stored in a memory or in a processor.
  • the apparatus 1400 may further include a transceiver 1405 and/or an antenna 1406.
  • the processor 1401 may be referred to as a processing unit, and controls the device 1400.
  • the transceiver 1405 may be called a transceiver unit, a transceiver, a transceiver circuit, a transceiver device, or a transceiver module, etc., for implementing the transceiver function.
  • the apparatus 1400 in the embodiment of the present application may be used to execute the method described in FIG. 2, FIG. 3, or FIG. The methods are combined with each other.
  • the processor and transceiver described in this application can be implemented in integrated circuit (IC), analog IC, radio frequency integrated circuit RFIC, mixed signal IC, application specific integrated circuit (ASIC), printed circuit board ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured by various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the device described in the above embodiment may be a network device or a terminal device, but the scope of the device described in this application is not limited to this, and the structure of the device may not be limited by FIG. 14.
  • the device can be a stand-alone device or can be part of a larger device.
  • the device may be:
  • the IC collection may also include storage components for storing data and/or instructions;
  • ASIC such as modem (MSM)
  • FIG. 15 provides a schematic structural diagram of a terminal device.
  • the terminal device can be applied to the scenario shown in FIG. 1.
  • FIG. 15 only shows the main components of the terminal device.
  • the terminal device 1500 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and performs processing on the data. deal with.
  • FIG. 15 only shows a memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device and execute Software program, processing the data of the software program.
  • the processor in FIG. 15 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, which are interconnected by technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiving function can be regarded as the transceiving unit 1511 of the terminal device 1500, and the processor with the processing function can be regarded as the processing unit 1512 of the terminal device 1500.
  • the terminal device 1500 includes a transceiving unit 1511 and a processing unit 1512.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1511 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1511 as the sending unit, that is, the transceiver unit 1511 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the foregoing receiving unit and sending unit may be an integrated unit or multiple independent units.
  • the above-mentioned receiving unit and sending unit may be located in one geographic location, or may be scattered in multiple geographic locations.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the processing unit used to execute these technologies at a communication device can be implemented in one or more general-purpose processors, DSPs, digital signal processing devices, ASICs, Programmable logic device, FPGA, or other programmable logic device, discrete gate or transistor logic, discrete hardware component, or any combination of the foregoing.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. accomplish.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the function of any of the foregoing method embodiments is realized.
  • This application also provides a computer program product, which, when executed by a computer, realizes the functions of any of the foregoing method embodiments.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer instructions When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • Computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions may be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (digital subscriber line, DSL) or wireless (such as infrared, wireless, microwave, etc.) transmission to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium can be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)) )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, and a magnetic tape
  • an optical medium for example, a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • system and “network” in this article are often used interchangeably in this article.
  • the term “and/or” in this article is only an association relationship describing the associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone In the three cases of B, A can be singular or plural, and B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
  • At least one of! or "at least one of" as used herein means all or any combination of the listed items, for example, "at least one of A, B and C", It can mean: A alone exists, B alone exists, C exists alone, A and B exist at the same time, B and C exist at the same time, and there are six cases of A, B and C at the same time, where A can be singular or plural, and B can be Singular or plural, C can be singular or plural.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • the corresponding relationships shown in the tables in this application can be configured or pre-defined.
