WO2021184689A1 - 模型数据处理方法、装置、设备及计算机可读存储介质 - Google Patents

模型数据处理方法、装置、设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2021184689A1
WO2021184689A1 PCT/CN2020/112464 CN2020112464W WO2021184689A1 WO 2021184689 A1 WO2021184689 A1 WO 2021184689A1 CN 2020112464 W CN2020112464 W CN 2020112464W WO 2021184689 A1 WO2021184689 A1 WO 2021184689A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
display
offset
adjusted
matrix information
Prior art date
Application number
PCT/CN2020/112464
Other languages
English (en)
French (fr)
Inventor
郑正
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2021184689A1 publication Critical patent/WO2021184689A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases

Definitions

  • This application relates to the field of data processing technology, and in particular to a model data processing method, device, equipment, and computer-readable storage medium.
  • BIM Building information model Information Modeling
  • GIS Geographic Information System
  • 3D Tiles model data such as position coordinates, angles, zoom display, etc.
  • GIS scene project This leads to low BIM data reusability and poor versatility, making each BIM data model unable to apply the derived display parameters of other models. Therefore, each BIM model must develop and design the corresponding derived display parameters to achieve a qualified model. Exporting the display effect.
  • the development cycle of this development process is long, the development cost is high, and the processing is inflexible, which greatly reduces the efficiency of data processing and makes the efficiency of data export inefficient.
  • the main purpose of this application is to provide a model data processing method, device, equipment, and computer-readable storage medium, which aims to solve the problem that traditional BIM data cannot be flexibly exported in a GIS scene, and can only be exported according to a preset method, so that the data Derive inefficient technical problems.
  • an embodiment of the present application provides a model data processing method, and the model data processing method includes:
  • Detecting a model export instruction of the model to be adjusted acquiring preset directional display parameters, and acquiring original position information of the model to be adjusted;
  • the application also provides a model data processing device, which includes:
  • the detection module is configured to, after detecting the model export instruction of the model to be adjusted, obtain preset orientation display parameters, and obtain the original position information of the model to be adjusted;
  • An offset module configured to perform an offset analysis on the model to be adjusted according to the orientation display parameter and the original position information to obtain offset matrix information
  • the adjustment module is configured to perform a model derivation operation on the model to be adjusted according to the offset matrix information.
  • the present application also provides a device, the device including: a memory, a processor, and a model data processing program stored on the memory and running on the processor, wherein:
  • Detecting a model export instruction of the model to be adjusted acquiring preset directional display parameters, and acquiring original position information of the model to be adjusted;
  • this application also provides a computer-readable storage medium
  • a model data processing program is stored on the computer-readable storage medium, and when the model data processing program is executed by a processor, the steps of the model data processing method are implemented:
  • Detecting a model export instruction of the model to be adjusted acquiring preset directional display parameters, and acquiring original position information of the model to be adjusted;
  • the preset orientation display parameters are acquired, and the original position information of the model to be adjusted is acquired; according to the orientation display parameters and the original position Information performs an offset analysis on the model to be adjusted to obtain offset matrix information; and performs a model derivation operation on the model to be adjusted according to the offset matrix information.
  • the original position information in the model to be adjusted is adjusted by the offset matrix by presetting the orientation display parameters, so that the model to be adjusted can be exported in a manner that conforms to the predetermined general display parameters, and the orientation display parameters are preset to enable all subsequent models Exports all follow the same display parameters.
  • This application improves the versatility of display parameters, and does not require developers to re-customize the configuration in the GIS scene every time for custom development, making the processing of the model data export solution more flexible and universal, and enhancing the data reusability of BIM data. Reduce the development cost, greatly improve the efficiency of data processing, thereby improving the efficiency of data export.
  • FIG. 1 is a schematic diagram of a device structure of a hardware operating environment involved in a solution of an embodiment of the application
  • FIG. 2 is a schematic flowchart of an embodiment of a method for processing model data according to the application
  • FIG. 3 is a schematic diagram of the calculation formula of the offset matrix information in the model data processing method of this application.
  • the main idea of the solution of the embodiment of this application is: in the technical solution of this application, if the model export instruction of the model to be adjusted is detected, the preset directional display parameters are obtained, and the original position information of the model to be adjusted is obtained; The orientation display parameter and the original position information perform an offset analysis on the model to be adjusted to obtain offset matrix information; and perform a model derivation operation on the model to be adjusted according to the offset matrix information.
  • the original position information in the model to be adjusted is adjusted by the offset matrix by presetting the orientation display parameters, so that the model to be adjusted can be exported in a manner that conforms to the predetermined general display parameters, and the orientation display parameters are preset to enable all subsequent models Exports all follow the same display parameters.
  • This application improves the versatility of display parameters, and does not require developers to re-customize the configuration in the GIS scene every time for custom development, making the processing of the model data export solution more flexible and universal, and enhancing the data reusability of BIM data. Reduce the development cost, greatly improve the efficiency of data processing, thereby improving the efficiency of data export.
  • the embodiments of this application take into account that due to the inability of the prior art to perform 3D
  • the parameters in the Tiles model data can be adjusted flexibly, and can only be customized and developed in GIS scene projects. This leads to the low reusability of BIM data and poor versatility, making each The BIM data model cannot use the export display parameters of other models, so each BIM model must develop and design the corresponding export display parameters before the model data export function can be realized.
  • the development cycle is long, the development cost is high, and the processing is inflexible, which greatly reduces the data. Processing efficiency makes data export inefficient.
  • the present application provides a solution that can adjust the original position information in the model to be adjusted by using the preset orientation display parameters to adjust the offset matrix, so that the model to be adjusted can be derived in a manner that conforms to the predetermined general display parameters. Display parameters so that all subsequent model exports follow the same display parameters.
  • This application improves the versatility of display parameters, and does not require developers to re-customize the configuration in the GIS scene every time for custom development, making the processing of the model data export solution more flexible and universal, and enhancing the data reusability of BIM data. Reduce the development cost, greatly improve the efficiency of data processing, thereby improving the efficiency of data export.
  • FIG. 1 is a schematic diagram of the device structure of the hardware operating environment involved in the solution of the embodiment of the present application.
  • the device in the embodiment of the present application may be a PC or a server device.
  • the device may include: a processor 1001, such as a CPU, a network interface 1004, a user interface 1003, a memory 1005, and a communication bus 1002.
  • the communication bus 1002 is configured to implement connection and communication between these components.
  • the user interface 1003 may include a display screen (Display) and an input unit such as a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 1005 may be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a magnetic disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001.
  • FIG. 1 does not constitute a limitation on the device, and may include more or fewer components than those shown in the figure, or a combination of certain components, or different component arrangements.
  • the memory 1005 as a computer storage medium may include an operating system, a network communication module, a user interface module, and a model data processing program.
  • the network interface 1004 is mainly used to connect to the back-end server and communicate with the back-end server; the user interface 1003 is mainly used to connect to the client (user side) and communicate with the client; and the processor 1001 can be used to call a model data processing program stored in the memory 1005, and perform operations in each embodiment of the model data processing method described below.
  • BIM technology refers to the technology that creates and maintains the digital information of construction facility products during the life cycle of construction (including, for example, buildings, bridges, roads, tunnels, etc.) to facilitate its engineering application.
  • the BIM model usually contains the digital components and engineering attribute information required by the construction target in the full life cycle engineering application. These components are mostly defined in the form of parameterization, and the description of the components can also be made very detailed according to requirements. .
  • All parties involved in the entire life cycle of a construction project can use BIM technology for collaborative work, improve the efficiency of communication and coordination, shorten the construction period, and reduce rework and losses caused by errors.
  • GIS technology is a system for collecting, storing, managing, analyzing and presenting geospatial information. It conducts macroscopic analysis and management of information on the entire earth space. It has strong spatial comprehensive analysis capabilities and is often used to assist engineering Planning and design, as well as various management analyses related to geographic space in the city.
  • BIM and GIS can be applied to many aspects of smart city information management, and at the same time, there are application opportunities in the entire life cycle of the project.
  • the integration of BIM and GIS is usually used for building site selection, energy design, transportation planning, structural design, indoor acoustic design, climate condition assessment, building design review and performance evaluation.
  • the integration of BIM and GIS is not only used in the new construction of buildings, but also in the renovation and renovation of old buildings.
  • Cesium is used for 3D scene display
  • 3D Tiles is a very core part of Cesium, especially for loading applications of large-scale model scene data.
  • Three-dimensional tilt models, manual modeling, BIM models, etc., can all be converted into 3D Tiles.
  • the BIM model can be customized and adjusted at will in the GIS scene. After the adjustment is completed, it is saved as the attribute data of the model itself. Then the model will be displayed according to the adjusted position and angle when used in any GIS scene.
  • the model refers to the BIM model
  • the BIM data refers to the model parameter information in the BIM model.
  • the project scenes set in this application are all in the GIS scene, and will not be repeated here.
  • the model data processing method includes:
  • Step S10 the model export instruction of the model to be adjusted is detected, preset directional display parameters are acquired, and the original position information of the model to be adjusted is acquired;
  • Step S20 performing an offset analysis on the model to be adjusted according to the orientation display parameter and the original position information to obtain offset matrix information
