WO2021184355A1 - 保护间隔的确定方法、设备及存储介质 - Google Patents

保护间隔的确定方法、设备及存储介质 Download PDF

Info

Publication number
WO2021184355A1
WO2021184355A1 PCT/CN2020/080415 CN2020080415W WO2021184355A1 WO 2021184355 A1 WO2021184355 A1 WO 2021184355A1 CN 2020080415 W CN2020080415 W CN 2020080415W WO 2021184355 A1 WO2021184355 A1 WO 2021184355A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbols
time unit
guard interval
beginning
last
Prior art date
Application number
PCT/CN2020/080415
Other languages
English (en)
French (fr)
Inventor
贺传峰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/080415 priority Critical patent/WO2021184355A1/zh
Priority to CN202080091002.XA priority patent/CN114930906A/zh
Publication of WO2021184355A1 publication Critical patent/WO2021184355A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method, device, and storage medium for determining a guard interval.
  • the New Radio (NR) system mainly supports Enhanced Mobile Broadband (eMBB) services to meet the requirements of high speed, high spectrum efficiency, and large bandwidth.
  • eMBB Enhanced Mobile Broadband
  • there are many other types of services such as industrial IoT sensors, surveillance cameras, and data transmission services for wearable devices.
  • the terminals that support these services have a large number of connections, low power consumption, and low cost.
  • the hardware capabilities are reduced, such as reduced bandwidth, reduced processing speed, and reduced number of antennas. Therefore, the NR system needs to be optimized for low-capacity terminals supporting the other types of services mentioned above, and the corresponding system is called an NR-light system.
  • the NR system In order to improve the performance of channel transmission, the NR system considers frequency hopping for channel transmission, that is, the bandwidth of channel resources in different time units can be different. Correspondingly, the terminal needs to retuning the receiver bandwidth from one bandwidth to another bandwidth. During the retuning period, the terminal cannot receive or send the channel, which will affect the transmission performance of the system channel.
  • the embodiments of the present application provide a method, equipment and storage medium for determining the guard interval to ensure the transmission performance of the system channel.
  • an embodiment of the present application provides a method for determining a guard interval, including: determining N symbols in the first symbol set as guard intervals according to channel reception conditions of symbols in the first symbol set; The symbols in the first symbol set belong to the symbols at the end of the first time unit and the beginning of the second time unit.
  • the first time unit and the second time unit are two consecutive time units in the time domain.
  • the frequency domain subbands corresponding to a time unit and the second time unit are different, and the number of symbols in the first symbol set is greater than N, where N is a positive integer.
  • an embodiment of the present application provides a method for determining a guard interval, including: determining N symbols in the first symbol set as guard intervals according to preset channel transmission conditions of symbols in the first symbol set;
  • the symbols in the first symbol set belong to the symbols at the end of the first time unit and the beginning of the second time unit, the first time unit and the second time unit are two consecutive time units in the time domain, so The frequency domain subbands corresponding to the first time unit and the second time unit are different, and the number of symbols in the first symbol set is greater than N, where N is a positive integer.
  • an embodiment of the present application provides a terminal device, including: a processing module, configured to determine that N symbols in the first symbol set are guard intervals according to channel reception conditions of symbols in the first symbol set;
  • the symbols in the first symbol set belong to the symbols at the end of the first time unit and the beginning of the second time unit, the first time unit and the second time unit are two consecutive time units in the time domain, so The frequency domain subbands corresponding to the first time unit and the second time unit are different, and the number of symbols in the first symbol set is greater than N, where N is a positive integer.
  • an embodiment of the present application provides a network device, including: a processing module, configured to determine that N symbols in the first symbol set are protected according to the preset channel transmission conditions of the symbols in the first symbol set Interval; the symbols in the first symbol set belong to the symbols at the end of the first time unit and the beginning of the second time unit, and the first time unit and the second time unit are two consecutive time units in the time domain
  • the frequency domain subbands corresponding to the first time unit and the second time unit are different, and the number of symbols in the first symbol set is greater than N, where N is a positive integer.
  • an embodiment of the present application provides a terminal device, including: a transceiver, a processor, and a memory; the memory stores computer-executable instructions; the processor executes the computer-executable instructions stored in the memory, so that the processing The device executes the method as described in the first aspect.
  • the foregoing processor may be a chip.
  • an embodiment of the present application provides a network device, including: a transceiver, a processor, and a memory; the memory stores computer-executable instructions; the processor executes the computer-executable instructions stored in the memory, so that the processing The device executes the method described in the second aspect.
  • the foregoing processor may be a chip.
  • an embodiment of the present application provides a computer-readable storage medium, and the computer-readable storage medium stores a computer-executable instruction, and when the computer-executable instruction is executed by a processor, it is used to implement the The method described.
  • an embodiment of the present application provides a computer-readable storage medium having computer-executable instructions stored in the computer-readable storage medium.
  • the computer-executable instructions are executed by a processor, they are used to implement the The method described.
  • the embodiments of the present application provide a method, device, and storage medium for determining a guard interval, which are used to improve the transmission performance of a system channel.
  • the method includes: according to the channel transmission situation at the junction of two consecutive time units, selecting consecutive N symbols from the junction of the two time units as the guard interval, the symbols on both sides of the guard interval belong to different time units, and the symbols on both sides belong to different time units.
  • the frequency domain subbands corresponding to the time units are different, where N is a positive integer.
  • the guard interval determined by the above method has the least impact on the system channel transmission performance, ensuring the system transmission performance during the frequency sub-band readjustment period.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a flowchart of a method for determining a guard interval provided by an embodiment of the application
  • 3 is a schematic diagram of the guard interval and the positions of the first time unit and the second time unit in the time domain provided by an embodiment of this application;
  • FIG. 4 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of this application.
  • FIG. 5 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of the application.
  • FIG. 6 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of this application.
  • FIG. 7 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of this application.
  • FIG. 8 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of this application.
  • FIG. 9 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of this application.
  • FIG. 11 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of this application.
  • FIG. 12 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of this application.
  • FIG. 13 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of this application.
  • FIG. 14 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of this application.
  • FIG. 15 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of this application.
  • FIG. 16 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of this application.
  • FIG. 17 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of this application.
  • FIG. 18 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of this application.
  • FIG. 19 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of the application.
  • FIG. 20 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of the application.
  • FIG. 21 is a flowchart of a method for determining a guard interval provided by an embodiment of this application.
  • FIG. 22 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 23 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 24 is a schematic diagram of the hardware structure of a terminal device according to an embodiment of the application.
  • FIG. 25 is a schematic diagram of the hardware structure of a network device provided by an embodiment of this application.
  • the synchronization signal (Synchronization Signal, SS) and the Physical Broadcast Channel (Physical Broadcast Channel, PBCH) block appear in the form of SS/PBCH resource blocks according to a certain time-frequency domain resource relationship, referred to as synchronization signal block (Synchronization).
  • Signal Block, SSB may include at least one of a PBCH, a primary synchronization signal (PSS), and a secondary synchronization signal (Secondary synchronization signal, SSS).
  • the network equipment can send a series of SSBs (or called SSB sets) in different beam directions, such as SSB1, SSB2, SSB3, etc. That is, the network equipment covers the entire cell by means of multi-beam scanning, so that the terminal equipment in the cell can receive it.
  • the information-carrying channel of the SSB is the PBCH, and the PBCH is used to carry the main information block (MIB).
  • the terminal device can obtain the control resource set CORESET information of the typeOPDCCH from the pdcch-ConfigSIB1 field of the MIB information.
  • the CORESET information is used to indicate the resource block RB of the typeOPDCCH in the frequency domain and the number of OFDM symbols in the time domain.
  • the terminal device can also obtain the search space information of the type0PDCCH from the pdcch-ConfigSIB1 field of the MIB information.
  • the search space information is used to determine the monitoring timing of the type0PDCCH.
  • the search space information includes the start OFDM symbol number of the type0PDCCH and the monitoring period.
  • the terminal device After receiving the SSB, the terminal device can obtain time synchronization with the network device and obtain the basic configuration information of the network. In addition, the terminal device also needs to obtain some necessary system information to complete the camping cell and initial access. These necessary system information is called RMSI (Remaining Minimum System Information) in NR.
  • RMSI can be considered as the SIB1 (System Information Block1) message in LTE, which is mainly sent through the Physical Down Link Shared Channel (PDSCH), while the PDSCH channel requires the Physical Down Link Control Channel (PDCCH).
  • DCI Downlink Control Information
  • the terminal device can obtain the PDCCH channel information for scheduling the RMSI from the pdcch-ConfigSIB1 field of the MIB information, and perform blind detection on the PDCCH to obtain the RMSI, that is, the SIB1 message.
  • the NR system is mainly designed to support eMBB services, and its main technology is to meet the needs of high speed, high spectrum efficiency, and large bandwidth.
  • eMBB there are many different types of services, such as: sensor networks, video surveillance, wearables, etc., which have different requirements from eMBB services in terms of rate, bandwidth, power consumption, and cost.
  • the capabilities of terminals that support these services are reduced compared to those that support eMBB, such as reduced bandwidth, reduced processing time, and reduced number of antennas.
  • NR systems need to be optimized for these services and corresponding low-capacity terminals. Such systems are called NR-light systems.
  • the bandwidth supported by the low-capability terminal is relatively limited, so the CORESET bandwidth of the type0PDCCH indicated by the network side is relatively narrow.
  • repeated transmission in the time domain is usually adopted, that is, the type0PDCCH is transmitted in multiple time units. Then, the monitoring timing of the type0PDCCH corresponding to each indexed SSB may require more time units, resulting in occupying a large number of downlink subframes and causing a delay in receiving SIB1.
  • frequency hopping can be used to make the CORESET bandwidth of the type0PDCCH corresponding to a certain index SSB change in different time units, that is, readjust from one bandwidth to another bandwidth, so as to realize different CORESETs of the terminal in the same time unit.
  • the type0PDCCH is detected on the bandwidth of, to reduce the delay of the terminal receiving SIB1.
  • the CORESET information of the typeOPDCCH indicated by SSBs in different beam directions (or called SSBs with different indexes) is usually the same.
  • SSBs with different indexes is usually the same.
  • the terminal can receive channels on different CORESET bandwidths in the same time unit, thereby improving the terminal's ability to receive channels.
  • the above frequency hopping method requires the terminal to retuning the receiver bandwidth from one bandwidth to another bandwidth. During the retuning period, the terminal cannot receive and send the channel, which will affect the transmission performance of the system channel. Since the time-domain resource configuration of the control channel in the NR system is relatively flexible, it is necessary to define a corresponding guard interval under different control channel resource configurations to ensure the transmission performance of the NR-Light system.
  • the embodiment of the present application provides a method for determining the guard interval, considering that the above-mentioned bandwidth re-adjustment (or frequency sub-band re-adjustment) occurs in two consecutive time units (such as the first time unit and the second time unit). Unit), and the bandwidths of two consecutive time units are different. Therefore, based on the channel transmission conditions of the symbols at the boundary of these two time units, the guard interval is determined from the boundary of the two consecutive time units.
  • the guard interval in the embodiment of the present application may be one symbol or multiple consecutive symbols, where the symbol on the left side of the guard interval belongs to the first time unit, and the symbol on the right side of the guard interval belongs to the second time unit.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • the communication system includes a network device and a plurality of terminal devices communicatively connected with the network device, such as UE1 to UE6 shown in FIG. 1.
  • the network device may be a base station (Base station, BS), and the base station may be a multi-beam base station or a single-beam base station.
  • the terminal device can be a fixed terminal device or a mobile terminal device.
  • the base station and UE1 to UE6 form a communication system.
  • the base station can use beam scanning to send a series of SSBs, so that one or more UEs of UE1 to UE6 can determine at least one SSB according to the received at least one SSB.
  • Corresponding CORESET information and search space information so as to perform PDCCH detection, and receive downlink data on PDSCH scheduled by PDCCH and DCI, such as system message SIB1.
  • the technical solutions of the embodiments of the present application are mainly applied to communication systems based on NR technology, such as fifth generation mobile networks (5G for short) communication systems, NR-light systems, and the like. It can also be applied to other communication systems, as long as there is an entity in the communication system that needs to instruct to communicate with another entity, and another entity needs to interpret the advance data transmission in some way, for example, it can be applied to network equipment and terminal equipment. Multi-data block scheduling is performed in between, or two terminal devices, one of which is responsible for the function of accessing the network, etc.
  • 5G fifth generation mobile networks
  • NR-light systems and the like.
  • Multi-data block scheduling is performed in between, or two terminal devices, one of which is responsible for the function of accessing the network, etc.
  • the communication system may be, for example, a global system of mobile communication (GSM) system, a code division multiple access (Code Division Multiple Access, CDMA) system, and a wideband code division multiple access (Wideband Code Division Multiple Access).
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • LTE Frequency Division Duplex Frequency Division Duplex
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • the terminal device referred to in the technical solutions of the embodiments of the present application may be a wireless terminal or a wired terminal.
  • a wireless terminal may be a device that provides voice and/or other service data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • a wireless terminal can communicate with one or more core networks via a radio access network (Radio Access Network, referred to as RAN).
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or called a "cellular" phone) and a mobile phone with a mobile terminal.
  • Computers for example, may be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the wireless access network.
  • Wireless terminals can also be called systems, subscriber units (Subscriber Unit), subscriber stations (Subscriber Station), mobile stations (Mobile Station), mobile stations (Mobile), remote stations (Remote Station), remote terminals (Remote Terminal), The access terminal (Access Terminal), user terminal (User Terminal), user agent (User Agent), and user equipment (User Device or User Equipment) are not limited here.
  • the network equipment referred to in the technical solutions of the embodiments of the present application is a type of equipment deployed on a wireless access network to provide wireless communication functions, which may be Global System of Mobile Communications (GSM) or multiple code divisions.
  • the base station (Base Transceiver Station, referred to as BTS) in the address (Code Division Multiple Access, referred to as CDMA) can also be the base station (NodeB, referred to as NB) in Wideband Code Division Multiple Access (WCDMA), It can also be an Evolutional Node B (eNB or eNodeB for short) in LTE, or a relay station or an access point, or a transmission reception point (TRP) in a new air interface NR network, or a next-generation node B (generation nodeB, gNB), or base stations in other future network systems, etc., are not limited here.
  • the network device of the embodiment of the present application can indicate the CORESET information and search space information of the PDCCH through MIB information.
  • the terminal equipment detects the PDCCH in the CORESET and search space of the PDCCH indicated by the network equipment.
  • the number of RBs (Number of RBs) and the number of symbols (Number of Symbols) of CORESET corresponding to the index can be determined. And compared to the RB offset of the SSB (RB offset), the above CORESET information is obtained.
  • the following table 1 shows the case where the subcarrier spacing is 15kHz, the bandwidth of CORESET can be configured to 24, 48, 96 RB, the number of symbols of CORESET can be 1, 2, 3, and the frequency domain of CORESET The number of RBs whose positions are offset from the frequency domain position of the SSB can be 0, 2, 4, 12, 16, or 38.
  • the multiplexing mode of SSB and CORESET in Table 1 is mode 1, that is, PDCCH and SSB adopt time division multiplexing mode.
  • the multiplexing mode of SSB and CORESET can also be mode 2 (PDCCH and SSB use frequency division and time division multiplexing) or mode 3 (PDCCH and SSB use frequency division multiplexing).
  • Table 1 is only an example. For different subcarrier intervals or different multiplexing modes, the corresponding table contents are different.
  • the pdcch-ConfigSIB1 field of the MIB also indicates the search space information of the type0PDCCH, and this information can be used to determine the monitoring timing of the type0PDCCH (that is, the starting OFDM symbol number).
  • the monitoring timing of type0PDCCH is determined in the following way:
  • the multiplexing mode of SSB and CORESET is mode 1, and the UE monitors the common search space of type0PDCCH in two consecutive time slots.
  • the number of the start time slot in two consecutive time slots is n 0
  • each indexed SSB corresponds to a listening window.
  • the number n 0 of the start time slot of the listening window can be determined by Formula 1:
  • i is the index number of SSB
  • is the system parameter related to the sub-carrier spacing ⁇ f
  • It is the number of time slots in a radio frame
  • both N and O are indicated by the Searchspace information in the PBCH.
  • the value of O includes ⁇ 0,2,5,7 ⁇ in the frequency range below 6GHz (frequency range 1), and ⁇ 0,2.5,5,7.5 ⁇ in the frequency range above 6GHz (frequency range 2).
  • the value of M includes ⁇ 1/2,1,2 ⁇ .
  • the indication information of Searchspace 0 is shown in Table 2 below.
  • the O, M, and the number of search space sets per slot corresponding to the index can be determined.
  • First symbol index. I in Table 2 represents the index number of the SSB. For example, when the index is 1, if the index number of the SSB is an even number, the start symbol index of the search space is 0; if the index number of the SSB is an odd number, then the start of the search space
  • the symbol index is Indicates the number of symbols contained in a CORESET.
  • SFN C is an even number of radio frames, if The calculated number of time slots is greater than or equal to the number of time slots included in a radio frame, and SFN C is an odd number of radio frames.
  • the pdcch-ConfigSIB1 field of the MIB information carried by the PBCH of the SSB contains 8 bits, and the CORESET information and Searchspace information of the typeOPDCCH each occupy 4 bits.
  • the CORESET information carried by the PBCHs of the SSBs with different indexes may be the same or different.
  • the CORESET information carried by the PBCHs of the SSBs with different indexes is different, that is, the MIB information corresponding to the SSBs with different indexes is different.
  • the value range of i is [0,L-1], and L is the maximum number of SSBs corresponding to the frequency band where the SSB is located.
  • the maximum number of SSBs L is related to the frequency band of the system as follows: frequency range is less than or equal to 3GHz, L is 4; frequency range is greater than 3GHz and less than 6GHz, L is 8; frequency range is greater than or equal to 6GHz and less than 52.6GHz, L Take 64.
  • the index number of the SSB can be indicated by the demodulation reference signal (Demodulation Reference Signal, DMRS) of the PBCH or the information carried by the PBCH.
  • DMRS Demodulation Reference Signal
  • the network equipment in the embodiments of the present application can also configure the PDCCH through the system message SIB1 or radio resource control (Radio Resource Control, RRC) signaling.
  • CORESET information and search space information can also configure the PDCCH through the system message SIB1 or radio resource control (Radio Resource Control, RRC) signaling.
  • RRC Radio Resource Control
  • the configuration information of the search space includes the following information:
  • controlResourceSetId The identifier of the control resource set (controlResourceSetId), the ID that indicates the configuration of the control resource set, and the time-frequency resource of the PDCCH search space is configured.
  • the current cycles supported by NR include 1, 2, 4, 5, 8, 10, 16, 20, 40, 80, 160, 320, 640, 1280, and 2560 time slots.
  • Duration indicates the number of time slots continuously monitored in the PDCCH search space period.
  • monitoringSymbolsWithinSlot indicates which symbols in the PDCCH monitoring time slot to perform PDCCH monitoring.
  • PDCCH candidates indicate the configuration information of PDCCH candidates.
  • search space common search space or user-specific search space (UE-specific search space).
  • the configuration information of CORESET includes the following information:
  • the identification of the control resource set the number of CORESET, the value ranges from 1 to 11, and CORESET 0 is the CORESET indicated in the broadcast message.
