WO2021184778A1 - 一种基于安全域辨识的综合能源系统规划方法 - Google Patents

一种基于安全域辨识的综合能源系统规划方法 Download PDF

Info

Publication number
WO2021184778A1
WO2021184778A1 PCT/CN2020/127854 CN2020127854W WO2021184778A1 WO 2021184778 A1 WO2021184778 A1 WO 2021184778A1 CN 2020127854 W CN2020127854 W CN 2020127854W WO 2021184778 A1 WO2021184778 A1 WO 2021184778A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy system
energy
integrated
integrated energy
energy conversion
Prior art date
Application number
PCT/CN2020/127854
Other languages
English (en)
French (fr)
Inventor
雍培
张宁
杜尔顺
王毅
康重庆
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2021184778A1 publication Critical patent/WO2021184778A1/zh
Priority to US17/551,178 priority Critical patent/US20220109304A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • This application relates to a comprehensive energy system planning method based on security domain identification, which belongs to the technical field of comprehensive energy system planning.
  • An integrated energy system is an energy system that integrates multiple forms of energy. It integrates multiple forms of energy such as fossil energy, renewable energy, and biomass energy. Through comprehensive consideration of energy production, conversion, transmission, and All aspects of the energy utilization cycle, such as storage and application, meet the needs of multiple energy sources such as cold, heat, and electricity at the same time. Since the integrated energy system can take into account the coupling and complementarity between various energy sources, compared to the independent operation of various energy forms, it can effectively improve energy utilization efficiency, reduce carbon emissions, and reduce energy utilization costs. It is the future energy system An important direction for development.
  • the purpose of this application is to propose an integrated energy system planning method based on security domain identification, which is used for unified and standardized modeling of the security domains of different integrated energy systems, and to obtain the integrated energy system explicitly and analytically
  • the safe identification results can be applied to integrated energy system planning, and the results of integrated energy system planning with optimal load capacity can be obtained.
  • the integrated energy system planning method based on security domain identification proposed in this application includes the following steps:
  • each of the energy conversion elements have a K i ports, subscript i is a number element, an integrated set of M energy system total energy Transmission channel, mark the energy transmission channel as a branch, and use the subscript b to indicate the branch number;
  • the dimension of A i is K i ⁇ M
  • Energy conversion between the i-th set of energy conversion elements has different ports strip L i, the i-th port energy obtained energy conversion element conversion relationship matrix H i, H i of dimension L i ⁇ K i, port Each row in the energy conversion relationship matrix H i describes an energy conversion relationship of the energy conversion element;
  • step (1-1) Traverse the N energy conversion elements in the integrated energy system and repeat step (1-1) to obtain the energy conversion relationship matrix of all N energy conversion elements in the integrated energy system;
  • the superscript T is the matrix transposition operation
  • port p is any one of P energy input ports
  • port q is any one of Q load output ports
  • V is the flow branched by the energy integrated energy system on the road, dimension M ⁇ 1, is an integrated energy system state variables; V in and V out are the input and output of the integrated energy system energy flow, dimension P ⁇ 1 and Q ⁇ 1;
  • ⁇ i is the feasible region of the integrated energy system under the i-th N-1 operation scenario
  • ⁇ i is the feasible constraint set of the branch under the operation scenario established in step (2-1)
  • V is the feasible region in (1)
  • V out is the output energy flow of the integrated energy system defined in (1)
  • Z is the energy conversion relationship matrix of the integrated energy system defined in step (1)
  • C out is the step (1) The output relationship matrix of the integrated energy system defined in (1);
  • the space created by the output energy of the Q output ports of the integrated energy system is defined as the output energy flow space.
  • the dimension of the output energy flow space is Q.
  • the integrated energy system is feasible in each N-1 operation scenario
  • the domain ⁇ i is a convex polyhedron in the output energy flow space.
  • the feasible domain ⁇ i of the integrated energy system under the N N-1 operating scenarios of step (2-2) is identified, Including the following steps:
  • the superscript T is the matrix transposition operation
  • step (2-3-3) The optimal solution to step (2-3-2) Make a judgment, if the optimal solution Does not belong to the set Vert′ of step (2-3-1), then Add to Vert′, and update Vert′, if the optimal solution Belonging to Vert', keep Vert'unchanged;
  • (3-1) Set G alternative plans for the integrated energy system, traverse each of the G alternative plans for the integrated energy system, repeat steps (1) and (2) , Obtain the security domains of the corresponding alternative planning schemes, and record the security domains of the g-th integrated energy system alternative planning scheme as ⁇ g ;
  • the integrated energy system planning method based on security domain identification of this application can carry out unified and standardized modeling of the security domains of different integrated energy systems.
  • the established optimization model is a linear model, and the security domain is analytical and obvious.
  • the identification results of the safety of the integrated energy system are obtained analytically and analytically, and applied to the planning of the integrated energy system.
  • the safety zone is considered in the planning stage of the integrated energy system, and the load capacity of the system is taken into consideration. Therefore, the optimal belt can be obtained. Planning results of load capacity.
  • the planning method of this application can realize the unified modeling of the security domain of the integrated energy system, adopt a standardized method to identify the security domain of the integrated energy system, with fast calculation efficiency and high identification accuracy, and can obtain analytical identification results.
  • the identified safety zone can obtain the comprehensive energy system planning result with optimal load capacity.
  • the integrated energy system planning method based on security domain identification of the present application can effectively improve the reliability of the integrated energy system when supplying load, increase the sufficiency of the integrated energy system, and reduce the probability of occurrence of load shedding events.
  • Figure 1 is a flow chart of the integrated energy system planning method based on security domain identification of this application.
  • the process block diagram of the integrated energy system planning method based on security domain identification proposed in this application is shown in Figure 1.
  • the method includes the following steps:
  • each of the energy conversion elements have a K i ports, subscript i is a number element, an integrated set of M energy system total energy Transmission channel, mark the energy transmission channel as a branch, and use the subscript b to indicate the branch number;
  • the dimension of A i is K i ⁇ M
  • Energy conversion between the i-th set of energy conversion elements has different ports strip L i, the i-th port energy obtained energy conversion element conversion relationship matrix H i, H i of dimension L i ⁇ K i, port Each row in the energy conversion relationship matrix H i describes an energy conversion relationship of the energy conversion element;
  • step (1-1) Traverse the N energy conversion elements in the integrated energy system and repeat step (1-1) to obtain the energy conversion relationship matrix of all N energy conversion elements in the integrated energy system;
  • the superscript T is the matrix transposition operation
  • port p is any one of P energy input ports
  • port q is any one of Q load output ports
  • V is the flow branched by the energy integrated energy system on the road, dimension M ⁇ 1, is an integrated energy system state variables; V in and V out are the input and output of the integrated energy system energy flow, dimension P ⁇ 1 and Q ⁇ 1;
  • ⁇ i is the feasible region of the integrated energy system under the i-th N-1 operation scenario
  • ⁇ i is the feasible constraint set of the branch under the operation scenario established in step (2-1)
  • V is the feasible region in (1)
  • V out is the output energy flow of the integrated energy system defined in (1)
  • Z is the energy conversion relationship matrix of the integrated energy system defined in step (1)
  • C out is the step (1) The output relationship matrix of the integrated energy system defined in (1);
  • the space created by the output energy of the Q output ports of the integrated energy system is defined as the output energy flow space.
  • the dimension of the output energy flow space is Q.
  • the integrated energy system is feasible in each N-1 operation scenario
  • the domain ⁇ i is a convex polyhedron in the output energy flow space.
  • the feasible domain ⁇ i of the integrated energy system under the N N-1 operating scenarios of step (2-2) is identified, Including the following steps:
  • the superscript T is the matrix transposition operation
  • step (2-3-3) The optimal solution to step (2-3-2) Make a judgment, if the optimal solution Does not belong to the set Vert' of step (2-3-1), then Add to Vert', and update Vert', if the optimal solution Belong to Vert', keep Vert'unchanged;
  • (3-1) Set G alternative plans for the integrated energy system, traverse each of the G alternative plans for the integrated energy system, repeat steps (1) and (2) , Obtain the security domains of the corresponding alternative planning schemes, and record the security domains of the g-th integrated energy system alternative planning scheme as ⁇ g ;

