WO2021184183A1 - 信号处理方法、装置及存储介质 - Google Patents

信号处理方法、装置及存储介质 Download PDF

Info

Publication number
WO2021184183A1
WO2021184183A1 PCT/CN2020/079601 CN2020079601W WO2021184183A1 WO 2021184183 A1 WO2021184183 A1 WO 2021184183A1 CN 2020079601 W CN2020079601 W CN 2020079601W WO 2021184183 A1 WO2021184183 A1 WO 2021184183A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
time domain
time
listening
radar
Prior art date
Application number
PCT/CN2020/079601
Other languages
English (en)
French (fr)
Inventor
宋思达
马莎
高磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20926331.8A priority Critical patent/EP4109135A4/en
Priority to PCT/CN2020/079601 priority patent/WO2021184183A1/zh
Priority to CN202080005166.6A priority patent/CN112740060B/zh
Priority to JP2022555937A priority patent/JP7412588B2/ja
Priority to KR1020227035802A priority patent/KR20220154779A/ko
Publication of WO2021184183A1 publication Critical patent/WO2021184183A1/zh
Priority to US17/946,473 priority patent/US20230014866A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0232Avoidance by frequency multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0235Avoidance by time multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures

Definitions

  • This application relates to the field of communication technology, and in particular to a signal processing method, device and storage medium.
  • Radar especially millimeter wave radar
  • the mutual interference between radars has become more and more serious, which greatly reduces the probability of radar monitoring or increases the probability of false alarms, which is important for driving safety and driving safety. User comfort has had a serious impact.
  • the radar in order to avoid interference between radars, the radar can select the transmission time by randomization during use, so as to avoid the interference of periodic radar signals on other vehicles or radars on roadside units.
  • the randomized selection of the transmission time can reduce the periodic interference between radars, it cannot eliminate the interference between radars.
  • the radar receives the transmission signal of other radars, regardless of whether the transmission signal is periodic or not, it Both will affect the measurement of the target and cause inaccurate detection results. There are also problems with driving safety and user comfort.
  • the embodiments of the present application provide a signal processing method, device, and storage medium, which are used to solve the problem of poor driving safety and user comfort due to inaccurate detection results of existing target detection methods.
  • an embodiment of the present application provides a signal processing method, including: performing channel sensing according to a first signal and a second signal, and the channel sensing includes performing through the first sensing signal within the first time domain. Channel sensing, and performing channel sensing through a second sensing signal in the second time domain;
  • the first time-domain range and the second time-domain range are time-domain ranges in L time-domain ranges, and L is a positive integer greater than 1; wherein, in the L time-domain ranges Any one time domain range partially overlaps with at least one of the other L-1 time domain ranges, and the absolute value of the difference between the time domain start positions of any two time domain ranges in the L time domain ranges Greater than or equal to the first threshold and less than or equal to the second threshold; and
  • the first listening signal corresponds to a first sub-signal in at least one first sweep period in the first time domain range in the first signal
  • the second listening signal corresponds to the second The second sub-signal in at least one second frequency sweep period in the second time domain range in the signal.
  • the method further includes: generating the first signal and the second signal; or generating the first listening signal and the second listening signal.
  • the method provided in the embodiments of the present application may be executed by a detection device, such as a radar detection device or a chip or an integrated circuit in the radar detection device.
  • a detection device such as a radar detection device or a chip or an integrated circuit in the radar detection device.
  • channel sensing is performed based on the first signal and the second signal, and the first time-frequency resource determined for target detection is highly accurate, thereby ensuring that the mutual interference area of the radar detection device disappears and avoiding the occurrence of
  • the problem of false alarms or interference with the platform improves the accuracy of target detection by the radar detection device, ensuring driving safety and user comfort to a certain extent.
  • the time domain resources of the first sub-signal and the second sub-signal do not overlap.
  • the time-domain resources of the first sub-signal and the second sub-signal do not overlap, that is, the time-domain resources of the first interception signal and the second interception signal do not overlap with each other, so that the first radar detection device is based on the first interception signal and the second interception signal. 2.
  • the first time-frequency resource determined for target detection may not overlap with the time-domain resources occupied by other radar detection devices, thereby avoiding the problem of mutual interference between subsequent radar detection devices .
  • the first threshold and/or the second threshold are predefined, or the first threshold and/or the second threshold are pre-configured according to The rules are determined.
  • the first radar detection device by pre-defining the first threshold and/or the second threshold in the first radar detection device, or pre-configure the configuration rules of the first threshold and/or the second threshold, the first radar detection device When channel listening is required, the time domain range corresponding to each signal can be accurately determined, so as to determine the non-overlapping time domain resources used by other radar detection devices, thereby avoiding mutual interference between radar detection devices.
  • the difference between the start positions of any two adjacent time domain ranges in the L time domain ranges is the same.
  • the time-domain starting positions of the L time-domain ranges are equally spaced in the time domain, which can simplify the composition of the detection signal and is easy to implement.
  • the difference between the start positions of any two adjacent time domain ranges in the L time domain ranges is less than or equal to 1/L times Tc, where Tc is the working period of the radar detection device.
  • the interference mixing signal of the radar detection device falls outside the intermediate frequency detection bandwidth, thereby reducing the mutual interference between the radar detection devices.
  • the method further includes:
  • Generating a third signal, and a time domain range corresponding to the third signal is a third time domain range
  • the channel sensing further includes performing channel sensing through a third sensing signal in the third time domain range, where the third time domain range belongs to the L time domain ranges, and the third time domain range is The domain range is different from the first time domain range and the second time domain range, and the third listening signal corresponds to at least one third frequency sweep within the third time domain range in the third signal The third sub-signal in the cycle.
  • the first radar detection device also generates a third signal, and the third time domain range corresponding to the third signal is among the aforementioned L time domain ranges and is different from the first time domain range and the second time domain.
  • the time-domain range of the domain range so that the first radar detection device can listen in the sweep cycles in different time-domain ranges at the same time, so that the most suitable time-domain range corresponding to more time-frequency resources can be determined Time-frequency resources.
  • the performing channel sensing according to the first signal and the second signal includes: performing monitoring in a plurality of monitoring areas, and the plurality of monitoring
  • the absolute value of the difference between the starting positions of any two areas in the time domain is an integer multiple of M, and the M is predefined or pre-configured.
  • the first radar detection device listens in multiple listening areas, and the absolute value of the difference between the starting positions of any two listening areas in the time domain may be an integer multiple of M, for example, M is
  • M is
  • the preset listening step length can be pre-configured or pre-defined according to the processing capability of the first radar detection device. Generally, the smaller the listening step length, the finer the listening, but the processing It will take longer.
  • the performing channel sensing according to the first signal and the second signal includes:
  • Channel sensing is performed on a pre-defined or configured time domain resource, where the time domain resource includes at least one of the following: a refresh period of the first detection device, a silent refresh period of the first detection device; wherein, the refresh The period includes the idle time period and the transmission time period.
  • the first radar detection device can perform channel sensing during the idle period of the refresh period, or perform channel sensing during the transmission period of the refresh period, or perform channel sensing during the silent refresh period. Listen, so you can determine the most appropriate (least free) time-frequency resource for subsequent target detection.
  • an embodiment of the present application provides a signal processing device, and the method includes: a listening unit and a determining unit;
  • the listening unit is configured to perform channel listening according to the first signal and the second signal, and the channel listening includes performing channel listening through the first listening signal in the first time domain, and performing channel listening in the second time domain. Perform channel detection through the second detection signal within the domain;
  • the determining unit is configured to determine a first time-frequency resource used for target detection according to a result of the channel sensing, and the time-domain resource of the first time-frequency resource is the first time-domain range;
  • the first time domain range and the second time domain range are time domain ranges in L time domain ranges, where L is a positive integer greater than 1; wherein, any one of the L time domain ranges The time domain range partially overlaps with at least one of the other L-1 time domain ranges, and the absolute value of the difference between the time domain start positions of any two time domain ranges in the L time domain ranges is greater than or Equal to the first threshold and less than or equal to the second threshold; and
  • the first listening signal corresponds to a first sub-signal in at least one first sweep period in the first time domain range in the first signal
  • the second listening signal corresponds to the second The second sub-signal in at least one second frequency sweep period in the second time domain range in the signal.
  • the device further includes: a generating unit;
  • the generating unit is used to generate the first signal and the second signal; or, the generating unit is used to generate the first listening signal and the second listening signal.
  • the time domain resources of the first sub-signal and the second sub-signal do not overlap.
  • the first threshold and/or the second threshold are pre-defined, or the first threshold and/or the second threshold are pre-configured according to The rules are determined.
  • the difference between the start positions of any two adjacent time domain ranges in the L time domain ranges is the same.
  • the difference between the start positions of any two adjacent time domain ranges in the L time domain ranges is less than or equal to 1/L times Tc, where Tc is the working period of the radar detection device.
  • the generating unit is further configured to generate a third signal, and a time domain range corresponding to the third signal is a third time domain range;
  • the channel sensing further includes performing channel sensing through a third sensing signal in the third time domain range, where the third time domain range belongs to the L time domain ranges, and the third time domain range is The domain range is different from the first time domain range and the second time domain range, and the third listening signal corresponds to at least one third frequency sweep within the third time domain range in the third signal The third sub-signal in the cycle.
  • the listening unit is specifically configured to listen in multiple listening areas, and any two of the multiple listening areas are in the time domain.
  • the absolute value of the difference between the starting positions is an integer multiple of M, which is pre-defined or pre-configured.
  • the listening unit is specifically configured to perform channel listening on a pre-defined or configured time domain resource, and the time domain resource includes at least one of the following: The refresh period of the device and the silent refresh period of the first detection device; wherein the refresh period includes an idle time period and a transmission time period.
  • an embodiment of the present application provides a detection device, including: at least one processor and at least one memory, the at least one memory stores a program, and when the processor executes the program, it implements the first aspect and Various possible designs of the method described.
  • an embodiment of the present application provides another detection device.
  • the detection device is, for example, the aforementioned first radar detection device.
  • the detection device includes a processor, a transmitter, and a receiver, and the processor, the transmitter, and the receiver are coupled with each other to implement the methods described in the first aspect or various possible designs of the first aspect.
  • the detection device is a chip provided in a detection device.
  • the detection device is a radar.
  • the transmitter and receiver are realized by antennas, feeders, codecs, etc. in the communication equipment, or, if the detection device is a chip set in the detection equipment, the transmitter and receiver are, for example, chips in the chip.
  • a communication interface which is connected to the radio frequency transceiver component in the detection device, so as to realize the transmission and reception of information through the radio frequency transceiver component.
  • an embodiment of the present application provides yet another detection device.
  • the detection device may be the first radar detection device in the above method design.
  • the detection device is a chip provided in a detection device.
  • the detection device is a radar.
  • the detection device includes: a memory for storing computer executable program codes; and a processor, which is coupled with the memory.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the detection device is caused to execute the foregoing first aspect or the method in any one of the possible implementation manners of the first aspect.
  • the detection device may also include a communication interface
  • the communication interface may be a transceiver in the detection device, for example, implemented by the antenna, feeder, and codec in the detection device, or if the detection device is set in If detecting the chip in the device, the communication interface may be the input/output interface of the chip, such as input/output pins.
  • inventions of the present application provide a communication system.
  • the communication system may include at least one of the detection devices described in the second to fifth aspects above, or include other detection devices, or include target objects, etc. .
  • an embodiment of the present application provides a computer-readable storage medium that stores a computer program, and when the computer program is run on a computer, the computer can execute the operations as in the first aspect and Various possible designs of the method described.
  • an embodiment of the present application provides a chip system, and the chip system includes:
  • Memory used to store instructions
  • the processor is configured to call and execute the instructions from the memory, so that the communication device installed with the chip system executes the methods described in the first aspect and various possible designs.
  • the embodiments of the present application provide a computer program product, the computer program product includes a computer program, when the computer program is run on a computer, the computer executes the operations described in the first aspect and various possible designs. method.
  • the signal processing method, device, and storage medium provided by the embodiments of the present application perform channel sensing through the first signal and the second signal, and the channel sensing includes performing channel sensing through the first sensing signal in the first time domain. , And perform channel sensing through the second sensing signal in the second time domain, and finally determine the first time-frequency resource used for target detection according to the result of the channel sensing, and the time-domain of the first time-frequency resource
  • the resource is in the first time domain range, so that the first signal can be sent on the first time-frequency resource.
  • This technical solution is based on the first signal and the second signal for channel sensing, and the first time-frequency resource determined for target detection is highly accurate, thereby ensuring that the mutual interference area of the radar detection device disappears and avoiding false alarms or interference
  • the problem of the platform has improved the accuracy of the target detection of the radar detection device, ensuring driving safety and user comfort to a certain extent.
  • FIG 1 is the working principle diagram of millimeter wave radar
  • Figure 2 is a time amplitude diagram of a single cycle of FM continuous wave
  • Figure 3 is a multi-cycle time frequency diagram of FM continuous wave
  • Figure 4 is a schematic diagram of the relationship between the transmitted signal, the received signal and the intermediate frequency signal
  • Figure 5 is a schematic diagram of mutual interference between vehicle-mounted radars
  • Figures 6 and 7 are schematic diagrams of a possible false intermediate frequency signal
  • Figures 8 and 9 are schematic diagrams of a possible interference signal overwhelming the target signal
  • FIGS 10 and 11 are schematic diagrams of radar jamming platforms
  • Figure 12 is a schematic diagram of another possible solution
  • Figure 13 is a schematic diagram of a possible missed detection result
  • Figure 14 is a schematic diagram of another possible solution
  • Figure 15 is a schematic diagram of another possible solution
  • FIG. 16 is a schematic diagram of a possible application scenario of an embodiment of this application.
  • FIG. 17 is a schematic flowchart of Embodiment 1 of a signal processing method according to an embodiment of this application;
  • 18 is a schematic diagram of the time domain distribution of the first signal and the second signal in the time domain
  • Figure 19 is a schematic diagram of the time-domain positional relationship of three time-domain ranges
  • 20 is a schematic diagram of calculating the difference between the time domain starting positions of any two time domain ranges in L time domain ranges;
  • FIG. 21 is a schematic diagram of the distribution of the time domain ranges corresponding to the first signal, the second signal, and the third signal in the time domain;
  • Figure 22 is a schematic diagram of a possible design for channel listening in multiple listening areas
  • Figure 23 is a schematic diagram of a possible design for channel listening in multiple listening areas
  • 24 is a schematic diagram of the time distribution of the working state of the first radar detection device
  • FIG. 25 is a schematic diagram of a possible structure of a signal processing device provided by an embodiment of this application.
  • FIG. 26 is a schematic diagram of another possible structure of the signal processing device provided by an embodiment of the application.
  • FIG. 27 is a schematic diagram of still another possible structure of the signal processing device provided by an embodiment of this application.
  • FIG. 28 is a schematic structural diagram of a detection device provided by an embodiment of this application.
  • a radar detection device for example a radar, or other devices for detection (for example, ranging).
  • Radar or radar device
  • the signal emitted by the radar can be a radar signal.
  • the reflected signal received by the target object can also be a radar signal.
  • the emission period of the radar detection device refers to the period during which the radar detection device transmits a complete waveform of the radar signal. Radar detection devices generally send multiple sweep cycles of radar signals in a continuous period of time.
  • the initial frequency of the radar detection device At the beginning of a transmission cycle, the radar detection device will transmit a radar signal at a frequency, which is called the initial frequency of the radar detection device. And the transmission frequency of the radar detection device changes during the transmission period based on the initial frequency.
  • the sweep bandwidth of the radar detection device the bandwidth occupied by the waveform of the radar signal sent by the radar detection device.
  • the "sweep frequency bandwidth” is defined for the convenience of explanation, and is technically the bandwidth occupied by the waveform of the radar signal sent by the radar detection device.
  • the frequency band occupied by the waveform of the radar signal sent by the radar detection device may be referred to as the sweep frequency band.
  • FMCW Frequency modulated continuous wave
  • the linear change here generally refers to a linear change within a transmission period.
  • the waveform of the chirp continuous wave is generally a sawtooth wave or a triangle wave, or there may be other possible waveforms, such as a stepped frequency waveform.
  • the maximum ranging distance of the radar detection device is a parameter related to the configuration of the radar detection device (for example, related to the factory setting parameters of the radar detection device).
  • the radar detection device is a radar
  • the long-range adaptive cruise control (ACC) radar has a maximum ranging distance of 250m
  • the medium-range radar has a maximum ranging distance of 70-150m.
  • IF Intermediate frequency
  • the local oscillator signal of the radar and the reflected signal received by the radar are processed by the mixer
  • the signal after that is the intermediate frequency signal.
  • part of the frequency modulated continuous wave signal generated by the oscillator is used as the local oscillator signal, and the other part is used as the transmitting signal to be transmitted through the transmitting antenna, and the reflected signal of the transmitting signal received by the receiving antenna will be mixed with the local oscillator signal to obtain The "intermediate frequency signal".
  • the intermediate frequency signal Through the intermediate frequency signal, one or more of the position information, speed information or angle information of the target object can be obtained.
  • the position information may be the position information of the target object relative to the current radar
  • the speed information may be the speed information of the target object relative to the current radar
  • the angle information may be the angle information of the target object relative to the current radar.
  • the frequency of the intermediate frequency signal is called intermediate frequency.
  • the maximum propagation delay of the radar signal is determined according to the attributes or parameters of the current radar itself.
  • the above attributes or parameters may specifically include at least one of the following: detection device (detection as an interference source) Device)
  • the transmit power of the radar signal and the sensitivity of the receiver of the detection device (current detection device).
  • another radar signal will be received by the current radar after a certain propagation time delay.
  • the power of the interference signal is greater than the receiver sensitivity, the interference signal will affect the current radar.
  • the radar produces interference. If the power of the interference signal is not greater than the receiver sensitivity, the interference signal will not interfere with the current radar, and the interference signal will be processed as noise. Then, after the propagation delay, if the power of the interference signal is equal to the receiver sensitivity, the propagation delay is called the maximum propagation delay of the radar signal.
  • At least one means one or more, and "plurality” means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a). For example, at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • first and second are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • first information and the second information are only for distinguishing different information, but do not indicate the difference in content, priority, sending order, or importance of the two types of information.
  • ADAS advanced driving assistance system
  • the sensing layer is compared to the "eyes" of the car, including vision sensors such as on-board cameras and radar-based sensors such as on-board millimeter wave radar, on-board Lidar, and on-board ultrasonic radar.
  • Millimeter-wave radar is the first to become the main sensor of unmanned driving system due to its low cost and relatively mature technology.
  • ADAS has developed more than ten functions. Among them, adaptive cruise, automatic emergency braking, lane change assistance, or blind spot monitoring are all inseparable from vehicle-mounted millimeter wave radar.
  • Millimeter waves refer to electromagnetic waves with a wavelength between 1 and 10 mm, and the corresponding frequency range is 30 to 300 GHz. In this frequency band, the characteristics of millimeter waves make it very suitable for use in the automotive field. Large bandwidth: abundant frequency domain resources, low antenna sidelobe, which is conducive to imaging or quasi-imaging; short wavelength: the volume and antenna aperture of the radar device can be reduced, and the weight is reduced; narrow beam: the beam requirement of millimeter wave under the same antenna size The beam is much narrower than the microwave, and the radar resolution is high; strong penetration: Compared with the laser radar and optical system, it has the ability to penetrate smoke, dust and fog, and can work around the clock.
  • Vehicle-mounted millimeter wave radar systems generally include oscillators, transmitting antennas, receiving antennas, mixers, processors, and controllers.
  • Figure 1 shows the working principle diagram of millimeter wave radar.
  • the oscillator generates a radar signal whose frequency increases linearly with time.
  • the radar signal is generally a frequency modulated continuous wave.
  • Part of the radar signal is output to the mixer through the directional coupler as the local oscillator signal, and part is transmitted through the transmitting antenna.
  • the receiving antenna receives the transmitted radar signal and the radar signal reflected back after encountering the object in front of the vehicle, the mixer The received radar signal is mixed with the local oscillator signal to obtain an intermediate frequency signal.
  • the intermediate frequency signal contains information such as the relative distance, speed, and angle of the target object and the radar system.
  • the intermediate frequency signal is sent to the processor after being amplified by a low-pass filter, and the processor processes the received signal.
  • the received signal is subjected to fast Fourier transform and spectrum analysis to obtain the target object relative to The distance, speed and angle of the radar system.
  • the processor can output the obtained information to the controller to control the behavior of the vehicle.
  • the FM continuous wave waveform of millimeter wave radar is generally sawtooth wave or triangle wave.
  • the following uses sawtooth wave as an example to introduce the distance measurement principle of millimeter wave radar in detail.
  • the distance measurement principle of triangle wave is similar.
  • Figure 2 is a time amplitude diagram of a single cycle of FM continuous wave
  • Figure 3 is a time frequency diagram of FM continuous wave multiple cycles.
  • the chirp continuous wave is a signal whose frequency changes linearly with time.
  • the period of the FM continuous wave is T c
  • the slope is a 0
  • the bandwidth is B
  • its starting frequency is b 0 .
  • a frequency modulated continuous wave signal shown in Figure 2 is also called a chirp signal.
  • the equivalent baseband signal of the single-period FM continuous wave output by the oscillator of the millimeter wave radar can be expressed as:
  • A represents the amplitude of the equivalent baseband signal
  • a 0 represents the slope of the equivalent baseband signal
  • b 0 represents the intercept of the equivalent baseband signal on the Y axis
  • exp represents the exponential function of e
  • N is the number of cycles of continuous transmission of FM continuous waves. Since frequency is defined as the rate of change of phase with respect to time. Therefore, the frequency of the above equivalent baseband signal is:
  • Equation 1.2 The image of Equation 1.2 is shown in Figure 3.
  • FIG. 4 is a schematic diagram of the relationship between the transmitted signal, the received signal, and the intermediate frequency signal.
  • the equivalent baseband signal of the frequency-modulated continuous wave emitted by the oscillator in the nth cycle is up-converted and radiated from the transmitting antenna of the millimeter wave radar.
  • the transmitted signal can be expressed as:
  • f c is the carrier frequency.
  • the waveform of the transmitted signal has the same shape as the waveform of the reflected signal, but the waveform of the reflected signal has a time delay ⁇ relative to the waveform of the transmitted signal.
  • the echo signal is the reflected signal. Therefore, the received signal of the n-th cycle FM continuous wave can be expressed as:
  • A′ is the signal amplitude of the equivalent baseband signal sent by the oscillator after the transmitting antenna gain, target reflection, propagation loss, and receiving antenna gain.
  • is the radar signal sent from the millimeter wave radar transmitter and reflected to the target.
  • ⁇ max represents the echo delay corresponding to the maximum detection distance of the millimeter wave radar, that is, ⁇ max is the distance between the millimeter wave radar and the target object. At the maximum distance that can be detected, the time delay of the reflected signal received by the millimeter wave radar relative to the transmitted signal.
  • ⁇ 0 is the radar echo time delay caused by the reference distance
  • v is the radial relative velocity between the target and the radar
  • c is the speed of light.
  • the second term of the above formula contributes little, so in the baseband signal, ignore the second term in formula (1.5); but in the carrier frequency , the second term in the above formula (1.5) plays a key role in speed detection, so this term is reserved. Therefore, the signal obtained after down-conversion of the received equivalent baseband signal is:
  • the mixer of the millimeter wave radar mixes the received signal with the transmitted signal, and after passing through an intermediate frequency filter, outputs an intermediate frequency signal.
  • the intermediate frequency signal is expressed as:
  • the intermediate frequency signal is sent to the processor of the millimeter wave radar to perform processing such as fast Fourier transform, and the frequency f IF of the intermediate frequency signal can be obtained.
  • the frequency of the intermediate frequency signal is the product of the slope of the waveform of the transmitted signal and the time delay ⁇ , namely:
  • the distance d between the millimeter wave radar and the target object is:
  • the frequency difference between the transmitted signal and the received signal that is, the frequency of the intermediate frequency signal
  • the time delay are linear: the farther the target object, the later the time to receive the reflected signal, then the reflection The greater the frequency difference between the signal and the transmitted signal. Therefore, the distance between the radar and the target object can be determined by judging the frequency of the intermediate frequency signal.
  • the foregoing processing of radar signals is only an example, and there is no restriction on the specific radar processing.
  • Doppler frequency f d can be obtained by Fourier transform of the phase sequence of the echo intermediate frequency signal of multiple consecutive cycles at the same time sampling point, and the relationship between it and the target radial relative velocity v can be expressed as Among them, ⁇ is the wavelength of the radar signal.
  • radars such as vehicle-mounted and/or roadside units
  • the mutual interference between radars becomes more and more serious, which will greatly reduce the probability of radar detection or increase the probability of false alarms, which is harmful to driving safety or Comfort has an impact that cannot be ignored.
  • FIG. 5 is a schematic diagram of mutual interference between vehicle-mounted radars.
  • the radar 1 sends out a transmission signal and receives the reflected signal from the transmission signal on the target object. While radar 1 receives the reflected signal, the receiving antenna of radar 1 also receives the transmitted signal or reflected signal of radar 2, then the transmitted signal of radar 2 received by radar 1 or the reflected signal of radar 2 is interference for radar 1. Signal.
  • Radar 1 be an observation radar
  • the slope of the FM continuous wave is a 0
  • the intercept is b 0
  • the period is T c .
  • Radar 2 is a jamming radar.
  • the slope of the FM continuous wave is a 1
  • the intercept is b 1.
  • b 0 b 1 .
  • the echo delay corresponding to the maximum ranging distance of radar 1 is ⁇ max (that is, the time delay calculated by adding the maximum detection distance of the radar in formula 1.6.
  • the maximum detection distance of radar is 250m, which is put into formula 1.6
  • the calculated time delay is 1.67 ⁇ s)
  • the time delay of the jamming signal of radar 2 reaching the receiver of radar 1 is ⁇ 1 .
  • the time interval for the radar to detect the received signal is ⁇ max ⁇ T c .
  • the intermediate frequency signal formed at the radar receiver at this time is as follows:
  • A′ i is the signal amplitude of the interfering radar signal after transmitting antenna gain, target reflection, propagation loss, and receiving antenna gain
  • I the initial phase of the jamming radar signal
  • It is the Doppler frequency formed by the interfering radar signal due to the radial relative velocity between the target and the detecting radar
  • ⁇ i is the time delay from the interfering radar signal being transmitted from the transmitter to the receiving of the signal by the interfered radar receiver.