  • cce-REG-MappingType It can be configured as interlaced mapping or non-interlaced mapping.
  • precoderGranularity indicates whether the precoding granularity of the DMRS is wideband precoding or narrowband precoding.
  • the PDSCH scheduling information is carried in the DCI, including time domain and frequency domain resource allocation information .
  • the time domain resource allocation information is indicated by the TimeDomainResourceAllocation (TDRA) field.
  • Table 3 shows the default table corresponding to the TDRA indicator field, which is used to determine the meaning of the TDRA indicator field in the DCI carried in the typeOPDCCH.
  • the indication field contains 4 bits, which can indicate 16 different rows in a resource allocation table, such as the 16 row indexes shown in Table 4. Each row contains different resource allocation combinations, such as the start symbol S of PDSCH, length L, K 0, and different types. Among them, K 0 represents the number of offset time slots between the time slot where the DCI is located and the time slot where the PDSCH is located.
  • the starting symbol and length of the PDSCH are no longer fixed, but the starting symbol S and the length L of the PDSCH in the scheduling time slot are indicated by TDRA in the DCI.
  • the values of S and L are not arbitrary. Instead, they form a SLIV value (the start and length indicator) through joint coding.
  • the optional values are shown in Table 4.
  • Table 4 there are two ways to allocate time domain resources: Type A and Type B.
  • Type A is mainly for slot-based services, S is relatively high, and L is relatively long.
  • Type B is mainly oriented to URLLC services and has high requirements for delay. Therefore, the location of S is relatively free to transmit URLLC services that arrive at any time, and L is shorter, which can reduce transmission delay.
  • Fig. 2 is a flowchart of a method for determining a guard interval provided by an embodiment of the application. As shown in FIG. 2, the method provided in this embodiment can be applied to any UE shown in FIG. 1, and the method includes the following steps:
  • Step 101 Determine N symbols in the first symbol set as guard intervals according to the channel reception conditions of the symbols in the first symbol set.
  • the symbols in the first symbol set belong to the symbols at the end of the first time unit and the beginning of the second time unit.
  • the first time unit and the second time unit are two consecutive time units in the time domain.
  • the first time unit comes first, and the second time unit comes later.
  • the frequency domain subbands corresponding to the first time unit and the second time unit are different, the number of symbols in the first symbol set is greater than N, and N is a positive integer.
  • the time unit in the embodiment of the present application may be a radio frame, a subframe, a time slot, etc., which does not impose any limitation on the embodiment of the present application.
  • the symbols in the first symbol set in the embodiments of the present application can be understood as symbols at the junction of the first time unit and the second time unit.
  • the UE can select one symbol from the two symbols at the junction of the first time unit and the second time unit, where the two symbols at the junction can be the first symbol. The last symbol at the end of the time unit and the first symbol at the beginning of the second time unit.
  • the UE can start from the four symbols at the junction of the first time unit and the second time unit, where the four symbols at the junction can be the end of the first time unit The last two symbols of and the first two symbols at the beginning of the second time unit.
  • the channel reception status of the symbols in the first symbol set in the embodiment of the present application includes at least one of receiving PDSCH, receiving PDCCH, or not receiving channel. That is, any symbol in the first symbol set can be used to receive PDSCH, receive PDCCH, or not receive channel.
  • the N symbols of the guard interval determined in the embodiment of the present application are consecutive symbols, and the symbols on both sides of the guard interval belong to different time units.
  • Figure 3 shows the positions of the guard interval and the first time unit and the second time unit in the time domain. As shown in Figure 3, the guard interval is located at the junction of the first time unit and the second time unit, on the left side of the guard interval The symbol of belongs to the symbol of the first time unit, and the symbol on the right side of the guard interval belongs to the symbol of the second time unit.
  • the guard interval of N symbols includes the following situations: (1) the last N symbols at the end of the first time unit; (2) the first N symbols at the beginning of the second time unit; (3) from the first time unit N consecutive symbols selected from the last N-1 symbols at the end and the first N-1 symbols at the beginning of the second time unit.
  • the guard interval may be the last symbol at the end of the first time unit, or the first symbol at the beginning of the second time unit.
  • the guard interval may be the last two symbols at the end of the first time unit, or the first two symbols at the beginning of the second time unit, or the last symbol at the end of the first time unit Symbol and the first symbol at the beginning of the second time unit.
  • the guard interval can be the last three symbols at the end of the first time unit, or the first three symbols at the beginning of the second time unit, or the last three symbols from the end of the first time unit. 2 symbols and 3 consecutive symbols selected from the first 2 symbols at the beginning of the second time unit.
  • the above examples show several possible cases of guard intervals corresponding to different N values.
  • guard intervals corresponding to any N value it is necessary to combine the channel reception conditions of each symbol at the time unit junction.
  • Comprehensive analysis to determine the final protection interval In the comprehensive analysis, the type of the channel of the symbol at the junction, the type of information carried by the channel, the type of the channel search space, etc. can be considered, so that the symbol finally selected as the guard interval has the least impact on the terminal channel reception performance.
  • the channel resource configuration of different time units is very flexible, the channel reception of the symbols at the junction of two consecutive time units is more, and the factors considered in the comprehensive analysis are different. For details, please refer to the following embodiments. .
  • Step 102 Perform frequency subband re-adjustment in the determined guard interval.
  • the frequency subband readjustment refers to that the UE adjusts the bandwidth of the receiver from the bandwidth of the first time unit to the bandwidth of the second time unit.
  • the UE does not receive or transmit channels.
  • the method for determining the guard interval uses a comprehensive analysis of the channel reception conditions of multiple symbols at the junction of two consecutive time units to determine N symbols as the guard interval, where N is a positive integer.
  • the N symbols of the determined guard interval are consecutive symbols, and the symbols on both sides of the guard interval belong to symbols of different time units.
  • the terminal performs frequency subband re-adjustment at a certain guard interval.
  • the guard interval determined by the above method has the least impact on the terminal channel reception performance, ensuring the transmission performance of the communication system.
  • the foregoing embodiment shows that the terminal needs to perform a comprehensive analysis according to the channel reception request of multiple symbols at the junction of two consecutive time units to determine the guard interval. Since there are many channel receptions of multiple symbols at the junction of two consecutive time units, the method for determining the guard interval of various symbol distributions at the junction of two consecutive time units will be described in detail below with reference to Figs. 4 to 20 .
  • the symbol distribution at the junction of the time unit that is, the symbol distribution in the first symbol set. Since each symbol in the first symbol set can be used to receive PDSCH, PDCCH, or not receive a channel, correspondingly, the first symbol set may include only one type of symbols, or may include multiple types of symbols.
  • the guard interval can be the last N symbols at the end of the first time unit, or the first N symbols at the end of the second time unit, or from the last N-1 symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit. -1 consecutive N symbols selected from the symbols.
  • FIG. 4 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of the application.
  • the number of guard interval symbols N is 1.
  • the symbols in the first symbol set include the last symbol at the end of the first time unit and the first symbol at the beginning of the second time unit. Select a symbol from the first symbol set As a guard interval.
  • the guard interval can be the guard interval shown in Figure 4(a), that is, the last symbol at the end of the first time unit, or the guard interval shown in Figure 4(b), that is, the second time. The first symbol at the beginning of the unit.
  • FIG. 5 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of this application.
  • the number of guard interval symbols N in Fig. 5 is 2.
  • the symbols in the first symbol set include the last two symbols at the end of the first time unit and the first two symbols at the beginning of the second time unit. Select consecutive symbols from the first set of symbols.
  • the guard interval can be the guard interval shown in Fig. 5(a), that is, the last symbol at the end of the first time unit and the first symbol at the beginning of the second time unit, or it can be the guard interval shown in Fig. 5(b).
  • the guard interval shown in ), that is, the last two symbols at the end of the first time unit may also be the guard interval shown in (c) of FIG. 5, that is, the first two symbols at the beginning of the second time unit.
  • the guard interval is the last N symbols at the end of the first time unit, or the first N symbols at the end of the second time unit. It is possible to determine whether to select the last N symbols at the end of the first time unit as the guard interval or the first N symbols at the beginning of the second time unit as the guard interval in the following manner: according to the last N symbols at the end of the first time unit and the first The type of information received by the first N symbols at the beginning of the second time unit determines the guard interval. Among them, the type of information that the symbol receives the PDSCH includes public information or user information. The type of symbol receiving PDSCH information can be determined according to the search space of the PDCCH.
  • the search space of the PDCCH is a common search space, and the information type of the PDSCH received by the corresponding symbol is public information.
  • the search space of the PDCCH is a user-specific search space, and the information type of the corresponding symbol receiving the PDSCH is user information.
  • N symbols for receiving public information are used as the guard interval.
  • the priority of the user information carried by the PDSCH is higher than the common information carried by the PDSCH, so the N symbols of the PDSCH carrying the common information are used as the guard interval.
  • N symbols of user information are used as the guard interval.
  • the priority of the public information carried by the PDSCH is higher than the user information carried by the PDSCH, so the N symbols of the PDSCH carrying the user information are used as the guard interval.
  • the terminal may also use the last N symbols at the end of the first time unit and the second time unit to receive information.
  • the first N symbols at the start end receive the type of public information, or the type of user information, and determine the guard interval.
  • the terminal may also use the last N symbols at the end of the first time unit.
  • the first N symbols at the beginning of the second time unit and the first N symbols receive the type of common information, and it is determined whether to select the last N symbols or the first N symbols.
  • the types of public information include system messages (such as SIB1 to SIB9), random access response messages, paging messages, time slot format indication messages, and so on.
  • the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit have different types of receiving public information, and the last N symbols at the end of the first time unit have the same type of receiving public information.
  • the first N symbols at the beginning of the second time unit receive the same type of common information.
  • the terminal may determine whether to select the last N symbols or the first N symbols according to the priority of the preset common information type.
  • the terminal may also use the last N symbols at the end of the first time unit.
  • the N symbols and the first N symbols at the beginning of the second time unit receive the type of user information, and it is determined whether to select the last N symbols or the first N symbols.
  • the type of user information may be a type of service, for example, the type of service is service 1, service 2, service 3, and so on.
  • the PDSCH bears channel resources determined by a semi-static configuration grant method, and the user information carried by the PDSCH may be service data with low delay and high reliability requirements.
  • the user information carried by the PDSCH scheduled by the DCI may also be ordinary service data.
  • the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit have different types of receiving user information, and the last N symbols at the end of the first time unit have the same type of receiving user information.
  • the first N symbols at the beginning of the second time unit have the same type of receiving user information.
  • the terminal may determine whether to select the last N symbols or the first N symbols according to the priority of the preset user information type.
  • the network side may indicate the priority information of the preset user information type through the PDCCH, for example, through the timing parameter K 0 in the PDCCH.
  • the terminal receives the PDSCH information type through the symbols in the first symbol set, and selects consecutive N symbols from the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit As a guard interval, and the symbols on both sides of the guard interval belong to symbols of different time units.
  • the symbol of which information type is selected depends on the preset priority of the information type.
  • Information types can be divided into public information or user information, and the types of public information or user information can be further subdivided.
  • the guard interval determined by the above method has the least impact on PDSCH transmission, ensuring the transmission performance of the communication system.
  • the guard interval can be the last N symbols at the end of the first time unit, or the first N symbols at the end of the second time unit, or from the last N-1 symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit. -1 consecutive N symbols selected from the symbols.
  • FIG. 6 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of this application.
  • the number of guard interval symbols N is 1.
  • the symbols in the first symbol set include the last symbol at the end of the first time unit and the first symbol at the beginning of the second time unit. Select a symbol from the first symbol set.
  • the guard interval can be the guard interval shown in Figure 6(a), that is, the last symbol at the end of the first time unit, or the guard interval shown in Figure 6(b), that is, the second time. The first symbol at the beginning of the unit.
  • FIG. 7 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of the application.
  • the number of guard interval symbols N in Figure 7 is set to 2.
  • the symbols in the first symbol set include the last two symbols at the end of the first time unit and the first two symbols at the beginning of the second time unit. Select consecutive symbols from the first set of symbols.
  • the guard interval can be the guard interval shown in Fig. 7(a), that is, the last symbol at the end of the first time unit and the first symbol at the beginning of the second time unit, or it can be the guard interval shown in Fig. 7(b).
  • the guard interval shown in ), that is, the last two symbols at the end of the first time unit may also be the guard interval shown in (c) of FIG. 7, that is, the first two symbols at the beginning of the second time unit.
  • the guard interval is the last N symbols at the end of the first time unit, or the first N symbols at the end of the second time unit.
  • the following methods can be used to determine whether to select the last N symbols at the end of the first time unit as the guard interval or the first N symbols at the beginning of the second time unit as the guard interval:
  • the guard interval is determined according to the type of the search space for receiving the PDCCH for the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit.
  • the type of search space for symbol receiving PDCCH includes public search space or user-specific search space.
  • N symbols of the common search space of the received PDCCH are used as the guard interval.
  • the priority of the user-specific search space of the PDCCH is higher than the common search space of the PDCCH, so N symbols of the common search space of the PDCCH are received as the guard interval.
  • N symbols of the user-specific search space receiving the PDCCH are used as the guard interval.
  • the priority of the common search space of the PDCCH is higher than the user-specific search space of the PDCCH, so N symbols of the user-specific search space of the PDCCH are used as the guard interval.
  • the terminal may also use the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit.
  • the terminal may also use the first The last N symbols at the end of the time unit and the first N symbols at the beginning of the second time unit receive the type of the common search space of the PDCCH, and it is determined whether to select the last N symbols or the first N symbols.
  • the types of the PDCCH common search space include type0, type0A, type1, and type2 PDCCH search spaces.
  • the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit have different types of common search spaces for receiving PDCCH, and the last N symbols at the end of the first time unit receive PDCCH information.
  • the types of the common search spaces are the same, and the first N symbols at the beginning of the second time unit receive the same types of the common search spaces of the PDCCH.
  • the terminal may determine whether to select the last N symbols or the first N symbols according to the priority of the preset common search space type.
  • the terminal can also use The last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit receive the user-specific search space type of the PDCCH, and determine whether to select the last N symbols or the first N symbols.
  • the type of the user-specific search space may be a service type of data transmission scheduled based on the DCI corresponding to the user-specific search space, such as service type 1, type 2, and type 3 user-specific search space.
  • the type of the user-specific search space can be obtained from the configuration information of the search space, that is, the configuration information of the search space includes indication information that distinguishes the type or priority of the user-specific search space.
  • the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit have different types of search spaces for receiving PDCCH, and the last N symbols at the end of the first time unit receive the search for PDCCH
  • the space types are the same, and the first N symbols at the beginning of the second time unit have the same search space types for receiving the PDCCH.
  • the terminal may determine whether to select the last N symbols or the first N symbols according to the preset priority of the user-specific search space type.
  • the network side may indicate the preset priority information of the user-specific search space type through the PDCCH, for example, determine the priority information through the timing parameter K 0 in the PDCCH.
  • the terminal receives the search space type of the PDCCH through the symbols in the first symbol set, and selects consecutive N symbols from the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit
  • the symbol serves as a guard interval, and the symbols on both sides of the guard interval belong to symbols of different time units.
  • the symbol of which search space is selected depends on the priority of the type of the preset search space.
  • the types of search spaces can be divided into public search spaces or user-specific search spaces, and the types of public search spaces or user-specific search spaces can be further subdivided.
  • the guard interval determined by the above method has the least impact on the PDCCH receiving performance, and ensures the transmission of the PDCCH with high priority.
  • the guard interval can be the last N symbols at the end of the first time unit, or the first N symbols at the end of the second time unit, or from the last N-1 symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit. -1 consecutive N symbols selected from the symbols.
  • FIG. 8 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of the application.
  • the number of guard interval symbols N in Fig. 8 is 1.
  • the symbols in the first symbol set include the last symbol at the end of the first time unit and the first symbol at the beginning of the second time unit. Select a symbol from the first symbol set.
  • the guard interval can be the guard interval shown in Figure 8(a), that is, the last symbol at the end of the first time unit, or the guard interval shown in Figure 8(b), that is, the second time The first symbol at the beginning of the unit.
  • FIG. 9 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of this application.
  • the number of guard interval symbols N in Figure 9 is set to 2.
  • the symbols in the first symbol set include the last two symbols at the end of the first time unit and the first two symbols at the beginning of the second time unit. Select consecutive symbols from the first set of symbols.
  • the guard interval can be the guard interval shown in Fig. 9(a), that is, the last symbol at the end of the first time unit and the first symbol at the beginning of the second time unit, or it can be the guard interval shown in Fig. 9(b).
  • the guard interval shown in ), that is, the last two symbols at the end of the first time unit may also be the guard interval shown in (c) of FIG. 9, that is, the first two symbols at the beginning of the second time unit.
  • the terminal can select the last N symbols at the end of the first time unit as the guard interval.
  • Each symbol is used as a guard interval, and any one of the above three selection methods can be set according to a predefined rule, and this embodiment of the present application does not impose any limitation.
  • the guard interval determined by the above method has the least impact on the terminal channel reception performance, ensuring the transmission performance of the communication system.
  • the first symbol set includes at least two types of symbols.
  • the guard interval is from the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit Select consecutive N symbols, the symbols on both sides of the guard interval belong to the symbols of different time units, the number of symbols of the unreceived channel in the consecutive N symbols is greater than or equal to the number of symbols for receiving PDSCH, and the number of symbols for receiving PDSCH is greater than or equal to that of receiving The number of PDCCH symbols.
  • the general principle for selecting consecutive N symbols is to include as many symbols as possible for unreceived channels, that is, the first symbol among consecutive N symbols is the symbol for unreceiving channels, and the second most symbol is for receiving PDSCH.
  • the number of symbols of unreceived channels among the selected consecutive N symbols is greater than or equal to the number of symbols for receiving PDCCH, and the number of symbols for receiving PDCCH is greater than or equal to the number of symbols for receiving PDSCH.
  • the terminal determines the guard interval based on the above-mentioned general principle of selection.
  • the channel reception conditions of the symbols at the end of the first time unit and the symbols at the beginning of the second time unit in the first symbol set are different, and the guard interval may be the last N symbols at the end of the first time unit, or the first time unit.
  • the terminal may determine the guard interval according to the receiving channel type of the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit.
  • N symbols of the first channel type are used as guard intervals, where the first channel type includes one of PDSCH, PDCCH, and unreceived channels.
  • FIG. 10 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of the application.
  • the number of guard interval symbols N is 1.
  • the symbols in the first symbol set include the last symbol at the end of the first time unit and the first symbol at the beginning of the second time unit. Select a symbol from the first symbol set. As a guard interval.
  • the guard interval is as shown in Figure 10(a)
  • the guard interval that is, the last symbol at the end of the first time unit, which receives the PDSCH.
  • This implementation preferentially guarantees the transmission of the PDCCH, and the selection of the guard interval has little impact on the transmission of the PDCCH.
  • the guard interval is the guard interval shown in (b) of FIG. 10, that is, the first symbol at the beginning of the second time unit, and this symbol receives the PDCCH.
  • This implementation preferentially guarantees PDSCH transmission, and the selection of the guard interval has little impact on PDSCH transmission.
  • the principle of determining the guard interval is the same as the example shown in FIG. 10, and will not be repeated here.
  • FIG. 11 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of this application.
  • the number of guard interval symbols N in Fig. 11 is set to 2.
  • the symbols in the first symbol set include the last two symbols at the end of the first time unit and the first two symbols at the beginning of the second time unit. Select consecutive symbols from the first symbol set. The two symbols of as the guard interval.
  • the guard interval is as shown in Figure 11(a)
  • the guard interval is the last two symbols at the end of the first time unit, and both the last two symbols receive the PDSCH. This implementation preferentially guarantees the transmission of the PDCCH, and the selection of the guard interval has little impact on the transmission of the PDCCH. If the priority of the PDSCH is higher than the PDCCH, the guard interval is the guard interval shown in (b) of FIG.
  • the principle of determining the guard interval is the same as the example shown in FIG. 11, and will not be repeated here.
  • FIG. 12 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of the application.
  • the number of guard interval symbols N is 1.
  • the symbols in the first symbol set include the last symbol at the end of the first time unit and the first symbol at the beginning of the second time unit. Select a symbol from the first symbol set. As a guard interval.
  • the last symbol at the end of the first time unit not receiving the channel, and the first symbol at the beginning of the second time unit receiving the PDCCH or PDSCH as an example, since the priority of the unreceived channel is lower than that of the PDCCH and PDSCH, as shown in Figure 12, The last symbol at the end of the first time unit where the channel is not received is used as the guard interval.
  • This implementation preferentially guarantees the transmission of the PDCCH or PDSCH, and the selection of the guard interval has little impact on the transmission of the PDCCH or PDSCH.
  • the principle of determining the guard interval is the same as the example shown in FIG. 12, and will not be repeated here.
  • FIG. 13 is a schematic diagram of symbol distribution at a time unit junction according to an embodiment of this application.
  • the number of guard interval symbols N in Figure 13 is set to 2.
  • the symbols in the first symbol set include the last two symbols at the end of the first time unit and the first two symbols at the beginning of the second time unit. Select consecutive symbols from the first set of symbols.
  • the two symbols of as the guard interval Take the last two symbols at the end of the first time unit not receiving the channel, and the first two symbols at the beginning of the second time unit receiving the PDCCH or PDSCH as an example.
  • the principle of determining the guard interval is the same as that shown in the example shown in FIG. 13 and will not be repeated here.
  • the number of guard interval symbols N is set to 2. If the last two symbols at the end of the first time unit and the first two symbols at the beginning of the second time unit, there are three consecutive symbols for which the terminal does not receive the channel. , The terminal selects two consecutive symbols from these three consecutive symbols as the guard interval, as shown in Figure 14.
  • the number of guard interval symbols N is 2. If the last two symbols at the end of the first time unit and the first two symbols at the beginning of the second time unit, there are two consecutive symbols that the terminal does not receive the channel If the symbol is displayed, the terminal uses two consecutive unreceived channel symbols as the guard interval, as shown in Figure 13 and Figure 15.
  • the number of guard interval symbols N is 2. If only one of the last two symbols at the end of the first time unit and the first two symbols at the beginning of the second time unit is a symbol that does not receive a channel, then The symbol of the unreceived channel is regarded as one symbol of the guard interval, and the other symbol of the guard interval is determined from the symbols adjacent to the symbol of the unreceived channel.
  • the guard interval can be a symbol that does not receive a channel and a symbol on the left side of the symbol, as shown in Figure 16 (a), or a symbol that does not receive a channel and a symbol on the right side of the symbol, as shown in ((a) of Figure 16 b) as shown.
  • the other symbol of the guard interval is determined according to the channel types of the symbols on the left and right sides of the symbol that does not receive the channel.
  • the symbol with the channel type of PDCCH is used as the other symbol of the guard interval, or the symbol with the channel type of PDSCH is used as the other symbol of the guard interval.
  • Another symbol for guard interval is used as the other symbol of the guard interval.
  • the channel type of the symbols on the left and right sides of the symbol that does not receive the channel are both PDSCH, and the symbol carrying common information is used as the other symbol of the guard interval, or the symbol carrying user information is used as the other symbol of the guard interval . Further, if the type of information carried by the symbols on the left and right sides of the symbol of the unreceived channel is the same, the terminal determines another symbol of the guard interval according to the type of public information or the type of user information.
  • the foregoing implementation principle is the same as the embodiment shown in FIG. 4 and FIG. 5, and for details, please refer to the foregoing embodiment.
  • the channel types of the symbols on the left and right sides of the symbols that do not receive the channel are both PDCCH, and the symbols in the common search space of the PDCCH are used as the other symbol of the guard interval, or the symbols in the user-specific search space of the PDCCH are used as the protection Another symbol of the interval.
  • the terminal determines another symbol of the guard interval according to the type of the common search space or the type of the user-specific search space.
  • the number of guard interval symbols N is 2. If the last two symbols at the end of the first time unit and the first two symbols at the beginning of the second time unit include symbols for receiving PDSCH and symbols for receiving PDCCH, Assuming that the priority of the PDCCH is higher than that of the PDSCH, at least one symbol in the determined guard interval is a symbol for receiving the PDSCH. As shown in (a) of FIG. 17, the symbol of the received PDSCH is taken as one symbol of the guard interval, and the other symbol of the guard interval is determined from the symbols adjacent to the symbol of the received PDSCH.
  • the number of guard interval symbols N is 3. If there are three consecutive symbols for receiving PDSCH among the last three symbols at the end of the first time unit and the first three symbols at the beginning of the second time unit, then The terminal uses three consecutive symbols of the received PDSCH as a guard interval, as shown in (b) of FIG. 17.
  • the number of guard interval symbols N is 2, if the last two symbols at the end of the first time unit and the first two symbols at the beginning of the second time unit include symbols for receiving PDSCH or PDCCH, and no channel reception If the priority of the unreceived channel is lower than that of the PDSCH and PDCCH, at least one symbol in the determined guard interval is a symbol that does not receive the channel.
  • two consecutive symbols of unreceived channels are used as guard intervals.
  • the symbols of the two unreceived channels are not continuous, and the guard interval may be the last two symbols at the end of the first time unit, or the first two symbols at the beginning of the second time unit.
  • the terminal may determine the guard interval according to the type of information carried by the last symbol at the end of the first time unit and the first symbol at the beginning of the second time unit, or the type of the PDCCH search space.
  • the number of guard interval symbols N is 3, if the last three symbols at the end of the first time unit and the first three symbols at the beginning of the second time unit include symbols for receiving PDSCH or PDCCH, and no channel reception If the priority of the unreceived channel is lower than that of the PDSCH and PDCCH, at least one symbol in the determined guard interval is a symbol that does not receive the channel. As shown in (a) of FIG. 19, two consecutive symbols of the unreceived channel are taken as the two symbols of the guard interval, and the other symbol of the guard interval is the first symbol at the beginning of the second time unit.
  • the terminal may determine the guard interval according to the type of information carried by the penultimate symbol at the end of the first time unit and the first symbol at the beginning of the second time unit, or the type of the PDCCH search space.
  • the number of guard interval symbols N is set to 2. If the last two symbols at the end of the first time unit and the first two symbols at the beginning of the second time unit include symbols for receiving PDSCH, symbols for receiving PDCCH, and no For the symbols of the received channel, the priority of the PDCCH is higher than that of the PDSCH, and the priority of the PDSCH is higher than that of the unreceived channel, then there is at least one symbol that does not receive the channel in the determined guard interval. As shown in (a) of FIG. 20, the last two symbols at the end of the first time unit are used as guard intervals, including one symbol that does not receive a channel and one symbol that receives PDSCH.
  • the number of guard interval symbols N is 3, if the last three symbols at the end of the first time unit and the first three symbols at the beginning of the second time unit include symbols for receiving PDSCH, symbols for receiving PDCCH, and no For the symbols of the received channel, the priority of the PDCCH is higher than that of the PDSCH, and the priority of the PDSCH is higher than that of the unreceived channel, then there is at least one symbol that does not receive the channel in the determined guard interval. As shown in (b) of FIG. 20, the last three symbols at the end of the first time unit are used as guard intervals, including two consecutive symbols not receiving channels and one symbol receiving PDSCH.
  • the guard interval of N symbols needs to meet the following conditions at the same time: the guard interval is a continuous N symbols, and the symbols on both sides of the guard interval belong to different time units.
  • the number of symbols for unreceived channels is greater than or equal to the number of symbols for receiving PDSCH, and the number of symbols for receiving PDSCH is greater than or equal to the number of symbols for receiving PDCCH.
  • the priority of not receiving the channel ⁇ PDSCH priority ⁇ PDCCH priority is used as an example. In practical applications, it is also possible to preset the priority of not receiving the channel ⁇ PDCCH The priority of ⁇ PDSCH priority is not limited in this embodiment of the present application.
  • the guard interval of N symbols needs to meet the following conditions at the same time: the guard interval is consecutive N symbols, the symbols on both sides of the guard interval belong to different time units, and the N symbols in the guard interval do not receive the symbols of the channel
  • the number is greater than or equal to the number of symbols for receiving PDCCH, and the number of symbols for receiving PDCCH is greater than or equal to the number of symbols for receiving PDSCH.
  • the above several embodiments are based on the priority of the channel type, and the symbols of the unreceived channel at the junction of the time unit are preferentially selected as the guard interval to ensure the least impact on the transmission of the PDCCH and the PDSCH.
  • FIG. 21 is a flowchart of a method for determining a guard interval provided by an embodiment of the application. As shown in FIG. 21, the method provided in this embodiment can be applied to the base station shown in FIG. 1, and the method includes the following steps:
  • Step 201 Determine the N symbols in the first symbol set as guard intervals according to the channel transmission conditions of the symbols in the first symbol set.
  • the symbols in the first symbol set belong to the symbols at the end of the first time unit and the beginning of the second time unit.
  • the first time unit and the second time unit are two consecutive time units in the time domain.
  • the first time unit comes first, and the second time unit comes later.
  • the frequency domain subbands corresponding to the first time unit and the second time unit are different, the number of symbols in the first symbol set is greater than N, and N is a positive integer.
  • the symbols in the first symbol set in the embodiments of the present application can be understood as symbols at the junction of the first time unit and the second time unit.
  • the UE can select one symbol from the two symbols at the junction of the first time unit and the second time unit, where the two symbols at the junction can be the first symbol. The last symbol at the end of the time unit and the first symbol at the beginning of the second time unit.
  • the UE can start from the four symbols at the junction of the first time unit and the second time unit, where the four symbols at the junction can be the end of the first time unit The last two symbols of and the first two symbols at the beginning of the second time unit.
  • the preset channel transmission conditions of the symbols in the first symbol set in the embodiment of the present application include at least one of: transmitting a PDSCH, transmitting a PDCCH, or not transmitting a channel. That is, any symbol in the first symbol set can be used to send PDSCH, send PDCCH, or not send channel.
  • the preset channel sending situation of the symbol can be understood as the planned channel sending situation pre-configured by the network side for each symbol (such as sending PDCCH, sending PDCH, or not sending channel).
  • symbols corresponding to the search space of the PDCCH can be semi-statically configured through high-level information
  • PDSCH symbols can be scheduled to be transmitted through the PDCCH sent in the current time slot or previous time slots
  • PDSCH symbols can also be semi-statically configured through high-level signaling.
  • the preset channel transmission situation of symbol 1 is to send PDSCH. If symbol 1 is the last symbol at the end of the first time unit and is determined as a guard interval, the base station may send it on symbol 1 as the guard interval or not. Send PDSCH.
  • the N symbols of the guard interval determined in the embodiment of the present application are consecutive symbols, and the symbols on both sides of the guard interval belong to different time units.
  • Figure 3 shows the positions of the guard interval and the first time unit and the second time unit in the time domain. As shown in Figure 3, the guard interval is located at the junction of the first time unit and the second time unit, on the left side of the guard interval The symbol of belongs to the symbol of the first time unit, and the symbol on the right side of the guard interval belongs to the symbol of the second time unit.
  • the N symbols in the first symbol set are guard intervals.
  • the guard interval of N symbols includes the following situations: (1) the last N symbols at the end of the first time unit; (2) the first N symbols at the beginning of the second time unit; (3) from the first time unit N consecutive symbols selected from the last N-1 symbols at the end and the first N-1 symbols at the beginning of the second time unit.
  • the guard interval may be the last symbol at the end of the first time unit, or the first symbol at the beginning of the second time unit.
  • the guard interval may be the last two symbols at the end of the first time unit, or the first two symbols at the beginning of the second time unit, or the last symbol at the end of the first time unit Symbol and the first symbol at the beginning of the second time unit.
  • the guard interval can be the last three symbols at the end of the first time unit, or the first three symbols at the beginning of the second time unit, or the last three symbols from the end of the first time unit. 2 symbols and 3 consecutive symbols selected from the first 2 symbols at the beginning of the second time unit.
  • Step 202 Perform corresponding operations in the determined guard interval.
  • the operations performed by the base station in the determined guard interval include at least one of the following:
  • the frequency subband readjustment in the embodiment of the present application refers to that the base station adjusts the bandwidth of the receiver from the bandwidth of the first time unit to the bandwidth of the second time unit.
  • the base station may not receive information or transmit channels, and the base station may continue to transmit channels on symbols serving as guard intervals according to the preset transmission conditions of the symbols. This embodiment of the application does not impose any limitation on this.
  • the rate matching in the embodiment of the present application refers to that according to the determined guard interval, when the preset channel contains the symbol as the guard interval, when the data carried by the channel is modulated and mapped, it is not mapped to the symbol as the guard interval.
  • the base station plans to send PDSCH on the last 10 symbols at the end of the first time unit, where the last symbol at the end of the first time unit is used as the guard interval, and the base station can adjust the time domain resources of the PDSCH.
  • the PDSCH is transmitted on 9 symbols excluding the last symbol to ensure the reliability of base station channel transmission.
  • the method for determining the guard interval is to perform a comprehensive analysis on the preset channel transmission conditions of multiple symbols at the junction of two consecutive time units to determine N symbols as the guard interval, where N is a positive integer.
  • the N symbols of the determined guard interval are consecutive symbols, and the symbols on both sides of the guard interval belong to symbols of different time units.
  • the base station may not transmit the channel during the determined guard interval, or perform frequency subband re-adjustment, or perform rate matching on symbols belonging to the guard interval among the symbols of the transmitted channel.
  • the guard interval determined by the above method has the least impact on the channel transmission performance of the base station, ensuring the transmission performance of the communication system.
  • the guard interval is the last N symbols at the end of the first time unit or the first N symbols at the beginning of the second time unit; According to the preset channel transmission situation of the symbols in the first symbol set, the N symbols in the first symbol set are determined as guard intervals, including: according to the last N symbols at the end of the first time unit and the front end of the second time unit The N symbols preset the type of information to be sent and determine the guard interval.
  • determining the guard interval includes: preset sending N public information The symbol is used as the guard interval; or the preset N symbols for sending user information are used as the guard interval.
  • the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit have the same type of information;
  • the first N symbols at the start end preset the type of information to be sent, and the guard interval is determined, including: preset the type of public information sent according to the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit, or , The type of user information, determine the protection interval.
  • the guard interval is the last N symbols at the end of the first time unit or the first N symbols at the beginning of the second time unit; According to the preset channel transmission situation of the symbols in the first symbol set, the N symbols in the first symbol set are determined as guard intervals, including: according to the last N symbols at the end of the first time unit and the front end of the second time unit The N symbols preset the type of the search space for transmitting the PDCCH, and determine the guard interval.
  • determining the guard interval according to the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit to preset the type of the search space for sending the PDCCH includes: preset sending the PDCCH The N symbols of the common search space are used as the guard interval; or, the N symbols of the user-specific search space preset to transmit the PDCCH are used as the guard interval.
  • the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit have the same type of search space for transmitting the PDCCH;
  • the first N symbols at the beginning of the second time unit preset the type of search space for transmitting the PDCCH, and the guard interval is determined, including: preset transmission according to the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit
  • the type of the public search space of the PDCCH, or the type of the user-specific search space determines the guard interval.
  • the guard interval is from the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit. Select consecutive N symbols from the symbols.
  • the preset channel transmission conditions of the symbols in the first symbol set include transmitting PDSCH, PDCCH, or not transmitting at least two of the channel; the guard interval is from the last N symbols at the end of the first time unit and Select consecutive N symbols from the first N symbols at the beginning of the second time unit. Among the consecutive N symbols, the number of symbols that do not transmit channels is greater than or equal to the number of symbols that transmit PDSCH, and the number of symbols that transmit PDSCH is greater than or equal to that of PDCCH. Number of symbols.
  • the guard interval is the last N symbols at the end of the first time unit or The first N symbols at the beginning of the second time unit; according to the preset channel transmission conditions of the symbols in the first symbol set, the N symbols in the first symbol set are determined as guard intervals, including: according to the last at the end of the first time unit The N symbols and the first N symbols at the beginning of the second time unit preset the type of the transmission channel and determine the guard interval.
  • the type of the transmission channel is preset according to the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit to determine the guard interval, including: As a guard interval; the first channel type includes one of PDSCH, PDCCH, and non-transmission channel.
  • the first symbol set includes at least two types of symbols.
  • the implementation principles and technical effects are the same as those of the embodiments in FIG. 10 to FIG. 20 on the terminal side.
  • FIG. 22 is a schematic structural diagram of a terminal device provided by an embodiment of this application. As shown in FIG. 22, the terminal device 300 provided by the embodiment of the present application includes:
  • the processing module 301 is configured to determine N symbols in the first symbol set as guard intervals according to channel reception conditions of the symbols in the first symbol set;
  • the symbols in the first symbol set belong to the symbols at the end of the first time unit and the beginning of the second time unit, the first time unit and the second time unit are two consecutive time units in the time domain, so The frequency domain subbands corresponding to the first time unit and the second time unit are different, and the number of symbols in the first symbol set is greater than N, where N is a positive integer.
  • the N symbols used as the guard interval are consecutive symbols, and the symbols on both sides of the guard interval belong to different time units.
  • the guard interval is the last N symbols at the end of the first time unit.
  • the guard interval is the first N symbols at the beginning of the second time unit.
  • the guard interval is N consecutive symbols selected from the last N-1 symbols at the end of the first time unit and the first N-1 symbols at the beginning of the second time unit.
  • the channel reception status of the symbols in the first symbol set includes at least one of receiving PDSCH, receiving PDCCH, or not receiving a channel.
  • the guard interval is the last N symbols at the end of the first time unit or the beginning of the second time unit The first N symbols of;
  • the processing module 301 is specifically configured to determine the guard interval according to the type of the received information of the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit.
  • processing module 301 is specifically configured to:
  • the processing module 301 is specifically configured to receive the type of the public information according to the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit, or the type of the user information Type to determine the guard interval.
  • the guard interval is the last N symbols at the end of the first time unit or the beginning of the second time unit The first N symbols of;
  • the processing module 301 is specifically configured to determine the guard interval according to the type of the search space for receiving the PDCCH according to the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit.
  • processing module 301 is specifically configured to:
  • the N symbols of the user-specific search space receiving the PDCCH are used as the guard interval.
  • the processing module 301 is specifically configured to receive the type of the common search space of the PDCCH according to the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit, or, The type of the user-specific search space determines the guard interval.
  • the guard interval is from the last N symbols at the end of the first time unit and the beginning of the second time unit Select consecutive N symbols from the first N symbols of.
  • the symbols in the first symbol set are used to receive at least two of PDSCH, PDCCH, or no channel;
  • the guard interval is to select consecutive N symbols from the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit, and no channel is received among the consecutive N symbols
  • the number of symbols is greater than or equal to the number of symbols for receiving PDSCH, and the number of symbols for receiving PDSCH is greater than or equal to the number of symbols for receiving PDCCH.
  • the guard interval is the The last N symbols at the end of the first time unit or the first N symbols at the beginning of the second time unit;
  • the processing module 301 is specifically configured to determine the guard interval according to the receiving channel type of the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit.
  • processing module 301 is specifically configured to:
  • the first channel type includes one of PDSCH, PDCCH, and unreceived channel.
  • the terminal device 300 further includes: a transceiver module 302.
  • the transceiver module 302 does not receive channels in the determined guard interval.
  • the processing module 301 is further configured to perform frequency subband re-adjustment in the determined guard interval.
  • the terminal device provided in the embodiment of the present application is used to implement the technical solution of the terminal device of the foregoing method embodiment, and its implementation principles and technical effects are similar, and details are not described herein again.
  • FIG. 23 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • the network device 400 provided by the embodiment of the present application includes:
  • the processing module 401 is configured to determine that N symbols in the first symbol set are guard intervals according to preset channel transmission conditions of the symbols in the first symbol set;
  • the symbols in the first symbol set belong to the symbols at the end of the first time unit and the beginning of the second time unit, the first time unit and the second time unit are two consecutive time units in the time domain, so The frequency domain subbands corresponding to the first time unit and the second time unit are different, and the number of symbols in the first symbol set is greater than N, where N is a positive integer.
  • the N symbols used as the guard interval are consecutive symbols, and the symbols on both sides of the guard interval belong to different time units.
  • the guard interval is the last N symbols at the end of the first time unit.
  • the guard interval is the first N symbols at the beginning of the second time unit.
  • the guard interval is N consecutive symbols selected from the last N-1 symbols at the end of the first time unit and the first N-1 symbols at the beginning of the second time unit.
  • the preset channel sending condition of the symbols in the first symbol set includes at least one of sending a PDSCH, sending a PDCCH, or not sending a channel.
  • the guard interval is the last N symbols at the end of the first time unit or the The first N symbols at the beginning of the second time unit;
  • the processing module 401 is specifically configured to determine the guard interval according to the preset transmission information type according to the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit.
  • processing module 401 is specifically configured to:
  • the processing module 401 is specifically configured to preset the type of sending the public information according to the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit, or the user The type of information determines the guard interval.
  • the guard interval is the last N symbols at the end of the first time unit or the The first N symbols at the beginning of the second time unit;
  • the processing module 401 is specifically configured to preset the type of search space for sending the PDCCH according to the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit to determine the Guard interval.
  • processing module 401 is specifically configured to:
  • the N symbols of the common search space for sending the PDCCH are preset as the guard interval; or the N symbols of the user-specific search space for sending the PDCCH are preset as the guard interval.
  • the processing module 401 is specifically configured to preset the type of the common search space for sending the PDCCH according to the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit, or, The type of user-specific search space determines the guard interval.
  • the guard interval is from the last N symbols at the end of the first time unit and Select consecutive N symbols from the first N symbols at the beginning of the second time unit.
  • the preset channel transmission conditions of the symbols in the first symbol set include transmitting at least two of PDSCH, PDCCH, or not transmitting channels;
  • the guard interval is to select consecutive N symbols from the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit, and no channel is sent among the consecutive N symbols
  • the number of symbols is greater than or equal to the number of symbols for transmitting PDSCH, and the number of symbols for transmitting PDSCH is greater than or equal to the number of symbols for transmitting PDCCH.
  • the guard interval is The last N symbols at the end of the first time unit or the first N symbols at the beginning of the second time unit;
  • the processing module 401 is specifically configured to determine the guard interval according to the preset transmission channel type according to the last N symbols at the end of the first time unit and the first N symbols at the beginning of the second time unit.
  • processing module 401 is specifically configured to:
  • the first channel type includes one of PDSCH, PDCCH, and non-transmission channel.
  • the network device 400 further includes: a transceiver module 402.
  • the transceiver module 402 is used to transmit or not transmit the channel in a certain guard interval.
  • the processing module 401 is further configured to perform frequency subband re-adjustment in the determined guard interval, or perform rate matching on symbols belonging to the guard interval in the symbols of the transmission channel.
  • the network device provided in the embodiment of the present application is used to implement the technical solution of the network device of the foregoing method embodiment, and its implementation principles and technical effects are similar, and details are not described herein again.
  • the division of the various modules of the above terminal equipment or network equipment is only a logical function division, and may be fully or partially integrated into a physical entity in actual implementation, or may be physically separated.
  • these modules can all be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware; part of the modules can be implemented in the form of calling software by processing elements, and some of the modules can be implemented in the form of hardware.
  • the processing module may be a separate processing element, or it may be integrated in a chip of the above-mentioned device for implementation.
  • each step of the above method or each of the above modules can be completed by an integrated logic circuit of hardware in the processor element or instructions in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (FPGA), etc.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA field programmable gate arrays
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • FIG. 24 is a schematic diagram of the hardware structure of a terminal device according to an embodiment of the application.
  • the terminal device 500 may include: a transceiver 501, a processor 502, and a memory 503; the memory 503 stores computer-executable instructions; the processor 502 executes the computer-executable instructions stored in the memory 503, so that The processor 502 executes the technical solution of the method for determining the guard interval on the terminal device side in any of the foregoing method embodiments.
  • the processor 502 may be a chip.
  • FIG. 25 is a schematic diagram of the hardware structure of a network device provided by an embodiment of this application.
  • the terminal device 600 may include: a transceiver 601, a processor 602, and a memory 603; the memory 603 stores computer-executable instructions; the processor 602 executes the computer-executable instructions stored in the memory 603, so that The processor 602 executes the technical solution of the method for determining the guard interval on the network device side in any of the foregoing method embodiments.
  • the processor 602 may be a chip.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer-executable instruction, and when the computer-executable instruction is executed by a processor, it is used to implement the terminal in any of the foregoing method embodiments Technical solutions on the equipment side.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, it is used to implement the network in any of the foregoing method embodiments.
  • Technical solutions on the equipment side are provided.
  • the embodiment of the present application also provides a program, when the program is executed by the processor, it is used to execute the technical solution on the terminal device side in any of the foregoing method embodiments.
  • the embodiment of the present application also provides a program, when the program is executed by the processor, it is used to execute the technical solution on the network device side in any of the foregoing method embodiments.
  • the embodiments of the present application also provide a computer program product, including program instructions, which are used to implement the technical solutions on the terminal device side in any of the foregoing method embodiments.
  • the embodiments of the present application also provide a computer program product, including program instructions, which are used to implement the technical solutions on the network device side in any of the foregoing method embodiments.
  • the embodiment of the present application also provides a chip, which includes a processing module and a communication interface, and the processing module can execute the technical solution on the terminal device side in the foregoing method embodiment.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the terminal device side Technical solutions.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the terminal device side Technical solutions.
  • An embodiment of the present application also provides a chip, which includes a processing module and a communication interface, and the processing module can execute the technical solution on the network device side in the foregoing method embodiment.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the network device side Technical solutions.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the network device side Technical solutions.
  • At least two refers to two or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship; in the formula, the character “/” indicates that the associated objects before and after are in a “division” relationship.
  • “The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple indivual.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not be used for the implementation of this application.
  • the implementation process of the example constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种保护间隔的确定方法、设备及存储介质,用于提升系统信道的传输性能。该方法包括:根据连续的两个时间单元交界处的信道传输情况,从两个时间单元交界处选择连续的N个符号作为保护间隔,保护间隔两侧的符号属于不同的时间单元,两侧的时间单元对应的频域子带不同,其中N为正整数。通过上述方法确定的保护间隔对系统信道传输性能的影响最小,确保在频率子带重调期间系统的传输性能。

Description

保护间隔的确定方法、设备及存储介质 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种保护间隔的确定方法、设备及存储介质。
背景技术
新空口(New Radio,NR)系统主要支持增强移动带宽(Enhanced Mobile Broadband,eMBB)业务,满足高速率、高频谱效率、大带宽的需求。在实际应用中,除了eMBB业务,还存在多种其他业务类型,例如工业物联网传感器、监控摄像头、可穿戴设备的数据传输业务,支持这些业务的终端具有连接数大、功耗低、成本低的特点,与支持eMBB业务的终端相比,硬件能力降低,例如支持的带宽减小、处理速度降低、天线数量减小等。因此,需要针对支持上述其他业务类型的低能力终端对NR系统进行优化,对应的系统被称为NR-light系统。
为了提高信道传输的性能,NR系统考虑采用跳频的方式进行信道传输,即信道资源在不同时间单元的带宽可以不同。相应的,终端需要将接收机带宽从一个带宽重调(retuning)到另一个带宽,在重调期间终端无法接收或发送信道,这将影响系统信道的传输性能。
发明内容
本申请实施例提供一种保护间隔的确定方法、设备及存储介质,确保系统信道的传输性能。
第一方面,本申请实施例提供一种保护间隔的确定方法,包括:根据第一符号集合中的符号的信道接收情况,确定所述第一符号集合中的N个符号为保护间隔;所述第一符号集合中的符号属于第一时间单元末端和第二时间单元始端的符号,所述第一时间单元和所述第二时间单元为在时域上连续的两个时间单元,所述第一时间单元和所述第二时间单元对应的频域子带不同,所述第一符号集合中的符号个数大于N,其中N为正整数。
第二方面,本申请实施例提供一种保护间隔的确定方法,包括:根据第一符号集合中的符号的预设信道发送情况,确定所述第一符号集合中的N个符号为保护间隔;所述第一符号集合中的符号属于第一时间单元末端和第二时间单元始端的符号,所述第一时间单元和所述第二时间单元为在时域上连续的两个时间单元,所述第一时间单元和所述第二时间单元对应的频域子带不同,所述第一符号集合中的符号个数大于N,其中N为正整数。
第三方面,本申请实施例提供一种终端设备,包括:处理模块,用于根据第一符号集合中的符号的信道接收情况,确定所述第一符号集合中的N个符号为保护间隔;所述第一符号集合中的符号属于第一时间单元末端和第二时间单元始端的符号,所述第一时间单元和所述第二时间单元为在时域上连续的两个时间单元,所述第一时间单元和所述第二时间单元对应的频域子带不同,所述第一符号集合中的符号个数大于N,其中N为正整数。
第四方面,本申请实施例提供一种网络设备,包括:处理模块,用于根据第一符号集合中的符号的预设信道发送情况,确定所述第一符号集合中的N个符号为保护间隔;所述第一符号集合中的符号属于第一时间单元末端和第二时间单元始端的符号,所述第一时间单元和所述第二时间单元为在时域上连续的两个时间单元,所述第一时间单元和所述第二时间单元对应的频域子带不同,所述第一符号集合中的符号个数大于N,其中N为正整数。
第五方面,本申请实施例提供一种终端设备,包括:收发器、处理器、存储器;所述存储器存储计算机执行指令;所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第一方面所述的方法。可选地,上述处理器可以为芯片。
第六方面,本申请实施例提供一种网络设备,包括:收发器、处理器、存储器;所述存储器存储计算机执行指令;所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如第二方面所述的方法。可选地,上述处理器可以为芯片。
第七方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如第一方面所述的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如第二方面所述的方法。
本申请实施例提供一种保护间隔的确定方法、设备及存储介质,用于提升系统信道的传输性能。该方法包括:根据连续的两个时间单元交界处的信道传输情况,从两个时间单元交界处选择连续的N个符号作为保护间隔,保护间隔两侧的符号属于不同的时间单元,两侧的时间单元对应的频域子带不同,其中N为正整数。通过上述方法确定的保护间隔对系统信道传输性能的影响最 小,确保在频率子带重调期间系统的传输性能。
附图说明
图1为本申请实施例提供的一种通信系统的结构示意图;
图2为本申请实施例提供的一种保护间隔的确定方法的流程图;
图3为本申请实施例提供的保护间隔与第一时间单元和第二时间单元在时域上的位置示意图;
图4为本申请实施例提供的一种时间单元交界处的符号分布示意图;
图5为本申请实施例提供的一种时间单元交界处的符号分布示意图;
图6为本申请实施例提供的一种时间单元交界处的符号分布示意图;
图7为本申请实施例提供的一种时间单元交界处的符号分布示意图;
图8为本申请实施例提供的一种时间单元交界处的符号分布示意图;
图9为本申请实施例提供的一种时间单元交界处的符号分布示意图;
图10为本申请实施例提供的一种时间单元交界处的符号分布示意图;
图11为本申请实施例提供的一种时间单元交界处的符号分布示意图;
图12为本申请实施例提供的一种时间单元交界处的符号分布示意图;
图13为本申请实施例提供的一种时间单元交界处的符号分布示意图;
图14为本申请实施例提供的一种时间单元交界处的符号分布示意图;
图15为本申请实施例提供的一种时间单元交界处的符号分布示意图;
图16为本申请实施例提供的一种时间单元交界处的符号分布示意图;
图17为本申请实施例提供的一种时间单元交界处的符号分布示意图;
图18为本申请实施例提供的一种时间单元交界处的符号分布示意图;
图19为本申请实施例提供的一种时间单元交界处的符号分布示意图;
图20为本申请实施例提供的一种时间单元交界处的符号分布示意图;
图21为本申请实施例提供的一种保护间隔的确定方法的流程图;
图22为本申请实施例提供的一种终端设备的结构示意图;
图23为本申请实施例提供的一种网络设备的结构示意图;
图24为本申请实施例提供的一种终端设备的硬件结构示意图;
图25为本申请实施例提供的一种网络设备的硬件结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述之外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在NR系统中,同步信号(Synchronization Signal,SS)与物理广播信道(Physical Broadcast Channel,PBCH)块是按照一定时频域资源关系以SS/PBCH资源块的形式出现,简称为同步信号块(Synchronization Signal Block,SSB)。SSB可以包括PBCH,主同步信号(primary synchronization signal,PSS),辅同步信号(Secondary synchronization signal,SSS)中的至少一个。
网络设备可以在不同波束方向上发送一系列SSB(或称为SSB集合),例如SSB1、SSB2、SSB3等,即网络设备通过多波束扫描的方式覆盖整个小区,以便于小区内的终端设备接收。SSB承载信息的信道为PBCH,PBCH用于承载主信息块(main information block,MIB)。终端设备可以从MIB信息的pdcch-ConfigSIB1字段中得到type0PDCCH的控制资源集合CORESET信息,CORESET信息用于指示type0PDCCH在频域上的资源块RB和在时域上的OFDM符号数。终端设备还可以从MIB信息的pdcch-ConfigSIB1字段中得到type0PDCCH的搜索空间信息,搜索空间信息用于确定type0PDCCH的监听时机,搜索空间信息包括type0PDCCH起始OFDM符号编号以及监测周期等。
终端设备在接收到SSB后,可以取得与网络设备的时间同步,并且获取网络的基本配置信息。除此之外,终端设备还需要得到一些必要的系统信息才可以完成驻留小区及初始接入,这些必要的系统信 息在NR中被称为RMSI(Remaining Minimum System Information)。RMSI可认为是LTE中的SIB1(System Information Block1)消息,主要通过物理下行共享信道(Physical Down Link Shared Channel,PDSCH)发送,而PDSCH信道需要物理下行控制信道(Physical Down Link Control Channel,PDCCH)的下行控制信息(Downlink Control Information,DCI)来调度。终端设备可以从MIB信息的pdcch-ConfigSIB1字段中得到调度RMSI的PDCCH信道信息,在该PDCCH上进行盲检,获得RMSI,即SIB1消息。
NR系统主要是为了支持eMBB业务而设计的,其主要技术是为了满足高速率、高频谱效率、大带宽的需要。实际上,除了eMBB,还存在多种不同的业务类型,例如:传感器网络、视频监控、可穿戴等,它们在速率、带宽、功耗、成本等方面与eMBB业务有着不同的需求。支持这些业务的终端相比支持eMBB的终端的能力是降低的,如支持的带宽减小、处理时间放松、天线数减少等。为了更好的支持除eMBB业务之外的其他业务类型,需要针对这些业务和相应的低能力终端对NR系统进行优化,这样的系统称为NR-light系统。
在NR-light系统中,低能力的终端支持的带宽比较有限,因此网络侧指示的type0PDCCH的CORESET的带宽就比较窄。为了保证type0PDCCH的接收性能,通常采用时域上的重复发送,即在多个时间单元上发送type0PDCCH。那么,每个索引的SSB对应的type0PDCCH的监听时机可能都需要更多的时间单元,导致占用大量的下行子帧,造成接收SIB1的延迟。对此,可采用跳频的方式使得某一索引SSB对应的type0PDCCH的CORESET的带宽在不同时间单元上发生变化,即由一个带宽重调至另一个带宽,从而实现终端在同一时间单元的不同CORESET的带宽上检测type0PDCCH,降低终端接收SIB1的延迟。相关技术中,不同波束方向上的SSB(或称为不同索引的SSB)通常指示的type0PDCCH的CORESET信息是相同的,通过上述跳频方式,使得不同索引的SSB中至少有两个SSB对应的CORESET信息不完全相同,可实现终端在同一时间单元的不同CORESET的带宽上接收信道,从而提高了终端接收信道的能力。
上述跳频方式,需要终端将接收机带宽从一个带宽重调(retuning)到另一个带宽,在重调期间,终端无法接收和发送信道,这将影响系统信道的传输性能。由于NR系统中控制信道的时域资源配置的灵活性比较高,在不同的控制信道资源配置下,需要定义相应的保护间隔,以确保NR-Light系统的传输性能。
对此,本申请实施例提供一种保护间隔的确定方法,考虑到上述带宽重调(或称为频率子带重调)发生在连续的两个时间单元(比如第一时间单元和第二时间单元)的边界处,且连续的两个时间单元的带宽不同,因此基于这两个时间单元边界处符号的信道传输情况,从连续的两个时间单元的边界处确定保护间隔。本申请实施例的保护间隔可以是一个符号,或者多个连续的符号,其中保护间隔左侧的符号属于第一时间单元,保护间隔右侧的符号属于第二时间单元。
图1为本申请实施例提供的一种通信系统的结构示意图。如图1所示,该通信系统包括网络设备以及与网络设备通信连接的多个终端设备,例如图1所示的UE1至UE6。其中,网络设备可以为基站(Base station,BS),基站可以是多波束的基站,也可以是单波束的基站。终端设备可以是固定的终端设备,也可以是移动的终端设备。基站和UE1至UE6组成一个通信系统,在该通信系统中,基站可以采用波束扫描方式发送一系列SSB,以使UE1至UE6中的一个或多个UE根据接收到的至少一个SSB确定至少一个SSB对应的CORESET信息和搜索空间信息,从而进行PDCCH检测,在PDCCH DCI调度的PDSCH上接收下行数据,例如系统消息SIB1。
本申请实施例的技术方案主要应用于基于NR技术的通信系统,例如第五代移动通信技术(5th generation mobile networks,简称5G)通信系统、NR-light系统等。也可以应用于其它的通信系统,只要该通信系统中存在实体需要指示与另一个实体通信时,另一个实体需要通过某种方式解读提前数据传输即可,例如可以应用在网络设备和终端设备之间进行多数据块的调度,或者两个终端设备,其中一个承担接入网络的功能等。具体的,该通信系统可以是例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、高级的长期演进LTE-A(LTE Advanced)系统、LTE频分双工(Freq终端设备ncy Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
本申请实施例的技术方案中所称的终端设备可以是无线终端,也可以是有线终端。无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终 端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device or User Equipment),在此不作限定。
本申请实施例的技术方案中所称的网络设备是一种部署在无线接入网用以提供无线通信功能的设备,可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是LTE中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者中继站或接入点,或者新空口NR网络中的收发点(transmission reception point,TRP)或者下一代节点B(generation nodeB,gNB),或者未来其他的网络系统中的基站等等,在此并不限定。
本申请实施例的网络设备可以通过MIB信息指示PDCCH的CORESET信息和搜索空间信息。终端设备在网络设备指示的PDCCH的CORESET和搜索空间,对PDCCH进行检测。
在实际应用中,可通过在MIB的pdcch-ConfigSIB1字段中指示表1中的任一索引(index),确定该索引对应的CORESET的RB个数(Number of RBs)、符号数(Number of Symbols)以及相比SSB的RB偏移值(RB offset),从而得到上述CORESET信息。
需要说明的是,下文表1示出了子载波间隔为15kHz的情况,CORESET的带宽可以配置为24、48、96个RB,CORESET的符号个数可以为1、2、3,CORESET的频域位置相比SSB的频域位置偏移的RB个数可以为0、2、4、12、16、38。表1中的SSB与CORESET的复用方式为方式1,即PDCCH与SSB采用时分复用方式。当然,SSB与CORESET的复用方式还可以是方式2(PDCCH与SSB采用频分和时分复用方式)或方式3(PDCCH与SSB采用频分复用方式)。表1仅作为示例,对于不同子载波间隔或不同复用方式,对应的表格内容存在差异。
在实际应用中,上述MIB的pdcch-ConfigSIB1字段还指示了type0PDCCH的搜索空间信息,该信息可用于确定type0PDCCH的监听时机(即起始OFDM符号编号)。
type0PDCCH的监听时机通过以下方式确定:
对于SSB与CORESET的复用方式为方式1,UE在两个连续的时隙监听type0PDCCH公共搜索空间。两个连续的时隙中起始时隙的编号为n 0,每个索引的SSB对应一个监听窗口,该监听窗口的起始时隙的编号n 0可通过公式一确定:
Figure PCTCN2020080415-appb-000001
式中,i为SSB的索引号,μ为与子载波间隔Δf相关的系统参数,
Figure PCTCN2020080415-appb-000002
为一个无线帧中的时隙的个数,N和O均通过PBCH中的Searchspace信息指示。O的取值在6GHz以下频域(frequency range 1)时包括{0,2,5,7},在6GHz以上频域(frequency range 2)时包括{0,2.5,5,7.5}。M的取值包括{1/2,1,2}。
以frequency range 1为例,Searchspace 0指示信息如下文表2所示。可通过在MIB的pdcch-ConfigSIB1字段中指示表2中的任一索引(index),确定该索引对应的O、M、每个时隙的搜索空间集合个数(Number of search space sets per slot)、起始符号索引(First symbol index)。表2中的i表示SSB的索引号,例如索引为1时,如果SSB的索引号为偶数,则搜索空间的起始符号索引为0,如果SSB的索引号为奇数,则搜索空间的起始符号索引为
Figure PCTCN2020080415-appb-000003
表示一个CORESET包含的符号个数。
在确定起始时隙的编号n 0之后,还需要进一步确定监听窗口所在的无线帧编号SFN C,可通过公式二或三确定:
Figure PCTCN2020080415-appb-000004
Figure PCTCN2020080415-appb-000005
即如果
Figure PCTCN2020080415-appb-000006
计算得到的时隙个数小于一个无线帧包含的时隙个数,SFN C为偶数无线帧,如果
Figure PCTCN2020080415-appb-000007
计算得到的时隙个数大于或等于一个无线帧包含的时隙个数,SFN C为奇数无线帧。
在本申请实施例中,SSB的PBCH承载的MIB信息的pdcch-ConfigSIB1字段包含8比特,type0PDCCH的CORESET信息和Searchspace信息各占4比特。不同索引的SSB的PBCH承载的CORESET信息可以相同也可以不同,其中,不同索引的SSB的PBCH承载的CORESET信息不同即不同索引的SSB对应的MIB信息不同。
i的取值范围为[0,L-1],L为SSB所在频段对应的SSB的最大个数。SSB的最大个数L与系统的频段有如下关系:频段(frequency range)小于或者等于3GHz,L取4;频段大于3GHz且小于6GHz,L取8;频段大于或者等于6GHz且小于52.6GHz,L取64。其中,SSB的索引号可通过PBCH的解调参考信号(Demodulation Reference Signal,DMRS)或者PBCH承载的信息来指示。
表1
Figure PCTCN2020080415-appb-000008
表2
Figure PCTCN2020080415-appb-000009
需要说明的是,本申请实施例中的网络设备除了通过上述MIB信息指示PDCCH的CORESET信息和搜索空间信息,还可以通过系统消息SIB1或者无线资源控制(Radio Resource Control,RRC)信令配置PDCCH的CORESET信息和搜索空间信息。
其中,搜索空间的配置信息包括如下信息:
(1)搜索空间标识(search space ID)。
(2)控制资源集合的标识(controlResourceSetId),指示control resource set的配置的ID,配置PDCCH search space的时频资源。
(3)监听的时隙(slot)的周期以及在周期内的偏移。目前NR支持的周期包括1、2、4、5、8、10、16、20、40、80、160、320、640、1280、2560个时隙。
(4)Duration指示在PDCCH search space周期内连续监听的时隙个数。
(5)monitoringSymbolsWithinSlot指示在PDCCH监听的时隙内哪些符号上进行PDCCH监听。
(6)PDCCH candidates指示PDCCH candidate的配置信息。
(7)搜索空间的类型:公共搜索空间(common search space)或者用户特定搜索空间(UE-specific search space)。
其中,CORESET的配置信息包括如下信息:
(1)控制资源集合的标识:CORESET的编号,取值从1~11,CORESET 0为广播消息中指示的CORESET。
(2)frequencyDomainResources:CORESET频域资源,指示CORESET包含的RB。
(3)duration:CORESET包含的连续符号数,取值范围在{1,2,3}。
(4)cce-REG-MappingType:可以配置为交织映射或非交织映射方式。
(5)precoderGranularity:指示DMRS的预编码粒度是宽带预编码还是窄带预编码。
本申请实施例的网络设备通过下行授权(DL grant)的DCI(DCI format 1_0或DCI format 1_1)调度下行数据传输时,会在DCI中携带PDSCH的调度信息,包括时域和频域资源分配信息。其中,时域资源分配信息通过TimeDomainResourceAllocation(TDRA)域指示。表3示出了TDRA指示域对应的缺省表格,用于确定type0PDCCH中承载的DCI中的TDRA指示域的含义。当终端设备检测type0PDCCH,获得TDRA信息时,按照表3确定TDRA对应的SLIV。该指示域包含4bit,可以指示一个资源分配表格中的16个不同的行,如表4所示的16个行索引。每一行包含不同的资源分配组合,比如PDSCH的起始符号S,长度L,K 0以及不同的type等。其中,K 0表示DCI所在的时隙和PDSCH所在的时隙之间的偏移时隙的个数。
表3
Figure PCTCN2020080415-appb-000010
在NR系统中,PDSCH的起始符号和长度不再固定,而是通过DCI中的TDRA指示PDSCH在调度时隙中的起始符号S和长度L。S和L的取值不是随意的,而是通过联合编码,组成一个SLIV值(the  start and length indicator),可选的取值如表4所示。表4中,时域资源分配有两种方式:Type A和Type B。Type A和Type B对应的S和L候选值不一样。Type A主要面向slot-based业务,S比较靠前,L比较长。而Type B主要面向URLLC业务,对时延要求较高,所以S的位置比较随意以便传输随时到达的URLLC业务,L较短,可降低传输时延。
表4
Figure PCTCN2020080415-appb-000011
基于上述通信系统,下面结合附图以具体的几个实施例对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程在某些实施例中不再赘述。
图2为本申请实施例提供的一种保护间隔的确定方法的流程图。如图2所示,本实施例提供的方法可应用于图1所示的任意一个UE,该方法包括如下步骤:
步骤101、根据第一符号集合中的符号的信道接收情况,确定第一符号集合中的N个符号为保护间隔。
在本申请实施例中,第一符号集合中的符号属于第一时间单元末端和第二时间单元始端的符号,第一时间单元和第二时间单元为在时域上连续的两个时间单元,第一时间单元在前,第二时间单元在后。其中,第一时间单元和第二时间单元对应的频域子带不同,第一符号集合中的符号个数大于N,N为正整数。需要说明的是,本申请实施例中的时间单元可以是无线帧、子帧、时隙等,对此本申请实施例不作任何限制。
本申请实施例中的第一符号集合中的符号可以理解为第一时间单元和第二时间单元交界处的符号。作为一种示例,假设保护间隔的符号个数N为1,UE可以从第一时间单元和第二时间单元交界处的两个符号中选择一个符号,其中交界处的两个符号可以是第一时间单元末端的最后一个符号以及第二时间单元始端的第一个符号。作为另一种示例,假设保护间隔的符号个数为2个,UE可以从第一时间单元和第二时间单元交界处的四个符号,其中交界处的四个符号可以是第一时间单元末端的最后两个符号以及第二时间单元始端的前两个符号。
本申请实施例中的第一符号集合中的符号的信道接收情况包括:接收PDSCH、接收PDCCH、或者不接收信道的至少一项。即第一符号集合中的任意一个符号可用于接收PDSCH、接收PDCCH、或者不接收信道。
本申请实施例确定的保护间隔的N个符号是连续的符号,且保护间隔两侧的符号属于不同的时间单元。图3示出了保护间隔与第一时间单元和第二时间单元在时域上的位置示意,如图3可知,保护间隔位于第一时间单元和第二时间单元的交界处,保护间隔左侧的符号属于第一时间单元的符号,保护间隔右侧的符号属于第二时间单元的符号。
根据第一符号集合中的符号的信道接收情况,确定第一符号集合中的N个符号为保护间隔。其中,N个符号的保护间隔包括以下几种情况:(1)第一时间单元末端的最后N个符号;(2)第二时间单元始端的前N个符号;(3)从第一时间单元末端的最后N-1个符号和第二时间单元始端的前N-1个符号中选择的连续的N个符号。
作为一种示例,N取值为1时,保护间隔可以是第一时间单元末端的最后一个符号,或者,第二时间单元始端的第一个符号。作为一种示例,N取值为2时,保护间隔可以是第一时间单元末端的最后两个符号,或者,第二时间单元始端的前两个符号,或者,第一时间单元末端的最后一个符号和第二时间单元始端的第一个符号。作为一种示例,N取值为3时,保护间隔可以是第一时间单元末端的最后三个符号,或者,第二时间单元始端的前三个符号,或者,从第一时间单元末端的最后2个符号和第二时间单元始端的前2个符号中选择的连续的3个符号。
上述几个示例展示了不同N值对应的保护间隔的几种可能的情况,对于任意一种N值对应的保护间隔的几种可能的情况,需要结合时间单元交界处各个符号的信道接收情况进行综合分析,确定最终的保护间隔。在综合分析中,可以考虑交界处符号的信道的类型、信道承载的信息的类型、信道的搜索空间的类型等,使得最终选择的作为保护间隔的符号对终端信道接收性能的影响最小。在NR系统中,由于不同时间单元的信道资源配置非常灵活,两个连续时间单元交界处的符号的信道接收情况较多,综合分析考虑的因素不尽相同,详细情况具体可参见后文实施例。
步骤102、在确定的保护间隔进行频率子带重调。其中,频率子带重调是指UE将接收机带宽从第一时间单元的带宽调整到第二时间单元的带宽。在频率子带重调期间,UE不接收、不发送信道。