Abstract

本申请涉及一种基于安全域辨识的综合能源系统规划方法,属于综合能源系统规划技术领域。该方法首先建立综合能源系统能量转换关系的矩阵模型,对于综合能源系统进行统一化、规范化的描述;基于矩阵模型,计算得到考虑多能耦合的综合能源系统安全域;基于安全域,分析综合能源系统规划方案的带负荷能力,选取带负荷能力最优的方案。本申请能够实现综合能源系统安全域的统一化建模,采用标准化的方法辨识综合能源系统安全域,计算效率快、辨识精度高,能够得到解析化的辨识结果,应用辨识得到的安全域,可以获得最优带负荷能力的综合能源系统规划结果。

Description

一种基于安全域辨识的综合能源系统规划方法
相关申请的交叉引用
本申请要求清华大学于2020年3月17日提交的、发明名称为“一种基于安全域辨识的综合能源系统规划方法”的、中国专利申请号“CN202010188141.6”的优先权。
技术领域
本申请涉及一种基于安全域辨识的综合能源系统规划方法,属于综合能源系统规划技术领域。
背景技术
综合能源系统是一种将多种能源形式集成为一体的能源系统,它集成了多种化石能源、可再生能源和生物质能等多种能量形式,通过综合考虑能源的生产、转化、传输、储存和应用等能量利用周期的各个环节,同时了满足冷、热、电等多种能源的需求。由于综合能源系统能够考虑到各种能源之间的耦合和互补,相比于各种能源形式的独立运行,能够有效地提高能源利用效率,降低碳排放,减小能源利用成本,是未来能源系统发展的重要方向。
在综合能源系统中,多种能源形式的协调互补提升了能源的利用效率,并有力地促进了可再生能源的消纳。由于综合能源系统中不同能源系统之间并不独立,各个能源系统约束强耦合,使得每个能源系统无法进行单独的安全域分析。然而在规划层面,需要通过安全域分析来评估综合能源系统规划方案的带负荷能力,从而确定最优的综合能源系统规划方案。因此,需要一种能够考虑安全域的综合能源系统规划方法。然而,当前应用技术存在如下的一些问题:
1)对于传统电力系统,成熟的电力系统安全域分析方法无法直接推广到综合能源系统的安全域分析中。
2)现有综合能源系统安全域分析方法均为针对某一特定综合能源系统,不具备普适性和可移植性。由于缺乏对于综合能源系统安全域的统一化建模,导致了现有方法只能针对给定的综合能源系统具体问题具体分析。
3)现有综合能源系统安全域分析方法无法得到显式地、解析化的安全域表达。在综合能源系统的规划层面,均需要显示地、解析化的安全域表达形式,嵌入到相应的应用运行场景中。
4)在综合能源系统规划流程中,由于无法得到统一的、解析化的安全域分析结果,因 此在规划阶段难以考虑安全域分析,规划结果的带负荷能力没有保证,导致规划结果在某些运行场景下存在缺陷。
目前尚没有方法能够解决上述问题,建立基于安全域辨识的综合能源系统规划方法。
发明内容
本申请的目的是提出一种基于安全域辨识的综合能源系统规划方法,用于对不同综合能源系统的安全域进行统一化、规范化的建模,并显式地、解析化地得到综合能源系统安全的辨识结果,应用于综合能源系统规划,能够获得最优带负荷能力的综合能源系统规划结果。
本申请提出的基于安全域辨识的综合能源系统规划方法,包括以下步骤:
(1)建立描述综合能源系统中能量转换关系的矩阵模型:
设定综合能源系统中共有N个能量转换元件,并将能量转换元件记为节点,每个能量转换元件有K i个端口,下标i为元件编号,设定综合能源系统中共有M个能量传输通道,将能量传输通道记为支路,用下标b表示支路编号;
(1-1)建立第i个能量转换元件的能量转换关系矩阵,过程如下:
建立能量转换元件i的“端口-支路”能量传输关系矩阵A i(k,b):
Figure PCTCN2020127854-appb-000001
其中,A i的维度为K i×M;
设定第i个能量转换元件的不同端口之间的能量转换关系有L i条,得到第i个能量转换元件的端口能量转换关系矩阵H i,H i的维度为L i×K i,端口能量转换关系矩阵H i中的每一行描述该能量转换元件的一条能量转换关系;
根据上述“端口-支路”能量传输关系矩阵A i(k,b)和端口能量转换关系矩阵H i,得到该能量转换元件的能量转换关系矩阵Z i
Z i=H i×A i
(1-2)遍历综合能源系统中的N个能量转换元件,重复步骤(1-1),得到综合能源系统中的所有N个能量转换元件的能量转换关系矩阵;
(1-3)建立综合能源系统内部能量转换关系矩阵:
联立每一个元件的能量转换关系矩阵,得到综合能源系统内部能量转换关系矩阵Z:
Figure PCTCN2020127854-appb-000002
其中,上标T为矩阵转置运算;
(1-4)建立综合能源系统输入输出关系矩阵:
设定综合能源系统有P个能源输入端口和Q个负荷输出端口,得到综合能源系统的输入关系矩阵C in(p,b),C in(p,b)的维度为P×M,综合能源系统的输出关系矩阵C out(q,b),C out(q,b)的维度为Q×M,矩阵中每个元素的值通过如下准则确定:
Figure PCTCN2020127854-appb-000003
Figure PCTCN2020127854-appb-000004
其中,端口p为P个能源输入端口中的任意一个,端口q为Q个负荷输出端口中的任意一个;
(1-5)运用(1-3)和(1-4)计算得到的矩阵,获得综合能源系统的能量转换关系矩阵模型:
ZV=0
C inV=V in
C outV=V out
其中,V是由综合能源系统中支路上的能量流,维度为M×1,是综合能源系统的状态变量;V in和V out分别是综合能源系统的输入和输出能量流,维度为P×1和Q×1;
(2)构建N-1运行场景下的综合能源系统可行域,包括以下步骤:
(2-1)将第i个能量转换元件退出运行时的综合能源系统运行场景记为第i个N-1运行场景,建立N个与N-1运行场景相对应的支路可行约束集Φ i(i=1,2,...,N),包括以下步骤:
对于第i个N-1运行场景,相应的支路可行约束集Φ i建立方法如下:
(2-1-1)将支路可行约束集Φ i置为空集;
(2-1-2)设与第i个能量转换元件的K i个端口相连的支路集合为
Figure PCTCN2020127854-appb-000005
分别对所有
Figure PCTCN2020127854-appb-000006
的K i个端口,建立等式
Figure PCTCN2020127854-appb-000007
并将所有等式添加到支路可行约束集Φ i中,其中V b为综合能源系统中支路b上的能量流;
(2-1-3)设与第j个能量转换元件的k j个端口相连的支路集合为
Figure PCTCN2020127854-appb-000008
j≠i,分别对
Figure PCTCN2020127854-appb-000009
中的所有端口k j,建立不等式
Figure PCTCN2020127854-appb-000010
并将所有不等式添加到步骤(2-1-2)的支路可行约束集Φ i中,其中
Figure PCTCN2020127854-appb-000011
为综合能源系统中端口
Figure PCTCN2020127854-appb-000012
能量流的最大容量,遍历所有j≠i的能量转换元件,重复本步骤,得到与第i个能量转换元件的N-1运行场景相对应的支路可行约束集Φ i
(2-1-4)遍历综合能源系统中的N个能量转换元件,重复步骤(2-1-1)-步骤(2-1-3),得到N个综合能源系统的N-1运行场景相对应的支路可行约束集Φ i(i=1,2,...,N);
(2-2)建立与每个N-1运行场景相对应的综合能源系统可行域,其中第i个能量转换元件的N-1运行场景下的综合能源系统可行域的表达式为:
Ω i={V out|C outV=V out,ZV=0,V∈Φ i}
其中,Ω i为第i个N-1运行场景下的综合能源系统可行域,Φ i为步骤(2-1)中建立的该运行场景下的支路可行约束集,V是(1)中定义的综合能源系统中支路上的能量流,V out是(1)中定义的综合能源系统的输出能量流,Z是步骤(1)中定义的综合能源系统能量转换关系矩阵,C out是步骤(1)中定义的综合能源系统输出关系矩阵;
(2-3)将综合能源系统Q个输出端口的输出能量所张成的空间定义为输出能量流空间,输出能量流空间的维度为Q,每一个N-1运行场景下的综合能源系统可行域Ω i为输出能量流空间中的一个凸多面体,用求解凸多面体顶点的方法,分别对步骤(2-2)的N个N-1运行场景下的综合能源系统可行域Ω i进行辨识,包括如下步骤:
(2-3-1)设e q为输出能量流空间中第q坐标的单位方向向量,求解下述线性优化问题,得到最优解
Figure PCTCN2020127854-appb-000013
即为第q坐标轴上的可行域顶点:
Figure PCTCN2020127854-appb-000014
s.t.X q=C outV
ZV=0
V∈Φ i
遍历Q个坐标轴,得到Q个可行域顶点,该Q个顶点构成的集合Vert′组成已知可行域Ω i';
(2-3-2)记已知可行域Ω i'的表面数量为R,设d r为Ω i'中第r个表面的单位法向向量,求解如下线性优化问题,得到最优解
Figure PCTCN2020127854-appb-000015
Figure PCTCN2020127854-appb-000016
s.t.X r=C outV
ZV=0
V∈Φ i
其中上标T为矩阵转置运算;
(2-3-3)对步骤(2-3-2)的最优解
Figure PCTCN2020127854-appb-000017
进行判断,若最优解
Figure PCTCN2020127854-appb-000018
不属于步骤(2-3-1)的集合Vert′,则将
Figure PCTCN2020127854-appb-000019
添加至Vert′中,并更新Vert′,若最优解
Figure PCTCN2020127854-appb-000020
属于Vert′,则保持Vert′不变;
(2-3-4)遍历已知可行域Ω i'的R个表面,重复步骤(2-3-2)和步骤(2-3-3),完成R次计算;
(2-3-5)对步骤(2-3-4)中的计算进行判断,若在R次计算中,Vert′均没有被更新过,则使Ω i'=Ω i,进入(2-3-6),若在R次计算中,Vert'被更新过,则用步骤(2-3-3)的最后更新得到的Vert'组成已知可行域Ω i',并返回至步骤(2-3-2);
(2-3-6)遍历综合能源系统中的N个能量转换元件,重复步骤(2-3-1)-步骤(2-3-6),辨识得到综合能源系统可行域Ω i,i=1,2,...,N;
(2-4)利用下式,对(2-3)获得的N个综合能源系统N-1运行场景下的可行域取交集,得到综合能源系统安全域Ω:
Ω=Ω 1∩Ω 2∩...∩Ω N
(3)选择最优综合能源规划方案,过程如下:
(3-1)设定综合能源系统备选规划方案有G个,遍历G个综合能源系统备选规划方案中的每一个综合能源系统备选规划方案,重复步骤(1)和步骤(2),分别得到相应备选 规划方案的安全域,将第g个综合能源系统备选规划方案的安全域记为Ω g
(3-2)设定待规划综合能源系统在规划期内的负荷需求状态共有Δ种,从综合能源系统规划部门获取每一种负荷需求状态的负荷需求向量
Figure PCTCN2020127854-appb-000021
的维度为Q×1,
