WO2021184251A1 - 天线结构、雷达和终端 - Google Patents

天线结构、雷达和终端 Download PDF

Info

Publication number
WO2021184251A1
WO2021184251A1 PCT/CN2020/079966 CN2020079966W WO2021184251A1 WO 2021184251 A1 WO2021184251 A1 WO 2021184251A1 CN 2020079966 W CN2020079966 W CN 2020079966W WO 2021184251 A1 WO2021184251 A1 WO 2021184251A1
Authority
WO
WIPO (PCT)
Prior art keywords
patch unit
patch
unit group
antenna structure
main feeder
Prior art date
Application number
PCT/CN2020/079966
Other languages
English (en)
French (fr)
Inventor
何银
高翔
李浩伟
刘一廷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022556640A priority Critical patent/JP7506167B2/ja
Priority to PCT/CN2020/079966 priority patent/WO2021184251A1/zh
Priority to EP20926204.7A priority patent/EP4109675A4/en
Priority to CN202080009278.9A priority patent/CN113316867B/zh
Priority to KR1020227035685A priority patent/KR20220155341A/ko
Publication of WO2021184251A1 publication Critical patent/WO2021184251A1/zh
Priority to US17/946,804 priority patent/US20230017270A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/22Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation in accordance with variation of frequency of radiated wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/206Microstrip transmission line antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver

Definitions

  • This application relates to the field of sensor technology, and more specifically, to the antenna structure, radar, and terminal in the field of sensor technology.
  • the 77GHz millimeter-wave radar as a key sensor for unmanned driving technology, has the characteristics of short wavelength and small device size. Whether in terms of detection accuracy, detection distance or equipment integration, the 77GHz millimeter wave radar has irreplaceable advantages.
  • the antenna used by the radar is required to have a wide 3dB beam bandwidth and low sidelobe characteristics.
  • a wide 3dB beam bandwidth can ensure greater detection in the horizontal direction.
  • Angle range, low sidelobe can reduce the clutter energy reflected from the ground in the vertical direction, thereby reducing the probability of false alarms.
  • FIG. 1 shows a schematic structural diagram of an existing antenna structure.
  • the existing antenna structure adopts a series-fed form, that is, multiple radiating patches connected perpendicularly to the feeder are excited simultaneously through a single feeder line, and the multiple radiating patches
  • the width of the antenna structure gradually increases and then gradually decreases along the length of the feeder. That is, the energy radiated by the antenna structure is concentrated in the middle area close to the length of the feeder, which can achieve low sidelobe weighting, thereby avoiding radar false alarms.
  • the existing antenna structure shown in FIG. 1 can achieve a lower sidelobe level, so the 3dB beam width is small, so the detection angle range in the horizontal direction is small.
  • the embodiments of the present application provide an antenna structure, a radar, and a terminal, which can expand the 3dB bandwidth of the antenna structure.
  • an embodiment of the present application provides an antenna structure, the antenna structure includes: a main feeder and at least one patch unit group, the at least one patch unit group is connected in series with the main feeder along the length direction of the main feeder.
  • the main feeder, each patch unit group in the at least one patch unit group includes at least two patch units arranged in a V-shaped structure, and each patch unit group passes through each patch unit group Two patch units arranged in a V-shaped structure are connected in series to the main feeder.
  • each patch unit group is connected to the main feeder in series through two patch units arranged in a V-shaped structure in each patch unit group.
  • the following will take the at least one patch unit group including a plurality of patch unit groups as an example for introduction.
  • each patch unit group can be connected to the main feeder in series through two patch units arranged in a V-shaped structure in each patch unit group.
  • the embodiment does not limit this.
  • each patch unit group may be serially connected to the main feeder through a connection point of two patch units arranged in a V-shaped structure in each patch unit group.
  • each patch unit group may pass through a partial area string of each patch unit in the two patch units arranged in a V-shaped structure in each patch unit group. Connect to the main feeder.
  • the plurality of patch unit groups may be connected in series to the main feeder in a variety of ways, which is not limited in the embodiment of the present application.
  • the multiple patch unit groups may be connected in series on the same side of the main feeder.
  • the multiple patch unit groups may be connected in series on both sides of the main feeder.
  • multiple patch units connected in series on both sides of the main feeder can increase the horizontal radiation range compared to those connected in series on the same side of the main feeder.
  • the multiple patch unit groups can be connected in series on both sides of the main feeder in various ways, which is not limited in the embodiment of the present application.
  • the multiple patch unit groups can be alternately connected in series on both sides of the main feeder.
  • a part of the patch unit groups of the plurality of patch unit groups can be serially connected to one side of the main feeder in sequence, and the remaining part of the patch unit groups can be serially connected to the main feeder in sequence On the other side.
  • the interval between the patch unit groups is compared with that when the plurality of patch unit groups are connected in series. In terms of the interval between the patch unit groups on the same side of the main feeder, the interval is shorter.
  • the multiple patch unit groups are connected in series on both sides of the main feeder to save the size of the main feeder.
  • the interval between the patch unit groups is compared with that a part of the plurality of patch unit groups is connected in series to the main feeder first.
  • the width of the patch unit in each patch unit group can be set to a variety of different sizes, which is not limited in the embodiment of the present application.
  • the width of the patch units in the plurality of patch unit groups first increases and then decreases along the first direction.
  • the width of the patch units in the plurality of patch unit groups increases or decreases along the first direction.
  • the patch units in the multiple patch unit groups have the same width.
  • the widths of the patch units in different patch unit groups may be the same or different, which is not limited in the application embodiment.
  • widths of the patch units in the different patch unit groups described in the embodiments of the present application include the same and approximately the same, where approximately the same refers to the patch units in different patch unit groups.
  • the width of the difference is within a certain error range.
  • the width of the patch unit in the patch unit group By adopting the antenna structure provided by the embodiment of the present application, by designing the width of the patch unit in the patch unit group, the requirements of different electromagnetic wave radiation shapes can be met. For example, when the patch unit width designed in the first possible implementation manner is used, since the energy is concentrated in the middle section of the main feeder, low sidelobes can be achieved, thereby reducing the probability of radar false alarms.
  • the included angle between the two patch units arranged in a V shape in each patch unit group, and the included angle between each patch unit group and the main feeder may be There are many different sizes, which are not limited in the embodiment of the present application.
  • the included angle between the two patch units in each patch unit group may be 90°.
  • the angle between each patch unit group and the main feeder line may be 45°.
  • the antenna structure provided by the embodiment of the present application, by setting the angle between the two patch units of each patch unit group in a V-shaped structure, the requirements of different apertures of the antenna structure can be met, and the horizontal beam width of the antenna can be further broadened. In addition, it can also achieve the low sidelobe requirements of the vertical plane.
  • the length of the patch unit in each patch unit group can be set to a variety of different sizes, which is not limited in the embodiment of the present application.
  • the lengths of the patch units in the plurality of patch unit groups first increase and then decrease along the first direction.
  • the lengths of the patch units in the plurality of patch unit groups increase or decrease along the first direction.
  • the patch units in the multiple patch unit groups have the same length.
  • the lengths of the patch units in different patch unit groups may be the same or different, which is not limited in the embodiment of the present application.
  • the lengths of the patch units in different patch unit groups described in the embodiments of the present application include the same and approximately the same length, where approximately the same refers to patch units in different patch unit groups.
  • the length difference is within a certain error range.
  • the size of the patch unit in each patch unit group includes length and width.
  • the size of patch units in different patch unit groups may be the same or different, which is not limited in the embodiment of the present application.
  • the same size of patch units in different patch unit groups described in the embodiments of the present application includes completely the same and approximately the same, wherein approximately the same refers to patch units in different patch unit groups.
  • the size difference is within a certain error range.
  • each patch unit group includes two patch units arranged in a V-shaped structure, which can be understood as: the two patch units are arranged in a V-shaped structure, or the two patches The unit is arranged in a similar V-shaped structure, which is not limited in the embodiment of the present application.
  • the two patch units included in each patch unit group may have a C-shaped structure.
  • the two patch units included in each patch unit group may have an L-shaped structure.
  • the patch unit in each patch unit group may be rectangular.
  • the patch unit in each patch unit group may be a polygon, for example, a parallelogram.
  • the shape of the patch units in each patch unit group may be the same or different, which is not limited in the embodiment of the present application.
  • the antenna structure may work in a standing wave mode or a traveling wave mode, which is not limited in the embodiment of the present application.
  • the first end of the antenna structure does not include a matching load unit.
  • the first end of the antenna structure does not include a matching load unit, it can be understood that the first end of the antenna structure is open.
  • the second end of the antenna structure further includes a matching load unit, and the matching load unit is used to consume the at least one patch The energy that has not been consumed by the unit group.
  • the matching load unit may be connected to the first end of the main feeder in a variety of ways, which is not limited in the embodiment of the present application.
  • the matching load unit and the length direction of the main feeder are in the same direction.
  • the matching load unit is bent and connected to the main feeder.
  • the flexibility of connecting the matching load unit can be improved by changing the bending angle between the matching load unit and the main feeder.
  • an embodiment of the present application further provides a radar, and the radar includes the antenna structure as described in the foregoing first aspect or any one of the possible implementation manners of the first aspect.
  • the radar further includes a control chip connected to the second end of the antenna structure, and the control chip is used to control the antenna structure to transmit or receive signals.
  • control chip and the second end of the antenna structure may be connected by a first microstrip line.
  • the radar further includes an impedance matching unit configured to match the impedance of the second end with the impedance of the control chip, and the control chip passes through the impedance
  • the matching unit is connected to the second end.
  • the impedance matching unit may be a second microstrip line.
  • the impedance of the second end of the antenna structure can be matched with the impedance of the control chip.
  • the radar further includes a printed circuit board, the printed circuit board includes the antenna structure, the dielectric layer, and the metal layer stacked in sequence, and the antenna structure passes through the metal layer. Grounded.
  • an embodiment of the present application further provides a terminal, and the terminal includes the radar described in the foregoing second aspect or various possible implementation manners of the second aspect.
  • the terminal described in the embodiment of the present application may have the ability to implement a communication function and/or a detection function through a radar, which is not limited in the embodiment of the present application.
  • the terminal may be a vehicle, a drone, an unmanned transport vehicle, or a robot in autonomous driving or intelligent driving.
  • the terminal can be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality terminal, an augmented reality terminal, a wireless terminal in industrial control, a wireless terminal in unmanned driving, and a remote Wireless terminals in medical care, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, and wireless terminals in smart homes.
  • an embodiment of the present application also provides a method for manufacturing an antenna device, the method comprising: etching an antenna structure on the first metal layer, the antenna structure including a main feeder line and at least one patch unit group, so The at least one patch unit group is connected to the main feeder in series along the length direction of the main feeder, wherein each patch unit group in the at least one patch unit group includes at least two patch unit groups arranged in a V-shaped structure.
  • each patch unit group is connected to the main feeder in series through two patch units having a V-shaped structure on each patch unit group; connecting the first surface of the antenna structure with The first surface of the dielectric layer is bonded together; the second surface of the dielectric layer and the first surface of the second metal layer are bonded together, and the first surface of the dielectric layer is bonded to the second surface of the dielectric layer.
  • the surfaces are arranged oppositely, and the antenna structure is grounded through the second metal layer.
  • each patch unit group is connected to the main feeder in series through a connection point of two patch units arranged in a V-shaped structure in each patch unit group.
  • the polarization direction of each patch unit group is horizontal polarization.
  • the at least one patch unit group includes multiple patch unit groups, and the multiple patch unit groups are connected in series on both sides of the main feeder.
  • the multiple patch unit groups are alternately connected in series on both sides of the main feeder.
  • the at least one patch unit group includes multiple patch unit groups, wherein the width of patch units in the multiple patch unit groups first increases and then decreases along the first direction. Or, the width of the patch units in the plurality of patch unit groups increases in the first direction; or, the width of the patch units in the plurality of patch unit groups is along the first direction Decrease.
  • the antenna structure is a transmitting antenna or a receiving antenna.
  • each patch unit group is connected to the main feeder in series through two patch units arranged in a V-shaped structure in each patch unit group.
  • Figure 1 provides a schematic structural diagram of an antenna structure in the prior art
  • FIG. 2 provides a schematic structural diagram of an antenna structure 100 according to an embodiment of the present application
  • FIG. 3 provides another schematic structural diagram of the antenna structure 100 according to an embodiment of the present application.
  • FIG. 4 provides another schematic structural diagram of the antenna structure 100 according to an embodiment of the present application.
  • FIG. 5 provides another schematic structural diagram of the antenna structure 100 according to an embodiment of the present application.
  • FIG. 6 provides another schematic structural diagram of the antenna structure 100 according to an embodiment of the present application.
  • FIG. 7 provides another schematic structural diagram of the antenna structure 100 according to an embodiment of the present application.
  • FIG. 8 provides another schematic structural diagram of the antenna structure 100 according to an embodiment of the present application.
  • FIG. 9 provides another schematic structural diagram of the antenna structure 100 according to an embodiment of the present application.
  • FIG. 10 provides another schematic structural diagram of the antenna structure 100 according to an embodiment of the present application.
  • FIG. 11 provides another schematic structural diagram of the antenna structure 100 according to an embodiment of the present application.
  • FIG. 12 provides another schematic structural diagram of the antenna structure 100 according to an embodiment of the present application.
  • FIG. 13 provides another schematic structural diagram of the antenna structure 100 according to an embodiment of the present application.
  • FIG. 14 provides another schematic structural diagram of the antenna structure 100 according to an embodiment of the present application.
  • FIG. 15 provides another schematic structural diagram of the antenna structure 100 according to an embodiment of the present application.
  • FIG. 16 provides another schematic structural diagram of the antenna structure 100 according to an embodiment of the present application.
  • FIG. 17 provides another schematic structural diagram of the antenna structure 100 according to an embodiment of the present application.
  • FIG. 18 provides another schematic structural diagram of the antenna structure 100 according to an embodiment of the present application.
  • FIG. 19 provides another schematic structural diagram of the antenna structure 100 according to an embodiment of the present application.
  • FIG. 20 provides a schematic structural diagram of a radar 200 according to an embodiment of the present application.
  • FIG. 21 provides another schematic structural diagram of a radar 200 according to an embodiment of the present application.
  • FIG. 22 provides another schematic structural diagram of a radar 200 according to an embodiment of the present application.
  • FIG. 23 provides another schematic structural diagram of a radar 200 according to an embodiment of the present application.
  • FIG. 24 provides a schematic structural diagram of a terminal 300 according to an embodiment of the present application.
  • FIG. 25 provides a schematic flowchart of a manufacturing method 400 of an antenna device according to an embodiment of the present application.
  • FIG. 2 shows a schematic structural diagram of an antenna structure 100 provided by an embodiment of the present application.
  • the antenna structure 100 may include a main feeder 110 and at least one patch unit group.
  • the patch unit group 121 to the patch unit group 12N where N is an integer greater than 1.
  • the patch unit group 121 to the patch unit group 12N are serially connected to the main feeder 110 along the length direction of the main feeder 110, wherein each patch unit group in the patch unit group 121 to the patch unit group 12N is at least It includes two patch units arranged in a V-shaped structure.
  • the patch unit group 121 includes a patch unit 131 and a patch unit 132 arranged in a V-shaped structure, and each patch unit group Two patch units arranged in a V-shaped structure in each patch unit group are connected to the main feeder 110 in series.
  • FIG. 2 only schematically shows that the antenna structure 100 includes a patch unit group 121 to a patch unit group 12N.
  • the antenna structure 100 may include only one patch unit group, such as only a patch unit group. 121.
  • the embodiment of the present application does not limit this.
  • the aperture of the antenna structure (that is, the size along the length direction of the radiating patch) is relatively large, and therefore, the 3dB bandwidth of the existing antenna structure is relatively narrow.
  • dB decibel
  • the 3dB bandwidth refers to the frequency interval corresponding to when the maximum gain of the antenna structure drops by 3dB, and belongs to the general definition of the bandwidth of the antenna structure.
  • This application exemplarily uses a 3db bandwidth to express technical problems and technical effects, but this application does not limit the expression to only the 3dB bandwidth, and any other expressions used to characterize the bandwidth of the antenna structure can replace the 3dB bandwidth.
  • each patch unit group is connected to the main feeder in series through two patch units arranged in a V-shaped structure in each patch unit group.
  • each patch unit group can be connected to the main feeder in series through two patch units arranged in a V-shaped structure in each patch unit group.
  • the embodiment does not limit this.
  • each patch unit group may be serially connected to the main feeder 110 through a connection point of two patch units arranged in a V-shaped structure in each patch unit group.
  • the patch unit group 121 includes a patch unit 131 and a patch unit 132 arranged in a V-shaped structure. There is an angle ⁇ between the patch unit 131 and the patch unit 132, and the patch The unit group 121 is serially connected to the main feeder 110 through the connection point at the included angle ⁇ between the patch unit 131 and the patch unit 132.
  • each patch unit group may pass through a partial area string of each patch unit in the two patch units arranged in a V-shaped structure in each patch unit group. Connected to the main feeder 110.