  • the radar 1 transmits signals to the target object and receives the reflected signal from the target object. However, within the time range between the radar 1 transmitting signal and receiving the reflected signal, the receiving antenna of the radar 1 receives the radar 2’s signal. Emit or reflect the signal (dashed line).
  • the signal waveform of radar 1 is consistent with the signal waveform of radar 2 and the frequency sweep bandwidth of the two is the same.
  • radar 1 receives the signal shown by the dotted line of the corresponding frequency, then radar 1 thinks that there is "Target object 1"exists; radar 1 detects the signal shown by the dotted line and the reflected signal shown by the solid line during the signal processing time interval ( ⁇ max ⁇ T c ), then radar 1 will show the received dotted line The signal is mistaken for the reflection signal of an object in front, and a false intermediate frequency signal will be generated at this time. Radar 1 undergoes a fast Fourier transform and performs spectrum analysis to find two peaks. As shown in Figure 7, each peak corresponds to a target object. Radar 1 considers that "target object 1" and "target object 2" exist at the same time.
  • Radar 1 mistakenly believes that there is “target object 1" ahead, but in fact the "target object 1" does not exist, which is called “ghost” or "false alarm”. After the false alarm is generated, the self-driving car will slow down or brake suddenly when there is no object in front, which reduces the driving comfort.
  • FIGS 8 and 9 are schematic diagrams of a possible interference signal overwhelming the target signal.
  • the radar 1 transmits a signal to a target object and receives a reflected signal from the target object.
  • the receiving antenna of radar 1 has received the transmitted signal or reflected signal of radar 2 (dotted line).
  • the time interval ( ⁇ max ⁇ T c ) of the signal detection of radar 1 the reflected signal of radar 1 and the related signal of radar 2 will be detected at the same time
  • an intermediate frequency signal containing various frequency components will be generated, as follows:
  • FIGS. 10 and Figure 11 are schematic diagrams of the radar jamming platform. Specifically, there is a difference in slope between the signal waveform of radar 1 and the signal waveform of radar 2. If the slope of radar 1 is ⁇ 0 and the slope of radar 2 is ⁇ 1 , then the difference between the two slopes can be divided into the following Two situations:
  • the signal received at a certain moment or period of time may be an interference signal, or may be a reflected signal of the target object, and the relative changes in the frequency of the transmitted/reflected signal through time can be an interference signal.
  • the relative changes in the frequency of the transmitted/reflected signal through time can be an interference signal.
  • most of the graphs reflecting the slope of the transmitted/reflected signal are used to represent the mutual interference between radars.
  • the radar uses a random pause time length to randomize its own transmission time, thereby avoiding periodic interference to other radars.
  • random transmission time can reduce the possibility of periodic interference, it cannot guarantee the elimination of interference between radars.
  • different radars can be set to have different waveform slope, period and other parameters.
  • Figure 12 is a schematic diagram of another possible solution.
  • the parameters such as the slope and transmission period of the signal of radar 1 are inconsistent with those of radar 2.
  • the intermediate frequency signal of constant frequency will not be generated. Because only the intermediate frequency signal with a constant frequency will be reflected as a peak signal in the spectrum analysis, this method can reduce the probability of ghost occurrence.
  • radar 1 receives the signal of radar 2, after passing through the mixer, the interference signal falls within the effective receiving IF bandwidth, which will increase the strength of the interference signal.
  • Figure 13 is a schematic diagram of a possible missed detection result. The consequence is that there is an obstacle in front of the vehicle but it is not detected, resulting in missed detection, which has a bad influence on the safety of vehicle driving, especially the safety of unmanned vehicles.
  • Figure 14 is a schematic diagram of another possible solution.
  • the technology used in this solution is the radar waveform frequency shift technology. If the radar detects interference from other radars in its sweep frequency band, it will jump to another frequency band to prevent interference between multiple radars.
  • the frequency shift interval in the frequency shift technology can be greater than the radar sweep bandwidth, as shown in Figure 14. In this case, the radar waveforms are completely frequency divided and there is no overlap, but the frequency shift interval is set so that The frequency domain resources are occupied too much, and the frequency domain resources allocated to radars are currently limited. Or the frequency shift technology is still applied, but after the radar detects interference from other radars in the working frequency band, it performs a random frequency shift (shift), as shown in Figure 15.
  • Figure 15 is a schematic diagram of another possible solution.
  • the interference can be reduced to a certain extent, but the completely randomized frequency shift (shift) will inevitably cause the two radar waveforms after the frequency shift (shift) to be too close in the frequency domain, resulting in ghost or interference signals.
  • the increase in strength caused the object to be missed.
  • the embodiment of the present application provides a signal processing method.
  • channel sensing is performed through the first signal and the second signal, and the channel sensing includes passing through the first signal in the first time domain.
  • a sounding signal executes channel sounding
  • the second sounding signal executes channel sounding within a second time domain range, and then according to the result of the channel sounding, the first time-frequency resource used for target detection is determined.
  • the time-domain resource of the first time-frequency resource is the first time-domain range; that is, the first signal and the second signal can be used in the embodiment of the present application to achieve efficient detection of radar orthogonal time-domain waveforms, and the first signal and The realization of the second signal is simple, so that the radar detection device can still cooperate without synchronization information.
  • the radar detection device selects the appropriate time-frequency resource to work according to the listening result, so that the radar signal sent by a radar detection device is Will not fall within the target echo observation range of other radar detection devices, and the radar signals sent by other radar detection devices will not fall within the target echo observation range of the first radar detection device, thus avoiding radar detection devices Interference between.
  • FIG. 16 is a schematic diagram of a possible application scenario of an embodiment of this application.
  • the application scenario can be unmanned driving, autonomous driving, intelligent driving, networked driving, etc.
  • Radar detection devices can be installed in motor vehicles (such as unmanned vehicles, smart cars, electric vehicles, digital cars, etc.), drones, rail cars, bicycles, signal lights, speed measurement devices or network equipment (such as base stations in various systems, Terminal equipment) and so on.
  • motor vehicles such as unmanned vehicles, smart cars, electric vehicles, digital cars, etc.
  • drones drones, rail cars, bicycles, signal lights, speed measurement devices or network equipment (such as base stations in various systems, Terminal equipment) and so on.
  • the embodiments of the present application are not only applicable to radar detection devices between vehicles, but also to radar detection devices of other devices such as vehicles and unmanned aerial vehicles, or radar detection devices between other devices.
  • the radar detection device can be installed on a mobile device, such as a vehicle as a vehicle-mounted radar detection device, or can also be installed on a fixed device, such as a roadside unit (RSU) and other equipment.
  • a mobile device such as a vehicle as a vehicle-mounted radar detection device
  • RSU roadside unit
  • the embodiment of the present application does not limit the installation position and function of the radar detection device.
  • the embodiment of this application may be executed by a detection device.
  • the detection device that executes the method provided in the embodiment of this application may be referred to as the first detection device.
  • the following embodiments of the present application mostly use the detection device as a radar detection device, and the radar detection device as a radar, such as a millimeter wave radar, as an example to explain and describe the embodiments.
  • the embodiment of the present application does not limit the detection device to only a radar detection device, nor does it limit the radar detection device to only a millimeter wave radar or a radar.
  • multiple radar detection devices that transmit radar signals in corresponding time domains among the L time domain ranges may have the same frequency sweep period.
  • the radar detection device 1 transmits radar signals in the first time domain range of the multiple time domain ranges, and the radar detection device transmits radar signals in the second time domain range of the multiple time domain ranges 2. Then the frequency sweep period of the radar detection device 1 is the same as the frequency sweep period of the radar detection device 2.
  • the signal sent by the detection device may be a radio signal. If the detection device is a radar detection device as an example, then the signal sent by the detection device can be regarded as a radar signal. In the embodiment of the present application, the detection device is a radar detection device, and the signal sent by the detection device is a radar signal as an example.
  • the time domain range may refer to a continuous period of time, and the radar detection device may send one or more frequency sweeping periods of radio signals during this continuous period of time.
  • the time domain range can also be referred to as time domain unit, time domain resource, time unit, time resource or duration, etc., and there is no restriction on the specific name.
  • the length of a time domain range can be equal to the transmission period of the radar detection device (or called the sweep period, sweep duration, etc.). It can also be said that the time domain length of each of the L time domain ranges may be the frequency sweep period of the radar detection device.
  • the length of a time domain range may be equal to an integer multiple of the frequency sweep period of the radar detection device. For example, if the duration of a certain time domain range is 500 sweep frequency cycles, the corresponding radar detection device needs to transmit 500 sweep frequency radar signals within this time domain range.
  • the time domain lengths of the L time domain ranges are the same. In other scenarios, the time domain lengths of the L time domain ranges may not be exactly the same.
  • the radar detection device transmits radar signals at a certain transmission timing.
  • the actual transmission time of the radar signals There may be errors, which can also be called signal transmission errors.
  • the error caused by the accuracy of GPS.
  • different radar detection devices may cause slight errors in signal transmission due to manufacturing differences.
  • the methods provided in the embodiments of the present application can be considered in specific implementation.
  • the embodiments of the present application may also ignore these errors, and describe the solution according to a unified standard and transmission timing. It should be clear that when the embodiments of the present application describe the technical solutions, whether the above-mentioned errors are considered or ignored, they do not substantially affect the implementation and beneficial effects of the embodiments of the present application.
  • FIG. 17 is a schematic flowchart of Embodiment 1 of a signal processing method provided by an embodiment of this application.
  • the application of this method to the network architecture shown in FIG. 16 is taken as an example.
  • the method provided by the embodiment shown in FIG. 17 may be executed by the radar detection device in the network architecture shown in FIG. 16, for example, the radar detection device is referred to as the first radar detection device.
  • the signals sent by the radar detection device can all be radar signals.
  • the received echo signals can also be radar signals.
  • the signal processing method may include the following steps:
  • the first radar detection device may be a mine detection device that needs to send radar signals. Therefore, when the first radar detection device needs to send radar signals, the first signal and the second signal are generated first. Wait for at least two signals, the first signal and the second signal respectively correspond to a time domain in the time domain, and the time-frequency resources of each time domain are different.
  • the detection device may perform channel sensing based on the first signal and the second signal, so as to determine an appropriate time-frequency resource for sending the radar signal.
  • the time domain range of the first signal is a first time domain range
  • the time domain range of the second signal is a second time domain range
  • the first time domain range may include multiple first time domains.
  • One frequency sweep cycle, and each first frequency sweep cycle corresponds to the first sub-signal.
  • the second time domain range may include a plurality of second frequency sweep periods, and each second frequency sweep period corresponds to a second sub-signal.
  • the time-frequency resources in the time domain corresponding to the first signal and the second signal may be the time-frequency resources that the first radar detection device wants to use.
  • suitable time-frequency resources can be determined among all the time-frequency resources that are to be used.
  • step S1701 is optional.
  • S1701 can be replaced by: generating a first listening signal and a second listening signal, where the first listening signal corresponds to at least one first sub-signal in the first signal, and the The second listening signal corresponds to at least one second sub-signal in the second signal.
  • the “correspondence” here can be understood as meaning that the waveform, time domain resource, and frequency domain resource of at least one sub-signal of the first listening signal and the first signal are the same.
  • the channel sensing includes performing channel sensing through the first sensing signal in the first time domain, and performing channel sensing through the second sensing signal in the second time domain. Listen to the signal to perform channel listening.
  • the "channel listening based on the first signal and the second signal” here can also be understood as channel listening based on the listening signal, that is, channel listening based on the first listening signal and the second listening signal.
  • the listening signal and the second listening signal respectively correspond to the sub-signal in the first signal and the sub-signal in the second signal, and it is not limited to only perform listening based on the entirety of the first signal and the second signal.
  • the first time domain range and the second time domain range are the time domain ranges in the L time domain ranges, and L is a positive integer greater than 1; wherein, any one of the L time domain ranges is time domain The range partially overlaps with at least one of the other L-1 time domain ranges, and the absolute value of the difference between the time domain start positions of any two time domain ranges in the L time domain ranges is greater than or equal to the first threshold And is less than or equal to the second threshold.
  • the first listening signal corresponds to the first sub-signal in at least one first sweep period in the first time domain range in the first signal
  • the second listening signal corresponds to the second signal in the second time domain range.
  • the second sub-signal in at least one second frequency sweep period. It can be determined that the two signals correspond to the first sub-signal in at least one sweep period of the first signal and the second sub-signal in at least one second sweep period in the second signal. Which of the two time domain ranges is more suitable for target detection?
  • the first radar detection device may use the first signal and the second signal to perform channel detection. Specifically, the first radar detection device may perform the first listening signal and then the first listening signal in the first time domain. (Listen-Before-Talk, LBT) channel access mechanism. At the same time, the first radar detection device can also execute the LBT channel access mechanism through the second listening signal in the second time domain, so that the The channel sensing result in the time domain range and the second time domain range.
  • LBT Listen-Before-Talk
  • an LBT listening mechanism is Clear Channel Assessment (CCA).
  • CCA Clear Channel Assessment
  • the first radar detection device uniformly randomly generates a response between 0 and Contention Window Size (CWS).
  • the back counter N respectively uses the first sub-signal in at least one first frequency sweep period in the first time domain range and the second sub-signal in at least one second frequency sweep period in the second time domain range for channel detection.
  • the channel Listen, according to the busy or idle state of the channel to determine whether to decrement the back-off counter by 1, if the channel is idle, the back-off counter is decreased by 1, otherwise, if the channel is busy, the back-off counter is suspended, that is, the back-off counter N is in The channel remains unchanged during the busy time until the channel is detected to be idle; when the backoff counter is reduced to 0, it is determined that the channel can be used in the first time domain range or the second time domain range.
  • FIG. 18 is a schematic diagram showing the distribution of the time domain ranges corresponding to the first signal and the second signal in the time domain.
  • the time domain range of the first signal is the first time domain range
  • the first signal includes the first listening signal
  • the first listening signal is the first signal located at the first time.
  • the first sub-signal in at least one first sweep period in the domain range
  • the time domain range of the second signal is the second time domain range
  • the second signal includes the second listening signal
  • the second listening signal is the second
  • the second sub-signal in at least one second frequency sweep period in the second time domain range in the signal.
  • the specific relationship between the second signal, the second monitoring signal and the second sub-signal can be referred to as shown in FIG. 18, which will not be repeated here.
  • the time domain resources of the first sub-signal and the second sub-signal do not overlap, that is, the time domain resources of the first listening signal and the second listening signal
  • the resources do not overlap.
  • the first radar detection device performs channel detection based on the first detection signal and the second detection signal, and then determines the use Only when the first time-frequency resource for target detection does not overlap with the time-domain resources occupied by other radar detection devices, the problem of mutual interference between subsequent radar detection devices is avoided.
  • the duration of the first frequency sweep period and the second frequency sweep period are the same, and the waveforms of the first signal and the second signal are the same. In this way, the difficulty of designing the first signal and the second signal can be reduced, and the possibility of implementation can be improved.
  • the L time domain ranges may be referred to as a set of time domain ranges.
  • the L time domain ranges and each time domain range within the L time domain ranges can also be defined as other names. No matter how the names are defined, the L time domain ranges refer to a larger granularity. Time length, each time domain range refers to a smaller granular time length.
  • any one of the L time domain ranges is partially overlapped (or incompletely overlapped) with at least one of the other L-1 time domain ranges.
  • the so-called two time domain ranges completely overlap it means that the two time domain ranges are completely the same, for example, the time domain start position of the two time domain ranges is the same and the time domain end position is the same; or the two time domain ranges completely overlap , Means that one of the two time domains is completely contained in the other time domain. Incomplete overlap means that the two time domains have an intersection, but the two time domains are not exactly the same.
  • the time domain start position of the two time domain scopes is the same but the time domain end position is different, or two time domains
  • the time domain start positions of the ranges are different and the time domain end positions are the same, or the time domain start positions of the two time domain ranges are different and the time domain end positions are different.
  • Utilizing the partially overlapping design of multiple time domain ranges can avoid the waste of time domain resources caused by completely separating the multiple sweep cycles of the first radar detection device in multiple time domain ranges in the time domain, and can be effectively used Time domain resources, at a lower cost of time domain resources to achieve higher anti-jamming performance, and at the same time can support a greater number of radar detection device communications.
  • the "L” in the embodiment of the present application may be predefined or configured, or determined according to a preset rule.
  • "L” can be embodied as there are L candidate time-domain grid points in a sweep period, and each time-domain grid point and a certain duration form a time-domain range.
  • the time domain grid point may be the start position or the end position of the time domain range, or the middle position of the time domain range, or the like.
  • the time domain range can be defined by time domain grid points and time length.
  • the first time domain range and the second time domain range can be described as the first time domain grid points and the second time domain grid points as L time domains.
  • any one of the L time domain grid points partially overlaps with at least one of the other L-1 time domain grid points.
  • the absolute value of the difference between the time domain start positions of any two time domain ranges in the L time domain ranges is greater than or equal to the first threshold and less than or equal to the second threshold, where, The first threshold and the second threshold may be specifically determined in the following manner:
  • the first threshold and/or the second threshold are predefined, or the first threshold and/or the second threshold are determined according to a pre-configured rule.
  • the relationship between the time domain starting positions of any two time domain ranges in the L time domain ranges can be determined.
  • the time domain range corresponding to each signal can be accurately determined, so that non-overlapping time domain resources used by other radar detection devices can be determined, and mutual interference between radar detection devices can be avoided.
  • the first threshold and/or the second threshold are determined according to a pre-configured rule and can be interpreted as follows: the first threshold is determined according to at least one echo delay and at least one propagation delay, and at least one echo
  • the time delay includes the echo delay corresponding to the maximum detection distance of the first radar detection device (for example, referred to as the first echo delay), and the at least one propagation delay includes the propagation corresponding to the first radar signal sent by the first radar detection device Time delay (for example, referred to as the first propagation delay).
  • the embodiment of the present application does not limit the pre-configured specific rules for determining the first threshold and/or the second threshold, which can be determined according to actual conditions in different scenarios, and will not be repeated here.
  • the absolute value of the difference between the time domain start positions of any two time domain ranges in the L time domain ranges is greater than or equal to the first threshold and less than or equal to the second threshold, which may include the following two cases :
  • the difference between the starting positions of any two adjacent time-domain ranges in the L time-domain ranges is the same, that is, the time-domain starting positions of the L time-domain ranges are equal in the time domain. Divided by spacing.
  • the absolute value of the difference between the time domain start positions of any two “adjacent” time domain ranges in the time domain in the L time domain ranges is equal to F, then any two time domains
  • the absolute value of the difference between the time domain start positions of the “non-adjacent” time domain range may be equal to X times F, and X is a positive integer greater than 1.
  • the L time domain ranges include the first time domain range, the second time domain range, the third time domain range, etc.
  • Time domain range, the first time domain range and the second time domain range are “adjacent” in the time domain, and the second time domain range and the third time domain range are also in the time domain
  • the upper "adjacent" time domain range, the first time domain range and the third time domain range are the "non-adjacent" time domain ranges in the time domain.
  • the time domain starting positions of the L time domain ranges are not equally spaced in the time domain.
  • the absolute value of the difference between the time domain start positions of the two time domain ranges among the L time domain ranges is the smallest, then the difference between the time domain start positions of the two time domain ranges The absolute value of the value is equal to F.
  • the absolute value of the difference between the time domain starting positions of any two time domain ranges in the L time domain ranges can be greater than F.
  • time-domain positional relationship of the L time-domain ranges will be described with reference to FIG. 19 as an example.
  • Figure 19 is a schematic diagram of the time-domain positional relationship of three time-domain ranges.
  • L is equal to 3.
  • the three time domain ranges can be referred to as the first time domain range, the second time domain range, and the third time domain range, respectively.
  • any one time domain range partially overlaps with the other two time domain ranges.
  • the overlapping area between the first time domain and the second time domain is marked as overlapping area 1
  • the overlapping area between the first time domain and the third time domain is marked as overlapping area 3.
  • the overlapping area between the two time domains and the third time domain is marked as overlapping area 2.
  • the absolute value of the difference between the time domain start positions of any two time domain ranges in the three time domain ranges is greater than or equal to the first threshold and less than or equal to the second threshold.
  • the absolute value of the difference between the time domain start position of the first time domain range and the start position of the second time domain range is the length of interval 1
  • the time domain start position of the second time domain range is the length of interval 2
  • the absolute value of the difference from the start position of the third time domain range is the length of interval 2
  • the absolute value of is the length of interval 3.
  • the length of the interval area 1, the length of the interval area 2, and the length of the interval area 3 are all greater than or equal to the first threshold and less than or equal to the second threshold.
  • the L time domain ranges include the first time domain, the second time domain, and the third time domain in the order of the time domain from front to back, it is called the first time domain.
  • the absolute value of the difference between the start position of the second time domain and the first absolute value is the first absolute value, which is called the difference between the start position of the second time domain and the third time domain. If the absolute value is the second absolute value, then the first absolute value may be equal to or not equal to the second absolute value. However, the first absolute value and the second absolute value are both greater than or equal to the first threshold and less than or equal to the second threshold.
  • the absolute value of the difference between the time domain starting positions of the first time domain range and the second time domain range may be the smallest value in the calculated range, that is, equal to the first time domain.
  • the threshold value under the same available time domain resources, can maximize the number of supported non-interfering radar detection devices, which greatly increases the utilization rate of time domain resources.
  • the interference mixing signal of the radar detection device falls outside the IF detection bandwidth, thereby reducing the radar detection device’s frequency.
  • Mutual interference
  • FIG. 20 is a schematic diagram of calculating the difference between the time domain starting positions of any two time domain ranges in L time domain ranges.
  • this embodiment uses multiple waveform signals with the same slope for description.
  • ⁇ s is the transmission time difference between multiple radar detection devices
  • ⁇ p is the maximum space propagation delay that can be tolerated by the radar transmission signal caused by radar interference
  • T c is the work of the radar detection device Period
  • ⁇ max is the echo delay corresponding to the maximum detection range of the radar detection device.
  • the difference between the start positions of any two adjacent time-domain ranges in the L time-domain ranges is less than or equal to 1/L times Tc, which is the work of the radar detection device cycle.
  • the waveforms of the first signal and the second signal are the same.
  • the first sweep period corresponding to the first signal is the same as the second sweep period corresponding to the second signal
  • the first sweep bandwidth corresponding to the first signal is the same as the second sweep bandwidth corresponding to the second signal.
  • the slopes of the first signal and the second signal at corresponding points are the same.
  • the waveforms of the first signal and the second signal are designed to be the same, that is, In the time domain, the first frequency sweep period in the first time domain range and the second frequency sweep period in the second time domain range have the same duration.
  • the method may further include:
  • a third signal is generated, and the time domain range corresponding to the third signal is the third time domain range.
  • the channel sensing further includes performing channel sensing through a third sensing signal in a third time domain range, the third time domain range belongs to the foregoing L time domain ranges, and the third time domain range is The domain range is different from the first time domain range and the second time domain range, and the third listening signal corresponds to the third sub-signal in at least one third sweep period in the third time domain range in the third signal.
  • the first radar detection device may also generate a third signal, and the third time domain range corresponding to the third signal is the above-mentioned Among the L time domain ranges and different from the first time domain range and the second time domain range, the third time-frequency resource corresponding to the third time-domain range is different from the first time-frequency resource and The time-frequency resource of the second time-frequency resource.
  • the channel sensing of the first radar detection device may also include performing channel sensing through a third sensing signal in the third time domain, and the third sensing signal corresponds to the third signal at the third time.
  • the third sub-signal in at least one third frequency sweep period in the domain range that is, the first radar detection device can simultaneously listen in the sweep frequency period in different time domain ranges, thereby improving the listening efficiency, And determine the time-frequency resources corresponding to the most suitable time-domain range.
  • FIG. 21 is a schematic diagram of the distribution of the time domain ranges corresponding to the first signal, the second signal, and the third signal in the time domain.
  • the difference between the schematic diagram shown in FIG. 21 and the schematic diagram shown in FIG. 18 is that the first radar detection device also generates a third signal, and the first detection signal and the second detection signal used for channel detection are different.
  • the relationship between the first signal, the first listening signal, and the first sub-signal is similar
  • the time domain range of the third signal is the third time domain range
  • the third signal includes A third listening signal, where the third listening signal is a third sub-signal in at least one third frequency sweep period in the third time domain range in the third signal.
  • the specific relationship between the first signal, the first listening signal, and the first sub-signal the specific relationship between the second signal, the second listening signal, and the second sub-signal, and the third signal, the third listening signal, and the third signal.
  • the specific relationship of the sub-signals can be referred to as shown in FIG. 21, which will not be repeated here.
  • the time domain resources of the first sub-signal, the second sub-signal, and the third sub-signal do not overlap, that is, the first interception signal, the second interception signal and the third sub-signal do not overlap.
  • the time domain resources of the listening signal and the third listening signal do not overlap with each other, so that the first radar detection device performs channel detection based on the first listening signal, the second listening signal, and the third listening signal, and the The first time-frequency resource for target detection may be orthogonal to the time-frequency resource occupied by other radar detection devices, thereby avoiding the problem of mutual interference between subsequent radar detection devices.
  • the duration of the first sweep period, the second sweep period, and the third sweep period are the same; in the frequency domain, the first sweep bandwidth, the second sweep The frequency bandwidth is the same as the third sweep bandwidth; from the waveform point of view, the waveforms of the first signal, the second signal, and the third signal are also the same. It can be understood that the slopes of different signals at the same position of the signal are the same.
  • the first radar detection device may also generate a fourth signal, a fifth signal, or other signals, and the time domain ranges corresponding to the above multiple signals are all the above L time domains.
  • the appropriate time-frequency resources can be determined from multiple time-domain resources, in order to avoid mutual interference between multiple radar detection devices. Interference provides the possibility of realization.
  • the first radar detection device uses the first signal and the second signal to perform channel listening, it can obtain the listening results in the first time domain and the second time domain, for example, energy
  • the monitoring result and the monitoring result of the resource usage are further determined to determine the first time-frequency resource suitable for target detection, and the time-domain resource of the first time-frequency resource is the first time-domain range.
  • the first time domain range can be any one of the L time domain ranges.
  • the above-mentioned “first” and “second” do not indicate the order, but only indicate the difference in content.
  • “first time domain range” and “second time domain range” are only used to indicate two different time domain ranges
  • “first time-frequency resource” and “second time-frequency resource” are only used to indicate Different time-frequency resources.
  • the time-frequency resource and the time-domain range have a one-to-one correspondence, that is, the time-domain resource of the first time-frequency resource is the first time-domain range, and the second time-frequency resource
  • the time domain resource of is the second time domain range
  • the time domain resource of the Nth time-frequency resource is the Nth time domain range, etc.
  • the method may further include the following steps:
  • the first radar detection device can send the above-mentioned first signal on the first time-frequency resource, and the first signal can be reflected back after reaching the target object.
  • the radar device receives the reflected signal, and the first radar device mixes the reflected signal and the local oscillator signal to obtain an intermediate frequency signal, so that one or more of the position, speed, or angle of the target object can be determined based on the intermediate frequency signal.
  • the second radar detection device can also determine that it is suitable for the second radar based on the steps in S1701 to S1703 above.
  • the second time-frequency resource of the detection device, and the time-domain range of the second time-frequency resource is the second time-domain range, so that the time-frequency resources used by different radar detection devices are different, thereby avoiding different radar detection devices. Of mutual interference.
  • different radar detection devices can select different time-frequency resources to send radar signals.
  • the first time domain range and the second time domain range may or may not have an intersection. If the first time domain range and the second time domain range have an intersection, then the time domain of the first time domain range and the second time domain range The absolute value of the difference between the starting positions needs to be greater than or equal to the first threshold and less than or equal to the second threshold.
  • channel listening is performed through a first signal and a second signal.
  • Channel sensing is performed through the second sensing signal in the time domain.
  • the first time-frequency resource used for target detection is determined, and the time-domain resource of the first time-frequency resource is the first time. Domain range, so that the first signal can be sent on the first time-frequency resource.
  • the absolute value of the difference between the starting positions of any two of the multiple listening areas in the time domain is an integer multiple of M, where M is predefined or pre-defined Configured.
  • the listening area may be understood as a preset time period during which the first radar detection device performs signal detection before transmitting the signal for target detection.
  • multiple listening areas refer to multiple preset time periods for listening, and these preset time periods may or may not overlap partially.
  • the embodiment of the present application does not limit the multiple preset time periods for interception, that is, whether multiple interception areas overlap, and it can be determined according to the duration of the interception area and the value of M, which will not be repeated here.
  • the known signal refers to the first signal and the second signal, or the known signal refers to the first listening signal and the second listening signal.
  • the first radar detection device may first determine all the listening signals that perform channel listening, and then determine the multiple listening areas that need to be monitored, and finally use all the listening signals respectively. Perform channel detection in each listening area, and get the channel listening results of each listening area.
  • all the above-mentioned interception signals include: the first interception signal in the first signal and the second interception signal in the second signal Signal.
  • all the above-mentioned interception signals include: the first interception signal and the second signal in the first signal.
  • the first radar detection device may determine a continuous transmission duration based on its own timing clock, and then determine multiple listening areas based on the continuous transmission duration.
  • the continuous emission duration is a period of time for signal transmission in the refresh period of the radar detection device, and can also be interpreted as the activation duration of the first radar detection device, that is, the first radar detection device is The length of time occupied by the transmitted signal.
  • the refresh period includes the duration for at least one target detection (for example: target detection within at least one activation duration) and/or the duration for at least one signal processing (for example, at least one silent duration or idle duration).
  • the radar does not transmit a signal, so it belongs to "idle time").
  • the refresh period is set periodically, generally 50 ms (for example, 20 ms activation duration + 30 ms silence duration), or other values.
  • the activation duration or silent duration contained in it may be the same or different.
  • the current refresh cycle (duration is 50ms) contains an activation duration of 20ms and a quiet duration of 30ms, while in the time domain
  • the next refresh cycle may include an activation duration of 30ms and a silent duration of 20ms, or a silent duration of 50ms (this refresh cycle may be referred to as a silent refresh cycle).
  • the above activation time refers to the time range for the radar to perform target detection, and can also be referred to as the launch time period.
  • the activation duration is generally a continuous duration.
  • This application can also cover scenarios where the activation duration is a discontinuous duration, and there is no specific limitation.
  • the activation time of different radars may be different, generally in the millisecond (ms) level, such as 10ms, 20ms, etc. Generally speaking, the longer the activation time, the better the performance of radar detection.
  • the activation duration can be limited by the size of the refresh period and the size of the silence duration. For example, the radar completes target detection and signal processing within one refresh period.
  • the above-mentioned target detection and signal processing timings can be sequential or simultaneous. Implementation, this application is not specifically limited. Therefore, the setting of the activation time needs to take into account the detection performance and the radar processing capability.
  • At least one of the above refresh period and activation duration can be set as an initial value when the radar leaves the factory. After leaving the factory, in the working state of the radar or in other possible scenarios, at least one of the refresh period and the activation time may be changed. The change is not limited to the adjustment of the radar itself, or manual adjustment.
  • this application does not limit the specific value of the activation duration, which can be set according to actual needs.
  • the duration of the listening area may be the same as the duration of continuous transmission.
  • the total time length of the multiple listening areas is less than or equal to the idle period period.
  • the difference between the starting positions of any two listening areas in the time domain may be an integer multiple of M, where M is predefined or pre-configured, for example, M is a preset listening step
  • M is a preset listening step
  • the interception step length can be pre-configured or pre-defined according to the processing capability of the first radar detection device. Generally, the smaller the interception step length, the finer the interception, but the processing time will be longer. Therefore, the embodiment of the present application does not limit the specific value of M, which can be determined according to actual conditions, and will not be repeated here.
  • the above-mentioned channel listening result may be expressed by the listening energy of each listening area, may also be expressed by the average power of each listening area, or may be expressed in other ways. It is not limited here.
  • the foregoing listening in multiple listening areas can be implemented by any of the following possible design methods:
  • the first radar detection device can determine the listening range and the multiple listening areas included in the listening range based on its own continuous transmission time, and then use all the listening signals to separately monitor each detection area. Channel listening is performed in the listening area, and the listening results in each listening area are obtained, and then the time-frequency resources used for target detection are determined based on the listening results. Specifically, the first radar detection device may determine the transmitted signal (listening signal) used for target detection, and then determine the signal used for the target according to the correspondence between the time domain range of the signal to which the listening signal belongs and the time-frequency resource. Time-frequency resources for detection.
  • the first radar detection device may use the first time-frequency resource corresponding to the first time domain range of the first signal to which the first interception signal belongs to the first radar The time-frequency resource used by the detection device for target detection.
  • FIG. 22 is a schematic diagram of a possible design for channel listening in multiple listening areas.
  • the first radar detection device includes multiple listening areas in the listening range, and the first radar detection device can use all the listening signals to listen in each listening area by sliding the window. , Determine the energy sum of all the listening signals corresponding to each listening area through the intermediate frequency detection, and then select the target listening area with the smallest energy and the smallest from the multiple listening areas, and then select the target listening area in the target listening area.
  • the detection signal with the smallest energy obtained by the intermediate frequency detection and the signal corresponding to the detection signal are the transmitted signals used for target detection.
  • the intermediate frequency detection of the listening signal is a process of obtaining an intermediate frequency sampling signal through the listening signal.
  • intermediate frequency detection refers to mixing the listening signal with the corresponding received signal, passing through an intermediate frequency filter, and then sampling to obtain an intermediate frequency sampling signal, and determining the energy of the intermediate frequency sampling signal.
  • the energy of the intermediate frequency sampling signal is the energy obtained by the intermediate frequency detection of the listening signal. It should be noted that this application does not limit the specific process of intermediate frequency detection, and those skilled in the art shall be able to obtain the corresponding intermediate frequency sampling signal by listening to the signal.
  • the sum of the energy obtained by the intermediate frequency detection of all the listening signals corresponding to each listening area can be expressed as the sum of the energy obtained by the intermediate frequency detection of all the listening signals after the intermediate frequency detection of all the listening signals.
  • the energy sum of, or the aforementioned energy sum can also be represented by the average power of the detected intermediate frequency sampling signal.
  • the listening signal with the smallest energy in the target listening area is the first listening signal
  • the first signal corresponding to the first listening signal is the transmission signal used for target detection.
  • the duration of each listening area is the same as the duration of continuous transmission.
  • the first interception signal in this embodiment is a part of the first signal, and the first signal may be any one of all signals used for interception, which is not limited in the embodiment of the present application.
  • the first radar detection device can first determine the listening signal corresponding to each signal based on the known signal; secondly, based on its own continuous transmission time, determine multiple listening areas, and use each The listening signal performs channel listening in the above-mentioned multiple listening areas, and the listening result of each listening signal in each listening area is determined. Again, each listening signal is from all listening areas. Select a target listening area as the listening signal (for example, the minimum energy of the listening signal obtained by the intermediate frequency detection of the listening signal in the listening area is the benchmark), and finally select the listening area from all the selected target listening areas The time-frequency resources corresponding to the target listening area with the smallest signal energy are used for target detection. Specifically, the first radar detection device may determine the detection signal corresponding to the target detection area with the smallest detection signal energy, so as to use the signal corresponding to the detection signal as the transmission signal for target detection.
  • FIG. 23 is a schematic diagram of another possible design for channel sensing in multiple sensing areas.
  • the detection range of the first radar detection device includes a plurality of detection areas.
  • the first radar detection device uses the first listening signal and the second listening signal to perform channel listening in the above-mentioned multiple listening areas, and it is determined that each listening signal is in each listening area.
  • the one with the smallest listening energy is selected from all the listening areas as the target listening area of the listening signal, for example .
  • the first listening signal corresponds to the first target listening area
  • the second listening signal corresponds to the second target listening area
  • the one with the smallest listening energy is selected from the first target listening area and the second target listening area
  • the target detection area, and the signal to which the detection signal corresponding to the detection area belongs is used as the transmitted signal for target detection. In this way, the time starting point of the listening area and the selected signal can be determined at the same time.
  • the duration of each listening area is greater than the continuous emission duration of the first radar detection device.
  • interception in multiple interception areas can also be implemented by the following possible design methods:
  • the first radar detection device may not divide the listening area, and based on its own timing clock, use each listening signal to listen within the listening range, and determine the signal energy of each listening signal within the listening range. , And then compare the signal energy of each listening signal in the listening range, determine the listening signal with the smallest signal energy from it, and use the signal to which the listening signal belongs as the transmitted signal for target detection.
  • the first radar detection device can perform detection in multiple detection areas based on a variety of methods, and then determine the most suitable time-frequency resource for target detection.
  • Channel sensing is performed on a pre-defined or configured time domain resource
  • the time domain resource includes at least one of the following: a refresh period of the first detection device, a silent refresh period of the first detection device; wherein, the refresh period includes idle time Segment and launch time segment.
  • FIG. 24 is a schematic diagram of the time distribution of the working state of the first radar detection device.
  • the first radar detection device works in a fixed refresh period. Normally, the refresh period includes an idle period and a transmission period. The first radar detection device transmits radar during the transmission period of the refresh period. Signals for target detection, signal processing or channel state monitoring during the idle period of the refresh period; and if the first radar detection device does not transmit signals during the entire refresh period, the entire refresh period is the idle time, which is called The refresh period is a silent refresh period.
  • the first radar detection device may perform channel sensing in the idle time period of the refresh period, or may perform channel sensing in the transmission period of the refresh period, or may perform channel sensing in the silent refresh period, In this way, the most suitable (least idle) time-frequency resource can be determined for subsequent target detection.
  • the signal processing method provided in the present application further includes the following steps:
  • the frequency hops to a frequency band outside the preset time frequency band for channel sensing.
  • the frequency can be hopped to other frequency bands for monitoring.
  • the specific monitoring method uses the above-mentioned S1701 to S1703 shown in Figure 17. The specific implementation will not be repeated here.
  • the above-mentioned radar detection device may be a movable radar detection device, such as a vehicle-mounted radar, or a fixed-position radar detection device, for example, the radar detection device is fixed on the RSU, or Fixed on the base station, or fixed on other equipment. Or the radar detection device can also be deployed independently, but the location is fixed.
  • the embodiment of the application does not limit the type of the radar detection device, and all of them are applicable.
  • the radar detection devices can still work in coordination without synchronization information (without GPS signal or without GPS function), thereby avoiding mutual interference between radar detection devices and improving Driving safety and user comfort.
  • each device such as the first radar detection device, includes a hardware structure and/or software module corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the embodiments of the present application.
  • the embodiment of the present application may divide the functional modules of the first radar detection device.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 25 is a schematic diagram of a possible structure of the signal processing device provided in an embodiment of the application.
  • the signal processing device may be the first radar detection device in the foregoing method embodiment.
  • the signal processing device 25 may include: a listening unit 2502 and a determining unit 2503.
  • the listening unit 2502 is configured to perform channel listening according to the first signal and the second signal, and the channel listening includes performing channel listening through the first listening signal in the first time domain, and performing channel listening in the first time domain. 2. Perform channel detection through the second detection signal in the time domain;
  • the determining unit 2503 is configured to determine a first time-frequency resource used for target detection according to a result of the channel sensing, where the time-domain resource of the first time-frequency resource is the first time-domain range;
  • the first time domain range and the second time domain range are time domain ranges in L time domain ranges, where L is a positive integer greater than 1; wherein, any one of the L time domain ranges The time domain range partially overlaps with at least one of the other L-1 time domain ranges, and the absolute value of the difference between the time domain start positions of any two time domain ranges in the L time domain ranges is greater than or Equal to the first threshold and less than or equal to the second threshold; and
  • the first listening signal corresponds to a first sub-signal in at least one first sweep period in the first time domain range in the first signal
  • the second listening signal corresponds to the second The second sub-signal in at least one second frequency sweep period in the second time domain range in the signal.
  • the device further includes: a generating unit 2501;
  • the generating unit 2501 is used to generate the first signal and the second signal; or
  • the generating unit 2501 is used to generate a first listening signal and a second listening signal
  • the time domain resources of the first sub-signal and the second sub-signal do not overlap.
  • the first threshold and/or the second threshold are predefined, or the first threshold and/or the second threshold are based on a pre-configured rule definite.
  • the difference between the start positions of any two adjacent time domain ranges in the L time domain ranges is the same.
  • the difference between the starting positions of any two adjacent time-domain ranges in the L time-domain ranges is less than or equal to 1/L times Tc, and the Tc is the working period of the radar detection device.
  • the generating unit 2501 is further configured to generate a third signal, and the time domain range corresponding to the third signal is the third time domain range;
  • the channel sensing further includes performing channel sensing through a third sensing signal in the third time domain range, where the third time domain range belongs to the L time domain ranges, and the third time domain range is The domain range is different from the first time domain range and the second time domain range, and the third listening signal corresponds to at least one third frequency sweep within the third time domain range in the third signal The third sub-signal in the cycle.
  • the listening unit 2502 is specifically configured to listen in multiple listening areas, and any two of the multiple listening areas start in the time domain.
  • the absolute value of the difference between the starting positions is an integer multiple of M, which is predefined or pre-configured.
  • the listening unit 2502 is specifically configured to perform channel listening on a pre-defined or configured time domain resource, and the time domain resource includes at least one of the following: a first detection device The refresh period of the first detection device, the silent refresh period of the first detection device; wherein, the refresh period includes an idle time period and a transmission time period.
  • the signal processing device 25 provided in this embodiment may further include a storage unit 2504 for storing program instructions and/or data. Specifically, it may be used for storing the generating unit 2501 and/or the listening unit 2502 and/or determining The processing result of the unit 2503, or the content stored in the storage unit 2504, can be read by the generating unit 2501 and/or the listening unit 2502 and/or the determining unit 2503.
  • a storage unit 2504 for storing program instructions and/or data. Specifically, it may be used for storing the generating unit 2501 and/or the listening unit 2502 and/or determining The processing result of the unit 2503, or the content stored in the storage unit 2504, can be read by the generating unit 2501 and/or the listening unit 2502 and/or the determining unit 2503.
  • the signal processing device 25 provided in this embodiment may further include a transceiving unit, and the transceiving unit may be used to send a listening signal or a detection signal.
  • the transceiver unit and the above-mentioned interception unit have a certain intersection in function.
  • This optional design can be implemented independently or integrated with any of the above optional designs.
  • FIG. 26 is a schematic diagram of another possible structure of a signal processing apparatus provided by an embodiment of this application.
  • the signal processing device may also be the first radar detection device in the foregoing method embodiment.
  • the signal processing device 26 may include a processor 2601, a transmitter 2602, and a receiver 2603.
  • the function of the processor 2601 can correspond to the specific functions of the generating unit 2501 and the determining unit 2503 shown in FIG. , I won’t repeat it here.
  • the signal processing device 26 may further include a memory 2604 for storing program instructions and/or data, specifically for storing processing results of the processor 2601, or for reading by the processor 2601.
  • FIG. 1 provides a schematic structural diagram of a radar device.
  • FIG. 27 is a schematic diagram of still another possible structure of the signal processing device provided by an embodiment of this application.
  • the signal processing device provided in FIGS. 25-27 may be part or all of the radar device in the actual communication scenario, or may be a functional module integrated in the radar device or located outside the radar device, for example, may be a chip system, specifically to achieve The corresponding functions shall prevail, and the structure and composition of the signal processing device shall not be specifically limited.
  • the signal processing device 27 includes a transmitting antenna 2701, a receiving antenna 2702, and a processor 2703. Furthermore, the signal processing device 27 further includes a mixer 2704 and/or an oscillator 2705. Further, the signal processing device 27 may also include a low-pass filter and/or a directional coupler.
  • the transmitting antenna 2701 and the receiving antenna 2702 are used to support the signal processing device 27 for radio communication, the transmitting antenna 2701 supports the transmission of radar signals, and the receiving antenna 2702 supports the reception of radar signals and/or the reception of reflected signals, so as to finally Realize the detection function.
  • the processor 2703 performs some possible determination and/or processing functions. Further, the processor 2703 also controls the operation of the transmitting antenna 2701 and/or the receiving antenna 2702. Specifically, the signal to be transmitted is transmitted through the processor 2703 to control the transmitting antenna 2701, and the signal received through the receiving antenna 2702 can be transmitted to the processor 2703 for corresponding processing.
  • the various components included in the signal processing device 27 can be used to coordinately execute the method provided in the embodiment shown in FIG. 17.
  • the signal processing device 27 may also include a memory for storing program instructions and/or data.
  • the transmitting antenna 2701 and the receiving antenna 2702 may be set independently, or may be integrated as a transmitting and receiving antenna to perform corresponding transmitting and receiving functions.
  • FIG. 28 is a schematic structural diagram of a detection device provided by an embodiment of this application.
  • the detection device shown in FIG. 28 may be the first radar detection device itself, or may be a chip or circuit capable of completing the function of the first radar detection device.
  • the chip or circuit may be provided in the first radar detection device.
  • the detection device 28 shown in FIG. 28 may be the first radar detection device itself, or may be a chip or circuit capable of completing the function of the first radar detection device.
  • the chip or circuit may be provided in the first radar detection device.
  • the 28 may include a processor 2801 (for example, the generating unit 2501 and the determining unit 2503 may be implemented by the processor 2801, and the processor 2601 and the processor 2801 may be the same component, for example) and an interface circuit 2802 (for example, listening The unit and the transceiver unit can be implemented by the interface circuit 2802, and the transmitter 2602 and the receiver 2603 and the interface circuit 2802 are, for example, the same component).
  • the processor 2801 can enable the detection device 28 to implement the steps performed by the first radar detection device in the method provided in the embodiment shown in FIG. 17.
  • the detection device 28 may further include a memory 2803, and the memory 2803 may be used to store instructions.
  • the processor 2801 executes the instructions stored in the memory 2803 to enable the detection device 28 to implement the steps performed by the first radar detection device in the method provided in the embodiment shown in FIG. 17.
  • the processor 2801, the interface circuit 2802, and the memory 2803 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the memory 2803 is used to store computer programs.
  • the processor 2801 can call and run the computer programs from the memory 2803 to control the interface circuit 2802 to receive signals or send signals to complete the first radar detection in the method provided by the embodiment shown in FIG. 17 The steps performed by the device.
  • the memory 2803 may be integrated in the processor 2801, or may be provided separately from the processor 2801.
  • the interface circuit 2802 may include a receiver and a transmitter.
  • the receiver and the transmitter may be the same component or different components.
  • the component can be called a transceiver.
  • the interface circuit 2802 may include an input interface and an output interface, and the input interface and the output interface may be the same interface, or may be different interfaces.
  • the detection device 28 may not include the memory 2803, and the processor 2801 may read instructions (programs or codes) in the memory external to the chip or circuit to implement the circuit shown in FIG. The steps performed by the first radar detection device in the method provided by the embodiment.
  • the device 28 may include a resistor, a capacitor, or other corresponding functional components, and the processor 2801 or the interface circuit 2802 may be implemented by corresponding functional components.
  • the function of the interface circuit 2802 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 2801 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • a general-purpose computer may be considered to implement the first radar detection device provided in the embodiment of the present application. That is, the program codes for realizing the functions of the processor 2801 and the interface circuit 2802 are stored in the memory 2803, and the processor 2801 implements the functions of the processor 2801 and the interface circuit 2802 by executing the program codes stored in the memory 2803.
  • the functions and actions of the modules or units in the detection device 28 listed above are only exemplary descriptions, and the functional units in the detection device 28 can be used to execute the functions performed by the first radar detection device in the embodiment shown in FIG. Action or process. In order to avoid repetitive descriptions, detailed descriptions are omitted here.
  • the second radar detection device, the third radar detection device, the fourth radar detection device, or the fifth radar detection device may have the same structure as the first radar detection device, that is, the same can be seen in FIGS. 25-28 The structure described in is realized.
  • an embodiment of the present application further provides a computer-readable storage medium, which stores a computer program, and when the computer program is run on a computer, the computer is caused to execute the above-mentioned FIG. 17 Example method.
  • an embodiment of the present application further provides a chip system, and the chip system includes:
  • Memory used to store instructions
  • the processor is configured to call and execute the instructions from the memory, so that the communication device installed with the chip system executes the method of the embodiment shown in FIG. 17.
  • an embodiment of the present application further provides a computer program product, the computer program product includes a computer program, and when the computer program runs on a computer, the computer executes the method of the embodiment shown in FIG. 17.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium, (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the processor included in the detection device used to perform the detection method provided in the embodiment of the present application may be a central processing unit (CPU), a general-purpose processor, or a digital signal processor (digital signal processor).
  • processor DSP
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, read-only memory (ROM), erasable programmable read-only Memory (erasable programmable read-only memory, EPROM), electrically erasable programmable read-only memory (EEPROM), register, hard disk, mobile hard disk, compact disc (read-only memory) , CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the detection device.
  • the processor and the storage medium may also exist as discrete components in the detection device.
  • FIGS. 25-28 only show the simplified design of the corresponding device.
  • the signal processing or radar detection device can include any number of transmitters, receivers, processors, controllers, memories, and other possible components.
  • An embodiment of the present application also provides a communication system, which includes at least one radar detection device that executes the above-mentioned embodiments of the present application.
  • An embodiment of the present application also provides a communication system, which includes at least one radar detection device and/or at least one central processing unit/central controller that executes the above-mentioned embodiments of the present application.
  • the central processing unit/central controller is used to control the driving of the vehicle and/or the processing of other radar detection devices according to the output of the at least one radar detection device.
  • the central processing unit/central controller may be located in the vehicle, or other possible locations, based on the realization of the control.
  • An embodiment of the present application also provides a vehicle, which includes at least one radar detection device mentioned in the foregoing embodiment.
  • An embodiment of the present application also provides a roadside unit (RSU), which includes at least one radar detection device mentioned in the foregoing embodiment.
  • RSU roadside unit
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, for example, multiple units or components may be divided. It can be combined or integrated into another device, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of a software product, and the software product is stored in a storage medium. It includes several instructions to make a device (which may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请实施例提供一种信号处理方法、装置及存储介质,可以应用于雷达领域,上述雷达可以是毫米波雷达、分布式雷达或者协同式雷达。其中,该方法包括:根据第一信号以及第二信号进行信道侦听,并根据该信道侦听的结果,确定用于目标探测的第一时频资源;其中,信道侦听包含在第一时域范围内通过第一侦听信号执行信道侦听、以及在第二时域范围内通过第二侦听信号执行信道侦听,第一时频资源的时域资源为第一时域范围。该技术方案,能够保证降低雷达探测装置的相互干扰,尽量避免出现虚警或者干扰平台,提高了雷达探测装置目标检测的准确度,在一定程度上保证了驾驶安全性和用户舒适性。

Description

信号处理方法、装置及存储介质 技术领域
本申请涉及通信技术领域,尤其涉及一种信号处理方法、装置及存储介质。
背景技术
雷达(尤其是毫米波雷达)在车辆行驶过程中能够预先察觉到可能发生的危险,使得自动驾驶车辆或驾驶员及时采取必要的规避手段,有效增加了车辆驾驶的安全性和舒适性。但是,随着车载雷达以及包含雷达的路侧单元的渗透率的提升,雷达之间的互干扰越来越严重,极大的降低了雷达监测概率或提升了虚警概率,对驾驶安全性和用户舒适性造成了严重影响。
现有技术中,为了避免雷达之间的干扰,雷达在使用过程中可以通过随机化选择发射时间,避免了周期性的雷达信号对其他车辆或者路侧单元上的雷达的干扰。
然而,虽然随机化选择发射时间可以降低雷达之间的周期性干扰,但是并不能消除雷达之间的干扰,当雷达接收到其他雷达的发射信号时,不管该发射信号是否为周期性的,其均会对目标的测量造成影响,造成检测结果不准确,同样存在驾驶安全性和用户舒适性的问题。
发明内容
本申请实施例提供一种信号处理方法、装置及存储介质,用于解决由于现有目标探测方法的检测结果不准确,造成驾驶安全性和用户舒适性差的问题。
第一方面,本申请实施例提供一种信号处理方法,包括:根据第一信号以及第二信号进行信道侦听,所述信道侦听包含在第一时域范围内通过第一侦听信号执行信道侦听、以及在第二时域范围内通过第二侦听信号执行信道侦听;
根据所述信道侦听的结果,确定用于目标探测的第一时频资源,所述第一时频资源的时域资源为所述第一时域范围;
其中:所述第一时域范围和所述第二时域范围为L个时域范围中的时域范围,所述L为大于1的正整数;其中,所述L个时域范围中的任一个时域范围与其它L-1个时域范围中的至少一个时域范围部分重叠,所述L个时域范围中任两个时域范围的时域起始位置的差值的绝对值大于或等于第一阈值且小于或等于第二阈值;以及
所述第一侦听信号对应所述第一信号中位于所述第一时域范围中的至少一个第一扫频周期中的第一子信号,所述第二侦听信号对应所述第二信号中位于所述第二时域范围内的至少一个第二扫频周期中的第二子信号。
可选的,所述方法还包括:生成所述第一信号以及所述第二信号;或者,生成所述第一侦听信号和所述第二侦听信号。
本申请实施例提供的方法可由探测装置执行,探测装置例如为雷达探测装置或者雷达探测装置中的芯片或者集成电路。在本申请实施例中,基于第一信号以及第二信号进行信道侦听,确定的用于目标探测的第一时频资源准确性高,从而能够保证雷达探测装置的相互干扰区域消失,避免出现虚警或者干扰平台的问题,提高了雷达探测装置目标检测的准确度,在一定程度上保证了驾驶安全性和用户舒适性。
在第一方面的一种可能设计中,所述第一子信号和所述第二子信号的时域资源不重叠。
第一子信号和第二子信号的时域资源不重叠,即第一侦听信号和第二侦听信号的时域资源互相不重叠,这样第一雷达探测装置基于第一侦听信号和第二侦听信号执行信道侦听后,确定的用于目标探测的第一时频资源才可能与其他雷达探测装置占用的时域资源不重叠,从而避免了后续雷达探测装置之间的相互干扰问题。
在第一方面的另一种可能设计中,所述第一阈值和/或所述第二阈值是预先定义的,或者,所述第一阈值和/或所述第二阈值是根据预先配置的规则确定的。
在该种可能设计中,通过在第一雷达探测装置中预先定义第一阈值和/或第二阈值,或者,预先配置第一阈值和/或第二阈值的配置规则,这样第一雷达探测装置在需要进行信道侦听时,可以准确的确定出每个信号对应的时域范围,从而确定出与其他雷达探测装置使用的不重叠时域资源,进而可以避免雷达探测装置之间的相互干扰。
在第一方面的再一种可能设计中,所述L个时域范围中任两个相邻的时域范围的起始位置的差值相同。
在本实施例中,L个时域范围的时域起始位置在时域上是等间距划分的,能够简化探测信号的组成,易于实现。
可选的,所述L个时域范围中任两个相邻的时域范围的起始位置的差值小于或等于1/L倍的Tc,所述Tc为雷达探测装置的工作周期。
通过错开L个时域范围中任意两个时域范围的时域起始位置,使得雷达探测装置的干扰混频信号落在中频检测带宽以外,从而可以降低雷达探测装置之间的互干扰。
在第一方面的又一种可能设计中,所述方法还包括:
生成第三信号,所述第三信号对应的时域范围为第三时域范围;
其中,所述信道侦听还包括在所述第三时域范围内通过第三侦听信号执行信道侦听,所述第三时域范围属于所述L个时域范围,所述第三时域范围不同于所述第一时域范围和所述第二时域范围,所述第三侦听信号对应所述第三信号中位于所述第三时域范围内的至少一个第三扫频周期中的第三子信号。
在本实施例中,第一雷达探测装置还生成第三信号,且第三信号对应的第三时域范围是上述L个时域范围中的、且不同于第一时域范围和第二时域范围的时域范围,这样第一雷达探测装置可以同时在不同时域范围内的扫频周期中进行侦听,从而可以在较多的时频资源中确定出最合适的时域范围对应的时频资源。
在第一方面的又一种可能设计中,所述根据所述第一信号以及所述第二信号进行信道侦听,包括:在多个侦听区域内进行侦听,所述多个侦听区域中的任两个区域在时域上的起始位置的差值的绝对值为M的整数倍,所述M为预先定义或者预先配置的。
第一雷达探测装置通过在多个侦听区域内进行侦听,且任意两个侦听区域在时域上的起始位置的差值的绝对值可以是M的整数倍,例如,该M为预设的侦听步长,该侦听步 长可以根据第一雷达探测装置的处理能力进行预先配置或预先定义,通常情况下,该侦听步长越小,侦听得越精细,但是处理时间会更长。
在第一方面的又一种可能设计中,所述根据所述第一信号以及所述第二信号进行信道侦听,包括:
在预先定义或者配置的时域资源上进行信道侦听,所述时域资源包含以下的至少一个:第一探测装置的刷新周期、所述第一探测装置的静默刷新周期;其中,所述刷新周期包括空闲时间段和发射时间段。
在本实施例中,第一雷达探测装置可以在刷新周期的空闲时间段内进行信道侦听,也可以在刷新周期的发射时间段内进行信道侦听,还可以在静默刷新周期内进行信道侦听,这样可以确定出最合适(最空闲)的时频资源用于后续的目标探测。
第二方面,本申请实施例提供一种信号处理装置,所述方法包括:侦听单元和确定单元;
所述侦听单元,用于根据第一信号以及第二信号进行信道侦听,所述信道侦听包含在第一时域范围内通过第一侦听信号执行信道侦听、以及在第二时域范围内通过第二侦听信号执行信道侦听;
所述确定单元,用于根据所述信道侦听的结果,确定用于目标探测的第一时频资源,所述第一时频资源的时域资源为所述第一时域范围;
其中:
所述第一时域范围和所述第二时域范围为L个时域范围中的时域范围,所述L为大于1的正整数;其中,所述L个时域范围中的任一个时域范围与其它L-1个时域范围中的至少一个时域范围部分重叠,所述L个时域范围中任两个时域范围的时域起始位置的差值的绝对值大于或等于第一阈值且小于或等于第二阈值;以及
所述第一侦听信号对应所述第一信号中位于所述第一时域范围中的至少一个第一扫频周期中的第一子信号,所述第二侦听信号对应所述第二信号中位于所述第二时域范围内的至少一个第二扫频周期中的第二子信号。
可选的,所述装置还包括:生成单元;
所述生成单元用于生成所述第一信号以及所述第二信号;或者,所述生成单元用于生成所述第一侦听信号和所述第二侦听信号。
在第二方面的一种可能设计中,所述第一子信号和所述第二子信号的时域资源不重叠。
在第二方面的另一种可能设计中,所述第一阈值和/或所述第二阈值是预先定义的,或者,所述第一阈值和/或所述第二阈值是根据预先配置的规则确定的。
在第二方面的再一种可能设计中,所述L个时域范围中任两个相邻的时域范围的起始位置的差值相同。
可选的,所述L个时域范围中任两个相邻的时域范围的起始位置的差值小于或等于1/L倍的Tc,所述Tc为雷达探测装置的工作周期。
在第二方面的又一种可能设计中,所述生成单元,还用于生成第三信号,所述第三信号对应的时域范围为第三时域范围;
其中,所述信道侦听还包括在所述第三时域范围内通过第三侦听信号执行信道侦听,所述第三时域范围属于所述L个时域范围,所述第三时域范围不同于所述第一时域范围和 所述第二时域范围,所述第三侦听信号对应所述第三信号中位于所述第三时域范围内的至少一个第三扫频周期中的第三子信号。
在第二方面的又一种可能设计中,所述侦听单元,具体用于在多个侦听区域内进行侦听,所述多个侦听区域中的任两个区域在时域上的起始位置的差值的绝对值为M的整数倍,所述M为预先定义或者预先配置的。
在第二方面的又一种可能设计中,所述侦听单元,具体用于在预先定义或者配置的时域资源上进行信道侦听,所述时域资源包含以下的至少一个:第一探测装置的刷新周期、所述第一探测装置的静默刷新周期;其中,所述刷新周期包括空闲时间段和发射时间段。
关于第二方面或第二方面的各种可能的实施方式的技术效果,可以参考对于第一方面或第一方面的相应的实施方式的技术效果的介绍。
第三方面,本申请实施例提供一种探测装置,包括:至少一个处理器以及至少一个存储器,所述至少一个存储器存储有程序,所述处理器执行所述程序时实现如上述第一方面及各种可能设计所述的方法。
第四方面,本申请实施例提供另一种探测装置,该探测装置例如为如前所述的第一雷达探测装置。该探测装置包括处理器、发射器和接收器,处理器、发射器和接收器相互耦合,用于实现上述第一方面或第一方面的各种可能的设计所描述的方法。
示例性地,所述探测装置为设置在探测设备中的芯片。示例性的,所述探测设备为雷达。其中,发射器和接收器例如通过通信设备中的天线、馈线和编解码器等实现,或者,如果所述探测装置为设置在探测设备中的芯片,那么发射器和接收器例如为芯片中的通信接口,该通信接口与探测设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。
第五方面,本申请实施例提供再一种探测装置。该探测装置可以为上述方法设计中的第一雷达探测装置。示例性地,所述探测装置为设置在探测设备中的芯片。示例性地,所述探测设备为雷达。该探测装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该探测装置执行上述第一方面或第一方面的任意一种可能的实施方式中的方法。
其中,该探测装置还可以包括通信接口,该通信接口可以是探测设备中的收发器,例如通过所述探测装置中的天线、馈线和编解码器等实现,或者,如果该探测装置为设置在探测设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第六方面,本申请实施例提供一种通信系统,该通信系统可以包括上述第二方面至第五方面所述探测装置中的至少一种,或者,包括其他的探测装置,或者包括目标物体等。
第七方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如第一方面及各种可能设计所述的方法。
第八方面,本申请实施例提供一种芯片系统,所述芯片系统包括:
存储器:用于存储指令;
处理器,用于从所述存储器中调用并运行所述指令,使得安装有所述芯片系统的通信设备执行如第一方面及各种可能设计所述的方法。
第九方面,本申请实施例提供一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如第一方面及各种可能设计所述的方法。
本申请实施例提供的信号处理方法、装置及存储介质,通过第一信号以及第二信号进行信道侦听,该信道侦听包含在第一时域范围内通过第一侦听信号执行信道侦听、以及在第二时域范围内通过第二侦听信号执行信道侦听,最后根据该信道侦听的结果,确定用于目标探测的第一时频资源,该第一时频资源的时域资源为第一时域范围,从而可以在第一时频资源上发送第一信号。该技术方案基于第一信号以及第二信号进行信道侦听,确定的用于目标探测的第一时频资源准确性高,从而能够保证雷达探测装置的相互干扰区域消失,避免出现虚警或者干扰平台的问题,提高了雷达探测装置目标检测的准确度,在一定程度上保证了驾驶安全性和用户舒适性。
附图说明
图1为毫米波雷达的工作原理图;
图2为调频连续波单周期的时间幅度图;
图3为调频连续波多周期时间频率图;
图4为发射信号、接收信号与中频信号的关系示意图;
图5为车载雷达之间相互干扰的示意图;
图6和图7为一种可能的虚假中频信号的示意图;
图8和图9为一种可能的干扰信号淹没目标信号的示意图;
图10和图11为雷达干扰平台的示意图;
图12为另一种可能的解决方案示意图;
图13为一种可能的漏检结果示意图;
图14为又一种可能的解决方案示意图;
图15为再一种可能的解决方案示意图;
图16为本申请实施例的一种可能的应用场景示意图;
图17为本申请实施例提供的信号处理方法实施例一的流程示意图;
图18为第一信号、第二信号对应的时域范围在时域上分布示意图;
图19为3个时域范围的时域位置关系示意图;
图20为计算L个时域范围中任意两个时域范围的时域起始位置的差值的示意图;
图21为第一信号、第二信号和第三信号对应的时域范围在时域上的分布示意图;
图22为在多个侦听区域进行信道侦听的一种可能设计的示意图;
图23为在多个侦听区域进行信道侦听的一种可能设计的示意图;
图24为第一雷达探测装置的工作状态时间分布示意图;
图25为本申请实施例提供的信号处理装置的一种可能的结构示意图;
图26为本申请实施例提供的信号处理装置的另一种可能的结构示意图;
图27为本申请实施例提供的信号处理装置的再一种可能的结构示意图;
图28为本申请实施例提供的一种探测装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)雷达探测装置,例如为雷达(radar),或者也可以是其他的用于进行探测(例如,测距)的装置。
2)雷达,或称为雷达装置,也可以称为探测器、雷达探测装置或者雷达信号发送装置等。其工作原理是通过发射信号(或者称为探测信号),并接收经过目标物体反射的反射信号,来探测相应的目标物体。雷达所发射的信号可以是雷达信号,相应的,所接收的经过目标物体反射的反射信号也可以是雷达信号。
3)雷达探测装置的发射周期(或者,称为雷达探测装置的扫频周期、扫频时间或扫频时长等),是指雷达探测装置进行一个完整波形的雷达信号发射的周期。雷达探测装置一般会在一段连续的时长内进行多个扫频周期的雷达信号发送。
4)雷达探测装置的初始频率。在一个发射周期的开始,雷达探测装置的会以一个频率发射雷达信号,该频率称为雷达探测装置的初始频率。并且雷达探测装置的发射频率以该初始频率为基础在发射周期内变化。
5)雷达探测装置的扫频带宽,雷达探测装置发送的雷达信号的波形所占用的带宽。这里需要说明的是,“扫频带宽”是为了阐述方便而定义的,技术上为雷达探测装置发送的雷达信号的波形所占用的带宽。进一步的,雷达探测装置发送的雷达信号的波形所占用的频带可以称为扫频频带。
6)调频连续波(frequency modulated continuous wave,FMCW),频率随时间变化的电磁波。
7)线性调频连续波,频率随时间线性变化的电磁波。这里的线性变化一般是指在一个发射周期内线性变化。具体的,线性调频连续波的波形一般是锯齿波或者三角波,或者也可能存在其它可能的波形,例如,步进频波形等。
8)雷达探测装置的最大测距距离,或称雷达探测装置的最大探测距离,是与雷达探测装置的配置有关的参数(例如,与雷达探测装置的出厂设置参数相关)。例如雷达探测装置为雷达,长距自适应巡航控制(adaptive cruise control,ACC)雷达的最大测距距离为250m,中距雷达的最大测距距离为70~150m。
9)中频(intermediate frequency,IF)信号,以雷达探测装置是雷达为例,雷达的本振信号与雷达接收的反射信号(是雷达的发射信号经过目标物体反射后的信号)经过混频器处理后的信号,即为中频信号。具体来说,通过振荡器产生的调频连续波信号,一部分作为本振信号,一部分作为发射信号通过发射天线发射出去,而接收天线接收的发射信号的反射信号,会与本振信号混频,得到所述的“中频信号”。通过中频信号,可以得到目标物体的位置信息、速度信息或角度信息中的一个或多个。其中,位置信息可以是目标物体相对于当前的雷达的位置信息,速度信息可以是目标物体相对于当前的雷达的速度信息,角度信息可以是目标物体相对于当前的雷达的角度信息。进一步的,中频信号的频率称为 中频频率。
10)雷达信号的最大传播时延,雷达信号的最大传播时延是根据当前雷达本身的属性或参数确定的,上述属性或参数具体可以包括以下中的至少一个:探测装置(作为干扰源的探测装置)雷达信号的发射功率,探测装置(当前探测装置)接收机的灵敏度。其中,详细来说,另一雷达信号经历一定的传播时延后会被当前雷达接收到,经过所述传播时延后,如果干扰信号的功率大于接收机灵敏度,则所述干扰信号会对当前雷达产生干扰,如果干扰信号的功率不大于接收机灵敏度,则所述干扰信号不会对当前雷达产生干扰,所述干扰信号会被处理为噪声。那么,经过传播时延后、干扰信号的功率若等于接收机灵敏度,则所述传播时延称为雷达信号的最大传播时延。
11)“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一信息和第二信息,只是为了区分不同的信息,而并不是表示这两种信息的内容、优先级、发送顺序或者重要程度等的不同。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术特征。
随着社会的发展,现代生活中越来越多的机器向自动化、智能化发展,移动出行用的汽车也不例外,智能汽车正在逐步进入人们的日常生活中。近些年,高级驾驶辅助系统(advanced driving assistant system,ADAS)在智能汽车中发挥着十分重要的作用,它是利用安装在车上的各式各样的传感器,在汽车行驶过程中随时来感应周围的环境,收集数据,进行静止、移动物体的辨识、侦测与追踪,并结合导航仪地图数据,进行系统的运算与分析,从而预先让驾驶者察觉到可能发生的危险,有效增加汽车驾驶的舒适性和安全性。可以说,真正的无人驾驶是ADAS发展到极致的产物。在无人驾驶架构中,传感层被比作为汽车的“眼睛”,包括车载摄像头等视觉系传感器和车载毫米波雷达、车载激光雷达和车载超声波雷达等雷达系传感器。毫米波雷达由于成本较低、技术比较成熟,率先成为无人驾驶系统主力传感器。目前ADAS已开发出十多项功能,其中自适应巡航、自动紧急制动、变道辅助、或盲点监测等都离不开车载毫米波雷达。
毫米波是指波长介于1~10mm之间的电磁波,所对应的频率范围为30~300GHz。在这个频段,毫米波相关的特性使其非常适合应用于车载领域。带宽大:频域资源丰富,天线副瓣低,有利于实现成像或准成像;波长短:雷达设备体积和天线口径得以减小,重量减轻;波束窄:在相同天线尺寸下毫米波的波束要比微波的波束窄得多,雷达分辨率高;穿透强:相比于激光雷达和光学系统,更加具有穿透烟、灰尘和雾的能力,可全天候工作。
车载毫米波雷达系统,一般包括振荡器、发射天线、接收天线、混频器、处理器和控制器等装置。图1为毫米波雷达的工作原理图。如图1所示,振荡器会产生一个频率随时 间线性增加的雷达信号,该雷达信号一般是调频连续波。该雷达信号的一部分经过定向耦合器输出至混频器作为本振信号,一部分通过发射天线发射出去,接收天线接收发射出去的雷达信号遇到车辆前方的物体后反射回来的雷达信号,混频器将接收的雷达信号与本振信号进行混频,得到中频信号。中频信号包含了目标物体与该雷达系统的相对距离、速度、以及角度等信息。中频信号经过低通滤波器并经过放大处理后输送到处理器,处理器对接收的信号进行处理,一般是对接收的信号进行快速傅里叶变换,以及频谱分析等,以得到目标物体相对于该雷达系统的距离、速度和角度等信息。最后,处理器可以将得到的信息输出给控制器,以控制车辆的行为。
毫米波雷达的调频连续波波形一般是锯齿波或者三角波,以下以锯齿波为例详细介绍一下毫米波雷达的测距原理,三角波的测距原理与之类似。
图2为调频连续波单周期的时间幅度图,图3为调频连续波多周期时间频率图。如图2所示,线性调频连续波是频率随时间线性变化的信号,如图3所示,调频连续波的周期为T c,斜率为a 0,带宽为B,其起始频率为b 0。图2所示的一个调频连续波信号也被称为一个线性调频脉冲(chirp)信号。
毫米波雷达的振荡器输出的单周期的调频连续波的等效基带信号可以表示为:
Figure PCTCN2020079601-appb-000001
其中,A表示等效基带信号的幅度,a 0表示等效基带信号的斜率,b 0表示等效基带信号在Y轴的截距,
Figure PCTCN2020079601-appb-000002
表示等效基带信号的初相,exp表示e的指数函数,N是连续发送调频连续波的周期数。由于频率定义为相位相对于时间的变化率。因此,上述等效基带信号的频率为:
Figure PCTCN2020079601-appb-000003
公式1.2的图像正如图3所示。
示例性的,图4为发射信号、接收信号与中频信号的关系示意图。振荡器在第n个周期发出的调频连续波的等效基带信号经过上变频后,由毫米波雷达的发射天线向外辐射,发射信号可表示为:
Figure PCTCN2020079601-appb-000004
其中,f c是载波频率。该信号遇到障碍物后,会反射回来,再被该毫米波雷达接收。发射信号的波形与反射信号的波形的形状相同,只是反射信号的波形相对于发射信号的波形会有一段时延τ,可参考图4。在图4中,回波信号就是反射信号,因而,第n个周期调频连续波的接收信号可表示为:
Figure PCTCN2020079601-appb-000005
其中,A′是振荡器发出的等效基带信号经过发射天线增益、目标反射、传播损耗、接 收天线增益后的信号的幅度,τ是从毫米波雷达的发射机发送雷达信号,经过目标反射到该毫米波雷达的接收机接收到回波信号(也就是反射信号)的总时延,如图4所示,这个时延是2倍距离/光速。另外在图4中,τ max表示该毫米波雷达的最大探测距离所对应的回波时延,也就是说,τ max是在该毫米波雷达与目标物体之间的距离是该毫米波雷达所能探测的最大距离时,该毫米波雷达所接收的反射信号相对于发射信号的时延。
Figure PCTCN2020079601-appb-000006
其中,τ 0是参考距离造成的雷达回波时延,v是目标与雷达的径向相对速度,c为光速。考虑到速度v远远小于光速c,对于基带信号,在后续检测中,上式第二项贡献很小,所以在基带信号中,忽略公式(1.5)中的第二项;但是在载频中,上式公式(1.5)中的第二项对速度检测起关键作用,所以保留该项,因而,对接收的等效基带信号进行下变频后得到的信号为:
Figure PCTCN2020079601-appb-000007
该毫米波雷达的混频器将接收信号与发射信号混频,并经过中频滤波器后,输出中频信号,中频信号表示为:
Figure PCTCN2020079601-appb-000008
其中,
Figure PCTCN2020079601-appb-000009
是目标与探测雷达的径向相对速度形成的多普勒频率。
将该中频信号送入该毫米波雷达的处理器进行快速傅里叶变换等处理,可得到中频信号的频率f IF
另外,如图4所示,中频信号的频率为发射信号的波形的斜率与时延τ的乘积,即:
Figure PCTCN2020079601-appb-000010
因此,该毫米波雷达与目标物体之间的距离d为:
Figure PCTCN2020079601-appb-000011
通过上面的推导过程可以看出,发射信号与接收信号之间的频率差(即,中频信号的频率)和时延呈线性关系:目标物体越远,接收反射信号的时间就越晚,那么反射信号和发射信号之间的频率差值就越大。因此,通过判断中频信号的频率的高低就可以确定该雷达与目标物体之间的距离。另外,上述的对雷达信号的处理过程只是示例,对于具体的雷达处理过程不做限制。
对于速度检测,由(公式1.7)可以看出,相邻两个周期的回波中频信号在同一个时间采样点上的相位差是一个定值,
Figure PCTCN2020079601-appb-000012
对连续多个周期的回波中频信号在同一个时间采样点上的相位序列进行傅里叶变换可以得到多普勒频率f d,其和目标径向相对速度v的关系可以表示为
Figure PCTCN2020079601-appb-000013
其中,λ为雷达信号波长。
故雷达与目标的径向相对速度
Figure PCTCN2020079601-appb-000014
随着雷达渗透率(例如车载和/或路侧单元)的提升,雷达之间的互干扰越来越严重,将会极大降低雷达探测概率或提升雷达探测的虚警概率,对驾驶安全或舒适性造成不可忽视的影响。
图5为车载雷达之间相互干扰的示意图。参考图5,雷达1发出发射信号,并接收该发射信号在目标物体上反射回来的反射信号。在雷达1接收反射信号的同时,雷达1的接收天线也接收到了雷达2的发射信号或者反射信号,那么雷达1所接收的雷达2的发射信号或雷达2的反射信号对于雷达1来说就是干扰信号。
例如,令雷达1为观测雷达,其调频连续波的斜率是a 0,截距是b 0,周期是T c。雷达2为干扰雷达,其调频连续波的斜率是a 1,截距是b 1,此时假设b 0=b 1。雷达1的最大测距距离对应的回波时延是τ max(即,在公式1.6中带入雷达的最大探测距离所计算出的时延。例如雷达的最大探测距离为250m,带入公式1.6所算出的时延为1.67μs),到达雷达1的接收机的雷达2的干扰信号的时延是τ 1。考虑雷达发射时刻存在定时误差为Δτ(例如,由于全球卫星定位系统(global positioning system,GPS)的定时误差产生的发射时刻的误差,例如60ns)。其中,雷达检测接收信号的时间区间是τ max~T c
图6和图7为一种可能的虚假中频信号的示意图。若雷达1发送的雷达信号的斜率和雷达2发送的雷达信号的斜率一致,即a 0=a 1,且两者的工作频带有重叠,则会出现虚警。
此时在雷达接收机处形成的中频信号如下:
Figure PCTCN2020079601-appb-000015
其中,
Figure PCTCN2020079601-appb-000016
A′ i是干扰雷达信号经过发射天线增益、目标反射、传播损耗、接收天线增益后的信号幅度,
Figure PCTCN2020079601-appb-000017
是干扰雷达信号的初相,
Figure PCTCN2020079601-appb-000018
是干扰雷达信号由于目标与探测雷达的径向相对速度形成的多普勒频率,τ i是干扰雷达信号从发射机发射,到被干扰雷达接收机接收到信号的时延。
如图6所示,雷达1向目标物体发射信号,并从目标物接收反射信号,但是在雷达1发射信号和接收到反射信号之间的时间范围内,雷达1的接收天线接收到了雷达2的发射信号或者反射信号(虚线)。雷达1的信号波形与雷达2的信号波形一致且两者的扫频带宽相同,在雷达1的目标回波观察范围内,雷达1接收到了对应频率的虚线所示的信号,则雷达1认为有“目标物体1”存在;雷达1在信号处理的时间区间(τ max~T c)内检测到虚线所示的信号和实线所示的反射信号,那么雷达1会把接收到的虚线所示的信号误认为是前方存在的物体的反射信号,此时就会产生虚假的中频信号。雷达1经过快速傅里叶变换后进行频谱分析可以发现两个峰值,如图7所示,每个峰值对应一个目标物体,雷达1认为同时存在“目标物体1”以及“目标物体2”。雷达1误认为前方存在“目标物体1”,而实际上该“目标物体1”是不存在的,这就被称为“ghost”或者“虚警”。虚警产生后会使得自动驾驶汽车在前方并没有物体的情况下减速或急刹,降低了驾驶的舒适度。
图8和图9为一种可能的干扰信号淹没目标信号的示意图。如图8所示,雷达1向目标物体发射信号,并从目标物体接收反射信号。但是在雷达1的目标回波观察范围内,雷达1的接收天线接收到了雷达2的发射信号或者反射信号(虚线)。雷达1的信号波形与 雷达2的信号波形在斜率上存在差异,在雷达1在信号检测的时间区间(τ max~T c)内,会同时检测到雷达1的反射信号和雷达2的相关信号,在将检测到的雷达2的相关信号与雷达1的反射信号混频之后,会产生一个包含各种频率分量的中频信号,具体如下:
Figure PCTCN2020079601-appb-000019
其中,
Figure PCTCN2020079601-appb-000020
该中频信号经过快速傅里叶变换后如图9所示,会出现一个干扰平台,使得真正的目标物体的“凸出”程度不够,对检测带来困难,提升了漏检的可能。漏检产生后会使得自动驾驶汽车在前方有物体的情况下,误以为没有物体,不采取减速或制动,造成交通事故,降低车辆行驶的安全性。
图10和图11为雷达干扰平台的示意图。具体来说,雷达1的信号波形与雷达2的信号波形在斜率上存在差异,假若雷达1的波形斜率为α 0,雷达2的波形斜率为α 1,那么两个斜率的差异可以分为以下两种情况:
当α 1<α 0时,如图10所示,会产生干扰平台问题,从而导致漏检问题。
当α 1>α 0时,如图11所示,也会产生干扰平台问题,从而导致漏检问题。
这里需要说明的是,本领域技术人员可知,在某一时刻或一段时间接收到的信号,可能为干扰信号,可能为目标物的反射信号,通过时间和发射/反射信号频率的相关变化情况能清楚的体现雷达的探测情况。因此,本申请实施例后续的阐述中,大多以反映发射/反射信号的斜率(单位时间内频率的变化范围)的曲线图来表示雷达之间的互干扰情况。
而如果降低雷达探测概率降低,或雷达探测的虚警概率提升,对驾驶安全或舒适性造成不可忽视的影响。因此,如何降低雷达之间的干扰是必须要解决的问题。
为了解决上述问题,在一种可能的解决方案中,雷达使用随机的暂停时间长度,使得自身的发射时间随机化,从而避免周期性的对其它雷达产生干扰。随机发射时间虽然可以降低周期性干扰的可能性,但是不能保证消除雷达间的干扰。当干扰被雷达接收机接收到时,不管干扰是否是周期性的,对目标的测量都会造成影响。
在另一种可能的解决方案中,可以设置不同雷达具有不同的波形斜率、周期等参数。
图12为另一种可能的解决方案示意图。如图12所示,雷达1的信号的波形的斜率、发射周期等参数与雷达2的不一致,如此一来,即使雷达1接收到了雷达2的信号,由于其信号的波形不一致,在通过混频器时,即两者的频率在做差时,不会产生恒定频率的中频信号。因为只有恒定频率的中频信号才会在在频谱分析中体现为峰值信号,所以该方法能够减小ghost发生的概率。但是,若雷达1接收到了雷达2的信号,经过混频器后,干扰信号落在有效的接收中频带宽内,就会抬升干扰信号的强度。干扰信号水平经过抬升后,会使得原有目标被干扰淹没掉,参见图13。图13为一种可能的漏检结果示意图。产生的后果即为车辆前方有障碍物却没有被检测出来,从而产生漏检,这对车辆行驶的安全造成了恶劣的影响,尤其是无人驾驶车辆的安全。
图14为又一种可能的解决方案示意图。该方案所采用的技术为雷达波形频率切换(shift)技术。若雷达在其扫频频带检测到有其他雷达产生的干扰后,跳到另一个频带,以防止多雷达之间的干扰。频率切换(shift)技术中频率切换(shift)的间隔可以大于雷达扫频带宽,如图14,这种情况下各雷达波形完全频分,没有重叠情况,但是频率切换(shift) 间隔的设置使得频域资源被占用太多,而目前分配给雷达的频域资源是有限的。又或者仍然应用频率切换(shift)技术,但是雷达在工作频段检测到有其他雷达产生的干扰后,进行随机频率切换(shift),如图15。图15为再一种可能的解决方案示意图。这种情况下能在一定程度上减弱干扰,但是完全随机化的频率切换(shift)难免会造成频率切换(shift)后的两个雷达的波形在频域上过于接近而导致出现ghost或者干扰信号的强度提升而导致物体被漏检。
鉴于此,本申请实施例提供了一种信号处理方法,在本申请实施例中,通过第一信号以及第二信号进行信道侦听,且该信道侦听包含在第一时域范围内通过第一侦听信号执行信道侦听、以及在第二时域范围内通过第二侦听信号执行信道侦听,再根据该信道侦听的结果,确定用于目标探测的第一时频资源,该第一时频资源的时域资源为第一时域范围;也即,本申请实施例中利用第一信号和第二信号可以实现雷达正交时域波形的高效侦听,并且第一信号和第二信号的实现简单,使得雷达探测装置在没有同步信息的情况下,仍然可以进行协同,雷达探测装置根据侦听结果选择合适的时频资源进行工作,使得一个雷达探测装置发送的雷达信号就不会落到其他雷达探测装置的目标回波观察范围内,而其他雷达探测装置所发送的雷达信号也不会落到第一雷达探测装置的目标回波观察范围内,从而避免了雷达探测装置之间的干扰。
图16为本申请实施例的一种可能的应用场景示意图。如图16所示,该应用场景可以为无人驾驶、自动驾驶、智能驾驶、网联驾驶等。雷达探测装置可以安装在机动车辆(例如无人车、智能车、电动车、数字汽车等)、无人机、轨道车、自行车、信号灯、测速装置或网络设备(如各种系统中的基站、终端设备)等等。本申请实施例既适用于车与车之间的雷达探测装置,也适用于车与无人机等其他装置的雷达探测装置,或其他装置之间的雷达探测装置。另外,雷达探测装置可以安装在移动设备上,例如安装在车辆上作为车载雷达探测装置,或者也可以安装在固定的设备上,例如安装在路侧单元(road side unit,RSU)等设备上。本申请实施例对雷达探测装置安装的位置和功能等不做限定。
本申请实施例可以由探测装置来执行,例如执行本申请实施例提供的方法的探测装置可以称为第一探测装置。为阐述方便,本申请实施例下文中多以探测装置为雷达探测装置、雷达探测装置为雷达,例如毫米波雷达,为例,进行实施例的解释和说明。但是本申请实施例不限定探测装置仅为雷达探测装置,也不限制雷达探测装置仅为毫米波雷达或者雷达。进一步,本申请实施例中,在L个时域范围中的相应的时域范围发送雷达信号的多个雷达探测装置,可以有着相同的扫频周期。例如,在该多个时域范围内的第1个时域范围发送雷达信号的为雷达探测装置1,在该多个时域范围内的第2个时域范围发送雷达信号的为雷达探测装置2,那么雷达探测装置1的扫频周期和雷达探测装置2的扫频周期相同。
另外,探测装置所发送的信号可以是无线电信号,如果以探测装置是雷达探测装置为例,那么可以认为探测装置所发送的信号是雷达信号。本申请实施例就以探测装置是雷达探测装置、探测装置所发送的信号是雷达信号为例。
需要说明的是,在L个时域范围内,有多个雷达探测装置在相应的时域范围上发射雷达信号。其中,时域范围可以是指一段连续的时长,雷达探测装置可以在这段连续的时长内进行一个或多个扫频周期的无线电信号的发送。另外,时域范围也可以称为时域单元、时域资源、时间单元、时间资源或时长等,对于具体的名称不做限制。一个时域范围的长 度,可以等于雷达探测装置的发射周期(或称为扫频周期、扫频时长等)。也可以说,L个时域范围中的每个时域范围的时域长度都可以是雷达探测装置的扫频周期。或者,一个时域范围的长度,可以等于雷达探测装置的扫频周期的整数倍。例如,某一时域范围的时长为500个扫频周期,则相应的雷达探测装置在这个时域范围内需要发射500个扫频周期的雷达信号。在一些场景下,L个时域范围的时域长度相同。在另一些场景下,L个时域范围的时域长度可以不完全相同。
另外需要说明的是,在一种可能的情况下,雷达探测装置以一定的发射定时进行雷达信号的发射,但是由于实际通信场景、环境或硬件设备存在的可能的差异,雷达信号的实际发送时刻可能会存在误差,也可以称为信号发射误差。例如,由GPS的精度所带来的误差。又一种可能的情况下,在生产制造过程中,不同的雷达探测装置由于生产制造的差异可能导致在信号发射时出现些许误差。在其他情况下,还可能存在其它原因导致的误差。对于上述所有可能的误差,本申请实施例所提供的方法在具体实现时都可以考虑。或者,本申请实施例也可以忽略这些误差,按照统一的标准和发射定时,进行方案阐述。需要明确的是,本申请实施例在阐述技术方案时,上述误差无论是被考虑还是被忽略,都不实质影响本申请实施例的实现及有益效果。
下面结合附图介绍本申请实施例提供的技术方案。
图17为本申请实施例提供的信号处理方法实施例一的流程示意图。在下文的介绍过程中,以该方法应用于图16所示的网络架构为例。图17所示的实施例提供的方法,可以由图16所示的网络架构中的雷达探测装置来执行,例如将该雷达探测装置称为第一雷达探测装置。另外在下文的介绍过程中,雷达探测装置所发送的信号,均可以是雷达信号,自然的,所接收的回波信号也可以是雷达信号。如图17所示,该信号处理方法可以包括如下步骤:
S1701、生成第一信号以及第二信号。
在本申请的实施例中,第一雷达探测装置可以是需要发送雷达信号的雷法探测装置,因而,当第一雷达探测装置有发送雷达信号的需求时,首先生成第一信号和第二信号等至少两个信号,第一信号和第二信号在时域上分别对应一个时域范围,每个时域范围的时频资源不同。探测装置可以基于基于第一信号和第二信号进行信道侦听,从而确定出合适的时频资源用来发送雷达信号。
可选的,在本申请的实施例中,第一信号的时域范围为第一时域范围,第二信号的时域范围为第二时域范围,第一时域范围可以包括多个第一扫频周期,每个第一扫频周期对应第一子信号。第二时域范围可以包括多个第二扫频周期,每个第二扫频周期对应第二子信号。
可选的,在本实施例中,第一信号和第二信号对应时域范围的时频资源可以是第一雷达探测装置想要使用的时频资源,这样,当第一雷达探测装置利用第一信号和第二信号进行信道侦听时,能够在所有想要使用的时频资源中确定出合适的时频资源。
需要说明的是,该步骤S1701是可选的。在另一种可能的实现方式中,S1701可以替换为:生成第一侦听信号以及第二侦听信号,所述第一侦听信号对应第一信号中的至少一个第一子信号,所述第二侦听信号对应第二信号中的至少一个第二子信号。这里的“对应”可以理解为第一侦听信号与所述第一信号中的至少一个子信号的波形、时域资源、频域资 源相同。
S1702、根据第一信号以及第二信号进行信道侦听,该信道侦听包含在第一时域范围内通过第一侦听信号执行信道侦听、以及在第二时域范围内通过第二侦听信号执行信道侦听。这里的“根据第一信号以及第二信号进行信道侦听”还可以理解为根据侦听信号进行信道侦听,即根据第一侦听信号和第二侦听信号进行信道侦听,第一侦听信号和第二侦听信号分别对应所述第一信号中的子信号以及第二信号中的子信号,并不仅限定根据第一信号以及第二信号的整体进行侦听。
在本实施例中,第一时域范围和第二时域范围为L个时域范围中的时域范围,L为大于1的正整数;其中,L个时域范围中的任一个时域范围与其它L-1个时域范围中的至少一个时域范围部分重叠,L个时域范围中任两个时域范围的时域起始位置的差值的绝对值大于或等于第一阈值且小于或等于第二阈值。
该第一侦听信号对应第一信号中位于第一时域范围中的至少一个第一扫频周期中的第一子信号,第二侦听信号对应第二信号中位于第二时域范围内的至少一个第二扫频周期中的第二子信号。通过所述第一信号中的至少一个扫频周期中的第一子信号以及所述第二信号中的至少一个第二扫频周期中的第二子信号进行侦听,可以确定两个信号对应的两个时域范围中的哪一个更适用于进行目标探测。
示例性的,第一雷达探测装置可以利用上述第一信号和第二信号进行信道侦听,具体的,第一雷达探测装置可以在第一时域范围内通过第一侦听信号执行先听后发(Listen-Before-Talk,LBT)信道接入机制,同时,第一雷达探测装置还可以在第二时域范围内通过第二侦听信号执行LBT信道接入机制,从而可以得到在第一时域范围和第二时域范围中的信道侦听结果。
可选的,一种LBT侦听机制为空闲信道评测(Clear Channel Assessment,CCA),具体的,第一雷达探测装置在0~竞争窗长度(Contention Window Size,CWS)之间均匀随机生成一个回退计数器N,分别利用第一时域范围中的至少一个第一扫频周期中的第一子信号和第二时域范围内的至少一个第二扫频周期中的第二子信号进行信道侦听,根据信道的忙碌或空闲状态确定是否将回退计数器减1,如果信道空闲,则将回退计数器减1,反之,如果信道忙碌,则将回退计数器挂起,即回退计数器N在信道忙碌时间内保持不变,直到检测到信道空闲;当回退计数器减为0时,确定信道在第一时域范围或第二时域范围内可以被使用。
示例性的,图18为第一信号、第二信号对应的时域范围在时域上分布示意图。参照图18所示,在本实施例中,第一信号的时域范围为第一时域范围,第一信号包括第一侦听信号,第一侦听信号为第一信号中位于第一时域范围中的至少一个第一扫频周期中的第一子信号,第二信号的时域范围为第二时域范围,第二信号包括第二侦听信号,第二侦听信号为第二信号中位于第二时域范围中的至少一个第二扫频周期中的第二子信号。关于第一信号、第一侦听信号和第一子信号的具体关系,第二信号、第二侦听信号和第二子信号的具体关系可以参照图18所示,此处不再赘述。
可选的,在本实施例中,参照图18所示,该第一子信号和第二子信号的时域资源不重叠,也即,第一侦听信号和第二侦听信号的时域资源不重叠,在第一子信号和第二子信号的时域资源不重叠的情况下,第一雷达探测装置基于第一侦听信号和第二侦听信号执行信 道侦听后,确定的用于目标探测的第一时频资源才可能与其他雷达探测装置占用的时域资源不重叠,避免了后续雷达探测装置之间的相互干扰问题。
可选的,参照图18所示,第一扫频周期和第二扫频周期的时长相同,第一信号和第二信号的波形相同。这样可以降低第一信号和第二信号的设计难度,提高了实现可能性。
在本申请实施例中,L个时域范围可以称为一个时域范围的集合。当然,该L个时域范围、该L个时域范围内的每个时域范围,也可以定义为其他名称,无论其名称如何定义,L个时域范围指代的是一个较大粒度的时间长度,每个时域范围指代的是一个较小粒度的时间长度。
其中,L个时域范围中的任一个时域范围与其它L-1个时域范围中的至少一个时域范围部分重叠(或者说,不完全重叠)。所谓的两个时域范围完全重叠,是指这两个时域范围完全相同,例如两个时域范围的时域起始位置相同且时域结束位置相同;或者,两个时域范围完全重叠,是指两个时域范围中一个时域范围完全包含在另一个时域范围内。而不完全重叠,就是指两个时域范围有交集,但两个时域范围不完全相同,例如两个时域范围的时域起始位置相同而时域结束位置不同,或者两个时域范围的时域起始位置不同而时域结束位置相同,或者两个时域范围的时域起始位置不同且时域结束位置不同。通过这种设计,能够实现避免完全时分的资源设计,节约时域资源;又能够适当的调整雷达探测装置在时域上的分布密度,在保证高性能通信的基础上,使得尽量多的雷达探测装置在一定时域长度内进行雷达信号的发射。
利用多个时域范围部分重叠的设计方式,可以避免将第一雷达探测装置在多个时域范围内的多个扫频周期完全在时域上分开而造成的时域资源浪费,可以有效利用时域资源,以较低的时域资源代价实现较高的抗干扰性能,同时又可以支持更多数目的雷达探测装置通信。
可以理解的是,本申请实施例中的“L”,可以是预先定义或者配置的,也可以是根据预设的规则确定的。例如,对于一个雷达探测装置来说,“L”可以体现为在一个扫频周期内存在L个候选的时域格点,每个时域格点与一定的时长构成一个时域范围。所述时域格点可以为时域范围的起始位置或者结束位置,或者是时域范围的中间位置等。这里不做具体限定。由于雷达探测装置会工作在一定的时长内,因此本申请以“时域范围”进行方案的阐述和解释。技术上,时域范围可以通过时域格点以及时长来定义,因而,第一时域范围和第二时域范围可以描述为第一时域格点和第二时域格点为L个时域格点中的时域格点,L个时域格点中的任一个时域格点与其它L-1个时域格点中的至少一个时域格点部分重叠。
示例性的,在本实施例中,L个时域范围中任两个时域范围的时域起始位置的差值的绝对值大于或等于第一阈值且小于或等于第二阈值,其中,第一阈值和第二阈值具体可以通过如下方式确定:
第一阈值和/或第二阈值是预先定义的,或者,第一阈值和/或第二阈值是根据预先配置的规则确定的。
在本实施例中,为了降低第一信号和第二信号等信号对应时域范围的确定难度,确定的获知L个时域范围中任两个时域范围的时域起始位置的关系,可以在第一雷达探测装置中预先定义第一阈值和/或第二阈值,或者,预先配置第一阈值和/或第二阈值的配置规则,这样第一雷达探测装置在需要进行信道侦听时,可以准确的确定出每个信号对应的时域范 围,从而确定出与其他雷达探测装置使用的不重叠时域资源,进而可以避免雷达探测装置之间的相互干扰。
可选的,第一阈值和/或第二阈值是根据预先配置的规则确定的可以解释为如下:第一阈值是根据至少一个回波时延和至少一个传播时延确定的,至少一个回波时延包含第一雷达探测装置的最大探测距离对应的回波时延(例如称为第一回波时延),至少一个传播时延包括第一雷达探测装置发送的第一雷达信号对应的传播时延(例如称为第一传播时延)。
可以理解的是,本申请实施例并不限定预先配置的用于确定第一阈值和/或第二阈值的具体规则,在不同的场景下,可以根据实际情况确定,此处不再赘述。
在本实施例中,L个时域范围中任两个时域范围的时域起始位置的差值的绝对值大于或等于第一阈值且小于或等于第二阈值,可以包括如下两种情况:
作为一种示例,L个时域范围中任两个相邻的时域范围的起始位置的差值相同,也即,这L个时域范围的时域起始位置在时域上是等间距划分的。在这个示例中,这L个时域范围中任意两个在时域上“相邻”的时域范围的时域起始位置的差值的绝对值例如等于F,则任意两个时域上“不相邻”的时域范围的时域起始位置的差值的绝对值可以等于F的X倍,X为大于1的正整数。
可理解,假如该L个时域范围按照时域从前到后的顺序排列,例如,L个时域范围依次包括第1个时域范围、第2个时域范围、第3个时域范围等时域范围,则第1个时域范围与第2个时域范围为在时域上“相邻”的时域范围,第2个时域范围和第3个时域范围也为在时域上“相邻”的时域范围,第1个时域范围和第3个时域范围为时域上“不相邻”的时域范围。
作为另一种示例,这L个时域范围的时域起始位置在时域上不是等间距划分的。在这个例子中,这L个时域范围中的哪两个时域范围的时域起始位置的差值的绝对值最小,则就令这两个时域范围的时域起始位置的差值的绝对值等于F,除了这两个时域范围之外,L个时域范围中的其他的任意两个时域范围的时域起始位置的差值的绝对值都可以大于F。
可选的,下面结合图19对L个时域范围的时域位置关系进行举例说明。
图19为3个时域范围的时域位置关系示意图。参照图19所示,在本实施例中,L等于3,此时,3个时域范围可以分别称为第1个时域范围、第2个时域范围、第3个时域范围。这3个时域范围中,任意一个时域范围与其它2个时域范围部分重叠。在图19中,第1个时域范围与第2个时域范围的重叠区域标记为重叠区域1,第1个时域范围与第3个时域范围的重叠区域标记为重叠区域3,第2个时域范围与第3个时域范围的重叠区域标记为重叠区域2。
参照图19所示,3个时域范围中任两个时域范围的时域起始位置的差值的绝对值大于或等于第一阈值及小于或等于第二阈值。其中,第1个时域范围的时域起始位置与第2个时域范围的起始位置的差值的绝对值为间隔区域1的长度,第2个时域范围的时域起始位置与第3个时域范围的起始位置的差值的绝对值为间隔区域2的长度,第3个时域范围的时域起始位置与第1个时域范围的起始位置的差值的绝对值为间隔区域3的长度。本申请实施例中,间隔区域1的长度、间隔区域2的长度、间隔区域3的长度均大于或等于第一阈值及小于或等于第二阈值。
需要说明的是,假如该L个时域范围按照时域从前到后的顺序,依次包括第1个时域 范围、第2个时域范围、第3个时域范围,称第1个时域范围与第2个时域范围的时域起始位置的差值的绝对值为第一绝对值,称第2个时域范围与第3个时域范围的时域起始位置的差值的绝对值为第二绝对值,那么第一绝对值可以等于第二绝对值,也可以不等于第二绝对值。但是第一绝对值和第二绝对值都大于或等于第一阈值及小于或等于第二阈值。
可选的,在本申请实施例,可以令第一时域范围和第二时域范围的时域起始位置的差值的绝对值取所计算的范围中的最小值,也就是等于第一阈值,则在相同的可用时域资源下,可以使得可支持的互不干扰的雷达探测装置的数量最多,极大地增加了对时域资源的利用率。
下述对L个时域范围中任意两个时域范围的时域起始位置的差值的计算方法进行说明:
在本实施例中,通过错开L个时域范围中任意两个时域范围的时域起始位置,使得雷达探测装置的干扰混频信号落在中频检测带宽以外,从而可以降低雷达探测装置之间的互干扰。
例如,图20为计算L个时域范围中任意两个时域范围的时域起始位置的差值的示意图。如图20所示,本实施例以多个同斜率的波形信号进行说明。在本实施例中,Δ s是多个雷达探测装置之间的发射时刻差,Δ p是雷达引发干扰的雷达发射信号能容忍的空间传播时延的最大值,T c为雷达探测装置的工作周期,τ max为雷达探测装置的最大探测距离所对应的回波时延。令δ是非理想因素造成的margin余量(假设取值为正),计算可得,L个时域范围中任两个相邻的时域范围的起始位置的差值Δ t需要满足如下条件:
max(τ maxp)+Δ s+δ≤Δ t≤T c-(max(τ maxp)+Δ s+δ)
示例性的,假设雷达探测装置的参数如下:T c=27.8us,τ max=2us;若雷达探测装置之间无时频误差,即Δ s+δ=0,这时,Δ t满足如下条件:2us≤Δ t≤25.8us,若雷达探测装置之间有2us的时频误差,即Δ s+δ=2us,这时,Δ t满足如下条件:4us≤Δ t≤23.8us。
可选的,在本实施例中,L个时域范围中任两个相邻的时域范围的起始位置的差值小于或等于1/L倍的Tc,该Tc为雷达探测装置的工作周期。
相应的,在本实施例中,若雷达探测装置的工作周期T c=27.8us,且Tc内的任两个相邻的时域范围的起始位置的差值Δ t等于4us,这时,根据Δ t≤T c/L可知,
Figure PCTCN2020079601-appb-000021
Figure PCTCN2020079601-appb-000022
由于L为正整数,所以,在本实施例中,L=6,即雷达探测装置的一个工作周期内具有6个时域范围。
可选的,在本申请的实施例中,该第一信号和第二信号的波形相同。示例性的,第一信号对应的第一扫频周期和第二信号对应的第二扫频周期相同,第一信号对应的第一扫频带宽和第二信号对应的第二扫频带宽相同,以及该第一信号和第二信号在对应点的斜率相同。即,在L个时域范围对应的时长内,为了简化第一雷达探测装置在信道侦听时的复杂度,在本实施例中,设计的第一信号和第二信号的波形相同,即在时域上,第一时域范围中的第一扫频周期和第二时域范围内的第二扫频周期的时长相同。
示例性的,在本申请的一种可能设计中,该方法还可以包括:
生成第三信号,该第三信号对应的时域范围为第三时域范围。
相应的,在本实施例中,该信道侦听还包括在第三时域范围内通过第三侦听信号执行信道侦听,第三时域范围属于上述L个时域范围,且第三时域范围不同于第一时域范围和 第二时域范围,第三侦听信号对应该第三信号中位于第三时域范围内的至少一个第三扫频周期中的第三子信号。
在本申请的实施例中,为了在较多的时频资源上确定出合适的时频资源,第一雷达探测装置还可以生成第三信号,且第三信号对应的第三时域范围是上述L个时域范围中的、且不同于第一时域范围和第二时域范围的时域范围,因而,第三时域范围对应的第三时频资源是不同于第一时频资源和第二时频资源的时频资源。相应的,第一雷达探测装置的信道侦听则还可以包括在第三时域范围内通过第三侦听信号执行信道侦听,且该第三侦听信号对应第三信号中位于第三时域范围内的至少一个第三扫频周期中的第三子信号,也即,第一雷达探测装置可以同时在不同时域范围内的扫频周期中进行侦听,从而可以提高侦听效率,并且确定出最合适的时域范围对应的时频资源。
示例性的,图21为第一信号、第二信号和第三信号对应的时域范围在时域上的分布示意图。图21所示的示意图与图18所示示意图的区别在于,第一雷达探测装置还生成了第三信号,而且进行信道侦听时采用的第一侦听信号和第二侦听信号不同。参照图21所示,在本实施例中,与上述第一信号、第一侦听信号、第一子信号的关系类似,第三信号的时域范围为第三时域范围,第三信号包括第三侦听信号,第三侦听信号为第三信号中位于第三时域范围中的至少一个第三扫频周期中的第三子信号。关于第一信号、第一侦听信号和第一子信号的具体关系,第二信号、第二侦听信号和第二子信号的具体关系,以及第三信号、第三侦听信号和第三子信号的具体关系可以参照图21所示,此处不再赘述。
可选的,在本实施例中,参照图21所示,该第一子信号、第二子信号和第三子信号的时域资源不重叠,也即,第一侦听信号、第二侦听信号和第三侦听信号的时域资源互相不重叠,这样第一雷达探测装置基于第一侦听信号、第二侦听信号和第三侦听信号执行信道侦听后,确定的用于目标探测的第一时频资源才可能与其他雷达探测装置占用的时频资源正交,从而避免了后续雷达探测装置之间的相互干扰问题。
可选的,参照图21所示,在时域上,第一扫频周期、第二扫频周期和第三扫频周期的时长相同;在频域上,第一扫频带宽、第二扫频带宽和第三扫频带宽相同;从波形上来看,第一信号、第二信号和第三信号的波形也均相同,可以理解为,不同信号在信号的相同位置的斜率相同。
类似的,在本申请的其他可能设计中,第一雷达探测装置还可以生成第四信号、第五信号或其他数量的信号,并且上述多个信号对应的时域范围均是上述L个时域范围中的互不相同的时域范围,这样利用上述多个信号进行信道侦听时,才可以在多个时域资源中确定出合适的时频资源,为避免多雷达探测装置之间的互干扰提供了实现可能。
S1703、根据信道侦听的结果,确定用于目标探测的第一时频资源,该第一时频资源的时域资源为第一时域范围。
在本申请的实施例中,第一雷达探测装置利用第一信号和第二信号进行信道侦听后,可以得到在第一时域范围和第二时域范围内的侦听结果,例如,能量侦听结果、资源使用的侦听结果,进而确定出适合用于目标探测的第一时频资源,该第一时频资源的时域资源为第一时域范围。
可以理解的是,在本实施例中,该第一时域范围可以为L个时域范围中的任意一个,上述的“第一”和“第二”并不表示顺序,仅表示内容的不同,例如,“第一时域范围” 和“第二时域范围”仅是用来表示两个不同的时域范围,“第一时频资源”和“第二时频资源”仅用来表示不同的时频资源。
在本实施例中,在固定的某一频段上,时频资源与时域范围是一一对应的关系,即第一时频资源的时域资源为第一时域范围,第二时频资源的时域资源为第二时域范围,类似的,第N时频资源的时域资源为第N时域范围等。
可选的,在本申请的实施例中,该方法还可以包括如下步骤:
S1704、在第一时频资源上发送第一信号。
在本实施例中,在确定出第一时频资源后,第一雷达探测装置就可以在第一时频资源上发送上述第一信号,第一信号到达目标物体后可以反射回来,从而第一雷达装置接收反射信号,第一雷达装置将反射信号和本振信号进行混频,得到中频信号,从而根据该中频信号就可以确定目标物体的位置、速度或角度等信息中的一个或多个。
可以理解的是,如果还有其他的雷达探测装置也需要发送雷达信号,例如,还有第二雷达探测装置,那么第二雷达探测装置也可以基于上述S1701至S1703的步骤确定适合该第二雷达探测装置的第二时频资源,且第二时频资源的时域范围为第二时域范围,从而使得不同的雷达探测装置所使用的时频资源不同,进而避免了不同雷达探测装置之间的互干扰。
也就是说,不同的雷达探测装置可以选择不同的时频资源来发送雷达信号。第一时域范围和第二时域范围可以有交集,也可以没有交集,如果第一时域范围和第二时域范围有交集,那么第一时域范围和第二时域范围的时域起始位置的差值的绝对值需要大于或等于第一阈值且小于或等于第二阈值。
本申请实施例提供的信号处理方法,通过第一信号以及第二信号进行信道侦听,该信道侦听包含在第一时域范围内通过第一侦听信号执行信道侦听、以及在第二时域范围内通过第二侦听信号执行信道侦听,最后根据该信道侦听的结果,确定用于目标探测的第一时频资源,该第一时频资源的时域资源为第一时域范围,从而可以在第一时频资源上发送第一信号。该技术方案能够保证雷达探测装置的相互干扰区域消失,避免出现虚警或者干扰平台的问题,提高了雷达探测装置目标检测的准确度,在一定程度上保证了驾驶安全性和用户舒适性。
示例性的,在本申请的另一种可能设计中,上述S1702可以通过如下步骤实现:
在多个侦听区域内进行侦听,该多个侦听区域中的任两个区域在时域上的起始位置的差值的绝对值为M的整数倍,该M为预先定义或者预先配置的。
可选的,侦听区域可以理解为第一雷达探测装置在发射用于目标探测的信号之前,进行信号侦听的一个预设时间段。相应的,多个侦听区域是指进行侦听的多个预设时间段,这些预设时间段可以部分重叠,也可以不重叠。本申请实施例并不对侦听的多个预设时间段即多个侦听区域是否重叠进行限定,其可以根据侦听区域的时长和M的取值确定,此处不再赘述。
可以理解的是,在本实施例中,该已知信号是指上述第一信号和第二信号,或者,该已知信号是指上述第一侦听信号和第二侦听信号。
在本申请的一种实施例中,第一雷达探测装置可以首先确定出执行信道侦听的所有侦听信号,然后确定出需要侦听的多个侦听区域,最后利用所有的侦听信号分别在每个侦听 区域内执行信道侦听,得到每个侦听区域的信道侦听结果。
示例性的,当第一雷达探测装置利用第一信号和第二信号进行侦听时,上述所有侦听信号包括:第一信号中的第一侦听信号和第二信号中的第二侦听信号。当第一雷达探测装置除利用第一信号和第二信号进行侦听外,还利用第三信号进行侦听时,上述所有的侦听信号包括:第一信号中的第一侦听信号、第二信号中的第二侦听信号和第三信号中的第三侦听信号。本实施例并不对所有侦听信号的具体组成进行限定,其可以根据实际需要进行设定。
可选的,第一雷达探测装置可以基于自身的定时时钟,确定出一个连续发射时长,然后基于该连续发射时长确定出多个侦听区域。其中,该连续发射时长为该雷达探测装置的刷新周期中进行信号发射的一段时长,也可以解释为该第一雷达探测装置的激活时长,即第一雷达探测装置在一次的目标探测过程中、发射信号所占的时间长度。
在本申请的实施例中,刷新周期包含用于至少一次目标探测的时长(例如:至少一个激活时长内进行目标检测)和/或用于至少一次信号处理的时长(例如至少一个静默时长或者空闲时间段,在该静默时长或者信号处理的过程中,雷达不发射信号,因此属于“空闲时间”)。可选的,刷新周期是周期性设置的,一般是50ms(例如,20ms的激活时长+30ms的静默时长),也可能是其它数值。具体的,对于周期性执行的每个刷新周期,其包含的激活时长或者静默时长可以相同或者不同,例如当前刷新周期(时长为50ms)包含20ms的激活时长以及30ms的静默时长,而时域上的下一个刷新周期可能包含30ms的激活时长以及20ms的静默时长,或者包含50ms的静默时长(这种刷新周期可以称为静默刷新周期)。
上述激活时长指的是雷达进行目标探测的时间范围,也可以称为发射时间段。具体的,该激活时长一般是一段连续时长。本申请中也可以覆盖激活时长为不连续时长的场景,不做具体限定。不同雷达的激活时长可能不同,一般是毫秒(ms)级别,如10ms,20ms等。通常来说,激活时长越大,雷达探测的性能越好。可选的,激活时长可以受限于刷新周期的大小和静默时长的大小,例如,雷达在一个刷新周期内完成目标探测以及信号处理,上述目标探测和信号处理的时序可以存在先后,也可以同时执行,本申请不具体限定。因而,激活时长的设置需要兼顾探测性能和雷达处理能力。
需要说明的是,上述刷新周期和激活时长中的至少一个均可以在雷达出厂时进行初始值的设置。出厂后,在雷达的工作状态下或者其他可能的场景下,上述刷新周期和激活时长中的至少一个可以发生变化,上述变化不限定是雷达自身的调整,或者,人工调整等。
此外,由于雷达进行目标探测会发热,如果激活时长过长,会出现雷达过度发热,反而影响雷达的性能。所以,本申请不限定激活时长的具体取值,其可以根据实际需要进行设置。
在本申请的一种实施例中,侦听区域的时长可以与连续发射时长相同。
在本申请的另一种实施例中,若在空闲时段侦听时,多个侦听区域的总时间长度小于或等于空闲时段时长。
示例性的,任意两个侦听区域在时域上的起始位置的差值可以是M的整数倍,该M为预先定义或者预先配置的,例如,该M为预设的侦听步长,该侦听步长可以根据第一雷达探测装置的处理能力进行预先配置或预先定义,通常情况下,该侦听步长越小,侦听得 越精细,但是处理时间会更长。因而,本申请实施例并不限定M的具体取值,其可以根据实际情况确定,此处不再赘述。
进一步的,在本申请的实施例中,上述信道侦听结果可以通过每个侦听区域的侦听能量表示,也可以通过每个侦听区域的平均功率表示,还可以通过其他的方式表示,此处不对其进行限定。
在本申请的实施例中,基于侦听区域的划分方式,上述在多个侦听区域进行侦听可以通过如下可能设计方式中的任意一种实现:
在一种可能设计中,第一雷达探测装置可以基于自身的连续发射时长,确定出侦听范围以及该侦听范围包括的多个侦听区域,然后利用所有的侦听信号分别在每个侦听区域内执行信道侦听,得到每个侦听区域内的侦听结果,再基于该侦听结果确定用于目标探测的时频资源。具体的,第一雷达探测装置可以确定用于目标探测的发射信号(侦听信号),进而根据该侦听信号所属信号的时域范围与时频资源的对应关系,确定出用于用于目标探测的时频资源。
示例性的,若该发射信号为第一侦听信号,则第一雷达探测装置可以将该第一侦听信号所属第一信号的第一时域范围对应的第一时频资源为第一雷达探测装置用于目标探测的时频资源。
例如,图22为在多个侦听区域进行信道侦听的一种可能设计的示意图。参照图22所示,第一雷达探测装置的侦听范围内包括多个侦听区域,第一雷达探测装置可以通过窗口滑动的方式,利用所有侦听信号在每个侦听区域中进行侦听,确定每个侦听区域对应的所有侦听信号进行中频检测得到的能量和,然后从上述多个侦听区域中选择能量和最小的目标侦听区域,再在该目标侦听区域中选择进行中频检测得到的能量最小的侦听信号以及该侦听信号对应的信号,则该信号即为用于目标探测的发射信号。
在本实施例中,侦听信号的中频检测为通过侦听信号得到中频采样信号的过程。一个具体的示例中,中频检测是指通过该侦听信号与对应的接收信号进行混频,经过中频滤波器,再经过采样得到中频采样信号,确定该中频采样信号的能量。该中频采样信号的能量即为该侦听信号进行中频检测得到的能量。需要说明的是,本申请不对中频检测的具体过程进行限定,以本领域技术人员能够通过侦听信号能够得到相应的中频采样信号为准。
上述的每个侦听区域对应的所有侦听信号进行中频检测得到的能量和,可以表示为所有的侦听信号分别做完中频检测后,将所有侦听信号进行中频检测得到的能量相加得到的能量和,或者,上述能量和也可以通过检测到的中频采样信号的平均功率来表示。本领域技术人员可知,所述能量和以及平均功率的确定可以参考现有技术的计算方式或者规则得到,这里不做具体限定。
示例性的,若该目标侦听区域中的能量最小的侦听信号为第一侦听信号,则第一侦听信号对应的第一信号即为用于目标探测的发射信号。
示例性的,在图22所示的示意图中,每个侦听区域的时长与连续发射时长相同。
可以理解的是,本实施例中的第一侦听信号为第一信号的一部分,第一信号可以是用于侦听的所有信号中的任意一个,本申请实施例并不对其进行限定。
在另一种可能设计中,第一雷达探测装置首先根据已知信号可以确定出每个信号对应的侦听信号;其次基于自身的连续发射时长,确定出多个侦听区域,并利用每个侦听信号 分别在上述多个侦听区域内执行信道侦听,确定每个侦听信号在每个侦听区域内的侦听结果,再次,每个侦听信号分别从所有的侦听区域中选择一个作为该侦听信号的目标侦听区域(例如,侦听信号在侦听区域进行中频检测得到的侦听信号能量最小为基准),最后从所有选出的目标侦听区域中选择侦听信号能量最小的目标侦听区域对应的时频资源用于目标探测。具体的,第一雷达探测装置可以确定出该侦听信号能量最小的目标侦听区域对应的侦听信号,从而将该侦听信号对应的信号作为用于目标探测的发射信号。
例如,图23为在多个侦听区域进行信道侦听的另一种可能设计的示意图。参照图23所示,第一雷达探测装置的侦听范围内包括多个侦听区域,第一雷达探测装置生成第一信号和第二信号时,上述的所有侦听信号包括第一侦听信号和第二侦听信号。在本实施例中,第一雷达探测装置利用第一侦听信号和第二侦听信号分别在上述多个侦听区域内执行信道侦听,确定每个侦听信号在每个侦听区域内的侦听能量,再次,对于第一侦听信号和第二侦听信号,从所有的侦听区域中分别选择侦听能量最小的一个侦听区域作为该侦听信号的目标侦听区域,例如,第一侦听信号对应第一目标侦听区域,第二侦听信号对应第二目标侦听区域,最后,从第一目标侦听区域和第二目标侦听区域中选择侦听能量最小的目标侦听区域,并将该侦听区域对应侦听信号所属的信号作为用于目标探测的发射信号。这样可以同时确定侦听区域的时间起点和所选择的信号。
示例性的,在图23所示的示意图中,每个侦听区域的时长大于该第一雷达探测装置的连续发射时长。
进一步的,在本申请的实施例中,在多个侦听区域进行侦听还可以通过如下可能设计方式实现:
第一雷达探测装置可以不划分侦听区域,基于自身的定时时钟,利用每个侦听信号分别在侦听范围内进行侦听,确定出每个侦听信号在该侦听范围内的信号能量,再比较每个侦听信号在该侦听范围内的信号能量,从中确定出信号能量最小的侦听信号,并将该侦听信号所属的信号作为目标探测的发射信号。
由上述分析可知,第一雷达探测装置可以基于多种方式在多个侦听区域内进行侦听,进而确定出最适合用于目标探测的时频资源。
示例性的,在本申请的再一种可能设计中,上述S1702可以通过如下步骤实现:
在预先定义或者配置的时域资源上进行信道侦听,该时域资源包含以下的至少一个:第一探测装置的刷新周期、第一探测装置的静默刷新周期;其中,该刷新周期包括空闲时间段和发射时间段。
示例性的,图24为第一雷达探测装置的工作状态时间分布示意图。参照图17所示,第一雷达探测装置在一固定的刷新周期进行工作,通常情况下,刷新周期包括空闲时间段和发射时间段,第一雷达探测装置在刷新周期的发射时间段内发射雷达信号进行目标探测,在刷新周期的空闲时间段内进行信号处理或者侦听信道状态;而如果第一雷达探测装置在整个刷新周期内都不进行信号发射,则整个刷新周期都为空闲时间,称该刷新周期为静默刷新周期。
可选的,第一雷达探测装置可以在刷新周期的空闲时间段内进行信道侦听,也可以在刷新周期的发射时间段内进行信道侦听,还可以在静默刷新周期内进行信道侦听,这样可以确定出最合适(最空闲)的时频资源用于后续的目标探测。
进一步的,在本申请的实施例中,若第一雷达探测装置支持多频段,则本申请提供的信号处理方法还包括如下步骤:
在预先定义或者配置的时域资源对应的所有频段内均处于占用状态时,跳频到预设时频段之外的频段进行信道侦听。
具体的,如果第一雷达探测装置在当前频段中所侦听的时频资源都不空闲的话,可以跳频到其它频段进行侦听,具体的侦听方式使用上述图17所示S1701至S1703的具体实现,此处不再赘述。
可以理解的是,在本申请的实施例中,上述雷达探测装置可以是可移动的雷达探测装置,例如车载雷达,还可以是位置固定的雷达探测装置,例如雷达探测装置固定在RSU上,或者固定在基站上,或者固定在其他的设备上。或者雷达探测装置也可以独立部署,但位置是固定的。本申请实施例不对雷达探测装置的类型进行限定,其均可以适用。
通过上述实施例提供的方法,各雷达探测装置在没有同步信息(没有GPS信号下或者没有GPS功能时)的情况下,仍然可以进行协同工作,从而避免雷达探测装置之间的互干扰,提高了驾驶安全性和用户的舒适度。
上述主要从第一雷达探测装置的角度,或者说是从第一雷达探测装置与雷达探测装置之间,或者与目标物体之间交互的角度对本申请实施例提供的方案进行了介绍。上述方案中所涉及的公式只是一种具体的表达方式,为解决相同的技术问题并达到相同或类似的技术效果而对上述公式进行的可能的变型或者改写,都在本申请实施例的保护范围之内。可以理解的是,各个装置,例如第一雷达探测装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
本申请实施例可以对第一雷达探测装置进行功能模块的划分,例如,可对应各个功能划分各个功能模块,也可将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
例如,以采用集成的方式划分雷达探测装置各个功能模块的情况下,图25为本申请实施例提供的信号处理装置的一种可能的结构示意图。该信号处理装置可以是上述方法实施例中的第一雷达探测装置。可选的,参照图25所示,该信号处理装置25可以包括:侦听单元2502和确定单元2503。
其中,该侦听单元2502,用于根据第一信号以及第二信号进行信道侦听,所述信道侦听包含在第一时域范围内通过第一侦听信号执行信道侦听、以及在第二时域范围内通过第二侦听信号执行信道侦听;
该确定单元2503,用于根据所述信道侦听的结果,确定用于目标探测的第一时频资源, 所述第一时频资源的时域资源为所述第一时域范围;
其中:
所述第一时域范围和所述第二时域范围为L个时域范围中的时域范围,所述L为大于1的正整数;其中,所述L个时域范围中的任一个时域范围与其它L-1个时域范围中的至少一个时域范围部分重叠,所述L个时域范围中任两个时域范围的时域起始位置的差值的绝对值大于或等于第一阈值且小于或等于第二阈值;以及
所述第一侦听信号对应所述第一信号中位于所述第一时域范围中的至少一个第一扫频周期中的第一子信号,所述第二侦听信号对应所述第二信号中位于所述第二时域范围内的至少一个第二扫频周期中的第二子信号。
可选的,所述装置还包括:生成单元2501;
该生成单元2501,用于生成第一信号以及第二信号;或者
该生成单元2501,用于生成第一侦听信号以及第二侦听信号;
在本申请的一种可能设计中,所述第一子信号和所述第二子信号的时域资源不重叠。
在本申请的另一种可能设计中,所述第一阈值和/或所述第二阈值是预先定义的,或者,所述第一阈值和/或所述第二阈值是根据预先配置的规则确定的。
在本申请的再一种可能设计中,所述L个时域范围中任两个相邻的时域范围的起始位置的差值相同。
其中,所述L个时域范围中任两个相邻的时域范围的起始位置的差值小于或等于1/L倍的Tc,所述Tc为雷达探测装置的工作周期。
在本申请的又一种可能设计中,该生成单元2501,还用于生成第三信号,所述第三信号对应的时域范围为第三时域范围;
其中,所述信道侦听还包括在所述第三时域范围内通过第三侦听信号执行信道侦听,所述第三时域范围属于所述L个时域范围,所述第三时域范围不同于所述第一时域范围和所述第二时域范围,所述第三侦听信号对应所述第三信号中位于所述第三时域范围内的至少一个第三扫频周期中的第三子信号。
在本申请的又一种可能设计中,该侦听单元2502,具体用于在多个侦听区域内进行侦听,所述多个侦听区域中的任两个区域在时域上的起始位置的差值的绝对值为M的整数倍,所述M为预先定义或者预先配置的。
在本申请的又一种可能设计中,该侦听单元2502,具体用于在预先定义或者配置的时域资源上进行信道侦听,所述时域资源包含以下的至少一个:第一探测装置的刷新周期、所述第一探测装置的静默刷新周期;其中,所述刷新周期包括空闲时间段和发射时间段。
可选的,本实施例提供的信号处理装置25还可以包含存储单元2504,用于存储程序指令和/或数据,具体的可以用于存储生成单元2501和/或侦听单元2502和/或确定单元2503的处理结果,或者,该存储单元2504存储的内容供生成单元2501和/或侦听单元2502和/或确定单元2503读取。
可选的,本实施例提供的信号处理装置25还可以包含收发单元,该收发单元可以用于发送侦听信号或探测信号。例如,该收发单元与上述侦听单元在功能上有一定的交集。
该可选的设计可以独立实现,也可以与上述任一可选的设计集成实现。
图26为本申请实施例提供的信号处理装置的另一种可能的结构示意图。同样,该信号处理装置也可以为上述方法实施例中的第一雷达探测装置。可选的,参照图26所示,该信号处理装置26可以包处理器2601、发射器2602以及接收器2603。处理器2601的功能可以与图25所展示的生成单元2501和确定单元2503的具体功能相对应,该发射器2602以及接收器2603的功能可以与上述侦听单元2502和收发单元的具体功能相对应,此处不再赘述。
可选的,该信号处理装置26还可以包含存储器2604,用于存储程序指令和/或数据,具体用于存储处理器2601的处理结果,或者供处理器2601读取。
前述图1提供了一种雷达装置的结构示意图。参考上述内容,提出又一可选的方式。图27为本申请实施例提供的信号处理装置的再一种可能的结构示意图。图25~图27所提供的信号处理装置可以为实际通信场景中雷达装置的部分或者全部,或者可以是集成在雷达装置中或者位于雷达装置外部的功能模块,例如可以是芯片系统,具体以实现相应的功能为准,不对信号处理装置结构和组成进行具体限定。
该可选的方式中,该信号处理装置27包括发射天线2701、接收天线2702以及处理器2703。进一步,该信号处理装置27还包括混频器2704和/或振荡器2705。进一步,该信号处理装置27还可以包括低通滤波器和/或定向耦合器等。
其中,发射天线2701和接收天线2702用于支持所述该信号处理装置27进行无线电通信,发射天线2701支持雷达信号的发射,接收天线2702支持雷达信号的接收和/或反射信号的接收,以最终实现探测功能。处理器2703执行一些可能的确定和/或处理功能。进一步,处理器2703还控制发射天线2701和/或接收天线2702的操作。具体的,需要发射的信号通过处理器2703控制发射天线2701进行发射,通过接收天线2702接收到的信号可以传输给处理器2703进行相应的处理。
可选的,该信号处理装置27所包含的各个部件可用于配合执行图17所示的实施例所提供的方法。可选的,该信号处理装置27还可以包含存储器,用于存储程序指令和/或数据。其中,发射天线2701和接收天线2702可以是独立设置的,也可以集成设置为收发天线,执行相应的收发功能。
图28为本申请实施例提供的一种探测装置的结构示意图。图28所示的探测装置可以是第一雷达探测装置本身,或者可以是能够完成第一雷达探测装置的功能的芯片或电路,例如该芯片或电路可以设置在第一雷达探测装置中。图28所示的探测装置28可以包括处理器2801(例如生成单元2501和确定单元2503可以通过处理器2801实现,处理器2601和处理器2801例如可以是同一部件)和接口电路2802(例如侦听单元和收发单元可以通过接口电路2802实现,发射器2602和接收器2603与接口电路2802例如为同一部件)。该处理器2801可以使得探测装置28实现图17所示的实施例所提供的方法中第一雷达探测装置所执行的步骤。可选的,探测装置28还可以包括存储器2803,存储器2803可用于存储指令。处理器2801通过执行存储器2803所存储的指令,使得探测装置28实现图17所示的实施例所提供的方法中第一雷达探测装置所执行的步骤。
进一步的,处理器2801、接口电路2802和存储器2803之间可以通过内部连接通路互相通信,传递控制和/或数据信号。存储器2803用于存储计算机程序,处理器2801可以从存储器2803中调用并运行计算机程序,以控制接口电路2802接收信号或发送信 号,完成图17所示的实施例所提供的方法中第一雷达探测装置执行的步骤。存储器2803可以集成在处理器2801中,也可以与处理器2801分开设置。
可选地,若探测装置28为设备,接口电路2802可以包括接收器和发送器。其中,接收器和发送器可以为相同的部件,或者为不同的部件。接收器和发送器为相同的部件时,可以将该部件称为收发器。
可选地,若探测装置28为芯片或电路,则接口电路2802可以包括输入接口和输出接口,输入接口和输出接口可以是相同的接口,或者可以分别是不同的接口。
可选地,若探测装置28为芯片或电路,探测装置28也可以不包括存储器2803,处理器2801可以读取该芯片或电路外部的存储器中的指令(程序或代码)以实现图17所示的实施例所提供的方法中第一雷达探测装置执行的步骤。
可选地,若装置28为芯片或电路,则装置28可以包括电阻、电容或其他相应的功能部件,处理器2801或接口电路2802可以通过相应的功能部件实现。
作为一种实现方式,接口电路2802的功能可以考虑通过收发电路或收发的专用芯片实现。处理器2801可以考虑通过专用处理芯片、处理电路、处理器或通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的第一雷达探测装置。即,将实现处理器2801、接口电路2802的功能的程序代码存储在存储器2803中,处理器2801通过执行存储器2803存储的程序代码来实现处理器2801、接口电路2802的功能。
其中,以上列举的探测装置28中各模块或单元的功能和动作仅为示例性说明,探测装置28中各功能单元可用于执行图17所示的实施例中第一雷达探测装置所执行的各动作或处理过程。这里为了避免赘述,省略其详细说明。
需要说明的是,第二雷达探测装置、第三雷达探测装置、第四雷达探测装置或第五雷达探测装置等可以具有与第一雷达探测装置相同的结构,即同样可以通过图25~图28中所述的结构实现。
示例性的,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述图17所示实施例的方法。
可选的,本申请实施例还提供一种芯片系统,所述芯片系统包括:
存储器:用于存储指令;
处理器,用于从所述存储器中调用并运行所述指令,使得安装有所述芯片系统的通信设备执行上述图17所示实施例的方法。
可选的,本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行上述图17所示实施例的方法。
具体的,当使用软件实现雷达探测装置时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地实现本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可 读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
需要说明的是,用于执行本申请实施例提供的探测方法的上述探测装置中所包含的处理器可以是中央处理器(central processing unit,CPU),通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本申请实施例所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)存储器、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、电可擦除可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(compact disc read-only memory,CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于探测装置中。当然,处理器和存储介质也可以作为分立组件存在于探测装置中。
可以理解的是,图25~图28仅仅示出了对应装置的简化设计。在实际应用中,信号处理即雷达探测装置可以包含任意数量的发射器,接收器,处理器,控制器,存储器以及其他可能存在的元件。
本申请实施例还提供一种通信系统,其包含执行本申请上述实施例所提到的至少一个雷达探测装置。
本申请实施例还提供一种通信系统,其包含执行本申请上述实施例所提到的至少一个雷达探测装置和/或至少一个中央处理器/中央控制器。所述中央处理器/中央控制器用于根据所述至少一个雷达探测装置的输出,控制车辆的行驶和/或其他雷达探测装置的处理。所述中央处理器/中央控制器可以位于车辆中,或者其他可能的位置,以实现所述控制为准。
本申请实施例还提供一种车辆,其包含上述实施例所提到的至少一个雷达探测装置。
本申请实施例还提供一种路侧单元(RSU),其包含上述实施例所提到的至少一个雷达探测装置。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种信号处理方法,其特征在于,所述方法包括:
    根据第一信号以及第二信号进行信道侦听,所述信道侦听包含在第一时域范围内通过第一侦听信号执行信道侦听、以及在第二时域范围内通过第二侦听信号执行信道侦听;
    根据所述信道侦听的结果,确定用于目标探测的第一时频资源,所述第一时频资源的时域资源为所述第一时域范围;
    其中:
    所述第一时域范围和所述第二时域范围为L个时域范围中的时域范围,所述L为大于1的正整数;其中,所述L个时域范围中的任一个时域范围与其它L-1个时域范围中的至少一个时域范围部分重叠,所述L个时域范围中任两个时域范围的时域起始位置的差值的绝对值大于或等于第一阈值且小于或等于第二阈值;以及
    所述第一侦听信号对应所述第一信号中位于所述第一时域范围中的至少一个第一扫频周期中的第一子信号,所述第二侦听信号对应所述第二信号中位于所述第二时域范围内的至少一个第二扫频周期中的第二子信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一子信号和所述第二子信号的时域资源不重叠。
  3. 根据权利要求1所述的方法,其特征在于,所述第一阈值和/或所述第二阈值是预先定义的,或者,所述第一阈值和/或所述第二阈值是根据预先配置的规则确定的。
  4. 根据权利要求1所述的方法,其特征在于,所述L个时域范围中任两个相邻的时域范围的起始位置的差值相同。
  5. 根据权利要求4所述的方法,其特征在于,所述L个时域范围中任两个相邻的时域范围的起始位置的差值小于或等于1/L倍的Tc,所述Tc为雷达探测装置的工作周期。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    生成第三信号,所述第三信号对应的时域范围为第三时域范围;
    其中,所述信道侦听还包括在所述第三时域范围内通过第三侦听信号执行信道侦听,所述第三时域范围属于所述L个时域范围,所述第三时域范围不同于所述第一时域范围和所述第二时域范围,所述第三侦听信号对应所述第三信号中位于所述第三时域范围内的至少一个第三扫频周期中的第三子信号。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述根据所述第一信号以及所述第二信号进行信道侦听,包括:
    在多个侦听区域内进行侦听,所述多个侦听区域中的任两个区域在时域上的起始位置的差值的绝对值为M的整数倍,所述M为预先定义或者预先配置的。
  8. 根据权利要求1-6任一项所述的方法,其特征在于,所述根据所述第一信号以及所述第二信号进行信道侦听,包括:
    在预先定义或者配置的时域资源上进行信道侦听,所述时域资源包含以下的至少一个:第一探测装置的刷新周期、所述第一探测装置的静默刷新周期;其中,所述刷新周期包括空闲时间段和发射时间段。
  9. 一种信号处理装置,其特征在于,包括:侦听单元和确定单元;
    所述侦听单元,用于根据第一信号以及第二信号进行信道侦听,所述信道侦听包含在 第一时域范围内通过第一侦听信号执行信道侦听、以及在第二时域范围内通过第二侦听信号执行信道侦听;
    所述确定单元,用于根据所述信道侦听的结果,确定用于目标探测的第一时频资源,所述第一时频资源的时域资源为所述第一时域范围;
    其中:
    所述第一时域范围和所述第二时域范围为L个时域范围中的时域范围,所述L为大于1的正整数;其中,所述L个时域范围中的任一个时域范围与其它L-1个时域范围中的至少一个时域范围部分重叠,所述L个时域范围中任两个时域范围的时域起始位置的差值的绝对值大于或等于第一阈值且小于或等于第二阈值;以及
    所述第一侦听信号对应所述第一信号中位于所述第一时域范围中的至少一个第一扫频周期中的第一子信号,所述第二侦听信号对应所述第二信号中位于所述第二时域范围内的至少一个第二扫频周期中的第二子信号。
  10. 根据权利要求9所述的装置,其特征在于,所述第一子信号和所述第二子信号的时域资源不重叠。
  11. 根据权利要求9所述的装置,其特征在于,所述第一阈值和/或所述第二阈值是预先定义的,或者,所述第一阈值和/或所述第二阈值是根据预先配置的规则确定的。
  12. 根据权利要求9所述的方法,其特征在于,所述L个时域范围中任两个相邻的时域范围的起始位置的差值相同。
  13. 根据权利要求12所述的装置,其特征在于,所述L个时域范围中任两个相邻的时域范围的起始位置的差值小于或等于1/L倍的Tc,所述Tc为雷达探测装置的工作周期。
  14. 根据权利要求9-13任一项所述的装置,其特征在于,所述生成单元,还用于生成第三信号,所述第三信号对应的时域范围为第三时域范围;
    其中,所述信道侦听还包括在所述第三时域范围内通过第三侦听信号执行信道侦听,所述第三时域范围属于所述L个时域范围,所述第三时域范围不同于所述第一时域范围和所述第二时域范围,所述第三侦听信号对应所述第三信号中位于所述第三时域范围内的至少一个第三扫频周期中的第三子信号。
  15. 根据权利要求9-14任一项所述的装置,其特征在于,所述侦听单元,具体用于在多个侦听区域内进行侦听,所述多个侦听区域中的任两个区域在时域上的起始位置的差值的绝对值为M的整数倍,所述M为预先定义或者预先配置的。
  16. 根据权利要求9-14任一项所述的装置,其特征在于,所述侦听单元,具体用于在预先定义或者配置的时域资源上进行信道侦听,所述时域资源包含以下的至少一个:第一探测装置的刷新周期、所述第一探测装置的静默刷新周期;其中,所述刷新周期包括空闲时间段和发射时间段。
  17. 一种探测装置,其特征在于,包括:至少一个处理器以及至少一个存储器,所述至少一个存储器存储有程序,所述至少一个处理器执行所述程序时实现如上述权利要求1-8任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-8任一项所述的方法。
  19. 一种芯片系统,其特征在于,所述芯片系统包括:
    存储器:用于存储指令;
    处理器,用于从所述存储器中调用并运行所述指令,使得安装有所述芯片系统的通信设备执行如权利要求1-8任一项所述的方法。
  20. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1-8任一项所述的方法。
PCT/CN2020/079601 2020-03-17 2020-03-17 信号处理方法、装置及存储介质 WO2021184183A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20926331.8A EP4109135A4 (en) 2020-03-17 2020-03-17 SIGNAL PROCESSING METHOD AND APPARATUS, AND STORAGE MEDIA
PCT/CN2020/079601 WO2021184183A1 (zh) 2020-03-17 2020-03-17 信号处理方法、装置及存储介质
CN202080005166.6A CN112740060B (zh) 2020-03-17 2020-03-17 信号处理方法、装置及存储介质
JP2022555937A JP7412588B2 (ja) 2020-03-17 2020-03-17 信号処理方法および装置ならびに記憶媒体
KR1020227035802A KR20220154779A (ko) 2020-03-17 2020-03-17 신호 처리 방법 및 장치, 및 저장 매체
US17/946,473 US20230014866A1 (en) 2020-03-17 2022-09-16 Signal processing method and apparatus, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079601 WO2021184183A1 (zh) 2020-03-17 2020-03-17 信号处理方法、装置及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/946,473 Continuation US20230014866A1 (en) 2020-03-17 2022-09-16 Signal processing method and apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2021184183A1 true WO2021184183A1 (zh) 2021-09-23

Family

ID=75609558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079601 WO2021184183A1 (zh) 2020-03-17 2020-03-17 信号处理方法、装置及存储介质

Country Status (6)

Country Link
US (1) US20230014866A1 (zh)
EP (1) EP4109135A4 (zh)
JP (1) JP7412588B2 (zh)
KR (1) KR20220154779A (zh)
CN (1) CN112740060B (zh)
WO (1) WO2021184183A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114415489B (zh) * 2021-12-02 2023-09-22 北京罗克维尔斯科技有限公司 一种车载传感器时间同步方法、装置、设备和介质
CN114698123B (zh) * 2022-04-19 2023-04-18 电子科技大学 一种无线供电隐蔽通信系统的资源分配优化方法
CN115236653B (zh) * 2022-07-29 2023-10-24 南京慧尔视智能科技有限公司 一种雷达探测方法、装置、设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103257346A (zh) * 2013-05-15 2013-08-21 桂林电子科技大学 一种汽车防撞雷达多目标探测方法与系统
US20150234048A1 (en) * 2012-09-13 2015-08-20 Mbda Uk Limited Room occupancy sensing apparatus and method
CN105785325A (zh) * 2016-03-15 2016-07-20 东南大学 一种变周期汽车防撞雷达帧结构及其设计方法
CN106772261A (zh) * 2016-12-07 2017-05-31 中国船舶重工集团公司第七二四研究所 雷达侦测信号多维特征聚类可视化显示方法
CN107959646A (zh) * 2016-10-15 2018-04-24 上海朗帛通信技术有限公司 一种支持同步信号的ue、基站中的方法和装置
CN108646295A (zh) * 2018-06-29 2018-10-12 深圳市汇沣世纪数据工程有限公司 探测深度的确定方法、装置、设备和存储介质
US20190271767A1 (en) * 2016-11-16 2019-09-05 Innoviz Technologies Ltd. Dynamically Allocating Detection Elements to Pixels in LIDAR Systems

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10059673A1 (de) * 2000-12-01 2002-06-06 Bosch Gmbh Robert Impuls-Radarverfahren sowie Impuls-Radarsensor und System
CN1819496A (zh) * 2006-03-09 2006-08-16 武汉大学 利用高频雷达接收机实现频率监测功能的方法
JP2008292264A (ja) * 2007-05-24 2008-12-04 Fujitsu Ten Ltd レーダ装置、及びその制御方法
KR101199169B1 (ko) * 2011-01-12 2012-11-07 주식회사 만도 타깃물체 감지 방법 및 레이더 장치
DE102012021973A1 (de) * 2012-11-08 2014-05-08 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben eines Radarsensors eines Kraftfahrzeugs, Fahrerassistenzeinrichtung und Kraftfahrzeug
DE102013210256A1 (de) * 2013-06-03 2014-12-04 Robert Bosch Gmbh Interferenzunterdrückung bei einem fmcw-radar
JP6296483B2 (ja) * 2013-10-25 2018-03-20 日本無線株式会社 周波数変調レーダ装置
US10067221B2 (en) * 2015-04-06 2018-09-04 Texas Instruments Incorporated Interference detection in a frequency modulated continuous wave (FMCW) radar system
JP2017003347A (ja) * 2015-06-08 2017-01-05 日本信号株式会社 物体検知装置及び物体検知方法
US9952312B2 (en) * 2015-07-06 2018-04-24 Navico Holding As Radar interference mitigation
JP2018059871A (ja) * 2016-10-07 2018-04-12 日本信号株式会社 レーダシステム
EP3444628A1 (en) * 2017-08-18 2019-02-20 Nxp B.V. Radar unit, integrated circuit and methods for detecting and mitigating mutual interference
EP3502732B1 (en) * 2017-12-21 2021-10-20 Nxp B.V. Radar unit and method for detecting an existence of interference in a radar unit
JP7104935B2 (ja) * 2018-02-20 2022-07-22 国立大学法人茨城大学 Fmcwレーダ装置、fmcwレーダ装置の多元接続方法
US11280876B2 (en) * 2018-06-18 2022-03-22 Qualcomm Incorporated Multi-radar coexistence using phase-coded frequency modulated continuous wave waveforms

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150234048A1 (en) * 2012-09-13 2015-08-20 Mbda Uk Limited Room occupancy sensing apparatus and method
CN103257346A (zh) * 2013-05-15 2013-08-21 桂林电子科技大学 一种汽车防撞雷达多目标探测方法与系统
CN105785325A (zh) * 2016-03-15 2016-07-20 东南大学 一种变周期汽车防撞雷达帧结构及其设计方法
CN107959646A (zh) * 2016-10-15 2018-04-24 上海朗帛通信技术有限公司 一种支持同步信号的ue、基站中的方法和装置
US20190271767A1 (en) * 2016-11-16 2019-09-05 Innoviz Technologies Ltd. Dynamically Allocating Detection Elements to Pixels in LIDAR Systems
CN106772261A (zh) * 2016-12-07 2017-05-31 中国船舶重工集团公司第七二四研究所 雷达侦测信号多维特征聚类可视化显示方法
CN108646295A (zh) * 2018-06-29 2018-10-12 深圳市汇沣世纪数据工程有限公司 探测深度的确定方法、装置、设备和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4109135A4 *

Also Published As

Publication number Publication date
EP4109135A4 (en) 2023-04-26
US20230014866A1 (en) 2023-01-19
JP2023518403A (ja) 2023-05-01
EP4109135A1 (en) 2022-12-28
CN112740060A (zh) 2021-04-30
CN112740060B (zh) 2022-06-14
JP7412588B2 (ja) 2024-01-12
KR20220154779A (ko) 2022-11-22

Similar Documents

Publication Publication Date Title
US11971468B2 (en) Method for detecting target object and corresponding detection apparatus
US11754668B2 (en) Detection method, detection apparatus, and system
WO2021184183A1 (zh) 信号处理方法、装置及存储介质
WO2021032000A1 (zh) 一种信号发射方法及装置
US20210396839A1 (en) Method for Detecting Target Object by Using Radio Signal and Related Apparatus
WO2020259636A1 (zh) 一种通信方法及装置
CN112433214A (zh) 一种雷达信号发送方法及装置
WO2021008139A1 (zh) 一种检测方法、信号发送方法及装置
US20220082655A1 (en) Radar signal sending method and device
KR102678058B1 (ko) 검출 방법, 검출 장치 및 시스템
WO2022166241A1 (zh) 干扰侦听方法、装置及雷达
US20220326369A1 (en) Frequency Band State Determining Method and Related Device
US20220404465A1 (en) Target Detection Method and Radar Apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555937

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020926331

Country of ref document: EP

Effective date: 20220923

ENP Entry into the national phase

Ref document number: 20227035802

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE