WO2021184814A1 - Agv建图方法和定位方法及系统 - Google Patents

Agv建图方法和定位方法及系统 Download PDF

Info

Publication number
WO2021184814A1
WO2021184814A1 PCT/CN2020/131105 CN2020131105W WO2021184814A1 WO 2021184814 A1 WO2021184814 A1 WO 2021184814A1 CN 2020131105 W CN2020131105 W CN 2020131105W WO 2021184814 A1 WO2021184814 A1 WO 2021184814A1
Authority
WO
WIPO (PCT)
Prior art keywords
agv
reflector
coordinates
coordinate
reflectors
Prior art date
Application number
PCT/CN2020/131105
Other languages
English (en)
French (fr)
Inventor
刘胜明
张飞
周航
司秀芬
Original Assignee
苏州艾吉威机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州艾吉威机器人有限公司 filed Critical 苏州艾吉威机器人有限公司
Publication of WO2021184814A1 publication Critical patent/WO2021184814A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • G01C21/32Structuring or formatting of map data

Definitions

  • the present invention relates to the technical field of automatic control, in particular to an AGV mapping method and positioning method and system.
  • AGV Automated Guided Vehicle, automatic guided vehicle
  • vehicle positioning and navigation methods include: laser without reflector, laser with reflector, two-dimensional code, ribbon, magnetic stripe, 3D camera, IMU inertial navigation, vision Navigation etc.
  • IMU Inertial Measurement Unit
  • inertial navigation and non-reflective plate laser positioning are fused with filtering algorithms without switching.
  • one positioning method is generally used as the main positioning means, and the other positioning methods are used as auxiliary positioning means, which are switched between.
  • Laser positioning with reflector is mainly used in scenarios with high local positioning requirements, and is used in conjunction with laser positioning without reflector. However, in the process of navigating the AGV vehicle with the above method, the positioning error is large, resulting in low positioning accuracy.
  • the technical problem to be solved by the present invention is to overcome the problem of large positioning error in the prior art, resulting in low positioning accuracy, thereby providing an AGV mapping method, positioning method and positioning method that have small positioning errors and are conducive to improving positioning accuracy. system.
  • an AGV mapping method of the present invention includes the following steps: setting the origin of a fixed coordinate system and recording the current odometer information, wherein after the AGV observes the first set number of reflectors, The position of the AGV is set as the coordinate origin; after the AGV moves to a new position, it is judged whether the number of observed reflectors is greater than the first set number, if it is not greater, the AGV continues to move; if it is greater than , Then match with the reflectors that have been saved in the map. If the number of matches is greater than or equal to the first set number, use the matched reflectors to locate the AGV, and calculate that the unmatched reflectors are fixed The position in the coordinate system is added to the map to form a new map.
  • the method of setting the position of the AGV as the origin of the coordinates is: taking the current AGV body coordinate system as a fixed coordinate system, reading the data of the laser sensor, and calculating the number of the reflectors And coordinates, determine the original coordinates of the AGV vehicle body according to the number and coordinates of the reflector, and use the original coordinates of the AGV vehicle body as the coordinate origin.
  • the method for calculating the coordinates of the reflector is: if the number of reflectors is not greater than the first set number, the position of the AGV cannot be set as the origin of the coordinates , Continue to observe until the number of observed reflectors is greater than the first set number; if the number of reflectors is greater than the first set number, record the number of observations and coordinates, if the number of observations is greater than the preset value , Then take the average of all recorded coordinates of the same reflector and record it as the reflector coordinates.
  • the method for matching with the reflectors that have been saved in the map is: during the driving of the AGV, if the number of observed reflectors is greater than the first set number, read Take the laser sensor data, use the mileage to calculate the first coordinate of the AGV in the fixed coordinate system, and confirm the second coordinate of the reflector relative to the AGV body, and calculate the reflector in the fixed coordinate system.
  • the third coordinate in the coordinate system, the third coordinate of the reflector in the fixed coordinate system is matched with the original coordinates of the reflector existing in the map, until the reflector is all matched.
  • the method for confirming the second coordinate of the reflector relative to the AGV body is: the laser sensor observes the position of the reflector multiple times, records the number of observations and the coordinates, if the number of observations is greater than the first predicted If the value is set, the average value of all recorded coordinates of the same reflector is taken and recorded as the second coordinate of the reflector relative to the AGV body.
  • the AGV body when matching the third coordinate of the reflector in the fixed coordinate system with the original coordinates of the reflector existing in the map, if the difference of each coordinate is not set Within the first threshold, the AGV body continues to travel; if the difference of each coordinate is within the set first threshold, the matching is considered successful, the coordinates of the reflector are confirmed, and the coordinates of the reflector are used to align the The AGV body is positioned, the coordinates of the AGV body are confirmed, and the position of the unmatched reflector in the fixed coordinate system is confirmed according to the coordinates of the AGV body, and it is added to the map, Until the reflectors are all matched.
  • the map creation is completed, and a new map is formed.
  • the present invention also provides an AGV positioning method, including any one of the above-mentioned mapping methods, and after a new map is formed during the mapping process, in the new map, the AGV body Continue to observe the reflectors. If the number of reflectors observed is less than the second set number, the AGV body continues to drive; if the number of reflectors observed is not less than the second set number, then pass The final coordinates of the reflector are used to position the AGV.
