WO2021184850A1 - 液压操动机构及液压控制阀 - Google Patents

液压操动机构及液压控制阀 Download PDF

Info

Publication number
WO2021184850A1
WO2021184850A1 PCT/CN2020/136266 CN2020136266W WO2021184850A1 WO 2021184850 A1 WO2021184850 A1 WO 2021184850A1 CN 2020136266 W CN2020136266 W CN 2020136266W WO 2021184850 A1 WO2021184850 A1 WO 2021184850A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
spool
valve core
valve
pressure oil
Prior art date
Application number
PCT/CN2020/136266
Other languages
English (en)
French (fr)
Inventor
钟建英
谭盛武
陈维江
林莘
韩国辉
刘宇
刘煜
李海文
雷琴
张友鹏
段晓辉
魏建巍
孙珂珂
魏义涛
张利欣
Original Assignee
平高集团有限公司
国家电网有限公司
沈阳工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平高集团有限公司, 国家电网有限公司, 沈阳工业大学 filed Critical 平高集团有限公司
Publication of WO2021184850A1 publication Critical patent/WO2021184850A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts

Definitions

  • This application relates to the field of hydraulic equipment, in particular to a hydraulic operating mechanism and a hydraulic control valve.
  • the opening and closing action time of the circuit breaker is a key parameter of the performance of the circuit breaker, and this key parameter is mainly guaranteed by the operating mechanism of the circuit breaker.
  • the working cylinder is operated under the control of the hydraulic control valve, so the hydraulic control valve is required to have a higher response speed.
  • the conventional hydraulic control valve is an electromagnetic control valve, which relies on the electromagnetic valve to change the communication state of the passage in the valve body to realize the reversal of the hydraulic control valve.
  • the response speed of the conventional solenoid control valve is limited, and it is difficult to meet the requirements of fast response speed.
  • the reasons are as follows: 1.
  • the solenoid valve has a large number of solenoid turns, a small wire diameter, and its inherent response time is long; 2. an electromagnetic control valve
  • the output power of the electromagnet is limited, and it cannot directly drive the main valve of the control valve.
  • Its structure adopts a multi-stage control amplification method, from the electrification of the electromagnet coil to the movement of the moving iron core, the first-stage valve, and the second-stage valve. Finally, when the main valve moves, the inherent action time is long.
  • the Chinese Patent Authorized Announcement No. CN102403139B discloses a repulsive directional valve for UHV series compensation bypass switch.
  • the module through the repulsion module to drive the spool movement, relying on the repulsion module's fast response speed and large output force to meet the rapid movement requirements of the spool.
  • the valve body of the above repulsive directional valve is provided with a normal low pressure oil area, a working oil area, a normal high pressure oil area and a valve core moving area.
  • the valve body is provided with a low pressure oil circuit interface, a working oil circuit interface and a high pressure oil circuit interface.
  • the low pressure oil circuit interface, the working oil circuit interface and the high pressure oil circuit interface are respectively connected with the normal low pressure oil area, the working oil area and the normal high pressure oil area.
  • the valve core is also provided with a holding oil hole (that is, the high-pressure oil hole in the above patent) and a pressure holding wing.
  • the holding oil hole connects the normal high pressure oil area with the spool moving area and is used to rely on the spool when opening the gate.
  • the hydraulic pressure difference between the spool movement area and the normal high pressure oil area keeps the spool in the open state, and the pressure holding wing is used to keep the spool in the closed state when closing.
  • the above-mentioned repulsive force reversing valve needs to be provided with a pressure holding wing on the valve core, and the diameter of the pressure holding wing is relatively large. Therefore, the valve core needs to be made into a separate body, which requires high manufacturing precision and is more complicated to assemble.
  • the purpose of this application is to provide a hydraulic operating mechanism to solve the problems of inconvenient assembly and maintenance of the hydraulic control valve of the existing hydraulic operating mechanism, and high cost; at the same time, another purpose of this application is to provide a hydraulic control valve It solves the problems of high manufacturing precision and complicated assembly caused by the need to install pressure holding wings for the existing hydraulic control valve.
  • Hydraulic operating mechanism including:
  • Hydraulic control valve used to control the expansion and contraction of the working cylinder
  • the hydraulic control valve includes:
  • Valve body the valve body is provided with a normal low pressure oil area, a working oil area, a normal high pressure oil area and a valve core moving area.
  • the valve core moving area is a closed area and is set at the end of the valve core to provide for the sliding of the valve core. space;
  • the valve core is slidably arranged in the valve body
  • the spool movement area includes the left movement area and the right movement area.
  • the moving area and the right moving area are respectively set at the left and right ends of the spool;
  • the hydraulic control valve also includes a drive rod, which is arranged corresponding to the end face of the spool, and is used to push and/or pull the spool under the drive of the drive module;
  • the drive rod is arranged at the left end and/or right end of the valve core, and is guided in the left-right direction through the side wall of the corresponding side valve core moving area and dynamically sealingly fits with the side wall of the valve core moving area;
  • the valve body and/or the valve core are provided with a left movement zone channel and a right movement zone channel; the left movement zone channel connects the left movement zone with the normal high pressure oil zone, and the right movement zone channel moves the right side
  • the area is connected with the working oil area;
  • the effective end surface area of the spool exposed to the left spool moving area Take the effective end surface area of the spool exposed to the left spool moving area as A1, the effective end surface area exposed to the normal high pressure oil area when the spool moves to the right to the limit position is A2, and the spool moves to the left to the limit position.
  • the effective end face area in the working oil zone is A3, and the effective end face area of the spool exposed to the right moving zone is A4, then A1>A2, and A1 ⁇ A3+A4;
  • the effective end surface area is when the valve core is moved to the left or right to the limit position, the end surface of the valve core exposed in the left spool moving area, normal high pressure oil area, working oil area or right moving area is used to align the spool
  • the drive rod is fixedly connected to the left end of the spool for pushing and pulling the spool;
  • both the left and right ends of the valve core are provided with driving rods, and the driving rods on both sides are used to push the valve core to move.
  • the adoption of the above technical solution facilitates the flexible setting of the position of the driving rod, and also facilitates the adjustment of the effective end surface area of the corresponding part of the valve core.
  • both the left and right ends of the valve core are provided with drive rods, the drive rods are arranged separately from the valve core, and there is a gap between the drive rods and the corresponding end faces of the valve core.
  • the drive rod does not occupy the effective end surface area of the valve core, which is beneficial to reduce the volume and facilitate the parameter design of the valve core.
  • the drive module corresponding to the right drive rod includes a return spring, and the return spring is used to drive the drive module to return to the right.
  • the return spring can ensure that each action of the drive module has the same stroke, thereby improving the action accuracy of the hydraulic control valve.
  • a length adjustment structure is provided between the output end of the drive module and the drive rod.
  • the length adjustment structure can adjust the distance between the drive rod and the valve core, and then fine-tune the action time of the repulsion valve to meet different opening and closing time requirements; in addition, by adjusting the length adjustment structure,
  • the driving module can change the stop element, which can rely on the stop between the spool and the valve body, or the stop by the driving module itself. When the stop is stopped by the driving module, the stroke of the end of the spool is driven by hydraulic oil.
  • the stroke of the drive module is smaller than the stroke of the valve core.
  • the valve core can be moved to the limit position later than the drive module, which is beneficial to reduce the impact between the valve core and the valve body and prolong the service life.
  • the drive module corresponding to the drive rod is a repulsive force module.
  • the repulsive force module can realize a relatively fast action speed, and meet the fast action requirements of the hydraulic operating mechanism.
  • Hydraulic control valve including:
  • the valve body is equipped with a normal low pressure oil area, a working oil area and a normal high pressure oil area;
  • the valve core is slidably arranged in the valve body
  • the valve body is also provided with a spool movement area, which is a closed area and is arranged at the end of the spool to provide space for the sliding of the spool;
  • the spool movement area includes the left movement area and the right movement area.
  • the moving area and the right moving area are respectively set at the left and right ends of the spool;
  • the hydraulic control valve also includes a drive rod, which is arranged corresponding to the end face of the spool, and is used to push and/or pull the spool under the drive of the drive module;
  • the drive rod is arranged at the left end and/or right end of the valve core, and is guided in the left-right direction through the side wall of the corresponding side valve core moving area and dynamically sealingly fits with the side wall of the valve core moving area;
  • the valve body and/or the valve core are provided with a left movement zone channel and a right movement zone channel; the left movement zone channel connects the left movement zone with the normal high pressure oil zone, and the right movement zone channel moves the right side
  • the area is connected with the working oil area;
  • the effective end surface area of the spool exposed to the left spool moving area Take the effective end surface area of the spool exposed to the left spool moving area as A1, the effective end surface area exposed to the normal high pressure oil area when the spool moves to the right to the limit position is A2, and the spool moves to the left to the limit position.
  • the effective end face area in the working oil zone is A3, and the effective end face area of the spool exposed to the right moving zone is A4, then A1>A2, and A1 ⁇ A3+A4;
  • the effective end surface area is when the valve core is moved to the left or right to the limit position, the end surface of the valve core exposed in the left spool moving area, normal high pressure oil area, working oil area or right moving area is used to align the spool
  • the drive rod is fixedly connected to the left end of the spool for pushing and pulling the spool;
  • both the left and right ends of the valve core are provided with driving rods, and the driving rods on both sides are used to push the valve core to move.
  • the adoption of the above technical solution facilitates the flexible setting of the position of the driving rod, and also facilitates the adjustment of the effective end surface area of the corresponding part of the valve core.
  • both the left and right ends of the valve core are provided with drive rods, the drive rods are arranged separately from the valve core, and there is a gap between the drive rods and the corresponding end faces of the valve core.
  • the drive rod does not occupy the effective end surface area of the valve core, which is beneficial to reduce the volume and facilitate the parameter design of the valve core.
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of the hydraulic control valve in the present application.
  • Fig. 2 is a partial enlarged view of A in Fig. 1 when the hydraulic control valve is opened;
  • Fig. 3 is a partial enlarged view of A in Fig. 1 when the hydraulic control valve is closed;
  • Embodiment 2 is a schematic structural diagram of Embodiment 2 of the hydraulic control valve in the present application.
  • Embodiment 3 is a schematic structural diagram of Embodiment 3 of the hydraulic control valve in the present application.
  • Figure 6 is an enlarged view of the structure of the valve body in Figure 5;
  • Fig. 7 is a schematic structural diagram of Embodiment 4 of the hydraulic control valve in the present application.
  • the names of the components corresponding to the corresponding reference signs in the figure are: 1-valve body, 2-left valve sleeve, 3-right valve sleeve, 4-spool, 5-drive module, 6-normal low pressure oil area, 7 -Working oil zone, 8-normal high pressure oil zone, 9-opening position sealing valve port, 10-closing position sealing valve port, 11-left moving area, 12-right moving area, 13-left moving area Channel, 14-right movement zone channel, 15-drive rod, 16-first coil, 17-second coil, 18-repulsion disc, 19-drive rod, 20-connecting flange, 21-return spring, 22- Adjustable connecting rod, 23-lock nut, 24-stop platform.
  • first and second that may appear in the specific implementation of this application are only used to distinguish one entity or operation from another entity or operation. It is not necessarily required or implied that there is any such actual relationship or order between these entities or operations.
  • the terms “including”, “including” or any other variations thereof that may appear are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements not only includes those elements, but also includes no Other elements clearly listed, or also include elements inherent to this process, method, article, or equipment. Without more restrictions, the element defined by the possible sentence “including a" does not exclude the existence of other identical elements in the process, method, article, or equipment that includes the element.
  • connection In the description of this application, unless otherwise clearly specified and limited, the terms “installation”, “connection”, and “connection” that may appear should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. Or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication between the two components.
  • connection can be a fixed connection or a detachable connection. Or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication between the two components.
  • connection can be a detachable connection or a non-detachable connection.
  • Embodiment 1 of the hydraulic control valve in the present application is shown in FIGS. 1 to 3, and includes a valve body 1, a left valve sleeve 2, a right valve sleeve 3, a valve core 4, and a drive module 5.
  • valve body 1, the left valve sleeve 2 and the right valve sleeve 3 constitute a valve body, and the valve body is provided with a normal low pressure oil region 6, a working oil region 7 and a normal high pressure oil Zone 8, normal low pressure oil zone 6, working oil zone 7 and normal high pressure oil zone 8 are all enclosed by the valve sleeve and the valve core 4;
  • the left end of the right valve sleeve 3 forms the opening position Sealing valve port 9, the right end of the left valve sleeve 2 forms a closing position sealing valve port 10;
  • the axial middle of the valve core 4 is provided with a large-diameter section, and the outer peripheral surfaces of both ends of the large-diameter section are tapered surfaces.
  • the opening position sealing valve port 9 and the closing position sealing valve port 10 are sealed and matched in the form of line seal; the valve body is provided with a low-pressure oil circuit interface T, a working oil circuit interface Z, a high-pressure oil circuit interface P, and a low-pressure oil circuit interface T.
  • the working oil circuit interface Z and the high pressure oil circuit interface P are respectively connected with the normal low pressure oil zone 6, the working oil zone 7 and the normal high pressure oil zone 8.
  • the spool 4 is slidably arranged in the valve body; there is also a spool moving area in the valve body.
  • the spool moving area includes a left moving area 11 and a right moving area 12, and the left moving area 11 and the right moving area 12 are respectively set in The left and right ends of the spool 4.
  • the spool moving area is used to provide space for the sliding of the spool 4, and they are all closed areas.
  • the spool 4 is provided with a left movement zone channel 13, which is arranged along the axis of the spool 4, and its right end includes an inclined channel, which penetrates the outer peripheral surface of the spool 4, so as to realize the left movement zone 11 Connected with the normal high pressure oil zone 8.
  • the valve body is provided with a right movement zone channel 14 which is roughly U-shaped and is used to connect the right movement zone 12 with the working oil zone 7.
  • the hydraulic control valve also includes a drive rod 15, which is fixedly connected to the right end surface of the valve core 4, and is used to push and pull the valve core 4 under the drive of the drive module 5; the drive rod 15 is guided through the right side in the left-right direction.
  • the side wall of the side moving area 12 is dynamically sealed and matched with the side wall of the right moving area 12.
  • the effective end surface area of the spool 4 exposed in the left moving area 11 Take the effective end surface area of the spool 4 exposed in the left moving area 11 as A1, the effective end surface area of the spool 4 exposed in the normal high pressure oil area 8 as A2, and the effective end surface area of the spool 4 exposed in the right moving area 12 as A3, then A1>A2, and A1 ⁇ A2+A3; the effective end surface area is when the spool 4 moves to the left or right to the limit position, the spool 4 is exposed in the left movement zone 11 and the normal high pressure oil zone 8.
  • the end surface of the right moving area 12 is used to generate a net area of the overall hydraulic force on the valve core 4 in the left and right directions. For example, for A1, the left end surface of the valve core 4 is completely exposed in the left movement zone 11.
  • A1 is the area of the left end surface of the valve core 4 that does not include the left end opening of the left movement zone channel 13, which can be used in high pressure oil. Under the action of, the overall rightward force is generated on the spool 4; for A2, that is, when the spool 4 moves to the right to the limit position, the right end surface of the large-diameter section of the spool 4 is exposed to the annular area of the normal high pressure oil zone 8.
  • the sealing valve port 9 at the opening position and the sealing valve port 10 at the closing position have the same size and are the same as those of the valve core.
  • the driving module 5 is a repulsive force module, which includes a first coil 16, a second coil 17, and a repulsive disk 18.
  • the repulsive disk 18 is arranged between the first coil 16 and the second coil 17, and can be located between the first coil 16 and the second coil 17.
  • the two-way movement is realized under the respective drive of each.
  • a transmission rod 19 is connected to the repulsion disk 18, and the transmission rod 19 is connected to the driving rod 15 through a connecting flange 20.
  • the stroke of the repulsive force module is greater than the stroke of the valve core 4, that is, the repulsive force module is stopped by the stop of the valve core 4 and the valve sleeve.
  • the repulsion module In the open position shown in the figure, the repulsion module is energized and the drive rod 19 of the repulsion module pushes the drive rod 15 through the connecting flange 20.
  • the spool 4 moves to the left as shown in the figure.
  • the sealing valve port 9 in the open position opens and closes.
  • the sealing valve port 10 at the gate position is closed.
  • the working oil circuit interface Z and the high pressure oil circuit interface P are connected, and the high pressure oil in the accumulator enters the rodless cavity of the working cylinder of the hydraulic operating mechanism, and the working cylinder is driven to close.
  • there is high pressure oil in the left movement zone channel 13 and the left movement zone 11, and the right movement zone channel 14 and the right movement zone 12 are also high pressure oil.
  • the drive rod 19 of the repulsion module pulls the drive rod 15 through the connecting flange 20, and the valve core 4 moves to the right side of the figure, and the valve core 4 moves to the right side to the position shown in the figure.
  • the sealing valve port 9 in the gate position is closed, and the sealing valve port 10 in the closing position is opened.
  • the working oil circuit interface Z and the low pressure oil circuit interface T are connected, and the rodless cavity of the working cylinder is driven by low pressure oil, which is driven by the high pressure oil in the rod cavity.
  • the working cylinder realizes the opening.
  • valve The core 4 is under the action of hydraulic pressure to the right, and the valve core 4 is tightly pressed at the opening position to seal the valve port 9 so as not to cause the control valve to malfunction due to valve port leakage.
  • Embodiment 2 of the hydraulic control valve in this application is a diagrammatic representation of Embodiment 2 of the hydraulic control valve in this application:
  • the difference between this embodiment and embodiment 1 is that in embodiment 1, the driving rod 15 and the repulsive force module are arranged on the right side of the valve core 4, and the left moving zone channel 13 is arranged in the valve core 4.
  • the driving rod 15 and the repulsive force module are arranged on the left side of the valve core 4.
  • the channel 13 of the left movement zone is arranged in the valve body, and the effective end surface area is A1 decreases, A4 increases, but still satisfies A1>A2, and A1 ⁇ A3+A4.
  • the action process of the valve core 4 in this embodiment is basically the same as that of the embodiment 1, except that the repulsion module pulls the driving rod 15 when closing, and the repulsion module pushes the driving rod 15 when opening.
  • Embodiment 3 of the hydraulic control valve in this application is a
  • the difference between this embodiment and embodiment 1 is that, in embodiment 1, the drive rod 15 and the repulsive force module are arranged on the right side of the valve core 4, and the left moving zone channel 13 is arranged on the valve core 4.
  • the left and right sides of the valve core 4 are provided with a driving rod 15 and a repulsive force module, and each driving rod 15 and the corresponding valve core 4 are arranged separately, and the driving rod 15 and the valve There is a gap between the corresponding end faces of the core 4; at this time, the repulsive force modules all move in one direction, and the stroke of the repulsive force module is greater than that of the valve core 4, that is, the repulsive force module is stopped by the valve core 4 and the valve body;
  • the drive rod 15 on the side can move to the left under the action of the high-pressure oil in the left movement area 11 to ensure the left repulsion module resets, while the drive rod 15 on the right cannot rely on the pressure of the hydraulic oil after the opening is completed.
  • the repulsive force module on the right includes a return spring 21, which is used to drive the drive module 5 to return to the right; the stroke of the spool 4 is s.
  • the right side There is a gap ⁇ between the drive rod 15 and the right end surface of the valve core 4.
  • the end face area A1 is reduced, but still satisfies A1>A2, and A1 ⁇ A3+A4.
  • the action process of the valve core 4 in this embodiment is basically the same as that of the embodiment 1, except that the repulsive force module pushes the drive rod 15 on the corresponding side to move when opening and closing.
  • Embodiment 4 of the hydraulic control valve in this application is a
  • a length adjustment structure is provided between the output end of the repulsion module and the drive rod 15, and the length adjustment structure includes an adjustable connecting rod 22.
  • Both ends of the adjustable connecting rod 22 are provided with reverse threads, which are respectively screwed to the driving rod 15 and the driving rod 19; the adjustable connecting rod 22 is also provided with a lock nut 23 for realizing after adjustment is in place Locking and positioning; by adjusting the twisting position in the middle of the adjustable connecting rod 22, the distance between the driving rod 15 and the corresponding end of the valve core 4 can be adjusted to meet the requirements of different opening and closing time, and the stop element can be changed, and the valve can be relied on
  • the stop position between the core 4 and the valve body can also be achieved by relying on the stop 24 set on the drive module 5 to realize the self-stop position of the drive module 5.
  • the end stroke of the valve core 4 depends on hydraulic oil promote.
  • the driving rod 15 and the valve core 4 are arranged separately.
  • the driving rod 15 and the valve core 4 may also be fixedly connected, and the repulsive force mechanism on one side of the rod 15 may be in an extended state when connected.
  • the driving module 5 adopts a repulsive force module.
  • other forms of driving modules such as electromagnets, can also be adopted.
  • the hydraulic operating mechanism includes: a working cylinder for driving the circuit breaker to act; a hydraulic control valve for controlling the expansion and contraction of the working cylinder, wherein the hydraulic control valve is any of the above hydraulic control valves.
  • the hydraulic control valve in an embodiment will not be described in detail here.
  • the hydraulic operating mechanism includes a working cylinder and a hydraulic control valve.
  • the hydraulic control valve includes a valve body, a valve core, and a driving rod. Corresponding to the end face of the spool, it is used to push and/or pull the spool under the drive of the drive module; the valve body and/or the spool are provided with left and right moving area channels; with the spool
  • the effective end surface area exposed to the moving area of the spool on the left is A1, the effective end surface area exposed to the normal high pressure oil area when the spool moves to the right to the limit position is A2, and the spool moves to the left to the limit position and is exposed to working oil
  • the effective end face area of the zone is A3, and the effective end face area of the spool exposed to the right moving zone is A4, then A1>A2, and A1 ⁇ A3+A4; the effective end face area is the spool moving to the left or right to the limit position When the spool is exposed to the
  • the right movement zone channel By setting the right movement zone and the right movement zone channel, after the hydraulic control valve is closed, that is, when the spool moves to the left to the limit position, the right movement zone channel can connect the right movement zone with the working oil zone.
  • the working oil area is also high-pressure oil, so that the right moving area is also high-pressure oil.
  • the high-pressure oil can simultaneously apply to the spool to the left through the end surface of the spool corresponding to A3 and A4.
  • the hydraulic force is greater than the overall rightward force received by A1, so that the valve core can be maintained in the closing position without affecting the action of the drive rod on the valve core.
  • the setting of the pressure holding wing facilitates the assembly of the valve core, and is beneficial to reduce the requirements for manufacturing accuracy, reduce the cost of the hydraulic operating mechanism, and facilitate maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetically Actuated Valves (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

液压操动机构及液压控制阀。液压操动机构,包括工作缸、液压控制阀,液压控制阀包括阀体、阀芯(4)、驱动杆(15),阀体内设有左侧移动区(11)和右侧移动区(12),驱动杆(15)对应于阀芯(4)的端面设置,用于在驱动模块(5)的驱动下推动和/或拉动阀芯(4)动作;阀体和/或阀芯(4)上设有左侧移动区通道(13)和右侧移动区通道(14);以阀芯(4)暴露在左侧阀芯移动区(11)的有效端面面积为A1,阀芯(4)向右移动到极限位置时暴露在常高压油区(8)的有效端面面积为A2,阀芯(4)向左移动到极限位置时暴露在工作油区(7)的有效端面面积为A3,阀芯暴露在右侧移动区(12)的有效端面面积为A4,则A1>A2,且A1<A3+A4;上述方案能够解决现有的液压操动机构的液压控制阀装配、维护不便、成本高的问题。

Description

液压操动机构及液压控制阀
相关申请的交叉引用
本公开基于申请号为202011246792.2、申请日为2020年11月10日,和申请号为202010202070.0、申请日为2020年03月20日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及液压设备领域,尤其涉及一种液压操动机构及液压控制阀。
背景技术
断路器的分合闸动作时间是断路器性能的一个关键参数,这一关键参数主要是由断路器的操动机构来保证。对于液压操动机构来说,其工作缸是在液压控制阀的控制下动作,因此需要液压控制阀具有较高的响应速度。
常规的液压控制阀为电磁控制阀,依靠电磁阀改变阀体内的通道连通状态来实现液压控制阀的换向。但是,常规电磁控制阀的响应速度有限,难以满足快速响应速度的要求,原因如下:1、电磁阀的电磁铁匝数较多,线径较小,其固有响应时间长;2、电磁控制阀电磁铁的输出力有限,不能直接驱动控制阀主阀动作,其结构采取的是多级控制放大的方式,从电磁铁线圈带电,到动铁芯动作、一级阀动作、二级阀动作,最后到主阀动作,固有动作时间长。
为解决上述问题,授权公告号为CN102403139B的中国专利公开了一种特高压串补旁路开关用斥力换向阀,包括阀体,阀体内设有阀芯,阀芯的轴向一端连接有斥力模块,通过斥力模块驱动阀芯动作,依靠斥力模块 响应速度快、输出力大的特点满足阀芯的快速动作需求。上述斥力换向阀的阀体内阀体内设有常低压油区、工作油区、常高压油区和阀芯移动区,阀体上设有低压油路接口、工作油路接口和高压油路接口,低压油路接口、工作油路接口和高压油路接口分别与常低压油区、工作油区和常高压油区相连通。另外,阀芯内还设有保持油孔(即上述专利中的高压油孔)和压力保持翼,保持油孔将常高压油区与阀芯移动区连通,用于在分闸时依靠阀芯在阀芯移动区与常高压油区受到的液压压力差使阀芯保持在分闸状态,压力保持翼用于在合闸时使阀芯保持在合闸状态。
但是,上述斥力换向阀由于需要在阀芯上设置压力保持翼,压力保持翼的直径较大,因此阀芯需要做成分体形式,对制造精度要求较高,装配较为复杂。
发明内容
本申请的目的是提供一种液压操动机构,解决现有的液压操动机构的液压控制阀装配、维护不便、成本高的问题;同时,本申请的另一个目的是提供一种液压控制阀,解决现有的液压控制阀需要设置压力保持翼导致的对制造精度要求高、装配复杂的问题。
本申请中液压操动机构采用如下技术方案:
液压操动机构,包括:
工作缸,用于驱动断路器动作;
液压控制阀,用于控制工作缸的伸缩;
所述液压控制阀包括:
阀体,阀体内设有常低压油区、工作油区、常高压油区和阀芯移动区,阀芯移动区为封闭区域,设置在阀芯的端部,用于为阀芯的滑动提供空间;
阀芯,滑动设置在阀体内;
以液压控制阀设有常低压油区的一侧为左侧、设有常高压油区的一侧 为右侧,则所述阀芯移动区包括左侧移动区和右侧移动区,左侧移动区和右侧移动区分别设置在阀芯的左端和右端;
液压控制阀还包括驱动杆,驱动杆对应于阀芯的端面设置,用于在驱动模块的驱动下推动和/或拉动阀芯动作;
驱动杆设置在阀芯的左端和/或右端,沿左右方向导向穿过相应侧阀芯移动区的侧壁并与阀芯移动区的侧壁动密封配合;
所述阀体和/或阀芯上设有左侧移动区通道和右侧移动区通道;左侧移动区通道将左侧移动区与常高压油区连通,右侧移动区通道将右侧移动区与工作油区连通;
以阀芯暴露在左侧阀芯移动区的有效端面面积为A1,阀芯向右移动到极限位置时暴露在常高压油区的有效端面面积为A2,阀芯向左移动到极限位置时暴露在工作油区的有效端面面积为A3,阀芯暴露在右侧移动区的有效端面面积为A4,则A1>A2,且A1<A3+A4;
所述有效端面面积是阀芯向左或向右移动到极限位置时,阀芯暴露在左侧阀芯移动区、常高压油区、工作油区或右侧移动区的端面用于对阀芯产生左右方向的整体液压作用力的净面积。
有益效果:采用上述技术方案,通过设置右侧移动区和右侧移动区通道,液压控制阀合闸后,即阀芯向左移动到极限位置时,右侧移动区通道能够将右侧移动区与工作油区连通,而此时阀芯的右侧阀口开启,工作油区同样为高压油,进而使得右侧移动区也为高压油,高压油能够通过阀芯端面与A3、A4对应的部分同时对阀芯施加向左的液压作用力,且该液压作用力大于A1受到的整体向右作用力,使得阀芯能够保持在合闸位置,并且不影响驱动杆对阀芯的作用,与现有技术相比,不需要设置压力保持翼,便于阀芯的装配,并且有利于降低对制造精度的要求,降低液压操动机构的成本,便于维护。
作为一种优选的技术方案,所述驱动杆固定连接在阀芯的左端,用于推动和拉动阀芯动作;
或者,阀芯的左端和右端均设有驱动杆,两侧的驱动杆均用于推动阀芯动作。
有益效果:采用上述技术方案,便于灵活设置驱动杆的位置,也便于调整阀芯相应部位的有效端面面积。
作为一种优选的技术方案,阀芯的左端和右端均设有驱动杆,所述驱动杆与阀芯分体布置,驱动杆与阀芯的对应端端面之间具有间隔。
有益效果:采用上述技术方案,驱动杆不会占用阀芯的有效端面面积,有利于减小体积、便于阀芯的参数设计。
作为一种优选的技术方案,与右侧的驱动杆对应的驱动模块包括复位弹簧,复位弹簧用于驱动该驱动模块朝右复位。
有益效果:采用上述技术方案,复位弹簧能够保证驱动模块的每次动作都具有相同行程,从而提高液压控制阀的动作精度。
作为一种优选的技术方案,驱动模块的输出端与驱动杆之间设有长度调节结构。
有益效果:采用上述技术方案,调节长度调节结构可以调节驱动杆与阀芯之间的间隔大小,进而微调斥力阀的动作时间,满足不同的分合闸时间要求;另外,通过调节长度调节结构,驱动模块可以改变止位元件,可以依靠阀芯与阀体之间止位,也可以依靠驱动模块自身止位,依靠驱动模块自身止位时,阀芯末端的行程依靠液压油推动。
作为一种优选的技术方案,所述驱动模块的行程小于阀芯的行程。
有益效果:采用上述技术方案,阀芯能够晚于驱动模块移动到极限位置,有利于减小阀芯与阀体之间的冲击,延长使用寿命。
作为一种优选的技术方案,所述驱动杆所对应的驱动模块为斥力模块。
有益效果:采用上述技术方案,斥力模块能够实现较快的动作速度,满足液压操动机构的快速动作要求。
本申请中液压控制阀采用如下技术方案:
液压控制阀,包括:
阀体,阀体内设有常低压油区、工作油区和常高压油区;
阀芯,滑动设置在阀体内;
阀体内还设有阀芯移动区,阀芯移动区为封闭区域,设置在阀芯的端部,用于为阀芯的滑动提供空间;
以液压控制阀设有常低压油区的一侧为左侧、设有常高压油区的一侧为右侧,则所述阀芯移动区包括左侧移动区和右侧移动区,左侧移动区和右侧移动区分别设置在阀芯的左端和右端;
液压控制阀还包括驱动杆,驱动杆对应于阀芯的端面设置,用于在驱动模块的驱动下推动和/或拉动阀芯动作;
驱动杆设置在阀芯的左端和/或右端,沿左右方向导向穿过相应侧阀芯移动区的侧壁并与阀芯移动区的侧壁动密封配合;
所述阀体和/或阀芯上设有左侧移动区通道和右侧移动区通道;左侧移动区通道将左侧移动区与常高压油区连通,右侧移动区通道将右侧移动区与工作油区连通;
以阀芯暴露在左侧阀芯移动区的有效端面面积为A1,阀芯向右移动到极限位置时暴露在常高压油区的有效端面面积为A2,阀芯向左移动到极限位置时暴露在工作油区的有效端面面积为A3,阀芯暴露在右侧移动区的有效端面面积为A4,则A1>A2,且A1<A3+A4;
所述有效端面面积是阀芯向左或向右移动到极限位置时,阀芯暴露在左侧阀芯移动区、常高压油区、工作油区或右侧移动区的端面用于对阀芯产生左右方向的整体液压作用力的净面积。
有益效果:采用上述技术方案,通过设置右侧移动区和右侧移动区通道,液压控制阀合闸后,即阀芯向左移动到极限位置时,右侧移动区通道能够将右侧移动区与工作油区连通,而此时阀芯的右侧阀口开启,工作油区同样为高压油,进而使得右侧移动区也为高压油,高压油能够通过阀芯端面与A3、A4对应的部分同时对阀芯施加向左的液压作用力,且该液压作用力大于A1受到的整体向右作用力,使得阀芯能够保持在合闸位置,并且不影响驱动杆对阀芯的作用,与现有技术相比,不需要设置压力保持翼,便于阀芯的装配,并且有利于降低对制造精度的要求。
作为一种优选的技术方案,所述驱动杆固定连接在阀芯的左端,用于推动和拉动阀芯动作;
或者,阀芯的左端和右端均设有驱动杆,两侧的驱动杆均用于推动阀芯动作。
有益效果:采用上述技术方案,便于灵活设置驱动杆的位置,也便于调整阀芯相应部位的有效端面面积。
作为一种优选的技术方案,阀芯的左端和右端均设有驱动杆,所述驱动杆与阀芯分体布置,驱动杆与阀芯的对应端端面之间具有间隔。
有益效果:采用上述技术方案,驱动杆不会占用阀芯的有效端面面积,有利于减小体积、便于阀芯的参数设计。
附图说明
图1是本申请中液压控制阀的实施例1的结构示意图;
图2是图1中A处在液压控制阀分闸时的局部放大图;
图3是图1中A处在液压控制阀合闸时的局部放大图;
图4是本申请中液压控制阀的实施例2的结构示意图;
图5是本申请中液压控制阀的实施例3的结构示意图;
图6是图5中阀体处的结构放大图;
图7是本申请中液压控制阀的实施例4的结构示意图。
图中相应附图标记所对应的组成部分的名称为:1-阀主体,2-左阀套,3-右阀套,4-阀芯,5-驱动模块,6-常低压油区,7-工作油区,8-常高压油区,9-分闸位置密封阀口,10-合闸位置密封阀口,11-左侧移动区,12-右侧移动区,13-左侧移动区通道,14-右侧移动区通道,15-驱动杆,16-第一线圈,17-第二线圈,18-斥力盘,19-传动杆,20-连接法兰,21-复位弹簧,22-可调连杆,23-锁紧螺母,24-挡止台。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请,即所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请的具体实施方式中可能出现的术语“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,可能出现的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由可能出现的语句“包括一个……”限定的要素, 并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
在本申请的描述中,除非另有明确的规定和限定,可能出现的术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可以通过具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,除非另有明确的规定和限定,可能出现的术语“设有”应做广义理解,例如,“设有”的对象可以是本体的一部分,也可以是与本体分体布置并连接在本体上,该连接可以是可拆连接,也可以是不可拆连接。对于本领域技术人员而言,可以通过具体情况理解上述术语在本申请中的具体含义。
以下结合实施例对本申请作进一步的详细描述。
本申请中液压控制阀的实施例1如图1至图3所示,包括阀主体1、左阀套2、右阀套3、阀芯4和驱动模块5。
与现有技术中的结构类似:如图1所示,阀主体1、左阀套2和右阀套3构成阀体,阀体内设有常低压油区6、工作油区7和常高压油区8,常低压油区6、工作油区7和常高压油区8均由阀套与阀芯4围成;如图2和图3所示,右阀套3的左端开口形成分闸位置密封阀口9,左阀套2的右端开口形成合闸位置密封阀口10;阀芯4的轴向中部设有大径段,大径段的两端外周面为锥面,分别用于与分闸位置密封阀口9和合闸位置密封阀口10以线密封的形式密封配合;阀体上设有低压油路接口T、工作油路接口Z和高压油路接口P,低压油路接口T、工作油路接口Z和高压油路接口P分别与常低压油区6、工作油区7和常高压油区8相连通。
阀芯4滑动设置在阀体内;阀体内还设有阀芯移动区,阀芯移动区包括左侧移动区11和右侧移动区12,左侧移动区11和右侧移动区12分别设置在阀芯4的左端和右端。阀芯移动区用于为阀芯4的滑动提供空间,均为封闭区域。阀芯4上设有左侧移动区通道13,左侧移动区通道13沿阀芯4轴线设置,其右端包括倾斜通道,倾斜通道贯穿阀芯4的外周面,从而实现将左侧移动区11与常高压油区8连通。阀体上设有右侧移动区通道14,大致为U形结构,用于将右侧移动区12与工作油区7连通。
液压控制阀还包括驱动杆15,驱动杆15固定连接在阀芯4的右端面上,用于在驱动模块5的驱动下推动和拉动阀芯4动作;驱动杆15沿左右方向导向穿过右侧移动区12的侧壁,并与右侧移动区12的侧壁动密封配合。
以阀芯4暴露在左侧移动区11的有效端面面积为A1、阀芯4暴露在常高压油区8的有效端面面积为A2、阀芯4暴露在右侧移动区12的有效端面面积为A3,则A1>A2,且A1<A2+A3;所述有效端面面积是阀芯4向左或向右移动到极限位置时,阀芯4暴露在左侧移动区11、常高压油区8或右侧移动区12的端面用于对阀芯4产生左右方向的整体液压作用力的净面积。例如,对于A1,阀芯4左端面完全暴露在左侧移动区11内,因此,A1即阀芯4左端面的不包括左侧移动区通道13的左端开口的面积,该面积能够在高压油的作用下对阀芯4产生整体向右的作用力;对于A2,即阀芯4向右移动到极限位置时,阀芯4的大径段的右端面暴露在常高压油区8的环形面积,不包括阀芯4插入右侧移动区的部分的横截面面积,该面积能够在高压油的作用下对阀芯4产生整体向左的作用力;对于A3,即阀芯4向左移动到极限位置时,阀芯4的大径段的右端面暴露在工作油区7的面积,本实施例中,分闸位置密封阀口9与合闸位置密封阀口10的大小相同且与阀芯4为线密封配合,因此A3=A2;对于A4,即阀芯4右端与驱动杆15连接的部分所对应的环形端面的面积。假如驱动杆15用于与 阀体导向配合的部位设有轴肩,且轴肩的左端面暴露在右侧移动区12内,则A4应减去轴肩的左侧环形端面的面积。
驱动模块5为斥力模块,包括第一线圈16、第二线圈17和斥力盘18,斥力盘18设置在第一线圈16、第二线圈17之间,能够在第一线圈16和第二线圈17的分别驱动下实现双向运动。斥力盘18上连接有传动杆19,传动杆19通过连接法兰20与驱动杆15连接。斥力模块的行程大于阀芯4的行程,即斥力模块靠阀芯4与阀套的挡止进行止位。
在图示分闸位置时,斥力模块通电动作,斥力模块的传动杆19通过连接法兰20推动驱动杆15动作,阀芯4向图示左侧运动,分闸位置密封阀口9打开,合闸位置密封阀口10关闭,此时工作油路接口Z和高压油路接口P连通,蓄能器中的高压油进入液压操动机构的工作缸的无杆腔,驱动工作缸实现合闸。此时左侧移动区通道13和左侧移动区11中为高压油,右侧移动区通道14和右侧移动区12中也为高压油,由于A1<A3+A4,所以阀芯4整体受到向左的液压力作用,阀芯4被紧紧地压在合闸位置密封阀口10处,不至于由于阀口泄漏而导致液压控制阀误动作。
同理,当进行分闸操作时,斥力模块的传动杆19通过连接法兰20拉动驱动杆15动作,阀芯4向图示右侧运动,阀芯4向右侧运动到图示位置,分闸位置密封阀口9关闭,合闸位置密封阀口10打开,此时工作油路接口Z和低压油路接口T连通,工作缸的无杆腔为低压油,有杆腔中的高压油驱动工作缸实现分闸,此时左侧移动区通道13和左侧移动区11中仍为高压油,右侧移动区通道14和右侧移动区12中为低压油,由于A1>A2,所以阀芯4受到向右的液压力的作用,阀芯4被紧紧地压在分闸位置密封阀口9处,不至于由于阀口泄漏而导致控制阀误动作。
本申请中液压控制阀的实施例2:
如图4所示,本实施例与实施例1的不同之处在于,实施例1中,驱 动杆15和斥力模块设置在阀芯4右侧,左侧移动区通道13设置在阀芯4内,而本实施例中,驱动杆15和斥力模块设置在阀芯4左侧,为了避免驱动杆15对左侧移动区通道13的影响,左侧移动区通道13设置在阀体内,有效端面面积A1减小,A4增大,但是仍满足A1>A2,且A1<A3+A4。本实施例中阀芯4的动作过程与实施例1基本相同,只是合闸时斥力模块是拉动驱动杆15动作,分闸时斥力模块推动驱动杆15动作。
本申请中液压控制阀的实施例3:
如图5和图6所示,本实施例与实施例1的不同之处在于,实施例1中,驱动杆15和斥力模块设置在阀芯4右侧,左侧移动区通道13设置在阀芯4内,而本实施例中,阀芯4的左侧和右侧均设有驱动杆15和斥力模块,并且,各驱动杆15与相应的阀芯4分体布置,驱动杆15与阀芯4的对应端端面之间具有间隔;此时斥力模块均为单向运动,并且斥力模块的行程均大于阀芯4的行程,即斥力模块靠阀芯4与阀体进行止位;由于左侧的驱动杆15在左侧移动区11内的高压油作用下能够向左运动、保证左侧斥力模块的向左复位,而右侧的驱动杆15无法在分闸完成后依靠液压油的压力向右运动,因此右侧的斥力模块包括复位弹簧21,复位弹簧21用于驱动该驱动模块5朝右复位;阀芯4的行程为s,在液压控制阀处于分闸状态时,右侧的驱动杆15与阀芯4的右端面之间具有间隙δ,为了保证分合闸动作时间,此时左侧的驱动杆15与阀芯4的左端面之间具有间隔s+δ;另外,有效端面面积A1有所减小,但是仍满足A1>A2,且A1<A3+A4。本实施例中阀芯4的动作过程与实施例1基本相同,只是分合闸时斥力模块均是推动相应侧的驱动杆15动作。
本申请中液压控制阀的实施例4:
如图7所示,本实施例与实施例3的不同之处在于,本实施例中,斥力模块的输出端与驱动杆15之间设有长度调节结构,长度调节结构包括可 调连杆22,可调连杆22的两端设有反向的螺纹,分别螺纹连接在驱动杆15和传动杆19上;可调连杆22上还设有锁紧螺母23,用于在调节到位后实现锁紧定位;通过调整可调连杆22中部的扳拧部位,能够调整驱动杆15与阀芯4的对应端的间距,满足不同的分合闸时间要求,并且可以改变止位元件,可以依靠阀芯4与阀体之间止位,也可以依靠在驱动模块5上设置的挡止台24实现驱动模块5自止位,依靠驱动模块5自止位时,阀芯4的末端行程依靠液压油推动。
在上述实施例3中,驱动杆15与阀芯4分体布置,在其他实施例中,驱动杆15与阀芯4也可以固定连接,连接时使其中一侧的斥力机构处于伸出状态。
在上述实施例中,驱动模块5采用斥力模块,在其他实施例中,根据对分合闸速度的需求,也可以采用其他形式的驱动模块,例如电磁铁。
本申请中液压操动机构的实施例:液压操动机构包括:工作缸,用于驱动断路器动作;液压控制阀,用于控制工作缸的伸缩,其中液压控制阀即上述液压控制阀的任一实施例中的液压控制阀,此处不再具体说明。
以上所述,仅为本申请的较佳实施例,并不用以限制本申请,本申请的专利保护范围以权利要求书为准,凡是运用本申请的说明书及附图内容所作的等同结构变化,同理均应包含在本申请的保护范围内。
工业实用性
本公开实施例的技术方案,液压操动机构,包括工作缸、液压控制阀,液压控制阀包括阀体、阀芯、驱动杆,阀体内设有左侧移动区和右侧移动区,驱动杆对应于阀芯的端面设置,用于在驱动模块的驱动下推动和/或拉动阀芯动作;阀体和/或阀芯上设有左侧移动区通道和右侧移动区通道;以阀芯暴露在左侧阀芯移动区的有效端面面积为A1,阀芯向右移动到极限位置时暴露在常高压油区的有效端面面积为A2,阀芯向左移动到极限位置时 暴露在工作油区的有效端面面积为A3,阀芯暴露在右侧移动区的有效端面面积为A4,则A1>A2,且A1<A3+A4;有效端面面积是阀芯向左或向右移动到极限位置时,阀芯暴露在左侧阀芯移动区、常高压油区、工作油区或右侧移动区的端面用于对阀芯产生左右方向的整体液压作用力的净面积。通过设置右侧移动区和右侧移动区通道,液压控制阀合闸后,即阀芯向左移动到极限位置时,右侧移动区通道能够将右侧移动区与工作油区连通,而此时阀芯的右侧阀口开启,工作油区同样为高压油,进而使得右侧移动区也为高压油,高压油能够通过阀芯端面与A3、A4对应的部分同时对阀芯施加向左的液压作用力,且该液压作用力大于A1受到的整体向右作用力,使得阀芯能够保持在合闸位置,并且不影响驱动杆对阀芯的作用,与现有技术相比,不需要设置压力保持翼,便于阀芯的装配,并且有利于降低对制造精度的要求,降低液压操动机构的成本,便于维护。

Claims (10)

  1. 液压操动机构,包括:
    工作缸,用于驱动断路器动作;
    液压控制阀,用于控制工作缸的伸缩;
    所述液压控制阀包括:
    阀体,阀体内设有常低压油区、工作油区、常高压油区和阀芯移动区,阀芯移动区为封闭区域,设置在阀芯的端部,用于为阀芯的滑动提供空间;
    阀芯,滑动设置在阀体内;
    其中:
    以液压控制阀设有常低压油区的一侧为左侧、设有常高压油区的一侧为右侧,则所述阀芯移动区包括左侧移动区和右侧移动区,左侧移动区和右侧移动区分别设置在阀芯的左端和右端;
    液压控制阀还包括驱动杆,驱动杆对应于阀芯的端面设置,用于在驱动模块的驱动下推动和/或拉动阀芯动作;
    驱动杆设置在阀芯的左端和/或右端,沿左右方向导向穿过相应侧阀芯移动区的侧壁并与阀芯移动区的侧壁动密封配合;
    所述阀体和/或阀芯上设有左侧移动区通道和右侧移动区通道;左侧移动区通道将左侧移动区与常高压油区连通,右侧移动区通道将右侧移动区与工作油区连通;
    以阀芯暴露在左侧阀芯移动区的有效端面面积为A1,阀芯向右移动到极限位置时暴露在常高压油区的有效端面面积为A2,阀芯向左移动到极限位置时暴露在工作油区的有效端面面积为A3,阀芯暴露在右侧移动区的有效端面面积为A4,则A1>A2,且A1<A3+A4;
    所述有效端面面积是阀芯向左或向右移动到极限位置时,阀芯暴露 在左侧阀芯移动区、常高压油区、工作油区或右侧移动区的端面用于对阀芯产生左右方向的整体液压作用力的净面积。
  2. 根据权利要求1所述的液压操动机构,其中:所述驱动杆固定连接在阀芯的左端,用于推动和拉动阀芯动作;
    或者,阀芯的左端和右端均设有驱动杆,两侧的驱动杆均用于推动阀芯动作。
  3. 根据权利要求2所述的液压操动机构,其中:阀芯的左端和右端均设有驱动杆,所述驱动杆与阀芯分体布置,驱动杆与阀芯的对应端端面之间具有间隔。
  4. 根据权利要求3所述的液压操动机构,其中:与右侧的驱动杆对应的驱动模块包括复位弹簧,复位弹簧用于驱动该驱动模块朝右复位。
  5. 根据权利要求4所述的液压操动机构,其中:驱动模块的输出端与驱动杆之间设有长度调节结构。
  6. 根据权利要求3或4或5所述的液压操动机构,其中:所述驱动模块的行程小于阀芯的行程。
  7. 根据权利要求1至5中任一项权利要求所述的液压操动机构,其中:所述驱动杆所对应的驱动模块为斥力模块。
  8. 液压控制阀,包括:
    阀体,阀体内设有常低压油区、工作油区和常高压油区;
    阀芯,滑动设置在阀体内;
    阀体内还设有阀芯移动区,阀芯移动区为封闭区域,设置在阀芯的端部,用于为阀芯的滑动提供空间;
    其中:
    以液压控制阀设有常低压油区的一侧为左侧、设有常高压油区的一侧为右侧,则所述阀芯移动区包括左侧移动区和右侧移动区,左侧移动 区和右侧移动区分别设置在阀芯的左端和右端;
    液压控制阀还包括驱动杆,驱动杆对应于阀芯的端面设置,用于在驱动模块的驱动下推动和/或拉动阀芯动作;
    驱动杆设置在阀芯的左端和/或右端,沿左右方向导向穿过相应侧阀芯移动区的侧壁并与阀芯移动区的侧壁动密封配合;
    所述阀体和/或阀芯上设有左侧移动区通道和右侧移动区通道;左侧移动区通道将左侧移动区与常高压油区连通,右侧移动区通道将右侧移动区与工作油区连通;
    以阀芯暴露在左侧阀芯移动区的有效端面面积为A1,阀芯向右移动到极限位置时暴露在常高压油区的有效端面面积为A2,阀芯向左移动到极限位置时暴露在工作油区的有效端面面积为A3,阀芯暴露在右侧移动区的有效端面面积为A4,则A1>A2,且A1<A3+A4;
    所述有效端面面积是阀芯向左或向右移动到极限位置时,阀芯暴露在左侧阀芯移动区、常高压油区、工作油区或右侧移动区的端面用于对阀芯产生左右方向的整体液压作用力的净面积。
  9. 根据权利要求8所述的液压控制阀,其中:所述驱动杆固定连接在阀芯的左端,用于推动和拉动阀芯动作;
    或者,阀芯的左端和右端均设有驱动杆,两侧的驱动杆均用于推动阀芯动作。
  10. 根据权利要求9所述的液压控制阀,其中:阀芯的左端和右端均设有驱动杆,所述驱动杆与阀芯分体布置,驱动杆与阀芯的对应端端面之间具有间隔。
PCT/CN2020/136266 2020-03-20 2020-12-14 液压操动机构及液压控制阀 WO2021184850A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010202070.0 2020-03-20
CN202010202070 2020-03-20
CN202011246792.2A CN112503043B (zh) 2020-03-20 2020-11-10 液压操动机构及液压控制阀
CN202011246792.2 2020-11-10

Publications (1)

Publication Number Publication Date
WO2021184850A1 true WO2021184850A1 (zh) 2021-09-23

Family

ID=74957073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136266 WO2021184850A1 (zh) 2020-03-20 2020-12-14 液压操动机构及液压控制阀

Country Status (2)

Country Link
CN (1) CN112503043B (zh)
WO (1) WO2021184850A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113513511B (zh) * 2021-04-15 2023-09-26 浙大城市学院 一种压电堆叠驱动电液比例阀

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251198A (zh) * 2008-03-25 2008-08-27 沈阳工业大学 一种液压弹簧操动机构用的双稳态永磁液压阀
CN102403139A (zh) * 2011-10-28 2012-04-04 中国电力科学研究院 一种特高压串补旁路开关用斥力换向阀
CN202391714U (zh) * 2011-11-30 2012-08-22 佛山市科达液压机械有限公司 携带降压启动功能的恒压泵底阀
CN105545856A (zh) * 2016-02-17 2016-05-04 武汉市航天汉诺优科技有限公司 一种数控旋芯式比例伺服阀
CN107989991A (zh) * 2017-11-29 2018-05-04 北京理工大学 一种双向滑阀式电液比例减压阀
US20180149282A1 (en) * 2016-11-27 2018-05-31 Dresser, Inc. Regulating operation of a drive assembly for manual overide of an actuator
CN108253158A (zh) * 2016-12-28 2018-07-06 比亚迪股份有限公司 流量控制阀和具有其的叉车
CN109764152A (zh) * 2018-12-19 2019-05-17 河南平高电气股份有限公司 一种液压操动机构及其液压控制阀

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2265166B1 (zh) * 1974-03-18 1979-10-19 Siemens Ag
DE3842011A1 (de) * 1988-12-14 1990-06-21 Asea Brown Boveri Hydraulikantrieb
CN1034145C (zh) * 1993-07-29 1997-02-26 浙江大学 高压断路器的液压操动机构
JP4322399B2 (ja) * 2000-05-31 2009-08-26 株式会社東芝 液圧操作装置
KR100505379B1 (ko) * 2002-05-17 2005-07-29 가부시끼가이샤 히다치 세이사꾸쇼 차단기의 유체압 구동장치
CN201184429Y (zh) * 2008-03-25 2009-01-21 沈阳工业大学 一种液压弹簧操动机构用的单稳态永磁液压阀
EP2282065B1 (de) * 2009-07-30 2012-05-16 HAWE Hydraulik SE Hydraulisches Umschaltsitzventil und Leistungs-Trennschaltvorrichtung
CN108691832A (zh) * 2018-05-09 2018-10-23 冯森蕾 换向阀线圈驱动力增幅机构及换向阀

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251198A (zh) * 2008-03-25 2008-08-27 沈阳工业大学 一种液压弹簧操动机构用的双稳态永磁液压阀
CN102403139A (zh) * 2011-10-28 2012-04-04 中国电力科学研究院 一种特高压串补旁路开关用斥力换向阀
CN202391714U (zh) * 2011-11-30 2012-08-22 佛山市科达液压机械有限公司 携带降压启动功能的恒压泵底阀
CN105545856A (zh) * 2016-02-17 2016-05-04 武汉市航天汉诺优科技有限公司 一种数控旋芯式比例伺服阀
US20180149282A1 (en) * 2016-11-27 2018-05-31 Dresser, Inc. Regulating operation of a drive assembly for manual overide of an actuator
CN108253158A (zh) * 2016-12-28 2018-07-06 比亚迪股份有限公司 流量控制阀和具有其的叉车
CN107989991A (zh) * 2017-11-29 2018-05-04 北京理工大学 一种双向滑阀式电液比例减压阀
CN109764152A (zh) * 2018-12-19 2019-05-17 河南平高电气股份有限公司 一种液压操动机构及其液压控制阀

Also Published As

Publication number Publication date
CN112503043A (zh) 2021-03-16
CN112503043B (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2021121170A1 (zh) 一种液压操动机构用电液控制阀及其电磁先导阀和先导阀
WO2022088418A1 (zh) 液压控制阀及使用该液压控制阀的液压操动机构、断路器
CN101539218B (zh) 一种高旁减温减压阀执行机构的控制模块
WO2021184850A1 (zh) 液压操动机构及液压控制阀
US6759934B2 (en) Proportionally-controllable solenoid actuator
KR20240110895A (ko) 전자 밸브 및 이를 구비한 공조 시스템
CN117307727A (zh) 一种先导式电磁阀及其工作方法
CN117145997A (zh) 一种自泄压闸阀
US20120112104A1 (en) Actuator for controlling a fluid flow
CN215293827U (zh) 一种用于挤压式液体火箭发动机的大流量高压力截止电磁阀
KR20100117728A (ko) Nc-no 혼합형 솔레노이드 밸브
CN112393005B (zh) 电磁阀
WO2022001032A1 (zh) 负载保持阀及液压控制系统
EP3184867A1 (de) Koaxial, druckausgeglichen, direktgesteuert aufgebautes ventil mit kaskadenantrieb
CN110067875B (zh) 一种大流量高频电磁阀
CN219453031U (zh) 一种二位四通的先导式电磁阀
CN220016262U (zh) 一种两位五通电磁阀
CN221374480U (zh) 一种微行程调节阀
CN113931886B (zh) 低能耗高耐污超高频响数字液压伺服控制系统与控制方法
CN220151903U (zh) 一种可减少泄漏的电子膨胀阀结构
CN219345654U (zh) 带手柄的比例阀
CN111927843B (zh) 一种数字流体与连续流体复合控制的液压阀单元及其控制方法
JPH0245574Y2 (zh)
CN219510179U (zh) 一种直控比例方向阀
CN108980128B (zh) 电磁阀、拨叉控制系统及汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925917

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20925917

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20925917

Country of ref document: EP

Kind code of ref document: A1