本申请实施例提供的保护间隔的确定方法,通过对两个连续的时间单元交界处的多个符号的信道接收情况进行综合分析,确定N个符号作为保护间隔,其中N为正整数。确定的保护间隔的N个符号是连续的符号,且保护间隔两侧的符号属于不同时间单元的符号。终端在确定的保护间隔进行频率子带重调。通过上述方法确定的保护间隔对终端信道接收性能的影响最小,确保通信系统的传输性能。
上述实施例示出了终端需要根据两个连续时间单元交界处的多个符号的信道接收请求进行综合分析,确定保护间隔。由于两个连续时间单元交界处的多个符号的信道接收情况较多,下面结合附图4至附图20对两个连续时间单元交界处的各种符号分布情况的保护间隔确定方法进行详细说明。时间单元交界处的符号分布,即第一符号集合中的符号分布。由于第一符号集合中的每一个符号可用于接收PDSCH、PDCCH、或者不接收信道,相应的,第一符号集合中可能仅包括一种类型的符号,也可能包括多种类型的符号。
下面介绍第一符号集合中仅包括一种类型符号的情况,涉及附图有图4至图9。
第一种情况,第一时间单元和第二时间单元交界处的多个符号均用于接收PDSCH,即第一符号集合中的符号均用于接收PDSCH。保护间隔可以是第一时间单元末端的最后N个符号,或者第二时间单元末端的前N个符号,或者从第一时间单元末端的最后N-1个符号和第二时间单元始端的前N-1个符号中选择的连续的N个符号。
图4为本申请实施例提供的一种时间单元交界处的符号分布示意图。图4中保护间隔符号个数N取1,第一符号集合中的符号包括第一时间单元末端的最后一个符号以及第二时间单元始端的第一个符号,从第一符号集合中选择一个符号作为保护间隔。该示例中,保护间隔可以是图4的(a)所示的保护间隔,即第一时间单元末端的最后一个符号,还可以是图4的(b)所示的保护间隔,即第二时间单元始端的第一个符号。
图5为本申请实施例提供的一种时间单元交界处的符号分布示意图。图5中保护间隔符号个数N取2,第一符号集合中的符号包括第一时间单元末端的最后两个符号以及第二时间单元始端的前两个符号,从第一符号集合中选择连续的两个符号作为保护间隔。该示例中,保护间隔可以是图5的(a)所示的保护间隔,即第一时间单元末端的最后一个符号和第二时间单元始端的第一个符号,还可以是图5的(b)所示的保护间隔,即第一时间单元末端的最后两个符号,还可以是图5的(c)所示的保护间隔,即第二时间单元始端的前两个符号。
上述第一种情况,若保护间隔是第一时间单元末端的最后N个符号,或者第二时间单元末端的前N个符号。可通过下述方式确定选择第一时间单元末端的最后N个符号作为保护间隔,还是选择第二时间单元始端的前N个符号作为保护间隔:根据第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号接收信息的类型,确定所述保护间隔。其中,符号接收PDSCH的信息的类型包括公共信息或者用户信息。可以根据PDCCH的搜索空间确定符号接收PDSCH的信息的类型。例如PDCCH的搜索空间为公共搜索空间,对应的符号接收PDSCH的信息类型为公共信息,又例如,PDCCH的搜索空间为用户特定搜索空间,对应的符号接收PDSCH的信息类型为用户信息。
在一种可能的实现方式中,将接收公共信息的N个符号作为保护间隔。该实现方式中,PDSCH承载的用户信息的优先级高于PDSCH承载的公共信息,因此将承载公共信息的PDSCH的N个符号作为保护间隔。
在另一种可能的实现方式中,将用户信息的N个符号作为保护间隔。该实现方式中,PDSCH承载的公共信息的优先级高于PDSCH承载的用户信息,因此将承载用户信息的PDSCH的N个符号作为保护间隔。
进一步的,若第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号接收信息的类型相同,终端还可以根据第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号接收公共信息的类型,或者,用户信息的类型,确定保护间隔。
在一种可能的实现方式中,若第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号均用于接收公共信息,终端还可以根据第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号接收公共信息的类型,确定选择最后N个符号还是前N个符号。其中,公共信息的类型包括系统消息(比如SIB1至SIB9)、随机接入响应消息、寻呼消息、时隙格式指示消息等。该实现方式中,第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号接收公共信息的类型不同,且第一时间单元末端的最后N个符号接收公共信息的类型相同,第二时间单元始端的前N个符号接收公共信息的类型相同。终端可以根据预设公共信息类型的优先级,确定选择最后N个符号还是前N个符号。
在另一种可能的实现方式中,若第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号均用于接收用户信息,终端还可以根据第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号接收用户信息的类型,确定选择最后N个符号还是前N个符号。其中,用户信息的类型可 以是业务的类型,例如业务类型为业务1、业务2、业务3等。作为一种示例,PDSCH承载的是通过半静态配置授权方式确定的信道资源,PDSCH承载的用户信息可以是低延迟高可靠性要求的业务数据。作为另一种示例,通过DCI调度的PDSCH承载的用户信息还可以是普通的业务数据。该实现方式中,第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号接收用户信息的类型不同,且第一时间单元末端的最后N个符号接收用户信息的类型相同,第二时间单元始端的前N个符号接收用户信息的类型相同。终端可以根据预设用户信息类型的优先级,确定选择最后N个符号还是前N个符号。网络侧可以通过PDCCH指示预设用户信息类型的优先级信息,例如通过PDCCH中的定时参数K 0
上述第一种情况,终端通过第一符号集合中符号接收PDSCH的信息的类型,从第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号中选择连续的N个符号作为保护间隔,且保护间隔两侧的符号属于不同时间单元的符号。其中,选择哪个信息类型的符号取决于预设的信息类型的优先级。信息类型可以分为公共信息或用户信息,还可以进一步对公共信息或者用户信息的类型进行细分。通过上述方法确定的保护间隔对PDSCH的传输影响最小,确保通信系统的传输性能。
第二种情况,第一时间单元和第二时间单元交界处的多个符号均用于接收PDCCH,即第一符号集合中的符号均用于接收PDCCH。保护间隔可以是第一时间单元末端的最后N个符号,或者第二时间单元末端的前N个符号,或者从第一时间单元末端的最后N-1个符号和第二时间单元始端的前N-1个符号中选择的连续的N个符号。
图6为本申请实施例提供的一种时间单元交界处的符号分布示意图。图6中保护间隔符号个数N取1,第一符号集合中的符号包括第一时间单元末端的最后一个符号以及第二时间单元始端的第一个符号,从第一符号集合中选择一个符号作为保护间隔。该示例中,保护间隔可以是图6的(a)所示的保护间隔,即第一时间单元末端的最后一个符号,还可以是图6的(b)所示的保护间隔,即第二时间单元始端的第一个符号。
图7为本申请实施例提供的一种时间单元交界处的符号分布示意图。图7中保护间隔符号个数N取2,第一符号集合中的符号包括第一时间单元末端的最后两个符号以及第二时间单元始端的前两个符号,从第一符号集合中选择连续的两个符号作为保护间隔。该示例中,保护间隔可以是图7的(a)所示的保护间隔,即第一时间单元末端的最后一个符号和第二时间单元始端的第一个符号,还可以是图7的(b)所示的保护间隔,即第一时间单元末端的最后两个符号,还可以是图7的(c)所示的保护间隔,即第二时间单元始端的前两个符号。
上述第二种情况,若保护间隔是第一时间单元末端的最后N个符号,或者第二时间单元末端的前N个符号。可通过下述方式确定选择第一时间单元末端的最后N个符号作为保护间隔,还是选择第二时间单元始端的前N个符号作为保护间隔:
根据第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号接收PDCCH的搜索空间的类型,确定保护间隔。其中,符号接收PDCCH的搜索空间的类型包括公共搜索空间或者用户特定搜索空间。
在一种可能的实现方式中,将接收PDCCH的公共搜索空间的N个符号作为保护间隔。该实现方式中,PDCCH的用户特定搜索空间的优先级高于PDCCH的公共搜索空间,因此将接收PDCCH的公共搜索空间的N个符号作为保护间隔。
在另一种可能的实现方式中,将接收PDCCH的用户特定搜索空间的N个符号作为保护间隔。该实现方式中,PDCCH的公共搜索空间的优先级高于PDCCH的用户特定搜索空间,因此将接收PDCCH的用户特定搜索空间的N个符号作为保护间隔。
进一步的,若第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号接收PDCCH的搜索空间的类型相同,终端还可以根据第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号接收PDCCH的公共搜索空间的类型,或者,用户特定搜索空间的类型,确定保护间隔。
在一种可能的实现方式中,若第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号接收PDCCH的搜索空间的类型均为公共搜索空间,终端还可以根据第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号接收PDCCH的公共搜索空间的类型,确定选择最后N个符号还是前N个符号。其中,PDCCH的公共搜索空间的类型包括type0、type0A、type1、type2PDCCH搜索空间。该实现方式中,第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号接收PDCCH的公共搜索空间的类型不同,且第一时间单元末端的最后N个符号接收PDCCH的公共搜索空间的类型相同,第二时间单元始端的前N个符号接收PDCCH的公共搜索空间的类型相同。终端可以根据预设公共搜索空间类型的优先级,确定选择最后N个符号还是前N个符号。
在另一种可能的实现方式中,若第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号接收PDCCH的搜索空间的类型均为用户特定搜索空间,终端还可以根据第一时间单元末端的最后 N个符号和第二时间单元始端的前N个符号接收PDCCH的用户特定搜索空间的类型,确定选择最后N个符号还是前N个符号。其中,用户特定搜索空间的类型可以是基于用户特定搜索空间对应的DCI调度的数据传输的业务类型,例如业务类型1、类型2、类型3的用户特定搜索空间。用户特定搜索空间的类型可以从搜索空间的配置信息中得到,即搜索空间的配置信息中包括区分用户特定搜索空间的类型或优先级的指示信息。该实现方式中,第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号接收PDCCH的搜索空间的类型不同,且第一时间单元末端的最后N个符号接收PDCCH的搜索空间的类型相同,第二时间单元始端的前N个符号接收PDCCH的搜索空间的类型相同。终端可以根据预设用户特定搜索空间类型的优先级,确定选择最后N个符号还是前N个符号。网络侧可以通过PDCCH指示预设用户特定搜索空间类型的优先级信息,例如通过PDCCH中的定时参数K 0确定优先级信息。
上述第二种情况,终端通过第一符号集合中符号接收PDCCH的搜索空间的类型,从第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号中选择连续的N个符号作为保护间隔,且保护间隔两侧的符号属于不同时间单元的符号。其中,选择哪个搜索空间的符号取决于预设搜索空间的类型的优先级。搜索空间的类型可以分为公共搜索空间或用户特定搜索空间,还可以进一步对公共搜索空间或用户特定搜索空间的类型进行细分。通过上述方法确定的保护间隔对PDCCH接收性能的影响最小,保证优先级高的PDCCH的传输。
第三种情况,第一时间单元和第二时间单元交界处的多个符号均不接收信道,即第一符号集合中的符号均不接收信道。保护间隔可以是第一时间单元末端的最后N个符号,或者第二时间单元末端的前N个符号,或者从第一时间单元末端的最后N-1个符号和第二时间单元始端的前N-1个符号中选择的连续的N个符号。
图8为本申请实施例提供的一种时间单元交界处的符号分布示意图。图8中保护间隔符号个数N取1,第一符号集合中的符号包括第一时间单元末端的最后一个符号以及第二时间单元始端的第一个符号,从第一符号集合中选择一个符号作为保护间隔。该示例中,保护间隔可以是图8的(a)所示的保护间隔,即第一时间单元末端的最后一个符号,还可以是图8的(b)所示的保护间隔,即第二时间单元始端的第一个符号。
图9为本申请实施例提供的一种时间单元交界处的符号分布示意图。图9中保护间隔符号个数N取2,第一符号集合中的符号包括第一时间单元末端的最后两个符号以及第二时间单元始端的前两个符号,从第一符号集合中选择连续的两个符号作为保护间隔。该示例中,保护间隔可以是图9的(a)所示的保护间隔,即第一时间单元末端的最后一个符号和第二时间单元始端的第一个符号,还可以是图9的(b)所示的保护间隔,即第一时间单元末端的最后两个符号,还可以是图9的(c)所示的保护间隔,即第二时间单元始端的前两个符号。
上述第三种情况,第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号均不接收信道,终端可以选择第一时间单元末端的最后N个符号作为保护间隔,也可以选择第二时间单元始端的前N个符号作为保护间隔,还可以选择从第一时间单元末端的最后N-1个符号和第二时间单元始端的前N-1个符号中选择连续的N个符号作为保护间隔,可以根据预定义规则设定上述三种选择方式的任意一种,对此本申请实施例不作任何限制。通过上述方法确定的保护间隔对终端信道接收性能的影响最小,确保通信系统的传输性能。
下面介绍第一符号集合中包括至少两种类型符号的情况。
若第一符号集合中的符号用于接收PDSCH、PDCCH、或者不接收信道的至少两项,保护间隔是从第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号中选择连续的N个符号,保护间隔两侧的符号属于不同时间单元的符号,连续的N个符号中不接收信道的符号数量大于或等于接收PDSCH的符号数量,接收PDSCH的符号数量大于或等于接收PDCCH的符号数量。也就是说,选择连续N个符号的总原则是尽可能多的包括不接收信道的符号,即连续N个符号中第一多的符号为不接收信道的符号,第二多的符号为接收PDSCH的符号,最后为接收PDCCH的符号。
可选的,在一些实施例中,选择的连续的N个符号中不接收信道的符号数量大于或等于接收PDCCH的符号数量,接收PDCCH的符号数量大于或等于接收PDSCH的符号数量。
下面结合附图10至图20对第一符号集合中的符号用于接收PDSCH、PDCCH、或者不接收信道的至少两项的不同情况进行详细介绍。需要说明的是,由于第一时间单元和第二时间单元交界处的符号包括接收PDSCH的符号、接收PDCCH的符号、不接收信道的符号的至少两种,符号分布情况较为复杂,下面几个示例并不能穷举出所有的符号分布情况,对于没有示出的符号分布情况,终端都是基于上述选择的总原则来确定保护间隔。
在一些实施例中,第一符号集合中的第一时间单元末端的符号与第二时间单元始端的符号的信道接收情况不同,保护间隔可以是第一时间单元末端的最后N个符号,或者第二时间单元始端的前N个符号。终端可以根据第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号接收信道的类型,确定保护间隔。具体的,将第一信道类型的N个符号作为保护间隔,其中,第一信道类型包括PDSCH、PDCCH、不接收信道的其中一种。
图10为本申请实施例提供的一种时间单元交界处的符号分布示意图。图10中保护间隔符号个数N取1,第一符号集合中的符号包括第一时间单元末端的最后一个符号以及第二时间单元始端的第一个符号,从第一符号集合中选择一个符号作为保护间隔。以第一时间单元末端的最后一个符号接收PDSCH、第二时间单元始端的第一个符号接收PDCCH为例,若PDCCH的优先级高于PDSCH,则保护间隔是图10的(a)所示的保护间隔,即第一时间单元末端的最后一个符号,该符号接收PDSCH。该实现方式优先保证了PDCCH的传输,保护间隔的选取对PDCCH的传输影响小。若PDSCH的优先级高于PDCCH,则保护间隔是图10的(b)所示的保护间隔,即第二时间单元始端的第一个符号,该符号接收PDCCH。该实现方式优先保证了PDSCH的传输,保护间隔的选取对PDSCH的传输影响小。
对于第一时间单元末端的最后一个符号接收PDCCH、第二时间单元始端的第一个符号接收PDSCH,其确定保护间隔的原理同图10所示示例,此处不再赘述。
图11为本申请实施例提供的一种时间单元交界处的符号分布示意图。图11中保护间隔符号个数N取2,第一符号集合中的符号包括第一时间单元末端的最后两个符号以及第二时间单元始端的前两个符号,从第一符号集合中选择连续的两个符号作为保护间隔。以第一时间单元末端的最后两个符号接收PDSCH、第二时间单元始端的前两个符号接收PDCCH为例,若PDCCH的优先级高于PDSCH,则保护间隔是图11的(a)所示的保护间隔,即第一时间单元末端的最后两个符号,最后两个符号均接收PDSCH。该实现方式优先保证了PDCCH的传输,保护间隔的选取对PDCCH的传输影响小。若PDSCH的优先级高于PDCCH,则保护间隔是图11的(b)所示的保护间隔,即第二时间单元始端的前两个符号,前两个符号均接收PDCCH。该实现方式优先保证了PDSCH的传输,保护间隔的选取对PDSCH的传输影响小。可选的,还可以不考虑PDSCH和PDCCH的优先级顺序,直接将接收PDSCH的第一时间单元末端的最后一个符号和接收PDCCH的第二时间单元始端的第一个符号作为保护间隔,如图11的(c)所示。
对于第一时间单元末端的最后两个符号接收PDCCH、第二时间单元始端的前两个符号接收PDSCH,其确定保护间隔的原理同图11所示示例,此处不再赘述。
图12为本申请实施例提供的一种时间单元交界处的符号分布示意图。图12中保护间隔符号个数N取1,第一符号集合中的符号包括第一时间单元末端的最后一个符号以及第二时间单元始端的第一个符号,从第一符号集合中选择一个符号作为保护间隔。以第一时间单元末端的最后一个符号不接收信道、第二时间单元始端的第一个符号接收PDCCH或PDSCH为例,由于不接收信道的优先级低于PDCCH、PDSCH,如图12所示,将不接收信道的第一时间单元末端的最后一个符号作为保护间隔。该实现方式优先保证了PDCCH或PDSCH的传输,保护间隔的选取对PDCCH或PDSCH的传输影响小。
对于第一时间单元末端的最后一个符号接收PDCCH或PDSCH、第二时间单元始端的第一个符号不接收信道,其确定保护间隔的原理同图12所示示例,此处不再赘述。
图13为本申请实施例提供的一种时间单元交界处的符号分布示意图。图13中保护间隔符号个数N取2,第一符号集合中的符号包括第一时间单元末端的最后两个符号以及第二时间单元始端的前两个符号,从第一符号集合中选择连续的两个符号作为保护间隔。以第一时间单元末端的最后两个符号不接收信道、第二时间单元始端的前两个符号接收PDCCH或PDSCH为例,由于不接收信道的优先级低于PDCCH、PDSCH,如图13所示,将不接收信道的第一时间单元末端的最后两个符号作为保护间隔。该实现方式优先保证了PDCCH或PDSCH的传输,保护间隔的选取对PDCCH或PDSCH的传输影响小。
对于第一时间单元末端的最后两个符号接收PDCCH或PDSCH、第二时间单元始端的前两个符号不接收信道,其确定保护间隔的原理同图13所示示例,此处不再赘述。
在一些实施例中,保护间隔符号个数N取2,若第一时间单元末端的最后两个符号和第二时间单元始端的前两个符号,有三个连续的符号为终端不接收信道的符号,则终端从这三个连续的符号中选择连续的两个符号作为保护间隔,如图14所示。
在一些实施例中,保护间隔符号个数N取2,若第一时间单元末端的最后两个符号和第二时间单元始端的前两个符号中,有连续的两个符号为终端不接收信道的符号,则终端将连续的两个不接收信道的符号作为保护间隔,如图13、图15所示。
在一些实施例中,保护间隔符号个数N取2,若第一时间单元末端的最后两个符号和第二时间单元始端的前两个符号中,只有一个符号为不接收信道的符号,则将该不接收信道的符号作为保护间隔的一个符号,保护间隔的另一个符号是从与不接收信道的符号相邻的符号中确定的。保护间隔可以是不接收信道的符号以及该符号左侧的一个符号,如图16的(a)所示,还可以是不接收信道的符号以及该符号右侧的一个符号,如图16的(b)所示。
具体的,根据不接收信道的符号左右两侧符号的信道类型确定保护间隔的另一个符号,例如将信道类型为PDCCH的符号作为保护间隔的另一个符号,或者,将信道类型为PDSCH的符号作为保护间隔的另一个符号。
进一步的,若不接收信道的符号左右两侧符号的信道类型相同,包括以下两种情况:
第一种情况,不接收信道的符号左右两侧符号的信道类型均为PDSCH,将承载公共信息的符号作为保护间隔的另一个符号,或者,将承载用户信息的符号作为保护间隔的另一个符号。进一步的,若不接收信道的符号左右两侧符号承载的信息类型相同,终端根据公共信息的类型或者用户信息的类型,确定保护间隔的另一个符号。上述实现原理同图4、图5所示实施例,具体可参见上述实施例。
第二种情况,不接收信道的符号左右两侧符号的信道类型均为PDCCH,将PDCCH的公共搜索空间的符号作为保护间隔的另一个符号,或者,将PDCCH的用户特定搜索空间的符号作为保护间隔的另一个符号。进一步的,若不接收道的符号左右两侧符号的PDCCH的搜索空间类型相同,终端根据公共搜索空间的类型或者用户特定搜索空间的类型,确定保护间隔的另一个符号。上述实现原理同图6、图7所示实施例,具体可参见上述实施例。
在一些实施例中,保护间隔符号个数N取2,若第一时间单元末端的最后两个符号和第二时间单元始端的前两个符号中包括接收PDSCH的符号和接收PDCCH的符号,预设PDCCH的优先级高于PDSCH,则确定的保护间隔中至少有一个符号为接收PDSCH的符号。如图17的(a)所示,将接收PDSCH的符号作为保护间隔的一个符号,保护间隔的另一个符号是从与接收PDSCH的符号相邻的符号中确定的。
在一些实施例中,保护间隔符号个数N取3,若第一时间单元末端的最后三个符号和第二时间单元始端的前三个符号中,有连续的三个接收PDSCH的符号,则终端将连续的三个接收PDSCH的符号作为保护间隔,如图17的(b)所示。
在一些实施例中,保护间隔符号个数N取2,若第一时间单元末端的最后两个符号和第二时间单元始端的前两个符号中包括接收PDSCH或者PDCCH的符号,以及不接收信道的符号,不接收信道的优先级低于PDSCH、PDCCH,则确定的保护间隔中至少有一个符号为不接收信道的符号。如图18的(a)所示,将连续的两个不接收信道的符号作为保护间隔。如图18的(b)所示,两个不接收信道的符号不连续,保护间隔可以是第一时间单元末端的最后两个符号,还可以是第二时间单元始端的前两个符号。具体的,终端可根据第一时间单元末端的最后一个符号和第二时间单元始端的第一个符号承载信息的类型,或者PDCCH搜索空间的类型,确定保护间隔。
在一些实施例中,保护间隔符号个数N取3,若第一时间单元末端的最后三个符号和第二时间单元始端的前三个符号中包括接收PDSCH或者PDCCH的符号,以及不接收信道的符号,不接收信道的优先级低于PDSCH、PDCCH,则确定的保护间隔中至少有一个符号为不接收信道的符号。如图19的(a)所示,将不接收信道的连续两个符号作为保护间隔的两个符号,保护间隔的另一个符号为第二时间单元始端的第一个符号。如图19的(b)所示,若不接收信道的符号不连续(比如间隔出现),从第一时间单元末端的最后三个符号和第二时间单元始端的前三个符号中选择连续的三个符号,连续的三个符号中有两个间隔出现的不接收信道的符号,例如图19的(b)中第一时间单元末端的最后三个符号,或者,第一时间单元末端的最后一个符号和第二时间单元始端的前两个符号。具体的,终端可根据第一时间单元末端的倒数第二个符号和第二时间单元始端的第一个符号承载信息的类型,或者PDCCH搜索空间的类型,确定保护间隔。
在一些实施例中,保护间隔符号个数N取2,若第一时间单元末端的最后两个符号和第二时间单元始端的前两个符号中包括接收PDSCH的符号、接收PDCCH的符号以及不接收信道的符号,PDCCH的优先级高于PDSCH,PDSCH的优先级高于不接收信道,则确定的保护间隔中至少有一个不接收信道的符号。如图20的(a)所示,将第一时间单元末端的最后两个符号作为保护间隔,包括一个不接收信道的符号,一个接收PDSCH的符号。
在一些实施例中,保护间隔符号个数N取3,若第一时间单元末端的最后三个符号和第二时间单元始端的前三个符号中包括接收PDSCH的符号、接收PDCCH的符号以及不接收信道的符号,PDCCH的优先级高于PDSCH,PDSCH的优先级高于不接收信道,则确定的保护间隔中至少有一个不接收信道的符号。如图20的(b)所示,将第一时间单元末端的最后三个符号作为保护间隔,包括连续的两个不接收信道的符号以及一个接收PDSCH的符号。
由上述图10至图20的几个实施例可知,N个符号的保护间隔需同时满足以下条件:保护间隔是连续的N个符号,保护间隔两侧的符号属于不同的时间单元,保护间隔中的N个符号中不接收信道的符号数量大于或等于接收PDSCH的符号数量,接收PDSCH的符号数量大于或等于接收PDCCH的符号数量。
需要说明的是,上述几个实施例中都是以不接收信道的优先级<PDSCH的优先级<PDCCH的优先级进行举例,在实际应用中,也可以预设不接收信道的优先级<PDCCH的优先级<PDSCH的优先级,对此本申请实施例不作任何限制。
可选的,N个符号的保护间隔需同时满足以下条件:保护间隔是连续的N个符号,保护间隔两侧的符号属于不同的时间单元,保护间隔中的N个符号中不接收信道的符号数量大于或等于接收PDCCH的符号数量,接收PDCCH的符号数量大于或等于接收PDSCH的符号数量。
总的来说,上述几个实施例都是按照信道类型的优先级,优先选取时间单元交界处的不接收信道的符号作为保护间隔,确保对PDCCH和PDSCH的传输影响最小。
图21为本申请实施例提供的一种保护间隔的确定方法的流程图。如图21所示,本实施例提供的方法可应用于图1所示的基站,该方法包括如下步骤:
步骤201、根据第一符号集合中的符号的信道发送情况,确定第一符号集合中的N个符号为保护间隔。
在本申请实施例中,第一符号集合中的符号属于第一时间单元末端和第二时间单元始端的符号,第一时间单元和第二时间单元为在时域上连续的两个时间单元,第一时间单元在前,第二时间单元在后。其中,第一时间单元和第二时间单元对应的频域子带不同,第一符号集合中的符号个数大于N,N为正整数。
本申请实施例中的第一符号集合中的符号可以理解为第一时间单元和第二时间单元交界处的符号。作为一种示例,假设保护间隔的符号个数N为1,UE可以从第一时间单元和第二时间单元交界处的两个符号中选择一个符号,其中交界处的两个符号可以是第一时间单元末端的最后一个符号以及第二时间单元始端的第一个符号。作为另一种示例,假设保护间隔的符号个数为2个,UE可以从第一时间单元和第二时间单元交界处的四个符号,其中交界处的四个符号可以是第一时间单元末端的最后两个符号以及第二时间单元始端的前两个符号。
本申请实施例中的第一符号集合中的符号的预设信道发送情况包括:发送PDSCH、发送PDCCH、或者不发送信道的至少一项。即第一符号集合中的任意一个符号可用于发送PDSCH、发送PDCCH、或者不发送信道。
需要说明的是,对于符号的预设信道发送情况,可以理解为网络侧对每一个符号预配置的计划信道发送情况(比如发送PDCCH、发送PDCH、或者不发送信道)。具体的,可以通过高层信息半静态配置PDCCH的搜索空间对应的符号,可以通过当前时隙或者之前时隙发送的PDCCH调度传输PDSCH的符号,还可以通过高层信令半静态配置传输PDSCH的符号。示例性的,符号1的预设信道发送情况为发送PDSCH,若符号1为第一时间单元末端的最后一个符号,且被确定为保护间隔,基站可以在作为保护间隔的符号1上发送或者不发送PDSCH。
本申请实施例确定的保护间隔的N个符号是连续的符号,且保护间隔两侧的符号属于不同的时间单元。图3示出了保护间隔与第一时间单元和第二时间单元在时域上的位置示意,如图3可知,保护间隔位于第一时间单元和第二时间单元的交界处,保护间隔左侧的符号属于第一时间单元的符号,保护间隔右侧的符号属于第二时间单元的符号。
根据第一符号集合中的符号的预设信道发送情况,确定第一符号集合中的N个符号为保护间隔。其中,N个符号的保护间隔包括以下几种情况:(1)第一时间单元末端的最后N个符号;(2)第二时间单元始端的前N个符号;(3)从第一时间单元末端的最后N-1个符号和第二时间单元始端的前N-1个符号中选择的连续的N个符号。
作为一种示例,N取值为1时,保护间隔可以是第一时间单元末端的最后一个符号,或者,第二时间单元始端的第一个符号。
作为一种示例,N取值为2时,保护间隔可以是第一时间单元末端的最后两个符号,或者,第二时间单元始端的前两个符号,或者,第一时间单元末端的最后一个符号和第二时间单元始端的第一个符号。
作为一种示例,N取值为3时,保护间隔可以是第一时间单元末端的最后三个符号,或者,第二时间单元始端的前三个符号,或者,从第一时间单元末端的最后2个符号和第二时间单元始端的前2个符号中选择的连续的3个符号。
上述几个示例展示了不同N值对应的保护间隔的几种可能的情况,对于任意一种N值对应的保护间隔的几种可能的情况,需要结合时间单元交界处各个符号的预设信道发送情况进行综合分析,确定最 终的保护间隔。在综合分析中,可以考虑交界处符号的信道的类型、信道承载的信息的类型、信道的搜索空间的类型等,使得最终选择的作为保护间隔的符号对终端信道发送性能的影响最小。在NR系统中,由于不同时间单元的信道资源配置非常灵活,两个连续时间单元交界处的符号的预设信道发送情况较多,综合分析考虑的因素不尽相同,具体可参见后文实施例。
步骤202、在确定的保护间隔进行相应的操作。
基站在确定的保护间隔进行的操作包括以下的至少一项:
不发送/发送信道;进行频率子带重调;对发送信道的符号中属于保护间隔的符号进行速率匹配。
本申请实施例的频率子带重调是指基站将接收机带宽从第一时间单元的带宽调整到第二时间单元的带宽。在频率子带重调期间,基站可以不接收信息、不发送信道,基站还可以根据符号的预设发送情况在作为保护间隔的符号上继续发送信道,对此本申请实施例不作任何限制。
本申请实施例的速率匹配是指根据确定的保护间隔,当预设的信道包含作为保护间隔的符号时,将信道承载的数据进行调制映射时,不映射到作为保护间隔的符号。示例性的,假设基站在第一时间单元末端的最后10个符号上计划发送PDSCH,其中第一时间单元末端的最后1个符号作为保护间隔,基站可以对PDSCH的时域资源进行调整,在第一时间单元末端的最后10个符号中除去最后1个符号的9个符号上发送PDSCH,确保基站信道传输的可靠性。
本申请实施例提供的保护间隔的确定方法,通过对两个连续的时间单元交界处的多个符号的预设信道发送情况进行综合分析,确定N个符号作为保护间隔,其中N为正整数。确定的保护间隔的N个符号是连续的符号,且保护间隔两侧的符号属于不同时间单元的符号。基站可以在确定的保护间隔,不发送信道,或者进行频率子带重调,或者对发送信道的符号中属于保护间隔的符号进行速率匹配。通过上述方法确定的保护间隔对基站的信道发送性能的影响最小,确保通信系统的传输性能。
在一些实施例中,若第一符号集合中的符号的预设信道发送情况均为发送PDSCH,保护间隔是第一时间单元末端的最后N个符号或者第二时间单元始端的前N个符号;根据第一符号集合中的符号的预设信道发送情况,确定第一符号集合中的N个符号为保护间隔,包括:根据第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号预设发送信息的类型,确定保护间隔。
在一些实施例中,根据第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号预设发送信息的类型,确定保护间隔,包括:将预设发送公共信息的N个符号作为保护间隔;或者将预设发送用户信息的N个符号作为保护间隔。
在一些实施例中,若第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号发送信息的类型相同;根据第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号预设发送信息的类型,确定保护间隔,包括:根据第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号预设发送公共信息的类型,或者,用户信息的类型,确定保护间隔。
在一些实施例中,若第一符号集合中的符号的预设信道发送情况均为发送PDCCH,保护间隔是第一时间单元末端的最后N个符号或者第二时间单元始端的前N个符号;根据第一符号集合中的符号的预设信道发送情况,确定第一符号集合中的N个符号为保护间隔,包括:根据第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号预设发送PDCCH的搜索空间的类型,确定保护间隔。
在一些实施例中,根据第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号预设发送PDCCH的搜索空间的类型,确定保护间隔,包括:将预设发送PDCCH的公共搜索空间的N个符号作为保护间隔;或者,将预设发送PDCCH的用户特定搜索空间的N个符号作为保护间隔。
在一些实施例中,若第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号发送PDCCH的搜索空间的类型相同;根据第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号预设发送PDCCH的搜索空间的类型,确定保护间隔,包括:根据第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号预设发送PDCCH的公共搜索空间的类型,或者,用户特定搜索空间的类型,确定保护间隔。
在一些实施例中,若第一符号集合中的符号的预设信道发送情况均为不发送信道,保护间隔是从第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号中选择连续的N个符号。
上述几个实施例示出了第一符号集合中仅包括一种类型符号的情况,其实现原理和技术效果同终端侧的图4至图9实施例,具体可参见上述实施例,此处不再赘述。
在一些实施例中,若第一符号集合中的符号的预设信道发送情况包括发送PDSCH、PDCCH、或者不发送信道的至少两项;保护间隔是从第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号中选择连续的N个符号,连续的N个符号中不发送信道的符号数量大于或等于发送PDSCH的符号数量,发送PDSCH的符号数量大于或者等于发送PDCCH的符号数量。
在一些实施例中,若第一符号集合中的第一时间单元末端的符号与第二时间单元始端的符号的预设信道发送情况不同,保护间隔是第一时间单元末端的最后N个符号或者第二时间单元始端的前N个符号;根据第一符号集合中的符号的预设信道发送情况,确定第一符号集合中的N个符号为保护间隔,包括:根据第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号预设发送信道的类型,确定保护间隔。
在一些实施例中,根据第一时间单元末端的最后N个符号和第二时间单元始端的前N个符号预设发送信道的类型,确定保护间隔,包括:将第一信道类型的N个符号作为保护间隔;第一信道类型包括PDSCH、PDCCH、不发送信道的其中一种。
上述几个实施例示出了第一符号集合中包括至少两种类型符号的情况,其实现原理和技术效果同终端侧的图10至图20实施例,具体可参见上述实施例,此处不再赘述。
上文中详细描述了本申请实施例提供的保护间隔的确定方法,下面将描述本申请实施例提供的终端设备和网络设备。
图22为本申请实施例提供的一种终端设备的结构示意图。如图22所示,本申请实施例提供的终端设备300,包括:
处理模块301,用于根据第一符号集合中的符号的信道接收情况,确定所述第一符号集合中的N个符号为保护间隔;
所述第一符号集合中的符号属于第一时间单元末端和第二时间单元始端的符号,所述第一时间单元和所述第二时间单元为在时域上连续的两个时间单元,所述第一时间单元和所述第二时间单元对应的频域子带不同,所述第一符号集合中的符号个数大于N,其中N为正整数。
可选的,作为所述保护间隔的所述N个符号是连续的符号,且所述保护间隔两侧的符号属于不同的时间单元。
可选的,所述保护间隔是所述第一时间单元末端的最后N个符号;或者
所述保护间隔是所述第二时间单元始端的前N个符号;或者
所述保护间隔是从所述第一时间单元末端的最后N-1个符号和所述第二时间单元始端的前N-1个符号中选择的连续的N个符号。
可选的,所述第一符号集合中的符号的信道接收情况包括接收PDSCH、接收PDCCH、或者不接收信道的至少一项。
在一种可能的实现方式中,若所述第一符号集合中的符号均用于接收PDSCH,所述保护间隔是所述第一时间单元末端的最后N个符号或者所述第二时间单元始端的前N个符号;
所述处理模块301,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收信息的类型,确定所述保护间隔。
在一种可能的实现方式中,所述处理模块301,具体用于:
将接收公共信息的所述N个符号作为所述保护间隔;或者
将接收用户信息的所述N个符号作为所述保护间隔。
在一种可能的实现方式中,若所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收信息的类型相同;
所述处理模块301,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收所述公共信息的类型,或者,所述用户信息的类型,确定所述保护间隔。
在一种可能的实现方式中,若所述第一符号集合中的符号均用于接收PDCCH,所述保护间隔是所述第一时间单元末端的最后N个符号或者所述第二时间单元始端的前N个符号;
所述处理模块301,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收所述PDCCH的搜索空间的类型,确定保护间隔。
在一种可能的实现方式中,所述处理模块301,具体用于:
将接收所述PDCCH的公共搜索空间的所述N个符号作为所述保护间隔;或者,
将接收所述PDCCH的用户特定搜索空间的所述N个符号作为所述保护间隔。
在一种可能的实现方式中,若所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收所述PDCCH的搜索空间的类型相同;
所述处理模块301,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收所述PDCCH的所述公共搜索空间的类型,或者,所述用户特定搜索空间的类型,确定所述保护间隔。
在一种可能的实现方式中,若所述第一符号集合中的符号均不接收信道,所述保护间隔是从所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号中选择连续的N 个符号。
在一种可能的实现方式中,若所述第一符号集合中的符号用于接收PDSCH、PDCCH、或者不接收信道的至少两项;
所述保护间隔是从所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号中选择连续的N个符号,所述连续的N个符号中不接收信道的符号数量大于或等于接收PDSCH的符号数量,接收PDSCH的符号数量大于或者等于接收PDCCH的符号数量。
在一种可能的实现方式中,若所述第一符号集合中的所述第一时间单元末端的符号与所述第二时间单元始端的符号的信道接收情况不同,所述保护间隔是所述第一时间单元末端的最后N个符号或者所述第二时间单元始端的前N个符号;
所述处理模块301,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收信道的类型,确定保护间隔。
在一种可能的实现方式中,所述处理模块301,具体用于:
将第一信道类型的所述N个符号作为所述保护间隔;
所述第一信道类型包括PDSCH、PDCCH、不接收信道的其中一种。
可选的,终端设备300还包括:收发模块302。
收发模块302在确定的保护间隔不接收信道。
处理模块301还用于在确定的保护间隔进行频率子带重调。
本申请实施例提供的终端设备,用于执行前述方法实施例的终端设备的技术方案,其实现原理和技术效果类似,在此不再赘述。
图23为本申请实施例提供的一种网络设备的结构示意图。如图23所示,本申请实施例提供的网络设备400,包括:
处理模块401,用于根据第一符号集合中的符号的预设信道发送情况,确定所述第一符号集合中的N个符号为保护间隔;
所述第一符号集合中的符号属于第一时间单元末端和第二时间单元始端的符号,所述第一时间单元和所述第二时间单元为在时域上连续的两个时间单元,所述第一时间单元和所述第二时间单元对应的频域子带不同,所述第一符号集合中的符号个数大于N,其中N为正整数。
可选的,作为所述保护间隔的所述N个符号是连续的符号,且所述保护间隔两侧的符号属于不同的时间单元。
可选的,所述保护间隔是所述第一时间单元末端的最后N个符号;或者
所述保护间隔是所述第二时间单元始端的前N个符号;或者
所述保护间隔是从所述第一时间单元末端的最后N-1个符号和所述第二时间单元始端的前N-1个符号中选择的连续的N个符号。
可选的,所述第一符号集合中的符号的预设信道发送情况包括发送PDSCH、发送PDCCH、或者不发送信道的至少一项。
在一种可能的实现方式中,若所述第一符号集合中的符号的预设信道发送情况均为发送PDSCH,所述保护间隔是所述第一时间单元末端的最后N个符号或者所述第二时间单元始端的前N个符号;
所述处理模块401,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送信息的类型,确定所述保护间隔。
在一种可能的实现方式中,所述处理模块401,具体用于:
将预设发送公共信息的所述N个符号作为所述保护间隔;或者
将预设发送用户信息的所述N个符号作为所述保护间隔。
在一种可能的实现方式中,若所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号发送信息的类型相同;
所述处理模块401,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送所述公共信息的类型,或者,所述用户信息的类型,确定所述保护间隔。
在一种可能的实现方式中,若所述第一符号集合中的符号的预设信道发送情况均为发送PDCCH,所述保护间隔是所述第一时间单元末端的最后N个符号或者所述第二时间单元始端的前N个符号;
所述处理模块401,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送所述PDCCH的搜索空间的类型,确定所述保护间隔。
在一种可能的实现方式中,所述处理模块401,具体用于:
将预设发送所述PDCCH的公共搜索空间的所述N个符号作为所述保护间隔;或者,将预设发送所述PDCCH的用户特定搜索空间的所述N个符号作为所述保护间隔。
在一种可能的实现方式中,若所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号发送所述PDCCH的搜索空间的类型相同;
所述处理模块401,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送所述PDCCH的公共搜索空间的类型,或者,用户特定搜索空间的类型,确定所述保护间隔。
在一种可能的实现方式中,若所述第一符号集合中的符号的预设信道发送情况均为不发送信道,所述保护间隔是从所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号中选择连续的N个符号。
在一种可能的实现方式中,若所述第一符号集合中的符号的预设信道发送情况包括发送PDSCH、PDCCH、或者不发送信道的至少两项;
所述保护间隔是从所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号中选择连续的N个符号,所述连续的N个符号中不发送信道的符号数量大于或等于发送PDSCH的符号数量,发送PDSCH的符号数量大于或者等于发送PDCCH的符号数量。
在一种可能的实现方式中,若所述第一符号集合中的所述第一时间单元末端的符号与所述第二时间单元始端的符号的预设信道发送情况不同,所述保护间隔是所述第一时间单元末端的最后N个符号或者所述第二时间单元始端的前N个符号;
所述处理模块401,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送信道的类型,确定保护间隔。
在一种可能的实现方式中,所述处理模块401,具体用于:
将第一信道类型的所述N个符号作为所述保护间隔;
所述第一信道类型包括PDSCH、PDCCH、不发送信道的其中一种。
可选的,网络设备400还包括:收发模块402。
收发模块402用于在确定的保护间隔发送或者不发送信道。
处理模块401还用于在确定的保护间隔进行频率子带重调,或者对发送信道的符号中属于保护间隔的符号进行速率匹配。
本申请实施例提供的网络设备,用于执行前述方法实施例的网络设备的技术方案,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上终端设备或网络设备的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上确定模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无 线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
图24为本申请实施例提供的一种终端设备的硬件结构示意图。如图24所示,该终端设备500可以包括:收发器501、处理器502、存储器503;所述存储器503存储计算机执行指令;所述处理器502执行所述存储器503存储的计算机执行指令,使得所述处理器502执行如前述任一方法实施例中的终端设备侧的保护间隔的确定方法的技术方案。
可选的,处理器502可以为芯片。
图25为本申请实施例提供的一种网络设备的硬件结构示意图。如图25所示,该终端设备600可以包括:收发器601、处理器602、存储器603;所述存储器603存储计算机执行指令;所述处理器602执行所述存储器603存储的计算机执行指令,使得所述处理器602执行如前述任一方法实施例中的网络设备侧的保护间隔的确定方法的技术方案。
可选的,处理器602可以为芯片。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中终端设备侧的技术方案。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现前述任一方法实施例中网络设备侧的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述任一方法实施例中终端设备侧的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述任一方法实施例中网络设备侧的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述任一方法实施例中终端设备侧的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述任一方法实施例中网络设备侧的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中终端设备侧的技术方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行终端设备侧的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中网络设备侧的技术方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行网络设备侧的技术方案。
本申请中,“至少两个”是指两个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中,a,b,c可以是单个,也可以是多个。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (60)

  1. 一种保护间隔的确定方法,其特征在于,包括:
    根据第一符号集合中的符号的信道接收情况,确定所述第一符号集合中的N个符号为保护间隔;
    所述第一符号集合中的符号属于第一时间单元末端和第二时间单元始端的符号,所述第一时间单元和所述第二时间单元为在时域上连续的两个时间单元,所述第一时间单元和所述第二时间单元对应的频域子带不同,所述第一符号集合中的符号个数大于N,其中N为正整数。
  2. 根据权利要求1所述的方法,其特征在于,作为所述保护间隔的所述N个符号是连续的符号,且所述保护间隔两侧的符号属于不同的时间单元。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述保护间隔是所述第一时间单元末端的最后N个符号;或者
    所述保护间隔是所述第二时间单元始端的前N个符号;或者
    所述保护间隔是从所述第一时间单元末端的最后N-1个符号和所述第二时间单元始端的前N-1个符号中选择的连续的N个符号。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第一符号集合中的符号的信道接收情况包括接收PDSCH、接收PDCCH、或者不接收信道的至少一项。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,若所述第一符号集合中的符号均用于接收PDSCH,所述保护间隔是所述第一时间单元末端的最后N个符号或者所述第二时间单元始端的前N个符号;
    所述根据第一符号集合中的符号的信道接收情况,确定所述第一符号集合中的N个符号为保护间隔,包括:
    根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收信息的类型,确定所述保护间隔。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收信息的类型,确定所述保护间隔,包括:
    将接收公共信息的所述N个符号作为所述保护间隔;或者
    将接收用户信息的所述N个符号作为所述保护间隔。
  7. 根据权利要求5或6所述的方法,其特征在于,若所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收信息的类型相同;
    所述根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收信息的类型,确定所述保护间隔,包括:
    根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收所述公共信息的类型,或者,所述用户信息的类型,确定所述保护间隔。
  8. 根据权利要求1-4中任一项所述的方法,其特征在于,若所述第一符号集合中的符号均用于接收PDCCH,所述保护间隔是所述第一时间单元末端的最后N个符号或者所述第二时间单元始端的前N个符号;
    所述根据第一符号集合中的符号的信道接收情况,确定所述第一符号集合中的N个符号为保护间隔,包括:
    根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收所述PDCCH的搜索空间的类型,确定保护间隔。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收所述PDCCH的搜索空间的类型,确定所述保护间隔,包括:
    将接收所述PDCCH的公共搜索空间的所述N个符号作为所述保护间隔;或者,
    将接收所述PDCCH的用户特定搜索空间的所述N个符号作为所述保护间隔。
  10. 根据权利要求8或9所述的方法,其特征在于,若所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收所述PDCCH的搜索空间的类型相同;
    所述根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收所述PDCCH的搜索空间的类型,确定所述保护间隔,包括:
    根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收所述PDCCH的所述公共搜索空间的类型,或者,所述用户特定搜索空间的类型,确定所述保护间隔。
  11. 根据权利要求1-4中任一项所述的方法,其特征在于,若所述第一符号集合中的符号均 不接收信道,所述保护间隔是从所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号中选择连续的N个符号。
  12. 根据权利要求1-4中任一项所述的方法,其特征在于,若所述第一符号集合中的符号用于接收PDSCH、PDCCH、或者不接收信道的至少两项;
    所述保护间隔是从所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号中选择连续的N个符号,所述连续的N个符号中不接收信道的符号数量大于或等于接收PDSCH的符号数量,接收PDSCH的符号数量大于或者等于接收PDCCH的符号数量。
  13. 根据权利要求12所述的方法,其特征在于,若所述第一符号集合中的所述第一时间单元末端的符号与所述第二时间单元始端的符号的信道接收情况不同,所述保护间隔是所述第一时间单元末端的最后N个符号或者所述第二时间单元始端的前N个符号;
    所述根据第一符号集合中的符号的信道接收情况,确定所述第一符号集合中的N个符号为保护间隔,包括:
    根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收信道的类型,确定保护间隔。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收信道的类型,确定保护间隔,包括:
    将第一信道类型的所述N个符号作为所述保护间隔;
    所述第一信道类型包括PDSCH、PDCCH、不接收信道的其中一种。
  15. 一种保护间隔的确定方法,其特征在于,包括:
    根据第一符号集合中的符号的预设信道发送情况,确定所述第一符号集合中的N个符号为保护间隔;
    所述第一符号集合中的符号属于第一时间单元末端和第二时间单元始端的符号,所述第一时间单元和所述第二时间单元为在时域上连续的两个时间单元,所述第一时间单元和所述第二时间单元对应的频域子带不同,所述第一符号集合中的符号个数大于N,其中N为正整数。
  16. 根据权利要求15所述的方法,其特征在于,作为所述保护间隔的所述N个符号是连续的符号,且所述保护间隔两侧的符号属于不同的时间单元。
  17. 根据权利要求15或16所述的方法,其特征在于,
    所述保护间隔是所述第一时间单元末端的最后N个符号;或者
    所述保护间隔是所述第二时间单元始端的前N个符号;或者
    所述保护间隔是从所述第一时间单元末端的最后N-1个符号和所述第二时间单元始端的前N-1个符号中选择的连续的N个符号。
  18. 根据权利要求15-17中任一项所述的方法,其特征在于,所述第一符号集合中的符号的预设信道发送情况包括发送PDSCH、发送PDCCH、或者不发送信道的至少一项。
  19. 根据权利要求15-18中任一项所述的方法,其特征在于,若所述第一符号集合中的符号的预设信道发送情况均为发送PDSCH,所述保护间隔是所述第一时间单元末端的最后N个符号或者所述第二时间单元始端的前N个符号;
    所述根据第一符号集合中的符号的预设信道发送情况,确定所述第一符号集合中的N个符号为保护间隔,包括:
    根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送信息的类型,确定所述保护间隔。
  20. 根据权利要求19所述的方法,其特征在于,所述根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送信息的类型,确定所述保护间隔,包括:
    将预设发送公共信息的所述N个符号作为所述保护间隔;或者
    将预设发送用户信息的所述N个符号作为所述保护间隔。
  21. 根据权利要求19或20所述的方法,其特征在于,若所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号发送信息的类型相同;
    所述根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送信息的类型,确定所述保护间隔,包括:
    根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送所述公共信息的类型,或者,所述用户信息的类型,确定所述保护间隔。
  22. 根据权利要求15-18中任一项所述的方法,其特征在于,若所述第一符号集合中的符号的预设信道发送情况均为发送PDCCH,所述保护间隔是所述第一时间单元末端的最后N个符号 或者所述第二时间单元始端的前N个符号;
    所述根据第一符号集合中的符号的预设信道发送情况,确定所述第一符号集合中的N个符号为保护间隔,包括:
    根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送所述PDCCH的搜索空间的类型,确定所述保护间隔。
  23. 根据权利要求22所述的方法,其特征在于,所述根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送所述PDCCH的搜索空间的类型,确定所述保护间隔,包括:
    将预设发送所述PDCCH的公共搜索空间的所述N个符号作为所述保护间隔;或者,
    将预设发送所述PDCCH的用户特定搜索空间的所述N个符号作为所述保护间隔。
  24. 根据权利要求22或23所述的方法,其特征在于,若所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号发送所述PDCCH的搜索空间的类型相同;
    所述根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送所述PDCCH的搜索空间的类型,确定所述保护间隔,包括:
    根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送所述PDCCH的公共搜索空间的类型,或者,用户特定搜索空间的类型,确定所述保护间隔。
  25. 根据权利要求15-18中任一项所述的方法,其特征在于,若所述第一符号集合中的符号的预设信道发送情况均为不发送信道,所述保护间隔是从所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号中选择连续的N个符号。
  26. 根据权利要求15-18中任一项所述的方法,其特征在于,若所述第一符号集合中的符号的预设信道发送情况包括发送PDSCH、PDCCH、或者不发送信道的至少两项;
    所述保护间隔是从所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号中选择连续的N个符号,所述连续的N个符号中不发送信道的符号数量大于或等于发送PDSCH的符号数量,发送PDSCH的符号数量大于或者等于发送PDCCH的符号数量。
  27. 根据权利要求26所述的方法,其特征在于,若所述第一符号集合中的所述第一时间单元末端的符号与所述第二时间单元始端的符号的预设信道发送情况不同,所述保护间隔是所述第一时间单元末端的最后N个符号或者所述第二时间单元始端的前N个符号;
    所述根据第一符号集合中的符号的预设信道发送情况,确定所述第一符号集合中的N个符号为保护间隔,包括:
    根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送信道的类型,确定保护间隔。
  28. 根据权利要求27所述的方法,其特征在于,所述根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送信道的类型,确定保护间隔,包括:
    将第一信道类型的所述N个符号作为所述保护间隔;
    所述第一信道类型包括PDSCH、PDCCH、不发送信道的其中一种。
  29. 一种终端设备,其特征在于,包括:
    处理模块,用于根据第一符号集合中的符号的信道接收情况,确定所述第一符号集合中的N个符号为保护间隔;
    所述第一符号集合中的符号属于第一时间单元末端和第二时间单元始端的符号,所述第一时间单元和所述第二时间单元为在时域上连续的两个时间单元,所述第一时间单元和所述第二时间单元对应的频域子带不同,所述第一符号集合中的符号个数大于N,其中N为正整数。
  30. 根据权利要求29所述的设备,其特征在于,作为所述保护间隔的所述N个符号是连续的符号,且所述保护间隔两侧的符号属于不同的时间单元。
  31. 根据权利要求29或30所述的设备,其特征在于,
    所述保护间隔是所述第一时间单元末端的最后N个符号;或者
    所述保护间隔是所述第二时间单元始端的前N个符号;或者
    所述保护间隔是从所述第一时间单元末端的最后N-1个符号和所述第二时间单元始端的前N-1个符号中选择的连续的N个符号。
  32. 根据权利要求29-31中任一项所述的设备,其特征在于,所述第一符号集合中的符号的信道接收情况包括接收PDSCH、接收PDCCH、或者不接收信道的至少一项。
  33. 根据权利要求29-32中任一项所述的设备,其特征在于,若所述第一符号集合中的符号均用于接收PDSCH,所述保护间隔是所述第一时间单元末端的最后N个符号或者所述第二时间 单元始端的前N个符号;
    所述处理模块,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收信息的类型,确定所述保护间隔。
  34. 根据权利要求33所述的设备,其特征在于,所述处理模块,具体用于:
    将接收公共信息的所述N个符号作为所述保护间隔;或者
    将接收用户信息的所述N个符号作为所述保护间隔。
  35. 根据权利要求33或34所述的设备,其特征在于,若所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收信息的类型相同;
    所述处理模块,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收所述公共信息的类型,或者,所述用户信息的类型,确定所述保护间隔。
  36. 根据权利要求29-32中任一项所述的设备,其特征在于,若所述第一符号集合中的符号均用于接收PDCCH,所述保护间隔是所述第一时间单元末端的最后N个符号或者所述第二时间单元始端的前N个符号;
    所述处理模块,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收所述PDCCH的搜索空间的类型,确定保护间隔。
  37. 根据权利要求36所述的设备,其特征在于,所述处理模块,具体用于:
    将接收所述PDCCH的公共搜索空间的所述N个符号作为所述保护间隔;或者,
    将接收所述PDCCH的用户特定搜索空间的所述N个符号作为所述保护间隔。
  38. 根据权利要求36或37所述的设备,其特征在于,若所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收所述PDCCH的搜索空间的类型相同;
    所述处理模块,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收所述PDCCH的所述公共搜索空间的类型,或者,所述用户特定搜索空间的类型,确定所述保护间隔。
  39. 根据权利要求29-32中任一项所述的设备,其特征在于,若所述第一符号集合中的符号均不接收信道,所述保护间隔是从所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号中选择连续的N个符号。
  40. 根据权利要求29-32中任一项所述的设备,其特征在于,若所述第一符号集合中的符号用于接收PDSCH、PDCCH、或者不接收信道的至少两项;
    所述保护间隔是从所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号中选择连续的N个符号,所述连续的N个符号中不接收信道的符号数量大于或等于接收PDSCH的符号数量,接收PDSCH的符号数量大于或者等于接收PDCCH的符号数量。
  41. 根据权利要求40所述的设备,其特征在于,若所述第一符号集合中的所述第一时间单元末端的符号与所述第二时间单元始端的符号的信道接收情况不同,所述保护间隔是所述第一时间单元末端的最后N个符号或者所述第二时间单元始端的前N个符号;
    所述处理模块,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号接收信道的类型,确定保护间隔。
  42. 根据权利要求41所述的设备,其特征在于,所述处理模块,具体用于:
    将第一信道类型的所述N个符号作为所述保护间隔;
    所述第一信道类型包括PDSCH、PDCCH、不接收信道的其中一种。
  43. 一种网络设备,其特征在于,包括:
    处理模块,用于根据第一符号集合中的符号的预设信道发送情况,确定所述第一符号集合中的N个符号为保护间隔;
    所述第一符号集合中的符号属于第一时间单元末端和第二时间单元始端的符号,所述第一时间单元和所述第二时间单元为在时域上连续的两个时间单元,所述第一时间单元和所述第二时间单元对应的频域子带不同,所述第一符号集合中的符号个数大于N,其中N为正整数。
  44. 根据权利要求43所述的设备,其特征在于,作为所述保护间隔的所述N个符号是连续的符号,且所述保护间隔两侧的符号属于不同的时间单元。
  45. 根据权利要求43或44所述的设备,其特征在于,
    所述保护间隔是所述第一时间单元末端的最后N个符号;或者
    所述保护间隔是所述第二时间单元始端的前N个符号;或者
    所述保护间隔是从所述第一时间单元末端的最后N-1个符号和所述第二时间单元始端的前N-1个符号中选择的连续的N个符号。
  46. 根据权利要求43-45中任一项所述的设备,其特征在于,所述第一符号集合中的符号的预设信道发送情况包括发送PDSCH、发送PDCCH、或者不发送信道的至少一项。
  47. 根据权利要求43-46中任一项所述的设备,其特征在于,若所述第一符号集合中的符号的预设信道发送情况均为发送PDSCH,所述保护间隔是所述第一时间单元末端的最后N个符号或者所述第二时间单元始端的前N个符号;
    所述处理模块,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送信息的类型,确定所述保护间隔。
  48. 根据权利要求47所述的设备,其特征在于,所述处理模块,具体用于:
    将预设发送公共信息的所述N个符号作为所述保护间隔;或者
    将预设发送用户信息的所述N个符号作为所述保护间隔。
  49. 根据权利要求47或48所述的设备,其特征在于,若所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号发送信息的类型相同;
    所述处理模块,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送所述公共信息的类型,或者,所述用户信息的类型,确定所述保护间隔。
  50. 根据权利要求43-46中任一项所述的设备,其特征在于,若所述第一符号集合中的符号的预设信道发送情况均为发送PDCCH,所述保护间隔是所述第一时间单元末端的最后N个符号或者所述第二时间单元始端的前N个符号;
    所述处理模块,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送所述PDCCH的搜索空间的类型,确定所述保护间隔。
  51. 根据权利要求50所述的设备,其特征在于,所述处理模块,具体用于:
    将预设发送所述PDCCH的公共搜索空间的所述N个符号作为所述保护间隔;或者,将预设发送所述PDCCH的用户特定搜索空间的所述N个符号作为所述保护间隔。
  52. 根据权利要求50或51所述的设备,其特征在于,若所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号发送所述PDCCH的搜索空间的类型相同;
    所述处理模块,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送所述PDCCH的公共搜索空间的类型,或者,用户特定搜索空间的类型,确定所述保护间隔。
  53. 根据权利要求43-46中任一项所述的设备,其特征在于,若所述第一符号集合中的符号的预设信道发送情况均为不发送信道,所述保护间隔是从所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号中选择连续的N个符号。
  54. 根据权利要求43-46中任一项所述的设备,其特征在于,若所述第一符号集合中的符号的预设信道发送情况包括发送PDSCH、PDCCH、或者不发送信道的至少两项;
    所述保护间隔是从所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号中选择连续的N个符号,所述连续的N个符号中不发送信道的符号数量大于或等于发送PDSCH的符号数量,发送PDSCH的符号数量大于或者等于发送PDCCH的符号数量。
  55. 根据权利要求54所述的设备,其特征在于,若所述第一符号集合中的所述第一时间单元末端的符号与所述第二时间单元始端的符号的预设信道发送情况不同,所述保护间隔是所述第一时间单元末端的最后N个符号或者所述第二时间单元始端的前N个符号;
    所述处理模块,具体用于根据所述第一时间单元末端的最后N个符号和所述第二时间单元始端的前N个符号预设发送信道的类型,确定保护间隔。
  56. 根据权利要求55所述的设备,其特征在于,所述处理模块,具体用于:
    将第一信道类型的所述N个符号作为所述保护间隔;
    所述第一信道类型包括PDSCH、PDCCH、不发送信道的其中一种。
  57. 一种终端设备,其特征在于,包括:收发器、处理器、存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1-14中任一项所述的方法。
  58. 一种网络设备,其特征在于,包括:收发器、处理器、存储器;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求15-28中任一项所述的方法。
  59. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行 指令,当所述计算机执行指令被处理器执行时用于实现权利要求1-14中任一项所述的方法。
  60. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现权利要求15-28中任一项所述的方法。
PCT/CN2020/080415 2020-03-20 2020-03-20 保护间隔的确定方法、设备及存储介质 WO2021184355A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/080415 WO2021184355A1 (zh) 2020-03-20 2020-03-20 保护间隔的确定方法、设备及存储介质
CN202080091002.XA CN114930906A (zh) 2020-03-20 2020-03-20 保护间隔的确定方法、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080415 WO2021184355A1 (zh) 2020-03-20 2020-03-20 保护间隔的确定方法、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021184355A1 true WO2021184355A1 (zh) 2021-09-23

Family

ID=77769611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080415 WO2021184355A1 (zh) 2020-03-20 2020-03-20 保护间隔的确定方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN114930906A (zh)
WO (1) WO2021184355A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005326A (zh) * 2006-01-18 2007-07-25 华为技术有限公司 一种上行资源分配方法和无线通信系统
CN101159483A (zh) * 2007-10-28 2008-04-09 中兴通讯股份有限公司 一种时分双工系统信号的传输方法及其采用的帧结构
CN104813600A (zh) * 2013-09-25 2015-07-29 华为技术有限公司 信号的发送方法、接收方法、装置及通信设备
US20180054268A1 (en) * 2016-08-22 2018-02-22 Huawei Technologies Co., Ltd. System and Method for Filtered OFDM
CN107872847A (zh) * 2016-09-28 2018-04-03 华为技术有限公司 传输数据的方法、网络设备和终端设备
US20190053218A1 (en) * 2017-08-10 2019-02-14 Electronics And Telecommunications Research Institute Method for transmitting and receiving uplink control information in mobile communication system, and apparatus for the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005326A (zh) * 2006-01-18 2007-07-25 华为技术有限公司 一种上行资源分配方法和无线通信系统
CN101159483A (zh) * 2007-10-28 2008-04-09 中兴通讯股份有限公司 一种时分双工系统信号的传输方法及其采用的帧结构
CN104813600A (zh) * 2013-09-25 2015-07-29 华为技术有限公司 信号的发送方法、接收方法、装置及通信设备
US20180054268A1 (en) * 2016-08-22 2018-02-22 Huawei Technologies Co., Ltd. System and Method for Filtered OFDM
CN107872847A (zh) * 2016-09-28 2018-04-03 华为技术有限公司 传输数据的方法、网络设备和终端设备
US20190053218A1 (en) * 2017-08-10 2019-02-14 Electronics And Telecommunications Research Institute Method for transmitting and receiving uplink control information in mobile communication system, and apparatus for the same

Also Published As

Publication number Publication date
CN114930906A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
CN110226338B (zh) 用于用户设备能力交换的方法和装置
US10764884B2 (en) Method for sending or receiving physical downlink control channel and device
WO2021027694A1 (zh) Ssb候选位置索引指示、接收方法及装置、存储介质、基站、用户设备
US10687218B2 (en) Power metric optimization and uplink DM-RS design for LTE/LTE-A uplink transmissions in unlicensed spectrum
TWI812603B (zh) 數據傳輸方法和裝置
WO2018171667A1 (zh) 一种信道传输方法及网络设备
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
US20210160852A1 (en) Resource configuration method and terminal device
WO2020047856A1 (zh) 配置信息的传输方法和终端设备
CN109152029B (zh) 一种通信方法、网络设备及用户设备
WO2020025042A1 (zh) 资源配置的方法和终端设备
CN113424618B (zh) 一种通信方法、装置及计算机可读存储介质
WO2018202012A1 (zh) 确定时隙格式的方法、终端设备和网络设备
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
WO2017101018A1 (zh) 载波跳转的方法、终端和基站
WO2020164156A1 (zh) 传输带宽的确定方法、设备及存储介质
WO2018141091A1 (zh) 发送信息的方法、接收信息的方法和装置
US20220416980A1 (en) Control Channel Determination Method and Apparatus, and Storage Medium and Processor
US11856539B2 (en) Method and device for transmitting downlink control information
WO2021184355A1 (zh) 保护间隔的确定方法、设备及存储介质
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备
WO2020087982A1 (zh) 通信方法、装置及存储介质
WO2021168824A1 (zh) 控制信道资源的确定方法、设备及存储介质
WO2021227071A1 (zh) 保护间隔的确定方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926173

Country of ref document: EP

Kind code of ref document: A1