  • the value of the information in each table is only an example, and can be configured to other values, which is not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, and so on.
  • the names of the parameters shown in the titles in the above tables may also be other names that can be understood by the communication device, and the values or expressions of the parameters may also be other values or expressions that can be understood by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • the pre-definition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, curing, or pre-burning.
  • the systems, devices, and methods described in this application can also be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is realized in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法及装置,可以应用于无线通信系统,例如新无线NR系统。本申请实施例方法可以由终端设备执行,也可以由终端设备的部件(例如处理器、芯片、或芯片系统等)执行。该方法包括:获取非激活无线网络临时标识I-RNTI;根据I-RNTI生成第一目标信息以及第二目标信息,并根据第一目标信息以及第二目标信息监听物理下行控制信道PDCCH。能够避免PDCCH上该终端设备的DCI被其他终端设备恶意获取,提升了下行数据传输的安全性及可靠性。

Description

一种通信方法及装置
本申请要求于2020年3月19日提交中国专利局、申请号为202010198842.8、发明名称为“一种通信方法及装置”,以及于2020年6月16日提交中国专利局、申请号为202010548502.3、发明名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种通信方法及装置。
背景技术
在无线通信系统例如新无线(new radio,NR)系统中,用户设备(user equipment,UE)的状态可以包括连接(connected)态、空闲(idle)态以及非激活(inactive)态。
对于connected状态的UE,基站会给其分配一个在当前基站服务的小区中生效的小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)。UE使用C-RNTI进行单播数据传输,从而保证UE与基站之间的通信安全与可靠。而inactive状态的UE没有C-RNTI,而只有非激活无线网络临时标识(inactive-radio network temporary identifier,I-RNTI)。
随着无线通信技术的发展,处于inactive状态的UE除了可以从基站接收寻呼消息、同步信号、广播消息、或系统信息中的一种或多种之外,也有可能和基站进行单播数据传输。但是,处于inactive状态的UE缺少UE物理层的标识。若处于inactive状态的UE与基站进行单播数据传输,则会导致UE与基站之间的通信安全与可靠无法得到保证。例如,其他UE可能会获取该UE的调度信息,做出错误行为,或者恶意UE可以窃听到该UE发送或接收的单播数据。
发明内容
本申请实施例提供了一种通信方法及装置,能够提升上行或下行数据传输的安全性及可靠性。
本申请实施例第一方面提供了一种通信方法,该方法可以由终端设备执行,也可以由终端设备的部件(例如处理器、芯片、或芯片系统等)执行。该方法包括:获取非激活无线网络临时标识I-RNTI;根据I-RNTI生成第一目标信息以及第二目标信息;根据第一目标信息以及第二目标信息监听物理下行控制信道PDCCH。
本申请实施例中,根据I-RNTI生成第一目标信息以及第二目标信息,根据第一目标信息以及第二目标信息监听物理下行控制信道PDCCH,能够避免PDCCH上该终端设备的DCI被其他终端设备恶意获取,提升了下行数据传输的安全性及可靠性。
可选地,在第一方面的一种可能的实现方式中,上述步骤中的第一目标信息用于解扰下行控制信息DCI的循环冗余校验CRC信息,第二目标信息用于获取PDCCH的搜索空间,DCI承载在PDCCH上。
该种可能的实现方式中,借助第一和第二目标信息缩小对PDCCH的盲检范围,进而能够降低终端设备的功耗。
可选地,在第一方面的一种可能的实现方式中,上述步骤中的第一目标信息用于解扰下行控制信息DCI的循环冗余校验CRC信息,第二目标信息用于解扰PDCCH,DCI承载在PDCCH上。
该种可能的实现方式中,借助第一和第二目标信息能够避免其他终端设备恶意接收到该终端设备的DCI,提升了下行数据传输的安全性及可靠性。
可选地,在第一方面的一种可能的实现方式中,上述步骤中的第一目标信息用于解扰PDCCH,第二目标信息用于获取PDCCH的搜索空间。
该种可能的实现方式中,借助第一和第二目标信息能够避免其他终端设备恶意接收到该终端设备的DCI,提升了下行数据传输的安全性及可靠性。
可选地,在第一方面的一种可能的实现方式中,上述步骤还包括:根据I-RNTI生成第三目标信息,第一目标信息用于获取PDCCH的搜索空间,第二目标信息用于解扰PDCCH,第三目标信息用于解扰下行控制信息DCI的循环冗余校验CRC信息,DCI承载在PDCCH上。
该种可能的实现方式中,借助第一、第二和第三目标信息能够避免其他终端设备恶意接收到该终端设备的DCI,提升了下行数据传输的安全性及可靠性。
可选地,在第一方面的一种可能的实现方式中,上述步骤还包括:根据I-RNTI生成第四目标信息;根据第四目标信息加扰物理上行共享信道PUSCH或物理上行控制信道PUCCH。
该种可能的实现方式中,借助第四目标信息能够提升非连接态的终端设备与网络设备之间上行数据传输的安全性及可靠性。
可选地,在第一方面的一种可能的实现方式中,上述步骤还包括:根据I-RNTI生成第五目标信息;根据第五目标信息解扰物理下行共享信道PDSCH。
该种可能的实现方式中,借助第五目标信息解扰PDSCH能够避免其他终端设备接收该终端设备的下行数据,提升了下行数据传输的安全性及可靠性。
可选地,在第一方面的一种可能的实现方式中,上述步骤还包括:获取目标标识 根据I-RNTI生成第一目标信息以及第二目标信息,包括:根据I-RNTI以及目标标识生成第一目标信息以及第二目标信息。
该种可能的实现方式中,通过根据I-RNTI以及目标标识生成第一目标信息以及第二目标信息,减少不同终端的目标信息重复的概率。
可选地,在第一方面的一种可能的实现方式中,上述步骤中的目标标识包括国际移动用户识别码IMSI、基站标识中的至少一个
该种可能的实现方式,通过利用IMSI和/或基站标识生成第一目标信息,可以通过利用专属IMSI避免不同终端的目标信息重复的概率,从而提升目标信息的安全性。
可选地,在第一方面的一种可能的实现方式中,上述步骤中的I-RNTI包括第一字段与第二字段,第一字段指示与终端相关的信息,第二字段指示与网络设备相关的信息。
该种可能的实现方式中,由于第一字段指示与终端相关的信息,即目标信息与终端相关,使得每个终端生成的目标信息在多数情况下都不相同,因此每个终端设备监听PDCCH所用的目标信息不同,能够避免其他终端设备接收该终端设备的下行数据,提升了下行数据传输的 安全性及可靠性。
可选地,在第一方面的一种可能的实现方式中,上述步骤中的I-RNTI还包括第三字段,该第三字段指示与公共陆基移动网PLMN和/或运营商相关的信息。
该种可能的实现方式中,增加PLMN和/或运营商相关的信息,减少不同终端的目标信息重复的概率。
可选地,在第一方面的一种可能的实现方式中,上述步骤中的根据I-RNTI生成第一目标信息以及第二目标信息,包括:根据第三字段生成第一目标信息以及第二目标信息。
该种可能的实现方式中,通过根据I-RNTI中的第三字段生成第一目标信息以及第二目标信息,可以减少获取或处理第二字段和第一字段带来的时长,有利于降低时延,提高生成目标信息的效率。
可选地,在第一方面的一种可能的实现方式中,上述步骤中的根据I-RNTI生成第一目标信息以及第二目标信息,包括:根据第一字段或所述第二字段生成第一目标信息以及第二目标信息。
该种可能的实现方式中,通过根据I-RNTI中的第一字段或所述第二字段生成第一目标信息以及第二目标信息,可以减少获取或处理第二字段或第一字段带来的时长,有利于降低时延,提高生成目标信息的效率。
本申请实施例第二方面提供了一种通信方法,该方法可以由网络设备执行,也可以由网络设备的部件(例如处理器、芯片、或芯片系统等)执行。该方法包括:获取非激活无线网络临时标识I-RNTI;根据I-RNTI生成第一目标信息以及第二目标信息;根据第一目标信息以及第二目标信息在物理下行控制信道PDCCH上发送DCI。
本申请实施例中,根据I-RNTI生成第一目标信息以及第二目标信息,根据第一目标信息以及第二目标信息在物理下行控制信道PDCCH,能够避免PDCCH上该终端设备的DCI被其他终端设备获取。提升了下行数据传输的安全性及可靠性。
可选地,在第二方面的一种可能的实现方式中,上述步骤中的第一目标信息用于加扰下行控制信息DCI的循环冗余校验CRC信息,第二目标信息用于获取PDCCH的搜索空间。
该种可能的实现方式中,借助第一和第二目标信息在搜索空间上发送DCI,能够缩小终端设备对PDCCH的盲检范围,进而降低终端设备的功耗。
可选地,在第二方面的一种可能的实现方式中,上述步骤中的第一目标信息用于加扰下行控制信息DCI的循环冗余校验CRC信息,第二目标信息用于加扰PDCCH。
该种可能的实现方式中,借助第一和第二目标信息能够避免其他终端设备恶意接收到该网络设备向特定终端设备发送的DCI,提升了下行数据传输的安全性及可靠性。
可选地,在第二方面的一种可能的实现方式中,上述步骤中的第一目标信息用于加扰PDCCH,第二目标信息用于获取PDCCH的搜索空间。
该种可能的实现方式中,借助第一和第二目标信息能够避免其他终端设备恶意接收到该网络设备向特定终端设备发送的DCI,提升了下行数据传输的安全性及可靠性。
可选地,在第二方面的一种可能的实现方式中,上述步骤还包括:网络设备根据I-RNTI生成第三目标信息,第一目标信息用于获取PDCCH的搜索空间,第二目标信息用于加扰PDCCH,第三目标信息用于加扰下行控制信息DCI的循环冗余校验CRC信息。
该种可能的实现方式中,借助第一、第二和第三目标信息能够避免其他终端设备恶意接收到该网络设备向特定终端设备发送的DCI,提升了下行数据传输的安全性及可靠性。
可选地,在第二方面的一种可能的实现方式中,上述步骤还包括:根据I-RNTI生成第四目标信息;根据第四目标信息解扰物理上行共享信道PUSCH或物理上行控制信道PUCCH。
该种可能的实现方式中,借助第四目标信息能够提升网络设备与非连接态的终端设备之间上行数据传输的安全性及可靠性。
可选地,在第二方面的一种可能的实现方式中,上述步骤还包括:根据I-RNTI生成第五目标信息;根据第五目标信息加扰物理下行共享信道PDSCH。
该种可能的实现方式中,借助第五目标信息加扰PDSCH能够避免其他终端设备接收到该网络设备向特定终端设备发送的下行数据,提升了下行数据传输的安全性及可靠性。