  • the reflector is observed during the driving of the AGV body, the data of the laser sensor is read, the number and coordinates of the reflector are calculated, and the AGV body is calculated by mileage In the fourth coordinate in the fixed coordinate system, confirm the fifth coordinate of the reflector relative to the AGV body, calculate the sixth coordinate of the reflector in the fixed coordinate system, and set the reflector The sixth coordinate in the fixed coordinate system is matched with the coordinate in the reflector existing in the new map, and the final coordinate of the AGV body is finally confirmed.
  • the method for confirming the fifth coordinate of the reflector relative to the AGV body is: the laser sensor observes the position of the reflector multiple times, records the number of observations and the coordinates, if the number of observations is greater than the second predicted If the value is set, the average value of all recorded coordinates of the same reflector is taken and recorded as the fifth coordinate of the reflector relative to the AGV body.
  • the sixth coordinate of the reflector in the fixed coordinate system is matched with the coordinates of the reflector existing in the new map
  • the coordinate difference is set Within the second threshold, confirm the final coordinates of the reflector, and use the final coordinates of the reflector to locate the AGV body. If the coordinate difference is not within the second threshold, the The AGV continues to drive.
  • the present invention also provides an AGV system, including: a setting module for setting the coordinate origin of a fixed coordinate system and recording current odometer information, wherein after the AGV observes the first set number of reflectors, the AGV The location is set as the coordinate origin; the matching module is used to determine whether the number of observed reflectors is greater than the first set number after the AGV moves to a new position, and if it is not greater than, the AGV continues to move; If it is greater than, it will match with the reflector that has been saved in the map. If the number of matches is greater than or equal to the first set number, use the matched reflector to locate the AGV, and calculate the unmatched reflector The position in the fixed coordinate system and add it to the map to form a new map.
  • a setting module for setting the coordinate origin of a fixed coordinate system and recording current odometer information, wherein after the AGV observes the first set number of reflectors, the AGV The location is set as the coordinate origin; the matching module is used to determine whether the
  • the AGV mapping method and positioning method and system of the present invention set the origin of a fixed coordinate system and record the current odometer information. After the AGV observes the first set number of reflectors, the position of the AGV It is set as the origin of coordinates to facilitate the original positioning of the AGV body; after the AGV moves to a new position, it is judged whether the number of observed reflectors is greater than the first set number, and if it is not greater than, the The AGV continues to move; if it is greater than, it matches with the reflector that has been saved in the map. If the number of matches is greater than or equal to the first set number, the AGV is positioned using the matched reflector, and the failure is calculated. The position of the matched reflector in the fixed coordinate system is added to the map to form a new map, thereby helping to reduce positioning errors.
  • FIG. 1 is a flowchart of the AGV mapping method of the present invention
  • Figure 2 is a detailed flow chart of the present invention when building a map
  • Figure 3 is a detailed flow chart of the present invention during positioning.
  • this embodiment provides an AGV mapping method, including step S1: setting the origin of a fixed coordinate system and recording the current odometer information, wherein after the AGV observes the first set number of reflectors, Set the position of the AGV as the origin of coordinates; Step S2: After the AGV moves to a new position, determine whether the number of observed reflectors is greater than the first set number, and if not, the AGV continues to move; If it is greater than, it will match with the reflector that has been saved in the map. If the number of matches is greater than or equal to the first set number, use the matched reflector to locate the AGV, and calculate the unmatched reflector The position in the fixed coordinate system and add it to the map to form a new map.
  • step S1 the origin of the fixed coordinate system is set, and the current odometer information is recorded.
  • step S2 After the AGV observes the first set number of reflectors, the position of the AGV It is set as the origin of coordinates to facilitate the original positioning of the AGV body; in step S2, after the AGV moves to a new position, it is determined whether the number of observed reflectors is greater than the first set number, if If it is not greater than, the AGV will continue to move; if it is greater than, it will be matched with the reflector that has been saved in the map; if the number of matches is greater than or equal to the first set number, the AGV will be performed on the AGV using the matched reflector. It locates and calculates the position of the unmatched reflector in the fixed coordinate system, and adds it to the map to form a new map, thereby helping to reduce positioning errors and improve positioning accuracy.
  • the method for setting the position of the AGV as the origin of the coordinates is: taking the current AGV vehicle body coordinate system as a fixed coordinate system, reading the data of the laser sensor, and calculating the number and coordinates of the reflector, Determine the original coordinates of the AGV vehicle body according to the number and coordinates of the reflector, and use the original coordinates of the AGV vehicle body as the coordinate origin, which is beneficial to determine the position of the AGV vehicle body.
  • the AGV body performs original positioning.
  • the method for calculating the coordinates of the reflector is: if the number of reflectors is not greater than the first set number, the position of the AGV cannot be set as the origin of the coordinates, and the observation continues until the observed reflectance The number of plates is greater than the first set number; if the number of reflectors is greater than the first set number, the number of observations and coordinates are recorded; if the number of observations is greater than the preset value, all of the same reflector The recorded coordinates are averaged, and the original coordinates of the AGV body are determined, thereby realizing the original positioning of the AGV body.