  • the patch unit group 121 includes a patch unit 131 and a patch unit 132 arranged in a V-shaped structure. There is an angle ⁇ between the patch unit 131 and the patch unit 132, and the patch unit The unit group 121 is serially connected to the main feeder 110 through the patch unit 131 and a partial area of one end of the patch unit 132.
  • the patch unit group 121 to the patch unit group 12N may be connected in series to the main feeder 110 in a variety of ways, which is not limited in the embodiment of the present application.
  • the patch unit group 121-the patch unit group 12N may be connected in series on the same side of the main feeder 110.
  • FIG. 4 shows a schematic diagram of the antenna structure 100 in which the patch unit group 121 to the patch unit group 124 are all connected in series on the left side of the main feeder.
  • FIG. 5 shows a schematic diagram of the polarization direction of the antenna structure 100 in FIG. 4.
  • the patch unit group 121 includes a patch unit 131 and a patch unit 132.
  • the polarization direction of the patch unit 131 can be decomposed into F 12 horizontally to the left and F 11 vertically upward.
  • the patch unit 132 The polarization direction can be decomposed into E 12 horizontally to the left and E 11 vertically downward.
  • the patch unit 121 F 11 and E 11 cancel each other in the vertical direction, and F 12 and E 12 are superimposed in the horizontal direction. Therefore, the polarization direction of the patch unit group 121 is horizontal to the left, and the size is F 12 +E 12 .
  • the polarization direction of the patch unit group 122 is horizontal to the left, and the size is F 22 +E 22 .
  • the interval D 1 between the patch unit group 121 and the patch unit group 122 is an integer multiple of the wavelength.
  • the phase difference between the patch unit group 121 and the patch unit group 122 is 360°, That is, the polarization directions of the patch unit group 121 and the patch unit group 122 are the same. Therefore, the polarization direction of the patch unit group 121 and the entire patch unit group 122 is horizontal to the left, and the size is F 12 +E 12 +F 22 +E 22 .
  • FIG. 5 only uses the patch unit group 121 and the patch unit group 122 as examples to introduce the polarization direction of the antenna structure 100.
  • the antenna structure 100 includes multiple patch unit groups connected in series to the main feeder When it is on the left side, the polarization direction of the antenna structure 100 and the interval between the patch unit groups are similar to those in FIG.
  • the patch unit group 121 to the patch unit group 12N may be connected in series on both sides of the main feeder 110.
  • the patch unit group 121 to the patch unit group 12N can be connected in series on both sides of the main feeder 110 in a variety of ways, which is not limited in the embodiment of the present application.
  • the patch unit group 121-the patch unit group 12N can be alternately connected in series on both sides of the main feeder 110.
  • FIG. 6 shows a schematic diagram of the antenna structure 100 in which patch unit groups 121 to patch unit groups 124 are alternately connected in series on both sides of the main feeder.
  • FIG. 7 shows a schematic diagram of the polarization direction of the antenna structure 100 in FIG. 6.
  • the patch unit group 121 includes a patch unit 131 and a patch unit 132.
  • the polarization direction of the patch unit 131 can be decomposed into F 12 horizontally to the left and F 11 vertically upward.
  • the patch unit 132 The polarization direction can be decomposed into E 12 horizontally to the left and E 11 vertically downward.
  • the patch unit 121 F 11 and E 11 cancel each other in the vertical direction, and F 12 and E 12 are superimposed in the horizontal direction. Therefore, the polarization direction of the patch unit group 121 is horizontal to the left, and the size is F 12 +E 12 .
  • the polarization direction of the patch unit group 122 is horizontal to the right, and the size is F 22 +E 22 .
  • the interval D 2 between the patch unit group 121 and the patch unit group 122 is an odd multiple of the half wavelength.
  • the phase difference between the patch unit group 121 and the patch unit group 122 is 180°. , That is, the polarization directions of the patch unit group 121 and the patch unit group 122 are opposite. Therefore, the polarization direction of the patch unit group 121 and the patch unit group 122 is horizontal to the left (or right), and the size is F 12 +E 12 +F 22 +E 22 .
  • FIG. 7 only uses the patch unit group 121 and the patch unit group 122 as examples to introduce the polarization direction of the antenna structure 100.
  • the antenna structure 100 includes multiple patch unit groups alternately connected in series to the main feeder When it is on the left side of the antenna structure 100, the polarization direction of the antenna structure 100 and the interval between the patch unit groups are similar to those in FIG.
  • a part of the patch unit group 121 to the patch unit group 12N may be serially connected to one side of the main feeder 110, and the remaining part of the patch unit group may be sequentially connected to one side of the main feeder 110. It is connected in series to the other side of the main feeder 110.
  • FIG. 8 shows that the patch unit group 121 and the patch unit group 122 are connected in series on the left side of the main feeder, and the patch unit group 123 and the patch unit group are connected in series on the left side of the main feeder.
  • the polarization direction and interval of the patch unit group 121 to the patch unit group 124 in FIG. 8 can refer to FIG. 5 and FIG.
  • the interval between the patch unit groups is compared with that of the patch unit group.
  • the patch unit group 121 to the patch unit group 12N are connected in series on the same side of the main feeder 110, the interval between the patch unit groups is shorter. Therefore, the patch unit group 121 to the patch unit group 12N are connected in series on both sides of the main feeder line to save the size of the main feeder line.
  • the interval between patch unit groups is compared with that of the patch unit groups 121 to patch units.
  • the interval between the patch unit groups, and the patch unit group is shorter. Therefore, the patch unit group 121 to the patch unit group 12N are alternately connected in series on both sides of the main feeder 110 to save the size of the main feeder.
  • the width of the patch unit in each patch unit group can be set to a variety of different sizes, which is not limited in the embodiment of the present application.
  • the width of the patch units in the patch unit group 121 to the patch unit group 12N first increases and then decreases along the first direction.
  • the first direction may be the length direction of the main feeder line.
  • the antenna structure 100 includes a patch unit group 121 to a patch unit group 126, and the widths of the patch units in the patch unit group 121 to the patch unit group 126 are d 1 to d 6 in order , and d 1 ⁇ d 2 ⁇ d 3 ⁇ d 4 >d 5 >d 6 .
  • the width of the patch units in the patch unit group 121 to 12N is increased or decreased along the first direction.
  • the antenna structure 100 includes a patch unit group 121 to a patch unit group 126, the widths of the patch units in the patch unit group 121 to the patch unit group 126 are d 1 to d 6 in order , and d 1 ⁇ d 2 ⁇ d 3 ⁇ d 4 ⁇ d 5 ⁇ d 6 .
  • the patch units in the patch unit group 121 to 12N have the same width.
  • the widths of the patch units in different patch unit groups may be the same or different, which is not limited in the application embodiment.
  • widths of the patch units in the different patch unit groups described in the embodiments of the present application include the same and approximately the same, where approximately the same refers to the patch units in different patch unit groups.
  • the width of the difference is within a certain error range.
  • the width of the patch unit in the patch unit group By adopting the antenna structure provided by the embodiment of the present application, by designing the width of the patch unit in the patch unit group, the requirements of different electromagnetic wave radiation shapes can be met. For example, when the patch unit width designed in the first possible implementation manner is used, since the energy is concentrated in the middle section of the main feeder, low sidelobes can be achieved, thereby reducing the probability of radar false alarms.
  • the included angle between the two patch units arranged in a V shape in each patch unit group, and the included angle between each patch unit group and the main feeder may be There are many different sizes, which are not limited in the embodiment of the present application.
  • the included angle between the two patch units in each patch unit group may be 90°.
  • the angle between each patch unit group and the main feeder line may be 45°.
  • the antenna structure provided by the embodiment of the present application, by setting the angle between the two patch units of each patch unit group in a V-shaped structure, the requirements of different apertures of the antenna structure can be met, and the horizontal beam width of the antenna can be further broadened. In addition, it can also achieve the low sidelobe requirements of the vertical plane.
  • the length of the patch unit in each patch unit group can be set to a variety of different sizes, which is not limited in the embodiment of the present application.
  • the lengths of the patch units in the patch unit group 121 to 12N are first increased and then decreased along the first direction.
  • the first direction may be the length direction of the main feeder line.
  • the antenna structure 100 includes a patch unit group 121 to a patch unit group 126, and the lengths of patch units in the patch unit group 121 to the patch unit group 126 are s 1 to s 6 in order , and s 1 ⁇ s 2 ⁇ s 3 ⁇ s 4 >s 5 >s 6 .
  • the length of the patch units in the patch unit group 121 to 12N is increased or decreased along the first direction.
  • the antenna structure 100 includes a patch unit group 121 to a patch unit group 126, and the lengths of patch units in the patch unit group 121 to the patch unit group 126 are s 1 to s 6 in order , and s 1 ⁇ s 2 ⁇ s 3 ⁇ s 4 ⁇ s 5 ⁇ s 6 .
  • the lengths of the patch units in the patch unit group 121 to 12N are the same.
  • the lengths of the patch units in different patch unit groups may be the same or different, which is not limited in the embodiment of the present application.
  • the lengths of the patch units in different patch unit groups described in the embodiments of the present application include the same and approximately the same length, where approximately the same refers to patch units in different patch unit groups.
  • the length difference is within a certain error range.
  • the size of the patch unit in each patch unit group includes length and width.
  • the size of patch units in different patch unit groups may be the same or different, which is not limited in the embodiment of the present application.
  • the antenna structure 100 includes a patch unit group 121 to a patch unit group 126.
  • the lengths of the patch units in the patch unit group 121 to the patch unit group 126 are s 1 to s 6 in order , and the width
  • the same size of patch units in different patch unit groups described in the embodiments of the present application includes completely the same and approximately the same, wherein approximately the same refers to patch units in different patch unit groups.
  • the size difference is within a certain error range.
  • each patch unit group includes two patch units arranged in a V-shaped structure, which can be understood as: the two patch units are arranged in a V-shaped structure, or the two patches The unit is arranged in a similar V-shaped structure, which is not limited in the embodiment of the present application.
  • the two patch units included in each patch unit group may have a C-shaped structure.
  • the two patch units included in each patch unit group may have an L-shaped structure.
  • FIG. 16 shows a schematic structural diagram of another antenna structure 100.
  • the antenna structure 100 includes a patch unit group 121 to a patch unit group 124, wherein each patch unit group includes two patch unit groups arranged in a C-shaped structure.
  • a patch unit is
  • the patch unit in each patch unit group may have a variety of different shapes, which is not limited in the embodiment of the present application.
  • the patch unit in each patch unit group may be rectangular, as shown in FIGS. 1-15.
  • the patch unit in each patch unit group may be a polygon, for example, a parallelogram, as shown in FIG. 17.
  • the shape of the patch units in each patch unit group may be the same or different, which is not limited in the embodiment of the present application.
  • the antenna structure may work in a standing wave mode or a traveling wave mode, which is not limited in the embodiment of the present application.
  • standing waves and traveling waves are phenomena that appear during wave propagation.
  • traveling wave the wave propagates outward from the wave source.
  • the maximum beam pointing angle of the antenna structure changes with the frequency. This phenomenon is called frequency scanning. In the traveling wave mode, the frequency scanning range of the antenna structure can be reduced.
  • Standing wave refers to the wave reflecting back and forth in a space, and the reflected wave interferes with the wave coming from behind, forming a stable interference field, and the amplitude of each place is stable and unchanging.
  • the place where the amplitude is zero is called the node, and the place where the amplitude is the largest is called the antinode.
  • matching load refers to the maximum output power from the perspective of power, that is, in the power supply circuit, the load impedance is equal to the conjugate value of the internal impedance of the power supply (the resistance is the same, the reactance is the same, and the sign is opposite).
  • the purpose of matching is to get the maximum output power. From the perspective of the transmission line means lossless transmission, that is, when applied to the transmission line, the load impedance is equal to the characteristic impedance of the transmission line, which is called "matching".
  • matching is to eliminate the reflection caused by the load, avoid the occurrence of standing waves, and enable the load to obtain the maximum power.
  • the signal source is the transmitter
  • the load is the antenna feeder subsystem.
  • the antenna feeder subsystem includes antennas, feeders, radio frequency connectors, lightning arresters and other auxiliary equipment. Otherwise, if the load and the signal source cannot be completely matched, part of the signal will be reflected back to the signal source. This is what we do not want. At this time, a forward wave and a reverse wave will be generated. These two signals are combined. A standing wave is formed.
  • the first end of the antenna structure does not include a matching load unit.
  • the first end of the antenna structure does not include a matching load unit, it can be understood that the first end of the antenna structure is open.
  • the antenna structures 100 shown in FIGS. 1 to 17 are all antenna structures operating in a standing wave mode.
  • the second end of the antenna structure further includes a matching load unit, and the matching load unit is used to consume the at least one patch The energy that has not been consumed by the unit group.
  • the matching load unit may be connected to the first end of the main feeder in a variety of ways, which is not limited in the embodiment of the present application.
  • the matching load unit and the length direction of the main feeder are in the same direction.
  • FIG. 18 shows a schematic structural diagram of another antenna structure 100.
  • the first end of the antenna structure includes a matching load unit 140, and the matching load unit 140 and the main feeder 110 The length direction is the same.
  • the matching load unit is bent and connected to the main feeder.
  • FIG. 19 shows a schematic structural diagram of another antenna structure 100.
  • the first end of the antenna structure includes a matching load unit 140, and the matching load unit 140 and the main feeder 110 are bent A folded connection, that is, there is an angle between the matching load unit 140 and the main feeder 110.
  • the flexibility of connecting the matching load unit can be improved by changing the bending angle between the matching load unit and the main feeder.
  • the antenna structure may be a receiving antenna or a transmitting antenna, which is not limited in the embodiment of the present application.
  • the antenna structure 100 provided by the embodiment of the present application is described above with reference to FIGS. 1 to 19, and the radar provided by the embodiment of the present application will be described below.
  • FIG. 20 shows a schematic structural diagram of a radar 200 provided by an embodiment of the present application.
  • the radar 300 may include the antenna structure 100 as described in FIG. 2 to FIG. 19.
  • the radar 200 further includes a control chip 150 connected to the second end of the antenna structure, and the control chip 150 is used to control the antenna structure to transmit or receive signal.
  • control chip 150 and the second end of the antenna structure may be connected by a first microstrip line.
  • the radar 200 further includes an impedance matching unit 160, and the impedance matching unit 160 is configured to match the impedance of the second end with the impedance of the control chip 150, and the control The chip 150 is connected to the second terminal through the impedance matching unit.
  • the impedance matching unit may be a second microstrip line.
  • the impedance of the second end of the antenna structure can be matched with the impedance of the control chip.
  • the radar 200 further includes a printed circuit board 170, and the printed circuit board 170 includes the antenna structure 100 stacked in sequence (as shown in FIG. 23). Shown), the dielectric layer 171 (as shown in Figure 23) Shown) and metal layer 172 (as shown in Figure 23) (Shown), the antenna structure is grounded through the metal layer.
  • FIG. 24 shows a terminal 300 provided by an embodiment of the present application, and the terminal 300 includes the radar 200 as described in FIG. 20 to FIG. 23.
  • the terminal described in the embodiment of the present application may have the ability to implement a communication function and/or a detection function through a radar, which is not limited in the embodiment of the present application.
  • the terminal may be a vehicle, a drone, an unmanned transport vehicle, or a robot in autonomous driving or intelligent driving.
  • the terminal can be a mobile phone, a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, and an augmented reality (AR) terminal.
  • Terminals wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety Wireless terminals in (transportation safety), wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the radar and the terminal provided by the embodiment of the present application are shown above in conjunction with FIG. 20 to FIG. 24, and the preparation method of the antenna device provided by the embodiment of the present application will be described in detail below in conjunction with FIG. 25.
  • FIG. 25 shows a manufacturing method 400 of an antenna device provided by an embodiment of the present application.
  • the method 400 includes the following steps S410 to S430.
  • An antenna structure is etched on the first metal layer.
  • the antenna structure includes a main feeder line and at least one patch unit group.
  • the at least one patch unit group is serially connected to the main feeder along the length of the main feeder.
  • each patch unit group is connected to the main feeder in series through a connection point of two patch units arranged in a V-shaped structure in each patch unit group.
  • the polarization direction of each patch unit group is horizontal polarization.
  • the at least one patch unit group includes multiple patch unit groups, and the multiple patch unit groups are connected in series on both sides of the main feeder.
  • the plurality of patch unit groups are alternately connected in series on both sides of the main feeder line.
  • the at least one patch unit group includes multiple patch unit groups, wherein the width of patch units in the multiple patch unit groups first increases and then decreases along the first direction; or, so The width of the patch units in the plurality of patch unit groups increases along the first direction; or, the width of the patch units in the plurality of patch unit groups decreases along the first direction.
  • each patch unit group is connected to the main feeder in series through two patch units arranged in a V-shaped structure in each patch unit group.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