  • Step S30 Perform a model derivation operation on the model to be adjusted according to the offset matrix information.
  • the model data processing method is mainly applied to equipment, and the specific content is as follows:
  • Step S10 the model export instruction of the model to be adjusted is detected, preset directional display parameters are acquired, and the original position information of the model to be adjusted is acquired;
  • the BIM (Building Information Model) tool provides a model data export function for importing BIM data into a GIS (Geographic Information System) scene.
  • the user can process the model information of the model to be adjusted, and after the processing is completed, trigger the model export instruction based on the model to be adjusted to trigger the model data export function.
  • the model export instruction refers to a command triggered by a user or a developer preparing to export the model to be adjusted for display design.
  • the directional display parameters refer to the display parameters preset by the system for standardizing the model derived display effect, and belong to the fixed parameters stored in the storage unit.
  • the system equipment is the directional display parameters in the storage unit that can be directly called.
  • the directional display parameters represent the model display parameters finally displayed by the system, and are preset general display parameters. Since the display parameters of a BIM model are customized for the model, assuming that the display parameters of a are the display parameters of the A model, if the a display parameters are directly applied to the B model, it may cause the model B to appear disordered and the components to shift And other abnormal conditions, causing the export to fail.
  • the preset directional display parameters in this embodiment specify the general display state of the model, that is, the directional display parameters can meet the export display requirements of various BIM models. Therefore, the directional display parameters can be compatible with the display application effects of all BIM models, ensuring the usability of the derived display effects.
  • the directional display parameters will be stored in the system memory as fixed display parameters.
  • a model to be adjusted is also saved in the system.
  • the model to be adjusted is a display model in the 3D model, and its display parameters are not fixed during the editing and modification process of the developer.
  • the system will obtain the original position information of the model to be adjusted.
  • the original position information includes the original display position of the model to be adjusted, the original display angle, and the original zoom ratio.
  • the original position information is the position display information of the model to be adjusted in the BIM tool in the GIS scene, and refers to the three-dimensional display coordinates, the three-dimensional display angle, and the three-dimensional zoom level displayed by the model to be adjusted in the GIS scene of the BIM tool. Quantitative data.
  • the step of obtaining preset directional display parameters includes:
  • Step A1 Count the application frequency of display parameters of all historical models in the preset historical model database
  • Step A2 Obtain the optimal recommendation model with the most frequently used display parameters from all historical models
  • the acquisition of the directional display parameters can be customized by the user or developer, or can be obtained by the system based on comprehensive matching of the historical model database.
  • a historical model database is set in the system, and a large number of historical records are stored in the historical model database, that is, model data that has been generated and exported, and the operation records of these model data are recorded in the database. It is understandable that each historical model in the historical database has its own corresponding display parameter.
  • the system equipment will count the display parameter application frequency of all historical models in the historical model database.
  • the display parameter application frequency which represents the number of times that the display parameters of each historical model have been confirmed and applied.
  • the display parameters of the optimal recommendation model are used the most frequently, so it is proved that the display parameters of the optimal recommendation model can be applied to most BIM models. That is to say, the display parameters of the optimal recommendation model can basically be used at present. It meets the export and display requirements of different BIM models and is a general display parameter.
  • the historical model with the most frequently used display parameters will be obtained from all historical models. It can be understood that the most frequently used historical model proves that the display parameters of the historical model are universal. Therefore, the historical model with the most frequently used display parameters That is the optimal recommendation model.
  • the display parameter application frequency order obtained through statistics is: display parameter a>display parameter b>display parameter c, that is, display parameter a
  • the application frequency is the largest, which proves that the display parameter a is the most versatile and can be used for most models. Then the historical model A corresponding to the display parameter a is the optimal recommended model.
  • Step A3 Obtain the optimal display parameters of the optimal recommendation model, and confirm the optimal display parameters as directional display parameters.
  • all the optimal display parameters of the optimal recommendation model are acquired, including display parameters such as position information, rotation angle, zoom size, etc., that is, in this embodiment, the most frequently used display parameters in the history record are obtained.
  • the display parameters corresponding to the model are used as the optimal display parameters to further adapt to all models to be adjusted.
  • Step S20 performing an offset analysis on the model to be adjusted according to the orientation display parameter and the original position information to obtain offset matrix information
  • the original position information includes various display parameters, such as display angle, scale display zoom, display position coordinates, and so on.
  • the system needs to calculate the adjustment range according to the original position information and orientation display parameters.
  • the current display angle of the model to be adjusted is 30 degrees
  • the display angle of the directional display parameters is 45 degrees, that is, the model to be adjusted needs to be adjusted 15 degrees under the current display angle to achieve a display angle of 45 degrees .
  • the target position in FIG. 3 is the orientation display parameter
  • the original position is the original position information
  • the translation matrix is the offset matrix information. Through the analysis formula shown in Figure 3, the translation matrix can be directly obtained through the original position and the target position.
  • the orientation display parameters and the original position information will be analyzed more complicatedly and accurately through the vector angle, translation direction and other parameters, so as to obtain the offset matrix information as a reference for adjustment and correction.
  • the offset matrix information quantifies the model to be adjusted The specific parameters and methods that need to be adjusted.
  • the step of performing offset analysis on the model to be adjusted according to the orientation display parameter and the original position information to obtain offset matrix information includes:
  • Step B1 Analyze the directional display parameters to obtain the target display position, the target display angle and the target zoom ratio;
  • Step B2 Parse the original position information to obtain the original display position, the original display angle and the original zoom ratio
  • Step B3 Obtain offset matrix information according to the target display position and the original display position, the target display angle and the original display angle, and the target zoom ratio and the original zoom ratio.
  • the directional display parameters include a variety of general display parameters, such as parameters such as position, angle, and zoom ratio, and these general parameters will definitely be involved in the model to be adjusted. Therefore, the system equipment will resolve these parameters through the directional display parameters to obtain the target display position, target display angle, and target zoom ratio, which respectively refer to the fixed display position, display angle, and zoom ratio to which the final model needs to be adjusted.
  • general display parameters such as parameters such as position, angle, and zoom ratio
  • the original position information also includes the corresponding position parameters, and the system will analyze the original position information to obtain the original display position, original display angle, and original zoom ratio.
  • the original display position corresponds to the target display position
  • the original display angle corresponds to the target display angle
  • the original zoom ratio corresponds to the target zoom ratio.
  • the offset matrix information that should be adjusted for the model to be adjusted is output.
  • the original position information and the display position, the display angle, and the offset of the zoom ratio in the original position information and the orientation display parameters are the sample data that needs to be adjusted for the model to be adjusted.
  • This embodiment uses this adjustment trend in a matrix form. After quantification, the final adjustment plan can be determined more clearly.
  • Step S30 Perform a model derivation operation on the model to be adjusted according to the offset matrix information.
  • the model to be adjusted is adjusted by the offset matrix information to obtain a final display model that fully conforms to the directional display parameters, and then the model is exported.
  • the step of performing a model derivation operation on the model to be adjusted according to the offset matrix information includes:
  • Step C1 Extract the angle offset, the direction offset and the zoom offset in the offset matrix information
  • Step C2 Perform a model derivation operation on the model to be adjusted according to the angle offset, the direction offset, and the zoom offset.
  • the offset matrix information obtained after analyzing the orientation display parameters and the original position information quantifies the offset angle, offset direction and offset scaling of the model to be adjusted, that is, the offset matrix information contains the derived Display the necessary parameters of the model to be adjusted: angle offset, direction offset and zoom offset. The angular offset, direction offset and zoom offset are extracted.
  • modelMatrix m //Dynamic modification of modelMatrix
  • the angle offset, direction offset, and zoom offset can be extracted by using the above specific implementation.
  • the angle offset can determine the angle of the model offset
  • the direction offset can determine the direction of the model offset.
  • the zoom offset can determine the zoom size of the model offset. Therefore, the system equipment can perform offset adjustment on the display parameters in the model to be adjusted according to the angle offset, the direction offset, and the zoom offset, so as to obtain the adjusted model and export it.
  • step of performing a model export operation on the model to be adjusted includes:
  • the offset matrix information is analyzed, and the analyzed offset matrix information is used to perform a model derivation operation on the model to be adjusted.
  • the model to be adjusted occupies more system resources, and the offset matrix information needs to call a lot of resources for model adjustment, then the model is prone to downtime during the adjustment process, which reduces the data processing efficiency and cannot achieve model export. Therefore, it is necessary to perform resource call estimation on the offset matrix information. Due to angle adjustment, direction adjustment, zoom adjustment, etc., there is a certain correlation with the call of resources. Therefore, in the process of adjusting the model to be adjusted, the system resource call is predictable. By predicting the resource call of the model to be adjusted by predicting the offset matrix information, the resource estimated value can be obtained. However, in this embodiment, a preset warning value is set as a reference value for judging the resource estimation value.
  • the estimated resource value is greater than the preset warning value, it proves that the system resource called by the current offset matrix information exceeds the critical point of the normal operation of the system, which is likely to cause the system to crash.