Figure PCTCN2020127854-appb-000022
的每一个分量代表一个输出端口的负荷需求量,同时从综合能源系统规划部门获取每一种负荷需求状态的出现概率Pro δ(δ=1,2,…,Δ),利用下式,计算第g个综合能源系统备选规划方案相对每一个负荷需求向量
Figure PCTCN2020127854-appb-000023
的适应度Y δ,g,计算方法如下:
Figure PCTCN2020127854-appb-000024
根据Y δ,g,计算第g个综合能源系统备选规划方案的负荷满足率Fit g
Figure PCTCN2020127854-appb-000025
(3-3)遍历G个综合能源系统备选规划方案,重复步骤(3-2),得到所有G个负荷满足率,选择与G个负荷满足率中最高负荷满足率相对应的综合能源系统备选规划方案,作为待综合能源系统的规划结果,实现基于安全域辨识的综合能源系统规划。
本申请提出的基于安全域辨识的综合能源系统规划方法,其优点是:
本申请的基于安全域辨识的综合能源系统规划方法,能够对不同的综合能源系统的安全域进行统一化、规范化的建模,建立的优化模型为线性模型,安全域是解析化的,并显式地、解析化地得到综合能源系统安全的辨识结果,应用于综合能源系统规划中,在综合能源系统的规划阶段考虑了安全域,将系统带负荷能力纳入了考虑,因此能够得到最优带负荷能力的规划结果。综上所述,本申请规划方法能够实现综合能源系统安全域的统一化建模,采用标准化的方法辨识综合能源系统安全域,计算效率快、辨识精度高,能够得到解析化的辨识结果,应用辨识得到的安全域,可以获得最优带负荷能力的综合能源系统规划结果。本申请的基于安全域辨识的综合能源系统规划方法,可以有效提高综合能源系统供给负荷时的可靠性,增加综合能源系统充裕度,减少切负荷事件的出现概率。
附图说明
图1为本申请的基于安全域辨识的综合能源系统规划方法的流程框图。
具体实施方式
本申请提出的基于安全域辨识的综合能源系统规划方法,其流程框图如图1所示,该方法包括以下步骤:
(1)建立描述综合能源系统中能量转换关系的矩阵模型:
设定综合能源系统中共有N个能量转换元件,并将能量转换元件记为节点,每个能量转换元件有K i个端口,下标i为元件编号,设定综合能源系统中共有M个能量传输通道,将能量传输通道记为支路,用下标b表示支路编号;
(1-1)建立第i个能量转换元件的能量转换关系矩阵,过程如下:
建立能量转换元件i的“端口-支路”能量传输关系矩阵A i(k,b):
Figure PCTCN2020127854-appb-000026
其中,A i的维度为K i×M;
设定第i个能量转换元件的不同端口之间的能量转换关系有L i条,得到第i个能量转换元件的端口能量转换关系矩阵H i,H i的维度为L i×K i,端口能量转换关系矩阵H i中的每一行描述该能量转换元件的一条能量转换关系;
根据上述“端口-支路”能量传输关系矩阵A i(k,b)和端口能量转换关系矩阵H i,得到该能量转换元件的能量转换关系矩阵Z i
Z i=H i×A i
(1-2)遍历综合能源系统中的N个能量转换元件,重复步骤(1-1),得到综合能源系统中的所有N个能量转换元件的能量转换关系矩阵;
(1-3)建立综合能源系统内部能量转换关系矩阵:
联立每一个元件的能量转换关系矩阵,得到综合能源系统内部能量转换关系矩阵Z:
Figure PCTCN2020127854-appb-000027
其中,上标T为矩阵转置运算;
(1-4)建立综合能源系统输入输出关系矩阵:
设定综合能源系统有P个能源输入端口和Q个负荷输出端口,得到综合能源系统的输 入关系矩阵C in(p,b),C in(p,b)的维度为P×M,综合能源系统的输出关系矩阵C out(q,b),C out(q,b)的维度为Q×M,矩阵中每个元素的值通过如下准则确定:
Figure PCTCN2020127854-appb-000028
Figure PCTCN2020127854-appb-000029
其中,端口p为P个能源输入端口中的任意一个,端口q为Q个负荷输出端口中的任意一个;
(1-5)运用(1-3)和(1-4)计算得到的矩阵,获得综合能源系统的能量转换关系矩阵模型:
ZV=0
C inV=V in
C outV=V out
其中,V是由综合能源系统中支路上的能量流,维度为M×1,是综合能源系统的状态变量;V in和V out分别是综合能源系统的输入和输出能量流,维度为P×1和Q×1;
(2)构建N-1运行场景下的综合能源系统可行域,包括以下步骤:
(2-1)将第i个能量转换元件退出运行时的综合能源系统运行场景记为第i个N-1运行场景,建立N个与N-1运行场景相对应的支路可行约束集Φ i(i=1,2,...,N),包括以下步骤:
对于第i个N-1运行场景,相应的支路可行约束集Φ i建立方法如下:
(2-1-1)将支路可行约束集Φ i置为空集;
(2-1-2)设与第i个能量转换元件的K i个端口相连的支路集合为
Figure PCTCN2020127854-appb-000030
分别对所有
Figure PCTCN2020127854-appb-000031
的K i个端口,建立等式
Figure PCTCN2020127854-appb-000032
并将所有等式添加到支路可行约束集Φ i中,其中V b为综合能源系统中支路b上的能量流;
(2-1-3)设与第j个能量转换元件的k j个端口相连的支路集合为
Figure PCTCN2020127854-appb-000033
j≠i,分别对
Figure PCTCN2020127854-appb-000034
中的所有端口k j,建立不等式
Figure PCTCN2020127854-appb-000035
并将所有不等式添加到步骤(2-1-2)的支路 可行约束集Φ i中,其中
Figure PCTCN2020127854-appb-000036
为综合能源系统中端口
Figure PCTCN2020127854-appb-000037
能量流的最大容量,遍历所有j≠i的能量转换元件,重复本步骤,得到与第i个能量转换元件的N-1运行场景相对应的支路可行约束集Φ i
(2-1-4)遍历综合能源系统中的N个能量转换元件,重复步骤(2-1-1)-步骤(2-1-3),得到N个综合能源系统的N-1运行场景相对应的支路可行约束集Φ i(i=1,2,...,N);
(2-2)建立与每个N-1运行场景相对应的综合能源系统可行域,其中第i个能量转换元件的N-1运行场景下的综合能源系统可行域的表达式为:
Ω i={V out|C outV=V out,ZV=0,V∈Φ i}
其中,Ω i为第i个N-1运行场景下的综合能源系统可行域,Φ i为步骤(2-1)中建立的该运行场景下的支路可行约束集,V是(1)中定义的综合能源系统中支路上的能量流,V out是(1)中定义的综合能源系统的输出能量流,Z是步骤(1)中定义的综合能源系统能量转换关系矩阵,C out是步骤(1)中定义的综合能源系统输出关系矩阵;
(2-3)将综合能源系统Q个输出端口的输出能量所张成的空间定义为输出能量流空间,输出能量流空间的维度为Q,每一个N-1运行场景下的综合能源系统可行域Ω i为输出能量流空间中的一个凸多面体,用求解凸多面体顶点的方法,分别对步骤(2-2)的N个N-1运行场景下的综合能源系统可行域Ω i进行辨识,包括如下步骤:
(2-3-1)在输出能量流空间中建立Q维直角坐标,原点为0,首先辨识Ω i在输出能量流空间中坐标轴上的可行域顶点,并构建已知可行域Ω i',设e q为输出能量流空间中第q坐标的单位方向向量,求解下述线性优化问题,得到最优解
Figure PCTCN2020127854-appb-000038
即为第q坐标轴上的可行域顶点:
Figure PCTCN2020127854-appb-000039
s.t.X q=C outV
ZV=0
V∈Φ i
遍历Q个坐标轴,得到Q个可行域顶点,该Q个顶点构成的集合Vert'组成已知可行域Ω i';
(2-3-2)记已知可行域Ω i'的表面数量为R,设d r为Ω i'中第r个表面的单位法向向量,求解如下线性优化问题,得到最优解
Figure PCTCN2020127854-appb-000040
Figure PCTCN2020127854-appb-000041
s.t.X r=C outV
ZV=0
V∈Φ i
其中上标T为矩阵转置运算;
(2-3-3)对步骤(2-3-2)的最优解
Figure PCTCN2020127854-appb-000042
进行判断,若最优解
Figure PCTCN2020127854-appb-000043
不属于步骤(2-3-1)的集合Vert',则将
Figure PCTCN2020127854-appb-000044
添加至Vert'中,并更新Vert',若最优解
Figure PCTCN2020127854-appb-000045
属于Vert',则保持Vert'不变;
(2-3-4)遍历已知可行域Ω i'的R个表面,重复步骤(2-3-2)和步骤(2-3-3),完成R次计算;
(2-3-5)对步骤(2-3-4)中的计算进行判断,若在R次计算中,Vert'均没有被更新过,则使Ω i'=Ω i,进入(2-3-6),若在R次计算中,Vert'被更新过,则用步骤(2-3-3)的最后更新得到的Vert'组成已知可行域Ω i',并返回至步骤(2-3-2);
(2-3-6)遍历综合能源系统中的N个能量转换元件,重复步骤(2-3-1)-步骤(2-3-6),辨识得到综合能源系统可行域Ω i,i=1,2,...,N;
(2-4)利用下式,对(2-3)获得的N个综合能源系统N-1运行场景下的可行域取交集,得到综合能源系统安全域Ω:
Ω=Ω 1∩Ω 2∩...∩Ω N
(3)选择最优综合能源规划方案,过程如下:
(3-1)设定综合能源系统备选规划方案有G个,遍历G个综合能源系统备选规划方案中的每一个综合能源系统备选规划方案,重复步骤(1)和步骤(2),分别得到相应备选规划方案的安全域,将第g个综合能源系统备选规划方案的安全域记为Ω g
(3-2)设定待规划综合能源系统在规划期内的负荷需求状态共有Δ种,从综合能源系统规划部门获取每一种负荷需求状态的负荷需求向量
Figure PCTCN2020127854-appb-000046
的维度为Q×1,
Figure PCTCN2020127854-appb-000047
的每一个分量代表一个输出端口的负荷需求量,同时从综合能源系统规划部门获取每一种负荷需求状态的出现概率Pro δ(δ=1,2,…,Δ),利用下式,计算第g个综合能源系统备选规划方案相对每一个负荷需求向量
Figure PCTCN2020127854-appb-000048
的适应度Y δ,g,计算方法如下:
Figure PCTCN2020127854-appb-000049
根据Y δ,g,计算第g个综合能源系统备选规划方案的负荷满足率Fit g
Figure PCTCN2020127854-appb-000050
(3-3)遍历G个综合能源系统备选规划方案,重复步骤(3-2),得到所有G个负荷满足率,选择与G个负荷满足率中最高负荷满足率相对应的综合能源系统备选规划方案,作为待综合能源系统的规划结果,实现基于安全域辨识的综合能源系统规划。

Claims (1)

  1. 一种基于安全域辨识的综合能源系统规划方法,其特征在于,该方法包括以下步骤:
    (1)建立描述综合能源系统中能量转换关系的矩阵模型:
    设定综合能源系统中共有N个能量转换元件,并将能量转换元件记为节点,每个能量转换元件有K i个端口,下标i为元件编号,设定综合能源系统中共有M个能量传输通道,将能量传输通道记为支路,用下标b表示支路编号;
    (1-1)建立第i个能量转换元件的能量转换关系矩阵,过程如下:
    建立能量转换元件i的“端口-支路”能量传输关系矩阵A i(k,b):
    Figure PCTCN2020127854-appb-100001
    其中,A i的维度为K i×M;
    设定第i个能量转换元件的不同端口之间的能量转换关系有L i条,得到第i个能量转换元件的端口能量转换关系矩阵H i,H i的维度为L i×K i,端口能量转换关系矩阵H i中的每一行描述该能量转换元件的一条能量转换关系;
    根据上述“端口-支路”能量传输关系矩阵A i(k,b)和端口能量转换关系矩阵H i,得到该能量转换元件的能量转换关系矩阵Z i
    Z i=H i×A i
    (1-2)遍历综合能源系统中的N个能量转换元件,重复步骤(1-1),得到综合能源系统中的所有N个能量转换元件的能量转换关系矩阵;
    (1-3)建立综合能源系统内部能量转换关系矩阵:
    联立每一个元件的能量转换关系矩阵,得到综合能源系统内部能量转换关系矩阵Z:
    Figure PCTCN2020127854-appb-100002
    其中,上标T为矩阵转置运算;
    (1-4)建立综合能源系统输入输出关系矩阵:
    设定综合能源系统有P个能源输入端口和Q个负荷输出端口,得到综合能源系统的输 入关系矩阵C in(p,b),C in(p,b)的维度为P×M,综合能源系统的输出关系矩阵C out(q,b),C out(q,b)的维度为Q×M,矩阵中每个元素的值通过如下准则确定:
    Figure PCTCN2020127854-appb-100003
    Figure PCTCN2020127854-appb-100004
    其中,端口p为P个能源输入端口中的任意一个,端口q为Q个负荷输出端口中的任意一个;
    (1-5)运用(1-3)和(1-4)计算得到的矩阵,获得综合能源系统的能量转换关系矩阵模型:
    ZV=0
    C inV=V in
    C outV=V out
    其中,V是由综合能源系统中支路上的能量流,维度为M×1,是综合能源系统的状态变量;V in和V out分别是综合能源系统的输入和输出能量流,维度为P×1和Q×1;
    (2)构建N-1运行场景下的综合能源系统可行域,包括以下步骤:
    (2-1)将第i个能量转换元件退出运行时的综合能源系统运行场景记为第i个N-1运行场景,建立N个与N-1运行场景相对应的支路可行约束集Φ i(i=1,2,...,N),包括以下步骤:
    对于第i个N-1运行场景,相应的支路可行约束集Φ i建立方法如下:
    (2-1-1)将支路可行约束集Φ i置为空集;
    (2-1-2)设与第i个能量转换元件的K i个端口相连的支路集合为
    Figure PCTCN2020127854-appb-100005
    分别对所有
    Figure PCTCN2020127854-appb-100006
    的K i个端口,建立等式
    Figure PCTCN2020127854-appb-100007
    并将所有等式添加到支路可行约束集Φ i中,其中V b为综合能源系统中支路b上的能量流;
    (2-1-3)设与第j个能量转换元件的k j个端口相连的支路集合为
    Figure PCTCN2020127854-appb-100008
    j≠i,分别对
    Figure PCTCN2020127854-appb-100009
    中的所有端口k j,建立不等式
    Figure PCTCN2020127854-appb-100010
    并将所有不等式添加到步骤(2-1-2)的支路 可行约束集Φ i中,其中
    Figure PCTCN2020127854-appb-100011
    为综合能源系统中端口
    Figure PCTCN2020127854-appb-100012
    能量流的最大容量,遍历所有j≠i的能量转换元件,重复本步骤,得到与第i个能量转换元件的N-1运行场景相对应的支路可行约束集Φ i
    (2-1-4)遍历综合能源系统中的N个能量转换元件,重复步骤(2-1-1)-步骤(2-1-3),得到N个综合能源系统的N-1运行场景相对应的支路可行约束集Φ i(i=1,2,...,N);
    (2-2)建立与每个N-1运行场景相对应的综合能源系统可行域,其中第i个能量转换元件的N-1运行场景下的综合能源系统可行域的表达式为:
    Ω i={V out|C outV=V out,ZV=0,V∈Φ i}
    其中,Ω i为第i个N-1运行场景下的综合能源系统可行域,Φ i为步骤(2-1)中建立的该运行场景下的支路可行约束集,V是(1)中定义的综合能源系统中支路上的能量流,V out是(1)中定义的综合能源系统的输出能量流,Z是步骤(1)中定义的综合能源系统能量转换关系矩阵,C out是步骤(1)中定义的综合能源系统输出关系矩阵;
    (2-3)将综合能源系统Q个输出端口的输出能量所张成的空间定义为输出能量流空间,输出能量流空间的维度为Q,每一个N-1运行场景下的综合能源系统可行域Ω i为输出能量流空间中的一个凸多面体,用求解凸多面体顶点的方法,分别对步骤(2-2)的N个N-1运行场景下的综合能源系统可行域Ω i进行辨识,包括如下步骤:
    (2-3-1)设e q为输出能量流空间中第q坐标的单位方向向量,求解下述线性优化问题,得到最优解
    Figure PCTCN2020127854-appb-100013
    即为第q坐标轴上的可行域顶点:
    Figure PCTCN2020127854-appb-100014
    s.t.X q=C outV
    ZV=0
    V∈Φ i
    遍历Q个坐标轴,得到Q个可行域顶点,该Q个顶点构成的集合Vert'组成已知可行域Ω i';
    (2-3-2)记已知可行域Ω i'的表面数量为R,设d r为Ω i'中第r个表面的单位法向向量,求解如下线性优化问题,得到最优解
    Figure PCTCN2020127854-appb-100015
    Figure PCTCN2020127854-appb-100016
    s.t.X r=C outV
    ZV=0
    V∈Φ i
    其中上标T为矩阵转置运算;
    (2-3-3)对步骤(2-3-2)的最优解
    Figure PCTCN2020127854-appb-100017
    进行判断,若最优解
    Figure PCTCN2020127854-appb-100018
    不属于步骤(2-3-1)的集合Vert',则将
    Figure PCTCN2020127854-appb-100019
    添加至Vert'中,并更新Vert',若最优解
    Figure PCTCN2020127854-appb-100020
    属于Vert',则保持Vert'不变;
    (2-3-4)遍历已知可行域Ω i'的R个表面,重复步骤(2-3-2)和步骤(2-3-3),完成R次计算;
    (2-3-5)对步骤(2-3-4)中的计算进行判断,若在R次计算中,Vert'均没有被更新过,则使Ω i'=Ω i,进入(2-3-6),若在R次计算中,Vert'被更新过,则用步骤(2-3-3)的最后更新得到的Vert'组成已知可行域Ω i',并返回至步骤(2-3-2);
    (2-3-6)遍历综合能源系统中的N个能量转换元件,重复步骤(2-3-1)-步骤(2-3-6),辨识得到综合能源系统可行域Ω i,i=1,2,...,N;
    (2-4)利用下式,对(2-3)获得的N个综合能源系统N-1运行场景下的可行域取交集,得到综合能源系统安全域Ω:
    Ω=Ω 1∩Ω 2∩…∩Ω N
    (3)选择最优综合能源规划方案,过程如下:
    (3-1)设定综合能源系统备选规划方案有G个,遍历G个综合能源系统备选规划方案中的每一个综合能源系统备选规划方案,重复步骤(1)和步骤(2),分别得到相应备选规划方案的安全域,将第g个综合能源系统备选规划方案的安全域记为Ω g
    (3-2)设定待规划综合能源系统在规划期内的负荷需求状态共有Δ种,从综合能源系统规划部门获取每一种负荷需求状态的负荷需求向量
    Figure PCTCN2020127854-appb-100021
    的维度为Q×1,
    Figure PCTCN2020127854-appb-100022
    的每一个分量代表一个输出端口的负荷需求量,同时从综合能源系统规划部门获取每一种负荷需求状态的出现概率Pro δ(δ=1,2,…,Δ),利用下式,计算第g个综合能源系统备选规划方案相对每一个负荷需求向量
    Figure PCTCN2020127854-appb-100023
    的适应度Y δ,g,计算方法如下:
    Figure PCTCN2020127854-appb-100024
    根据Y δ,g,计算第g个综合能源系统备选规划方案的负荷满足率Fit g
    Figure PCTCN2020127854-appb-100025
    (3-3)遍历G个综合能源系统备选规划方案,重复步骤(3-2),得到所有G个负荷满足率,选择与G个负荷满足率中最高负荷满足率相对应的综合能源系统备选规划方案,作为待综合能源系统的规划结果,实现基于安全域辨识的综合能源系统规划。
PCT/CN2020/127854 2020-03-17 2020-11-10 一种基于安全域辨识的综合能源系统规划方法 WO2021184778A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/551,178 US20220109304A1 (en) 2020-03-17 2021-12-14 Method and apparatus for multi-energy system planning based on security region identification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010188141.6A CN111415271B (zh) 2020-03-17 2020-03-17 一种基于安全域辨识的综合能源系统规划方法
CN202010188141.6 2020-03-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/551,178 Continuation US20220109304A1 (en) 2020-03-17 2021-12-14 Method and apparatus for multi-energy system planning based on security region identification

Publications (1)

Publication Number Publication Date
WO2021184778A1 true WO2021184778A1 (zh) 2021-09-23

Family

ID=71492999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127854 WO2021184778A1 (zh) 2020-03-17 2020-11-10 一种基于安全域辨识的综合能源系统规划方法

Country Status (3)

Country Link
US (1) US20220109304A1 (zh)
CN (1) CN111415271B (zh)
WO (1) WO2021184778A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111415271B (zh) * 2020-03-17 2022-10-14 清华大学 一种基于安全域辨识的综合能源系统规划方法
CN112434402B (zh) * 2020-10-22 2022-08-12 天津大学 一种区间实用化安全域建模方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109063992A (zh) * 2018-07-18 2018-12-21 国网重庆市电力公司经济技术研究院 考虑区域综合能源系统优化运行的配电网扩展规划方法
CN110232217A (zh) * 2019-05-16 2019-09-13 天津大学 一种综合能源配电系统运行域建模方法
CN111415271A (zh) * 2020-03-17 2020-07-14 清华大学 一种基于安全域辨识的综合能源系统规划方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108494015B (zh) * 2018-02-09 2020-09-25 中国科学院电工研究所 一种源-荷-储协调互动的综合能源系统设计方法
CN110322051A (zh) * 2019-06-06 2019-10-11 国网浙江省电力有限公司经济技术研究院 考虑n-1安全约束的综合能源系统优化配置方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109063992A (zh) * 2018-07-18 2018-12-21 国网重庆市电力公司经济技术研究院 考虑区域综合能源系统优化运行的配电网扩展规划方法
CN110232217A (zh) * 2019-05-16 2019-09-13 天津大学 一种综合能源配电系统运行域建模方法
CN111415271A (zh) * 2020-03-17 2020-07-14 清华大学 一种基于安全域辨识的综合能源系统规划方法

Also Published As

Publication number Publication date
CN111415271A (zh) 2020-07-14
CN111415271B (zh) 2022-10-14
US20220109304A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
Cui et al. A new and fair peer-to-peer energy sharing framework for energy buildings
WO2021184778A1 (zh) 一种基于安全域辨识的综合能源系统规划方法
CN111291963B (zh) 一种协调经济性与可靠性的园区综合能源系统规划方法
CN113746144B (zh) 一种源网荷实时交互的电碳控制方法及其智能管理系统
CN103544541B (zh) 智能配用电系统碳减排评价与测算方法
WO2019237316A1 (zh) 一种基于知识迁移的高炉煤气调度系统建模方法
WO2021208383A1 (zh) 一种定量评价区域地热供暖经济性的方法
WO2018077016A1 (zh) 一种基于价值网络的储能系统调度优化方法
Zhu et al. Optimization of zero-energy building by multi-criteria optimization method: A case study
CN111738498A (zh) 一种综合能源系统鲁棒规划方法及系统
CN111709638B (zh) 基于图论和等效电法的冷热电联供系统构建方法及系统
CN115809282A (zh) 一种变电站碳排放监测方法及系统
CN113837812B (zh) 节点电价联合概率预测方法及装置
CN116345564A (zh) 综合能源系统多时间尺度分布式协同优化调度方法及系统
Wang et al. Cross-efficiency intervals integrated ranking approach based on the generalized Fermat-Torricelli point
CN113141005B (zh) 一种面向新能源消纳的综合能源系统多时间尺度调度方法
Ni et al. A review of line loss analysis of the low-voltage distribution system
CN108564216A (zh) 基于动态规划的储能型cchp系统及其运行优化方法
Zhang et al. Load distribution optimization of multi-source district heating system based on fuzzy analytic hierarchy process
CN105447571A (zh) 一种基于遗传算法的体系结构自动优化方法
Qin et al. Hybrid physics and data-driven method for modeling and analysis of electricity–heat integrated energy systems
CN115758763A (zh) 一种计及源荷不确定性的多能流系统优化配置方法及系统
CN115907281A (zh) 计及光伏不确定性的电力系统碳排放流分析方法
Wang et al. Carbon Flow Tracing based Consumer’s Indirect Carbon Emissions Calculation
CN113222216A (zh) 冷热电负荷预测方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925555

Country of ref document: EP

Kind code of ref document: A1