  • the method for matching with the reflectors that have been saved in the map is: during the driving of the AGV, if the number of observed reflectors is greater than the first setting Quantity, read the laser sensor data, use the mileage to calculate the first coordinate of the AGV in the fixed coordinate system, specifically, use the odometer to roughly calculate the first coordinate of the AGV in the fixed coordinate system , And confirm the second coordinate of the reflector relative to the AGV body, calculate the third coordinate of the reflector in the fixed coordinate system, and set the reflector in the third coordinate of the fixed coordinate system The coordinates are matched with the original coordinates of the reflectors existing in the map until the reflectors are all matched, thereby facilitating the formation of a new map and reducing positioning errors.
  • the method of confirming the second coordinate of the reflector relative to the AGV vehicle body is: the laser sensor observes the position of the reflector multiple times, records the number of observations and the coordinates, if the number of observations is greater than the first preset value, Take the average of all recorded coordinates and record it as the second coordinate of the reflector relative to the AGV body.
  • the AGV body continues to travel; if the difference of the coordinates is within the set first threshold, the matching is considered successful, the coordinates of the reflector are confirmed, and the coordinates of the reflector are used to locate the AGV body, Confirm the coordinates of the AGV body, confirm the position of the unmatched reflector under the fixed coordinate system according to the coordinates of the AGV body, and add it to the map until the reflectors are all matched , Which can minimize the positioning error.
  • the map creation is completed, and a new map is formed.
  • this embodiment provides an AGV positioning method, including the mapping method described in Embodiment 1, and after a new map is formed during the mapping process, in the new map, the AGV vehicle Continue to observe the reflector during driving. If the observed number of reflectors is less than the second set number, the AGV body continues to travel; if the observed number of reflectors is not less than the second set number , The AGV is positioned by the final coordinates of the reflector.
  • the AGV body continues to observe the reflector during the driving process. If the number of reflectors is less than the second set number, the AGV body will continue to travel; if the number of reflectors observed is not less than the second set number, the AGV will be aligned with the final coordinates of the reflector. For positioning, not only the method is simple, but also the positioning error is reduced and the positioning accuracy is improved.
  • the AGV car body when the AGV car body is traveling, observe the reflector, read the data of the laser sensor, calculate the number and coordinates of the reflector, and use an odometer to roughly calculate that the AGV car body is at the fixed coordinates Specifically, the fourth coordinate of the AGV vehicle body in the fixed coordinate system can be roughly calculated using the odometer, and the fifth coordinate of the reflector relative to the AGV vehicle body can be confirmed to calculate The sixth coordinate of the reflector in the fixed coordinate system, the sixth coordinate of the reflector in the fixed coordinate system is matched with the coordinates in the reflector existing in the new map, and the final confirmation The coordinates of the AGV vehicle body reduce the positioning error and improve the positioning accuracy.
  • the method for confirming the fifth coordinate of the reflector relative to the AGV vehicle body is: the laser sensor observes the position of the reflector multiple times, and records the number of observations and coordinates. If the number of observations is greater than the second preset value, Take the average of all recorded coordinates and record it as the fifth coordinate of the reflector relative to the AGV body.
  • the multilateral positioning algorithm is used to position the AGV.
  • the first set number is at least two or more; the second set number is also at least two or more; the first threshold and the second threshold are empirical values, and their values may be the same or different. In this embodiment, the number of the first set number and the second set number are the same as three, so it is beneficial to locate the AGV through the trilateral positioning algorithm.
  • this embodiment provides the first AGV system.
  • the principle of solving the problem is similar to the AGV mapping method, and the repetition is not repeated here.
  • This embodiment provides an AGV system, including:
  • the setting module is used to set the coordinate origin of the fixed coordinate system and record the current odometer information, wherein the AGV sets the position of the AGV as the coordinate origin after observing the first set number of reflectors;
  • the matching module is used to determine whether the number of observed reflectors is greater than the first set number after the AGV moves to a new position, if it is not greater, the AGV continues to move; if it is greater than the Match the reflectors that have been saved in the map. If the number of matches is greater than or equal to the first set number, use the matched reflectors to locate the AGV, and calculate the position of the unmatched reflectors in the fixed coordinate system And add it to the map to form a new map.
  • this embodiment provides a second AGV system, the principle of which is similar to the AGV positioning method, and the repetition will not be repeated.
  • This embodiment provides an AGV system, including:
  • the setting module is used to set the coordinate origin of the fixed coordinate system and record the current odometer information, wherein the AGV sets the position of the AGV as the coordinate origin after observing the first set number of reflectors;
  • the matching module is used to determine whether the number of observed reflectors is greater than the first set number after the AGV moves to a new position, if it is not greater, the AGV continues to move; if it is greater than the Match the reflectors that have been saved in the map. If the number of matches is greater than or equal to the first set number, use the matched reflectors to locate the AGV, and calculate the position of the unmatched reflectors in the fixed coordinate system And add it to the map to form a new map;
  • the positioning module is configured to continue to observe the reflector when the AGV body is traveling in the new map, and if the number of observed reflectors is less than a second set number, then the AGV body continues to travel; If the number of observed reflectors is not less than the second set number, the AGV is positioned by the final coordinates of the reflectors.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种AGV建图方法和定位方法及系统,包括:设置固定坐标系坐标原点,记录当前里程计信息,其中AGV观测到第一设定数量的反光板后,将AGV所在位置设置为坐标原点;在AGV移动到新位置后,判断观测到的反光板数目是否大于第一设定数量,若大于,则与地图中已经保存的反光板进行匹配,若匹配数量大于等于第一设定数量,则利用匹配到的反光板对AGV进行定位,并计算出未匹配的反光板在固定坐标系下的位置,并将其添加到地图中,形成新地图。由此有利于减小定位误差,提高定位精度。