  • it is necessary to analyze the offset matrix information so as to analyze the offset matrix information into segmented processing information, for example, analyze the offset matrix information into angle offset matrix information, direction offset matrix information and zoom offset matrix information, And adjust the model to be adjusted separately, that is, after executing one of the analyzed offset matrix information, the model data is saved, and the next analyzed offset matrix information is executed on the basis of the saved model, so as to remove all the offset matrix information.
  • the matrix information is completely adjusted to complete the adjustment of the model to be adjusted, and the output is exported for export operation.
  • the offset matrix information is parsed into angle offset matrix information a, direction offset matrix information b, and scaling offset matrix information c.
  • the model to be adjusted is adjusted according to a to obtain model 1.
  • the model 2 is obtained, and the adjustment according to the c on the basis of 2 obtains the model 3, and the model export operation is performed on the model 3, thereby completing the technical solution of the present application.
  • the preset orientation display parameters are acquired, and the original position information of the model to be adjusted is acquired; according to the orientation display parameters and the original position Information performs an offset analysis on the model to be adjusted to obtain offset matrix information; and performs a model derivation operation on the model to be adjusted according to the offset matrix information.
  • the original position information in the model to be adjusted is adjusted by the offset matrix by presetting the orientation display parameters, so that the model to be adjusted can be exported in a manner that conforms to the predetermined general display parameters, and the orientation display parameters are preset to enable all subsequent models Exports all follow the same display parameters.
  • This application improves the versatility of display parameters, and does not require developers to re-customize the configuration in the GIS scene every time for custom development, making the processing of the model data export solution more flexible and universal, and enhancing the data reusability of BIM data. Reduce the development cost, greatly improve the efficiency of data processing, thereby improving the efficiency of data export.
  • the method further includes:
  • Step a if it is determined that the model export instruction is a specific business instruction, extract a specific display request in the specific business instruction;
  • the original location information may include display parameters that do not exist for directional display parameters.
  • the model to be adjusted is a relatively rare and unpopular model that contains display parameters belonging to a specific service, while the directional display parameters do not include the display parameters of the specific service. Therefore, it is necessary to perform instruction judgment on the model export instruction to detect whether the model export instruction is a specific business instruction.
  • the criterion for judging whether it is a specific business instruction is to determine whether there is a specific business request in the model export instruction. If there is, it is a specific business instruction, and if not, it is not a specific business request.
  • the business item will be marked with "1" and "0" to determine whether it is a specific business instruction. If it is marked as 1, it is a specific business instruction, and if it is marked as 0, it is not a specific business instruction.
  • the system equipment will extract the specific display request in the specific business instruction.
  • Step b If it is determined that there is no specific display parameter corresponding to the specific display request among the directional display parameters, obtain a preset configuration file, and extract the specific display parameter from the preset configuration file;
  • the step of performing a model derivation operation on the model to be adjusted according to the offset matrix information includes:
  • the system equipment will check whether there is a specific display parameter corresponding to a specific display request in the directional display parameters. If so, it will directly call the specific display parameter. If not, it will obtain the preset configuration file and extract the specific display parameter from the preset configuration file. .
  • the preset configuration file may be temporarily added by the user for calling, or may be preset in the database to be called directly. Assuming that the specific display request is a request to display the mirror effect of the steel frame structure in the 3D model, the specific display parameter in the directional display parameter needs to be the mirror display parameter of the steel frame structure, and there is no mirror effect of the steel frame structure in the general directional display parameters. Display parameters.
  • This embodiment is further improved for specific services.
  • the corresponding model data solution is obtained by searching and locating the service requirements of the specific service, thereby providing a flexible configuration solution for model display, improving the flexibility of model data export, and improving Improve the efficiency of data export.
  • the step of obtaining preset directional display parameters further includes:
  • Step A4 if an edit adjustment instruction based on the directional display parameter is detected, acquire the target edit parameter in the edit adjustment instruction;
  • Step A5 Adjust the directional display parameters according to the target editing parameters, and confirm the adjusted directional display parameters as directional display parameters.
  • the directional display parameters are specified in this application, but there may be special display requirements in the actual situation.
  • the preset directional display parameters cannot perfectly realize the export effect of the model to be adjusted, and the directional display parameters need to be numerically adjusted according to business needs. Fine-tuned.
  • this embodiment provides an editing and adjusting function of directional display parameters.
  • the target editing parameters designate parameter items and parameter values that need to be adjusted and edited among the directional display parameters.
  • the system equipment will adjust the parameter items and parameter values in the corresponding directional display parameters through the target editing parameters, so as to obtain the adjusted directional display parameters, and the adjusted directional display parameters will be used as the directional display parameters for subsequent calls.
  • the user needs to adjust the directional display parameters, click the edit adjustment button and adjust and edit the parameters to be adjusted in the directional display parameters, thereby triggering the edit adjustment instruction, and the system equipment obtains the target edit parameter in the edit adjustment instruction
  • the orientation display parameters include a large number of parameter items, such as position coordinate items, rotation angle items, zoom ratio items, and so on.
  • the target editing parameter is the parameter item adjusted and edited by the user. Assuming that the target editing parameter is a zoom ratio parameter, after obtaining the zoom ratio parameter, the zoom ratio parameter item in the directional display parameter can be adjusted according to the zoom ratio parameter. If the scaling parameter is 95%, the parameter value of the scaling parameter item in the directional display parameter will be adjusted and edited to 95%, so as to obtain the adjusted directional display parameter.
  • the defect that the directional display parameters are too rigid and cannot be adjusted flexibly can be eliminated, the flexible configuration of model data processing can be realized, and the data processing efficiency can be improved.
  • an embodiment of the present application also proposes a model data processing device, the model data processing device includes:
  • the detection module is configured to, after detecting the model export instruction of the model to be adjusted, obtain preset orientation display parameters, and obtain the original position information of the model to be adjusted;
  • An offset module configured to perform an offset analysis on the model to be adjusted according to the orientation display parameter and the original position information to obtain offset matrix information
  • the adjustment module is configured to perform a model derivation operation on the model to be adjusted according to the offset matrix information.
  • the offset module includes:
  • the first analysis unit is configured to analyze the directional display parameters to obtain a target display position, a target display angle, and a target zoom ratio;
  • the second analyzing unit is configured to analyze the original position information to obtain the original display position, the original display angle, and the original zoom ratio;
  • the obtaining unit is configured to obtain offset matrix information according to the target display position and the original display position, the target display angle and the original display angle, and the target zoom ratio and the original zoom ratio.
  • the step of obtaining preset directional display parameters includes:
  • the statistical unit is configured to count the application frequency of the display parameters of all historical models in the preset historical model database
  • the obtaining unit is configured to obtain the optimal recommendation model with the most frequently used display parameters from all historical models;
  • the recommendation unit is configured to obtain the optimal display parameter of the optimal recommendation model, and confirm the optimal display parameter as a directional display parameter.
  • model data processing device further includes:
  • the business module is configured to extract a specific display request in the specific business instruction if it is determined that the model export instruction is a specific business instruction;
  • An extraction module configured to, if it is determined that there is no specific display parameter corresponding to the specific display request among the directional display parameters, obtain a preset configuration file, and extract the specific display parameter from the preset configuration file;
  • the adjustment module is further configured to perform a model derivation operation on the model to be adjusted according to the offset matrix information and the specific display parameter.
  • the detection module further includes:
  • the first adjustment unit is configured to obtain the target edit parameter in the edit adjustment instruction after detecting the edit adjustment instruction based on the directional display parameter;
  • the confirming unit is configured to adjust the directional display parameter according to the target editing parameter, and confirm the adjusted directional display parameter as the directional display parameter.
  • the adjustment module includes:
  • An extracting unit configured to extract the angular offset, the direction offset, and the zoom offset in the offset matrix information
  • the second adjustment unit is configured to perform a model derivation operation on the model to be adjusted according to the angle offset, the direction offset, and the zoom offset.
  • the second adjustment unit is further configured to perform resource call estimation processing on the offset matrix information to obtain a resource estimation value
  • the offset matrix information is analyzed, and the analyzed offset matrix information is used to perform a model derivation operation on the model to be adjusted.
  • an embodiment of the present application also proposes a device.
  • the device includes a memory 109, a processor 110, and a model data processing program stored on the memory 109 and running on the processor 110.
  • the model data processing program is executed by the processor 110.
  • the steps of each embodiment of the above-mentioned model data processing method are realized.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium may be non-volatile or volatile.
  • the computer-readable storage medium may be referred to as a computer storage medium for short.
  • the computer-readable storage medium stores a model data processing program, and the model data processing program may also be executed by a processor to implement the steps of each embodiment of the above-mentioned model data processing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Mathematical Analysis (AREA)
  • Structural Engineering (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Computational Mathematics (AREA)
  • Remote Sensing (AREA)
  • Data Mining & Analysis (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种模型数据处理方法、装置、设备及计算机可读存储介质,所述模型数据处理方法包括:若检测到待调整模型的模型导出指令,则获取预设的定向显示参数,并获取所述待调整模型的原始位置信息(S10);根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息(S20);根据所述偏移矩阵信息对所述待调整模型执行模型导出操作(S30)。