提供了一种天线结构、雷达和终端,可以应用于毫米波雷达领域,能够扩展天线结构的3dB带宽。该天线结构(100)包括:主馈线(110)和至少一个贴片单元组(121~12N),该至少一个贴片单元组(121~12N)沿该主馈线(110)长度方向串接于该主馈线(110),该至少一个贴片单元组(121~12N)中每个贴片单元组至少包括呈V型结构设置的两个贴片单元(131,132),该每个贴片单元组(121~12N)通过该每个贴片单元组上呈V型结构设置的两个贴片单元(131,132)串接于该主馈线(110)。

Description

天线结构、雷达和终端 技术领域
本申请涉及传感器技术领域,并且更具体地,涉及传感器技术领域中的天线结构、雷达和终端。
背景技术
随着社会的发展和科技的进步,智能汽车正在逐步进入人们的日常生活。传感器在智能汽车的无人驾驶和智能驾驶中发挥着十分重要的作用。传感器可以为毫米波雷达、激光雷达以及超声波雷达、摄像头等。例如,77GHz的毫米波雷达作为无人驾驶技术的关键传感器,具有波长短、设备体积小等特点。无论是在探测精度、探测距离还是设备集成度方面,77GHz的毫米波雷达都有着不可替代的优势。
从雷达的探测场景和实现功能来看,要求雷达所使用的天线具有较宽的3dB波束带宽以及低副瓣的特点,其中,较宽的3dB波束带宽能够保证在水平方向上具有较大的探测角度范围,低副瓣能够减少在垂直方向上地面反射的杂波能量,从而降低虚警概率。
图1示出了现有的天线结构的示意性结构图,现有的天线结构采用串馈形式,即通过一根馈线同时激励与馈线垂直连接的多个辐射贴片,该多个辐射贴片的宽度沿馈线长度方向先逐渐增加再逐渐减小,即天线结构辐射的能量集中的靠近馈线长度的中间区域,能够实现低副瓣加权,从而能够避免雷达虚警。
然而,虽然采用图1中所示的现有的天线结构能够实现较低的副瓣水平,但3dB波束宽度较小,从而水平方向上的探测角度范围较小。
发明内容
本申请实施例提供一种天线结构、雷达和终端,能够扩展天线结构的3dB带宽。
第一方面,本申请实施例提供一种天线结构,所述天线结构包括:主馈线和至少一个贴片单元组,所述至少一个贴片单元组沿所述主馈线长度方向串接于所述主馈线,所述至少一个贴片单元组中每个贴片单元组至少包括呈V型结构设置的两个贴片单元,所述每个贴片单元组通过所述每个贴片单元组上呈V型结构设置的两个贴片单元串接于所述主馈线。
采用本申请实施例提供的天线结构,每个贴片单元组通过该每个贴片单元组中呈V型结构设置的两个贴片单元串接于该主馈线,由于呈V型结构的两个贴片单元之间存在夹角,因此,通过调节该夹角可以减小天线结构的口径,从而能够提高天线结构的3dB带宽。
下面将以所述至少一个贴片单元组包括多个贴片单元组为例进行介绍。
可选地,所述每个贴片单元组可以通过多种方式,通过所述每个贴片单元组中呈V型结构设置的两个贴片单元通过串接于所述主馈线,本申请实施例对此不作限定。
在一种可能的实现方式中,所述每个贴片单元组可以通过所述每个贴片单元组中呈V 型结构设置的两个贴片单元的连接点串接于该主馈线。
在另一种可能的实现方式中,所述每个贴片单元组可以通过所述每个贴片单元组中呈V型结构设置的两个贴片单元中每个贴片单元的部分区域串接于该主馈线。
可选地,该多个贴片单元组可以通过多种方式串接于该主馈线,本申请实施例对此不作限定。
在第一种可能的实现方式中,该多个贴片单元组可以串接于该主馈线的同侧。
在第二种可能的实现方式中,该多个贴片单元组可以串接于该主馈线的两侧。
采用本申请实施例提供的天线结构,多个贴片单元串接于该主馈线的两侧相比于串接于该主馈线的同侧,能够提高水平上的辐射范围。
可选地,该多个贴片单元组可以通过多种方式串接于该主馈线的两侧,本申请实施例对此不作限定。
在一种可能的实现方式中,该多个贴片单元组可以交替串接于该主馈线的两侧。
在另一可能的实现方式中,该多个贴片单元组中的一部分贴片单元组可以依次串接于该主馈线的一侧,剩余的部分贴片单元组可以依次串接于该主馈线的另一侧。
采用本申请实施例提供的天线结构,该多个贴片单元组串接于所述主馈线的两侧时贴片单元组之间的间隔,相比于该多个贴片单元组串接于所述主馈线的同侧时贴片单元组之间的间隔来说,间隔更短。该多个贴片单元组串接于所述主馈线的两侧能够节省所述主馈线的尺寸。
此外,该多个贴片单元组交替串接于所述主馈线的两侧时贴片单元组之间的间隔,相比于该多个贴片单元组中一部分先串接于所述主馈线的一侧,另一部分再串接于所述主馈线的另一侧时贴片单元组之间的间隔,以及该多个贴片单元组串接于所述主馈线的同侧时贴片单元组之间的间隔来说,间隔更短。因此,该多个贴片单元组交替串接于所述主馈线的两侧能够节省主馈线的尺寸。
可选地,所述每个贴片单元组中的贴片单元的宽度可以设置为多种不同的大小,本申请实施例对此不作限定。
在第一种可能的实现方式中,该多个贴片单元组中的贴片单元的宽度沿第一方向先增加再减小。
在第二种可能的实现方式中,该多个贴片单元组中的贴片单元的宽度沿所述第一方向增加或减小。
在第三种可能的实现方式中,该多个贴片单元组中的贴片单元的宽度相同。
可选地,不同的贴片单元组中的贴片单元的宽度可以相同也可以不同,申请实施例对此不作限定。
需要说明的是,本申请实施例中所述的不同的贴片单元组中的贴片单元的宽度相同包括完全相同和近似相同,其中,近似相同指不同的贴片单元组中的贴片单元的宽度相差在一定误差范围内。
采用本申请实施例提供的天线结构,通过设计贴片单元组中贴片单元的宽度,能够满足不同电磁波辐射形状的需求。如当采用上述第一种可能的实现方式中设计的贴片单元宽度时,由于能量集中在主馈线的中段,能够实现低副瓣,从而降低雷达虚警的概率。
可选地,所述每个贴片单元组中呈V型设置的两个贴片单元之间的夹角,以及所述每 个贴片单元组与所述主馈线之间的夹角可以为多种不同的大小,本申请实施例对此不作限定。
在一种可能的实现方式中,所述每个贴片单元组中的所述两个贴片单元之间的夹角可以为90°。
在另一种可能的实现方式中,所述每个贴片单元组与所述主馈线之间的夹角可以为45°。
采用本申请实施例提供的天线结构,通过设置每个贴片单元组呈V型结构的两个贴片单元之间的夹角,能够满足天线结构不同的口径需求,进一步展宽天线的水平面波束宽度,此外,还能够实现垂直面的低副瓣需求。
可选地,所述每个贴片单元组中的贴片单元的长度可以设置为多种不同的大小,本申请实施例对此不作限定。
在第一种可能的实现方式中,该多个贴片单元组中的贴片单元的长度沿第一方向先增加再减小。
在第二种可能的实现方式中,该多个贴片单元组中的贴片单元的长度沿所述第一方向增加或减小。
在第三种可能的实现方式中,该多个贴片单元组中的贴片单元的长度相同。
可选地,不同的贴片单元组中的贴片单元的长度可以相同也可以不同,本申请实施例对此不作限定。
需要说明的是,本申请实施例中所述的不同的贴片单元组中的贴片单元的长度相同包括完全相同和近似相同,其中,近似相同指不同的贴片单元组中的贴片单元的长度相差在一定误差范围内。
需要说明的是,每个贴片单元组中的贴片单元的尺寸包括长度和宽度。
可选地,不同的贴片单元组中的贴片单元的尺寸可以相同也可以不同,本申请实施例对此不作限定。
需要说明的是,本申请实施例中所述的不同的贴片单元组中的贴片单元的尺寸相同包括完全相同和近似相同,其中,近似相同指不同的贴片单元组中的贴片单元的尺寸相差在一定误差范围内。
需要说明的是,所述每个贴片单元组包括呈V型结构设置的两个贴片单元,可以理解为:所述两个贴片单元呈V型结构设置,或所述两个贴片单元呈类似V型结构设置,本申请实施例对此不作限定。
在一种可能的实现方式中,所述每个贴片单元组中包括的两个贴片单元可以呈C型结构。
在另一种可能的实现方式中,所述每个贴片单元组中包括的两个贴片单元可以呈L型结构。
在一种可能的实现方式中,所述每个贴片单元组中的贴片单元可以为长方形。
在另一种可能的实现方式中,所述每个贴片单元组中的贴片单元可以为多边形,例如:平行四边形。
可选地,所述每个贴片单元组中的贴片单元的形状可以相同也可以不同,本申请实施例对此不作限定。
可选地,所述天线结构可以工作在驻波模式或行波模式下,本申请实施例对此不作限定。
在第一种可能的实现方式中,所述天线结构工作在驻波模式下时,所述天线结构的第一端不包含匹配负载单元。
需要说明的是,所述天线结构的第一端不包含匹配负载单元可以理解为:所述天线结构的第一端开路。
在第二种可能的实现方式中,所述天线结构工作在行波模式下时,所述天线结构的第二端还包含匹配负载单元,所述匹配负载单元用于消耗所述至少一个贴片单元组未消耗完的能量。
可选地,所述匹配负载单元可以通过多种方式与所述主馈线的第一端连接,本申请实施例对此不作限定。
在第一种可能的实现方式中,所述匹配负载单元与所述主馈线的长度方向同向。
在第二种可能的实现方式中,所述匹配负载单元与所述主馈线弯折连接。
采用本申请实施例提供的天线结构,通过改变所述匹配负载单元和所述主馈线之间弯折的角度,能够提高接入匹配负载单元的灵活性。
第二方面,本申请实施例还提供一种雷达,所述雷达包括如上述第一方面或第一方面的任一种可能的实现方式中所述的天线结构。
在一种可能的实现方式中,所述雷达还包括控制芯片,所述控制芯片与所述天线结构的第二端连接,所述控制芯片用于控制所述天线结构发射或接收信号。
需要说明的是,所述控制芯片与所述天线结构的第二端之间可以通过第一微带线连接。
在一种可能的实现方式中,所述雷达还包括阻抗匹配单元,所述阻抗匹配单元用于将所述第二端的阻抗与所述控制芯片的阻抗进行匹配,所述控制芯片通过所述阻抗匹配单元与所述第二端连接。
需要说明的是,所述阻抗匹配单元可以为第二微带线。
也就是说,通过调节第二微带线的阻抗,能够使得所述天线结构的第二端的阻抗与所述控制芯片的阻抗相匹配。
在一种可能的实现方式中,所述雷达还包括印制电路板,所述印制电路板包括依次层叠设置的所述天线结构、介质层和金属层,所述天线结构通过所述金属层接地。
第三方面,本申请实施例还提供一种终端,所述终端包括上述第二方面或第二方面的各种可能的实现方式中所述的雷达。
可选地,本申请实施例中所述的终端可以具有通过雷达实现通信功能和/或探测功能的能力,本申请实施例对此不作限定。
在一种可能的实现方式中,该终端可以是自动驾驶或智能驾驶中的车辆、无人机、无人运输车或者机器人等。
在另一种可能的实现方式中,该终端可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端、增强现实终端、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等。
第四方面,本申请实施例还提供一种天线装置的制备方法,该方法包括:在第一金属层上刻蚀出天线结构,所述天线结构包括主馈线和至少一个贴片单元组,所述至少一个贴片单元组沿所述主馈线长度方向串接于所述主馈线,其中,所述至少一个个贴片单元组中每个贴片单元组至少包括呈V型结构设置的两个贴片单元,所述每个贴片单元组通过所述每个贴片单元组上呈V型结构的两个贴片单元串接于所述主馈线;将所述天线结构的第一表面与介质层的第一表面粘结在一起;将所述介质层的第二表面与第二金属层的第一表面粘结在一起,所述介质层的第一表面与所述介质层的第二表面相对设置,所述天线结构通过所述第二金属层接地。
在一种可能的实现方式中,所述每个贴片单元组通过所述每个贴片单元组中呈V型结构设置的两个贴片单元的连接点串接于所述主馈线。
在一种可能的实现方式中,所述每个贴片单元组的极化方向为水平极化。
在一种可能的实现方式中,所述至少一个贴片单元组包含多个贴片单元组,所述多个贴片单元组串接于所述主馈线两侧。
在一种可能的实现方式中,所述多个贴片单元组交替串接于所述主馈线两侧。
在一种可能的实现方式中,所述至少一个贴片单元组包含多个贴片单元组,其中,所述多个贴片单元组中的贴片单元的宽度沿第一方向先增加再减小;或,所述多个贴片单元组中的贴片单元的宽度沿所述第一方向增加;或,所述多个贴片单元组中的贴片单元的宽度沿所述第一方向减小。
在一种可能的实现方式中,所述天线结构为发射天线或接收天线。
采用本申请实施例提供的天线结构,每个贴片单元组通过该每个贴片单元组中呈V型结构设置的两个贴片单元串接于该主馈线,由于呈V型结构的两个贴片单元之间存在夹角,因此,通过调节该夹角可以减小天线结构的口径,从而能够提高天线结构的3dB带宽。
附图说明
图1提供了现有技术中的天线结构的示意性结构图;
图2提供了本申请实施例的天线结构100的示意性结构图;
图3提供了本申请实施例的天线结构100的另一示意性结构图;
图4提供了本申请实施例的天线结构100的又一示意性结构图;
图5提供了本申请实施例的天线结构100的又一示意性结构图;
图6提供了本申请实施例的天线结构100的又一示意性结构图;
图7提供了本申请实施例的天线结构100的又一示意性结构图;
图8提供了本申请实施例的天线结构100的又一示意性结构图;
图9提供了本申请实施例的天线结构100的又一示意性结构图;
图10提供了本申请实施例的天线结构100的又一示意性结构图;
图11提供了本申请实施例的天线结构100的又一示意性结构图;
图12提供了本申请实施例的天线结构100的又一示意性结构图;
图13提供了本申请实施例的天线结构100的又一示意性结构图;
图14提供了本申请实施例的天线结构100的又一示意性结构图;
图15提供了本申请实施例的天线结构100的又一示意性结构图;
图16提供了本申请实施例的天线结构100的又一示意性结构图;
图17提供了本申请实施例的天线结构100的又一示意性结构图;
图18提供了本申请实施例的天线结构100的又一示意性结构图;
图19提供了本申请实施例的天线结构100的又一示意性结构图;
图20提供了本申请实施例的雷达200的示意性结构图;
图21提供了本申请实施例的雷达200的另一示意性结构图;
图22提供了本申请实施例的雷达200的又一示意性结构图;
图23提供了本申请实施例的雷达200的又一示意性结构图;
图24提供了本申请实施例的终端300的示意性结构图;
图25提供了本申请实施例的天线装置的制备方法400的示意性流程图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图2示出了本申请实施例提供的天线结构100的示意性结构图。该天线结构100可以包括主馈线110以及至少一个贴片单元组,如图2中示出了贴片单元组121~贴片单元组12N,N为大于1的整数。该贴片单元组121~贴片单元组12N沿该主馈线110长度方向串接于该主馈线110,其中,该贴片单元组121~贴片单元组12N中的每个贴片单元组至少包括呈V型结构设置的两个贴片单元,如图2中示出了贴片单元组121包括呈V型结构设置的贴片单元131和贴片单元132,且该每个贴片单元组通过该每个贴片单元组中呈V型结构设置的两个贴片单元串接于该主馈线110。
需要说明的是,图2中仅示意性示出该天线结构100包括贴片单元组121~贴片单元组12N,该天线结构100可以只包括一个贴片单元组,如仅包括贴片单元组121,本申请实施例对此不作限定。
由于现有的天线结构中主馈线与辐射贴片垂直串接,天线结构的口径(即沿辐射贴片的长度方向的尺寸)较大,因此,现有的天线结构的3dB带宽较窄。
需要说明的是,本申请实施例中的dB(decibel,分贝)是功率增益的单位,3dB带宽是即指天线结构的最大增益下降3dB时对应的频率间隔,属于天线结构的带宽的通用定义。本申请示例性采用3db带宽进行技术问题和技术效果的表述,但是本申请不限定仅适用3dB带宽来表述,其他任何用于表征天线结构带宽的表述均可以替换3dB带宽。
采用本申请实施例提供的天线结构,每个贴片单元组通过该每个贴片单元组中呈V型结构设置的两个贴片单元串接于该主馈线,由于呈V型结构的两个贴片单元之间存在夹角,因此,通过调节该夹角可以减小天线结构的口径,从而能够提高天线结构的3dB带宽。
可选地,所述每个贴片单元组可以通过多种方式,通过所述每个贴片单元组中呈V型结构设置的两个贴片单元通过串接于所述主馈线,本申请实施例对此不作限定。
在一种可能的实现方式中,所述每个贴片单元组可以通过所述每个贴片单元组中呈V型结构设置的两个贴片单元的连接点串接于该主馈线110。
例如:在图2中,贴片单元组121包括呈V型结构设置的贴片单元131和贴片单元132,该贴片单元131和该贴片单元132之间存在夹角α,该贴片单元组121通过该贴片单元131和贴片单元132之间的夹角α处的连接点串接于主馈线110。
在另一种可能的实现方式中,所述每个贴片单元组可以通过所述每个贴片单元组中呈V型结构设置的两个贴片单元中每个贴片单元的部分区域串接于该主馈线110。
例如:在图3中,贴片单元组121包括呈V型结构设置的贴片单元131和贴片单元132,该贴片单元131和该贴片单元132之间存在夹角α,该贴片单元组121通过该贴片单元131和贴片单元132的一端的部分区域串接于主馈线110。
可选地,该贴片单元组121~贴片单元组12N可以通过多种方式串接于该主馈线110,本申请实施例对此不作限定。
在第一种可能的实现方式中,该贴片单元组121~贴片单元组12N可以串接于该主馈线110的同侧。
例如:以该天线结构100包括4个贴片单元组为例,图4示出了贴片单元组121~贴片单元组124均串接于该主馈线左侧的天线结构100的示意图。
需要说明的是,图5示出了图4中的天线结构100的极化方向示意图。如图5所示,贴片单元组121包括贴片单元131和贴片单元132,贴片单元131的极化方向可以分解为水平向左的F 12和垂直向上的F 11,贴片单元132的极化方向可以分解为水平向左的E 12和垂直向下的E 11,当贴片单元131与水平方向之间的夹角以及贴片单元132与水平方向之间的夹角均为45°时,贴片单元121在垂直方向上F 11和E 11互相抵消,在水平方向上F 12和E 12叠加,因此,贴片单元组121的极化方向为水平向左,大小为F 12+E 12。类似地,贴片单元组122的极化方向为水平向左,大小为F 22+E 22
此外,图5中,贴片单元组121和贴片单元组122之间的间隔D 1为波长的整数倍,这样一来,贴片单元组121与贴片单元组122的相位相差360°,即贴片单元组121与贴片单元组122的极化方向相同。因此,贴片单元组121和贴片单元组122整体的极化方向为水平向左,大小为F 12+E 12+F 22+E 22
需要说明的是,图5仅以贴片单元组121和贴片单元组122为例介绍天线结构100的极化方向,当天线结构100包括的多个贴片单元组串接于该主馈线的左侧时,该天线结构100的极化方向和各贴片单元组之间的间隔与图5类似,为避免重复,此处不再赘述。
在第二种可能的实现方式中,该贴片单元组121~贴片单元组12N可以串接于该主馈线110的两侧。
可选地,该贴片单元组121~贴片单元组12N可以通过多种方式串接于该主馈线110的两侧,本申请实施例对此不作限定。
在一种可能的实现方式中,该贴片单元组121~贴片单元组12N可以交替串接于该主馈线110的两侧。
例如:以该天线结构100包括4个贴片单元组为例,图6示出了贴片单元组121~贴片单元组124交替串接于该主馈线两侧的天线结构100的示意图。
需要说明的是,图7示出了图6中的天线结构100的极化方向示意图。如图7所示,贴片单元组121包括贴片单元131和贴片单元132,贴片单元131的极化方向可以分解为水平向左的F 12和垂直向上的F 11,贴片单元132的极化方向可以分解为水平向左的E 12和垂直向下的E 11,当贴片单元131与水平方向之间的夹角以及贴片单元132与水平方向之间的夹角均为45°时,贴片单元121在垂直方向上F 11和E 11互相抵消,在水平方向上F 12和E 12叠加,因此,贴片单元组121的极化方向为水平向左,大小为F 12+E 12。类似地,贴 片单元组122的极化方向为水平向右,大小为F 22+E 22
此外,图7中,贴片单元组121和贴片单元组122之间的间隔D 2为半波长的奇数倍,这样一来,贴片单元组121与贴片单元组122的相位相差180°,即贴片单元组121与贴片单元组122的极化方向相反。因此,贴片单元组121和贴片单元组122整体的极化方向为水平向左(或向右),大小为F 12+E 12+F 22+E 22
需要说明的是,图7仅以贴片单元组121和贴片单元组122为例介绍天线结构100的极化方向,当天线结构100包括的多个贴片单元组交替串接于该主馈线的左侧时,该天线结构100的极化方向和各贴片单元组之间的间隔与图7类似,为避免重复,此处不再赘述。
在另一可能的实现方式中,该贴片单元组121~贴片单元组12N中的一部分贴片单元组可以依次串接于该主馈线110的一侧,剩余的部分贴片单元组可以依次串接于该主馈线110的另一侧。
例如:以该天线结构100包括4个贴片单元组为例,图8示出了贴片单元组121和贴片单元组122串接于该主馈线的左侧,贴片单元组123和贴片单元组124串接于该主馈线的右侧的天线结构100的示意图。
需要说明的是,图8中的贴片单元组121~贴片单元组124的极化方向和间隔可以参考图5和图7,为避免重复,此处不再赘述。
采用本申请实施例提供的天线结构,所述贴片单元组121~贴片单元组12N串接于所述主馈线110的两侧时贴片单元组之间的间隔,相比于所述贴片单元组121~贴片单元组12N串接于所述主馈线110的同侧时贴片单元组之间的间隔来说,间隔更短。因此,所述贴片单元组121~贴片单元组12N串接于所述主馈线的两侧能够节省所述主馈线的尺寸。