可选地,在第二方面的一种可能的实现方式中,上述步骤还包括:获取目标标识 根据I-RNTI生成第一目标信息以及第二目标信息,包括:根据I-RNTI以及目标标识生成第一目标信息以及第二目标信息。
该种可能的实现方式中,通过根据I-RNTI以及目标标识生成第一目标信息以及第二目标信息,减少不同终端的目标信息重复的概率。
可选地,在第二方面的一种可能的实现方式中,上述步骤中的目标标识包括国际移动用户识别码IMSI、基站标识中的至少一个
该种可能的实现方式,通过利用IMSI和/或基站标识生成第一目标信息,可以通过利用专属IMSI避免不同终端的目标信息重复的概率,从而提升目标信息的安全性。
可选地,在第二方面的一种可能的实现方式中,上述步骤中的I-RNTI包括第一字段与第二字段,第一字段指示与终端相关的信息,第二字段指示与网络设备相关的信息。
该种可能的实现方式中,由于第一字段指示与终端相关的信息,即目标信息与终端相关,使得每个终端生成的目标信息在多数情况下都不相同,因此网络设备根据不同的目标信息向不同终端设备发送DCI,能够避免其他终端设备接收该网络设备向特定终端设备发送的下行数据,提升了下行数据传输的安全性及可靠性。
可选地,在第一方面的一种可能的实现方式中,上述步骤中的I-RNTI还包括第三字段,该第三字段指示与公共陆基移动网PLMN和/或运营商相关的信息。
该种可能的实现方式中,增加PLMN和/或运营商相关的信息,减少不同终端的目标信息重复的概率。
可选地,在第一方面的一种可能的实现方式中,上述步骤中的根据I-RNTI生成第一目标信息以及第二目标信息,包括:根据第三字段生成第一目标信息以及第二目标信息。
该种可能的实现方式中,通过根据I-RNTI中的第三字段生成第一目标信息以及第二目标信息,可以减少获取或处理第二字段和第一字段带来的时长,有利于降低时延,提高生成目标信息的效率。
可选地,在第二方面的一种可能的实现方式中,上述步骤中的根据I-RNTI生成第一目标信息以及第二目标信息,包括:根据第一字段或所述第二字段生成第一目标信息以及第二目标信息。
该种可能的实现方式中,通过根据I-RNTI中的第一字段或所述第二字段生成第一目标信 息以及第二目标信息,能够避免PDCCH上该终端设备的DCI被其他终端设备恶意获取,提升了下行数据传输的安全性及可靠性。
本申请第三方面提供一种通信装置,该通信装置可以是终端设备。也可以是终端设备的部件(例如处理器、芯片或芯片系统),该通信装置包括:
获取单元,用于获取非激活无线网络临时标识I-RNTI;
生成单元,用于根据I-RNTI生成第一目标信息以及第二目标信息;
监听单元,用于根据第一目标信息以及第二目标信息监听物理下行控制信道PDCCH。
可选地,在第三方面的一种可能的实现方式中,第一目标信息用于解扰下行控制信息DCI的循环冗余校验CRC信息,第二目标信息用于获取PDCCH的搜索空间,DCI承载在PDCCH上。
可选地,在第三方面的一种可能的实现方式中,第一目标信息用于解扰下行控制信息DCI的循环冗余校验CRC信息,第二目标信息用于解扰PDCCH,DCI承载在PDCCH上。
可选地,在第三方面的一种可能的实现方式中,第一目标信息用于解扰PDCCH,第二目标信息用于获取PDCCH的搜索空间。
可选地,在第三方面的一种可能的实现方式中,生成单元,还用于根据I-RNTI生成第三目标信息,第一目标信息用于获取PDCCH的搜索空间,第二目标信息用于解扰PDCCH,第三目标信息用于解扰下行控制信息DCI的循环冗余校验CRC信息,DCI承载在PDCCH上。
可选地,在第三方面的一种可能的实现方式中,生成单元还用于根据I-RNTI生成第四目标信息。终端设备还包括:加扰单元,用于根据第四目标信息加扰物理上行共享信道PUSCH或物理上行控制信道PUCCH。
可选地,在第三方面的一种可能的实现方式中,生成单元还用于根据I-RNTI生成第五目标信息。终端设备还包括:解扰单元,用于根据第五目标信息解扰物理下行共享信道PDSCH。
可选地,在第三方面的一种可能的实现方式中,获取单元还用于获取目标标识。生成单元具体用于根据I-RNTI以及目标标识生成第一目标信息以及第二目标信息。
可选地,在第三方面的一种可能的实现方式中,目标标识包括国际移动用户识别码IMSI、基站标识中的至少一个
可选地,在第三方面的一种可能的实现方式中,I-RNTI包括第一字段与第二字段,第一字段指示与终端相关的信息,第二字段指示与网络设备相关的信息。
可选地,在第三方面的一种可能的实现方式中,I-RNTI还包括第三字段,第三字段指示与公共陆基移动网PLMN和/或运营商相关的信息。
可选地,在第三方面的一种可能的实现方式中,生成单元具体用于根据第三字段生成第一目标信息以及第二目标信息。
可选地,在第三方面的一种可能的实现方式中,生成单元具体用于根据第一字段或所述第二字段生成第一目标信息以及第二目标信息。
本申请第四方面提供一种通信装置,该通信装置可以是网络设备。也可以是网络设备的部件(例如处理器、芯片或芯片系统),该通信装置包括:
获取单元,用于获取非激活无线网络临时标识I-RNTI;
生成单元,用于根据I-RNTI生成第一目标信息以及第二目标信息;
发送单元,用于根据第一目标信息以及第二目标信息在物理下行控制信道PDCCH上发送DCI。
可选地,在第四方面的一种可能的实现方式中,第一目标信息用于加扰下行控制信息DCI的循环冗余校验CRC信息,第二目标信息用于获取PDCCH的搜索空间。
可选地,在第四方面的一种可能的实现方式中,第一目标信息用于加扰下行控制信息DCI的循环冗余校验CRC信息,第二目标信息用于加扰PDCCH。
可选地,在第四方面的一种可能的实现方式中,第一目标信息用于加扰PDCCH,第二目标信息用于获取PDCCH的搜索空间。
可选地,在第四方面的一种可能的实现方式中,生成单元,还用于根据I-RNTI生成第三目标信息,第一目标信息用于获取PDCCH的搜索空间,第二目标信息用于加扰PDCCH,第三目标信息用于加扰下行控制信息DCI的循环冗余校验CRC信息。
可选地,在第四方面的一种可能的实现方式中,生成单元,还用于根据I-RNTI生成第四目标信息。网络设备还包括:解扰单元,用于根据第四目标信息解扰物理上行共享信道PUSCH或物理上行控制信道PUCCH。
可选地,在第四方面的一种可能的实现方式中,生成单元,还用于根据I-RNTI生成第五目标信息。网络设备还包括:加扰单元,用于根据第五目标信息加扰物理下行共享信道PDSCH。
可选地,在第四方面的一种可能的实现方式中,获取单元还用于获取国际移动用户识别码IMSI。生成单元具体用于根据I-RNTI以及ISMI生成第一目标信息以及第二目标信息。
可选地,在第四方面的一种可能的实现方式中,I-RNTI包括第一字段与第二字段,第一字段指示与终端相关的信息,第二字段指示与网络设备相关的信息。
可选地,在第四方面的一种可能的实现方式中,I-RNTI还包括第三字段,第三字段指示与公共陆基移动网PLMN相关的信息。
可选地,在第四方面的一种可能的实现方式中,生成单元具体用于根据第一字段或所述第二字段生成第一目标信息以及第二目标信息。
本申请实施例第五方面提供了一种通信装置,该通信装置可以是终端设备。也可以是终端设备的部件(例如处理器、芯片或芯片系统),该通信装置执行前述第一方面或第一方面的任意可能的实现方式中的方法。
本申请实施例第六方面提供了一种通信装置,该通信装置可以是网络设备。也可以是网络设备的部件(例如处理器、芯片或芯片系统),该通信装置执行前述第二方面或第二方面的任意可能的实现方式中的方法。
本申请第七方面提供了一种计算机可读介质,其上存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行前述第一方面或第一方面的任意可能的实现方式中的方法,或者使得计算机执行前述第二方面或第二方面的任意可能的实现方式中的方法。
本申请第八方面提供了一种通信装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该装置实现上述第一方面或第一方面的任意可能的实现方式中的方法。
本申请第九方面提供了一种通信装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得该装置实现上述第二方面或第二方面的任意可能的实现方式中的方法。
其中,第三、第五、第七方面、第八方面或者其中任一种可能实现方式所带来的技术效果可参见第一方面或第一方面不同可能实现方式所带来的技术效果,此处不再赘述。
其中,第四、第六、第七方面、第九方面或者其中任一种可能实现方式所带来的技术效果可参见第二方面或第二方面不同可能实现方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例中的一种通信系统的示意图;
图2-图4为本申请实施例中几种通信方法的流程示意图;
图5a-图9为本申请实施例中生成目标信息的几种示意图;
图10-图15为本申请实施例中通信装置的几种结构示意图。
具体实施方式
本申请实施例提供了一种通信方法及装置。用于提升传输数据的安全性及可靠性。
下面将结合各个附图对本申请技术方案的实现原理、具体实施方式及其对应能够达到的有益效果进行详细的阐述。
本申请可以应用于多种无线通信系统的协议框架中,无线通信系统可以包括但不限于长期演进(long term evolution,LTE)系统、新无线(New Radio,NR)系统、未来演进的通信系统等,未来演进的通信系统例如未来网络或第六代通信系统等。
图1给出了一种通信系统示意图。该通信系统可以包括网络设备101以及可以与网络设备101进行通信的终端设备102至104。
图1中,仅以一个网络设备101以及三个终端设备102至104为例进行示意性说明。在实际应用中,本申请实施例中的通信系统可以有更多的网络设备101以及终端设备,终端设备也可以是一个或多个。本申请实施例对网络设备101以及终端设备的数目不进行限定。
本申请实施例中,网络设备是一种部署在无线接入网中为终端设备提供无线通信功能的装置。网络设备可以包括各种形式的基站:宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,网络设备的名称可能会有所不同,例如LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional NodeB)。网络设备还可以是CRAN(Cloud Radio Access Network,云无线接入网络)场景下的无线控制器。网络设备还可以是5G网络中的基站设备或者未来演进的网络中的网络设备。网络设备还可以是可穿戴设备或车载设备。网络设备还可以是传输接收节点(transmission and reception point,TRP)。网络设备还可以泛指网络端的所有设备的总称,例如采用多个TRP传输数据给终端设备时,将多个TRP统称为网络设备。
本申请实施例中,终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。该终端设备可以是手机(mobile phone)、平板电脑(Pad)、带 无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、车载终端设备、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、可穿戴终端设备等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为终端、用户设备(user equipment,UE)、接入终端设备、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE代理或UE装置等。终端设备也可以是固定的或者移动的。
本申请实施例仅以网络设备是基站,终端设备是UE为例进行示意性说明:
UE在通信系统(例如NR系统)中,可以处于无线资源控制连接(radio resource control connected,RRC-connected)状态、无线资源控制空闲(radio resource control idle,RRC-idle)状态或无线资源控制非激活(radio resource control inactive,RRC-inactive)状态。
UE处于RRC-connected状态时,存在UE和基站之间的连接。此时,基站知道该UE在该基站的覆盖范围内或者在该基站的管理范围内,例如基站知道该UE在该基站所管理的小区的覆盖范围内。核心网知道UE在哪个基站的覆盖范围内或者管理范围内,核心网知道通过哪个基站可以定位到或者找到该UE。基站和UE可以进行数据信道和/或控制信道的传输,从而可以传输该UE的单播信息。例如基站可以向UE发送物理下行控制信道(physical downlink control channel,PDCCH)和/或物理下行共享信道(physical downlink shared channel,PDSCH)。又例如UE可以向基站发送物理上行共享信道(physical uplink shared channel,PUSCH)和/或物理上行控制信道(physical uplink control channel,PUCCH)。
UE处于RRC-idle态时,没有UE和基站之间的连接。此时,基站不知道该UE是否在该基站的覆盖范围内或者是否在该基站的管理范围内,例如基站不知道该UE是否在该基站所管理的小区的覆盖范围内。核心网不知道UE在哪个基站的覆盖范围内或者管理范围内,核心网不知道通过哪个基站可以定位到或者找到该UE。UE可以从基站接收寻呼消息、同步信号、广播消息、或系统信息中的一种或多种。此时,UE无法和基站进行单播数据传输。
UE处于RRC-inactive态时,没有UE和基站之间的连接。此时,基站不知道该UE是否在该基站的覆盖范围内或者是否在该基站的管理范围内,例如基站不知道该UE是否在该基站所管理的小区的覆盖范围内。核心网知道UE在哪个基站的覆盖范围内或者管理范围内,核心网知道通过哪个基站可以定位到或者找到该UE。UE可以从基站接收寻呼消息、同步信号、广播消息、或系统信息中的一种或多种。
随着无线通信技术的发展,处于RRC-inactive状态的UE除了可以从基站接收寻呼消息、同步信号、广播消息、或系统信息中的一种或多种之外,也有可能和基站进行单播数据传输。但是,处于RRC-inactive状态的UE缺少UE物理层的标识。若处于RRC-inactive状态的UE与基站进行单播数据传输,则会导致UE与基站之间的通信安全与可靠无法得到保证。例如,其他UE可能会获取该UE的调度信息,做出错误行为,或者恶意UE可以窃听到该UE发送或接收的单播数据。
对于RRC-connected状态的UE,基站会给其分配一个在当前基站服务的小区中生效的小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)。UE使用C-RNTI进行单播数据传输,从而保证UE与基站之间的通信安全与可靠。而RRC-inactive状态的UE没有C-RNTI,而只有非激活无线网络临时标识(inactive-radio network temporary identifier,I-RNTI)。
本申请实施例提出了一种使用I-RNTI进行单播数据传输的方法,保证了在没有C-RNTI时UE与基站之间通信数据的安全性与可靠性。
本申请实施例中仅以网络设备是基站,终端设备是UE为例进行示意性说明。下面结合图1的通信系统,对本申请实施例中的通信方法进行描述。
请参阅图2,本申请实施例提供的一个实施例包括:步骤201至步骤206。
在步骤201中,网络设备获取I-RNTI。
本申请实施例中的I-RNTI可以包括一个字段,该一个字段与UE、基站和运营商标识等中的至少一个相关。当然,I-RNTI可以包括第一字段与第二字段。其中,第一字段与UE相关,例如,第一字段为UE的特定编号或标识(例如UE specific reference)。第二设备与基站相关,例如,第二字段为基站的编号或标识(gNB ID)。
I-RNTI还可以包括第三字段,本申请实施例中第三字段可以与公共陆基移动网(public land mobile network,PLMN)相关,也可以是运营商标识,可以理解的是,在实际应用中,第三字段还可以是其他标识或其他类型,比如第三字段包括UE的类型标识,对第三字段此处不做限定。为了方便描述,后续仅以第三字段与公共陆基移动网(public land mobile network,PLMN)相关为例进行说明。几种可能的I-RNTI例如表1所示:
表1
  第一字段 第二字段 第三字段
第一种I-RNTI 20bits 20bits 0bit
第二种I-RNTI 24bits 16bits 0bit
第三种I-RNTI 20bits 16bits 4bits
第四种I-RNTI 40bits 0bit 0bit
其中:第一种I-RNTI包括第一字段的20bits以及第二字段的20bits。第二种I-RNTI包括第一字段的24bits以及第二字段的16bits。第三种I-RNTI包括第一字段的20bits、第二字段的16bits以及第三字段的4bits。第四种I-RNTI包括第一字段的40bits。
可以理解的是,表1中的四种I-RNTI只是举例,具体此处不作限定。I-RNTI可以包括40比特,也可以包括其他数值的比特,具体此处不作限定。
本申请实施例主要以第一种I-RNTI(包括20比特的第一字段和20比特的第二字段)为例进行示意性说明,使用其他I-RNTI(第二、三、四种)时会额外注明。
基站可以从核心网或其他基站获取该I-RNTI,也可以自己生成该I-RNTI。
在步骤202中,终端设备获取I-RNTI。
在UE与基站连接时或者UE与基站的连接状态被释放时,基站可向终端发送配置信息,该配置信息中含有I-RNTI信息。UE获取配置信息后,能够从配置信息中获取I-RNTI。
在步骤203中,终端设备根据I-RNTI生成目标信息。
本申请实施例中终端设备根据I-RNTI生成目标信息的方式有多种,下面分别描述:
1、终端设备可以根据I-RNTI中的某几个字段生成目标信息。
1.1、终端设备可以根据I-RNTI中的第一字段与第二字段生成目标信息(如图5a、图6至图9)。
非连接态UE可以从第一字段与第二字段中分别抽取多个比特以得到目标信息。当然,基站可以抽取一次得到目标信息,也可以抽取多次得到目标信息,抽取的次数具体此处不作限定。
目标信息包括非连接态UE从第一字段中抽取的M个比特以及从第二字段中抽取的K个比特,其中,M为大于等于1小于等于N的整数,N为大于等于2的整数,K为大于等于0小于等于N-M的整数。本申请实施例仅以N为16和10为例进行示意性说明。其中,在第一字段抽取哪几个位置的比特,在第二字段抽取哪几个位置的比特具体此处不作限定,例如,从第一字段的第一个比特开始抽取或从第一字段的中间比特开始抽取,从第二字段的中间比特开始抽取或从第二字段的第一个比特开始抽取,从第一字段中抽取的比特可以于从第二字段中抽取的比特对称,也可以不对称,具体此处不作限定。
表2示出了几种目标信息包括第一字段比特与第二字段比特的示意。
表2
  第一字段 第二字段
第一种目标信息 15bits 1bits
第二种目标信息 14bits 2bits
第三种目标信息 13bits 3bits
第四种目标信息 12bits 4bits
第五种目标信息 11bits 5bits
第六种目标信息 10bits 6bits
第七种目标信息 9bits 7bits
第八种目标信息 8bits 8bits
第九种目标信息 16bits 0bit
第十种目标信息 8bits 6bit
第十一种目标信息 8bits 4bit
第十二种目标信息 8bits 2bit
第十三种目标信息 8bits 0bit
表2中目标信息只是简单举例,并不是目标信息的所有抽取方式,目标信息还有其他的抽取方式,比如从第一字段中抽取7bits,从第二字段中抽取9bits组成目标信息,具体此处不作限定。如果从第一字段中抽取的比特比从第二字段中抽取的比特多的话,有利于避免与其UE抽取的目标信息冲突。
1.2、终端设备可以根据I-RNTI中的第一字段、第二字段以及第三字段生成目标信息(如图5b)。
示例性的,I-RNTI包括第一字段的20bits、第二字段的16bits以及第三字段的4bits(第三种I-RNTI),UE从第一字段中抽取M个比特,从第二字段中抽取K个比特,以及从第 三字段中抽取N-K-M个比特,其中,N为大于等于2的整数,M为大于等于1小于等于N的整数,K为大于等于0并且小于等于N-M的整数。
本申请实施例中终端设备可以根据I-RNTI中的某几个字段生成目标信息的方式有多种,即I-RNTI还可以包括第四字段和/或第五字段等,上述两种只是举例,具体此处不再限定。
2、终端设备可以获取目标标识,并根据I-RNTI以及目标标识生成第一目标信息以及第二目标信息(如图5c)。
UE可以从核心网设备、基站或其他网元等装置获取目标标识,具体此处不做限定。
本申请实施例中给的目标标识可以包括国际移动用户识别码(international mobile subscriber identity,IMSI)、该终端设备已建立连接的基站对应的标识(cell id)、核心网给终端设备配置的标识、当前与UE需要进行通信的基站对应的标识(cell id)等中的一种或多种,具体此处不做限定。下面仅以目标标识包括IMSI为例进行示意性说明。
即:如果从第一字段中抽取的比特数M与从第二字段中抽取的比特数K的和小于目标信息的长度N,则还需要在不属于I-RNTI的某个字段中抽取剩余的N-M-K比特。示例性的,所述不属于I-RNTI的某个字段为IMSI。
3、终端设备可以根据I-RNTI中的某一个字段(例如:第一字段)生成目标信息(如图5d与图5e)。
即I-RNTI包括多个字段时,UE根据多个字段中的某一个字段(第一字段、第二字段或第三字段)生成目标信息,或者I-RNTI只包括一个字段,UE根据该字段生成目标信息等,具体此处不做限定。
在另一种实施方法中,I-RNTI包括第一字段的40bits(第四种I-RNTI),UE从第一字段中抽取N个比特,其中,N为大于等于2的整数。
本申请实施例中终端设备根据I-RNTI生成目标信息的方式有多种,上述三种只是举例,具体此处不做限定。本申请实施例中的目标信息可以用于加解扰下行控制信息(downlink control information,DCI)的循环冗余校验CRC信息、获取PDCCH的搜索空间、加解扰PDCCH、PDSCH、PUCCH或PUSCH。
本申请实施例中目标信息包括第一目标信息以及第二目标信息。
第一目标信息以及第二目标信息的功能可以为下面几种情况中的一种:
1.1、第一目标信息用于解扰DCI的CRC信息,第二目标信息用于获取PDCCH的搜索空间。
1.2、第一目标信息用于解扰DCI的CRC信息,第二目标信息用于解扰PDCCH。
1.3、第一目标信息用于解扰PDCCH,第二目标信息用于获取PDCCH的搜索空间。
下面结合附图对目标信息的几种情况进行示意性说明。
示例性的,目标信息如图5a所示,第一目标信息为表2中的第五种情况:M=11,K=5。也即是,从第一字段中抽取11个bits并从第二字段中抽取5个bits组成16bits的第一比特串(或第一字段)a0。具体可以是从第一字段中抽取第1至第11个bits并从第二字段中抽取第1至第5个bits组成16bits的第一比特串a0。
第二目标信息为表2中的第七种情况:M=9,K=7。也即是,从第一字段中抽取9个bits并从第二字段中抽取7个bits组成16bits的第二比特串(或第二字段)b0。具体可以是从第一字段中抽取第12至第20个bits并从第二字段中抽取第14至第20个bits组成16bits 的第二比特串b0。
示例性的,目标信息如图5b所示,对于第三种I-RNTI,第一目标信息选取M=8,K=6,N=16。也即是,从第一字段中抽取8个bits,从第二字段中抽取6个bits并从第三字段中抽取2个bits组成16bits的第一比特串(或第一字段)a0。具体可以是从第一字段中抽取第1至第8个bits,从第二字段中抽取第1至第6个bits并从第三字段中抽取第1至第2个bits组成16bits的第一比特串a0。
第二目标信息选取M=8,K=6,N=16。也即是,从第一字段中抽取8个bits,从第二字段中抽取6个bits并从第三字段中抽取2个bits组成16bits的第二比特串(或第二字段)b0。具体可以是从第一字段中抽取第9至第16个bits,从第二字段中抽取第7至第12个bits并从第三字段中抽取第3至第4个bits组成16bits的第二比特串b0。
示例性的,目标信息如图5c所示,第一目标信息为表2中的第十一种情况:M=8,K=4,N=16。也即是,从第一字段中抽取8个bits,从第二字段中抽取4个bits并从IMSI中抽取4个bits组成16bits的第一比特串(或第一字段)a0。具体可以是从第一字段中抽取第1至第8个bits,从第二字段中抽取第1至第4个bits并从IMSI中抽取第1至第4个bits组成16bits的第一比特串a0。
第二目标信息为表2中的第十一种情况:M=8,K=4,N=16。也即是,从第一字段中抽取8个bits,从第二字段中抽取4个bits并从IMSI中抽取4个bits组成16bits的第二比特串(或第二字段)b0。具体可以是从第一字段中抽取第9至第16个bits,从第二字段中抽取第5至第8个bits并从IMSI中抽取第5至第8个bits组成16bits的第二比特串b0。
示例性的,目标信息如图5d所示,第一目标信息为表2中的第九种情况:M=16,K=0。也即是,从第一字段中抽取16个bits组成16bits的第一比特串(或第一字段)a0。具体可以是从第一字段中抽取第1至第16个bits组成16bits的第一比特串a0。
第二目标信息为表2中的第九种情况:M=16,K=0。也即是,从第一字段中抽取16个bits组成16bits的第二比特串(或第二字段)b0。具体可以是从第一字段中抽取第7至第20个bits并从第一字段中抽取第1至第2个bits组成16bits的第二比特串b0。
示例性的,目标信息如图5e所示,对于第四种I-RNTI,第一目标信息选取M=16,N=16。也即是,从第一字段中抽取16个bits组成16bits的第一比特串(或第一字段)a0。具体可以是从第一字段中抽取第1至第8个bits并从第一字段中抽取第21至第28个bits组成16bits的第一比特串a0。
第二目标信息选取M=16,N=16。也即是,从第一字段中抽取16个bits组成16bits的第二比特串(或第二字段)b0。具体可以是从第一字段中抽取第7至第14个bits并从第一字段中抽取第27至第34个bits组成16bits的第二比特串b0。
可选地,目标信息还包括第三目标信息,第一目标信息用于获取PDCCH的搜索空间,第二目标信息用于解扰PDCCH,第三目标信息用于解扰DCI的CRC信息。
示例性的,目标信息如图6所示,第一目标信息为表2中的第八种情况:M=8,K=8。也即是,从第一字段中抽取8个bits并从第二字段中抽取8个bits组成16bits的第一比特串(或第一字段)a1。具体可以是从第一字段中抽取第1至第8个bits并从第二字段中抽取第1至第8个bits组成16bits的第一比特串a1。
第二目标信息为表2中的第八种情况:M=8,K=8。也即是,从第一字段中抽取8个bits并从第二字段中抽取8个bits组成16bits的第二比特串(或第二字段)b1。具体可以是从第一字段中抽取第7至第14个bits并从第二字段中抽取第7至第14个bits组成16bits的第二比特串b1。
第三目标信息为表2中的第八种情况:M=8,K=8。也即是,从第一字段中抽取8个bits并从第二字段中抽取8个bits组成16bits的第三比特串(或第三字段)c1。具体可以是从第一字段中抽取第13至第20个bits并从第二字段中抽取第13至第20个bits组成16bits的第三比特串c1。
当然,具体从第一字段抽取哪8个,第二字段中抽取哪8个,具体此处不作限定。图6所示只是表2中的第八种目标信息的举例。
示例性的,目标信息如图7所示,第一目标信息为表2中的第六种情况,M=10,K=6。也即是,从第一字段中抽取10个bits并从第二字段中抽取6个bits组成16bits的比特串(或第一字段)a2。具体可以是从第一字段中抽取第1至第10个bits并从第二字段中抽取第1至第6个bits组成16bits的第一比特串a2。
第二目标信息为第二比特串(或第二字段)b2,M=6,K=10。也即是,从第一字段中抽取6个bits并从第二字段中抽取10个bits组成16bits的第二比特串b2。具体可以是从第一字段中抽取第8至第14个bits并从第二字段中抽取第6至第14个bits组成16bits的第二比特串b2。
第三目标信息为第三比特串(或第三字段)c2,M=6,K=10。也即是,从第一字段中抽取6个bits并从第二字段中抽取10个bits组成16bits的第三比特串c2。具体可以是从第一字段中抽取第15至第20个bits并从第二字段中抽取第11至第20个bits组成16bits的第三比特串c2。
示例性的,目标信息如图8所示,第一目标信息为表2中的第八种情况:M=8,K=8。也即是,从第一字段中抽取8个bits并从第二字段中抽取8个bits组成16bits的第一比特串(或第一字段)a3。具体可以是从第一字段中抽取第1、2、3、9、10、11、17、18个bits并从第二字段中抽取第1、2、3、9、10、11、17、18个bits组成16bits的第一比特串a3。
第二目标信息为表2中的第八种情况:M=8,K=8。也即是,从第一字段中抽取8个bits并从第二字段中抽取8个bits组成16bits的第二比特串(或第二字段)b3。具体可以是从第一字段中抽取第4、5、6、12、13、14、19、20个bits并从第二字段中抽取第4、5、6、12、13、14、19、20个bits组成16bits的第二比特串b3。
第三目标信息为表2中的第八种情况:M=8,K=8。第三目标信息包括第三比特串(或第三字段)c3和第四比特串(或第四字段)d。也即是,从第一字段中抽取8个bits并从第二字段中抽取8个bits组成16bits的比特串c3。从第一字段中抽取8个bits并从第二字段中抽取8个bits组成16bits的第四比特串d。具体可以是从第一字段中抽取第1至第8个bits并从第二字段中抽取第1至第8个bits组成16bits的第三比特串c3。是从第一字段中抽取第9至第16个bits并从第二字段中抽取第9至第16个bits组成16bits的第四比特串d。
可选地,目标信息还包括第四目标信息和/或第五目标信息。
示例性的,第四目标信息和/或第五目标信息如图9所示,第四目标信息或第五目标信息包括第五比特串e(M=11,K=8,N=16)和/或第六比特串f(M=10,K=0,N=10)。也即是,从第一字段中抽取11个bits并从第二字段中抽取5个bits组成16bits的第五比特串(或第五字段)e。从第一字段中抽取10个bits的第六比特串(或第六字段)f。具体可以是从第一字段中抽取第1至第11个bits并从第二字段中抽取第1至第5个bits组成16bits的第五比特串e。从第一字段中抽取第11至第20个bits组成10bits的第六比特串f。
本申请实施例中16比特的第一比特串a(a0、a1以及a2)、第二比特串b(b0、b1、b2以及b3)、第三比特串c(c1、c2以及c3)、第四比特串d以及第五比特串e可以相同或不同。
由于第一字段与UE相关,为了减小与其他UE的冲突概率,一方面:可以从第一字段中抽取较多的比特,另一方面:多个目标信息的抽取尽量减少重叠,使得第一字段与第二字段中的所有比特被分配到多个目标信息中,如图6至图8所示,第一字段的20bits与第二字段的20bits分别被至少抽取一次。
本申请实施例中生成的目标信息除了上述图5a至图9所示的方式之外,还有其他方式,具体此处不作限定。
本申请实施例中的抽取规则(抽取第一字段的哪几个位置以及抽取第二字段的哪几个位置),上述只是举例,具体的抽取规则根据实际需要,此处不作限定。
在步骤204中,网络设备根据I-RNTI生成目标信息。
网络设备根据I-RNTI生成目标信息的方式与前述步骤203中非连接态UE根据I-RNTI生成目标信息的方式类似,此处不再赘述。
在步骤205中,网络设备根据目标信息在物理下行控制信道PDCCH上发送DCI。
本申请实施例中,目标信息至少用于获取PDCCH的搜索空间、加扰DCI的CRC信息以及加扰PDCCH中的任意两种。下面仅以目标信息用于获取PDCCH的搜索空间以及加扰DCI的CRC信息(即第一目标信息用于获取PDCCH的搜索空间,第二目标信息用于加扰DCI的CRC信息)为例进行示意性说明。
基站根据第一比特串(即第一目标信息)获取PDCCH的搜索空间,即基站确定在哪些候选位置上发送DCI。PDCCH的搜索空间也可以理解为承载DCI的候选位置。PDCCH的搜索空间例如可以满足公式一:
公式一:
Figure PCTCN2021071209-appb-000001
Y=(K·A)mod d。
其中,承载DCI的候选位置可包括L个控制信道元素(control channel element,CCE),L可以为1、2、4或8,m为候选位置的编号,N为PDCCH资源中CCE的个数,M是PDCCH资源中候选位置的个数,n为偏置,i指示该候选位置中L个CCE的具体位置,i=0,...L-1,K=39827或39829或39839,d=65537,A为第一比特串a对应的数值,例如,第一比特串是1111111111111111(即16个1),则第一比特串对应的数值为65535。
本申请实施例中比特串对应的数值可理解为比特串对应的十进制数值。
上述公式一只是提供了一种可实现的方式,在实际应用中,基站还可以利用第一比特串根据其他公式获取PDCCH的搜索空间,具体此处不作限定。
基站根据第二比特串(即第二目标信息)加扰DCI的CRC信息。其中加扰后的CRC信息例如可以满足公式二:
公式二:
d k=a k·k,k=0,1...7;
d k=(a k+B k-8)mod 2,k=8,9...23。
其中,a 0,a 1...a 23表示CRC中的每个bit,B 0,B 1...B 15表示第二比特串b中的每个bit,d 0,d 1...d 23表示加扰后CRC中的每个bit。
上述公式二只是提供了一种可实现的方式,在实际应用中,基站还可以利用第二比特串根据其他公式加扰DCI的CRC信息,具体此处不作限定。
可选地,当目标信息还包括第三目标信息,基站根据第三比特串得到扰码序列的初始值C init,其中该初始值C init例如可以满足公式三。或根据第三比特串与第四比特串得到扰码序列的初始值C init,其中该初始值C init例如可以满足公式四。基站可根据C init,通过预定义的伪随机函数生成器可以获得伪随机码对PDCCH进行加扰,即对承载在PDCCH上的DCI进行加扰。
公式三:
C init=(C·2 16+n id)mod 2 31
其中,n id为小区的ID,该小区例如为该基站提供服务的小区,C为第三比特串对应的数值。
公式四:
C init=(C·2 16+D)mod 2 31
其中,C为第三比特串对应的数值,D为第四比特串对应的数值。
上述两个公式只是提供了两种可实现的方式,在实际应用中,基站还可以利用第三比特串和/或第四比特串根据其他公式得到扰码序列的初始值C init,具体此处不作限定。
在步骤206中,终端设备根据目标信息监听PDCCH。
与步骤205对应,下面仅以目标信息用于获取PDCCH的搜索空间以及解扰DCI的CRC信息(即第一目标信息用于获取PDCCH的搜索空间,第二目标信息用于解扰DCI的CRC信息)为例进行示意性说明。
非连接态UE根据目标信息监听PDCCH,尝试接收下行控制信息,即UE根据第一比特串确定PDCCH的搜索空间,PDCCH的搜索空间也可以理解为承载DCI的候选位置。其中,PDCCH的搜索空间例如可以满足公式一。UE可以在确定候选位置之后,在相应的候选位置上尝试接收DCI。UE根据第二比特串解扰DCI的CRC信息,其中解扰后的CRC信息例如可以满足公式二。
可选地,非连接态UE根据第三比特串得到第一扰码序列的初始值C init,其中该初始值 C init例如可以满足公式三。或根据第三比特串与第四比特串得到扰码序列的初始值C init,其中该初始值C init例如可以满足公式四。UE可根据C init,通过预定义的伪随机函数生成器可以获得伪随机码对PDCCH进行解扰,即对承载在PDCCH上的DCI进行解扰,尝试接收DCI。
在可选的步骤207中、网络设备根据目标信息在物理下行共享信道PDSCH上发送下行共享信息。
可选地,基站根据第五比特串和/或第六比特串得到扰码序列的初始值C init,其中该初始值C init例如可以满足公式五。并根据C init,通过预定义的伪随机函数生成器可以获得伪随机码对PDSCH进行加扰,即对承载在PDSCH上的下行共享信息进行加扰。
公式五:
单流传输:C init=E·2 15+F。
多流传输:C init=E·2 15+F+q·2 14
其中,E为第五比特串e中的bits,F为第六比特串F中的bits,q表示PDSCH传输的层的编号,多流传输即通过多进多出(multiple input multiple output,MIMO)技术(即多天线技术)在相同的时频资源上面传输多个数据。
上述公式五只是提供了一种可实现的方式,在实际应用中,基站还可以利用第五比特串和/或第六比特串根据根据其他公式加扰下行共享信息,具体此处不作限定。
在可选的步骤208中,终端设备根据目标信息接收PDSCH。
可选地,非连接态UE根据目标信息接收PDSCH,接收下行共享信息,即根据第五比特串e和/或第六比特串f得到扰码序列的初始值C init,其中该初始值C init例如可以满足公式五。UE可根据C init,通过预定义的伪随机函数生成器可以获得伪随机码对PDSCH进行解扰。
在可选的步骤209中,终端设备根据目标信息加扰上行信道。
本申请实施例中的上行信道例如为PUCCH或PUSCH。
可选地,非连接态UE根据目标信息(可以是第四目标信息)加扰PUCCH或PUSCH,即UE根据第五比特串和/或第六比特串得到扰码序列的初始值C init,其中该初始值C init例如可以满足公式五。UE并根据C init,通过预定义的伪随机函数生成器可以获得伪随机码对PUCCH或PUSCH进行加扰,即对承载在PUCCH或PUSCH上的上行信息进行加扰。
在可选的步骤210中,终端设备在上行信道上发送上行信息。
非连接UE加扰上行信道后,UE在上行信道上向基站发送上行信息。该上行信息可以是非连接态UE根据接收的DCI向基站发送的上行信息,上行信息也可以与接收到的DCI没有关联,具体此处不做限定。
在可选的步骤211中,网络设备根据目标信息解扰上行信道。
基站根据第五比特串和/或第六比特串(即第四目标信息)得到扰码序列的初始值C init,其中该初始值C init例如可以满足公式五。基站可根据C init,通过预定义的伪随机函数生成器可以获得伪随机码对PUCCH或PUSCH进行解扰,即对承载在PUCCH或PUSCH上的上行信息进行解扰。
本申请实施例中的步骤209-211可以在步骤207-208之前,步骤209-211也可以在步骤 207-208之后,步骤209-211与步骤207-208还可以同时进行,本申请对此不做限定。本申请实施例中的步骤201可以在步骤202之前,步骤201也可以在步骤202之后,步骤201和步骤202也可以同时执行,本申请对此不做限定。本申请实施例中的步骤203可以在步骤204之前,步骤203也可以在步骤204之后,步骤203和步骤204也可以同时执行,本申请对此不做限定。
本实施例中,基站与UE根据I-RNTI生成目标信息,并根据目标信息加解扰下行控制信息。由于第一字段与UE相关,可以从第一字段中抽取较多的比特,也可以从第一字段与第二字段中各抽取所有比特,使得第一字段与第二字段中的所有比特被分配到多个目标信息中,如图6至图8所示,第一字段的20bits与第二字段的20bits分别被至少抽取一次。一方面,提升了下行控制信息传输的安全性及可靠性。另一方面,减小与其他UE目标信息的冲突概率。
请参阅图3,本申请实施例中通信方法另一实施例包括:步骤301至步骤304、步骤307以及步骤308。
在步骤301中,网络设备获取I-RNTI。
在步骤302中,终端设备获取I-RNTI。
在步骤303中,终端设备根据I-RNTI生成目标信息。
在步骤304中,网络设备根据I-RNTI生成目标信息。
在可选的步骤305中,网络设备根据目标信息在物理下行控制信道PDCCH上发送DCI。
在可选的步骤306中,终端设备根据目标信息监听PDCCH。
本实施例中的步骤301与306与前述图2所示实施例中的步骤201与206类似,此处不再赘述。
在步骤307中,网络设备根据目标信息在物理下行共享信道PDSCH上发送下行共享信息。
基站根据第五比特串和/或第六比特串得到扰码序列的初始值C init,其中该初始值C init例如可以满足公式五。基站可根据C init,通过预定义的伪随机函数生成器可以获得伪随机码对PDSCH进行加扰,即对承载在PDSCH上的下行共享信息进行加扰。
在步骤308中,终端设备根据目标信息接收PDSCH。
非连接态UE根据目标信息接收PDSCH,尝试接收下行共享信息,即根据第五比特串e和/或第六比特串f得到扰码序列的初始值C init,其中该初始值C init例如可以满足公式五。UE可根据C init,通过预定义的伪随机函数生成器可以获得伪随机码对PDSCH进行解扰。
在可选的步骤309中,终端设备根据目标信息加扰上行信道。
在可选的步骤310中,终端设备在上行信道上向网络设备发送上行信息。
在可选的步骤311中,网络设备根据目标信息解扰上行信道。
本实施例中的步骤309与311与前述图2所示实施例中的步骤209与211类似,此处不再赘述。
本申请实施例中的步骤309-311可以在步骤307-308之前,步骤309-311也可以在步骤307-308之后,步骤309-311与步骤307-308还可以同时进行,本申请对此不做限定。本申请实施例中的步骤301可以在步骤302之前,步骤301也可以在步骤302之后,步骤301和步骤302也可以同时执行,本申请对此不做限定。本申请实施例中的步骤303可以在步骤304之前,步骤303也可以在步骤304之后,步骤303和步骤304也可以同时执行,本申请 对此不做限定。
本实施例中,基站与UE根据I-RNTI生成目标信息,并根据目标信息加解扰下行共享信息。由于第一字段与UE相关,可以从第一字段中抽取较多的比特,也可以从第一字段与第二字段中各抽取所有比特,使得第一字段与第二字段中的所有比特被分配到多个目标信息中,如图6至图8所示,第一字段的20bits与第二字段的20bits分别被至少抽取一次。一方面,提升了下行共享信息传输的安全性及可靠性。另一方面,减小与其他UE目标信息的冲突概率。
请参阅图4,本申请实施例中通信方法另一实施例包括:步骤401至步骤404、步骤409至步骤411。
在步骤401中,网络设备获取I-RNTI。
在步骤402中,终端设备获取I-RNTI。
在步骤403中,终端设备根据I-RNTI生成目标信息。
在步骤404中,网络设备根据I-RNTI生成目标信息。
在可选的步骤405中,网络设备根据目标信息在物理下行控制信道PDCCH上发送DCI。
在可选的步骤406中,终端设备根据目标信息监听PDCCH。
在可选的步骤407中,网络设备根据目标信息在物理下行共享信道PDSCH上发送下行共享信息。
在可选的步骤408中,终端设备根据目标信息接收PDSCH。
本实施例中的步骤401与408与前述图2所示实施例中的步骤201与208类似,此处不再赘述。
在步骤409中,终端设备根据目标信息加扰上行信道。
在步骤410中,终端设备在上行信道上向网络设备发送上行信息。
在步骤411中,网络设备根据目标信息解扰上行信道。
本实施例中的步骤409与411与前述图2所示实施例中的步骤209与211类似,此处不再赘述。
本申请实施例中的步骤409-411可以在步骤407-408之前,步骤409-411也可以在步骤407-408之后,步骤409-411与步骤407-408还可以同时进行,本申请对此不做限定。本申请实施例中的步骤401可以在步骤402之前,步骤401也可以在步骤402之后,步骤401和步骤402也可以同时执行,本申请对此不做限定。本申请实施例中的步骤403可以在步骤404之前,步骤403也可以在步骤404之后,步骤403和步骤404也可以同时执行,本申请对此不做限定。
本实施例中,基站与UE根据I-RNTI生成目标信息,并根据目标信息加解扰上行信息。由于第一字段与UE相关,可以从第一字段中抽取较多的比特,也可以从第一字段与第二字段中各抽取所有比特,使得第一字段与第二字段中的所有比特被分配到多个目标信息中,如图6至图8所示,第一字段的20bits与第二字段的20bits分别被至少抽取一次。一方面,提升了上行信息传输的安全性及可靠性。另一方面,减小与其他UE目标信息的冲突概率。
相应于上述方法实施例给出的方法,本申请实施例还提供了相应的装置,包括用于执行上述实施例相应的模块。所述模块可以是软件,也可以是硬件,或者是软件和硬件结合。
请参阅图10,本申请实施例中通信装置的一个实施例,该通信装置可以是终端设备。也 可以是终端设备的部件(例如处理器、芯片或芯片系统),该通信装置包括:
获取单元1001,用于获取非激活无线网络临时标识I-RNTI。
生成单元1002,用于根据I-RNTI生成第一目标信息以及第二目标信息。
监听单元1003,用于根据第一目标信息以及第二目标信息监听物理下行控制信道PDCCH。
本实施例中,通信装置中各单元所执行的操作与前述图2、图3或图4所示实施例中描述的类似,此处不再赘述。
本实施例中,生成单元1002根据I-RNTI生成第一目标信息以及第二目标信息,监听单元1003根据第一目标信息以及第二目标信息监听物理下行控制信道PDCCH。提升了下行数据传输的安全性及可靠性。
请参阅图11,本申请实施例中通信装置的另一实施例,该通信装置可以是终端设备。也可以是终端设备的部件(例如处理器、芯片或芯片系统),该通信装置包括:
获取单元1101,用于获取非激活无线网络临时标识I-RNTI。
生成单元1102,用于根据I-RNTI生成第一目标信息以及第二目标信息。
监听单元1103,用于根据第一目标信息以及第二目标信息监听物理下行控制信道PDCCH。
本实施例中的终端设备还包括:
解扰单元1104,用于根据第五目标信息解扰物理下行共享信道PDSCH。
加扰单元1105,用于根据第四目标信息加扰物理上行共享信道PUSCH或物理上行控制信道PUCCH。
获取单元1101还用于获取目标标识。
生成单元1102还用于根据I-RNTI生成第四目标信息和/或第五目标信息。
本实施例中,通信装置中各单元所执行的操作与前述图2、图3或图4所示实施例中描述的类似,此处不再赘述。
本实施例中,生成单元1102根据I-RNTI生成第一目标信息以及第二目标信息,监听单元1103根据第一目标信息以及第二目标信息监听物理下行控制信道PDCCH。提升了下行数据传输的安全性及可靠性。加扰单元1105根据第四目标信息加扰物理上行共享信道PUSCH或物理上行控制信道PUCCH。提升了上行数据传输的安全性及可靠性。
下面对本申请实施例中的网络设备进行描述,请参阅图12,本申请实施例中通信装置的一个实施例,该通信装置可以是网络设备。也可以是网络设备的部件(例如处理器、芯片或芯片系统),该通信装置包括:
获取单元1201,用于获取非激活无线网络临时标识I-RNTI。
生成单元1202,用于根据I-RNTI生成第一目标信息以及第二目标信息。
发送单元1203,用于根据第一目标信息以及第二目标信息在物理下行控制信道PDCCH上发送DCI。
本实施例中,通信装置中各单元所执行的操作与前述图2、图3或图4所示实施例中描述的类似,此处不再赘述。
本实施例中,生成单元1202根据I-RNTI生成第一目标信息以及第二目标信息,发送单元1203根据第一目标信息以及第二目标信息在物理下行控制信道PDCCH上发送DCI。提升了下行数据传输的安全性及可靠性。
请参阅图13,本申请实施例中通信装置的另一实施例,该通信装置可以是网络设备。也可以是网络设备的部件(例如处理器、芯片或芯片系统),该通信装置包括:
获取单元1301,用于获取非激活无线网络临时标识I-RNTI。
生成单元1302,用于根据I-RNTI生成第一目标信息以及第二目标信息。
发送单元1303,用于根据第一目标信息以及第二目标信息在物理下行控制信道PDCCH上发送DCI。
本实施例中的通信装置还包括:
加扰单元1304,用于根据第五目标信息加扰物理下行共享信道PDSCH。
解扰单元1305,用于根据第四目标信息解扰物理上行共享信道PUSCH或物理上行控制信道PUCCH。
获取单元1301还用于获取目标标识。
生成单元1302还用于根据I-RNTI生成第四目标信息和/或第五目标信息。
本实施例中,通信装置中各单元所执行的操作与前述图2、图3或图4所示实施例中描述的类似,此处不再赘述。
本实施例中,生成单元1302根据I-RNTI生成第一目标信息以及第二目标信息,发送单元1303根据第一目标信息以及第二目标信息在物理下行控制信道PDCCH上发送DCI。提升了下行数据传输的安全性及可靠性。解扰单元1305根据第四目标信息解扰物理上行共享信道PUSCH或物理上行控制信道PUCCH。提升了上行数据传输的安全性及可靠性。
图14给出了一种装置的结构示意图。装置1400可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
该装置1400可以包括一个或多个处理器1401,该处理器1401也可以称为处理单元,可以实现一定的控制功能。处理器1401可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端、终端芯片,DU或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器1401也可以存有指令和/或数据1403,该指令和/或数据1403可以被处理器运行,使得装置1400执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器1401中可以包括用于实现接收和发送功能的收发单元。例如该收发单元可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在又一种可能的设计中,装置1400可以包括电路,该电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,装置1400中可以包括一个或多个存储器1402,其上可以存有指令1404,指令可在处理器上被运行,使得装置1400执行上述方法实施例中描述的方法。可选的,存储器中 还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。处理器和存储器可以单独设置,也可以集成在一起。例如,上述方法实施例中所描述的对应关系可以存储在存储器中,或者存储在处理器中。
可选的,装置1400还可以包括收发器1405和/或天线1406。处理器1401可以称为处理单元,对装置1400进行控制。收发器1405可以称为收发单元、收发机、收发电路、收发装置或收发模块等,用于实现收发功能。
可选的,本申请实施例中的装置1400可以用于执行本申请实施例中图2、图3、或图4描述的方法,也可以用于执行上述两个图或更多个图中描述的方法相互结合的方法。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的装置可以是网络设备或者终端设备,但本申请中描述的装置的范围并不限于此,而且装置的结构可以不受图14的限制。装置可以是独立的设备或者可以是较大设备的一部分。例如所述装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备、机器设备、家居设备、医疗设备、工业设备等等;
(6)其他等等。
图15提供了一种终端设备的结构示意图。该终端设备可适用于图1所示出的场景中。为了便于说明,图15仅示出了终端设备的主要部件。如图15所示,终端设备1500包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收 到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图15仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图15中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。基带处理器也可以表述为基带处理电路或者基带处理芯片。中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备1500的收发单元1511,将具有处理功能的处理器视为终端设备1500的处理单元1512。如图15所示,终端设备1500包括收发单元1511和处理单元1512。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1511中用于实现接收功能的器件视为接收单元,将收发单元1511中用于实现发送功能的器件视为发送单元,即收发单元1511包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
本领域技术人员还可以理解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员对于相应的应用,可以使用各种方法实现的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
可以理解,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立 门或者晶体管逻辑器件、分立硬件组件。
本申请所描述的方案可通过各种方式来实现。例如,这些技术可以用硬件、软件或者硬件结合的方式来实现。对于硬件实现,用于在通信装置(例如,基站,终端、网络实体、或芯片)处执行这些技术的处理单元,可以实现在一个或多个通用处理器、DSP、数字信号处理器件、ASIC、可编程逻辑器件、FPGA、或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合中。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
可以理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特 性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
本申请中的“同时”可以理解为在相同的时间点,也可以理解为在一段时间段内,还可以理解为在同一个周期内。
本领域技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。本申请中的编号(也可被称为索引)的具体取值、数量的具体取值、以及位置仅作为示意的目的,并不是唯一的表示形式,也并不用来限制本申请实施例的范围。本申请中涉及的第一个、第二个等各种数字编号也仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”,而并非表示“一个且仅一个”,除非有特别说明。本申请中,在没有特别说明的情况下,“至少一个”旨在用于表示“一个或者多个”,“多个”旨在用于表示“两个或两个以上”。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A可以是单数或者复数,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本文中术语“……中的至少一个”或“……中的至少一种”,表示所列出的各项的全部或任意组合,例如,“A、B和C中的至少一种”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况,其中A可以是单数或者复数,B可以是单数或者复数,C可以是单数或者复数。
可以理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、 或预烧制。
本领域普通技术人员可以理解,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域普通技术人员可以理解,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
可以理解,本申请中描述的系统、装置和方法也可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请中各个实施例之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以上所述的本申请实施方式并不构成对本申请保护范围的限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (32)

  1. 一种通信方法,其特征在于,包括:
    获取非激活无线网络临时标识I-RNTI;
    根据所述I-RNTI生成第一目标信息以及第二目标信息;
    根据所述第一目标信息以及所述第二目标信息监听物理下行控制信道PDCCH。
  2. 根据权利要求1所述的方法,其特征在于,所述第一目标信息用于解扰下行控制信息DCI的循环冗余校验CRC信息,所述第二目标信息用于获取所述PDCCH的搜索空间,所述DCI承载在所述PDCCH上。
  3. 根据权利要求1所述的方法,其特征在于,所述第一目标信息用于解扰下行控制信息DCI的循环冗余校验CRC信息,所述第二目标信息用于解扰所述PDCCH,所述DCI承载在所述PDCCH上。
  4. 根据权利要求1所述的方法,其特征在于,所述第一目标信息用于解扰所述PDCCH,所述第二目标信息用于获取所述PDCCH的搜索空间。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述I-RNTI生成第三目标信息,所述第一目标信息用于获取所述PDCCH的搜索空间,所述第二目标信息用于解扰所述PDCCH,所述第三目标信息用于解扰下行控制信息DCI的循环冗余校验CRC信息,所述DCI承载在所述PDCCH上。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述I-RNTI生成第四目标信息;
    根据所述第四目标信息加扰物理上行共享信道PUSCH或物理上行控制信道PUCCH。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述I-RNTI生成第五目标信息;
    根据所述第五目标信息解扰物理下行共享信道PDSCH。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,还包括:
    获取目标标识;
    根据所述I-RNTI生成第一目标信息以及第二目标信息,包括:
    根据所述I-RNTI以及所述目标标识生成所述第一目标信息以及所述第二目标信息。
  9. 根据权利要求8所述的方法,其特征在于,所述目标标识包括国际移动用户识别码IMSI、基站标识中的至少一个。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述I-RNTI包括第一字段与第二字段中的至少一个,所述第一字段指示与终端相关的信息,所述第二字段指示与网络设备相关的信息。
  11. 根据权利要求10所述的方法,其特征在于,所述I-RNTI还包括第三字段,所述第三字段指示与公共陆基移动网PLMN和/或运营商相关的信息。
  12. 根据权利要求10或11所述的方法,其特征在于,根据所述I-RNTI生成第一目标信息以及第二目标信息,包括:
    根据所述第一字段或所述第二字段生成所述第一目标信息以及所述第二目标信息。
  13. 一种通信方法,其特征在于,包括:
    获取非激活无线网络临时标识I-RNTI;
    根据所述I-RNTI生成第一目标信息以及第二目标信息;
    根据所述第一目标信息以及所述第二目标信息在物理下行控制信道PDCCH上发送DCI。
  14. 根据权利要求13所述的方法,其特征在于,所述第一目标信息用于加扰下行控制信息DCI的循环冗余校验CRC信息,所述第二目标信息用于获取所述PDCCH的搜索空间。
  15. 根据权利要求13所述的方法,其特征在于,所述第一目标信息用于加扰下行控制信息DCI的循环冗余校验CRC信息,所述第二目标信息用于加扰所述PDCCH。
  16. 根据权利要求13所述的方法,其特征在于,所述第一目标信息用于加扰所述PDCCH,所述第二目标信息用于获取所述PDCCH的搜索空间。
  17. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    根据所述I-RNTI生成第三目标信息,所述第一目标信息用于获取所述PDCCH的搜索空间,所述第二目标信息用于加扰所述PDCCH,所述第三目标信息用于加扰下行控制信息DCI的循环冗余校验CRC信息。
  18. 根据权利要求13至17中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述I-RNTI生成第四目标信息;
    根据所述第四目标信息解扰物理上行共享信道PUSCH或物理上行控制信道PUCCH。
  19. 根据权利要求13至18中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述I-RNTI生成第五目标信息;
    根据所述第五目标信息加扰物理下行共享信道PDSCH。
  20. 根据权利要求13至19中任一项所述的方法,其特征在于,还包括:
    获取目标标识;
    根据所述I-RNTI生成第一目标信息以及第二目标信息,包括:
    根据所述I-RNTI以及所述目标标识生成所述第一目标信息以及所述第二目标信息。
  21. 根据权利要求20所述的方法,其特征在于,所述目标标识包括国际移动用户识别码IMSI、基站标识中的至少一个。
  22. 根据权利要求13至21中任一项所述的方法,其特征在于,所述I-RNTI包括第一字段与第二字段中的至少一个,所述第一字段指示与终端相关的信息,所述第二字段指示与网络设备相关的信息。
  23. 根据权利要求22所述的方法,其特征在于,所述I-RNTI还包括第三字段,所述第三字段指示与公共陆基移动网PLMN或运营商相关的信息。
  24. 根据权利要求22或23所述的方法,其特征在于,根据所述I-RNTI生成第一目标信息以及第二目标信息,包括:
    根据所述第一字段或所述第二字段生成所述第一目标信息以及所述第二目标信息。
  25. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至12中任一项所述的方法。
  26. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利 要求13至24中任一项所述的方法。
  27. 一种通信系统,其特征在于,包括:如权利要求25所述的装置,和/或,如权利要求26所述的装置。
  28. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得计算机执行如权利要求1至12中任一项所述的方法或执行如权利要求13至24中任一项所述的方法。
  29. 一种通信装置,其特征在于,所述装置用于执行权利要求1至12中任一项所述的方法。
  30. 一种通信装置,其特征在于,所述装置用于执行权利要求13至24中任一项所述的方法。
  31. 一种通信系统,其特征在于,包括:如权利要求29所述的装置和如权利要求30所述的装置。
  32. 一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,其特征在于,当所述计算机程序代码在计算机上运行时,使得计算机实现权利要求1至12中任一项所述的方法或者实现权利要求13至24中任一项所述的方法。
PCT/CN2021/071209 2020-03-19 2021-01-12 一种通信方法及装置 WO2021184936A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010198842 2020-03-19
CN202010198842.8 2020-03-19
CN202010548502.3 2020-06-16
CN202010548502.3A CN113498216A (zh) 2020-03-19 2020-06-16 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2021184936A1 true WO2021184936A1 (zh) 2021-09-23

Family

ID=77767989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071209 WO2021184936A1 (zh) 2020-03-19 2021-01-12 一种通信方法及装置

Country Status (1)

Country Link
WO (1) WO2021184936A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104753634A (zh) * 2013-12-31 2015-07-01 展讯通信(上海)有限公司 Dci的检测方法和装置
CN108418661A (zh) * 2017-02-09 2018-08-17 中兴通讯股份有限公司 数据传输方法及装置
CN109729573A (zh) * 2017-10-27 2019-05-07 华为技术有限公司 一种传输下行控制信息的方法及装置
WO2019195680A1 (en) * 2018-04-05 2019-10-10 Convida Wireless, Llc Configuration and signaling for ul noma operations
US20190350002A1 (en) * 2018-05-08 2019-11-14 FG Innovation Company Limited Methods and related devices for transmitting identification information of user equipment during random access procedure
CN111050400A (zh) * 2018-10-12 2020-04-21 华为技术有限公司 信息处理的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104753634A (zh) * 2013-12-31 2015-07-01 展讯通信(上海)有限公司 Dci的检测方法和装置
CN108418661A (zh) * 2017-02-09 2018-08-17 中兴通讯股份有限公司 数据传输方法及装置
CN109729573A (zh) * 2017-10-27 2019-05-07 华为技术有限公司 一种传输下行控制信息的方法及装置
WO2019195680A1 (en) * 2018-04-05 2019-10-10 Convida Wireless, Llc Configuration and signaling for ul noma operations
US20190350002A1 (en) * 2018-05-08 2019-11-14 FG Innovation Company Limited Methods and related devices for transmitting identification information of user equipment during random access procedure
CN111050400A (zh) * 2018-10-12 2020-04-21 华为技术有限公司 信息处理的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Support of RRC inactive state", 3GPP DRAFT; R2-1906439 RRC INACTIVE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051710754 *

Similar Documents

Publication Publication Date Title
US11206635B2 (en) Paging indication transmission method and apparatus
WO2018059210A1 (zh) 一种用于数据传输的方法和装置
US20180103459A1 (en) Physical downlink control channel resource allocation method, and base station and user equipment
WO2017143887A1 (zh) 网络模式的指示方法及装置
US10075331B2 (en) Method for configuring physical channel start symbols, base station and user equipment
WO2019154090A1 (zh) 信号传输的方法和装置
EP4024908A1 (en) Time-domain resource determining method, apparatus and device, and storage medium
EP3855837A1 (en) Communication method and apparatus
WO2021102815A1 (zh) 系统信息获取方法及装置
EP2991283A1 (en) Data transmission method and apparatus
US11076408B2 (en) Information transmission method, network device, and terminal device
CN113841430B (zh) 一种下行控制信息的对齐方法及其装置
CN105284089B (zh) 传输数据的方法和装置
WO2021184936A1 (zh) 一种通信方法及装置
US11876623B2 (en) Communication method and apparatus
WO2022002005A1 (zh) 一种序列生成方法及相关设备
WO2021068202A1 (zh) 一种通信方法及通信装置
US20200169947A1 (en) Communication Method And Communications Apparatus
CN113841457A (zh) 一种传输下行控制信息dci的方法及其装置
CN113498216A (zh) 一种通信方法及装置
WO2023220943A1 (zh) 随机接入方法及装置
CN109417819B (zh) 传输系统信息的方法、网络设备、终端设备和存储介质
WO2020259231A1 (zh) 通信方法及装置
CN115175107B (zh) 通信处理方法、装置、存储介质、芯片及模组设备
WO2023071711A1 (zh) 一种编码方法、译码方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771783

Country of ref document: EP

Kind code of ref document: A1