Description

模型数据处理方法、装置、设备及计算机可读存储介质
本申请要求于2020年3月16日提交中国专利局、申请号为202010185616.6,申请名称为“模型数据处理方法、装置、设备及计算机存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及数据处理技术领域,尤其涉及一种模型数据处理方法、装置、设备及计算机可读存储介质。
背景技术
建筑信息模型(Building Information Modeling,简称BIM)是建筑学、工程学及土木工程的新工具,由BIM工具导出的BIM数据用以形容那些以三维图形为主、物件导向、建筑学有关的电脑辅助设计。
发明人发现,目前BIM数据在特定的专业设计软件中设计好后,导入到B/S架构的地理信息系统(Geographic Information System,简称GIS)场景中转成3D Tiles显示,但无法对3D Tiles模型数据中的参数(如位置坐标、角度、缩放显示等)进行灵活调整,只能在GIS场景的项目中定制开发,这导致了BIM数据复用性低下,通用性较差,使得每个BIM数据模型无法应用其他模型的导出显示参数,故每个BIM模型都必须开发设计对应的导出显示参数之后才能实现合格的模型导出显示效果,这个开发过程的开发周期长且开发成本高、处理不灵活,大大降低了数据处理效率,使得数据导出效率低下。
技术解决方案
本申请的主要目的在于提供一种模型数据处理方法、装置、设备及计算机可读存储介质,旨在解决传统的BIM数据在GIS场景中无法灵活导出,只能根据预设方式进行导出,使得数据导出效率低下的技术问题。
为实现上述目的,本申请实施例提供一种模型数据处理方法,所述模型数据处理方法包括:
检测到待调整模型的模型导出指令,获取预设的定向显示参数,并获取所述待调整模型的原始位置信息;
根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息;
根据所述偏移矩阵信息对所述待调整模型执行模型导出操作。
本申请还提供一种模型数据处理装置,所述模型数据处理装置包括:
检测模块,配置为检测到待调整模型的模型导出指令后,获取预设的定向显示参数,并获取所述待调整模型的原始位置信息;
偏移模块,配置为根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息;
调整模块,配置为根据所述偏移矩阵信息对所述待调整模型执行模型导出操作。
此外,为实现上述目的,本申请还提供一种设备,所述设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的模型数据处理程序,其中:
所述模型数据处理程序被所述处理器执行时实现模型数据处理方法的步骤:
检测到待调整模型的模型导出指令,获取预设的定向显示参数,并获取所述待调整模型的原始位置信息;
根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息;
根据所述偏移矩阵信息对所述待调整模型执行模型导出操作。
此外,为实现上述目的,本申请还提供计算机可读存储介质;
所述计算机可读存储介质上存储有模型数据处理程序,所述模型数据处理程序被处理器执行时实现模型数据处理方法的步骤:
检测到待调整模型的模型导出指令,获取预设的定向显示参数,并获取所述待调整模型的原始位置信息;
根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息;
根据所述偏移矩阵信息对所述待调整模型执行模型导出操作。
本申请的技术方案中,若检测到待调整模型的模型导出指令,则获取预设的定向显示参数,并获取所述待调整模型的原始位置信息;根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息;根据所述偏移矩阵信息对所述待调整模型执行模型导出操作。本申请通过预设定向显示参数对待调整模型中的原始位置信息进行偏移矩阵调整,从而使得待调整模型能够以符合预定的通用显示参数的方式导出,通过预设定向显示参数,使得后续所有模型导出都遵循相同的显示参数。本申请提高了显示参数的通用性,不需要开发人员每次都在GIS场景下重新自定义配置进行定制开发,使得模型数据导出方案的处理更加灵活通用,增强了BIM数据的数据复用性,降低开发成本,大大提升了数据处理效率,从而提高了数据导出效率。
附图说明
图1为本申请实施例方案涉及的硬件运行环境的设备结构示意图;
图2为本申请模型数据处理方法一实施例的流程示意图;
图3为本申请模型数据处理方法中偏移矩阵信息的计算公式示意图。
本申请目的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本申请的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例方案的主要思路是:本申请的技术方案中,若检测到待调整模型的模型导出指令,则获取预设的定向显示参数,并获取所述待调整模型的原始位置信息;根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息;根据所述偏移矩阵信息对所述待调整模型执行模型导出操作。本申请通过预设定向显示参数对待调整模型中的原始位置信息进行偏移矩阵调整,从而使得待调整模型能够以符合预定的通用显示参数的方式导出,通过预设定向显示参数,使得后续所有模型导出都遵循相同的显示参数。本申请提高了显示参数的通用性,不需要开发人员每次都在GIS场景下重新自定义配置进行定制开发,使得模型数据导出方案的处理更加灵活通用,增强了BIM数据的数据复用性,降低开发成本,大大提升了数据处理效率,从而提高了数据导出效率。
本申请实施例考虑到,由于现有技术中无法对3D Tiles模型数据中的参数(如位置坐标、角度、缩放显示等)进行灵活调整,只能在GIS场景的项目中定制开发,这导致了BIM数据复用性低下,通用性较差,使得每个BIM数据模型无法应用其他模型的导出显示参数,故每个BIM模型都必须开发设计对应的导出显示参数之后才能实现模型数据导出功能,开发周期长且开发成本高、处理不灵活,大大降低了数据处理效率,使得数据导出效率低下。
本申请提供一种解决方案,可以通过预设定向显示参数对待调整模型中的原始位置信息进行偏移矩阵调整,从而使得待调整模型能够以符合预定的通用显示参数的方式导出,通过预设定向显示参数,使得后续所有模型导出都遵循相同的显示参数。本申请提高了显示参数的通用性,不需要开发人员每次都在GIS场景下重新自定义配置进行定制开发,使得模型数据导出方案的处理更加灵活通用,增强了BIM数据的数据复用性,降低开发成本,大大提升了数据处理效率,从而提高了数据导出效率。
如图1所示,图1是本申请实施例方案涉及的硬件运行环境的设备结构示意图。
本申请实施例设备可以是PC机或服务器设备。
如图1所示,该设备可以包括:处理器1001,例如CPU,网络接口1004,用户接口1003,存储器1005,通信总线1002。其中,通信总线1002配置为实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的设备结构并不构成对设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及模型数据处理程序。
在图1所示的设备中,网络接口1004主要用于连接后台服务器,与后台服务器进行数据通信;用户接口1003主要用于连接客户端(用户端),与客户端进行数据通信;而处理器1001可以用于调用存储器1005中存储的模型数据处理程序,并执行下述模型数据处理方法各个实施例中的操作。
基于上述硬件结构,提出本申请模型数据处理方法实施例。
BIM技术指的是在营建(包括如建筑物、桥梁、道路、隧道等)生命周期中,创建与维护营建设施产品数字信息,以利其工程应用的技术。BIM模型中通常包含了营建标的在全生命周期的工程应用中所需要的数字组件及其工程属性信息,这些组件多以参数化的形式定义,对组件的描述也可以根据需求而做得十分细致。建筑工程的全生命周期涉及到的各参与方,都可利用BIM技术进行协同作业,提高沟通协调的效率,来缩短工期,减少因错误所造成的返工与损失。GIS技术则是用来采集、存储、管理、分析和呈现地理空间信息的系统,对整个地球空间上的信息进行宏观的分析与管理,具有极强的空间综合分析能力,常被用来协助工程规划设计,还有城市中与地理空间有关的各类管理分析。
BIM与GIS的整合可应用于智能城市信息化管理的许多面向,同时在工程的全生命周期中皆有应用机会。在建筑物的规划设计时间,BIM和GIS的整合通常被用来做建筑物的选址、能源设计、交通规划、结构设计、室内声学设计、气候条件评估、建筑物设计审查和性能评估。BIM和GIS的整合不仅用在建筑物的新建工程,也用在对旧建筑物的整修翻新工程。
在GIS系统中,3维场景显示使用Cesium,3D Tiles是Cesium中很核心的一部分,尤其是用来实现大范围的模型场景数据的加载应用。三维倾斜模型、人工建模、BIM模型等等,都可以转换成3D Tiles。
目前BIM数据在特定的专业设计软件(Revit、Bentley、Tekla等)中设计好后,导入到B/S架构的GIS场景中转成3D Tiles显示,若希望对3D Tiles模型数据位置(坐标)、角度、缩放显示等调整,只能在GIS项目定制开发,没有复用性,周期长、开发成本高、没有灵活性;目前业内B/S架构 GIS软件对此问题处理都是直接调整modelMatrix属性值,但这样处理不够灵活、通用效果差。