此外,所述贴片单元组121~贴片单元组12N交替串接于所述主馈线110的两侧时贴片单元组之间的间隔,相比于所述贴片单元组121~贴片单元组12N中一部分先串接于所述主馈线110的一侧,另一部分再串接于所述主馈线110的另一侧时贴片单元组之间的间隔,以及所述贴片单元组121~贴片单元组12N串接于所述主馈线110的同侧时贴片单元组之间的间隔来说,间隔更短。因此,所述贴片单元组121~贴片单元组12N交替串接于所述主馈线110的两侧能够节省主馈线的尺寸。
可选地,所述每个贴片单元组中的贴片单元的宽度可以设置为多种不同的大小,本申请实施例对此不作限定。
在第一种可能的实现方式中,该贴片单元组121~贴片单元组12N中的贴片单元的宽度沿第一方向先增加再减小。
需要说明的是,所述第一方向可以为所述主馈线的长度方向。
例如:如图9所示,天线结构100包括贴片单元组121~贴片单元组126,贴片单元组121~贴片单元组126中贴片单元的宽度依次为d 1~d 6,且d 1<d 2<d 3<d 4>d 5>d 6
又例如:如图10所示,天线结构100包括贴片单元组121~贴片单元组126,贴片单元组121~贴片单元组126中贴片单元的宽度依次为d 1~d 6,且d 1=d 2<d 3=d 4>d 5=d 6
在第二种可能的实现方式中,该贴片单元组121~贴片单元组12N中的贴片单元的宽度沿所述第一方向增加或减小。
例如:如图11所示,天线结构100包括贴片单元组121~贴片单元组126,贴片单元组121~贴片单元组126中贴片单元的宽度依次为d 1~d 6,且d 1<d 2<d 3<d 4<d 5<d 6
在第三种可能的实现方式中,该贴片单元组121~贴片单元组12N中的贴片单元的宽度相同。
例如:如图6所示,天线结构100包括贴片单元组121~贴片单元组124,贴片单元组121~贴片单元组124中贴片单元的宽度依次为d 1~d 4,且d 1=d 2=d 3=d 4
可选地,不同的贴片单元组中的贴片单元的宽度可以相同也可以不同,申请实施例对此不作限定。
需要说明的是,本申请实施例中所述的不同的贴片单元组中的贴片单元的宽度相同包括完全相同和近似相同,其中,近似相同指不同的贴片单元组中的贴片单元的宽度相差在一定误差范围内。
采用本申请实施例提供的天线结构,通过设计贴片单元组中贴片单元的宽度,能够满足不同电磁波辐射形状的需求。如当采用上述第一种可能的实现方式中设计的贴片单元宽度时,由于能量集中在主馈线的中段,能够实现低副瓣,从而降低雷达虚警的概率。
可选地,所述每个贴片单元组中呈V型设置的两个贴片单元之间的夹角,以及所述每个贴片单元组与所述主馈线之间的夹角可以为多种不同的大小,本申请实施例对此不作限定。
在一种可能的实现方式中,所述每个贴片单元组中的所述两个贴片单元之间的夹角可以为90°。
在另一种可能的实现方式中,所述每个贴片单元组与所述主馈线之间的夹角可以为45°。
采用本申请实施例提供的天线结构,通过设置每个贴片单元组呈V型结构的两个贴片单元之间的夹角,能够满足天线结构不同的口径需求,进一步展宽天线的水平面波束宽度,此外,还能够实现垂直面的低副瓣需求。
可选地,所述每个贴片单元组中的贴片单元的长度可以设置为多种不同的大小,本申请实施例对此不作限定。
在第一种可能的实现方式中,该贴片单元组121~贴片单元组12N中的贴片单元的长度沿第一方向先增加再减小。
需要说明的是,所述第一方向可以为所述主馈线的长度方向。
例如:如图12所示,天线结构100包括贴片单元组121~贴片单元组126,贴片单元组121~贴片单元组126中贴片单元的长度依次为s 1~s 6,且s 1<s 2<s 3<s 4>s 5>s 6
又例如:如图13所示,天线结构100包括贴片单元组121~贴片单元组126,贴片单元组121~贴片单元组126中贴片单元的长度依次为s 1~s 6,且s 1=s 2<s 3=s 4>s 5=s 6
在第二种可能的实现方式中,该贴片单元组121~贴片单元组12N中的贴片单元的长度沿所述第一方向增加或减小。
例如:如图14所示,天线结构100包括贴片单元组121~贴片单元组126,贴片单元组121~贴片单元组126中贴片单元的长度依次为s 1~s 6,且s 1<s 2<s 3<s 4<s 5<s 6
在第三种可能的实现方式中,该贴片单元组121~贴片单元组12N中的贴片单元的长度相同。
例如:如图6所示,天线结构100包括贴片单元组121~贴片单元组124,贴片单元组121~贴片单元组124中贴片单元的长度依次为s 1~s 4,且s 1=s 2=s 3=s 4
可选地,不同的贴片单元组中的贴片单元的长度可以相同也可以不同,本申请实施例对此不作限定。
需要说明的是,本申请实施例中所述的不同的贴片单元组中的贴片单元的长度相同包括完全相同和近似相同,其中,近似相同指不同的贴片单元组中的贴片单元的长度相差在一定误差范围内。
需要说明的是,每个贴片单元组中的贴片单元的尺寸包括长度和宽度。
可选地,不同的贴片单元组中的贴片单元的尺寸可以相同也可以不同,本申请实施例对此不作限定。
例如,如图15所示,天线结构100包括贴片单元组121~贴片单元组126,贴片单元组121~贴片单元组126中贴片单元的长度依次为s 1~s 6,宽度依次为d 1~d 6,其中,s 1<s 2<s 3<s 4<s 5<s 6,d 1=d 2<d 3=d 4>d 5=d 6
需要说明的是,本申请实施例中所述的不同的贴片单元组中的贴片单元的尺寸相同包括完全相同和近似相同,其中,近似相同指不同的贴片单元组中的贴片单元的尺寸相差在一定误差范围内。
需要说明的是,所述每个贴片单元组包括呈V型结构设置的两个贴片单元,可以理解为:所述两个贴片单元呈V型结构设置,或所述两个贴片单元呈类似V型结构设置,本申请实施例对此不作限定。
在一种可能的实现方式中,所述每个贴片单元组中包括的两个贴片单元可以呈C型结构。
在另一种可能的实现方式中,所述每个贴片单元组中包括的两个贴片单元可以呈L型结构。
例如:图16示出了又一天线结构100的示意性结构图,该天线结构100包括贴片单元组121~贴片单元组124,其中每个贴片单元组包括呈C型结构设置的两个贴片单元。
可选地,每个贴片单元组中的贴片单元可以为多种不同的形状,本申请实施例对此不作限定。
在一种可能的实现方式中,所述每个贴片单元组中的贴片单元可以为长方形,如图1~图15所示。
在另一种可能的实现方式中,所述每个贴片单元组中的贴片单元可以为多边形,例如:平行四边形,如图17所示。
可选地,所述每个贴片单元组中的贴片单元的形状可以相同也可以不同,本申请实施例对此不作限定。
可选地,所述天线结构可以工作在驻波模式或行波模式下,本申请实施例对此不作限定。
需要说明的是,驻波和行波是波在传播过程中表现出来的现象。
行波:就是波从波源向外传播。
例如:如果用一个等幅高频率交流电源联驱动一对无穷长的均匀平行长线,那么靠近电源端的导线之中就会有同步于电源的高频交变电压和电流。就导线的每一截面而言,流过的电流都是幅度相同的高频交流电流,只是流过各截面的电流的时间相位不同。就整个导线而言,同一时刻各点的电流随离电源端的距离而呈正弦分布。看起来就像一个正弦电 流波源源不断地从无穷远端沿一根导线流向电源,再从电源沿另一根导线流向无穷远端,我们把电流波的这种流动方式称为“行波”。
需要说明的是,天线结构的最大波束指向角随着频率的变化而变化,这种现象被称为频率扫描,在行波模式下,能够降低天线结构的频率扫描范围。
驻波:指波在一个空间中来回反射,反射回来的波与后面传来的波发生干涉,形成稳定的干涉场,各处的振幅稳定不变。振幅为零的地方叫波节,振幅最大的地方叫波腹。
例如:上面所说的用等幅高频率交流电源驱动一对无穷长的均匀平行长线的情况,由于导线无穷长,电源所激起的电流波(实际上还有电压波)会顺着导线向远处流动,永不回头。但是,如果平行线的长度是有限的,那么末端边界就会破坏电流波和电压波的原来状态,如果开路末端的导线中电流永远是零,短路末端导线间的电压永远是零。那么,这种边界状态会顺着长线反向影响到其他部分,扰乱原来的行波状态。这种扰乱也可以看作是从电源传输过来的能量因为不能继续传输下去、又没有可以刚好消耗完的地方,只能被反射回去。就整个导线而言,各点电压电流同相位、每一点都有各自固定幅度的这种状态看起来好像是电压波、电流波不再沿导线移动,我们把电流波的这种流动方式称为“驻波”。
还需要说明的是,匹配负载,指从功率的角度出发意味着最大的输出功率,即在供电电路中使负载阻抗等于电源内阻抗的共轭值(电阻相等,电抗大小相等,符号相反)。匹配的目的在于得到最大的输出功率。从传输线的角度出发意味着无损耗传输,即在应用于传输线时,使负载阻抗等于传输线的特性阻抗,称作“匹配”。匹配的目的是消除负载引起的反射,避免发生驻波,使负载获取最大功率。
因此,在驻波模式下,只有负载阻抗与信号源阻抗完全匹配,才能最大化地把信号从信号源传送到负载。其中,以基站系统为例,信号源就是发射机,负载就是天馈线子系统,天馈线子系统包括天线、馈线、射频连接头以及避雷器等附属设备。否则,如果负载和信号源不能做到完全匹配,部分信号就会反射回信号源,这是我们所不希望的,这时就会产生前向波和反向波,这两个信号组合在一起就形成了驻波。
需要说明的是,在驻波模式下设计合适的匹配负载阻抗,能够消除由于负载引起的反射,导致的能量损耗。
在第一种可能的实现方式中,所述天线结构工作在驻波模式下时,所述天线结构的第一端不包含匹配负载单元。
需要说明的是,所述天线结构的第一端不包含匹配负载单元可以理解为:所述天线结构的第一端开路。
例如:图1~图17中示出的天线结构100均为工作在驻波模式下的天线结构。
在第二种可能的实现方式中,所述天线结构工作在行波模式下时,所述天线结构的第二端还包含匹配负载单元,所述匹配负载单元用于消耗所述至少一个贴片单元组未消耗完的能量。
可选地,所述匹配负载单元可以通过多种方式与所述主馈线的第一端连接,本申请实施例对此不作限定。
在第一种可能的实现方式中,所述匹配负载单元与所述主馈线的长度方向同向。
图18示出了又一天线结构100的示意性结构图,如图18所示,所述天线结构的第一端包括匹配负载单元140,且所述匹配负载单元140和所述主馈线110的长度方向同向。
在第二种可能的实现方式中,所述匹配负载单元与所述主馈线弯折连接。
图19示出了又一天线结构100的示意性结构图,如图19所示,所述天线结构的第一端包括匹配负载单元140,且所述匹配负载单元140和所述主馈线110弯折连接,即所述匹配负载单元140和所述主馈线110之间存在夹角。
采用本申请实施例提供的天线结构,通过改变所述匹配负载单元和所述主馈线之间弯折的角度,能够提高接入匹配负载单元的灵活性。
可选地,所述天线结构可以为接收天线或发射天线,本申请实施例对此不作限定。
采用本申请实施例提供的天线结构,能够实现波束左副瓣电平为-21.2dB,右副瓣电平为-17.8dB,3dB波宽为97°。
上面结合图1至图19介绍了本申请实施例提供的天线结构100,下面将介绍本申请实施例提供的雷达。
图20示出了本申请实施例提供的雷达200的示意性结构图,该雷达300可以包括如图2至图19中所述的天线结构100。
可选地,如图21所示,所述雷达200还包括控制芯片150,所述控制芯片150与所述天线结构的第二端连接,所述控制芯片150用于控制所述天线结构发射或接收信号。
需要说明的是,所述控制芯片150与所述天线结构的第二端之间可以通过第一微带线连接。
可选地,如图22所示,所述雷达200还包括阻抗匹配单元160,所述阻抗匹配单元160用于将所述第二端的阻抗与所述控制芯片150的阻抗进行匹配,所述控制芯片150通过所述阻抗匹配单元与所述第二端连接。
需要说明的是,所述阻抗匹配单元可以为第二微带线。
也就是说,通过调节第二微带线的阻抗,能够使得所述天线结构的第二端的阻抗与所述控制芯片的阻抗相匹配。
可选地,如图23所示,所述雷达200还包括印制电路板170,所述印制电路板170包括依次层叠设置的所述天线结构100(如图23中
Figure PCTCN2020079966-appb-000001
所示)、介质层171(如图23中
Figure PCTCN2020079966-appb-000002
所示)和金属层172(如图23中
Figure PCTCN2020079966-appb-000003
所示),所述天线结构通过所述金属层接地。
图24示出了本申请实施例提供的终端300,该终端300包括如图20~图23中所述的雷达200。
可选地,本申请实施例中所述的终端可以具有通过雷达实现通信功能和/或探测功能的能力,本申请实施例对此不作限定。
在一种可能的实现方式中,该终端可以是自动驾驶或智能驾驶中的车辆、无人机、无人运输车或者机器人等。
在另一种可能的实现方式中,该终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端、增强现实(Augmented Reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
上面结合图20至图24示出了本申请实施例提供的雷达和终端,下面将结合图25详 细介绍一下本申请实施例提供的天线装置的制备方法。
图25示出了本申请实施例提供的天线装置的制备方法400。该方法400包括以下步骤S410至S430。
S410,在第一金属层上刻蚀出天线结构,所述天线结构包括主馈线和至少一个贴片单元组,所述至少一个贴片单元组沿所述主馈线长度方向串接于所述主馈线,其中,所述至少一个个贴片单元组中每个贴片单元组至少包括呈V型结构设置的两个贴片单元,所述每个贴片单元组通过所述每个贴片单元组上呈V型结构的两个贴片单元串接于所述主馈线;
S420,将所述天线结构的第一表面与介质层的第一表面粘结在一起;
S430,将所述介质层的第二表面与第二金属层的第一表面粘结在一起,所述介质层的第一表面与所述介质层的第二表面相对设置,所述天线结构通过所述第二金属层接地。
可选地,所述每个贴片单元组通过所述每个贴片单元组中呈V型结构设置的两个贴片单元的连接点串接于所述主馈线。
可选地,所述每个贴片单元组的极化方向为水平极化。
可选地,所述至少一个贴片单元组包含多个贴片单元组,所述多个贴片单元组串接于所述主馈线两侧。
可选地,所述多个贴片单元组交替串接于所述主馈线两侧。
可选地,所述至少一个贴片单元组包含多个贴片单元组,其中,所述多个贴片单元组中的贴片单元的宽度沿第一方向先增加再减小;或,所述多个贴片单元组中的贴片单元的宽度沿所述第一方向增加;或,所述多个贴片单元组中的贴片单元的宽度沿所述第一方向减小。
采用本申请实施例提供的天线结构,每个贴片单元组通过该每个贴片单元组中呈V型结构设置的两个贴片单元串接于该主馈线,由于呈V型结构的两个贴片单元之间存在夹角,因此,通过调节该夹角可以减小天线结构的口径,从而能够提高天线结构的3dB带宽。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种天线结构,所述天线结构包括:主馈线和至少一个贴片单元组,所述至少一个贴片单元组沿所述主馈线长度方向串接于所述主馈线,其特征在于,
    所述至少一个贴片单元组中每个贴片单元组至少包括呈V型结构设置的两个贴片单元,所述每个贴片单元组通过所述每个贴片单元组中呈V型结构的两个贴片单元串接于所述主馈线。
  2. 根据权利要求1所述的天线结构,其特征在于,所述每个贴片单元组通过所述每个贴片单元组中呈V型结构设置的两个贴片单元的连接点串接于所述主馈线。
  3. 根据权利要求1或2所述的天线结构,其特征在于,所述每个贴片单元组的极化方向为水平极化。
  4. 根据权利要求1至3中任一项所述的天线结构,其特征在于,所述至少一个贴片单元组包含多个贴片单元组,所述多个贴片单元组串接于所述主馈线两侧。
  5. 根据权利要求4所述的天线结构,其特征在于,所述多个贴片单元组交替串接于所述主馈线两侧。
  6. 根据权利要求1至5中任一项所述的天线结构,其特征在于,所述至少一个贴片单元组包含多个贴片单元组,其中,
    所述多个贴片单元组中的贴片单元的宽度沿第一方向先增加再减小;或,
    所述多个贴片单元组中的贴片单元的宽度沿所述第一方向增加;或,
    所述多个贴片单元组中的贴片单元的宽度沿所述第一方向减小。
  7. 根据权利要求1至6中任一项所述的天线结构,其特征在于,所述天线结构为接收天线或发射天线。
  8. 一种雷达,其特征在于,所述雷达包括如权利要求1至7中任一项所述的天线结构。
  9. 根据权利要求8所述的雷达,其特征在于,所述雷达还包括控制芯片,所述控制芯片与所述天线结构的第二端连接,所述控制芯片用于控制所述天线结构发射或接收信号。
  10. 根据权利要求9所述的雷达,其特征在于,所述雷达还包括阻抗匹配单元,所述阻抗匹配单元用于将所述第二端的阻抗与所述控制芯片的阻抗进行匹配,所述控制芯片通过所述阻抗匹配单元与所述第二端连接。
  11. 根据权利要求8至10中任一项所述的雷达,其特征在于,所述雷达还包括印制电路板,所述印制电路板包括依次层叠设置的所述天线结构、介质层和金属层,所述天线结构通过所述金属层接地。
  12. 一种终端,其特征在于,所述终端包括如权利要求8至11中任一项所述的雷达。
  13. 根据权利要求12所述的终端,其特征在于,所述终端为车辆。
  14. 一种天线装置的制备方法,其特征在于,包括:
    在第一金属层上刻蚀出天线结构,所述天线结构包括主馈线和至少一个贴片单元组,所述至少一个贴片单元组沿所述主馈线长度方向串接于所述主馈线,其中,所述至少一个个贴片单元组中每个贴片单元组至少包括呈V型结构设置的两个贴片单元,所述每个贴片 单元组通过所述每个贴片单元组上呈V型结构的两个贴片单元串接于所述主馈线;
    将所述天线结构的第一表面与介质层的第一表面粘结在一起;
    将所述介质层的第二表面与第二金属层的第一表面粘结在一起,所述介质层的第一表面与所述介质层的第二表面相对设置,所述天线结构通过所述第二金属层接地。
  15. 根据权利要求14所述的方法,其特征在于,所述每个贴片单元组通过所述每个贴片单元组中呈V型结构设置的两个贴片单元的连接点串接于所述主馈线。
  16. 根据权利要求14或15所述的方法,其特征在于,所述每个贴片单元组的极化方向为水平极化。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述至少一个贴片单元组包含多个贴片单元组,所述多个贴片单元组串接于所述主馈线两侧。
  18. 根据权利要求17所述的方法,其特征在于,所述多个贴片单元组交替串接于所述主馈线两侧。
  19. 根据权利要求14至18中任一项所述的方法,其特征在于,所述至少一个贴片单元组包含多个贴片单元组,其中,
    所述多个贴片单元组中的贴片单元的宽度沿第一方向先增加再减小;或,
    所述多个贴片单元组中的贴片单元的宽度沿所述第一方向增加;或,
    所述多个贴片单元组中的贴片单元的宽度沿所述第一方向减小。
  20. 根据权利要求14至19中任一项所述的方法,其特征在于,所述天线结构为发射天线或接收天线。
PCT/CN2020/079966 2020-03-18 2020-03-18 天线结构、雷达和终端 WO2021184251A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022556640A JP7506167B2 (ja) 2020-03-18 アンテナ構造、レーダ、端末、および方法
PCT/CN2020/079966 WO2021184251A1 (zh) 2020-03-18 2020-03-18 天线结构、雷达和终端
EP20926204.7A EP4109675A4 (en) 2020-03-18 2020-03-18 ANTENNA, RADAR AND TERMINAL STRUCTURE
CN202080009278.9A CN113316867B (zh) 2020-03-18 2020-03-18 天线结构、雷达、终端和天线装置的制备方法
KR1020227035685A KR20220155341A (ko) 2020-03-18 2020-03-18 안테나 구조, 레이더 및 단말
US17/946,804 US20230017270A1 (en) 2020-03-18 2022-09-16 Antenna structure, radar, and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079966 WO2021184251A1 (zh) 2020-03-18 2020-03-18 天线结构、雷达和终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/946,804 Continuation US20230017270A1 (en) 2020-03-18 2022-09-16 Antenna structure, radar, and terminal

Publications (1)

Publication Number Publication Date
WO2021184251A1 true WO2021184251A1 (zh) 2021-09-23

Family

ID=77370758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079966 WO2021184251A1 (zh) 2020-03-18 2020-03-18 天线结构、雷达和终端

Country Status (5)

Country Link
US (1) US20230017270A1 (zh)
EP (1) EP4109675A4 (zh)
KR (1) KR20220155341A (zh)
CN (1) CN113316867B (zh)
WO (1) WO2021184251A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023155110A1 (zh) * 2022-02-17 2023-08-24 京东方科技集团股份有限公司 天线及显示装置
CN116315593A (zh) * 2022-04-27 2023-06-23 加特兰微电子科技(上海)有限公司 一种天线、雷达传感系统及电子设备
CN116598782B (zh) * 2023-07-17 2023-09-29 南京隼眼电子科技有限公司 一种毫米波天线及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044752A (ja) * 1999-05-21 2001-02-16 Toyota Central Res & Dev Lab Inc マイクロストリップアレーアンテナ
CN101019274A (zh) * 2004-09-13 2007-08-15 罗伯特·博世有限公司 用于串联馈电的平面天线单元的天线结构
JP2009188683A (ja) * 2008-02-05 2009-08-20 Nagoya Institute Of Technology マイクロストリップアンテナ
CN103548202A (zh) * 2011-05-23 2014-01-29 Ace技术株式会社 雷达阵列天线
CN106611898A (zh) * 2015-10-22 2017-05-03 株式会社万都 使用串联馈送模式的水平极化波天线
CN208444939U (zh) * 2018-04-11 2019-01-29 青岛若愚科技有限公司 串馈天线、天线阵列、贴片天线及毫米波天线阵列传感器系统
CN109428161A (zh) * 2017-08-21 2019-03-05 比亚迪股份有限公司 天线部件、车载雷达和汽车

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM264675U (en) * 2004-09-03 2005-05-11 Hon Hai Prec Ind Co Ltd Antenna
US7636064B2 (en) * 2007-09-05 2009-12-22 Delphi Technologies, Inc. Dual circularly polarized antenna system and a method of communicating signals by the antenna system
JP5091044B2 (ja) * 2008-07-31 2012-12-05 株式会社デンソー マイクロストリップアレーアンテナ
WO2010105109A2 (en) * 2009-03-11 2010-09-16 Rayspan Corporation High gain metamaterial antenna device
JP2010252188A (ja) * 2009-04-17 2010-11-04 Toyota Motor Corp アレーアンテナ装置
JP2014060692A (ja) * 2012-08-24 2014-04-03 Fujitsu Ltd 近接場アンテナ
US9705199B2 (en) * 2014-05-02 2017-07-11 AMI Research & Development, LLC Quasi TEM dielectric travelling wave scanning array
DE102017201321A1 (de) * 2016-01-28 2017-08-03 Conti Temic Microelectronic Gmbh Zig zag Antenne
CN206211022U (zh) * 2016-10-09 2017-05-31 北京理工雷科电子信息技术有限公司 一种毫米波汽车雷达系统微带阵列天线
CN209624763U (zh) * 2018-12-04 2019-11-12 深圳市大疆创新科技有限公司 毫米波天线结构、微波旋转雷达及可移动平台
CN110635235B (zh) * 2019-09-30 2021-02-09 南京微通电子技术有限公司 一种毫米波mimo雷达天线及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044752A (ja) * 1999-05-21 2001-02-16 Toyota Central Res & Dev Lab Inc マイクロストリップアレーアンテナ
CN101019274A (zh) * 2004-09-13 2007-08-15 罗伯特·博世有限公司 用于串联馈电的平面天线单元的天线结构
JP2009188683A (ja) * 2008-02-05 2009-08-20 Nagoya Institute Of Technology マイクロストリップアンテナ
CN103548202A (zh) * 2011-05-23 2014-01-29 Ace技术株式会社 雷达阵列天线
CN106611898A (zh) * 2015-10-22 2017-05-03 株式会社万都 使用串联馈送模式的水平极化波天线
CN109428161A (zh) * 2017-08-21 2019-03-05 比亚迪股份有限公司 天线部件、车载雷达和汽车
CN208444939U (zh) * 2018-04-11 2019-01-29 青岛若愚科技有限公司 串馈天线、天线阵列、贴片天线及毫米波天线阵列传感器系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4109675A4 *

Also Published As

Publication number Publication date
EP4109675A1 (en) 2022-12-28
JP2023517391A (ja) 2023-04-25
EP4109675A4 (en) 2023-04-19
CN113316867A (zh) 2021-08-27
KR20220155341A (ko) 2022-11-22
US20230017270A1 (en) 2023-01-19
CN113316867B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2021184251A1 (zh) 天线结构、雷达和终端
US8232924B2 (en) Broadband patch antenna and antenna system
JP2021529500A (ja) 受信デバイスにおいて、ワイヤレスで送達された電力を集中させる電力波送信法
CN109273836B (zh) 基于紧耦合偶极子及各向异性匹配层的宽带宽角扫描天线
US7764242B2 (en) Broadband antenna system
CN210443669U (zh) 一种水文监测雷达平板微带阵列天线
CN110581368A (zh) 一种水文监测雷达平板微带阵列天线及其设计方法
JP2003037434A (ja) 全方向に放射する電磁波を送受信する装置
CN110011051A (zh) 一种天线及车载装置
CN109524771B (zh) 一种基于gcpw馈电的双极化正弦天线装置
CN110808462A (zh) 一种毫米波印刷偶极子天线阵列辐射单元及阵列天线
CN104953295A (zh) 一种小型化定向缝隙天线
CN220341510U (zh) 一种宽带极化紧耦合偶极子透射阵天线
CN113131178B (zh) 测向天线、测向天线系统及电子设备
US20230327341A1 (en) Antenna and communication device
WO2022056858A1 (zh) 天线装置、天线装置的制备方法、雷达及终端
JP7506167B2 (ja) アンテナ構造、レーダ、端末、および方法
CN115189131A (zh) 基于收发隔离的天线三端馈电系统
RU2695934C1 (ru) Антенная решетка mimo с широким углом обзора
TWI698049B (zh) 天線結構及具有該天線結構的電子裝置
CN113030879A (zh) 一种具有回波幅度控制功能的低剖面平面逆向反射器
CN113544906A (zh) 双端口天线结构
US20110006964A1 (en) Antenna with a bent portion
CN216216843U (zh) 一种基于天线阵列的传输系统
WO2021088651A1 (zh) 天线结构、雷达和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556640

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020926204

Country of ref document: EP

Effective date: 20220923

ENP Entry into the national phase

Ref document number: 20227035685

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE