WO2021184731A1 - 一种可扩容的ups用锂电池系统及其控制方法 - Google Patents

一种可扩容的ups用锂电池系统及其控制方法 Download PDF

Info

Publication number
WO2021184731A1
WO2021184731A1 PCT/CN2020/119451 CN2020119451W WO2021184731A1 WO 2021184731 A1 WO2021184731 A1 WO 2021184731A1 CN 2020119451 W CN2020119451 W CN 2020119451W WO 2021184731 A1 WO2021184731 A1 WO 2021184731A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
terminal
switch
load
adjustable load
Prior art date
Application number
PCT/CN2020/119451
Other languages
English (en)
French (fr)
Inventor
马吉富
李恒洲
Original Assignee
卧龙电气驱动集团股份有限公司
卧龙电气集团浙江灯塔电源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卧龙电气驱动集团股份有限公司, 卧龙电气集团浙江灯塔电源有限公司 filed Critical 卧龙电气驱动集团股份有限公司
Publication of WO2021184731A1 publication Critical patent/WO2021184731A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of batteries, in particular to an expandable lithium battery system for UPS and a control method thereof.
  • the existing lithium battery for UPS does not have the capacity expansion function. If multiple lithium battery modules are simply connected in parallel to expand the capacity, there will be inconsistencies in voltage and current between different lithium battery cells, and circulating current interference will occur between lithium batteries of different capacities. The characteristics of the battery pack will also change during use, which cannot be controlled reasonably, which will cause the entire UPS to fail to work normally, or may cause damage to the battery pack.
  • the present invention provides an expandable lithium battery system for UPS and a control method thereof, which can eliminate circulating current interference.
  • An expandable lithium battery system for UPS includes a battery pack, an adjustable load, a current transformer, a first switch, and a battery management system; wherein, more than one battery pack is connected in parallel with each other, and one end of the battery pack is The first terminal connected to one end of the load, the other end of the battery pack is connected to one end of the adjustable load, and the other end of the adjustable load is a second terminal connected to the other end of the load, where the adjustable load is located
  • the line passes through the coil center of the current transformer, the first end of the first switch is connected to the first terminal, the second end of the first switch is connected to the second terminal, and the The third terminal, the output terminal of the current transformer, and the adjustable load are all connected to a battery management system.
  • the battery management system When a new battery pack is inserted into the battery case, if a load is connected to the first terminal and the second terminal, the battery management system inputs a signal to the third terminal of the first switch to control the The first switch is off, the battery pack supplies power to the load and the adjustable load, the current transformer detects the actual current value on the line where the adjustable load is located, and feeds it back to the battery management system in real time, and the battery management system determines the actual current Whether the value matches the rated current value of the battery pack, if the actual current value is lower than the rated current value, after the battery management system calculates the set resistance value that the adjustable load should be adjusted to, the battery management adjusts the resistance value of the adjustable load to Set the resistance value and increase the actual current to be consistent with the rated current value; if the actual current value is higher than the rated current value, the battery management system calculates the set resistance value to which the adjustable load should be adjusted, and the battery management adjusts The resistance value of the adjustable load is adjusted to the set resistance value, and
  • the battery management system If there is no load connected to the first terminal and the second terminal, it is no load; the battery management system inputs a signal to the third terminal of the first switch to control the first switch to turn off, The battery pack supplies power to the adjustable load, and the battery management system adjusts the resistance of the adjustable load so that the actual current value on the line where the adjustable load is located is equal to the rated current value. By adjusting the adjustable load value under load and no-load conditions, the current value on the line where the adjustable load is located is changed to prevent circulating current.
  • the battery case further includes a battery case, the battery pack, the adjustable load, the current transformer, the first switch and the battery management system are all located in the battery case; the battery case is provided with a first terminal and a second terminal Two terminals.
  • the battery pack is composed of more than one battery modules in parallel.
  • a plug-in terminal for plugging in the battery pack is provided in the battery case.
  • the battery case is provided with a buckle connecting adjacent battery cases to each other on the surface of the battery case.
  • both the first terminal and the second terminal are provided with a proximity sensor connected to the battery management system.
  • the plug-in terminal includes a positive terminal and a negative terminal connected to the positive electrode and the negative electrode of the battery pack, one of the positive terminal and the negative terminal is connected to the first terminal, and the positive terminal and the negative terminal are connected to the first terminal.
  • the other of the terminals is connected to one end of the adjustable load.
  • it further includes a second switch, the second switch is connected in series with the adjustable load, and the third switch is controlled by the battery management system.
  • the battery management system By controlling the on or off state of the second switch, the safety and stability expansion of the lithium battery system for UPS is ensured.
  • the battery management system first adjusts the adjustable load to reach the preset value. After setting the resistance value, then the first switch and the second switch; if there is a load, the battery management system controls the first switch to turn off, opens the second switch, and calculates the adjustable value according to the current value detected by the current transformer The preset resistance value that the load should reach, and adjust it to prevent circulating current.
  • a method for controlling an expandable lithium battery system for UPS includes:
  • the battery management system controls the first switch to close; when the gap between the first terminal and the second terminal is Under load, the battery management system controls the first switch to be turned off.
  • the technical solution of the embodiment of the present invention supports parallel expansion of lithium batteries.
  • the lithium battery BMS determines whether there is a problem with the parallel connection of lithium batteries by detecting external voltage and current, and performs related current sharing control to ensure that the battery system continuously and stably supplies UPS power System power supply.
  • the adjustable load value under load and no-load conditions, the current value on the line where the adjustable load is located is changed to prevent circulating current.
  • Fig. 1 is a structural diagram of a lithium battery for UPS of the present invention.
  • FIG. 2 is a schematic diagram of the structure of a battery pack provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a battery pack structure from another perspective according to an embodiment of the present invention.
  • the expandable lithium battery system for UPS of this embodiment includes a battery pack 110, an adjustable load 201, a current transformer 301, a first switch 401, and a battery management system 501; wherein, more than one battery pack 110 Are connected in parallel with each other, one end of the battery pack 110 is a first terminal 601 connected to one end of the load, the other end of the battery pack 110 is connected to one end of an adjustable load 201, and the other end of the adjustable load 201 is connected to the The second terminal 602 at the other end of the load, the line where the adjustable load 201 is located passes through the coil center of the current transformer 301, the first terminal of the first switch 401 is connected to the first terminal 601, the The second terminal of the first switch 401 is connected to the second terminal 602, and the third terminal of the first switch 401, the output terminal of the current transformer, and the adjustable load are all connected to the battery management system 501.
  • more than one battery cell 111 is connected in series to form the battery pack 110.
  • the battery management system When the new battery pack 110 is inserted into the battery case 1, if a load is connected to the first terminal and the second terminal, the battery management system inputs a signal to the third terminal of the first switch to control The first switch is turned off, the battery pack 110 supplies power to the load and the adjustable load, the current transformer detects the actual current value on the line where the adjustable load is located, and feeds it back to the battery management system in real time, and the battery management system determines State whether the actual current value matches the rated current value of the battery pack.
  • the battery management system calculates the set resistance to which the adjustable load should be adjusted, and then the battery management adjusts the adjustable load When the resistance reaches the set resistance value, increase the actual current to keep the same with the rated current value; if the actual current value is higher than the rated current value, the battery management system calculates the set resistance value to which the adjustable load should be adjusted, The battery management adjusts the resistance value of the adjustable load to the set resistance value, reduces the actual current, and keeps it consistent with the rated current value.
  • the battery management system If there is no load connected to the first terminal and the second terminal, it is no load; the battery management system inputs a signal to the third terminal of the first switch to control the first switch to turn off, The battery pack 110 supplies power to the adjustable load, and the battery management system adjusts the resistance of the adjustable load so that the actual current value on the line where the adjustable load is located is equal to the rated current value. By adjusting the adjustable load value under load and no-load conditions, the current value on the line where the adjustable load is located is changed to prevent circulating current.
  • the expandable lithium battery system for UPS proposed in this embodiment can be improved as follows on the basis of the technical solution of embodiment 1: It also includes a battery case 1, the battery pack 110, an adjustable load, a current transformer, and a second A switch and a battery management system are both located in the battery case 1; the battery case 1 is provided with a first terminal and a second terminal.
  • the battery case 1 is used to carry the battery pack 110, the adjustable load, the current transformer, the first switch and the battery management system; to ensure the reliable connection of the line.
  • the expandable lithium battery system for UPS proposed in this embodiment can be improved as follows on the basis of the technical solutions of the first or second embodiment: the battery pack 110 is composed of more than one battery modules 112 in parallel.
  • the battery case 1 is provided with plug-in terminals for plugging in the battery pack 110. So that the battery pack 110 can be plugged out or plugged into the battery case 1.
  • the battery case 1 is provided with a buckle for connecting adjacent battery cases 1 to each other.
  • the buckle is used to connect two adjacent battery cases 1.
  • the expandable lithium battery system for UPS proposed in this embodiment can be improved on the basis of any of the technical solutions in the embodiments 1-3 as follows: both the first terminal and the second terminal are equipped with battery management Proximity sensor connected to the system.
  • the proximity sensor feeds back a signal to the battery management system, the battery management system controls the first switch to turn off, and the current transformer detects the actual load on the adjustable load.
  • the current value is fed back to the battery management system, and the battery management system calculates the preset resistance value of the adjustable load according to the rated current value and the size of the load, and adjusts the adjustable load to the preset resistance value; to ensure that no circulating current is generated in the line , Prevent impact on the battery pack 110.
  • the plug-in terminal includes a positive terminal connected to the positive and negative electrodes of the battery pack 110 And a negative terminal, one of the positive terminal and the negative terminal is connected to the first terminal, and the other of the positive terminal and the negative terminal is connected to one end of the adjustable load.
  • the expandable lithium battery system for UPS proposed in this embodiment can be improved as follows on the basis of any of the technical solutions in the embodiments 1-5: it further includes a second switch, which is connected in series with the adjustable load, so The third switch is controlled by the battery management system.
  • the battery management system When the new battery pack 110 is inserted into the battery case 1, if it is at no load, the battery management system first adjusts the adjustable load After reaching the preset resistance value, then the first switch and the second switch; if there is a load, the battery management system controls the first switch to turn off, opens the second switch, and calculates according to the current value detected by the current transformer The preset resistance value that the adjustable load should reach, and adjust it to prevent circulating current.
  • the terminal 411 shown in FIG. 3 is a common terminal, and the terminal 411 is provided on the battery case 1 for connecting to a load and supplying power to the load.
  • a communication terminal is also provided for reading parameter data such as voltage, current and power of the battery pack 110 in the battery case 1.
  • the control method of the expandable lithium battery system for UPS proposed in this embodiment, the expandable lithium battery system for UPS according to any one of embodiments 1-6, includes:
  • the current value detected by the current transformer is fed back to the battery management system in real time.
  • the battery management system calculates the preset resistance value of the adjustable load according to the rated current value, and adjusts the adjustable load to the corresponding preset resistance value; at both ends of the battery pack 110 Connect another battery pack 110 in parallel.
  • the battery management system controls the first switch to close; when there is a load between the first terminal and the second terminal, all The battery management system controls the first switch to be turned off.
  • the content of the invention can be used to increase the lithium battery capacity on the basis of the original UPS lithium battery configuration, reduce the initial configuration requirements of the UPS system, expand the capacity according to the load situation, and improve the original The equipment utilization rate reduces the cost.
  • the battery management system After detecting that the difference between the external voltage and the internal voltage is greater than the set value, the battery management system performs current sharing control on the outside, so that when the lithium battery is connected in parallel, there will be no high current circulating current impact, and no damage to the lithium battery, which can be normal Work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种可扩容的UPS用锂电池系统及其控制方法,属于电池技术领域。锂电池系统包括电池组(110)、可调负载(201)、电流互感器(301)、第一开关(401)和电池管理系统(501);其中,一个以上的所述电池组(110)互相并联,电池组(110)的一端为与负载一端连接的第一接线端(601),所述电池组(110)另一端连接可调负载(201)的一端,所述可调负载(201)的另一端为与所述负载另一端的第二接线端(602),可调负载(201)所在线路穿过所述电流互感器(301)的线圈中心,第一开关(401)的第一端与第一接线端(601)连接,所述第一开关(401)的第二端与第二接线端(602)连接,所述第一开关(401)的第三端、所述电流互感器(301)的输出端与所述可调负载(201)均与电池管理系统(501)连接。它可以消除环流干扰。

Description

一种可扩容的UPS用锂电池系统及其控制方法 技术领域
本发明涉及电池技术领域,尤其涉及一种可扩容的UPS用锂电池系统及其控制方法。
背景技术
现有UPS锂电池使用过程中,多采用铅酸用锂电池;当UPS对备电时间,备电电池重量的要求增加时,在实际使用过程中,需要安装,扩容,维护,更换电池组,在此过程中需要在原有配置基础上增加电池容量,而铅酸电池或者常规锂电池不具备扩容功能,那么需要将旧的电池拆除,全部换成新电池,一方面造成资金的浪费;另一方面旧电池还需断电,不能为供电设备正常供电。
现有UPS用锂电池不具备扩容功能,如果简单的将多个锂电池模块并联在一起扩容,不同锂电池单体之间存在电压、电流不一致,不同容量的锂电池之间会产生环流干扰,电池组在使用过程中也会使其特性产生变化,无法合理控制,会导致整个UPS无法正常工作,或可能造成电池组的损坏。
发明内容
1.发明要解决的技术问题
针对现有技术中的UPS用锂电池扩容时存在环流的技术问题,本发明提供了一种可扩容的UPS用锂电池系统及其控制方法,可以消除环流干扰。
2.技术方案
为解决上述问题,本发明提供的技术方案为:
一种可扩容的UPS用锂电池系统,包括电池组、可调负载、电流互感器、第一开关和电池管理系统;其中,一个以上的所述电池组互相并联,所述电池组的一端为与负载一端连接的第一接线端,所述电池组另一端连接可调负载的一端,所述可调负载的另一端为与所述负载另一端的第二接线端,所述可调负载所在线路穿过所述电流互感器的线圈中心,所述第一开关的第一端与第一接线端连接,所述第一开关的第二端与第二接线端连接,所述第一开关的第三端、 所述电流互感器的输出端与所述可调负载均与电池管理系统连接。
当新的电池组插入电池机箱后,若所述的第一接线端、第二接线端上连接有负载时,所述电池管理系统向所述第一开关的第三端输入信号,控制所述第一开关断开,电池组为所述负载、可调负载供电,电流互感器检测可调负载所在线路上的实际电流值实时反馈给所述电池管理系统,电池管理系统判断出所述实际电流值是否与电池组的额定电流值相匹配,若实际电流值低于额定电流值,电池管理系统计算出可调负载应调节到的设定阻值后,电池管理调节可调负载的阻值到设定阻值,增大所述实际电流,与额定电流值保持一致;若实际电流值高于额定电流值,电池管理系统计算出可调负载应调节到的设定阻值后,电池管理调节可调负载的阻值到设定阻值,减小所述实际电流,与额定电流值保持一致。
若所述的第一接线端、第二接线端上没有连接负载时,即空载;所述电池管理系统向所述第一开关的第三端输入信号,控制所述第一开关断开,电池组为所述可调负载供电,电池管理系统调节可调负载阻值,以使可调负载所在线路上的实际电流值与额定电流值相等。通过在带载、及空载情况下调整可调负载值,改变可调负载所在线路上的电流值,防止出现环流。
可选地,还包括电池机箱,所述电池组、可调负载、电流互感器、第一开关和电池管理系统均位于所述电池机箱内;所述电池机箱上设有第一接线端和第二接线端。
可选地,所述电池组由一个以上的电池模块并联组成。
可选地,所述电池机箱内设有用于插接所述电池组的插接端子。
可选地,所述电池机箱表面设有相邻电池机箱互相连接的卡扣。
可选地,所述第一接线端和第二接线端处均设有与电池管理系统连接的接近传感器。
可选地,所述插接端子包括与电池组的正极和负极连接的正端子和负端子,所述正端子和负端子中的一个与所述第一接线端连接,所述正端子和负端子中的另一个与可调负载的一端连接。
可选地还包括第二开关,所述第二开关与可调负载串联,所述第三开关受所述电池管理系统控制。
通过控制第二开关的开或关的状态,确保UPS用锂电池系统安全稳定扩容,当新的电池组插入电池机箱后,若处于空载,则所述电池管理系统首先调节可调负载达到预设电阻值后,再第一开关、第二开关;若带载,则电池管理系统控制所述第一开关断开,打开第二开关,根据电流互感器的检测的电流值大小,计算可调负载应达到的预设电阻值,并进行调节,防止出现环流。
一种可扩容的UPS用锂电池系统的控制方法,根据以上任一项所述的一种可扩容的UPS用锂电池系统,包括:
可选地,当所述第一接线端与第二接线端之间为空时,所述电池管理系统控制所述第一开关闭合;当所述第一接线端与第二接线端之间为负载时,所述电池管理系统控制所述第一开关断开。
3.有益效果
采用本发明提供的技术方案,与现有技术相比,具有如下有益效果:
本发明实施例的技术方案支持锂电池并联扩容,锂电池BMS通过检测外部电压及电流的方式,来判断锂电池并联是否存在问题,进行相关的均流控制,保证电池系统持续稳定的给UPS电源系统供电。通过在带载、及空载情况下调整可调负载值,改变可调负载所在线路上的电流值,防止出现环流。
附图说明
图1是本发明的UPS用锂电池结构图。
图2为本发明实施例提供的电池组结构示意图。
图3为本发明实施例提供的另一视角的电池组结构示意图。
具体实施方式
为进一步了解本发明的内容,结合附图及实施例对本发明作详细描述。
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还 需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。本发明中所述的第一、第二等词语,是为了描述本发明的技术方案方便而设置,并没有特定的限定作用,均为泛指,对本发明的技术方案不构成限定作用。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
实施例1
本实施例的一种可扩容的UPS用锂电池系统,包括电池组110、可调负载201、电流互感器301、第一开关401和电池管理系统501;其中,一个以上的所述电池组110互相并联,所述电池组110的一端为与负载一端连接的第一接线端601,所述电池组110另一端连接可调负载201的一端,所述可调负载201的另一端为与所述负载另一端的第二接线端602,所述可调负载201所在线路穿过所述电流互感器301的线圈中心,所述第一开关401的第一端与第一接线端601连接,所述第一开关401的第二端与第二接线端602连接,所述第一开关401的第三端、所述电流互感器的输出端与所述可调负载均与电池管理系统501连接。
如图1所示,一个以上的电芯111串联组成所述电池组110。
当新的电池组110插入电池机箱1后,若所述的第一接线端、第二接线端上连接有负载时,所述电池管理系统向所述第一开关的第三端输入信号,控制所述第一开关断开,电池组110为所述负载、可调负载供电,电流互感器检测可调负载所在线路上的实际电流值实时反馈给所述电池管理系统,电池管理系统判断出所述实际电流值是否与电池组的额定电流值相匹配,若实际电流值低于额定电流值,电池管理系统计算出可调负载应调节到的设定阻值后,电池管理调节可调负载的阻值到设定阻值,增大所述实际电流,与额定电流值保持一致;若实际电流值高于额定电流值,电池管理系统计算出可调负载应调节到的设定阻值后,电池管理调节可调负载的阻值到设定阻值,减小所述实际电流,与额定电流值保持一致。
若所述的第一接线端、第二接线端上没有连接负载时,即空载;所述电池 管理系统向所述第一开关的第三端输入信号,控制所述第一开关断开,电池组110为所述可调负载供电,电池管理系统调节可调负载阻值,以使可调负载所在线路上的实际电流值与额定电流值相等。通过在带载、及空载情况下调整可调负载值,改变可调负载所在线路上的电流值,防止出现环流。
实施例2
本实施例提出的一种可扩容的UPS用锂电池系统,在实施例1的技术方案基础上可改进如下:还包括电池机箱1,所述电池组110、可调负载、电流互感器、第一开关和电池管理系统均位于所述电池机箱1内;所述电池机箱1上设有第一接线端和第二接线端。所述电池机箱1用于承载电池组110、可调负载、电流互感器、第一开关和电池管理系统;确保线路可靠连接。
实施例3
本实施例提出的一种可扩容的UPS用锂电池系统,在实施例1或2的技术方案基础上可改进如下:所述电池组110由一个以上的电池模块112并联组成。
可选地改进是所述电池机箱1内设有用于插接所述电池组110的插接端子。以便电池组110从所述电池机箱1中插拔出来或插接进去。
另一可选地改进是所述电池机箱1表面设有相邻电池机箱1互相连接的卡扣。所述卡扣用于连接相邻的两个电池机箱1。
实施例4
本实施例提出的一种可扩容的UPS用锂电池系统,在实施例1-3任一技术方案基础上可改进如下:所述第一接线端和第二接线端处均设有与电池管理系统连接的接近传感器。
当负载两端与第一接线端和第二接线端连接时,所述接近传感器反馈信号给所述电池管理系统,电池管理系统控制第一开关断开,电流互感器检测可调负载上的实际电流值反馈给电池管理系统,电池管理系统根据额定电流值、负载大小计算可调负载的预设阻值,并调节所述可调负载至所述预设阻值;确保线路中不会产生环流,防止冲击电池组110。
实施例5
本实施例提出的一种可扩容的UPS用锂电池系统,在实施例1-4任一技术方案基础上可改进如下:所述插接端子包括与电池组110的正极和负极连接的正端子和负端子,所述正端子和负端子中的一个与所述第一接线端连接,所述正端子和负端子中的另一个与可调负载的一端连接。
实施例6
本实施例提出的一种可扩容的UPS用锂电池系统,在实施例1-5任一技术方案基础上可改进如下:还包括第二开关,所述第二开关与可调负载串联,所述第三开关受所述电池管理系统控制。
通过控制第二开关的开或关的状态,确保UPS用锂电池系统安全稳定扩容,当新的电池组110插入电池机箱1后,若处于空载,则所述电池管理系统首先调节可调负载达到预设电阻值后,再第一开关、第二开关;若带载,则电池管理系统控制所述第一开关断开,打开第二开关,根据电流互感器的检测的电流值大小,计算可调负载应达到的预设电阻值,并进行调节,防止出现环流。图3所示端子411为普通端子,电池机箱1上设有所述端子411,用于连接负载,为负载供电。还设有通讯端子,用于读取电池机箱1内的电池组110的电压、电流和功率等参数数据。
实施例7
本实施例提出的一种可扩容的UPS用锂电池系统的控制方法,根据实施例1-6任一项所述的一种可扩容的UPS用锂电池系统,包括:
电流互感器检测的电流值实时反馈给电池管理系统,电池管理系统根据额定电流值计算可调负载的预设阻值,并调节可调负载达到对应的预设阻值;在电池组110两端并联另一个电池组110。
当所述第一接线端与第二接线端之间为空时,所述电池管理系统控制所述第一开关闭合;当所述第一接线端与第二接线端之间为负载时,所述电池管理系统控制所述第一开关断开。
在UPS系统安装,扩容,更换电池组时,采用本发明内容,可以在原有UPS 锂电池配置的基础上,增加锂电池容量,降低UPS系统初始配置要求,根据负载情况进行扩容,提高了原有的设备利用率,降低了成本。
当检测到外部电压与内部压差大于设定值后,电池管理系统对外部进行均流控制,这样在锂电池并联时就不会产生大电流环流冲击,不会对锂电池造成损坏,可以正常工作。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离本申请构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (10)

  1. 一种可扩容的UPS用锂电池系统,其特征在于,包括电池组、可调负载、电流互感器、第一开关和电池管理系统;其中,一个以上的所述电池组互相并联,所述电池组的一端为与负载一端连接的第一接线端,所述电池组另一端连接可调负载的一端,所述可调负载的另一端为与所述负载另一端的第二接线端,所述可调负载所在线路穿过所述电流互感器的线圈中心,所述第一开关的第一端与第一接线端连接,所述第一开关的第二端与第二接线端连接,所述第一开关的第三端、所述电流互感器的输出端与所述可调负载均与电池管理系统连接。
  2. 根据权利要求1所述的一种可扩容的UPS用锂电池系统,其特征在于,还包括电池机箱,所述电池组、可调负载、电流互感器、第一开关和电池管理系统均位于所述电池机箱内;所述电池机箱上设有第一接线端和第二接线端。
  3. 根据权利要求1所述的一种可扩容的UPS用锂电池系统,其特征在于,所述电池组由一个以上的电池模块并联组成。
  4. 根据权利要求2所述的一种可扩容的UPS用锂电池系统,其特征在于,所述电池机箱内设有用于插接所述电池组的插接端子。
  5. 根据权利要求2所述的一种可扩容的UPS用锂电池系统,其特征在于,所述电池机箱表面设有相邻电池机箱互相连接的卡扣。
  6. 根据权利要求2所述的一种可扩容的UPS用锂电池系统,其特征在于,所述第一接线端和第二接线端处均设有与电池管理系统连接的接近传感器。
  7. 根据权利要求4所述的一种可扩容的UPS用锂电池系统,其特征在于,所述插接端子包括与电池组的正极和负极连接的正端子和负端子,所述正端子和负端子中的一个与所述第一接线端连接,所述正端子和负端子中的另一个与 可调负载的一端连接。
  8. 根据权利要求1-7任一项所述的一种可扩容的UPS用锂电池系统,其特征在于,还包括第二开关,所述第二开关与可调负载串联,所述第三开关受所述电池管理系统控制。
  9. 一种可扩容的UPS用锂电池系统的控制方法,其特征在于,根据权利要求1-8任一项所述的一种可扩容的UPS用锂电池系统,包括:
    电流互感器检测的电流值实时反馈给电池管理系统,电池管理系统根据额定电流值计算可调负载的预设阻值,并调节可调负载达到对应的预设阻值;在电池组两端并联另一个电池组。
  10. 根据权利要求1所述的一种可扩容的UPS用锂电池系统的控制方法,其特征在于,当所述第一接线端与第二接线端之间为空时,所述电池管理系统控制所述第一开关闭合;当所述第一接线端与第二接线端之间为负载时,所述电池管理系统控制所述第一开关断开。
PCT/CN2020/119451 2020-03-19 2020-09-30 一种可扩容的ups用锂电池系统及其控制方法 WO2021184731A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010197232.6 2020-03-19
CN202010197232.6A CN111262306A (zh) 2020-03-19 2020-03-19 一种可扩容的ups用锂电池系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2021184731A1 true WO2021184731A1 (zh) 2021-09-23

Family

ID=70953436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119451 WO2021184731A1 (zh) 2020-03-19 2020-09-30 一种可扩容的ups用锂电池系统及其控制方法

Country Status (2)

Country Link
CN (1) CN111262306A (zh)
WO (1) WO2021184731A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111262306A (zh) * 2020-03-19 2020-06-09 卧龙电气驱动集团股份有限公司 一种可扩容的ups用锂电池系统及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199583A (zh) * 2013-03-28 2013-07-10 华为技术有限公司 电池管理方法、装置和由电池供电的设备
CN104253460A (zh) * 2013-06-28 2014-12-31 东莞钜威新能源有限公司 一种电池堆及其供电控制方法
CN206099376U (zh) * 2016-04-27 2017-04-12 楼志扬 一种直接并联扩容的电池组
US20190176636A1 (en) * 2017-12-11 2019-06-13 National Chung Shan Institute Of Science And Technology Battery management and balance circuit, battery system and method of charging the battery system
CN111262306A (zh) * 2020-03-19 2020-06-09 卧龙电气驱动集团股份有限公司 一种可扩容的ups用锂电池系统及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199583A (zh) * 2013-03-28 2013-07-10 华为技术有限公司 电池管理方法、装置和由电池供电的设备
CN104253460A (zh) * 2013-06-28 2014-12-31 东莞钜威新能源有限公司 一种电池堆及其供电控制方法
CN206099376U (zh) * 2016-04-27 2017-04-12 楼志扬 一种直接并联扩容的电池组
US20190176636A1 (en) * 2017-12-11 2019-06-13 National Chung Shan Institute Of Science And Technology Battery management and balance circuit, battery system and method of charging the battery system
CN111262306A (zh) * 2020-03-19 2020-06-09 卧龙电气驱动集团股份有限公司 一种可扩容的ups用锂电池系统及其控制方法

Also Published As

Publication number Publication date
CN111262306A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
TWI472446B (zh) 混合動力電源系統
US9428075B2 (en) Battery charging management system of automated guided vehicle and battery charging management method
JP2006166615A (ja) 蓄電デバイスの電圧均等化制御システム
WO2022166161A1 (en) Electric vehicle, and control system and electric heating device thereof
JP2020114172A (ja) 鉛蓄電池の交換のためのシステム
TWM582263U (zh) 可擴展式充換電設備及其充放電單元
JP2020102916A (ja) 電力供給システムおよび電力供給方法
CN111786455A (zh) 一种用于ups的正负锂电池并机系统
WO2018086267A1 (zh) 串联电池组均衡充放电方法和电路
WO2021184731A1 (zh) 一种可扩容的ups用锂电池系统及其控制方法
JP2012182857A (ja) 直流電源装置
CN114079318B (zh) 供电控制装置、供电系统及供电方法
US20240128768A1 (en) Expandable energy storage system and expansion method thereof
CN212874675U (zh) 一种动力电池、电池系统及车辆
WO2021020029A1 (ja) 車載用電源システム
WO2024050656A1 (zh) 供电装置、方法和系统
CN116231802A (zh) 一种带有充放电管理功能的锂离子储能电池系统及电池堆
KR102330260B1 (ko) 배터리시스템 및 배터리시스템 관리방법
CN212588140U (zh) 一种用于ups的正负锂电池并机系统
CN212137307U (zh) 一种可扩容的ups用锂电池系统
WO2024045956A1 (zh) 储能系统及其电源控制方法、装置、存储介质
JP2001251777A (ja) 充放電方法
WO2023131007A1 (zh) 一种充电方法、系统及新能源汽车
JP2013192388A (ja) 組電池の放電制御システムおよび放電制御方法
JPH01298649A (ja) 燃料電池の放電制御回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926320

Country of ref document: EP

Kind code of ref document: A1