Description

AGV建图方法和定位方法及系统 技术领域
本发明涉及自动控制的技术领域,尤其是指一种AGV建图方法和定位方法及系统。
背景技术
AGV(Automated Guided Vehicle的缩写,自动导引运输车)车辆可用的定位导航方式有:无反射板激光、有反射板激光、二维码、色带、磁条、3D相机、IMU惯性导航、视觉导航等。其中IMU(Inertial Measurement Unit惯性测量单元)惯性导航与无反射板激光定位采用滤波算法融合,无需切换。在其它定位方式组合使用时,一般采用将一种定位方式作为主要定位手段,其它定位方式作为辅助定位手段,相互切换使用。有反射板激光定位主要用在局部定位要求较高的情景下,与无反射板激光定位相互配合使用。但是采用上述方式对AGV车辆导航过程中,定位误差大,导致定位精度低。
发明内容
为此,本发明所要解决的技术问题在于克服现有技术中定位误差大,导致定位精度低的问题,从而提供一种定位误差小,且有利于提高定位精度的AGV建图方法和定位方法及系统。
为解决上述技术问题,本发明的一种AGV建图方法,包括如下步骤:设置固定坐标系坐标原点,记录当前里程计信息,其中所述AGV观测到第一设定数量的反光板后,将所述AGV所在位置设置为坐标原点;在所述AGV移动到新位置后,判断观测到的反光板数目是否大于所述第一设定数量,若不大于,则所述AGV继续移动;若大于,则与所述地图中已经保存的反光板进行匹配,若匹配数量大于等于第一设定数量,则利用匹配到的反光板对所述AGV进行定位,并计算出未匹配的反光板在固定坐标系下的位置,并将其添加到所述地图中,形成新地图。
在本发明的一个实施例中,将所述AGV所在位置设置为坐标原点的方法为:以当前AGV车体坐标系为固定坐标系,读取激光传感器的数据, 计算所述反光板的个数及坐标,根据所述反光板的个数及坐标确定所述AGV车体的原始坐标,将所述AGV车体的原始坐标作为坐标原点。
在本发明的一个实施例中,计算所述反光板坐标的方法为::若所述反光板的个数不大于所述第一设定数量,则不能将所述AGV所在位置设置为坐标原点,继续观测直至观测到的反光板数目大于所述第一设定数量;若所述反光板的个数大于所述第一设定数量,则记录观察次数及坐标,若观察次数大于预设值,则对同一反光板的所有记录坐标取平均值,,记作反光板坐标。
在本发明的一个实施例中,与所述地图中已经保存的反光板进行匹配的方法为:在所述AGV行驶过程中,若观测到的反光板数目大于所述第一设定数量,读取激光传感器数据,利用里程计算出所述AGV在所述固定坐标系下的第一坐标,并确认所述反光板相对所述AGV车体的第二坐标,计算所述反光板在所述固定坐标系下的第三坐标,将所述反光板在所述固定坐标系下的第三坐标与所述地图中存在的反光板的原始坐标进行匹配,直至所述反光板全部匹配。
在本发明的一个实施例中,确认所述反光板相对所述AGV车体的第二坐标的方法为:激光传感器多次观察反光板位置,记录观察次数及坐标,若观察次数大于第一预设值,则对同一反光板的所有记录坐标取平均值,记作反光板相对所述AGV车体的第二坐标。
在本发明的一个实施例中,将所述反光板在所述固定坐标系下的第三坐标与所述地图中存在的反光板的原始坐标进行匹配时,若各坐标的差值不在设定第一阈值内,则所述AGV车体继续行驶;若各坐标的差值在设定第一阈值内,则认为匹配成功,确认所述反光板的坐标,利用所述反光板的坐标对所述AGV车体进行定位,确认所述AGV车体的坐标,根据所述AGV车体的坐标确认未匹配的反光板在所述固定坐标系下的位置,并将其添加到所述地图中,直至所述反光板全部匹配。
在本发明的一个实施例中,所述反光板全部匹配完成后,建图完成,形成新地图。
本发明还提供了一种AGV定位方法,包括上述任意一项所述的建图方法,且在建图的过程中形成新地图后,在所述新地图中,所述AGV车体行驶过程时继续观测所述反光板,若观测到的反光板数目小于第二设定 数量,则所述AGV车体继续行驶;若观测到的反光板数目不小于所述第二设定数量,则通过所述反光板的最终坐标对所述AGV进行定位。
在本发明的一个实施例中,所述AGV车体行驶过程中观测所述反光板,读取激光传感器的数据,计算所述反光板的个数及坐标,利用里程计算出所述AGV车体在所述固定坐标系下的第四坐标,确认所述反光板相对所述AGV车体的第五坐标,计算所述反光板在所述固定坐标系下的第六坐标,将所述反光板在所述固定坐标系下的第六坐标与所述新地图中存在的反光板中的坐标进行匹配,最终确认所述AGV车体的最终坐标。
在本发明的一个实施例中,确认所述反光板相对所述AGV车体的第五坐标的方法为:激光传感器多次观察反光板位置,记录观察次数及坐标,若观察次数大于第二预设值,则对同一反光板的所有记录坐标取平均值,记作反光板相对所述AGV车体的第五坐标。
在本发明的一个实施例中,将所述反光板在所述固定坐标系下的第六坐标与所述新地图中存在的反光板中的坐标进行匹配时,若各坐标差值在设定第二阈值内,则确认所述反光板的最终坐标,利用所述反光板的最终坐标对所述AGV车体进行定位,若各坐标差值不在设定所述第二阈值内,则所述AGV继续行驶。
本发明还提供了一种AGV系统,包括:设置模块,用于设置固定坐标系坐标原点,记录当前里程计信息,其中所述AGV观测到第一设定数量的反光板后,将所述AGV所在位置设置为坐标原点;匹配模块,用于在所述AGV移动到新位置后,判断观测到的反光板数目是否大于所述第一设定数量,若不大于,则所述AGV继续移动;若大于,则与所述地图中已经保存的反光板进行匹配,若匹配数量大于等于第一设定数量,则利用匹配到的反光板对所述AGV进行定位,并计算出未匹配的反光板在固定坐标系下的位置,并将其添加到所述地图中,形成新地图。
本发明的上述技术方案相比现有技术具有以下优点:
本发明所述的AGV建图方法和定位方法及系统,设置固定坐标系坐标原点,记录当前里程计信息,其中所述AGV观测到第一设定数量的反光板后,将所述AGV所在位置设置为坐标原点,从而有利于对AGV车体进行原始定位;在所述AGV移动到新位置后,判断观测到的反光板数目是否大于所述第一设定数量,若不大于,则所述AGV继续移动;若大于, 则与所述地图中已经保存的反光板进行匹配,若匹配数量大于等于第一设定数量,则利用匹配到的反光板对所述AGV进行定位,并计算出未匹配的反光板在固定坐标系下的位置,并将其添加到所述地图中,形成新地图,从而有利于减少定位误差。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是本发明AGV建图方法的流程图;
图2是本发明建图时的详细流程图;
图3是本发明定位时的详细流程图。
具体实施方式
实施例一
如图1所示,本实施例提供一种AGV建图方法,包括步骤S1:设置固定坐标系坐标原点,记录当前里程计信息,其中所述AGV观测到第一设定数量的反光板后,将所述AGV所在位置设置为坐标原点;步骤S2:在所述AGV移动到新位置后,判断观测到的反光板数目是否大于第一设定数量,若不大于,则所述AGV继续移动;若大于,则与所述地图中已经保存的反光板进行匹配,若匹配数量大于等于第一设定数量,则利用匹配到的反光板对所述AGV进行定位,并计算出未匹配的反光板在固定坐标系下的位置,并将其添加到所述地图中,形成新地图。
本实施例所述AGV建图方法,所述步骤S1,设置固定坐标系坐标原点,记录当前里程计信息,其中所述AGV观测到第一设定数量的反光板后,将所述AGV所在位置设置为坐标原点,从而有利于对AGV车体进行原始定位;所述步骤S2中,在所述AGV移动到新位置后,判断观测到的反光板数目是否大于所述第一设定数量,若不大于,则所述AGV继续移动;若大于,则与所述地图中已经保存的反光板进行匹配,若匹配数量大于等于第一设定数量,则利用匹配到的反光板对所述AGV进行定位,并计算出未匹配的反光板在固定坐标系下的位置,并将其添加到所述地图中,形成新地图,从而有利于减少定位误差,提高定位精度。
所述步骤S1中,将所述AGV所在位置设置为坐标原点的方法为:以当前AGV车体坐标系为固定坐标系,读取激光传感器的数据,计算所述反光板的个数及坐标,根据所述反光板的个数及坐标确定所述AGV车体的原始坐标,将所述AGV车体的原始坐标作为坐标原点,从而有利于再确定出所述AGV车体所在的位置后,对所述AGV车体进行原始定位。其中,计算所述反光板坐标的方法为:若所述反光板的个数不大于所述第一设定数量,则不能将所述AGV所在位置设置为坐标原点,继续观测直至观测到的反光板数目大于所述第一设定数量;若所述反光板的个数大于所述第一设定数量,则记录观察次数及坐标,若观察次数大于预设值,则对同一反光板的所有记录坐标取平均值,并确定所述AGV车体的原始坐标,从而实现了对所述AGV车体的原始定位。
如图2所示,所述步骤S2中,与所述地图中已经保存的反光板进行匹配的方法为:在所述AGV行驶过程中,若观测到的反光板数目大于所述第一设定数量,读取激光传感器数据,利用里程计算出所述AGV在所述固定坐标系下的第一坐标,具体地,利用里程计可以粗略算出所述AGV在所述固定坐标系下的第一坐标,并确认所述反光板相对所述AGV车体的第二坐标,计算所述反光板在所述固定坐标系下的第三坐标,将所述反光板在所述固定坐标系下的第三坐标与所述地图中存在的反光板的原始坐标进行匹配,直至所述反光板全部匹配,从而有利于形成新地图,减少定位误差。
确认所述反光板相对所述AGV车体的第二坐标的方法为:激光传感器多次观察反光板位置,记录观察次数及坐标,若观察次数大于第一预设值,则对同一反光板的所有记录坐标取平均值,记作反光板相对所述AGV车体的第二坐标。
另外,将所述反光板在所述固定坐标系下的第三坐标与所述地图中存在的反光板的原始坐标进行匹配时,若各坐标的差值不在设定第一阈值内,则所述AGV车体继续行驶;若各坐标的差值在设定第一阈值内,则认为匹配成功,确认所述反光板的坐标,利用所述反光板的坐标对所述AGV车体进行定位,确认所述AGV车体的坐标,根据所述AGV车体的坐标确认未匹配的反光板在所述固定坐标系下的位置,并将其添加到所述地图中,直至所述反光板全部匹配,从而可以最大程度上减小定位误差。所述反光 板全部匹配完成后,建图完成,形成新地图。
实施例二
如图3所示,本实施例提供一种AGV定位方法,包括实施例一所述的建图方法,且在建图的过程中形成新地图后,在所述新地图中,所述AGV车体行驶过程时继续观测所述反光板,若观测到的反光板数目小于第二设定数量,则所述AGV车体继续行驶;若观测到的反光板数目不小于所述第二设定数量,则通过所述反光板的最终坐标对所述AGV进行定位。
本实施例所述AGV定位方法,在实施例一所述的建图方法中形成新地图后,在所述新地图中,所述AGV车体行驶过程时继续观测所述反光板,若观测到的反光板数目小于第二设定数量,则所述AGV车体继续行驶;若观测到的反光板数目不小于所述第二设定数量,则通过所述反光板的最终坐标对所述AGV进行定位,不但方法简单,而且减小了定位误差,提高了定位精度。
具体地,所述AGV车体行驶过程中观测所述反光板,读取激光传感器的数据,计算所述反光板的个数及坐标,利用里程计粗略算出所述AGV车体在所述固定坐标系下的第四坐标,具体地,利用里程计可以粗略算出所述AGV车体在所述固定坐标系下的第四坐标,确认所述反光板相对所述AGV车体的第五坐标,计算所述反光板在所述固定坐标系下的第六坐标,将所述反光板在所述固定坐标系下的第六坐标与所述新地图中存在的反光板中的坐标进行匹配,最终确认所述AGV车体的坐标,从而减小了定位误差,提高了定位精度。
确认所述反光板相对所述AGV车体的第五坐标的方法为:激光传感器多次观察反光板位置,记录观察次数及坐标,若观察次数大于第二预设值,则对同一反光板的所有记录坐标取平均值,记作反光板相对所述AGV车体的第五坐标。
另外,将所述反光板在所述固定坐标系下的第六坐标与所述新地图中存在的反光板中的坐标进行匹配时,若各坐标差值在设定第二阈值内,则确认所述反光板的最终坐标,利用所述反光板的最终坐标对所述AGV车体进行定位,不但方法简单,而且定位精度高。另外,将所述反光板在所述固定坐标系下的坐标与所述新地图中存在的反光板中的坐标进行匹配 时,若各坐标差值不在设定所述第二阈值内,则所述AGV继续行驶。
所述反光板的最终坐标对所述AGV车体进行定位时,利用多边定位算法对所述AGV进行定位。
所述第一设定数量至少为两个以上;所述第二设定数量也至少为两个以上;所述第一阈值与所述第二阈值是经验值,其数值可以相同也可以不同。本实施例中,所述第一设定数量和所述第二设定数量的数量相同均为3个,因此有利于通过三边定位算法对AGV进行定位。
实施例三
基于同一发明构思,本实施例提供了第一种AGV系统,其解决问题的原理与所述AGV建图方法类似,重复之处不再赘述。
本实施例提供一种AGV系统,包括:
设置模块,用于设置固定坐标系坐标原点,记录当前里程计信息,其中所述AGV观测到第一设定数量的反光板后,将所述AGV所在位置设置为坐标原点;
匹配模块,用于在所述AGV移动到新位置后,判断观测到的反光板数目是否大于所述第一设定数量,若不大于,则所述AGV继续移动;若大于,则与所述地图中已经保存的反光板进行匹配,若匹配数量大于等于第一设定数量,则利用匹配到的反光板对所述AGV进行定位,并计算出未匹配的反光板在固定坐标系下的位置,并将其添加到所述地图中,形成新地图。
实施例四
基于同一发明构思,本实施例提供了第二种AGV系统,其解决问题的原理与所述AGV定位方法类似,重复之处不再赘述。
本实施例提供一种AGV系统,包括:
设置模块,用于设置固定坐标系坐标原点,记录当前里程计信息,其中所述AGV观测到第一设定数量的反光板后,将所述AGV所在位置设置为坐标原点;
匹配模块,用于在所述AGV移动到新位置后,判断观测到的反光板数目是否大于所述第一设定数量,若不大于,则所述AGV继续移动;若大于,则与所述地图中已经保存的反光板进行匹配,若匹配数量大于等于第一设定数量,则利用匹配到的反光板对所述AGV进行定位,并计算出 未匹配的反光板在固定坐标系下的位置,并将其添加到所述地图中,形成新地图;
定位模块,用于在所述新地图中,所述AGV车体行驶过程时继续观测所述反光板,若观测到的反光板数目小于第二设定数量,则所述AGV车体继续行驶;若观测到的反光板数目不小于所述第二设定数量,则通过所述反光板的最终坐标对所述AGV进行定位。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以 做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (12)

  1. 一种AGV建图方法,其特征在于,包括如下步骤:
    步骤S1:设置固定坐标系坐标原点,记录当前里程计信息,其中所述AGV观测到第一设定数量的反光板后,将所述AGV所在位置设置为坐标原点;
    步骤S2:在所述AGV移动到新位置后,判断观测到的反光板数目是否大于所述第一设定数量,若不大于,则所述AGV继续移动;若大于,则与所述地图中已经保存的反光板进行匹配,若匹配数量大于等于第一设定数量,则利用匹配到的反光板对所述AGV进行定位,并计算出未匹配的反光板在固定坐标系下的位置,并将其添加到所述地图中,形成新地图。
  2. 根据权利要求1所述的AGV建图方法,其特征在于:将所述AGV所在位置设置为坐标原点的方法为:以当前AGV车体坐标系为固定坐标系,读取激光传感器的数据,计算所述反光板的个数及坐标,根据所述反光板的个数及坐标确定所述AGV车体的原始坐标,将所述AGV车体的原始坐标作为坐标原点。
  3. 根据权利要求2所述的AGV建图方法,其特征在于:计算所述反光板坐标的方法为:若所述反光板的个数不大于所述第一设定数量,则不能将所述AGV所在位置设置为坐标原点,继续观测直至观测到的反光板数目大于所述第一设定数量;若所述反光板的个数大于所述第一设定数量,则记录观察次数及坐标,若观察次数大于预设值,则对同一反光板的所有记录坐标取平均值,记作反光板坐标。
  4. 根据权利要求1所述的AGV建图方法,其特征在于:与所述地图中已经保存的反光板进行匹配的方法为:在所述AGV行驶过程中,若观测到的反光板数目大于所述第一设定数量,读取激光传感器数据,利用里程计算出所述AGV在所述固定坐标系下的第一坐标,并确认所述反光板相对所述AGV车体的第二坐标,计算所述反光板在所述固定坐标系下的第三坐标,将所述反光板在所述固定坐标系下的第三坐标与所述地图中存在的反光板的原始坐标进行匹配,直至所述反光板全部匹配。
  5. 根据权利要求4所述的AGV建图方法,其特征在于:确认所述反光 板相对所述AGV车体的第二坐标的方法为:激光传感器多次观察反光板位置,记录观察次数及坐标,若观察次数大于第一预设值,则对同一反光板的所有记录坐标取平均值,记作反光板相对所述AGV车体的第二坐标。
  6. 根据权利要求4所述的AGV建图方法,其特征在于:将所述反光板在所述固定坐标系下的第三坐标与所述地图中存在的反光板的原始坐标进行匹配时,若各坐标的差值不在设定第一阈值内,则所述AGV车体继续行驶;若各坐标的差值在设定第一阈值内,则认为匹配成功,确认所述反光板的坐标,利用所述反光板的坐标对所述AGV车体进行定位,确认所述AGV车体的坐标,根据所述AGV车体的坐标确认未匹配的反光板在所述固定坐标系下的位置,并将其添加到所述地图中,直至所述反光板全部匹配。
  7. 根据权利要求6所述的AGV建图方法,其特征在于:所述反光板全部匹配完成后,建图完成,形成新地图。
  8. 一种AGV定位方法,其特征在于:包括权利要求1-7中任意一项所述的建图方法,且在建图的过程中形成新地图后,在所述新地图中,所述AGV车体行驶过程时继续观测所述反光板,若观测到的反光板数目小于第二设定数量,则所述AGV车体继续行驶;若观测到的反光板数目不小于所述第二设定数量,则通过所述反光板的最终坐标对所述AGV进行定位。
  9. 根据权利要求8所述的AGV定位方法,其特征在于:所述AGV车体行驶过程中观测所述反光板,读取激光传感器的数据,计算所述反光板的个数及坐标,利用里程计算出所述AGV车体在所述固定坐标系下的第四坐标,确认所述反光板相对所述AGV车体的第五坐标,计算所述反光板在所述固定坐标系下的第六坐标,将所述反光板在所述固定坐标系下的第六坐标与所述新地图中存在的反光板中的坐标进行匹配,最终确认所述AGV车体的最终坐标。
  10. 根据权利要求9所述的AGV定位方法,其特征在于:确认所述反光板相对所述AGV车体的第五坐标的方法为:激光传感器多次观察反光板位置,记录观察次数及坐标,若观察次数大于第二预设值,则对同一反光板的所有记录坐标取平均值,记作反光板相对所述AGV车体的第五坐标。
  11. 根据权利要求8所述的AGV定位方法,其特征在于:将所述反光板在所述固定坐标系下的第六坐标与所述新地图中存在的反光板中的坐标进行匹配时,若各坐标差值在设定第二阈值内,则确认所述反光板的最终坐标,利用所述反光板的最终坐标对所述AGV车体进行定位,若各坐标差值不在设定所述第二阈值内,则所述AGV继续行驶。
  12. 一种AGV系统,其特征在于,包括:
    设置模块,用于设置固定坐标系坐标原点,记录当前里程计信息,其中所述AGV观测到第一设定数量的反光板后,将所述AGV所在位置设置为坐标原点;
    匹配模块,用于在所述AGV移动到新位置后,判断观测到的反光板数目是否大于所述第一设定数量,若不大于,则所述AGV继续移动;若大于,则与所述地图中已经保存的反光板进行匹配,若匹配数量大于等于第一设定数量,则利用匹配到的反光板对所述AGV进行定位,并计算出未匹配的反光板在固定坐标系下的位置,并将其添加到所述地图中,形成新地图。
PCT/CN2020/131105 2020-03-19 2020-11-24 Agv建图方法和定位方法及系统 WO2021184814A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010197464.1A CN111307168A (zh) 2020-03-19 2020-03-19 Agv建图方法和定位方法及系统
CN202010197464.1 2020-03-19

Publications (1)

Publication Number Publication Date
WO2021184814A1 true WO2021184814A1 (zh) 2021-09-23

Family

ID=71158864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/131105 WO2021184814A1 (zh) 2020-03-19 2020-11-24 Agv建图方法和定位方法及系统

Country Status (2)

Country Link
CN (1) CN111307168A (zh)
WO (1) WO2021184814A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307168A (zh) * 2020-03-19 2020-06-19 苏州艾吉威机器人有限公司 Agv建图方法和定位方法及系统
CN112327312A (zh) * 2020-10-28 2021-02-05 上海高仙自动化科技发展有限公司 一种车辆位姿确定方法、装置、车辆及存储介质
CN113984065A (zh) * 2021-10-27 2022-01-28 山东亚历山大智能科技有限公司 一种用于室内机器人的反光板地图生成方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122466A (ja) * 2013-02-08 2013-06-20 Denso Corp レーダ装置
CN106843222A (zh) * 2017-03-13 2017-06-13 苏州艾吉威机器人有限公司 一种局部铺反射板的激光导航agv系统
CN106969768A (zh) * 2017-04-22 2017-07-21 深圳力子机器人有限公司 一种无轨导航agv的精确定位及停车方法
CN107817500A (zh) * 2017-07-28 2018-03-20 浙江工业大学 一种模块化舞台激光定位方法
CN109613550A (zh) * 2018-12-28 2019-04-12 芜湖哈特机器人产业技术研究院有限公司 一种基于反光板的激光雷达地图构建及定位方法
CN111307168A (zh) * 2020-03-19 2020-06-19 苏州艾吉威机器人有限公司 Agv建图方法和定位方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485421B (zh) * 2012-12-17 2015-05-21 Ind Tech Res Inst 圖資校正裝置、系統和方法
CN106200643A (zh) * 2014-02-13 2016-12-07 苏州艾吉威机器人有限公司 无反射板激光自主导航agv小车
CN105043396B (zh) * 2015-08-14 2018-02-02 北京进化者机器人科技有限公司 一种移动机器人室内自建地图的方法和系统
CN107421518B (zh) * 2017-07-29 2020-04-24 深圳力子机器人有限公司 一种无轨导航agv自动进出货车方法
CN108562908A (zh) * 2017-12-21 2018-09-21 合肥中导机器人科技有限公司 激光导航混合定位方法、机器人导航方法及激光导航系统
CN108195377B (zh) * 2017-12-22 2020-09-04 广东嘉腾机器人自动化有限公司 一种基于三角形周长匹配的反光板匹配算法
CN109613547B (zh) * 2018-12-28 2022-05-27 芜湖哈特机器人产业技术研究院有限公司 一种基于反光板的占据栅格地图构建方法
CN109613548B (zh) * 2018-12-28 2022-12-23 芜湖哈特机器人产业技术研究院有限公司 一种基于图优化的激光雷达路标地图构建方法
CN109885049B (zh) * 2019-02-12 2021-06-04 北京航空航天大学 一种基于航位推算的激光导引agv自动建图和路径匹配方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122466A (ja) * 2013-02-08 2013-06-20 Denso Corp レーダ装置
CN106843222A (zh) * 2017-03-13 2017-06-13 苏州艾吉威机器人有限公司 一种局部铺反射板的激光导航agv系统
CN106969768A (zh) * 2017-04-22 2017-07-21 深圳力子机器人有限公司 一种无轨导航agv的精确定位及停车方法
CN107817500A (zh) * 2017-07-28 2018-03-20 浙江工业大学 一种模块化舞台激光定位方法
CN109613550A (zh) * 2018-12-28 2019-04-12 芜湖哈特机器人产业技术研究院有限公司 一种基于反光板的激光雷达地图构建及定位方法
CN111307168A (zh) * 2020-03-19 2020-06-19 苏州艾吉威机器人有限公司 Agv建图方法和定位方法及系统

Also Published As

Publication number Publication date
CN111307168A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2021184814A1 (zh) Agv建图方法和定位方法及系统
JP4192940B2 (ja) 移動体用位置推定装置
EP3689695A1 (en) Vehicle position estimation device and vehicle control device
CN108227695A (zh) 自动驾驶控制装置、包括该装置的系统及其方法
EP2053860A1 (en) On-vehicle image processing device and its viewpoint conversion information generation method
US11493930B2 (en) Determining changes in marker setups for robot localization
CN114966734A (zh) 一种结合多线激光雷达的双向深度视觉惯性位姿估计方法
CN114236564B (zh) 动态环境下机器人定位的方法、机器人、装置及存储介质
EP4335710A1 (en) Traveling path boundary determination method and device, vehicle, storage medium, and terminal
CN113771839B (zh) 一种自动泊车决策规划方法及系统
CN115900730A (zh) 一种自动驾驶车辆三维点云定位方法、装置及存储介质
CN110517531A (zh) 一种基于高精度地图数据的多层停车场定位方法
CN111045433B (zh) 一种机器人的避障方法、机器人及计算机可读存储介质
JP6622436B1 (ja) 位置決め・ナビゲーション方法、機器及び記憶装置
WO2022051263A1 (en) Localization methods and architectures for an autonomous vehicle
CN110083158B (zh) 一种确定局部规划路径的方法和设备
CN112945266A (zh) 激光导航机器人及其机器人的里程计校准方法
CN116079722A (zh) 列车底检机器人底检控制方法、装置、机器人和存储介质
JP2019164005A (ja) 地図生成装置
JP2017090339A (ja) 位置記録装置
JP2022115717A (ja) 自己位置推定精度検証方法、自己位置推定システム
CN112556576A (zh) 双激光扫描仪校准方法、装置及设备
US20220206137A1 (en) Apparatus and method for generating sensor fusion track
JP2020038628A (ja) インテリジェント路側ユニットの障害物提示方法、装置および機器
US20240077316A1 (en) Lane detection system and vehicle equipped with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925557

Country of ref document: EP

Kind code of ref document: A1