本申请是对BIM模型在GIS场景可随意定制化调整、调整完成后保存为模型本身属性数据,然后模型在任何GIS场景使用,都会按调整后的位置、角度显示。在本申请中,模型指代的是BIM模型,BIM数据指的是BIM模型中的模型参数信息,此外本申请中所设定的项目场景均在GIS场景下,在此不作赘述。
本申请提供一种模型数据处理方法,在模型数据处理方法一实施例中,参照图2,所述模型数据处理方法包括:
步骤S10,检测到待调整模型的模型导出指令,获取预设的定向显示参数,并获取所述待调整模型的原始位置信息;
步骤S20,根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息;
步骤S30,根据所述偏移矩阵信息对所述待调整模型执行模型导出操作。
该模型数据处理方法主要应用于设备上,具体内容如下:
步骤S10,检测到待调整模型的模型导出指令,获取预设的定向显示参数,并获取所述待调整模型的原始位置信息;
本申请中,BIM(即建筑信息模型)工具提供了将BIM数据导入到GIS(即地理信息系统)场景的模型数据导出功能。用户可对待调整模型进行模型信息处理,并在处理完成之后,基于待调整模型触发模型导出指令,以触发模型数据导出功能。所述模型导出指令指的是用户或开发人员准备将待调整模型导出进行展示设计所触发的命令。所述定向显示参数指的是系统预先设置的用于规范模型导出显示效果的显示参数,属于保存在存储单元中的固定参数,系统设备为可直接调用存储单元中的定向显示参数。在本实施例中,定向显示参数代表了系统最终显示的模型显示参数,是预设的通用显示参数。由于一个BIM模型的显示参数是针对该模型所定制的,假设a显示参数是A模型的显示参数,如果直接将a显示参数应用到B模型,可能会造成B模型出现模型显示错乱,部件移位等异常状况,造成导出失败。而本实施例预设的定向显示参数规定了模型的通用显示状态,即定向显示参数能够满足各种BIM模型的导出显示需求。因此定向显示参数能够兼容所有BIM模型的显示应用效果,保障导出显示效果的可用性。所述定向显示参数将作为固定的显示参数保存在系统存储器中。同时系统中还保存有待调整模型,所述待调整模型是3D模型中的显示模型,在开发人员编辑修改过程中其显示参数是不固定的。为了对待调整模型进行调整,系统将获取待调整模型的原始位置信息。所述原始位置信息中包括了待调整模型的原始显示位置,原始显示角度和原始缩放比例。所述原始位置信息是BIM工具在GIS场景下待调整模型的位置显示信息,指的是待调整模型在BIM工具的GIS场景下待调整模型所显示的三维显示坐标,三维显示角度和三维缩放程度的量化数据。
具体地,所述获取预设的定向显示参数的步骤包括:
步骤A1,统计预设的历史模型数据库中所有历史模型的显示参数应用频次;
步骤A2,从所有历史模型中获取显示参数应用频次最多的最优推荐模型;
定向显示参数的获取可以是用户或开发人员自定义的,也可以是系统根据历史模型数据库综合匹配获得的。在系统中设置有历史模型数据库,历史模型数据库中保存在大量历史记录,即曾经生成导出的模型数据,这些模型数据的操作记录都记录在数据库中。可以理解的是,历史数据库中每一个历史模型都有各自对应的显示参数,在本实施例中,系统设备将统计出历史模型数据库中所有历史模型的显示参数应用频次,所述显示参数应用频次,即代表各历史模型的显示参数被确认应用的次数。可以理解的是,最优推荐模型的显示参数被应用频次最多,那么证明该最优推荐模型的显示参数能够适用于大部分的BIM模型,也就是说,最优推荐模型的显示参数目前基本可以满足不同BIM模型的导出显示需求,属于通用显示参数。
本实施例将从所有历史模型中获取显示参数应用频次最多的历史模型,可以理解的是,被应用频次最多,证明该历史模型的显示参数具备通用性,因此该显示参数应用频次最多的历史模型即为最优推荐模型。例如数据库中有不同历史模型的显示参数a,显示参数b和显示参数c,通过统计获得显示参数应用频次排序为:显示参数a>显示参数b>显示参数c,也就是说,显示参数a的应用频次最大,证明显示参数a是通用性最强,能够为绝大部分模型引用输出,那么显示参数a对应的历史模型A即为最优推荐模型。
步骤A3,获取所述最优推荐模型的最优显示参数,并将所述最优显示参数确认为定向显示参数。
在确定最优推荐模型之后,获取到所述最优推荐模型的所有最优显示参数,包括位置信息,旋转角度,缩放大小等等显示参数,即本实施例将历史记录中被应用次数最多的模型对应的显示参数作为最优显示参数,以进一步适配所有待调整模型上。
步骤S20,根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息;
原始位置信息中包括各种显示参数,如显示角度,比例显示缩放,显示位置坐标等等。系统需要根据原始位置信息和定向显示参数进行计算获取到调整幅度。例如,待调整模型当前的显示角度是30度,而定向显示参数的显示角度为45度,也就是说,待调整模型需要在当前的显示角度下再调整15度,以达到45度的显示角度。当然,以上仅为举例,参照图3,图3中的目标位置即为定向显示参数,原始位置即为原始位置信息,平移矩阵即为偏移矩阵信息。通过图3所示的分析公式,通过原始位置和目标位置,可直接获取到平移矩阵。在分析过程中,定向显示参数和原始位置信息会通过矢量角度,平移方向等参数进行更复杂准确的分析,从而获得作为调整修正参考的偏移矩阵信息,该偏移矩阵信息量化了待调整模型所需要调整的具体参数和方式。
具体地,所述根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息的步骤包括:
步骤B1,解析所述定向显示参数,以获得目标显示位置,目标显示角度和目标缩放比例;
步骤B2,解析所述原始位置信息,以获得原始显示位置,原始显示角度和原始缩放比例;
步骤B3,根据所述目标显示位置和所述原始显示位置,所述目标显示角度和所述原始显示角度,以及所述目标缩放比例和所述原始缩放比例,获得偏移矩阵信息。
具体地,定向显示参数中包括多种通用显示参数,例如位置,角度,缩放比例等参数,这些通用参数在待调整模型中一定会涉及到。因此系统设备将通过定向显示参数中解析出这些参数,得到目标显示位置,目标显示角度和目标缩放比例,分别指代最终模型需要调整到的固定显示位置,显示角度和缩放比例。
原始位置信息中也包括对应的位置参数,系统将解析原始位置信息从而得到原始显示位置,原始显示角度和原始缩放比例。所述原始显示位置对应目标显示位置,原始显示角度对应目标显示角度,原始缩放比例对应目标缩放比例。
参考目标显示位置,对原始显示位置进行偏移修正,以调整待调整模型的原始显示位置,同理根据目标显示角度和目标缩放比例分别调整待调整模型的原始显示角度和原始缩放比例,从而计算出待调整模型应进行调整的偏移矩阵信息。可以理解的是,原始位置信息和定向显示参数中的显示位置,显示角度和缩放比例的偏移,即为待调整模型需要执行调整的样本数据,本实施例通过将这种调整趋势以矩阵形式量化出来,可以更加明显地确定最终的调整方案。
步骤S30,根据所述偏移矩阵信息对所述待调整模型执行模型导出操作。
在获取到偏移矩阵信息之后,由偏移矩阵信息对待调整模型进行调整,以获得完全符合定向显示参数的最终显示模型,此时再将模型导出。
具体地,所述根据所述偏移矩阵信息对所述待调整模型执行模型导出操作的步骤包括:
步骤C1,提取所述偏移矩阵信息中的角度偏移量,方向偏移量和缩放偏移量;
步骤C2,根据所述角度偏移量,所述方向偏移量和所述缩放偏移量,对所述待调整模型执行模型导出操作。
在本实施例中,经过定向显示参数和原始位置信息分析过后得到的偏移矩阵信息量化了待调整模型的偏移角度,偏移方向和偏移缩放量,即偏移矩阵信息中包含了导出显示待调整模型的必要参数:角度偏移量,方向偏移量和缩放偏移量。提取出所述角度偏移量,方向偏移量和缩放偏移量。
例如,将矩阵信息赋给参数m,然后将参数m传给Cesium方法,而使得模型数据发布在新场景时位置、角度等信息发生变化;具体实现如下:
var tileset = viewer.scene.primitives.add(new Cesium.Cesium3DTileset({
url: 'Scene/testm3DTiles.json',
maximumScreenSpaceError: 2,
maximumNumberOfLoadedTiles: 1000,
modelMatrix: m  //动态修改modelMatrix
}));
利用以上具体实现即可提取出角度偏移量,方向偏移量和缩放偏移量,由角度偏移量可确定模型偏移的角度,由方向偏移量可确定模型偏移的方向,由缩放偏移量可确定模型偏移的缩放大小。因此系统设备可依据角度偏移量,所述方向偏移量和所述缩放偏移量,对待调整模型中的显示参数进行偏移调整,以得到调整后的模型并导出。
进一步地,所述对所述待调整模型执行模型导出操作的步骤包括:
对所述偏移矩阵信息进行资源调用预估处理,以获得资源预估值;
若确定所述资源预估值大于预设警戒值,则对所述偏移矩阵信息进行解析,并以解析后的偏移矩阵信息对所述待调整模型执行模型导出操作。
假设待调整模型占用了较多的系统资源,同时偏移矩阵信息需要调用大量的资源进行模型调整,那么模型在调整过程中容易发生宕机的情况,从而降低数据处理效率,无法实现模型导出。因此需要对偏移矩阵信息进行资源调用预估。由于角度调整,方向调整和缩放调整等与资源的调用呈现一定的相关性。因此对待调整模型进行调整的过程中,系统资源调用是可以预测的。通过预估偏移矩阵信息对待调整模型的资源调用,可获得资源预估值。而本实施例设置了预设警戒值作为资源预估值的判断参考值。当资源预估值大于预设警戒值,证明当前偏移矩阵信息所调用的系统资源超过系统正常运行的临界点,容易造成系统崩溃宕机。此时需要对偏移矩阵信息进行解析,从而将偏移矩阵信息解析为分段处理信息,例如将偏移矩阵信息解析成角度偏移矩阵信息,方向偏移矩阵信息和缩放偏移矩阵信息,并分别对待调整模型进行调整,即每执行完其中一个解析后的偏移矩阵信息,即进行模型数据保存,并在保存的模型基础上执行下一个解析后的偏移矩阵信息,从而将所有偏移矩阵信息完整执行调整,以完成对待调整模型的完全调整,并输出进行导出操作。
例如将偏移矩阵信息解析为角度偏移矩阵信息a,方向偏移矩阵信息b和缩放偏移矩阵信息c,在待调整模型的基础上根据a对待调整模型进行调整,得到模型1,在1的基础上根据b进行调整,得到模型2,在2的基础上根据c进行调整,得到模型3,对模型3执行模型导出操作,从而完成本申请的技术方案。
本申请的技术方案中,若检测到待调整模型的模型导出指令,则获取预设的定向显示参数,并获取所述待调整模型的原始位置信息;根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息;根据所述偏移矩阵信息对所述待调整模型执行模型导出操作。本申请通过预设定向显示参数对待调整模型中的原始位置信息进行偏移矩阵调整,从而使得待调整模型能够以符合预定的通用显示参数的方式导出,通过预设定向显示参数,使得后续所有模型导出都遵循相同的显示参数。本申请提高了显示参数的通用性,不需要开发人员每次都在GIS场景下重新自定义配置进行定制开发,使得模型数据导出方案的处理更加灵活通用,增强了BIM数据的数据复用性,降低开发成本,大大提升了数据处理效率,从而提高了数据导出效率。
进一步地,基于第一实施例,提出本申请模型数据处理方法的第二实施例,在该实施例中,所述获取预设的定向显示参数的步骤之后还包括:
步骤a,若确定所述模型导出指令为特定业务指令,则提取所述特定业务指令中的特定显示请求;
原始位置信息中可能包括定向显示参数不存在的显示参数,例如待调整模型为比较少见的冷门模型,包含着属于特定业务的显示参数,而定向显示参数中并不包括该特定业务的显示参数。因此需要对模型导出指令进行指令判断,以检测模型导出指令是否为特定业务指令。判断是否是特定业务指令的标准是确定模型导出指令中有没有特定业务请求,若有,则为特定业务指令,若没有,则不是特定业务请求。在模型导出指令中,业务项将通过标记“1”和“0”来确定是否为特定业务指令。若标记为1,则为特定业务指令,标记为0,则不为特定业务指令。在确定是特定业务指令时,系统设备将提取特定业务指令中的特定显示请求。
步骤b,若确定所述定向显示参数中不存在与所述特定显示请求对应的特定显示参数,则获取预设配置文件,并从所述预设配置文件中提取特定显示参数;
所述根据所述偏移矩阵信息对所述待调整模型执行模型导出操作的步骤包括:
根据所述偏移矩阵信息和所述特定显示参数对所述待调整模型执行模型导出操作。
系统设备将检查定向显示参数中是否有特定显示请求对应的特定显示参数,若有,则直接调用特定显示参数,若没有,则获取预设配置文件,从预设配置文件中提取出特定显示参数。所述预设配置文件可以是用户临时添加以供调用的,也可以是预先设置在数据库中直接调用。假设特定显示请求为请求显示3D模型中钢架结构的镜面效果,则需要在定向显示参数中特定显示参数为钢架结构镜面显示参数,而通用的定向显示参数中并不存在钢架结构镜面效果显示参数,此时需要获取预设配置文件,从预设配置文件中提取特定显示参数。所述预设配置文件中存在该类特定显示参数,进而将特定显示参数从预设配置文件中提取出来,并结合后续偏移矩阵信息,对待调整模型执行导出操作。
本实施例针对特定业务进一步进行改进,通过对特定业务的业务需求进行查找和定位,得到对应的模型数据解决方案,从而为模型显示提供了灵活配置方案,提高了模型数据导出的灵活性,提高了数据导出效率。
进一步地,基于第一实施例,提出本申请模型数据处理方法的第三实施例,在该实施例中,所述获取预设的定向显示参数的步骤还包括:
步骤A4,若检测到基于定向显示参数的编辑调整指令,则获取所述编辑调整指令中的目标编辑参数;
步骤A5,根据所述目标编辑参数调整所述定向显示参数,并将调整后的定向显示参数确认为定向显示参数。
本申请中指定了定向显示参数,但现实情况中可能存在特殊的显示要求,例如预设的定向显示参数并不能完美地实现待调整模型的导出效果,而根据业务需求需要对定向显示参数进行数值微调。此时,本实施例提供一种定向显示参数的编辑调整功能。通过在定向显示参数上触发编辑调整指令,在本实施例中检测到编辑调整指令时,将获取到编辑调整指令中的目标编辑参数。所述目标编辑参数指定了定向显示参数中需要进行调整编辑的参数项以及参数值。系统设备将通过目标编辑参数调整对应定向显示参数中的参数项以及参数值,从而得到调整后的定向显示参数,而调整后的定向显示参数将作为定向显示参数,以供后续调用。
例如用户对定向显示参数中有调整需求,通过点击编辑调整按钮并对定向显示参数中要调整的参数进行调整编辑,从而触发编辑调整指令,系统设备则获取到该编辑调整指令中的目标编辑参数,可以理解的是,定向显示参数中包括了大量的参数项,如位置坐标项,旋转角度项,缩放比例项等等。所述目标编辑参数即为用户调整编辑的参数项,假设目标编辑参数为缩放比例参数,则获取到缩放比例参数之后,即可根据缩放比例参数调整定向显示参数中的缩放比例参数项,假设指定缩放比例参数为95%,则定向显示参数中缩放比例参数项的参数值将被调整编辑为95%,从而得到调整后定向显示参数。
通过以上方案中针对定向显示参数的编辑调整方案,即可消除定向显示参数过于僵化无法灵活调整的缺陷,实现模型数据处理的灵活配置,提高数据处理效率。
此外,本申请实施例还提出一种模型数据处理装置,所述模型数据处理装置包括:
检测模块,配置为检测到待调整模型的模型导出指令后,获取预设的定向显示参数,并获取所述待调整模型的原始位置信息;
偏移模块,配置为根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息;
调整模块,配置为根据所述偏移矩阵信息对所述待调整模型执行模型导出操作。
可选地,所述偏移模块包括:
第一解析单元,配置为解析所述定向显示参数,以获得目标显示位置,目标显示角度和目标缩放比例;
第二解析单元,配置为解析所述原始位置信息,以获得原始显示位置,原始显示角度和原始缩放比例;
获得单元,配置为根据所述目标显示位置和所述原始显示位置,所述目标显示角度和所述原始显示角度,以及所述目标缩放比例和所述原始缩放比例,获得偏移矩阵信息。
可选地,所述获取预设的定向显示参数的步骤包括:
统计单元,配置为统计预设的历史模型数据库中所有历史模型的显示参数应用频次;
获取单元,配置为从所有历史模型中获取显示参数应用频次最多的最优推荐模型;
推荐单元,配置为获取所述最优推荐模型的最优显示参数,并将所述最优显示参数确认为定向显示参数。
可选地,所述模型数据处理装置还包括:
业务模块,配置为若确定所述模型导出指令为特定业务指令,则提取所述特定业务指令中的特定显示请求;
提取模块,配置为若确定所述定向显示参数中不存在与所述特定显示请求对应的特定显示参数,则获取预设配置文件,并从所述预设配置文件中提取特定显示参数;
所述调整模块还配置为根据所述偏移矩阵信息和所述特定显示参数对所述待调整模型执行模型导出操作。
可选地,所述检测模块还包括:
第一调整单元,配置为检测到基于定向显示参数的编辑调整指令后,获取所述编辑调整指令中的目标编辑参数;
确认单元,配置为根据所述目标编辑参数调整所述定向显示参数,并将调整后的定向显示参数确认为定向显示参数。
可选地,所述调整模块包括:
提取单元,配置为提取所述偏移矩阵信息中的角度偏移量,方向偏移量和缩放偏移量;
第二调整单元,配置为根据所述角度偏移量,所述方向偏移量和所述缩放偏移量,对所述待调整模型执行模型导出操作。
可选地,所述第二调整单元还配置为对所述偏移矩阵信息进行资源调用预估处理,以获得资源预估值;
若确定所述资源预估值大于预设警戒值,则对所述偏移矩阵信息进行解析,并以解析后的偏移矩阵信息对所述待调整模型执行模型导出操作。
此外,本申请实施例还提出一种设备,设备包括:存储器109、处理器110及存储在存储器109上并可在处理器110上运行的模型数据处理程序,所述模型数据处理程序被处理器110执行时实现上述的模型数据处理方法各实施例的步骤。
此外,本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质可以是非易失性,也可以是易失性,所述计算机可读存储介质可以简称为计算机存储介质。所述计算机可读存储介质存储有模型数据处理程序,所述模型数据处理程序还可被处理器执行以用于实现上述模型数据处理方法各实施例的步骤。
本申请设备及计算机可读存储介质的具体实施方式的拓展内容与上述模型数据处理方法各实施例基本相同,在此不做赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本申请的保护之内。

Claims (22)

  1. 一种模型数据处理方法,包括:
    检测到待调整模型的模型导出指令,获取预设的定向显示参数,并获取所述待调整模型的原始位置信息;
    根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息;
    根据所述偏移矩阵信息对所述待调整模型执行模型导出操作。
  2. 如权利要求1所述的模型数据处理方法,其中,所述根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息的步骤包括:
    解析所述定向显示参数,以获得目标显示位置,目标显示角度和目标缩放比例;
    解析所述原始位置信息,以获得原始显示位置,原始显示角度和原始缩放比例;
    根据所述目标显示位置和所述原始显示位置,所述目标显示角度和所述原始显示角度,以及所述目标缩放比例和所述原始缩放比例,获得偏移矩阵信息。
  3. 如权利要求1所述的模型数据处理方法,其中,所述获取预设的定向显示参数的步骤包括:
    统计预设的历史模型数据库中所有历史模型的显示参数应用频次;
    从所有历史模型中获取显示参数应用频次最多的最优推荐模型;
    获取所述最优推荐模型的最优显示参数,并将所述最优显示参数确认为定向显示参数。
  4. 如权利要求1所述的模型数据处理方法,其中,所述获取预设的定向显示参数的步骤之后还包括:
    若确定所述模型导出指令为特定业务指令,则提取所述特定业务指令中的特定显示请求;
    若确定所述定向显示参数中不存在与所述特定显示请求对应的特定显示参数,则获取预设配置文件,并从所述预设配置文件中提取特定显示参数;
    所述根据所述偏移矩阵信息对所述待调整模型执行模型导出操作的步骤包括:
    根据所述偏移矩阵信息和所述特定显示参数对所述待调整模型执行模型导出操作。
  5. 如权利要求1所述的模型数据处理方法,其中,所述获取预设的定向显示参数的步骤还包括:
    检测到基于定向显示参数的编辑调整指令,获取所述编辑调整指令中的目标编辑参数;
    根据所述目标编辑参数调整所述定向显示参数,并将调整后的定向显示参数确认为定向显示参数。
  6. 如权利要求1所述的模型数据处理方法,其中,所述根据所述偏移矩阵信息对所述待调整模型执行模型导出操作的步骤包括:
    提取所述偏移矩阵信息中的角度偏移量,方向偏移量和缩放偏移量;
    根据所述角度偏移量,所述方向偏移量和所述缩放偏移量,对所述待调整模型执行模型导出操作。
  7. 如权利要求6所述的模型数据处理方法,其中,所述对所述待调整模型执行模型导出操作的步骤包括:
    对所述偏移矩阵信息进行资源调用预估处理,以获得资源预估值;
    若确定所述资源预估值大于预设警戒值,则对所述偏移矩阵信息进行解析,并以解析后的偏移矩阵信息对所述待调整模型执行模型导出操作。
  8. 一种模型数据处理装置,其中,所述模型数据处理装置包括:
    检测模块,配置为检测到待调整模型的模型导出指令后,获取预设的定向显示参数,并获取所述待调整模型的原始位置信息;
    偏移模块,配置为根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息;
    调整模块,配置为根据所述偏移矩阵信息对所述待调整模型执行模型导出操作。
  9. 一种设备,其中,所述设备包括:存储器、处理器及存储在所述存储器上并可在处理器上运行的模型数据处理程序,所述模型数据处理程序被所述处理器执行时实现如下步骤:
    检测到待调整模型的模型导出指令,获取预设的定向显示参数,并获取所述待调整模型的原始位置信息;
    根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息;
    根据所述偏移矩阵信息对所述待调整模型执行模型导出操作。
  10. 如权利要求9所述的设备,其中,所述根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息的步骤包括:
    解析所述定向显示参数,以获得目标显示位置,目标显示角度和目标缩放比例;
    解析所述原始位置信息,以获得原始显示位置,原始显示角度和原始缩放比例;
    根据所述目标显示位置和所述原始显示位置,所述目标显示角度和所述原始显示角度,以及所述目标缩放比例和所述原始缩放比例,获得偏移矩阵信息。
  11. 如权利要求9所述的设备,其中,所述获取预设的定向显示参数的步骤包括:
    统计预设的历史模型数据库中所有历史模型的显示参数应用频次;
    从所有历史模型中获取显示参数应用频次最多的最优推荐模型;
    获取所述最优推荐模型的最优显示参数,并将所述最优显示参数确认为定向显示参数。
  12. 如权利要求9所述的设备,其中,在所述获取预设的定向显示参数的步骤之后,所述模型数据处理程序被所述处理器执行时还实现如下步骤:
    若确定所述模型导出指令为特定业务指令,则提取所述特定业务指令中的特定显示请求;
    若确定所述定向显示参数中不存在与所述特定显示请求对应的特定显示参数,则获取预设配置文件,并从所述预设配置文件中提取特定显示参数;
    所述根据所述偏移矩阵信息对所述待调整模型执行模型导出操作的步骤包括:
    根据所述偏移矩阵信息和所述特定显示参数对所述待调整模型执行模型导出操作。
  13. 如权利要求9所述的设备,其中,所述获取预设的定向显示参数的步骤还包括:
    检测到基于定向显示参数的编辑调整指令,获取所述编辑调整指令中的目标编辑参数;
    根据所述目标编辑参数调整所述定向显示参数,并将调整后的定向显示参数确认为定向显示参数。
  14. 如权利要求9所述的设备,其中,所述根据所述偏移矩阵信息对所述待调整模型执行模型导出操作的步骤包括:
    提取所述偏移矩阵信息中的角度偏移量,方向偏移量和缩放偏移量;
    根据所述角度偏移量,所述方向偏移量和所述缩放偏移量,对所述待调整模型执行模型导出操作。
  15. 如权利要求14所述的设备,其中,所述对所述待调整模型执行模型导出操作的步骤包括:
    对所述偏移矩阵信息进行资源调用预估处理,以获得资源预估值;
    若确定所述资源预估值大于预设警戒值,则对所述偏移矩阵信息进行解析,并以解析后的偏移矩阵信息对所述待调整模型执行模型导出操作。
  16. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有模型数据处理程序,所述模型数据处理程序被处理器执行时实现如下步骤:
    检测到待调整模型的模型导出指令,获取预设的定向显示参数,并获取所述待调整模型的原始位置信息;
    根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息;
    根据所述偏移矩阵信息对所述待调整模型执行模型导出操作。
  17. 如权利要求16所述的计算机可读存储介质,其中,所述根据所述定向显示参数和所述原始位置信息对所述待调整模型进行偏移分析,以获得偏移矩阵信息的步骤包括:
    解析所述定向显示参数,以获得目标显示位置,目标显示角度和目标缩放比例;
    解析所述原始位置信息,以获得原始显示位置,原始显示角度和原始缩放比例;
    根据所述目标显示位置和所述原始显示位置,所述目标显示角度和所述原始显示角度,以及所述目标缩放比例和所述原始缩放比例,获得偏移矩阵信息。
  18. 如权利要求16所述的计算机可读存储介质法,其中,所述获取预设的定向显示参数的步骤包括:
    统计预设的历史模型数据库中所有历史模型的显示参数应用频次;
    从所有历史模型中获取显示参数应用频次最多的最优推荐模型;
    获取所述最优推荐模型的最优显示参数,并将所述最优显示参数确认为定向显示参数。
  19. 如权利要求16所述的计算机可读存储介质,其中,在所述获取预设的定向显示参数的步骤之后,所述模型数据处理程序被所述处理器执行时还实现如下步骤:
    若确定所述模型导出指令为特定业务指令,则提取所述特定业务指令中的特定显示请求;
    若确定所述定向显示参数中不存在与所述特定显示请求对应的特定显示参数,则获取预设配置文件,并从所述预设配置文件中提取特定显示参数;
    所述根据所述偏移矩阵信息对所述待调整模型执行模型导出操作的步骤包括:
    根据所述偏移矩阵信息和所述特定显示参数对所述待调整模型执行模型导出操作。
  20. 如权利要求16所述的计算机可读存储介质,其中,所述获取预设的定向显示参数的步骤还包括:
    检测到基于定向显示参数的编辑调整指令,获取所述编辑调整指令中的目标编辑参数;
    根据所述目标编辑参数调整所述定向显示参数,并将调整后的定向显示参数确认为定向显示参数。
  21. 如权利要求16所述的计算机可读存储介质,其中,所述根据所述偏移矩阵信息对所述待调整模型执行模型导出操作的步骤包括:
    提取所述偏移矩阵信息中的角度偏移量,方向偏移量和缩放偏移量;
    根据所述角度偏移量,所述方向偏移量和所述缩放偏移量,对所述待调整模型执行模型导出操作。
  22. 如权利要求21所述的计算机可读存储介质,其中,所述对所述待调整模型执行模型导出操作的步骤包括:
    对所述偏移矩阵信息进行资源调用预估处理,以获得资源预估值;
    若确定所述资源预估值大于预设警戒值,则对所述偏移矩阵信息进行解析,并以解析后的偏移矩阵信息对所述待调整模型执行模型导出操作。
PCT/CN2020/112464 2020-03-16 2020-08-31 模型数据处理方法、装置、设备及计算机可读存储介质 WO2021184689A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010185616.6A CN111506942A (zh) 2020-03-16 2020-03-16 模型数据处理方法、装置、设备及计算机存储介质
CN202010185616.6 2020-03-16

Publications (1)

Publication Number Publication Date
WO2021184689A1 true WO2021184689A1 (zh) 2021-09-23

Family

ID=71863971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112464 WO2021184689A1 (zh) 2020-03-16 2020-08-31 模型数据处理方法、装置、设备及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN111506942A (zh)
WO (1) WO2021184689A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113905095A (zh) * 2021-12-09 2022-01-07 深圳佑驾创新科技有限公司 一种基于can通信矩阵的数据生成方法及装置
CN114065354A (zh) * 2021-11-22 2022-02-18 浙江高信技术股份有限公司 一种基于bim和gis的融合系统
CN115017588A (zh) * 2022-06-10 2022-09-06 中国建筑西南设计研究院有限公司 一种体育类建筑模型的生成方法、装置、设备及存储介质
CN115544983A (zh) * 2022-11-29 2022-12-30 明度智云(浙江)科技有限公司 基于矩阵类设备的数据处理方法、装置、设备及介质
CN116089474A (zh) * 2023-03-07 2023-05-09 深圳市明源云科技有限公司 自定义编辑模式下的数据缓存方法、装置、设备及介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111506942A (zh) * 2020-03-16 2020-08-07 平安科技(深圳)有限公司 模型数据处理方法、装置、设备及计算机存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108537890A (zh) * 2018-04-04 2018-09-14 悉地(苏州)勘察设计顾问有限公司 一种融合bim建模和实景建模的全景图片移动终端展示方法
CN109410327A (zh) * 2018-10-09 2019-03-01 鼎宸建设管理有限公司 一种基于bim和gis的三维城市建模方法
US20190371055A1 (en) * 2018-06-05 2019-12-05 University Of Seoul Industry Cooperation Foundation 3d monitoring server using 3d bim object model and 3d monitoring system comprising it
CN110766775A (zh) * 2019-11-07 2020-02-07 中煤航测遥感集团有限公司 Bim模型动态展示方法及装置
CN111506942A (zh) * 2020-03-16 2020-08-07 平安科技(深圳)有限公司 模型数据处理方法、装置、设备及计算机存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108537890A (zh) * 2018-04-04 2018-09-14 悉地(苏州)勘察设计顾问有限公司 一种融合bim建模和实景建模的全景图片移动终端展示方法
US20190371055A1 (en) * 2018-06-05 2019-12-05 University Of Seoul Industry Cooperation Foundation 3d monitoring server using 3d bim object model and 3d monitoring system comprising it
CN109410327A (zh) * 2018-10-09 2019-03-01 鼎宸建设管理有限公司 一种基于bim和gis的三维城市建模方法
CN110766775A (zh) * 2019-11-07 2020-02-07 中煤航测遥感集团有限公司 Bim模型动态展示方法及装置
CN111506942A (zh) * 2020-03-16 2020-08-07 平安科技(深圳)有限公司 模型数据处理方法、装置、设备及计算机存储介质

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114065354A (zh) * 2021-11-22 2022-02-18 浙江高信技术股份有限公司 一种基于bim和gis的融合系统
CN113905095A (zh) * 2021-12-09 2022-01-07 深圳佑驾创新科技有限公司 一种基于can通信矩阵的数据生成方法及装置
CN113905095B (zh) * 2021-12-09 2022-04-05 深圳佑驾创新科技有限公司 一种基于can通信矩阵的数据生成方法及装置
CN115017588A (zh) * 2022-06-10 2022-09-06 中国建筑西南设计研究院有限公司 一种体育类建筑模型的生成方法、装置、设备及存储介质
CN115544983A (zh) * 2022-11-29 2022-12-30 明度智云(浙江)科技有限公司 基于矩阵类设备的数据处理方法、装置、设备及介质
CN115544983B (zh) * 2022-11-29 2023-03-21 明度智云(浙江)科技有限公司 基于矩阵类设备的数据处理方法、装置、设备及介质
CN116089474A (zh) * 2023-03-07 2023-05-09 深圳市明源云科技有限公司 自定义编辑模式下的数据缓存方法、装置、设备及介质
CN116089474B (zh) * 2023-03-07 2023-08-04 深圳市明源云科技有限公司 自定义编辑模式下的数据缓存方法、装置、设备及介质

Also Published As

Publication number Publication date
CN111506942A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
WO2021184689A1 (zh) 模型数据处理方法、装置、设备及计算机可读存储介质
CN110209652A (zh) 数据表迁移方法、装置、计算机设备和存储介质
CN111143923A (zh) 模型处理方法及相关装置
CN113094770B (zh) 图纸生成方法、装置、计算机设备和存储介质
US10410152B2 (en) System and method for automatically and efficiently monitoring software development life cycles
CN104268083A (zh) 软件自动化测试方法和装置
CN114116065B (zh) 获取拓扑图数据对象的方法、装置、及电子设备
CN109815434A (zh) 页面编辑方法、装置、设备及存储介质
CN107436785B (zh) 基于信息系统的Revit软件信息交互系统及交互方法
CN109086476B (zh) 一种用于图纸设计的数据处理方法、plm插件及计算设备
CN107885913B (zh) 辐射场屏蔽方案可行性判别方法、装置、计算机设备及存储介质
WO2021068591A1 (zh) 基于区块链的日产日清核算方法、装置、设备及存储介质
CN110688305B (zh) 测试环境同步方法、装置、介质、电子设备
CN109683858B (zh) 数据处理方法及装置
CN113610388A (zh) 基于bim的预制构件设计质量管理方法、装置及设备
CN110427648B (zh) 构件属性获取方法及相关产品
JP6063235B2 (ja) 作業自動化支援システム及び作業自動化支援方法
JP2008257501A (ja) 日報作成支援システムおよび日報作成支援プログラム
US10373183B1 (en) Automatic firm fabrication price quoting and fabrication ordering for computer-modeled joining features and related structures
JP3141988B2 (ja) 計算機システムにおける問題解析方式
CN106547528B (zh) 一种界面布局方法以及装置
CN111177866B (zh) 一种基于smooth t和matlab的涡轮特性处理方法
US11423612B2 (en) Correcting segmented surfaces to align with a rendering of volumetric data
CN113901051A (zh) 生成WebGL数据的方法及装置、存储介质及电子设备
KR20170126312A (ko) 유한요소 해석을 이용한 설계 자동화 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925470

Country of ref document: EP

Kind code of ref document: A1