WO2021182617A1 - Conductive particles, conductive material and connection structure - Google Patents

Conductive particles, conductive material and connection structure Download PDF

Info

Publication number
WO2021182617A1
WO2021182617A1 PCT/JP2021/010105 JP2021010105W WO2021182617A1 WO 2021182617 A1 WO2021182617 A1 WO 2021182617A1 JP 2021010105 W JP2021010105 W JP 2021010105W WO 2021182617 A1 WO2021182617 A1 WO 2021182617A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
particles
conductive particles
metal
particle
Prior art date
Application number
PCT/JP2021/010105
Other languages
French (fr)
Japanese (ja)
Inventor
寛人 松浦
脇屋 武司
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2022506852A priority Critical patent/JPWO2021182617A1/ja
Publication of WO2021182617A1 publication Critical patent/WO2021182617A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors

Definitions

  • the present invention relates to conductive particles that can be used for electrical connection between electrodes and the like.
  • the present invention also relates to a conductive material and a connecting structure using the above conductive particles.
  • Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive material conductive particles are dispersed in the binder resin.
  • conductive particles conductive particles in which base particles such as resin particles or metal particles are coated with a conductive portion are widely used (for example, Patent Documents 1 and 2).
  • the anisotropic conductive material is used to obtain various connection structures. Connections using the anisotropic conductive material include a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), a connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)), and a semiconductor chip.
  • FOG Flexible printed circuit board
  • COF Chip on Film
  • SOB Glass epoxy substrate
  • connection resistance between the electrodes may increase due to the occurrence of plating peeling or the like.
  • the connection resistance between the electrodes can be lowered to some extent.
  • metal particles are used as the base particles, it is difficult to reduce the coefficient of variation (CV value) of the particle size of the conductive particles.
  • CV value coefficient of variation of the particle size of the conductive particles.
  • An object of the present invention is that when the electrodes are electrically connected, 1) the connection resistance between the electrodes in the vertical direction to be connected can be effectively reduced, and 2) the connection resistance in the horizontal direction which should not be connected can be effectively reduced. It is an object of the present invention to provide conductive particles capable of enhancing the insulation reliability between the electrodes of the above and 3) enhancing the current-bearing characteristics. Another object of the present invention is to provide a conductive material and a connecting structure using the above conductive particles.
  • conductive particles comprising metal particles having a porous structure and having the following constitution A or the following constitution B are provided.
  • Configuration A The specific surface area of the conductive particles is 10 m 2 / g or more.
  • Configuration B The specific surface area of the conductive particles is less than 10 m 2 / g, and the specific gravity is 1 g / cm 3 or more and 8 g / cm 3 or less.
  • the conductive particles include the configuration A.
  • the conductive particles include the configuration B.
  • the conductive particles include a conductive portion arranged on the outer surface of the metal particles.
  • the thickness of the conductive portion is less than 50 nm when the configuration A is provided, and the thickness of the conductive portion is 50 nm when the configuration B is provided. That is all.
  • the conductive particles further include an insulating substance disposed on the outer surface of the conductive portion.
  • the conductive particles have protrusions on the outer surface of the conductive portion.
  • the coefficient of variation of the particle size of the conductive particles is 20% or less.
  • the content of the resin in 100% by weight of the metal particles Is 10% by weight or less.
  • the particle size of the conductive particles is 0.1 ⁇ m or more and 1000 ⁇ m or less.
  • the metal constituting the metal particles contains nickel.
  • a conductive material containing the above-mentioned conductive particles and a binder resin is provided.
  • a first connection target member having a first electrode on the surface
  • a second connection target member having a second electrode on the surface
  • the first connection target member and the above. It is provided with a connecting portion connecting the second connection target member, and the connecting portion is formed of conductive particles or a conductive material containing the conductive particles and a binder resin.
  • the conductive particles are the above-mentioned conductive particles, and the first electrode and the second electrode are electrically connected by the conductive particles.
  • the conductive particles according to the present invention include metal particles having a porous structure, and have the following constitution A or the following constitution B.
  • Configuration A The specific surface area of the conductive particles is 10 m 2 / g or more.
  • Configuration B The specific surface area of the conductive particles is less than 10 m 2 / g, and the specific gravity is 1 g / cm 3 or more and 8 g / cm 3 or less. Since the conductive particles according to the present invention have the above-mentioned structure, 1) the connection resistance between the electrodes in the vertical direction to be connected can be effectively reduced, and 2) they must not be connected. The insulation reliability between the electrodes in the lateral direction can be improved, and 3) the withstand current characteristics can be improved.
  • FIG. 1 is a cross-sectional view schematically showing conductive particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the conductive particles according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing the conductive particles according to the third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing the conductive particles according to the fourth embodiment of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing the conductive particles according to the fifth embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing an example of a connection structure using conductive particles according to the first embodiment of the present invention.
  • the conductive particles according to the present invention include metal particles having a porous structure, and have the following constitution A or the following constitution B.
  • the porous structure means a structure having a plurality of pores.
  • Configuration A The specific surface area of the conductive particles is 10 m 2 / g or more.
  • Configuration B The specific surface area of the conductive particles is less than 10 m 2 / g, and the specific gravity is 1 g / cm 3 or more and 8 g / cm 3 or less.
  • the conductive particles according to the present invention have the above-mentioned configuration, when the electrodes are electrically connected, 1) the connection resistance between the electrodes in the vertical direction to be connected is effectively reduced. 2) Insulation reliability between the lateral electrodes that should not be connected can be enhanced, and 3) withstand current characteristics can be enhanced.
  • the conductive particles according to the present invention are provided with metal particles having a porous structure and are provided with a specific configuration A or configuration B, the conductive particles are satisfactorily compressed at the time of connection between the electrodes in the vertical direction. Conductive paths are well formed not only on the surface of the compressed conductive particles (for example, the conductive portion) but also inside the conductive particles. Therefore, the conductive particles according to the present invention can exhibit all the effects of 1) -3) described above.
  • the elasticity of the conductive particles is low, so that the conductive particles may deeply dig into the electrode and damage the electrode.
  • the elasticity of the conductive particles can be increased, so that the risk of damage to the electrodes can be suppressed.
  • the conductive particles according to the present invention may or may not have a conductive portion arranged on the outer surface of the metal particles having a porous structure.
  • the conductive particles according to the present invention may be conductive particles having only metal particles having a porous structure. That is, the metal particles themselves having a porous structure may be the conductive particles according to the present invention.
  • the conductive particles according to the present invention may be conductive particles including metal particles having a porous structure and conductive portions arranged on the outer surface of the metal particles. That is, the metal particles may be base particles.
  • the conductive particles according to the present invention may include the above-mentioned metal particles as base particles.
  • the conductive particles having the constitution A may be referred to as “conductive particles (A)", and the conductive particles having the constitution B may be referred to as “conductive particles (B)”. I have something to do.
  • the specific surface area of the conductive particles (A) is 10 m 2 / g or more.
  • the specific surface area of the conductive particles (A) is preferably 15 m 2 / g or more, more preferably 20 m 2 / g or more, preferably 5000 m 2 / g or less, and more preferably 1000 m 2 / g or less.
  • the specific surface area of the conductive particles (A) is equal to or greater than the above lower limit and equal to or less than the above upper limit, the conductive particles are more satisfactorily compressed when connected between the electrodes in the vertical direction, and the inside of the compressed conductive particles is further compressed.
  • the conduction path can be formed even better, and the effect of the present invention can be exhibited even more effectively.
  • the specific surface area of the conductive particles (B) is less than 10 m 2 / g.
  • the specific surface area of the conductive particles (B) is preferably 0.5 m 2 / g or more, more preferably 1.0 m 2 / g or more, still more preferably 1.2 m 2 / g or more, and preferably 8 m 2 or more. It is / g or less, more preferably 5 m 2 / g or less.
  • the specific surface area of the conductive particles means the BET specific surface area.
  • the BET specific surface area of the conductive particles can be measured from the adsorption isotherm of nitrogen in accordance with the BET method. Examples of the BET specific surface area measuring device include "NOVA4200e” manufactured by Cantachrome Instruments.
  • the specific surface area of the conductive particles can be controlled by changing the porous structure of the metal particles, the coverage of the conductive portion arranged on the outer surface of the metal particles, and the like.
  • the specific gravity of the conductive particles (A) is not particularly limited.
  • the specific gravity of the conductive particles (A) may be 1 g / cm 3 or more, or 20 g / cm 3 or less.
  • the specific gravity of the conductive particles (B) is 1 g / cm 3 or more and 8 g / cm 3 or less.
  • the specific gravity of the conductive particles (B) is preferably 1.5 g / cm 3 or more, more preferably 2 g / cm 3 or more, preferably 7 g / cm 3 or less, and more preferably 6 g / cm 3 or less. ..
  • the specific gravity of the conductive particles (B) is equal to or higher than the lower limit and lower than the upper limit, the conductive particles are more satisfactorily compressed when connected between the electrodes in the vertical direction, and the inside of the compressed conductive particles is further compressed.
  • the conduction path can be formed even better, and the effect of the present invention can be exhibited even more effectively.
  • the specific gravity of the conductive particles can be measured using a true hydrometer or the like.
  • the particle size of the conductive particles is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, still more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, and even more. It is preferably 20 ⁇ m or less, and particularly preferably 10 ⁇ m or less.
  • the particle diameter of the conductive particles is equal to or greater than the above lower limit and equal to or less than the above upper limit, the contact area between the conductive particles and the electrodes becomes sufficiently large when the electrodes are connected using the conductive particles, and the conductivity is increased. It becomes difficult to form agglomerated conductive particles when forming the portion.
  • the distance between the electrodes connected via the conductive particles does not become too large, and the conductive portion does not easily peel off from the surface of the resin particles.
  • the particle size of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conductive particles can be suitably used for the use of the conductive material.
  • the particle size of the conductive particles means the diameter when the conductive particles are spherical, and when the conductive particles have a shape other than spherical, it is assumed to be a true sphere corresponding to the volume. Means the diameter of.
  • the particle size of the conductive particles means the particle size of the metal particles when the conductive particles include only the metal particles having a porous structure, and the metal particles in which the conductive particles have a porous structure and the metal particles. When the metal particles are provided with the conductive portion arranged on the outer surface, it means the total of the particle diameter of the metal particles and the thickness of the conductive portion (usually twice the thickness of the conductive portion).
  • the particle size of the conductive particles is preferably an average particle size, and more preferably a number average particle size.
  • the particle size of the conductive particles can be determined by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each conductive particle, or using a particle size distribution measuring device. Desired. In observation with an electron microscope or an optical microscope, the particle size of each conductive particle is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 conductive particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the particle size distribution measuring device, the particle size of each conductive particle is obtained as the particle size in the equivalent diameter of a sphere.
  • the particle size of the conductive particles is preferably calculated using a particle size distribution measuring device.
  • the coefficient of variation (CV value) of the particle size of the conductive particles is preferably 20% or less, more preferably 10% or less, still more preferably 5% or less.
  • the coefficient of variation of the particle size of the conductive particles is not more than the above upper limit, the conduction reliability and the insulation reliability between the electrodes can be further effectively improved.
  • the fluctuation coefficient of the particle size is set. It can be made smaller.
  • the coefficient of variation (CV value) can be measured as follows.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle size of conductive particles Dn: Average value of particle size of conductive particles
  • 10% K value of the conductive particles is preferably 100 N / mm 2 or more, more preferably 1000 N / mm 2 or more, preferably 25000N / mm 2 or less, more It is preferably 20000 N / mm 2 or less.
  • the 10% K value of the conductive particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively lowered, and the occurrence of cracking of the conductive particles is further effective. It is possible to further effectively improve the connection reliability between the electrodes.
  • 30% K value of the conductive particles is preferably 100 N / mm 2 or more, more preferably 1000 N / mm 2 or more, preferably 15000 N / mm 2 or less, more It is preferably 10000 N / mm 2 or less.
  • the 30% K value of the conductive particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively lowered, and the occurrence of cracking of the conductive particles is further effective. It is possible to further effectively improve the connection reliability between the electrodes.
  • the ratio of the 10% K value of the conductive particles to the 30% K value of the conductive particles (10% K value of the conductive particles / 30% K value of the conductive particles) is preferably 1.5 or more. It is more preferably 1.55 or more, preferably 5 or less, and more preferably 4.5 or less.
  • the connection resistance between the electrodes can be further effectively lowered. The occurrence of cracking of the conductive particles can be suppressed more effectively, and the connection reliability between the electrodes can be further effectively enhanced.
  • the 10% K value and the 30% K value of the conductive particles can be measured as follows.
  • the compressive elastic modulus 10% K value and 30% K value
  • the 10% K value and the 30% K value of the conductive particles can be calculated by arithmetically averaging the 10% K value and the 30% K value of 50 arbitrarily selected conductive particles. preferable.
  • the compressive elastic modulus universally and quantitatively represents the hardness of conductive particles.
  • the hardness of the conductive particles can be expressed quantitatively and uniquely.
  • the above ratio (10% K value of the conductive particles / 30% K value of the conductive particles) can quantitatively and uniquely represent the physical properties of the conductive particles at the time of initial compression.
  • the shape of the conductive particles is not particularly limited.
  • the shape of the conductive particles may be spherical, non-spherical, flat or the like.
  • FIG. 1 is a cross-sectional view schematically showing conductive particles according to the first embodiment of the present invention.
  • the conductive particle 1 shown in FIG. 1 has a metal particle 2 and a conductive portion 3.
  • the metal particles 2 are base particles.
  • the metal particles 2 have a porous structure (not shown).
  • the metal particle 2 has a plurality of pores.
  • the conductive portion 3 is arranged on the outer surface of the metal particles 2.
  • the conductive portion 3 is partially arranged on the outer surface of the metal particles 2.
  • the conductive portion 3 covers a part of the outer surface of the metal particles 2.
  • the conductive portion 3 covers a part of the outer surface of the metal particles 2.
  • the conductive portion 3 is a single conductive layer.
  • the conductive portion 3 is a discontinuous layer.
  • the conductive portion 3 is in contact with the surface of the metal particles 2.
  • the conductive particle 1 is the conductive particle (A).
  • the conductive particles may be conductive particles (B) having the structure of the conductive particles 1.
  • the conductive portion may be a single-layer conductive layer or a multi-layer conductive layer composed of two or more layers.
  • FIG. 2 is a cross-sectional view schematically showing the conductive particles according to the second embodiment of the present invention.
  • the conductive particle 1A shown in FIG. 2 has a metal particle 2 and a conductive portion 3A.
  • the conductive portion 3A is arranged so as to cover the entire outer surface of the metal particles 2.
  • the conductive portion 3A covers the entire outer surface of the metal particles 2.
  • the conductive portion 3A covers the entire outer surface of the metal particles 2.
  • the conductive portion 3A is a continuous layer.
  • the specific surface area of the conductive particles 1A is smaller than the specific surface area of the conductive particles 1.
  • the conductive particles 1A are the conductive particles (B).
  • the conductive particles may be the conductive particles (A) having the structure of the conductive particles 1A. Further, in the conductive particles, the conductive portion may be a single-layer conductive layer or a multi-layer conductive layer composed of two or more layers.
  • FIG. 3 is a cross-sectional view schematically showing the conductive particles according to the third embodiment of the present invention.
  • the conductive particle 1B shown in FIG. 3 has a metal particle 2, a conductive portion 3B, a plurality of core substances 4, and a plurality of insulating substances 5.
  • the conductive portion 3B is arranged on the surface of the metal particles 2 so as to be in contact with the metal particles 2.
  • the conductive portion 3B is a single conductive layer.
  • the conductive portion 3B is arranged so as to cover the entire outer surface of the metal particles 2.
  • the conductive portion may cover the entire surface of the metal particles, or may cover a part of the surface of the metal particles.
  • the conductive portion may be a single-layer conductive layer or a multi-layer conductive layer composed of two or more layers.
  • the conductive particles 1B have a plurality of protrusions 1Ba on the outer surface.
  • the conductive portion 3B has a plurality of protrusions 3Ba on the outer surface.
  • a plurality of core substances 4 are arranged on the surface of the metal particles 2.
  • the plurality of core substances 4 are embedded in the conductive portion 3B.
  • the core material 4 is arranged inside the protrusions 1Ba and 3Ba.
  • the conductive portion 3B covers a plurality of core substances 4.
  • the outer surface of the conductive portion 3B is raised by the plurality of core substances 4, and protrusions 1Ba and 3Ba are formed.
  • the conductive particles 1B have an insulating substance 5 arranged on the outer surface of the conductive portion 3B. At least a part of the outer surface of the conductive portion 3B is covered with the insulating substance 5.
  • the insulating substance 5 is formed of an insulating material and is an insulating particle.
  • the conductive particles according to the present invention may have an insulating substance arranged on the outer surface of the conductive portion. However, the conductive particles according to the present invention do not necessarily have an insulating substance.
  • FIG. 4 is a cross-sectional view schematically showing the conductive particles according to the fourth embodiment of the present invention.
  • the conductive particle 1C shown in FIG. 4 has a metal particle 2, a conductive portion 3C, a plurality of core substances 4, and a plurality of insulating substances 5.
  • the conductive portion 3C has a first conductive portion 31C on the metal particle 2 side and a second conductive portion 32C on the side opposite to the metal particle 2 side.
  • the first conductive portion 31C is arranged on the surface of the metal particles 2.
  • a first conductive portion 31C is arranged between the metal particles 2 and the second conductive portion 32C.
  • the first conductive portion 31C is in contact with the metal particles 2.
  • the second conductive portion 32C is in contact with the first conductive portion 31C. Therefore, the first conductive portion 31C is arranged on the surface of the metal particles 2, and the second conductive portion 32C is arranged on the surface of the first conductive portion 31C.
  • the conductive particles 1C have a plurality of protrusions 1Ca on the outer surface.
  • the conductive portion 3C has a plurality of protrusions 3Ca on the outer surface.
  • the first conductive portion 31C has a plurality of protrusions 31Ca on the outer surface.
  • the second conductive portion 32C has a plurality of protrusions 32Ca on the outer surface.
  • FIG. 5 is a cross-sectional view schematically showing the conductive particles according to the fifth embodiment of the present invention.
  • the conductive particle 1D shown in FIG. 5 is a metal particle 2.
  • the conductive particles 1D are conductive particles including only the metal particles 2.
  • the metal particles 2 themselves are conductive particles.
  • the conductive particles 1D do not have a conductive portion.
  • the metal particles have a porous structure.
  • the metal particles have a plurality of pores.
  • the metal particles have voids.
  • the metal particles are particles made of metal.
  • the metal particles may contain a resin.
  • the shape of the metal particles is not particularly limited. The shape of the metal particles may be spherical, non-spherical, flat or the like.
  • the metal constituting the metal particles is not particularly limited. As the metal constituting the metal particles, only one kind may be used, or two or more kinds may be used in combination.
  • the metals constituting the metal particles include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, tarium, germanium, cadmium, and the like. Examples thereof include silicon, tungsten, molybdenum and alloys thereof.
  • the metal constituting the metal particles preferably contains nickel, gold or palladium, more preferably nickel, and further preferably nickel. preferable.
  • the content of the metal in 100% by weight of the metal particles is preferably 60% by weight or more, more preferably 70% by weight or more, still more preferably 80% by weight or more, and most preferably 100% by weight. When the content of the metal is at least the above lower limit, the effect of the present invention can be exhibited even more effectively.
  • the content of the metal in 100% by weight of the metal particles may be 100% by weight or less, 99% by weight or less, or 95% by weight or less.
  • the metal particles do not contain or contain resin.
  • the metal particles may or may not contain a resin.
  • the resin contained in the metal particles is, for example, a residual component of the resin used when producing the metal particles having a porous structure. When the metal particles contain the resin, it is preferable that the resin is uniformly distributed in the metal particles.
  • the resin examples include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene and polybutadiene; acrylic resins such as polymethylmethacrylate and polymethylacrylate; polycarbonate, polyamide, phenolformaldehyde resin and melamine formaldehyde.
  • polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene and polybutadiene
  • acrylic resins such as polymethylmethacrylate and polymethylacrylate
  • polycarbonate polyamide
  • phenolformaldehyde resin and melamine formaldehyde melamine formaldehyde
  • the divinylbenzene polymer may be a divinylbenzene copolymer. Examples of the divinylbenzene copolymer and the like include a divinylbenzene-styrene copolymer and a divinylbenzene- (meth) acrylic acid ester copolymer.
  • the content of the resin in the metal particles is preferably 10% by weight or less, more preferably 5% by weight or less, still more preferably 1% by weight or less.
  • the content of the resin is not more than the above upper limit, the effect of the present invention can be exhibited even more effectively.
  • the metal particles do not contain the resin.
  • the content of the resin in the metal particles is calculated by the formula: 100% by weight-metal content (% by weight) after measuring the metal content (% by weight) in the metal particles by ICP emission spectrometry. It can be obtained by doing.
  • the particle size of the metal particles is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, still more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less, even more preferably. Is 20 ⁇ m or less, particularly preferably 10 ⁇ m or less.
  • the particle diameter of the metal particles is equal to or greater than the above lower limit and equal to or less than the above upper limit, the contact area between the conductive particles and the electrodes becomes sufficiently large and the conductive portion is formed when the electrodes are connected using the conductive particles. It becomes difficult for agglomerated conductive particles to be formed when the particles are formed.
  • the conductive portion is formed on the surface of the metal particles by electroless plating, it is possible to make it difficult for the agglomerated conductive particles to be formed.
  • the particle size of the metal particles is not less than the above lower limit and not more than the above upper limit, the conductive particles are easily sufficiently compressed, the connection resistance between the electrodes can be further reduced, and the distance between the electrodes can be further increased. It can be made smaller.
  • the particle diameter of the metal particles means the diameter when the metal particles are spherical, and when the metal particles have a shape other than the spherical shape, the diameter when the metal particles are assumed to be a true sphere corresponding to the volume. means.
  • the particle size of the metal particles is preferably an average particle size, more preferably a number average particle size.
  • the particle size of the metal particles can be obtained by observing 50 arbitrary metal particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each metal particle, or using a particle size distribution measuring device. In observation with an electron microscope or an optical microscope, the particle size of each metal particle is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 metal particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the particle size distribution measuring device, the particle size of each metal particle is obtained as the particle size in the equivalent diameter of a sphere.
  • the average particle size of the metal particles is preferably calculated using a particle size distribution measuring device. When measuring the particle size of the metal particles in the conductive particles, for example, the measurement can be performed as follows.
  • the coefficient of variation (CV value) of the particle size of the metal particles is preferably 20% or less, more preferably 10% or less, still more preferably 5% or less.
  • CV value coefficient of variation of the particle size of the metal particles
  • the coefficient of variation (CV value) can be measured as follows.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle size of metal particles Dn: Average value of particle size of metal particles
  • the total pore volume of the metal particles is preferably 0.01 cm 3 / g or more, more preferably 0.1 cm 3 / g or more, preferably 3 cm 3 / g or less, and more preferably 1.5 cm 3 / g. It is as follows. When the total pore volume is equal to or higher than the lower limit and lower than the upper limit, the conductive particles are more satisfactorily compressed when the electrodes are connected in the vertical direction, and a conduction path is provided inside the compressed conductive particles. It can be formed even better, and the effects of the present invention can be exhibited even more effectively.
  • the adhesion between the metal particles and the conductive portion can be further effectively enhanced, and the occurrence of peeling of the conductive portion is further effective. Can be suppressed.
  • the average pore diameter of the metal particles is preferably 0.1 nm or more, more preferably 0.5 nm or more, preferably 10 nm or less, and more preferably 5 nm or less.
  • the conductive particles are more satisfactorily compressed when the electrodes are connected in the vertical direction, and a conduction path is provided inside the compressed conductive particles. It can be formed more satisfactorily, and the effect of the present invention can be exhibited even more effectively.
  • the average pore diameter is at least the above lower limit and at least the above upper limit, the adhesion between the metal particles and the conductive portion can be further effectively enhanced, and the occurrence of peeling of the conductive portion can be further effectively performed. It can be suppressed.
  • the total pore volume and average pore diameter of the metal particles can be measured from the adsorption isotherm of nitrogen in accordance with the BJH method.
  • Examples of the measuring device that can be used for measuring the total pore volume and the average pore diameter include "NOVA4200e" manufactured by Cantachrome Instruments.
  • the porosity of the metal particles is preferably 10% or more, more preferably 20% or more, preferably 70% or less, and more preferably 50% or less.
  • the porosity is equal to or higher than the lower limit and lower than the upper limit, the conductive particles are compressed more satisfactorily at the time of connection between the electrodes in the vertical direction, and the conduction path is further provided inside the compressed conductive particles. It can be formed well, and the effects of the present invention can be exhibited even more effectively. Further, when the porosity is equal to or higher than the lower limit and lower than the upper limit, the adhesion between the metal particles and the conductive portion can be further effectively enhanced, and the occurrence of peeling of the conductive portion can be further effectively suppressed. can do.
  • the porosity of the metal particles can be calculated by measuring the cumulative amount of mercury infiltrated with respect to the pressure applied by the mercury intrusion method.
  • Examples of the measuring device that can be used for measuring the porosity include a mercury porosimeter "Poremaster 60" manufactured by Cantachrome Instruments.
  • the method for producing the metal particles having a porous structure is not particularly limited.
  • Metal particles having a porous structure are produced by impregnating metal particle-forming base particles with metal and then removing the base particle components (resin component, etc.) of the metal particle-forming base particles containing metal.
  • the material of the base particles for forming metal particles is preferably an organic material, and more preferably a resin. Examples of the base particle for forming metal particles formed only of the organic material include resin particles.
  • the base particles for forming the metal particles are more preferably resin particles.
  • the organic material include the above-mentioned resins. Since the metal particles having a porous structure can be obtained satisfactorily, the material of the base particles for forming the metal particles is obtained by polymerizing one or more kinds of polymerizable monomers having an ethylenically unsaturated group. It is preferably a polymer.
  • the base material particles for forming metal particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group
  • the polymerizable monomer having an ethylenically unsaturated group is a non-crosslinkable simple monomer. Examples include polymers and crosslinkable monomers.
  • non-crosslinkable monomer examples include styrene monomers such as styrene, ⁇ -methylstyrene, and chlorostyrene; vinyl ether compounds such as methylvinyl ether, ethylvinyl ether, and propylvinyl ether; vinyl acetate, vinyl butyrate, and the like.
  • Acid vinyl ester compounds such as vinyl laurate and vinyl stearate; halogen-containing monomers such as vinyl chloride and vinyl fluoride; as (meth) acrylic compounds, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) ) Acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and other alkyl ( Meta) acrylate compound; oxygen atom-containing (meth) acrylate compound such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate; (meth)
  • Nitrile-containing monomer Halogen-containing (meth) acrylate compound such as trifluoromethyl (meth) acrylate and pentafluoroethyl (meth) acrylate; olefin such as diisobutylene, isobutylene, linearene, ethylene and propylene as ⁇ -olefin compound Compound: Examples of the conjugated diene compound include isoprene and butadiene.
  • crosslinkable monomer examples include vinyl monomers such as divinylbenzene, 1,4-dibinyloxybutane, and divinylsulfone as vinyl compounds; and tetramethylolmethanetetra (meth) acrylate as (meth) acrylic compounds.
  • the base particles for forming metal particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group.
  • the above polymerization method is not particularly limited, and examples thereof include known methods such as radical polymerization, ionic polymerization, polycondensation (condensation polymerization, polycondensation polymerization), addition condensation, living polymerization, and living radical polymerization. Further, as another polymerization method, suspension polymerization in the presence of a radical polymerization initiator can be mentioned.
  • the method of containing a metal (conductive metal) inside the base particle for forming metal particles is not particularly limited.
  • a method of containing a metal inside the metal particle forming base particle a method of electroless plating using the metal particle forming base particle which is a porous particle and a method for forming a metal particle which is a porous particle are used. Examples thereof include a method of electroplating using base particles. Since the base particles for forming metal particles, which are porous particles, have a relatively large number of voids inside the base particles, when the metal is coated on the surface of the base particles for forming metal particles, the base particles are said to be used.
  • a metal particle-forming material (plating solution, etc.) can be allowed to enter into the fine voids inside the base particles. By precipitating the metal from the metal particle-forming material that has entered the inside of the metal particle-forming base particle, the metal can be easily contained in the metal particle-forming base particle.
  • the constituent metal include the above-mentioned metals.
  • Examples of the method for removing the base particle component of the base particle for forming metal particles containing metal include heating and melting. It is preferable to heat or dissolve the base particle for forming metal particles containing metal to remove the base particle component.
  • metal particles having a porous structure can be produced.
  • the conductive particles preferably include a conductive portion arranged on the outer surface of the metal particles.
  • the conductive portion preferably contains a metal.
  • the conductive portion is preferably a metal-coated portion.
  • the conductive portion is different from the metal particles.
  • the metal constituting the conductive portion is not particularly limited.
  • the metal constituting the conductive portion and the metal constituting the metal particles may be the same or different.
  • the main metal constituting the conductive portion and the main metal constituting the metal particles may be the same or different.
  • the main metal constituting the conductive portion means the metal having the highest content among the metals constituting the conductive portion.
  • the main metal constituting the metal particles means the metal having the highest content among the metals constituting the metal particles.
  • the metals constituting the conductive portion include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, tarium, germanium, cadmium, and the like. Examples thereof include silicon, tungsten, molybdenum and alloys thereof. Examples of the metal constituting the conductive portion include tin-doped indium oxide (ITO) and solder. As the metal constituting the conductive portion, only one kind may be used, or two or more kinds may be used in combination.
  • ITO tin-doped indium oxide
  • the conductive portion preferably contains nickel, gold, palladium, silver, or copper, and more preferably nickel, gold, or palladium. It is particularly preferable to contain nickel.
  • the content of nickel in 100% by weight of the conductive portion containing nickel is preferably 10% by weight or more, more preferably 50% by weight or more, still more preferably 60% by weight or more, still more preferably 70% by weight or more, particularly preferably. Is 90% by weight or more.
  • the content of nickel in 100% by weight of the conductive portion containing nickel may be 97% by weight or more, 97.5% by weight or more, 98% by weight or more, 100% by weight. It may be% by weight.
  • hydroxyl groups are often present on the surface of the conductive part due to oxidation.
  • a hydroxyl group is present on the surface of a conductive portion formed of nickel due to oxidation.
  • An insulating substance can be arranged on the surface of the conductive portion having such a hydroxyl group (the surface of the conductive particles) via a chemical bond. Even when a hydroxyl group is present on the surface of the metal particles, the insulating substance can be arranged on the surface of the metal particles via a chemical bond.
  • the conductive portion may be a discontinuous layer or a continuous layer.
  • conductive particles (A) can be obtained satisfactorily.
  • conductive particles (B) can be obtained satisfactorily.
  • the conductive particles may be conductive particles (B) having a conductive portion which is a discontinuous layer, or may be conductive particles (A) having a conductive portion which is a continuous layer.
  • the conductive portion may be formed by one layer.
  • the conductive portion may be formed of a plurality of layers. That is, the conductive portion may have a laminated structure of two or more layers.
  • the metal constituting the outermost layer is preferably gold, nickel, palladium, copper or an alloy containing tin and silver, and is preferably gold. More preferred.
  • the connection resistance between the electrodes becomes even lower. Further, when the metal constituting the outermost layer is gold, the corrosion resistance is further improved.
  • the metal constituting the outermost layer may be nickel.
  • the area of the portion where the conductive portion is located (covering ratio of the conductive portion) in the outer surface area of 100% of the metal particles is not particularly limited.
  • the coverage of the conductive portion can be appropriately changed depending on the specific surface area, specific gravity, etc. of the target conductive particles.
  • the coverage of the conductive portion can be adjusted by adjusting the composition of the plating solution, the reaction conditions, and the like.
  • the area of the portion where the conductive portion is present (coverage of the conductive portion) may be 0% or more, 50% or more, 90% or more. It may be 100%.
  • the area of the portion where the conductive portion is located (coverage of the conductive portion) in the outer surface area of the metal particles of 100% is calculated by performing element mapping by SEM-EDX analysis of the cross section of the conductive particles and image analysis. can do.
  • the method of forming the conductive portion on the surface of the metal particles is not particularly limited.
  • Examples of the method for forming the conductive portion include a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption, and a metal powder or metal powder. Examples thereof include a method of coating the surface of metal particles with a paste containing the binder and the binder.
  • the method for forming the conductive portion is preferably a method by electroless plating, electroplating or physical collision.
  • Examples of the method by physical vapor deposition include methods such as vacuum deposition, ion plating, and ion sputtering. Further, as the method by the above physical collision, a seater composer (manufactured by Tokuju Kosakusho Co., Ltd.) or the like is used.
  • the conductive portion is preferably a plated conductive portion or a sputtering conductive portion.
  • the conductive portion may be a plated conductive portion or a sputtering conductive portion.
  • the plating conductive portion is formed by plating.
  • the sputtering conductive portion is formed by sputtering.
  • the plated conductive portion is preferably a plated conductive layer.
  • the plated conductive portion is preferably a plated metal coating portion, and more preferably a plated metal coating layer.
  • the sputtering conductive portion is preferably a sputtering conductive layer.
  • the sputtering conductive portion is preferably a sputtering metal coating portion, and more preferably a sputtering metal coating layer.
  • the conductive portion does not have to have a porous structure.
  • a conductive portion having no porous structure can be formed by plating, sputtering, or the like.
  • the thickness of the conductive portion is preferably 0.1 nm or more, more preferably 10 nm or more, preferably less than 50 nm, more preferably. It is 40 nm or less, more preferably 30 nm or less.
  • the thickness of the conductive portion is the thickness of the entire conductive portion when the conductive portion has multiple layers.
  • the thickness of the conductive portion is preferably 50 nm or more, more preferably 60 nm or more, preferably 1000 nm or less, more preferably 500 nm or less. , More preferably 300 nm or less.
  • the thickness of the conductive portion is the thickness of the entire conductive portion when the conductive portion has multiple layers.
  • the thickness of the conductive portion of the outermost layer is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 0.5 ⁇ m or less, more preferably. Is 0.1 ⁇ m or less.
  • the thickness of the conductive portion of the outermost layer is equal to or higher than the lower limit and lower than the upper limit, the coating by the conductive portion of the outermost layer becomes uniform, the corrosion resistance becomes sufficiently high, and the connection resistance between the electrodes is sufficiently increased. Can be lowered. Further, when the metal constituting the outermost layer is gold, the thinner the outermost layer, the lower the cost.
  • the thickness of the conductive portion can be measured by observing the cross section of the conductive particles using, for example, a transmission electron microscope (TEM). Regarding the thickness of the conductive portion, it is preferable to calculate the average value of the thickness of any of the conductive portions at five points as the thickness of the conductive portion of one conductive particle, and the average value of the thickness of the entire conductive portion is one. It is more preferable to calculate as the thickness of the conductive portion of the conductive particles. Further, in the case of conductive particles having a portion on the outer surface of the metal particle in which the conductive portion is not arranged (for example, the conductive particle 1 in FIG. 1), the portion where the conductive portion is not arranged is the thickness of the conductive portion.
  • TEM transmission electron microscope
  • the thickness of the conductive portion is obtained only from the portion where the conductive portion is arranged.
  • the boundary between the metal particles having a porous structure and the conductive portion is determined according to the following procedure.
  • the smallest approximate circle that has the same center as the substantially circular circle and contains the entire metal particles having a porous structure is defined as the boundary between the metal particles and the conductive portion. ..
  • the thickness of the conductive portion is preferably obtained by calculating the average value of the thickness of the conductive portion of each conductive particle for 50 arbitrary conductive particles.
  • the conductive particles preferably have protrusions on the outer surface of the conductive portion.
  • the conductive particles preferably have protrusions on the surface. It is preferable that the number of the protrusions is plurality.
  • the conductive particles preferably have a plurality of the protrusions.
  • An oxide film is often formed on the surface of the electrode connected by the conductive particles. When conductive particles having protrusions on the surface of the conductive portion are used, the oxide film can be effectively removed by the protrusions by arranging the conductive particles between the electrodes and crimping them. Therefore, the electrodes and the conductive portion come into contact with each other more reliably, and the connection resistance between the electrodes becomes even lower.
  • the conductive particles include an insulating substance, or when the conductive particles are dispersed in a binder resin and used as a conductive material, the protrusions of the conductive particles between the conductive particles and the electrode. Insulating substances or binder resins can be eliminated even more effectively. Therefore, the connection resistance between the electrodes can be further reduced.
  • the method of forming the protrusions includes a method of adhering a core material to the surface of metal particles and then forming a conductive portion by electroless plating, and a method of forming a conductive portion by electroless plating on the surface of metal particles. Examples thereof include a method in which a core material is attached and a conductive portion is formed by electroless plating. Further, the core material may not be used to form the protrusions.
  • a method of adding a core substance in the middle of forming a conductive portion on the surface of the metal particles can be mentioned.
  • the conductive portion is formed on the metal particles by electroless plating without using the core material, and then the plating is deposited in the shape of protrusions on the surface of the conductive portion, and further by electroless plating.
  • a method of forming a conductive portion or the like may be used.
  • a method of adhering the core substance to the surface of the metal particles a method of adding the core substance to the dispersion liquid of the metal particles and accumulating and adhering the core substance on the surface of the metal particles by van der Waals force, and Examples thereof include a method in which a core substance is added to a container containing metal particles, and the core substance is attached to the surface of the metal particles by a mechanical action such as rotation of the container.
  • the method of adhering the core substance to the surface of the metal particles is preferably a method of accumulating and adhering the core substance to the surface of the metal particles in the dispersion liquid.
  • Examples of the substance constituting the core substance include a conductive substance and a non-conductive substance.
  • Examples of the conductive substance include metals, metal oxides, conductive non-metals such as graphite, and conductive polymers.
  • Examples of the conductive polymer include polyacetylene and the like.
  • Examples of the non-conductive substance include silica, alumina and zirconia. From the viewpoint of removing the oxide film more effectively, the core material is preferably hard. From the viewpoint of further effectively lowering the connection resistance between the electrodes, the core material is preferably a metal.
  • the above metals are not particularly limited.
  • the metals include metals such as gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead alloys.
  • examples thereof include alloys composed of two or more kinds of metals such as tin-copper alloy, tin-silver alloy, tin-lead-silver alloy and tungsten carbide.
  • the metal is preferably nickel, copper, silver or gold.
  • the metal may be the same as or different from the metal constituting the conductive portion (conductive layer).
  • the metal may be the same as or different from the metal constituting the metal particles.
  • the shape of the core substance is not particularly limited.
  • the shape of the core material is preferably lumpy.
  • Examples of the core material include particulate lumps, agglomerates in which a plurality of fine particles are agglomerated, and amorphous lumps.
  • the particle size of the core substance is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.9 ⁇ m or less, and more preferably 0.2 ⁇ m or less.
  • the particle size of the core substance is not less than the above lower limit and not more than the upper limit, the connection resistance between the electrodes can be further effectively reduced.
  • the particle size of the core substance is preferably an average particle size, more preferably a number average particle size.
  • the particle size of the core substance can be obtained by observing 50 arbitrary core substances with an electron microscope or an optical microscope, calculating the average value of the particle size of each core substance, or using a particle size distribution measuring device. In observation with an electron microscope or an optical microscope, the particle size of each core substance is determined as the particle size in a circle-equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 core materials in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the particle size distribution measuring device, the particle size of each core substance is obtained as the particle size in the equivalent diameter of a sphere.
  • the average particle size of the core substance is preferably calculated using a particle size distribution measuring device.
  • the number of the protrusions per conductive particle is preferably 3 or more, more preferably 5 or more.
  • the upper limit of the number of the protrusions is not particularly limited.
  • the upper limit of the number of protrusions can be appropriately selected in consideration of the particle size of the conductive particles and the like. When the number of the protrusions is at least the above lower limit, the connection resistance between the electrodes can be further effectively reduced.
  • the number of protrusions can be calculated by observing arbitrary conductive particles with an electron microscope or an optical microscope.
  • the number of protrusions is preferably determined by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating the average value of the number of protrusions in each conductive particle.
  • the height of the protrusion is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.9 ⁇ m or less, and more preferably 0.5 ⁇ m or less.
  • the height of the protrusion may be 0.2 ⁇ m or less.
  • the height of the protrusions can be calculated by observing the protrusions on any conductive particle with an electron microscope or an optical microscope.
  • the height of the protrusions is preferably calculated by calculating the average value of the heights of all the protrusions per conductive particle as the height of the protrusions of one conductive particle. It is preferable that the height of the protrusions is obtained by calculating the average value of the heights of the protrusions of each conductive particle for 50 arbitrary conductive particles.
  • the conductive particles preferably include an insulating substance arranged on the outer surface of the metal particles or on the outer surface of the conductive portion.
  • an insulating substance may be arranged on the outer surface of the metal particles. It is more preferable that the conductive particles include an insulating substance arranged on the outer surface of the conductive portion.
  • an insulating substance exists between the plurality of electrodes, so that it is possible to prevent a short circuit between the electrodes adjacent to each other in the lateral direction rather than between the upper and lower electrodes.
  • the insulating substance between the conductive portion of the conductive particles and the electrodes can be easily removed.
  • the insulating substance between the conductive portion of the conductive portion and the electrode can be more easily removed.
  • the insulating substance is preferably insulating particles because the insulating substance can be more easily removed during crimping between the electrodes.
  • the conductive particles according to the present invention the conductive particles having insulating particles may be referred to as conductive particles with insulating particles.
  • Examples of the material of the insulating substance include the above-mentioned resin and inorganic substances.
  • the material of the insulating substance is preferably the resin.
  • As the material of the insulating substance only one kind may be used, or two or more kinds may be used in combination.
  • examples of the inorganic substances include silica, alumina, barium titanate, zirconia, carbon black, silicate glass, borosilicate glass, lead glass, soda-lime glass and alumina silicate glass.
  • insulating material examples include polyolefin compounds, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, crosslinked products of thermoplastic resins, thermosetting resins and water-soluble materials. Examples include resin.
  • Examples of the polyolefin compound include polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer and the like.
  • Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polydodecyl (meth) acrylate, and polystearyl (meth) acrylate.
  • Examples of the block polymer include polystyrene, styrene-acrylic acid ester copolymer, SB type styrene-butadiene block copolymer, SBS type styrene-butadiene block copolymer, and hydrogenated products thereof.
  • Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers.
  • thermosetting resin examples include epoxy resin, phenol resin, melamine resin and the like.
  • crosslinked product of the thermoplastic resin examples include the introduction of polyethylene glycol methacrylate, alkoxylated trimethylolpropane methacrylate, alkoxylated pentaerythritol methacrylate and the like.
  • water-soluble resin examples include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinylpyrrolidone, polyethylene oxide, methyl cellulose and the like.
  • a chain transfer agent may be used to adjust the degree of polymerization. Examples of the chain transfer agent include thiols and carbon tetrachloride.
  • Examples of the method of arranging the insulating substance on the surface of the metal particles or the surface of the conductive portion include a chemical method and a physical or mechanical method.
  • Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method.
  • Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion method, spraying method, dipping and vacuum deposition methods.
  • the outer surface of the metal particles, the outer surface of the conductive portion, and the outer surface of the insulating substance may each be coated with a compound having a reactive functional group.
  • the outer surface of the metal particles or the outer surface of the conductive portion and the outer surface of the insulating substance do not have to be directly chemically bonded, but are indirectly chemically bonded by a compound having a reactive functional group. May be good.
  • the carboxyl group is chemically bonded to the functional group on the outer surface of the insulating substance via a polyelectrolyte such as polyethyleneimine. May be good.
  • the particle size of the insulating particle can be appropriately selected depending on the particle size of the conductive particle, the application of the conductive particle, and the like.
  • the particle size of the insulating particles is preferably 10 nm or more, more preferably 100 nm or more, further preferably 300 nm or more, particularly preferably 500 nm or more, preferably 4000 nm or less, more preferably 2000 nm or less, still more preferably 1500 nm or less. , Especially preferably 1000 nm or less.
  • the particle size of the insulating particles is at least the above lower limit, when the conductive particles are dispersed in the binder resin, it becomes difficult for the metal particles or the conductive portions of the plurality of conductive particles to come into contact with each other.
  • the particle size of the insulating particles is not more than the above upper limit, the pressure is increased in order to eliminate the insulating particles between the metal particles or the conductive portion in the electrodes and the conductive particles when connecting the electrodes. There is no need to overheat and no need to heat to high temperatures.
  • the particle size of the insulating particles is preferably an average particle size, and preferably a number average particle size.
  • the particle size of the insulating particles can be obtained by observing 50 arbitrary insulating particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each insulating particle, or using a particle size distribution measuring device. Be done. In observation with an electron microscope or an optical microscope, the particle size of each insulating particle is determined as the particle size in the equivalent circle diameter. When observed with an electron microscope or an optical microscope, the average particle diameter of any 50 insulating particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere.
  • the particle size of each insulating particle is determined as the particle size in the equivalent diameter of a sphere.
  • the average particle size of the insulating particles is preferably calculated using a particle size distribution measuring device.
  • the measurement can be performed as follows.
  • Conductive particles are added to "Technobit 4000” manufactured by Kulzer so as to have a content of 30% by weight and dispersed to prepare an embedded resin body for conducting conductive particle inspection.
  • a cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the dispersed conductive particles in the embedded resin body for inspection.
  • IM4000 manufactured by Hitachi High-Technologies Corporation
  • FE-SEM field emission scanning electron microscope
  • the particle size of the insulating particles in each conductive particle is measured, and they are arithmetically averaged to obtain the particle size of the insulating particles.
  • the ratio of the particle size of the conductive particles to the particle size of the insulating particles is preferably 4 or more, more preferably 8 or more, and preferably 8. It is 200 or less, more preferably 100 or less.
  • the above ratio particle size of conductive particles / particle size of insulating particles
  • the insulation reliability and conduction reliability are further improved when the electrodes are electrically connected. Can be effectively enhanced.
  • the conductive material according to the present invention includes the above-mentioned conductive particles and a binder resin.
  • the conductive particles are preferably dispersed in the binder resin and used as a conductive material.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive material is preferably used for electrical connection of electrodes.
  • the conductive material is preferably a circuit connection material.
  • the binder resin is not particularly limited.
  • the binder resin a known insulating resin is used.
  • the binder resin preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component.
  • the curable component include a photocurable component and a thermosetting component.
  • the photocurable component preferably contains a photocurable compound and a photopolymerization initiator.
  • the thermosetting component preferably contains a thermosetting compound and a thermosetting agent.
  • the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. Only one kind of the binder resin may be used, or two or more kinds thereof may be used in combination.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin, styrene resin and the like.
  • the thermoplastic resin include polyolefin resins, ethylene-vinyl acetate copolymers, and polyamide resins.
  • Examples of the curable resin include epoxy resin, urethane resin, polyimide resin, unsaturated polyester resin and the like.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated additive of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene.
  • -Hydrogen additives of styrene block copolymer and the like can be mentioned.
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the conductive material includes, for example, a filler, a bulking agent, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a photostabilizer. It may contain various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant.
  • a conventionally known dispersion method can be used as a method for dispersing the conductive particles in the binder resin.
  • the method for dispersing the conductive particles in the binder resin include the following methods. A method in which the conductive particles are added to the binder resin and then kneaded and dispersed with a planetary mixer or the like. A method in which the conductive particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, added to the binder resin, and kneaded and dispersed by a planetary mixer or the like. A method in which the binder resin is diluted with water or an organic solvent, the conductive particles are added, and the binder resin is kneaded and dispersed with a planetary mixer or the like.
  • the viscosity ( ⁇ 25) of the conductive material at 25 ° C. is preferably 30 Pa ⁇ s or more, more preferably 50 Pa ⁇ s or more, preferably 400 Pa ⁇ s or less, and more preferably 300 Pa ⁇ s or less.
  • the viscosity ( ⁇ 25) can be appropriately adjusted depending on the type and amount of the compounding component.
  • the viscosity ( ⁇ 25) can be measured at 25 ° C. and 5 rpm using, for example, an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.).
  • the conductive material can be used as a conductive paste, a conductive film, or the like.
  • the conductive material according to the present invention is a conductive film, a film containing no conductive particles may be laminated on the conductive film containing the conductive particles.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and particularly preferably 70% by weight or more. Is 99.99% by weight or less, more preferably 99.9% by weight or less.
  • the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further improved.
  • the content of the conductive particles in 100% by weight of the conductive material is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, more preferably 60% by weight. % Or less, more preferably 40% by weight or less, still more preferably 20% by weight or less, and particularly preferably 10% by weight or less.
  • the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively lowered, and the connection reliability between the electrodes can be further effectively reduced. Can be enhanced.
  • connection structure includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the above. It includes a connecting portion that connects to the second connection target member.
  • the connection portion is formed of conductive particles or is formed of a conductive material containing the conductive particles and the binder resin, and the conductive particles are described above. It is a conductive particle, and the first electrode and the second electrode are electrically connected by the conductive particle.
  • the connection structure includes a step of arranging the conductive particles or the conductive material between the first connection target member and the second connection target member, and a step of conducting a conductive connection by heat-bonding. Can be obtained through.
  • the conductive particles have the insulating substance, it is preferable that the insulating substance is desorbed from the conductive particles at the time of thermal pressure bonding.
  • the connecting portion itself is a conductive particle. That is, the first connection target member and the second connection target member are connected by the conductive particles.
  • the conductive material used to obtain the connection structure is preferably an anisotropic conductive material.
  • FIG. 6 schematically shows a connection structure using conductive particles according to the first embodiment of the present invention in a front sectional view.
  • connection structure 51 shown in FIG. 6 connects a first connection target member 52, a second connection target member 53, and a connection portion 54 connecting the first and second connection target members 52 and 53. Be prepared.
  • the connecting portion 54 is formed by curing a conductive material containing the conductive particles 1.
  • the conductive particles 1 are shown schematicly for convenience of illustration. Instead of the conductive particles 1, other conductive particles such as conductive particles 1A, 1B, 1C, and 1D may be used.
  • connection structure is not particularly limited.
  • the conductive material is arranged between a first connection target member and a second connection target member, and after obtaining a laminate, the laminate is heated and pressurized.
  • the method and the like can be mentioned.
  • the pressure at the time of pressurization is preferably 40 MPa or more, more preferably 60 MPa or more, preferably 90 MPa or less, and more preferably 70 MPa or less.
  • the temperature at the time of heating is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, preferably 140 ° C. or lower, and more preferably 120 ° C. or lower.
  • the conductive particles are satisfactorily compressed during the above heating and pressurization, and are satisfactorily compressed on the surface of the conductive particles (for example, a conductive portion). Not only the conduction path is formed, but also the conduction path is satisfactorily formed inside the conductive particles. As a result, the effects of the above-mentioned 1) -3) of the present invention can be exhibited, and the risk of electrode breakage can be suppressed.
  • the first connection target member and the second connection target member are not particularly limited.
  • Specific examples of the first connection target member and the second connection target member include electronic components such as semiconductor chips, semiconductor packages, LED chips, LED packages, capacitors and diodes, resin films, printed circuit boards, and flexible devices. Examples thereof include electronic components such as printed circuit boards, flexible flat cables, rigid flexible boards, glass epoxy boards, and circuit boards such as glass boards.
  • the first connection target member and the second connection target member are preferably electronic components.
  • the electrodes provided on the connection target member include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes, SUS electrodes, and tungsten electrodes.
  • the electrodes are preferably gold electrodes, nickel electrodes, tin electrodes, silver electrodes or copper electrodes.
  • the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode.
  • the electrode is an aluminum electrode, it may be an electrode formed only of aluminum, or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer.
  • the material of the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al and Ga.
  • Example 1 Preparation of Base Particles for Metal Particle Formation Polystyrene particles having an average particle diameter of 0.9 ⁇ m were prepared as seed particles. A mixed solution was prepared by mixing 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion-exchanged water, and 120 parts by weight of a 5% by weight polyvinyl alcohol aqueous solution. After the above mixed solution was dispersed by ultrasonic waves, it was placed in a separable flask and stirred uniformly.
  • the emulsion was added to the mixture in a separable flask in several portions, and the mixture was stirred for 12 hours to allow the seed particles to absorb the monomer to obtain a suspension containing the seed particles in which the monomer was swollen. ..
  • a nickel plating solution (pH 8.5) containing nickel sulfate 0.35 mol / L, dimethylamine borane 1.38 mol / L and sodium citrate 0.5 mol / L was prepared.
  • the obtained particles on which the nickel was precipitated were heated at 400 ° C. for 12 hours under nitrogen flow and then washed with 0.1 N nitric acid to obtain metal particles having a porous structure.
  • conductive material anisotropic conductive paste 7 parts by weight of the obtained metal particles (conductive particles), 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and phenol novolac.
  • a conductive material anisotropic conductive paste was obtained by blending 30 parts by weight of the type epoxy resin and SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.), defoaming and stirring for 3 minutes.
  • connection structure A transparent glass substrate having an IZO electrode pattern (first electrode, Vickers hardness of metal on the electrode surface of 100 Hv) having an L / S of 10 ⁇ m / 10 ⁇ m formed on the upper surface (first connection target). Members) were prepared. Further, a semiconductor chip (second connection target member) having an Au electrode pattern (second electrode, Vickers hardness of metal on the electrode surface 50 Hv) having an L / S of 10 ⁇ m / 10 ⁇ m formed on the lower surface was prepared. The obtained anisotropic conductive paste was coated on the transparent glass substrate so as to have a thickness of 30 ⁇ m to form an anisotropic conductive paste layer.
  • the semiconductor chips were laminated on the anisotropic conductive paste layer so that the electrodes face each other. After that, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 100 ° C., the pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 55 MPa is applied to form the anisotropic conductive paste layer. It was cured at 100 ° C. to obtain a connecting structure.
  • Example 2 (1) Preparation of Metal Particles (Base Material Particles) The metal particles (conductive particles) obtained in Example 1 were used as the metal particles as the base material particles in Example 2.
  • the above metal particles were dispersed in pure water to obtain a dispersion liquid. While stirring the obtained dispersion at 60 ° C., 50 parts by weight of the nickel plating solution was gradually added dropwise to the dispersion to perform electroless nickel plating. Then, by filtering the dispersion liquid, the particles are taken out, washed with water, and dried to form a nickel-boron conductive layer on the surface of the metal particles (base particle), and the conductive particles have a conductive portion on the surface.
  • Example 3 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 2 except that the amount of the nickel plating solution used was changed from 50 parts by weight to 100 parts by weight.
  • Example 4 A gold plating solution was prepared by adding 5 g of potassium gold cyanide to 500 g of a solution containing 10 g / L sodium ethylenediamine 4 acetate and 10 g / L sodium citrate.
  • Example 3 10 parts by weight of the conductive particles having the nickel-boron conductive layer obtained in Example 3 were placed in 500 parts by weight of the gold plating solution and immersed at 70 ° C. for 30 minutes to perform electroless gold plating. Then, by filtering the liquid, the particles are taken out, washed with water, and dried to form a nickel-boron-gold conductive layer on the surface of the metal particles (base particles), and the conductive portion has a conductive portion on the surface. Obtained particles. A conductive material and a connecting structure were obtained in the same manner as in Example 1 except that the obtained conductive particles were used.
  • Example 5 A palladium plating solution containing 10 g / L ethylenediamine, 3.0 g / L palladium sulfate, and 5.0 g / L sodium formate was prepared.
  • a dispersion liquid was obtained by adding 10 parts by weight of the conductive particles having the nickel-boron conductive layer obtained in Example 3 to 200 parts by weight of distilled water and dispersing them. After heating the obtained dispersion to 70 ° C., 700 parts by weight of the palladium plating solution was added dropwise to the dispersion over 10 minutes to perform electroless palladium plating. Then, by filtering the dispersion liquid, the particles are taken out, washed with water, and dried to form a nickel-boron-palladium conductive layer on the surface of the metal particles (base particle), and the conductive portion has a conductive portion on the surface. Sex particles were obtained. A conductive material and a connecting structure were obtained in the same manner as in Example 1 except that the obtained conductive particles were used.
  • Example 6 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 2 except that the amount of the nickel plating solution used was changed from 50 parts by weight to 200 parts by weight.
  • Example 7 Electroless gold plating was performed under the conditions described in Example 4 using the conductive particles having the nickel-boron conductive layer obtained in Example 6. In this way, conductive particles having a nickel-boron-gold conductive layer were obtained. A conductive material and a connecting structure were obtained in the same manner as in Example 1 except that the conductive particles were used.
  • Example 8 Electroless palladium plating was performed under the conditions described in Example 5 using the conductive particles having the nickel-boron conductive layer obtained in Example 6. In this way, conductive particles having a nickel-boron-palladium conductive layer were obtained. A conductive material and a connecting structure were obtained in the same manner as in Example 1 except that the conductive particles were used.
  • Example 9 (1) Preparation of metal particles (base particles) to which a core substance is attached
  • a nickel particle slurry (average particle diameter 100 nm) is contained in a dispersion liquid. By adding 1 g over 3 minutes, metal particles (base particle) to which the core substance was attached and having a porous structure were obtained.
  • the monomer composition comprises 360 mmol of methyl methacrylate, 45 mmol of glycidyl methacrylate, 20 mmol of parastyryldiethylphosphine, 13 mmol of ethylene glycol dimethacrylate, 0.5 mmol of polyvinylpyrrolidone, and 2,2'-azobis ⁇ 2- [N- (2). -Carboxyethyl) amidino] propane ⁇ 1 mmol. After completion of the reaction, the reaction was freeze-dried to obtain insulating particles (particle size 360 nm) having a phosphorus atom derived from parastilyl diethylphosphine on the surface.
  • Example 10 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 9 except that electroless gold plating was performed after electroless nickel plating.
  • Example 11 Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 9 except that electroless nickel plating was performed and then electroless palladium plating was performed.
  • Example 12 150 parts by weight of divinylbenzene (monomer component), 2 parts by weight of 2,2'-azobis (methyl isobutyrate) ("V-601" manufactured by Wako Pure Chemical Industries, Ltd.), and benzoyl peroxide ("Niper” manufactured by NOF Corporation). BW ”) 2 parts by weight were mixed. Further, 9 parts by weight of triethanolamine lauryl sulfate, 50 parts by weight of toluene (solvent), and 1100 parts by weight of ion-exchanged water were added to prepare an emulsion. Then, emulsification was performed using a Silicona Porus Glass (SPG) membrane (pore average diameter of about 2 ⁇ m).
  • SPG Silicona Porus Glass
  • Example 13 By further classifying the metal particle-forming base particles obtained in Example 12, metal particle-forming base particles having an average particle diameter of 4.0 ⁇ m and a CV value of 8.3% were obtained. Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the obtained base particles for forming metal particles were used.
  • Example 14 Conductive particles with insulating particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 9 except that the base particles for forming metal particles obtained in Example 12 were used.
  • Example 15 Conductive particles with insulating particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 14, except that electroless nickel plating was performed and then electroless gold plating was performed.
  • Example 16 Conductive particles with insulating particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 14, except that electroless nickel plating was performed and then electroless palladium plating was performed.
  • the emulsion was added to the mixture in a separable flask in several portions, and the mixture was stirred for 12 hours to allow the seed particles to absorb the monomer to obtain a suspension containing the seed particles in which the monomer was swollen. ..
  • the obtained resin particles have a non-porous structure (solid structure).
  • Electroless nickel is produced in the same manner as in "(2) Preparation of metal particles (conductive particles)" of Example 1 except that the obtained resin particles are used. Plating was performed. The particles subjected to this electroless nickel plating were used as conductive particles.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of the particle size of the coefficient of variation Dn: Average value of the particle size of the coefficient of variation
  • Resin content in 100% by weight of metal particles The content of metal in metal particles (% by weight) was measured by ICP emission spectrometry. The resin content in 100% by weight of the metal particles was determined by the following formula.
  • Resin content 100-Metal content in metal particles (% by weight)
  • IM4000 manufactured by Hitachi High-Technologies Corporation
  • FE-TEM field emission transmission electron microscope
  • connection resistance value (between the upper and lower electrodes)
  • the connection resistance between the upper and lower electrodes of the obtained 20 connection structures was measured by the 4-terminal method, respectively.
  • Insulation reliability (between adjacent electrodes in the lateral direction)
  • connection resistance the presence or absence of leakage between adjacent electrodes was evaluated by measuring the resistance value with a tester. Insulation reliability was evaluated according to the following criteria.

Abstract

The present invention provides conductive particles which are capable, in cases where electrodes are electrically connected thereby, of: (1) effectively lowering the connection resistance between electrodes arranged in the vertical direction and to be connected to each other; (2) enhancing the insulation reliability between electrodes arranged in the horizontal direction and not to be connected to each other; and (3) enhancing the current resistance characteristics. Each of the conductive particles according to the present invention comprises a metal particle having a porous structure, while being configured such that the conductive particle has a specific surface area of 10 m2/g or more (configuration A) or such that the conductive particle has a specific surface area of less than 10 m2/g and a specific gravity of from 1 g/cm3 to 8 g/cm3 (configuration B).

Description

導電性粒子、導電材料及び接続構造体Conductive particles, conductive materials and connecting structures
 本発明は、電極間の電気的な接続等に用いることができる導電性粒子に関する。また、本発明は、上記導電性粒子を用いた導電材料及び接続構造体に関する。 The present invention relates to conductive particles that can be used for electrical connection between electrodes and the like. The present invention also relates to a conductive material and a connecting structure using the above conductive particles.
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。また、上記導電性粒子として、樹脂粒子又は金属粒子である基材粒子が導電部により被覆された導電性粒子が広く用いられている(例えば、特許文献1,2)。 Anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known. In the anisotropic conductive material, conductive particles are dispersed in the binder resin. Further, as the conductive particles, conductive particles in which base particles such as resin particles or metal particles are coated with a conductive portion are widely used (for example, Patent Documents 1 and 2).
 上記異方性導電材料は、各種の接続構造体を得るために用いられている。上記異方性導電材料を用いる接続としては、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等が挙げられる。 The anisotropic conductive material is used to obtain various connection structures. Connections using the anisotropic conductive material include a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), a connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)), and a semiconductor chip. The connection between the glass substrate and the glass substrate (COG (Chip on Glass)), the connection between the flexible printed circuit board and the glass epoxy substrate (FOB (Film on Board)), and the like can be mentioned.
特開2012-069255号公報Japanese Unexamined Patent Publication No. 2012-06925 特開平11-152598号公報JP-A-11-152598
 近年、プリント配線板等における配線に用いられる材料の変化、及び実装方法の変化に伴って、導電性粒子を用いて電極間を接続して接続構造体を作製する際に、上下方向の電極間の接続抵抗をより一層低くすることが望まれている。 In recent years, due to changes in materials used for wiring in printed wiring boards and the like, and changes in mounting methods, when connecting electrodes using conductive particles to produce a connection structure, the electrodes are connected in the vertical direction. It is desired to further reduce the connection resistance of the.
 基材粒子としての樹脂粒子に導電部(めっき層)が被覆された従来の導電性粒子では、めっき剥がれの発生等により、電極間の接続抵抗が高くなることがある。 In the conventional conductive particles in which the resin particles as the base particles are coated with the conductive portion (plating layer), the connection resistance between the electrodes may increase due to the occurrence of plating peeling or the like.
 一方、基材粒子としての金属粒子に導電部が被覆された従来の導電性粒子では、電極間の接続抵抗をある程度低くすることができる。しかしながら、基材粒子として金属粒子を用いる場合には、導電性粒子の粒子径の変動係数(CV値)を小さくすることは困難である。導電性粒子の粒子径の変動係数が大きい場合には、接続されてはならない横方向の電極間で短絡が発生することがあり、特にファインピッチ化された電極間では短絡が発生しやすい。 On the other hand, in the conventional conductive particles in which the conductive portion is coated on the metal particles as the base material particles, the connection resistance between the electrodes can be lowered to some extent. However, when metal particles are used as the base particles, it is difficult to reduce the coefficient of variation (CV value) of the particle size of the conductive particles. When the coefficient of variation of the particle size of the conductive particles is large, a short circuit may occur between the electrodes in the lateral direction which should not be connected, and in particular, a short circuit is likely to occur between the electrodes having a fine pitch.
 また、従来の導電性粒子では、印加する電流が上昇すると、それに伴って電圧も上昇する。従来の導電性粒子を用いた接続構造体では、耐電流特性が低いことがあり、電流を印加したときに、急激に電圧が上昇することがある。 Also, with conventional conductive particles, as the applied current increases, the voltage also increases accordingly. Conventional connection structures using conductive particles may have low withstand current characteristics, and the voltage may rise sharply when a current is applied.
 本発明の目的は、電極間を電気的に接続した場合に、1)接続されるべき上下方向の電極間の接続抵抗を効果的に低くすることができ、2)接続されてはならない横方向の電極間の絶縁信頼性を高めることができ、かつ、3)耐電流特性を高めることができる導電性粒子を提供することである。また、本発明の目的は、上記導電性粒子を用いた導電材料及び接続構造体を提供することである。 An object of the present invention is that when the electrodes are electrically connected, 1) the connection resistance between the electrodes in the vertical direction to be connected can be effectively reduced, and 2) the connection resistance in the horizontal direction which should not be connected can be effectively reduced. It is an object of the present invention to provide conductive particles capable of enhancing the insulation reliability between the electrodes of the above and 3) enhancing the current-bearing characteristics. Another object of the present invention is to provide a conductive material and a connecting structure using the above conductive particles.
 本発明の広い局面によれば、多孔質構造を有する金属粒子を備え、以下の構成A、又は、以下の構成Bを備える、導電性粒子が提供される。 According to a broad aspect of the present invention, conductive particles comprising metal particles having a porous structure and having the following constitution A or the following constitution B are provided.
 構成A:導電性粒子の比表面積が10m/g以上である。 Configuration A: The specific surface area of the conductive particles is 10 m 2 / g or more.
 構成B:導電性粒子の比表面積が10m/g未満であり、かつ比重が1g/cm以上8g/cm以下である。 Configuration B: The specific surface area of the conductive particles is less than 10 m 2 / g, and the specific gravity is 1 g / cm 3 or more and 8 g / cm 3 or less.
 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記構成Aを備える。 In a specific aspect of the conductive particles according to the present invention, the conductive particles include the configuration A.
 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記構成Bを備える。 In a specific aspect of the conductive particles according to the present invention, the conductive particles include the configuration B.
 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記金属粒子の外表面上に配置された導電部を備える。 In a specific aspect of the conductive particles according to the present invention, the conductive particles include a conductive portion arranged on the outer surface of the metal particles.
 本発明に係る導電性粒子のある特定の局面では、前記構成Aが備えられる場合に、前記導電部の厚みが50nm未満であり、前記構成Bが備えられる場合に、前記導電部の厚みが50nm以上である。 In a specific aspect of the conductive particles according to the present invention, the thickness of the conductive portion is less than 50 nm when the configuration A is provided, and the thickness of the conductive portion is 50 nm when the configuration B is provided. That is all.
 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記導電部の外表面上に配置された絶縁性物質をさらに備える。 In certain aspects of the conductive particles according to the present invention, the conductive particles further include an insulating substance disposed on the outer surface of the conductive portion.
 本発明に係る導電性粒子のある特定の局面では、前記導電性粒子は、前記導電部の外表面に突起を有する。 In a specific aspect of the conductive particles according to the present invention, the conductive particles have protrusions on the outer surface of the conductive portion.
 本発明に係る導電性粒子のある特定の局面では、導電性粒子の粒子径の変動係数が20%以下である。 In a specific aspect of the conductive particles according to the present invention, the coefficient of variation of the particle size of the conductive particles is 20% or less.
 本発明に係る導電性粒子のある特定の局面では、前記金属粒子が、樹脂を含まないか又は含み、前記金属粒子が樹脂を含む場合に、前記金属粒子100重量%中、前記樹脂の含有率が10重量%以下である。 In a specific aspect of the conductive particles according to the present invention, when the metal particles do not contain or contain a resin and the metal particles contain a resin, the content of the resin in 100% by weight of the metal particles Is 10% by weight or less.
 本発明に係る導電性粒子のある特定の局面では、導電性粒子の粒子径が、0.1μm以上1000μm以下である。 In a specific aspect of the conductive particles according to the present invention, the particle size of the conductive particles is 0.1 μm or more and 1000 μm or less.
 本発明に係る導電性粒子のある特定の局面では、前記金属粒子を構成する金属が、ニッケルを含む。 In a specific aspect of the conductive particles according to the present invention, the metal constituting the metal particles contains nickel.
 本発明の広い局面によれば、上述した導電性粒子と、バインダー樹脂とを含む、導電材料が提供される。 According to a broad aspect of the present invention, a conductive material containing the above-mentioned conductive particles and a binder resin is provided.
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、前記接続部が、導電性粒子により形成されているか、又は、導電性粒子とバインダー樹脂とを含む導電材料により形成されており、前記導電性粒子が、上述した導電性粒子であり、前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体が提供される。 According to a broad aspect of the present invention, a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the above. It is provided with a connecting portion connecting the second connection target member, and the connecting portion is formed of conductive particles or a conductive material containing the conductive particles and a binder resin. Provided is a connection structure in which the conductive particles are the above-mentioned conductive particles, and the first electrode and the second electrode are electrically connected by the conductive particles.
 本発明に係る導電性粒子は、多孔質構造を有する金属粒子を備え、以下の構成A、又は、以下の構成Bを備える。構成A:導電性粒子の比表面積が10m/g以上である。構成B:導電性粒子の比表面積が10m/g未満であり、かつ比重が1g/cm以上8g/cm以下である。本発明に係る導電性粒子では、上記の構成が備えられているので、1)接続されるべき上下方向の電極間の接続抵抗を効果的に低くすることができ、2)接続されてはならない横方向の電極間の絶縁信頼性を高めることができ、かつ、3)耐電流特性を高めることができる。 The conductive particles according to the present invention include metal particles having a porous structure, and have the following constitution A or the following constitution B. Configuration A: The specific surface area of the conductive particles is 10 m 2 / g or more. Configuration B: The specific surface area of the conductive particles is less than 10 m 2 / g, and the specific gravity is 1 g / cm 3 or more and 8 g / cm 3 or less. Since the conductive particles according to the present invention have the above-mentioned structure, 1) the connection resistance between the electrodes in the vertical direction to be connected can be effectively reduced, and 2) they must not be connected. The insulation reliability between the electrodes in the lateral direction can be improved, and 3) the withstand current characteristics can be improved.
図1は、本発明の第1の実施形態に係る導電性粒子を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing conductive particles according to the first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る導電性粒子を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the conductive particles according to the second embodiment of the present invention. 図3は、本発明の第3の実施形態に係る導電性粒子を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing the conductive particles according to the third embodiment of the present invention. 図4は、本発明の第4の実施形態に係る導電性粒子を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing the conductive particles according to the fourth embodiment of the present invention. 図5は、本発明の第5の実施形態に係る導電性粒子を模式的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing the conductive particles according to the fifth embodiment of the present invention. 図6は、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体の一例を示す断面図である。FIG. 6 is a cross-sectional view showing an example of a connection structure using conductive particles according to the first embodiment of the present invention.
 以下、本発明の詳細を説明する。 The details of the present invention will be described below.
 (導電性粒子)
 本発明に係る導電性粒子は、多孔質構造を有する金属粒子を備え、以下の構成A、又は、以下の構成Bを備える。上記多孔質構造は、複数の細孔を有する構造を意味する。
(Conductive particles)
The conductive particles according to the present invention include metal particles having a porous structure, and have the following constitution A or the following constitution B. The porous structure means a structure having a plurality of pores.
 構成A:導電性粒子の比表面積が10m/g以上である。 Configuration A: The specific surface area of the conductive particles is 10 m 2 / g or more.
 構成B:導電性粒子の比表面積が10m/g未満であり、かつ比重が1g/cm以上8g/cm以下である。 Configuration B: The specific surface area of the conductive particles is less than 10 m 2 / g, and the specific gravity is 1 g / cm 3 or more and 8 g / cm 3 or less.
 本発明に係る導電性粒子では、上記の構成が備えられているので、電極間を電気的に接続した場合に、1)接続されるべき上下方向の電極間の接続抵抗を効果的に低くすることができ、2)接続されてはならない横方向の電極間の絶縁信頼性を高めることができ、かつ、3)耐電流特性を高めることができる。 Since the conductive particles according to the present invention have the above-mentioned configuration, when the electrodes are electrically connected, 1) the connection resistance between the electrodes in the vertical direction to be connected is effectively reduced. 2) Insulation reliability between the lateral electrodes that should not be connected can be enhanced, and 3) withstand current characteristics can be enhanced.
 本発明に係る導電性粒子では、多孔質構造を有する金属粒子が備えられ、かつ特定の構成A又は構成Bが備えられるので、上下方向の電極間の接続時に導電性粒子が良好に圧縮され、圧縮された導電性粒子の表面(例えば導電部)だけではなく、導電性粒子の内部にも導通経路が良好に形成される。このため、本発明に係る導電性粒子では、上述した1)-3)の効果を全て発揮することができる。 Since the conductive particles according to the present invention are provided with metal particles having a porous structure and are provided with a specific configuration A or configuration B, the conductive particles are satisfactorily compressed at the time of connection between the electrodes in the vertical direction. Conductive paths are well formed not only on the surface of the compressed conductive particles (for example, the conductive portion) but also inside the conductive particles. Therefore, the conductive particles according to the present invention can exhibit all the effects of 1) -3) described above.
 また、基材粒子として金属粒子を用いた従来の導電性粒子では、該導電性粒子の弾力性が低いため、該導電性粒子が電極に深くめり込み、電極を破損させる恐れがある。これに対して、本発明に係る導電性粒子では、該導電性粒子の弾力性を高めることができるので、電極が破損するリスクを抑えることができる。 Further, in the conventional conductive particles using metal particles as the base material particles, the elasticity of the conductive particles is low, so that the conductive particles may deeply dig into the electrode and damage the electrode. On the other hand, in the conductive particles according to the present invention, the elasticity of the conductive particles can be increased, so that the risk of damage to the electrodes can be suppressed.
 なお、本発明に係る導電性粒子は、多孔質構造を有する金属粒子の外表面上に配置された導電部を備えていてもよく、備えていなくてもよい。本発明に係る導電性粒子は、多孔質構造を有する金属粒子のみを備える導電性粒子であってもよい。すなわち、多孔質構造を有する金属粒子自体が、本発明に係る導電性粒子であってもよい。また、本発明に係る導電性粒子は、多孔質構造を有する金属粒子と、該金属粒子の外表面上に配置された導電部とを備える導電性粒子であってもよい。すなわち、上記金属粒子が、基材粒子であってもよい。本発明に係る導電性粒子は、基材粒子として、上記金属粒子を備えていてもよい。 The conductive particles according to the present invention may or may not have a conductive portion arranged on the outer surface of the metal particles having a porous structure. The conductive particles according to the present invention may be conductive particles having only metal particles having a porous structure. That is, the metal particles themselves having a porous structure may be the conductive particles according to the present invention. Further, the conductive particles according to the present invention may be conductive particles including metal particles having a porous structure and conductive portions arranged on the outer surface of the metal particles. That is, the metal particles may be base particles. The conductive particles according to the present invention may include the above-mentioned metal particles as base particles.
 本明細書において、上記構成Aを備える上記導電性粒子を「導電性粒子(A)」と記載することがあり、上記構成Bを備える上記導電性粒子を「導電性粒子(B)」と記載することがある。 In the present specification, the conductive particles having the constitution A may be referred to as "conductive particles (A)", and the conductive particles having the constitution B may be referred to as "conductive particles (B)". I have something to do.
 上記導電性粒子(A)の比表面積は10m/g以上である。上記導電性粒子(A)の比表面積は、好ましくは15m/g以上、より好ましくは20m/g以上であり、好ましくは5000m/g以下、より好ましくは1000m/g以下である。導電性粒子(A)の比表面積が上記下限以上及び上記上限以下であると、上下方向の電極間の接続時に導電性粒子がより一層良好に圧縮され、また、圧縮された導電性粒子の内部に導通経路をより一層良好に形成することができ、本発明の効果をより一層効果的に発揮することができる。 The specific surface area of the conductive particles (A) is 10 m 2 / g or more. The specific surface area of the conductive particles (A) is preferably 15 m 2 / g or more, more preferably 20 m 2 / g or more, preferably 5000 m 2 / g or less, and more preferably 1000 m 2 / g or less. When the specific surface area of the conductive particles (A) is equal to or greater than the above lower limit and equal to or less than the above upper limit, the conductive particles are more satisfactorily compressed when connected between the electrodes in the vertical direction, and the inside of the compressed conductive particles is further compressed. The conduction path can be formed even better, and the effect of the present invention can be exhibited even more effectively.
 上記導電性粒子(B)の比表面積は10m/g未満である。上記導電性粒子(B)の比表面積は、好ましくは0.5m/g以上、より好ましくは1.0m/g以上、さらに好ましくは1.2m/g以上であり、好ましくは8m/g以下、より好ましくは5m/g以下である。導電性粒子(B)の比表面積が上記下限以上及び上記上限以下であると、上下方向の電極間の接続時に導電性粒子がより一層良好に圧縮され、また、圧縮された導電性粒子の内部に導通経路をより一層良好に形成することができ、本発明の効果をより一層効果的に発揮することができる。 The specific surface area of the conductive particles (B) is less than 10 m 2 / g. The specific surface area of the conductive particles (B) is preferably 0.5 m 2 / g or more, more preferably 1.0 m 2 / g or more, still more preferably 1.2 m 2 / g or more, and preferably 8 m 2 or more. It is / g or less, more preferably 5 m 2 / g or less. When the specific surface area of the conductive particles (B) is equal to or greater than the above lower limit and equal to or less than the above upper limit, the conductive particles are more satisfactorily compressed when connected between the electrodes in the vertical direction, and the inside of the compressed conductive particles is further compressed. The conduction path can be formed even better, and the effect of the present invention can be exhibited even more effectively.
 上記導電性粒子の比表面積は、BET比表面積を意味する。上記導電性粒子のBET比表面積は、BET法に準拠して、窒素の吸着等温線から測定することができる。上記BET比表面積の測定装置としては、カンタクローム・インスツルメンツ社製「NOVA4200e」等が挙げられる。 The specific surface area of the conductive particles means the BET specific surface area. The BET specific surface area of the conductive particles can be measured from the adsorption isotherm of nitrogen in accordance with the BET method. Examples of the BET specific surface area measuring device include "NOVA4200e" manufactured by Cantachrome Instruments.
 上記導電性粒子の比表面積は、金属粒子が有する多孔質構造、及び金属粒子の外表面上に配置される導電部の被覆率等を変化させることにより、制御することができる。 The specific surface area of the conductive particles can be controlled by changing the porous structure of the metal particles, the coverage of the conductive portion arranged on the outer surface of the metal particles, and the like.
 上記導電性粒子(A)の比重は特に限定されない。上記導電性粒子(A)の比重は、1g/cm以上であってもよく、20g/cm以下であってもよい。 The specific gravity of the conductive particles (A) is not particularly limited. The specific gravity of the conductive particles (A) may be 1 g / cm 3 or more, or 20 g / cm 3 or less.
 上記導電性粒子(B)の比重は1g/cm以上8g/cm以下である。上記導電性粒子(B)の比重は、好ましくは1.5g/cm以上、より好ましくは2g/cm以上であり、好ましくは7g/cm以下、より好ましくは6g/cm以下である。上記導電性粒子(B)の比重が上記下限以上及び上記上限以下であると、上下方向の電極間の接続時に導電性粒子がより一層良好に圧縮され、また、圧縮された導電性粒子の内部に導通経路をより一層良好に形成することができ、本発明の効果をより一層効果的に発揮することができる。 The specific gravity of the conductive particles (B) is 1 g / cm 3 or more and 8 g / cm 3 or less. The specific gravity of the conductive particles (B) is preferably 1.5 g / cm 3 or more, more preferably 2 g / cm 3 or more, preferably 7 g / cm 3 or less, and more preferably 6 g / cm 3 or less. .. When the specific gravity of the conductive particles (B) is equal to or higher than the lower limit and lower than the upper limit, the conductive particles are more satisfactorily compressed when connected between the electrodes in the vertical direction, and the inside of the compressed conductive particles is further compressed. The conduction path can be formed even better, and the effect of the present invention can be exhibited even more effectively.
 上記導電性粒子の比重は、真比重計等を用いて測定することができる。 The specific gravity of the conductive particles can be measured using a true hydrometer or the like.
 上記導電性粒子の粒子径は、好ましくは0.1μm以上、より好ましくは1μm以上であり、好ましくは1000μm以下、より好ましくは500μm以下、より一層好ましくは100μm以下、さらに好ましくは50μm以下、さらに一層好ましくは20μm以下、特に好ましくは10μm以下である。上記導電性粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が十分に大きくなり、かつ導電部を形成する際に凝集した導電性粒子が形成され難くなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電部が樹脂粒子の表面から剥離し難くなる。また、上記導電性粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子を導電材料の用途に好適に用いることができる。 The particle size of the conductive particles is preferably 0.1 μm or more, more preferably 1 μm or more, preferably 1000 μm or less, more preferably 500 μm or less, still more preferably 100 μm or less, still more preferably 50 μm or less, and even more. It is preferably 20 μm or less, and particularly preferably 10 μm or less. When the particle diameter of the conductive particles is equal to or greater than the above lower limit and equal to or less than the above upper limit, the contact area between the conductive particles and the electrodes becomes sufficiently large when the electrodes are connected using the conductive particles, and the conductivity is increased. It becomes difficult to form agglomerated conductive particles when forming the portion. In addition, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive portion does not easily peel off from the surface of the resin particles. Further, when the particle size of the conductive particles is not less than the above lower limit and not more than the above upper limit, the conductive particles can be suitably used for the use of the conductive material.
 上記導電性粒子の粒子径は、導電性粒子が真球状である場合には直径を意味し、導電性粒子が真球状以外の形状である場合には、その体積相当の真球と仮定した際の直径を意味する。上記導電性粒子の粒子径は、導電性粒子が多孔質構造を有する金属粒子のみを備える場合には、金属粒子の粒子径を意味し、導電性粒子が多孔質構造を有する金属粒子と、該金属粒子の外表面上に配置された導電部とを備える場合には、金属粒子の粒子径及び導電部の厚み(通常、導電部の厚みの2倍)の合計を意味する。 The particle size of the conductive particles means the diameter when the conductive particles are spherical, and when the conductive particles have a shape other than spherical, it is assumed to be a true sphere corresponding to the volume. Means the diameter of. The particle size of the conductive particles means the particle size of the metal particles when the conductive particles include only the metal particles having a porous structure, and the metal particles in which the conductive particles have a porous structure and the metal particles. When the metal particles are provided with the conductive portion arranged on the outer surface, it means the total of the particle diameter of the metal particles and the thickness of the conductive portion (usually twice the thickness of the conductive portion).
 上記導電性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。上記導電性粒子の粒子径は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各導電性粒子の粒子径の平均値を算出することや、粒度分布測定装置を用いて求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの導電性粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の導電性粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。粒度分布測定装置では、1個当たりの導電性粒子の粒子径は、球相当径での粒子径として求められる。上記導電性粒子の粒子径は、粒度分布測定装置を用いて算出することが好ましい。 The particle size of the conductive particles is preferably an average particle size, and more preferably a number average particle size. The particle size of the conductive particles can be determined by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each conductive particle, or using a particle size distribution measuring device. Desired. In observation with an electron microscope or an optical microscope, the particle size of each conductive particle is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 conductive particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the particle size distribution measuring device, the particle size of each conductive particle is obtained as the particle size in the equivalent diameter of a sphere. The particle size of the conductive particles is preferably calculated using a particle size distribution measuring device.
 上記導電性粒子の粒子径の変動係数(CV値)は、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下である。上記導電性粒子の粒子径の変動係数が上記上限以下であると、電極間の導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。基材粒子として金属粒子を備える従来の導電性粒子では、該導電性粒子の粒子径の変動係数を小さくすることは困難であるものの、本発明に係る導電性粒子では、粒子径の変動係数を小さくすることができる。 The coefficient of variation (CV value) of the particle size of the conductive particles is preferably 20% or less, more preferably 10% or less, still more preferably 5% or less. When the coefficient of variation of the particle size of the conductive particles is not more than the above upper limit, the conduction reliability and the insulation reliability between the electrodes can be further effectively improved. Although it is difficult to reduce the fluctuation coefficient of the particle size of the conductive particles in the conventional conductive particles including the metal particles as the base particles, in the conductive particles according to the present invention, the fluctuation coefficient of the particle size is set. It can be made smaller.
 上記変動係数(CV値)は、以下のようにして測定できる。 The coefficient of variation (CV value) can be measured as follows.
 CV値(%)=(ρ/Dn)×100
 ρ:導電性粒子の粒子径の標準偏差
 Dn:導電性粒子の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of particle size of conductive particles Dn: Average value of particle size of conductive particles
 上記導電性粒子の10%K値(10%圧縮したときの圧縮弾性率)は、好ましくは100N/mm以上、より好ましくは1000N/mm以上であり、好ましくは25000N/mm以下、より好ましくは20000N/mm以下である。上記導電性粒子の10%K値が上記下限以上及び上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができ、導電性粒子の割れの発生をより一層効果的に抑制することができ、電極間の接続信頼性をより一層効果的に高めることができる。 10% K value of the conductive particles (compression modulus of when compressed by 10%) is preferably 100 N / mm 2 or more, more preferably 1000 N / mm 2 or more, preferably 25000N / mm 2 or less, more It is preferably 20000 N / mm 2 or less. When the 10% K value of the conductive particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively lowered, and the occurrence of cracking of the conductive particles is further effective. It is possible to further effectively improve the connection reliability between the electrodes.
 上記導電性粒子の30%K値(30%圧縮したときの圧縮弾性率)は、好ましくは100N/mm以上、より好ましくは1000N/mm以上であり、好ましくは15000N/mm以下、より好ましくは10000N/mm以下である。上記導電性粒子の30%K値が上記下限以上及び上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができ、導電性粒子の割れの発生をより一層効果的に抑制することができ、電極間の接続信頼性をより一層効果的に高めることができる。 30% K value of the conductive particles (compression modulus of when compressed 30%) is preferably 100 N / mm 2 or more, more preferably 1000 N / mm 2 or more, preferably 15000 N / mm 2 or less, more It is preferably 10000 N / mm 2 or less. When the 30% K value of the conductive particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively lowered, and the occurrence of cracking of the conductive particles is further effective. It is possible to further effectively improve the connection reliability between the electrodes.
 上記導電性粒子の10%K値の、上記導電性粒子の30%K値に対する比(導電性粒子の10%K値/導電性粒子の30%K値)は、好ましくは1.5以上、より好ましくは1.55以上であり、好ましくは5以下、より好ましくは4.5以下である。上記比(導電性粒子の10%K値/導電性粒子の30%K値)が上記下限以上及び上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができ、導電性粒子の割れの発生をより一層効果的に抑制することができ、電極間の接続信頼性をより一層効果的に高めることができる。 The ratio of the 10% K value of the conductive particles to the 30% K value of the conductive particles (10% K value of the conductive particles / 30% K value of the conductive particles) is preferably 1.5 or more. It is more preferably 1.55 or more, preferably 5 or less, and more preferably 4.5 or less. When the above ratio (10% K value of conductive particles / 30% K value of conductive particles) is equal to or more than the above lower limit and less than or equal to the above upper limit, the connection resistance between the electrodes can be further effectively lowered. The occurrence of cracking of the conductive particles can be suppressed more effectively, and the connection reliability between the electrodes can be further effectively enhanced.
 上記導電性粒子における上記10%K値及び上記30%K値は、以下のようにして測定できる。 The 10% K value and the 30% K value of the conductive particles can be measured as follows.
 微小圧縮試験機を用いて、円柱(直径100μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で導電性粒子1個を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、上記圧縮弾性率(10%K値及び30%K値)を下記式により求めることができる。上記微小圧縮試験機としては、フィッシャー社製「フィッシャースコープH-100」等が用いられる。上記導電性粒子における上記10%K値及び上記30%K値は、任意に選択された50個の導電性粒子の10%K値及び30%K値を算術平均することにより、算出することが好ましい。 Using a microcompression tester, compress one conductive particle on a smoothing indenter end face of a cylinder (diameter 100 μm, made of diamond) under the conditions of 25 ° C., a compression rate of 0.3 mN / sec, and a maximum test load of 20 mN. .. At this time, the load value (N) and the compressive displacement (mm) are measured. From the obtained measured values, the compressive elastic modulus (10% K value and 30% K value) can be calculated by the following formula. As the microcompression tester, "Fisherscope H-100" manufactured by Fisher Co., Ltd. or the like is used. The 10% K value and the 30% K value of the conductive particles can be calculated by arithmetically averaging the 10% K value and the 30% K value of 50 arbitrarily selected conductive particles. preferable.
 10%K値及び30%K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:導電性粒子が10%又は30%圧縮変形したときの荷重値(N)
 S:導電性粒子が10%又は30%圧縮変形したときの圧縮変位(mm)
 R:導電性粒子の半径(mm)
10% K value and 30% K value (N / mm 2 ) = (3/2 1/2 ) ・ F ・ S -3/2・ R- 1 / 2
F: Load value (N) when the conductive particles are compressed and deformed by 10% or 30%.
S: Compressive displacement (mm) when conductive particles are compressed and deformed by 10% or 30%
R: Radius of conductive particles (mm)
 上記圧縮弾性率は、導電性粒子の硬さを普遍的かつ定量的に表す。上記圧縮弾性率の使用により、導電性粒子の硬さを定量的かつ一義的に表すことができる。また、上記比(導電性粒子の10%K値/導電性粒子の30%K値)は、導電性粒子の初期圧縮時の物性を定量的かつ一義的に表すことができる。 The compressive elastic modulus universally and quantitatively represents the hardness of conductive particles. By using the compressive elastic modulus, the hardness of the conductive particles can be expressed quantitatively and uniquely. Further, the above ratio (10% K value of the conductive particles / 30% K value of the conductive particles) can quantitatively and uniquely represent the physical properties of the conductive particles at the time of initial compression.
 上記導電性粒子の形状は特に限定されない。上記導電性粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等の形状であってもよい。 The shape of the conductive particles is not particularly limited. The shape of the conductive particles may be spherical, non-spherical, flat or the like.
 以下、図面を参照しつつ、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to the drawings.
 図1は、本発明の第1の実施形態に係る導電性粒子を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing conductive particles according to the first embodiment of the present invention.
 図1に示す導電性粒子1は、金属粒子2と、導電部3とを有する。金属粒子2は、基材粒子である。金属粒子2は、多孔質構造(図示せず)を有する。金属粒子2は、複数の孔を有する。導電部3は、金属粒子2の外表面上に配置されている。導電部3は、金属粒子2の外表面上に部分的に配置されている。導電部3は、金属粒子2の外表面の一部を覆っている。導電性粒子1では、導電部3が金属粒子2の外表面の一部を被覆している。導電部3は、単層の導電層である。導電部3は、不連続層である。導電部3は、金属粒子2の表面に接している。金属粒子2において、導電部3により被覆されていない部分が存在する。金属粒子2が多孔質構造を有しかつ導電部3が金属粒子2の外表面上にて部分的に配置されているため、導電性粒子1の比表面積は比較的大きい。導電性粒子1は、上記導電性粒子(A)である。なお、上記導電性粒子は、導電性粒子1の構造を有する導電性粒子(B)であってもよい。また、上記導電性粒子では、上記導電部は、単層の導電層であってもよく、2層以上の層から構成される多層の導電層であってもよい。 The conductive particle 1 shown in FIG. 1 has a metal particle 2 and a conductive portion 3. The metal particles 2 are base particles. The metal particles 2 have a porous structure (not shown). The metal particle 2 has a plurality of pores. The conductive portion 3 is arranged on the outer surface of the metal particles 2. The conductive portion 3 is partially arranged on the outer surface of the metal particles 2. The conductive portion 3 covers a part of the outer surface of the metal particles 2. In the conductive particles 1, the conductive portion 3 covers a part of the outer surface of the metal particles 2. The conductive portion 3 is a single conductive layer. The conductive portion 3 is a discontinuous layer. The conductive portion 3 is in contact with the surface of the metal particles 2. In the metal particles 2, there is a portion that is not covered by the conductive portion 3. Since the metal particles 2 have a porous structure and the conductive portion 3 is partially arranged on the outer surface of the metal particles 2, the specific surface area of the conductive particles 1 is relatively large. The conductive particle 1 is the conductive particle (A). The conductive particles may be conductive particles (B) having the structure of the conductive particles 1. Further, in the conductive particles, the conductive portion may be a single-layer conductive layer or a multi-layer conductive layer composed of two or more layers.
 図2は、本発明の第2の実施形態に係る導電性粒子を模式的に示す断面図である。 FIG. 2 is a cross-sectional view schematically showing the conductive particles according to the second embodiment of the present invention.
 図2に示す導電性粒子1Aは、金属粒子2と、導電部3Aとを有する。導電性粒子1Aでは、図1に示す導電性粒子1とは異なり、導電部3Aが金属粒子2の外表面の全体を覆うように配置されている。導電部3Aは、金属粒子2の外表面の全体を覆っている。導電性粒子1Aでは、導電部3Aが金属粒子2の外表面の全体を被覆している。導電部3Aは、連続層である。導電性粒子1Aでは、導電部3Aが金属粒子2の外表面の全体に配置されているため、導電性粒子1Aの比表面積は、導電性粒子1の比表面積よりも小さい。導電性粒子1Aは、上記導電性粒子(B)である。なお、上記導電性粒子は、導電性粒子1Aの構造を有する導電性粒子(A)であってもよい。また、上記導電性粒子では、上記導電部は、単層の導電層であってもよく、2層以上の層から構成される多層の導電層であってもよい。 The conductive particle 1A shown in FIG. 2 has a metal particle 2 and a conductive portion 3A. In the conductive particles 1A, unlike the conductive particles 1 shown in FIG. 1, the conductive portion 3A is arranged so as to cover the entire outer surface of the metal particles 2. The conductive portion 3A covers the entire outer surface of the metal particles 2. In the conductive particles 1A, the conductive portion 3A covers the entire outer surface of the metal particles 2. The conductive portion 3A is a continuous layer. In the conductive particles 1A, since the conductive portion 3A is arranged on the entire outer surface of the metal particles 2, the specific surface area of the conductive particles 1A is smaller than the specific surface area of the conductive particles 1. The conductive particles 1A are the conductive particles (B). The conductive particles may be the conductive particles (A) having the structure of the conductive particles 1A. Further, in the conductive particles, the conductive portion may be a single-layer conductive layer or a multi-layer conductive layer composed of two or more layers.
 図3は、本発明の第3の実施形態に係る導電性粒子を模式的に示す断面図である。 FIG. 3 is a cross-sectional view schematically showing the conductive particles according to the third embodiment of the present invention.
 図3に示す導電性粒子1Bは、金属粒子2と、導電部3Bと、複数の芯物質4と、複数の絶縁性物質5とを有する。導電部3Bは、金属粒子2の表面上に金属粒子2に接するように配置されている。 The conductive particle 1B shown in FIG. 3 has a metal particle 2, a conductive portion 3B, a plurality of core substances 4, and a plurality of insulating substances 5. The conductive portion 3B is arranged on the surface of the metal particles 2 so as to be in contact with the metal particles 2.
 導電部3Bは、単層の導電層である。導電部3Bは、金属粒子2の外表面の全体を覆うように配置されている。なお、上記導電部は、上記金属粒子の表面の全体を覆っていてもよく、上記金属粒子の表面の一部を覆っていてもよい。上記導電性粒子では、上記導電部は、単層の導電層であってもよく、2層以上の層から構成される多層の導電層であってもよい。 The conductive portion 3B is a single conductive layer. The conductive portion 3B is arranged so as to cover the entire outer surface of the metal particles 2. The conductive portion may cover the entire surface of the metal particles, or may cover a part of the surface of the metal particles. In the conductive particles, the conductive portion may be a single-layer conductive layer or a multi-layer conductive layer composed of two or more layers.
 導電性粒子1Bは、外表面に、複数の突起1Baを有する。導電部3Bは外表面に、複数の突起3Baを有する。複数の芯物質4が、金属粒子2の表面上に配置されている。複数の芯物質4は、導電部3B内に埋め込まれている。芯物質4は、突起1Ba,3Baの内側に配置されている。導電部3Bは、複数の芯物質4を被覆している。複数の芯物質4により導電部3Bの外表面が隆起されており、突起1Ba,3Baが形成されている。 The conductive particles 1B have a plurality of protrusions 1Ba on the outer surface. The conductive portion 3B has a plurality of protrusions 3Ba on the outer surface. A plurality of core substances 4 are arranged on the surface of the metal particles 2. The plurality of core substances 4 are embedded in the conductive portion 3B. The core material 4 is arranged inside the protrusions 1Ba and 3Ba. The conductive portion 3B covers a plurality of core substances 4. The outer surface of the conductive portion 3B is raised by the plurality of core substances 4, and protrusions 1Ba and 3Ba are formed.
 導電性粒子1Bは、導電部3Bの外表面上に配置された絶縁性物質5を有する。導電部3Bの外表面の少なくとも一部の領域が、絶縁性物質5により被覆されている。絶縁性物質5は絶縁性を有する材料により形成されており、絶縁性粒子である。このように、本発明に係る導電性粒子は、導電部の外表面上に配置された絶縁性物質を有していてもよい。但し、本発明に係る導電性粒子は、絶縁性物質を必ずしも有していなくてもよい。 The conductive particles 1B have an insulating substance 5 arranged on the outer surface of the conductive portion 3B. At least a part of the outer surface of the conductive portion 3B is covered with the insulating substance 5. The insulating substance 5 is formed of an insulating material and is an insulating particle. As described above, the conductive particles according to the present invention may have an insulating substance arranged on the outer surface of the conductive portion. However, the conductive particles according to the present invention do not necessarily have an insulating substance.
 図4は、本発明の第4の実施形態に係る導電性粒子を模式的に示す断面図である。 FIG. 4 is a cross-sectional view schematically showing the conductive particles according to the fourth embodiment of the present invention.
 図4に示す導電性粒子1Cは、金属粒子2と、導電部3Cと、複数の芯物質4と、複数の絶縁性物質5とを有する。導電部3Cは全体で、金属粒子2側に第1の導電部31Cと、金属粒子2側とは反対側に第2の導電部32Cとを有する。 The conductive particle 1C shown in FIG. 4 has a metal particle 2, a conductive portion 3C, a plurality of core substances 4, and a plurality of insulating substances 5. As a whole, the conductive portion 3C has a first conductive portion 31C on the metal particle 2 side and a second conductive portion 32C on the side opposite to the metal particle 2 side.
 導電性粒子1Bと導電性粒子1Cとでは、導電部のみが異なっている。すなわち、導電性粒子1Bでは、1層構造の導電部3Bが形成されているのに対し、導電性粒子1Cでは、2層構造の第1の導電部31C及び第2の導電部32Cが形成されている。第1の導電部31Cと第2の導電部32Cとは別の導電部として形成されている。 Only the conductive part is different between the conductive particles 1B and the conductive particles 1C. That is, in the conductive particles 1B, the conductive portion 3B having a one-layer structure is formed, whereas in the conductive particles 1C, the first conductive portion 31C and the second conductive portion 32C having a two-layer structure are formed. ing. The first conductive portion 31C and the second conductive portion 32C are formed as separate conductive portions.
 第1の導電部31Cは、金属粒子2の表面上に配置されている。金属粒子2と第2の導電部32Cとの間に、第1の導電部31Cが配置されている。第1の導電部31Cは、金属粒子2に接している。第2の導電部32Cは、第1の導電部31Cに接している。従って、金属粒子2の表面上に第1の導電部31Cが配置されており、第1の導電部31Cの表面上に第2の導電部32Cが配置されている。導電性粒子1Cは、外表面に、複数の突起1Caを有する。導電部3Cは外表面に複数の突起3Caを有する。第1の導電部31Cは外表面に、複数の突起31Caを有する。第2の導電部32Cは外表面に、複数の突起32Caを有する。 The first conductive portion 31C is arranged on the surface of the metal particles 2. A first conductive portion 31C is arranged between the metal particles 2 and the second conductive portion 32C. The first conductive portion 31C is in contact with the metal particles 2. The second conductive portion 32C is in contact with the first conductive portion 31C. Therefore, the first conductive portion 31C is arranged on the surface of the metal particles 2, and the second conductive portion 32C is arranged on the surface of the first conductive portion 31C. The conductive particles 1C have a plurality of protrusions 1Ca on the outer surface. The conductive portion 3C has a plurality of protrusions 3Ca on the outer surface. The first conductive portion 31C has a plurality of protrusions 31Ca on the outer surface. The second conductive portion 32C has a plurality of protrusions 32Ca on the outer surface.
 図5は、本発明の第5の実施形態に係る導電性粒子を模式的に示す断面図である。 FIG. 5 is a cross-sectional view schematically showing the conductive particles according to the fifth embodiment of the present invention.
 図5に示す導電性粒子1Dは、金属粒子2である。導電性粒子1Dは、金属粒子2のみを備える導電性粒子である。金属粒子2自体が、導電性粒子である。導電性粒子1Dは、導電部を備えていない。 The conductive particle 1D shown in FIG. 5 is a metal particle 2. The conductive particles 1D are conductive particles including only the metal particles 2. The metal particles 2 themselves are conductive particles. The conductive particles 1D do not have a conductive portion.
 以下、導電性粒子の他の詳細について説明する。 Hereinafter, other details of the conductive particles will be described.
 (金属粒子)
 上記金属粒子は、多孔質構造を有する。上記金属粒子は、複数の孔を有する。上記金属粒子は、空隙を有する。上記金属粒子は、金属により構成された粒子である。但し、上記金属粒子は、樹脂を含んでいてもよい。上記金属粒子の形状は特に限定されない。上記金属粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等の形状であってもよい。
(Metal particles)
The metal particles have a porous structure. The metal particles have a plurality of pores. The metal particles have voids. The metal particles are particles made of metal. However, the metal particles may contain a resin. The shape of the metal particles is not particularly limited. The shape of the metal particles may be spherical, non-spherical, flat or the like.
 上記金属粒子を構成する金属は特に限定されない。上記金属粒子を構成する金属は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The metal constituting the metal particles is not particularly limited. As the metal constituting the metal particles, only one kind may be used, or two or more kinds may be used in combination.
 上記金属粒子を構成する金属としては、金、銀、パラジウム、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素、タングステン、モリブデン及びこれらの合金等が挙げられる。 The metals constituting the metal particles include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, tarium, germanium, cadmium, and the like. Examples thereof include silicon, tungsten, molybdenum and alloys thereof.
 本発明の効果をより一層効果的に発揮する観点からは、上記金属粒子を構成する金属は、ニッケル、金又はパラジウムを含むことが好ましく、ニッケルを含むことがより好ましく、ニッケルであることが更に好ましい。 From the viewpoint of more effectively exerting the effects of the present invention, the metal constituting the metal particles preferably contains nickel, gold or palladium, more preferably nickel, and further preferably nickel. preferable.
 上記金属粒子100重量%中、上記金属の含有率は、好ましくは60重量%以上、より好ましくは70重量%以上、さらに好ましくは80重量%以上であり、最も好ましくは100重量%である。上記金属の含有率が上記下限以上であると、本発明の効果をより一層効果的に発揮することができる。なお、上記金属粒子100重量%中、上記金属の含有率は、100重量%以下であってもよく、99重量%以下であってもよく、95重量%以下であってもよい。 The content of the metal in 100% by weight of the metal particles is preferably 60% by weight or more, more preferably 70% by weight or more, still more preferably 80% by weight or more, and most preferably 100% by weight. When the content of the metal is at least the above lower limit, the effect of the present invention can be exhibited even more effectively. The content of the metal in 100% by weight of the metal particles may be 100% by weight or less, 99% by weight or less, or 95% by weight or less.
 上記金属粒子は、樹脂を含まないか又は含む。上記金属粒子は、樹脂を含んでいてもよく、樹脂を含んでいなくてもよい。上記金属粒子に含まれる樹脂は、例えば、多孔質構造を有する該金属粒子を作製する際に用いた樹脂の残存成分である。上記金属粒子が上記樹脂を含む場合に、上記樹脂は該金属粒子中に均一に分布していることが好ましい。 The metal particles do not contain or contain resin. The metal particles may or may not contain a resin. The resin contained in the metal particles is, for example, a residual component of the resin used when producing the metal particles having a porous structure. When the metal particles contain the resin, it is preferable that the resin is uniformly distributed in the metal particles.
 上記樹脂としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、並びにジビニルベンゼン重合体等が挙げられる。上記ジビニルベンゼン重合体は、ジビニルベンゼン共重合体であってもよい。上記ジビニルベンゼン共重合体等としては、ジビニルベンゼン-スチレン共重合体及びジビニルベンゼン-(メタ)アクリル酸エステル共重合体等が挙げられる。 Examples of the resin include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene and polybutadiene; acrylic resins such as polymethylmethacrylate and polymethylacrylate; polycarbonate, polyamide, phenolformaldehyde resin and melamine formaldehyde. Resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, polyimide, polyamideimide, poly Examples thereof include ether ether ketone, polyether sulfone, and divinylbenzene polymer. The divinylbenzene polymer may be a divinylbenzene copolymer. Examples of the divinylbenzene copolymer and the like include a divinylbenzene-styrene copolymer and a divinylbenzene- (meth) acrylic acid ester copolymer.
 上記金属粒子中の上記樹脂の含有率は少ないほどよい。上記金属粒子が樹脂を含む場合に、上記金属粒子100重量%中、上記樹脂の含有率は、好ましくは10重量%以下、より好ましくは5重量%以下、さらに好ましくは1重量%以下である。上記樹脂の含有率が上記上限以下であると、本発明の効果をより一層効果的に発揮することができる。上記金属粒子は、上記樹脂を含まないことが最も好ましい。 The smaller the content of the resin in the metal particles, the better. When the metal particles contain a resin, the content of the resin in 100% by weight of the metal particles is preferably 10% by weight or less, more preferably 5% by weight or less, still more preferably 1% by weight or less. When the content of the resin is not more than the above upper limit, the effect of the present invention can be exhibited even more effectively. Most preferably, the metal particles do not contain the resin.
 上記金属粒子中の上記樹脂の含有率は、ICP発光分析法により金属粒子中の金属の含有率(重量%)を測定したあと、式:100重量%-金属の含有率(重量%)を計算することにより求めることができる。 The content of the resin in the metal particles is calculated by the formula: 100% by weight-metal content (% by weight) after measuring the metal content (% by weight) in the metal particles by ICP emission spectrometry. It can be obtained by doing.
 上記金属粒子の粒子径は、好ましくは0.1μm以上、より好ましくは1μm以上であり、好ましくは1000μm以下、より好ましくは500μm以下、より一層好ましくは100μm以下、さらに好ましくは50μm以下、さらに一層好ましくは20μm以下、特に好ましくは10μm以下である。上記金属粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が十分に大きくなり、かつ導電部を形成する際に凝集した導電性粒子が形成され難くなる。また、金属粒子の表面に導電部を無電解めっきにより形成する際に、凝集した導電性粒子を形成され難くすることができる。また、上記金属粒子の粒子径が上記下限以上及び上記上限以下であると、導電性粒子が十分に圧縮されやすく、電極間の接続抵抗をより一層低くすることができ、さらに電極間の間隔をより小さくすることができる。 The particle size of the metal particles is preferably 0.1 μm or more, more preferably 1 μm or more, preferably 1000 μm or less, more preferably 500 μm or less, still more preferably 100 μm or less, still more preferably 50 μm or less, even more preferably. Is 20 μm or less, particularly preferably 10 μm or less. When the particle diameter of the metal particles is equal to or greater than the above lower limit and equal to or less than the above upper limit, the contact area between the conductive particles and the electrodes becomes sufficiently large and the conductive portion is formed when the electrodes are connected using the conductive particles. It becomes difficult for agglomerated conductive particles to be formed when the particles are formed. Further, when the conductive portion is formed on the surface of the metal particles by electroless plating, it is possible to make it difficult for the agglomerated conductive particles to be formed. Further, when the particle size of the metal particles is not less than the above lower limit and not more than the above upper limit, the conductive particles are easily sufficiently compressed, the connection resistance between the electrodes can be further reduced, and the distance between the electrodes can be further increased. It can be made smaller.
 上記金属粒子の粒子径は、金属粒子が真球状である場合には直径を意味し、金属粒子が真球状以外の形状である場合には、その体積相当の真球と仮定した際の直径を意味する。 The particle diameter of the metal particles means the diameter when the metal particles are spherical, and when the metal particles have a shape other than the spherical shape, the diameter when the metal particles are assumed to be a true sphere corresponding to the volume. means.
 上記金属粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。上記金属粒子の粒子径は、任意の金属粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各金属粒子の粒子径の平均値を算出することや、粒度分布測定装置を用いて求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの金属粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の金属粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。粒度分布測定装置では、1個当たりの金属粒子の粒子径は、球相当径での粒子径として求められる。上記金属粒子の平均粒子径は、粒度分布測定装置を用いて算出することが好ましい。導電性粒子において、上記金属粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。 The particle size of the metal particles is preferably an average particle size, more preferably a number average particle size. The particle size of the metal particles can be obtained by observing 50 arbitrary metal particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each metal particle, or using a particle size distribution measuring device. In observation with an electron microscope or an optical microscope, the particle size of each metal particle is determined as the particle size in the equivalent circle diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 metal particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the particle size distribution measuring device, the particle size of each metal particle is obtained as the particle size in the equivalent diameter of a sphere. The average particle size of the metal particles is preferably calculated using a particle size distribution measuring device. When measuring the particle size of the metal particles in the conductive particles, for example, the measurement can be performed as follows.
 導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂体を作製する。検査用埋め込み樹脂体中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を25000倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子における金属粒子を観察する。各導電性粒子における金属粒子の粒子径を計測し、それらを算術平均して金属粒子の粒子径とする。 Add to "Technobit 4000" manufactured by Kulzer so that the content of conductive particles is 30% by weight and disperse to prepare an embedded resin body for conducting conductive particle inspection. A cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the embedded resin body for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification is set to 25000 times, 50 conductive particles are randomly selected, and the metal particles in each conductive particle are observed. .. The particle size of the metal particles in each conductive particle is measured, and they are arithmetically averaged to obtain the particle size of the metal particles.
 上記金属粒子の粒子径の変動係数(CV値)は、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下である。上記金属粒子の粒子径の変動係数が上記上限以下であると、電極間の導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。 The coefficient of variation (CV value) of the particle size of the metal particles is preferably 20% or less, more preferably 10% or less, still more preferably 5% or less. When the coefficient of variation of the particle size of the metal particles is not more than the above upper limit, the conduction reliability and the insulation reliability between the electrodes can be further effectively improved.
 上記変動係数(CV値)は、以下のようにして測定できる。 The coefficient of variation (CV value) can be measured as follows.
 CV値(%)=(ρ/Dn)×100
 ρ:金属粒子の粒子径の標準偏差
 Dn:金属粒子の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of particle size of metal particles Dn: Average value of particle size of metal particles
 上記金属粒子の全細孔容積は、好ましくは0.01cm/g以上、より好ましくは0.1cm/g以上であり、好ましくは3cm/g以下、より好ましくは1.5cm/g以下である。上記全細孔容積が上記下限以上及び上記上限以下であると、上下方向の電極間の接続時に導電性粒子がより一層良好に圧縮され、また、圧縮された導電性粒子の内部に導通経路をより一層良好に形成することができ、本発明の効果をより一層効果的に発揮することができる。また、上記全細孔容積が上記下限以上及び上記上限以下であると、金属粒子と導電部との密着性をより一層効果的に高めることができ、導電部の剥がれの発生をより一層効果的に抑制することができる。 The total pore volume of the metal particles is preferably 0.01 cm 3 / g or more, more preferably 0.1 cm 3 / g or more, preferably 3 cm 3 / g or less, and more preferably 1.5 cm 3 / g. It is as follows. When the total pore volume is equal to or higher than the lower limit and lower than the upper limit, the conductive particles are more satisfactorily compressed when the electrodes are connected in the vertical direction, and a conduction path is provided inside the compressed conductive particles. It can be formed even better, and the effects of the present invention can be exhibited even more effectively. Further, when the total pore volume is equal to or more than the above lower limit and not more than the above upper limit, the adhesion between the metal particles and the conductive portion can be further effectively enhanced, and the occurrence of peeling of the conductive portion is further effective. Can be suppressed.
 上記金属粒子の平均細孔径は、好ましくは0.1nm以上、より好ましくは0.5nm以上であり、好ましくは10nm以下、より好ましくは5nm以下である。上記平均細孔径が上記下限以上及び上記上限以下であると、上下方向の電極間の接続時に導電性粒子がより一層良好に圧縮され、また、圧縮された導電性粒子の内部に導通経路をより一層良好に形成することができ、本発明の効果をより一層効果的に発揮することができる。また、上記平均細孔径が上記下限以上及び上記上限以下であると、金属粒子と導電部との密着性をより一層効果的に高めることができ、導電部の剥がれの発生をより一層効果的に抑制することができる。 The average pore diameter of the metal particles is preferably 0.1 nm or more, more preferably 0.5 nm or more, preferably 10 nm or less, and more preferably 5 nm or less. When the average pore diameter is equal to or greater than the above lower limit and equal to or less than the above upper limit, the conductive particles are more satisfactorily compressed when the electrodes are connected in the vertical direction, and a conduction path is provided inside the compressed conductive particles. It can be formed more satisfactorily, and the effect of the present invention can be exhibited even more effectively. Further, when the average pore diameter is at least the above lower limit and at least the above upper limit, the adhesion between the metal particles and the conductive portion can be further effectively enhanced, and the occurrence of peeling of the conductive portion can be further effectively performed. It can be suppressed.
 上記金属粒子の全細孔容積及び平均細孔径は、BJH法に準拠して、窒素の吸着等温線から測定することができる。上記全細孔容積及び上記平均細孔径の測定で用いることができる測定装置としては、カンタクローム・インスツルメンツ社製「NOVA4200e」等が挙げられる。 The total pore volume and average pore diameter of the metal particles can be measured from the adsorption isotherm of nitrogen in accordance with the BJH method. Examples of the measuring device that can be used for measuring the total pore volume and the average pore diameter include "NOVA4200e" manufactured by Cantachrome Instruments.
 上記金属粒子の空隙率は、好ましくは10%以上、より好ましくは20%以上であり、好ましくは70%以下、より好ましくは50%以下である。上記空隙率が上記下限以上及び上記上限以下であると、上下方向の電極間の接続時に導電性粒子がより一層良好に圧縮され、また、圧縮された導電性粒子の内部に導通経路をより一層良好に形成することができ、本発明の効果をより一層効果的に発揮することができる。また、上記空隙率が上記下限以上及び上記上限以下であると、金属粒子と導電部との密着性をより一層効果的に高めることができ、導電部の剥がれの発生をより一層効果的に抑制することができる。 The porosity of the metal particles is preferably 10% or more, more preferably 20% or more, preferably 70% or less, and more preferably 50% or less. When the porosity is equal to or higher than the lower limit and lower than the upper limit, the conductive particles are compressed more satisfactorily at the time of connection between the electrodes in the vertical direction, and the conduction path is further provided inside the compressed conductive particles. It can be formed well, and the effects of the present invention can be exhibited even more effectively. Further, when the porosity is equal to or higher than the lower limit and lower than the upper limit, the adhesion between the metal particles and the conductive portion can be further effectively enhanced, and the occurrence of peeling of the conductive portion can be further effectively suppressed. can do.
 上記金属粒子の空隙率は、水銀圧入法により印加した圧力に対して水銀の積算浸入量を測定することで算出することができる。上記空隙率の測定で用いることができる測定装置としては、カンタクローム・インスツルメンツ社製の水銀ポロシメーター「ポアーマスター60」等が挙げられる。 The porosity of the metal particles can be calculated by measuring the cumulative amount of mercury infiltrated with respect to the pressure applied by the mercury intrusion method. Examples of the measuring device that can be used for measuring the porosity include a mercury porosimeter "Poremaster 60" manufactured by Cantachrome Instruments.
 <多孔質構造を有する金属粒子の作製方法>
 多孔質構造を有する金属粒子を作製する方法は特に限定されない。多孔質構造を有する金属粒子は、金属粒子形成用基材粒子に金属を含ませた後、金属を含む金属粒子形成用基材粒子の基材粒子成分(樹脂成分など)を除去させて作製することが好ましい。そのため金属粒子形成用基材粒子の材料は、有機材料であることが好ましく、樹脂であることがより好ましい。上記有機材料のみにより形成された金属粒子形成用基材粒子としては、樹脂粒子等が挙げられる。
<Method for producing metal particles having a porous structure>
The method for producing the metal particles having a porous structure is not particularly limited. Metal particles having a porous structure are produced by impregnating metal particle-forming base particles with metal and then removing the base particle components (resin component, etc.) of the metal particle-forming base particles containing metal. Is preferable. Therefore, the material of the base particles for forming metal particles is preferably an organic material, and more preferably a resin. Examples of the base particle for forming metal particles formed only of the organic material include resin particles.
 多孔質構造を有する上記金属粒子を良好に得る観点からは、上記金属粒子形成用基材粒子は、樹脂粒子であることがより好ましい。上記有機材料としては、上述した樹脂が挙げられる。多孔質構造を有する上記金属粒子を良好に得ることができるので、上記金属粒子形成用基材粒子の材料は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 From the viewpoint of obtaining the metal particles having a porous structure satisfactorily, the base particles for forming the metal particles are more preferably resin particles. Examples of the organic material include the above-mentioned resins. Since the metal particles having a porous structure can be obtained satisfactorily, the material of the base particles for forming the metal particles is obtained by polymerizing one or more kinds of polymerizable monomers having an ethylenically unsaturated group. It is preferably a polymer.
 上記金属粒子形成用基材粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合、上記エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 When the base material particles for forming metal particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, the polymerizable monomer having an ethylenically unsaturated group is a non-crosslinkable simple monomer. Examples include polymers and crosslinkable monomers.
 上記非架橋性の単量体としては、ビニル化合物として、スチレン、α-メチルスチレン、クロルスチレン等のスチレン単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル化合物;塩化ビニル、フッ化ビニル等のハロゲン含有単量体;(メタ)アクリル化合物として、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート等のハロゲン含有(メタ)アクリレート化合物;α-オレフィン化合物として、ジイソブチレン、イソブチレン、リニアレン、エチレン、プロピレン等のオレフィン化合物;共役ジエン化合物として、イソプレン、ブタジエン等が挙げられる。 Examples of the non-crosslinkable monomer include styrene monomers such as styrene, α-methylstyrene, and chlorostyrene; vinyl ether compounds such as methylvinyl ether, ethylvinyl ether, and propylvinyl ether; vinyl acetate, vinyl butyrate, and the like. Acid vinyl ester compounds such as vinyl laurate and vinyl stearate; halogen-containing monomers such as vinyl chloride and vinyl fluoride; as (meth) acrylic compounds, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) ) Acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and other alkyl ( Meta) acrylate compound; oxygen atom-containing (meth) acrylate compound such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, glycidyl (meth) acrylate; (meth) acrylonitrile, etc. Nitrile-containing monomer; Halogen-containing (meth) acrylate compound such as trifluoromethyl (meth) acrylate and pentafluoroethyl (meth) acrylate; olefin such as diisobutylene, isobutylene, linearene, ethylene and propylene as α-olefin compound Compound: Examples of the conjugated diene compound include isoprene and butadiene.
 上記架橋性の単量体としては、ビニル化合物として、ジビニルベンゼン、1,4-ジビニロキシブタン、ジビニルスルホン等のビニル単量体;(メタ)アクリル化合物として、テトラメチロールメタンテトラ(メタ)アクリレート、ポリテトラメチレングリコールジアクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;アリル化合物として、トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル;シラン化合物として、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、イソプロピルトリメトキシシラン、イソブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、n-ヘキシルトリメトキシシラン、n-オクチルトリエトキシシラン、n-デシルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジイソプロピルジメトキシシラン、トリメトキシシリルスチレン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、1,3-ジビニルテトラメチルジシロキサン、メチルフェニルジメトキシシラン、ジフェニルジメトキシシラン等のシランアルコキシド化合物;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジメトキシメチルビニルシシラン、ジメトキシエチルビニルシラン、ジエトキシメチルビニルシラン、ジエトキシエチルビニルシラン、エチルメチルジビニルシラン、メチルビニルジメトキシシラン、エチルビニルジメトキシシラン、メチルビニルジエトキシシラン、エチルビニルジエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン等の重合性二重結合含有シランアルコキシド;デカメチルシクロペンタシロキサン等の環状シロキサン;片末端変性シリコーンオイル、両末端シリコーンオイル、側鎖型シリコーンオイル等の変性(反応性)シリコーンオイル;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体等が挙げられる。 Examples of the crosslinkable monomer include vinyl monomers such as divinylbenzene, 1,4-dibinyloxybutane, and divinylsulfone as vinyl compounds; and tetramethylolmethanetetra (meth) acrylate as (meth) acrylic compounds. , Polytetramethylene glycol diacrylate, Tetramethylolmethanetri (meth) acrylate, Tetramethylolmethanedi (meth) acrylate, Trimethylolpropanetri (meth) acrylate, Dipentaerythritol hexa (meth) acrylate, Dipentaerythritol penta (meth) ) Acrylic, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, 1,4-butanediol di Polyfunctional (meth) acrylate compounds such as (meth) acrylate; as allyl compounds, triallyl (iso) cyanurate, triallyl trimellitate, diallylphthalate, diallylacrylamide, diallyl ether; as silane compounds, tetramethoxysilane, tetraethoxysilane , Methyltrimethoxysilane, Methyltriethoxysilane, Ethyltrimethoxysilane, Ethyltriethoxysilane, Isopropyltrimethoxysilane, Isobutyltrimethoxysilane, Cyclohexyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diisopropyldimethoxysilane, trimethoxysilylstyrene, γ- (meth) acryloxipropyltrimethoxysilane, 1,3-divinyltetramethyldi Silane alkoxide compounds such as siloxane, methylphenyldimethoxysilane, diphenyldimethoxysilane; vinyltrimethoxysilane, vinyltriethoxysilane, dimethoxymethylvinylsisilane, dimethoxyethylvinylsilane, diethoxymethylvinylsilane, diethoxyethylvinylsilane, ethylmethyldivinylsilane , Methylvinyldimethoxysilane, ethylvinyldimethoxysilane, methylvinyldiethoxysilane, ethylvinyldiethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylme Polymerizable double bond-containing silane alkoxides such as tildimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxipropyltrimethoxysilane Cyclic siloxane such as decamethylcyclopentasiloxane; modified (reactive) silicone oil such as one-terminal modified silicone oil, double-ended silicone oil, side chain type silicone oil; (meth) acrylic acid, maleic acid, maleic anhydride, etc. Examples thereof include the carboxyl group-containing monomer of.
 上記金属粒子形成用基材粒子は、上記エチレン性不飽和基を有する重合性単量体を重合させることによって得ることができる。上記の重合方法としては特に限定されず、ラジカル重合、イオン重合、重縮合(縮合重合、縮重合)、付加縮合、リビング重合、及びリビングラジカル重合等の公知の方法が挙げられる。また、他の重合方法としては、ラジカル重合開始剤の存在下での懸濁重合が挙げられる。 The base particles for forming metal particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group. The above polymerization method is not particularly limited, and examples thereof include known methods such as radical polymerization, ionic polymerization, polycondensation (condensation polymerization, polycondensation polymerization), addition condensation, living polymerization, and living radical polymerization. Further, as another polymerization method, suspension polymerization in the presence of a radical polymerization initiator can be mentioned.
 上記金属粒子形成用基材粒子の内部に金属(導電性金属)を含有させる方法は特に限定されない。上記金属粒子形成用基材粒子の内部に金属を含有させる方法としては、多孔質粒子である金属粒子形成用基材粒子を用いて無電解めっきする方法、及び多孔質粒子である金属粒子形成用基材粒子を用いて電気めっきする方法等が挙げられる。多孔質粒子である金属粒子形成用基材粒子は、該基材粒子の内部に比較的多くの空隙が存在するため、金属粒子形成用基材粒子の表面上に金属を被覆する際に、該基材粒子の内部の微細な空隙に金属粒子形成材料(めっき液等)を入り込ませることができる。金属粒子形成用基材粒子の内部に入り込んだ金属粒子形成材料から金属を析出させることで、金属粒子形成用基材粒子の内部に金属を容易に含有させることができる。構成する金属としては、上述した金属が挙げられる。 The method of containing a metal (conductive metal) inside the base particle for forming metal particles is not particularly limited. As a method of containing a metal inside the metal particle forming base particle, a method of electroless plating using the metal particle forming base particle which is a porous particle and a method for forming a metal particle which is a porous particle are used. Examples thereof include a method of electroplating using base particles. Since the base particles for forming metal particles, which are porous particles, have a relatively large number of voids inside the base particles, when the metal is coated on the surface of the base particles for forming metal particles, the base particles are said to be used. A metal particle-forming material (plating solution, etc.) can be allowed to enter into the fine voids inside the base particles. By precipitating the metal from the metal particle-forming material that has entered the inside of the metal particle-forming base particle, the metal can be easily contained in the metal particle-forming base particle. Examples of the constituent metal include the above-mentioned metals.
 金属を含む金属粒子形成用基材粒子の基材粒子成分の除去方法としては、加熱及び溶解等が挙げられる。金属を含む金属粒子形成用基材粒子を加熱又は溶解して、基材粒子成分を除去することが好ましい。 Examples of the method for removing the base particle component of the base particle for forming metal particles containing metal include heating and melting. It is preferable to heat or dissolve the base particle for forming metal particles containing metal to remove the base particle component.
 以上のようにして、多孔質構造を有する金属粒子を作製することができる。 As described above, metal particles having a porous structure can be produced.
 (導電部)
 上記導電性粒子は、上記金属粒子の外表面上に配置された導電部を備えることが好ましい。上記導電部は、金属を含むことが好ましい。上記導電部は、金属被覆部であることが好ましい。上記導電部は上記金属粒子とは異なる。上記導電部を構成する金属は特に限定されない。上記導電部を構成する金属と、上記金属粒子を構成する金属とは、同一であってもよく、異なっていてもよい。上記導電部を構成する主金属と、上記金属粒子を構成する主金属とは、同一であってもよく、異なっていてもよい。上記導電部を構成する主金属は、上記導電部を構成する金属中の最も含有量が多い金属を意味する。上記金属粒子を構成する主金属は、上記金属粒子を構成する金属中の最も含有量が多い金属を意味する。
(Conductive part)
The conductive particles preferably include a conductive portion arranged on the outer surface of the metal particles. The conductive portion preferably contains a metal. The conductive portion is preferably a metal-coated portion. The conductive portion is different from the metal particles. The metal constituting the conductive portion is not particularly limited. The metal constituting the conductive portion and the metal constituting the metal particles may be the same or different. The main metal constituting the conductive portion and the main metal constituting the metal particles may be the same or different. The main metal constituting the conductive portion means the metal having the highest content among the metals constituting the conductive portion. The main metal constituting the metal particles means the metal having the highest content among the metals constituting the metal particles.
 上記導電部を構成する金属としては、金、銀、パラジウム、銅、白金、亜鉛、鉄、錫、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、タリウム、ゲルマニウム、カドミウム、ケイ素、タングステン、モリブデン及びこれらの合金等が挙げられる。また、上記導電部を構成する金属としては、錫ドープ酸化インジウム(ITO)及びはんだ等が挙げられる。上記導電部を構成する金属は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The metals constituting the conductive portion include gold, silver, palladium, copper, platinum, zinc, iron, tin, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, tarium, germanium, cadmium, and the like. Examples thereof include silicon, tungsten, molybdenum and alloys thereof. Examples of the metal constituting the conductive portion include tin-doped indium oxide (ITO) and solder. As the metal constituting the conductive portion, only one kind may be used, or two or more kinds may be used in combination.
 電極間の接続抵抗をより一層効果的に低くする観点からは、上記導電部は、ニッケル、金、パラジウム、銀、又は銅を含むことが好ましく、ニッケル、金又はパラジウムを含むことがより好ましく、ニッケルを含むことが特に好ましい。 From the viewpoint of further effectively lowering the connection resistance between the electrodes, the conductive portion preferably contains nickel, gold, palladium, silver, or copper, and more preferably nickel, gold, or palladium. It is particularly preferable to contain nickel.
 ニッケルを含む導電部100重量%中のニッケルの含有率は、好ましくは10重量%以上、より好ましくは50重量%以上、より一層好ましくは60重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。上記ニッケルを含む導電部100重量%中のニッケルの含有率は、97重量%以上であってもよく、97.5重量%以上であってもよく、98重量%以上であってもよく、100重量%であってもよい。 The content of nickel in 100% by weight of the conductive portion containing nickel is preferably 10% by weight or more, more preferably 50% by weight or more, still more preferably 60% by weight or more, still more preferably 70% by weight or more, particularly preferably. Is 90% by weight or more. The content of nickel in 100% by weight of the conductive portion containing nickel may be 97% by weight or more, 97.5% by weight or more, 98% by weight or more, 100% by weight. It may be% by weight.
 なお、導電部の表面には、酸化により水酸基が存在することが多い。一般的に、ニッケルにより形成された導電部の表面には、酸化により水酸基が存在する。このような水酸基を有する導電部の表面(導電性粒子の表面)に、化学結合を介して、絶縁性物質を配置できる。なお、金属粒子の表面に水酸基が存在する場合にも、金属粒子の表面に、化学結合を介して、絶縁性物質を配置できる。 In addition, hydroxyl groups are often present on the surface of the conductive part due to oxidation. Generally, a hydroxyl group is present on the surface of a conductive portion formed of nickel due to oxidation. An insulating substance can be arranged on the surface of the conductive portion having such a hydroxyl group (the surface of the conductive particles) via a chemical bond. Even when a hydroxyl group is present on the surface of the metal particles, the insulating substance can be arranged on the surface of the metal particles via a chemical bond.
 上記導電部は、不連続層であってもよく、連続層であってもよい。上記導電部が不連続層である場合には、導電性粒子(A)を良好に得ることができる。上記導電部が連続層である場合には、導電性粒子(B)を良好に得ることができる。但し、上記導電性粒子は、不連続層である導電部を備える導電性粒子(B)であってもよく、連続層である導電部を備える導電性粒子(A)であってもよい。 The conductive portion may be a discontinuous layer or a continuous layer. When the conductive portion is a discontinuous layer, conductive particles (A) can be obtained satisfactorily. When the conductive portion is a continuous layer, conductive particles (B) can be obtained satisfactorily. However, the conductive particles may be conductive particles (B) having a conductive portion which is a discontinuous layer, or may be conductive particles (A) having a conductive portion which is a continuous layer.
 上記導電部は、1つの層により形成されていてもよい。上記導電部は、複数の層により形成されていてもよい。すなわち、上記導電部は、2層以上の積層構造を有していてもよい。上記導電部が複数の層により形成されている場合には、最外層を構成する金属は、金、ニッケル、パラジウム、銅又は錫と銀とを含む合金であることが好ましく、金であることがより好ましい。最外層を構成する金属がこれらの好ましい金属である場合には、電極間の接続抵抗がより一層低くなる。また、最外層を構成する金属が金である場合には、耐腐食性がより一層高くなる。最外層を構成する金属は、ニッケルであってもよい。 The conductive portion may be formed by one layer. The conductive portion may be formed of a plurality of layers. That is, the conductive portion may have a laminated structure of two or more layers. When the conductive portion is formed of a plurality of layers, the metal constituting the outermost layer is preferably gold, nickel, palladium, copper or an alloy containing tin and silver, and is preferably gold. More preferred. When the metal constituting the outermost layer is these preferred metals, the connection resistance between the electrodes becomes even lower. Further, when the metal constituting the outermost layer is gold, the corrosion resistance is further improved. The metal constituting the outermost layer may be nickel.
 上記金属粒子の外表面積100%中、上記導電部がある部分の面積(導電部の被覆率)は、特に限定されない。上記導電部の被覆率は目的とする導電性粒子の比表面積及び比重等により適宜変更することができる。上記導電部の被覆率は、めっき液の組成、反応条件等により調節することができる。上記金属粒子の外表面積100%中、上記導電部がある部分の面積(導電部の被覆率)は、0%以上であってもよく、50%以上であってもよく、90%以上であってもよく、100%であってもよい。 The area of the portion where the conductive portion is located (covering ratio of the conductive portion) in the outer surface area of 100% of the metal particles is not particularly limited. The coverage of the conductive portion can be appropriately changed depending on the specific surface area, specific gravity, etc. of the target conductive particles. The coverage of the conductive portion can be adjusted by adjusting the composition of the plating solution, the reaction conditions, and the like. In the outer surface area of the metal particles of 100%, the area of the portion where the conductive portion is present (coverage of the conductive portion) may be 0% or more, 50% or more, 90% or more. It may be 100%.
 上記金属粒子の外表面積100%中、上記導電部がある部分の面積(導電部の被覆率)は、導電性粒子の断面をSEM-EDX分析して元素マッピングを行い、画像解析することで算出することができる。 The area of the portion where the conductive portion is located (coverage of the conductive portion) in the outer surface area of the metal particles of 100% is calculated by performing element mapping by SEM-EDX analysis of the cross section of the conductive particles and image analysis. can do.
 上記金属粒子の表面上に導電部を形成する方法は特に限定されない。上記導電部を形成する方法としては、無電解めっきによる方法、電気めっきによる方法、物理的な衝突による方法、メカノケミカル反応による方法、物理的蒸着又は物理的吸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを金属粒子の表面にコーティングする方法等が挙げられる。上記導電部を形成する方法は、無電解めっき、電気めっき又は物理的な衝突による方法であることが好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。また、上記物理的な衝突による方法としては、シーターコンポーザ(徳寿工作所社製)等が用いられる。 The method of forming the conductive portion on the surface of the metal particles is not particularly limited. Examples of the method for forming the conductive portion include a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption, and a metal powder or metal powder. Examples thereof include a method of coating the surface of metal particles with a paste containing the binder and the binder. The method for forming the conductive portion is preferably a method by electroless plating, electroplating or physical collision. Examples of the method by physical vapor deposition include methods such as vacuum deposition, ion plating, and ion sputtering. Further, as the method by the above physical collision, a seater composer (manufactured by Tokuju Kosakusho Co., Ltd.) or the like is used.
 本発明の効果を効果的に発揮するために良好な導電部を容易に形成する観点からは、上記導電部は、めっき導電部又はスパッタリング導電部であることが好ましい。上記導電部は、めっき導電部であってもよく、スパッタリング導電部であってもよい。上記めっき導電部は、めっきにより形成されている。上記スパッタリング導電部は、スパッタリングにより形成されている。上記めっき導電部は、めっき導電層であることが好ましい。上記めっき導電部は、めっき金属被覆部であることが好ましく、めっき金属被覆層であることがより好ましい。上記スパッタリング導電部は、スパッタリング導電層であることが好ましい。上記スパッタリング導電部は、スパッタリング金属被覆部であることが好ましく、スパッタリング金属被覆層であることがより好ましい。上記導電部は、多孔質構造を有していなくてもよい。めっき又はスパッタリング等により、多孔質構造を有さない導電部を形成することができる。 From the viewpoint of easily forming a good conductive portion in order to effectively exert the effect of the present invention, the conductive portion is preferably a plated conductive portion or a sputtering conductive portion. The conductive portion may be a plated conductive portion or a sputtering conductive portion. The plating conductive portion is formed by plating. The sputtering conductive portion is formed by sputtering. The plated conductive portion is preferably a plated conductive layer. The plated conductive portion is preferably a plated metal coating portion, and more preferably a plated metal coating layer. The sputtering conductive portion is preferably a sputtering conductive layer. The sputtering conductive portion is preferably a sputtering metal coating portion, and more preferably a sputtering metal coating layer. The conductive portion does not have to have a porous structure. A conductive portion having no porous structure can be formed by plating, sputtering, or the like.
 上記構成Aを備える場合に、すなわち、導電性粒子(A)の場合に、上記導電部の厚みは、好ましくは0.1nm以上、より好ましくは10nm以上であり、好ましくは50nm未満、より好ましくは40nm以下、さらに好ましくは30nm以下である。上記導電部の厚みは、導電部が多層である場合には導電部全体の厚みである。上記導電部の厚みが上記下限以上及び上記上限以下であると、十分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子を十分に変形させることができる。 When the configuration A is provided, that is, in the case of the conductive particles (A), the thickness of the conductive portion is preferably 0.1 nm or more, more preferably 10 nm or more, preferably less than 50 nm, more preferably. It is 40 nm or less, more preferably 30 nm or less. The thickness of the conductive portion is the thickness of the entire conductive portion when the conductive portion has multiple layers. When the thickness of the conductive portion is not less than the above lower limit and not more than the above upper limit, sufficient conductivity can be obtained, and the conductive particles are not too hard and the conductive particles are sufficiently deformed at the time of connection between the electrodes. Can be made to.
 上記構成Bを備える場合に、すなわち、導電性粒子(B)の場合に、上記導電部の厚みは、好ましくは50nm以上、より好ましくは60nm以上であり、好ましくは1000nm以下、より好ましくは500nm以下、さらに好ましくは300nm以下である。上記導電部の厚みは、導電部が多層である場合には導電部全体の厚みである。上記導電部の厚みが上記下限以上及び上記上限以下であると、十分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子を十分に変形させることができる。 When the above configuration B is provided, that is, in the case of the conductive particles (B), the thickness of the conductive portion is preferably 50 nm or more, more preferably 60 nm or more, preferably 1000 nm or less, more preferably 500 nm or less. , More preferably 300 nm or less. The thickness of the conductive portion is the thickness of the entire conductive portion when the conductive portion has multiple layers. When the thickness of the conductive portion is not less than the above lower limit and not more than the above upper limit, sufficient conductivity can be obtained, and the conductive particles are not too hard and the conductive particles are sufficiently deformed at the time of connection between the electrodes. Can be made to.
 上記導電部が複数の層により形成されている場合に、最外層の導電部の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上であり、好ましくは0.5μm以下、より好ましくは0.1μm以下である。上記最外層の導電部の厚みが上記下限以上及び上記上限以下であると、最外層の導電部による被覆が均一になり、耐腐食性が十分に高くなり、かつ電極間の接続抵抗を十分に低くすることができる。また、上記最外層を構成する金属が金である場合には、最外層の厚みが薄いほど、コストを低くすることができる。 When the conductive portion is formed of a plurality of layers, the thickness of the conductive portion of the outermost layer is preferably 0.001 μm or more, more preferably 0.01 μm or more, preferably 0.5 μm or less, more preferably. Is 0.1 μm or less. When the thickness of the conductive portion of the outermost layer is equal to or higher than the lower limit and lower than the upper limit, the coating by the conductive portion of the outermost layer becomes uniform, the corrosion resistance becomes sufficiently high, and the connection resistance between the electrodes is sufficiently increased. Can be lowered. Further, when the metal constituting the outermost layer is gold, the thinner the outermost layer, the lower the cost.
 上記導電部の厚みは、例えば透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定できる。上記導電部の厚みについては、任意の導電部の厚み5箇所の平均値を1個の導電性粒子の導電部の厚みとして算出することが好ましく、導電部全体の厚みの平均値を1個の導電性粒子の導電部の厚みとして算出することがより好ましい。また、金属粒子の外表面上において、導電部が配置されていない部分を有する導電性粒子(例えば、図1の導電性粒子1)では、該導電部が配置されていない部分は導電部の厚みに考慮されず、導電部が配置されている部分のみから、導電部の厚みが求められる。なお、導電部の厚みを求める際、多孔質構造を有する金属粒子と導電部との境界は、以下の手順に従って定める。略円形状の導電性粒子の断面において、該略円と中心を同一にし、かつ、多孔質構造を有する金属粒子の全体を内包する最小の近似円を、金属粒子と導電部との境界とする。上記導電部の厚みは、任意の導電性粒子50個について、各導電性粒子の導電部の厚みの平均値を算出することにより求めることが好ましい。 The thickness of the conductive portion can be measured by observing the cross section of the conductive particles using, for example, a transmission electron microscope (TEM). Regarding the thickness of the conductive portion, it is preferable to calculate the average value of the thickness of any of the conductive portions at five points as the thickness of the conductive portion of one conductive particle, and the average value of the thickness of the entire conductive portion is one. It is more preferable to calculate as the thickness of the conductive portion of the conductive particles. Further, in the case of conductive particles having a portion on the outer surface of the metal particle in which the conductive portion is not arranged (for example, the conductive particle 1 in FIG. 1), the portion where the conductive portion is not arranged is the thickness of the conductive portion. The thickness of the conductive portion is obtained only from the portion where the conductive portion is arranged. When determining the thickness of the conductive portion, the boundary between the metal particles having a porous structure and the conductive portion is determined according to the following procedure. In the cross section of the substantially circular conductive particles, the smallest approximate circle that has the same center as the substantially circular circle and contains the entire metal particles having a porous structure is defined as the boundary between the metal particles and the conductive portion. .. The thickness of the conductive portion is preferably obtained by calculating the average value of the thickness of the conductive portion of each conductive particle for 50 arbitrary conductive particles.
 (芯物質)
 上記導電性粒子は、上記導電部の外表面に突起を有することが好ましい。上記導電性粒子は、表面に突起を有することが好ましい。上記突起は、複数であることが好ましい。上記導電性粒子は、上記突起を複数有することが好ましい。導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。導電部の表面に突起を有する導電性粒子を用いた場合には、電極間に導電性粒子を配置して圧着させることにより、突起により上記酸化被膜を効果的に排除できる。このため、電極と導電部とがより一層確実に接触し、電極間の接続抵抗がより一層低くなる。さらに、導電性粒子が絶縁性物質を備える場合に、又は、導電性粒子がバインダー樹脂に分散されて導電材料として用いられる場合に、導電性粒子の突起によって、導電性粒子と電極との間の絶縁性物質又はバインダー樹脂をより一層効果的に排除できる。このため、電極間の接続抵抗をより一層低くすることができる。
(Core substance)
The conductive particles preferably have protrusions on the outer surface of the conductive portion. The conductive particles preferably have protrusions on the surface. It is preferable that the number of the protrusions is plurality. The conductive particles preferably have a plurality of the protrusions. An oxide film is often formed on the surface of the electrode connected by the conductive particles. When conductive particles having protrusions on the surface of the conductive portion are used, the oxide film can be effectively removed by the protrusions by arranging the conductive particles between the electrodes and crimping them. Therefore, the electrodes and the conductive portion come into contact with each other more reliably, and the connection resistance between the electrodes becomes even lower. Further, when the conductive particles include an insulating substance, or when the conductive particles are dispersed in a binder resin and used as a conductive material, the protrusions of the conductive particles between the conductive particles and the electrode. Insulating substances or binder resins can be eliminated even more effectively. Therefore, the connection resistance between the electrodes can be further reduced.
 上記突起を形成する方法としては、金属粒子の表面に芯物質を付着させた後、無電解めっきにより導電部を形成する方法、並びに金属粒子の表面に無電解めっきにより導電部を形成した後、芯物質を付着させ、さらに無電解めっきにより導電部を形成する方法等が挙げられる。また、上記突起を形成するために、上記芯物質を用いなくてもよい。 The method of forming the protrusions includes a method of adhering a core material to the surface of metal particles and then forming a conductive portion by electroless plating, and a method of forming a conductive portion by electroless plating on the surface of metal particles. Examples thereof include a method in which a core material is attached and a conductive portion is formed by electroless plating. Further, the core material may not be used to form the protrusions.
 上記突起を形成する他の方法としては、金属粒子の表面上に導電部を形成する途中段階で、芯物質を添加する方法等が挙げられる。また、突起を形成するために、上記芯物質を用いずに、金属粒子に無電解めっきにより導電部を形成した後、導電部の表面上に突起状にめっきを析出させ、さらに無電解めっきにより導電部を形成する方法等を用いてもよい。 As another method for forming the above-mentioned protrusions, a method of adding a core substance in the middle of forming a conductive portion on the surface of the metal particles can be mentioned. Further, in order to form the protrusions, the conductive portion is formed on the metal particles by electroless plating without using the core material, and then the plating is deposited in the shape of protrusions on the surface of the conductive portion, and further by electroless plating. A method of forming a conductive portion or the like may be used.
 金属粒子の表面に芯物質を付着させる方法としては、金属粒子の分散液中に、芯物質を添加し、金属粒子の表面に芯物質を、ファンデルワールス力により集積させ、付着させる方法、並びに金属粒子を入れた容器に、芯物質を添加し、容器の回転等による機械的な作用により金属粒子の表面に芯物質を付着させる方法等が挙げられる。付着させる芯物質の量を制御する観点からは、金属粒子の表面に芯物質を付着させる方法は、分散液中の金属粒子の表面に芯物質を集積させ、付着させる方法であることが好ましい。 As a method of adhering the core substance to the surface of the metal particles, a method of adding the core substance to the dispersion liquid of the metal particles and accumulating and adhering the core substance on the surface of the metal particles by van der Waals force, and Examples thereof include a method in which a core substance is added to a container containing metal particles, and the core substance is attached to the surface of the metal particles by a mechanical action such as rotation of the container. From the viewpoint of controlling the amount of the core substance to be adhered, the method of adhering the core substance to the surface of the metal particles is preferably a method of accumulating and adhering the core substance to the surface of the metal particles in the dispersion liquid.
 上記芯物質を構成する物質としては、導電性物質及び非導電性物質が挙げられる。上記導電性物質としては、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。上記導電性ポリマーとしては、ポリアセチレン等が挙げられる。上記非導電性物質としては、シリカ、アルミナ及びジルコニア等が挙げられる。酸化被膜をより一層効果的に排除する観点からは、上記芯物質は硬い方が好ましい。電極間の接続抵抗をより一層効果的に低くする観点からは、上記芯物質は、金属であることが好ましい。 Examples of the substance constituting the core substance include a conductive substance and a non-conductive substance. Examples of the conductive substance include metals, metal oxides, conductive non-metals such as graphite, and conductive polymers. Examples of the conductive polymer include polyacetylene and the like. Examples of the non-conductive substance include silica, alumina and zirconia. From the viewpoint of removing the oxide film more effectively, the core material is preferably hard. From the viewpoint of further effectively lowering the connection resistance between the electrodes, the core material is preferably a metal.
 上記金属は特に限定されない。上記金属としては、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム等の金属、並びに錫-鉛合金、錫-銅合金、錫-銀合金、錫-鉛-銀合金及び炭化タングステン等の2種類以上の金属で構成される合金等が挙げられる。電極間の接続抵抗をより一層効果的に低くする観点からは、上記金属は、ニッケル、銅、銀又は金であることが好ましい。上記金属は、上記導電部(導電層)を構成する金属と同じであってもよく、異なっていてもよい。上記金属は、上記金属粒子を構成する金属と同じであってもよく、異なっていてもよい。 The above metals are not particularly limited. Examples of the metals include metals such as gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and tin-lead alloys. Examples thereof include alloys composed of two or more kinds of metals such as tin-copper alloy, tin-silver alloy, tin-lead-silver alloy and tungsten carbide. From the viewpoint of further effectively lowering the connection resistance between the electrodes, the metal is preferably nickel, copper, silver or gold. The metal may be the same as or different from the metal constituting the conductive portion (conductive layer). The metal may be the same as or different from the metal constituting the metal particles.
 上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。 The shape of the core substance is not particularly limited. The shape of the core material is preferably lumpy. Examples of the core material include particulate lumps, agglomerates in which a plurality of fine particles are agglomerated, and amorphous lumps.
 上記芯物質の粒子径は、好ましくは0.001μm以上、より好ましくは0.05μm以上、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記芯物質の粒子径が上記下限以上及び上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができる。 The particle size of the core substance is preferably 0.001 μm or more, more preferably 0.05 μm or more, preferably 0.9 μm or less, and more preferably 0.2 μm or less. When the particle size of the core substance is not less than the above lower limit and not more than the upper limit, the connection resistance between the electrodes can be further effectively reduced.
 上記芯物質の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。芯物質の粒子径は、任意の芯物質50個を電子顕微鏡又は光学顕微鏡にて観察し、各芯物質の粒子径の平均値を算出することや、粒度分布測定装置を用いて求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの芯物質の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の芯物質の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。粒度分布測定装置では、1個当たりの芯物質の粒子径は、球相当径での粒子径として求められる。上記芯物質の平均粒子径は、粒度分布測定装置を用いて算出することが好ましい。 The particle size of the core substance is preferably an average particle size, more preferably a number average particle size. The particle size of the core substance can be obtained by observing 50 arbitrary core substances with an electron microscope or an optical microscope, calculating the average value of the particle size of each core substance, or using a particle size distribution measuring device. In observation with an electron microscope or an optical microscope, the particle size of each core substance is determined as the particle size in a circle-equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter of any 50 core materials in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the particle size distribution measuring device, the particle size of each core substance is obtained as the particle size in the equivalent diameter of a sphere. The average particle size of the core substance is preferably calculated using a particle size distribution measuring device.
 上記導電性粒子1個当たりの上記突起の数は、好ましくは3個以上、より好ましくは5個以上である。上記突起の数の上限は特に限定されない。上記突起の数の上限は導電性粒子の粒子径等を考慮して適宜選択できる。上記突起の数が上記下限以上であると、電極間の接続抵抗をより一層効果的に低くすることができる。 The number of the protrusions per conductive particle is preferably 3 or more, more preferably 5 or more. The upper limit of the number of the protrusions is not particularly limited. The upper limit of the number of protrusions can be appropriately selected in consideration of the particle size of the conductive particles and the like. When the number of the protrusions is at least the above lower limit, the connection resistance between the electrodes can be further effectively reduced.
 上記突起の数は、任意の導電性粒子を電子顕微鏡又は光学顕微鏡にて観察して算出することができる。上記突起の数は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各導電性粒子における突起の数の平均値を算出することにより求めることが好ましい。 The number of protrusions can be calculated by observing arbitrary conductive particles with an electron microscope or an optical microscope. The number of protrusions is preferably determined by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating the average value of the number of protrusions in each conductive particle.
 上記突起の高さは、好ましくは0.001μm以上、より好ましくは0.05μm以上であり、好ましくは0.9μm以下、より好ましくは0.5μm以下である。上記突起の高さは、0.2μm以下であってもよい。上記突起の高さが上記下限以上及び上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができる。 The height of the protrusion is preferably 0.001 μm or more, more preferably 0.05 μm or more, preferably 0.9 μm or less, and more preferably 0.5 μm or less. The height of the protrusion may be 0.2 μm or less. When the height of the protrusion is equal to or higher than the lower limit and lower than the upper limit, the connection resistance between the electrodes can be further effectively reduced.
 上記突起の高さは、任意の導電性粒子における突起を電子顕微鏡又は光学顕微鏡にて観察して算出することができる。上記突起の高さは、導電性粒子1個当たりのすべての突起の高さの平均値を1個の導電性粒子の突起の高さとして算出することが好ましい。上記突起の高さは、任意の導電性粒子50個について、各導電性粒子の突起の高さの平均値を算出することにより求めることが好ましい。 The height of the protrusions can be calculated by observing the protrusions on any conductive particle with an electron microscope or an optical microscope. The height of the protrusions is preferably calculated by calculating the average value of the heights of all the protrusions per conductive particle as the height of the protrusions of one conductive particle. It is preferable that the height of the protrusions is obtained by calculating the average value of the heights of the protrusions of each conductive particle for 50 arbitrary conductive particles.
 (絶縁性物質)
 上記導電性粒子は、上記金属粒子の外表面上又は上記導電部の外表面上に配置された絶縁性物質を備えることが好ましい。上記導電性粒子では、上記金属粒子の外表面上に、絶縁性物質が配置されていてもよい。上記導電性粒子は、上記導電部の外表面上に配置された絶縁性物質を備えることがより好ましい。絶縁性物質が備えられる場合には、上記導電性粒子を電極間の接続に用いると、隣接する電極間の短絡をより一層効果的に防止できる。具体的には、複数の導電性粒子が接触したときに、複数の電極間に絶縁性物質が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で導電性粒子を加圧することにより、導電性粒子の導電部と電極との間の絶縁性物質を容易に排除できる。さらに、導電部の外表面に突起を有する導電性粒子である場合には、導電性粒子の導電部と電極との間の絶縁性物質をより一層容易に排除できる。
(Insulating substance)
The conductive particles preferably include an insulating substance arranged on the outer surface of the metal particles or on the outer surface of the conductive portion. In the conductive particles, an insulating substance may be arranged on the outer surface of the metal particles. It is more preferable that the conductive particles include an insulating substance arranged on the outer surface of the conductive portion. When an insulating substance is provided, if the conductive particles are used for the connection between the electrodes, a short circuit between adjacent electrodes can be prevented more effectively. Specifically, when a plurality of conductive particles come into contact with each other, an insulating substance exists between the plurality of electrodes, so that it is possible to prevent a short circuit between the electrodes adjacent to each other in the lateral direction rather than between the upper and lower electrodes. By pressurizing the conductive particles with the two electrodes when connecting the electrodes, the insulating substance between the conductive portion of the conductive particles and the electrodes can be easily removed. Further, in the case of the conductive particles having protrusions on the outer surface of the conductive portion, the insulating substance between the conductive portion of the conductive portion and the electrode can be more easily removed.
 電極間の圧着時に上記絶縁性物質をより一層容易に排除できることから、上記絶縁性物質は、絶縁性粒子であることが好ましい。本明細書において、本発明に係る導電性粒子のうち、絶縁性粒子を備える導電性粒子を、絶縁性粒子付き導電性粒子と呼ぶことがある。 The insulating substance is preferably insulating particles because the insulating substance can be more easily removed during crimping between the electrodes. In the present specification, among the conductive particles according to the present invention, the conductive particles having insulating particles may be referred to as conductive particles with insulating particles.
 上記絶縁性物質の材料としては、上述した樹脂、及び無機物等が挙げられる。上記絶縁性物質の材料は、上記樹脂であることが好ましい。上記絶縁性物質の材料は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the material of the insulating substance include the above-mentioned resin and inorganic substances. The material of the insulating substance is preferably the resin. As the material of the insulating substance, only one kind may be used, or two or more kinds may be used in combination.
 上記無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア、カーボンブラック、ケイ酸ガラス、ホウケイ酸ガラス、鉛ガラス、ソーダ石灰ガラス及びアルミナシリケートガラス等が挙げられる。 Examples of the inorganic substances include silica, alumina, barium titanate, zirconia, carbon black, silicate glass, borosilicate glass, lead glass, soda-lime glass and alumina silicate glass.
 上記絶縁性物質の他の材料としては、ポリオレフィン化合物、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。 Other materials for the insulating material include polyolefin compounds, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, crosslinked products of thermoplastic resins, thermosetting resins and water-soluble materials. Examples include resin.
 上記ポリオレフィン化合物としては、ポリエチレン、エチレン-酢酸ビニル共重合体及びエチレン-アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリドデシル(メタ)アクリレート及びポリステアリル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン-アクリル酸エステル共重合体、SB型スチレン-ブタジエンブロック共重合体、及びSBS型スチレン-ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記熱可塑性樹脂の架橋物としては、ポリエチレングリコールメタクリレート、アルコキシ化トリメチロールプロパンメタクリレートやアルコキシ化ペンタエリスリトールメタクリレート等の導入が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。また、重合度の調整に、連鎖移動剤を使用してもよい。連鎖移動剤としては、チオールや四塩化炭素等が挙げられる。 Examples of the polyolefin compound include polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid ester copolymer and the like. Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polydodecyl (meth) acrylate, and polystearyl (meth) acrylate. Examples of the block polymer include polystyrene, styrene-acrylic acid ester copolymer, SB type styrene-butadiene block copolymer, SBS type styrene-butadiene block copolymer, and hydrogenated products thereof. Examples of the thermoplastic resin include vinyl polymers and vinyl copolymers. Examples of the thermosetting resin include epoxy resin, phenol resin, melamine resin and the like. Examples of the crosslinked product of the thermoplastic resin include the introduction of polyethylene glycol methacrylate, alkoxylated trimethylolpropane methacrylate, alkoxylated pentaerythritol methacrylate and the like. Examples of the water-soluble resin include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinylpyrrolidone, polyethylene oxide, methyl cellulose and the like. Further, a chain transfer agent may be used to adjust the degree of polymerization. Examples of the chain transfer agent include thiols and carbon tetrachloride.
 上記金属粒子の表面又は上記導電部の表面上に上記絶縁性物質を配置する方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。電極間を電気的に接続した場合に、絶縁信頼性及び導通信頼性をより一層効果的に高める観点からは、上記金属粒子の表面又は上記導電部の表面上に上記絶縁性物質を配置する方法は、物理的方法であることが好ましい。 Examples of the method of arranging the insulating substance on the surface of the metal particles or the surface of the conductive portion include a chemical method and a physical or mechanical method. Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method. Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion method, spraying method, dipping and vacuum deposition methods. A method of arranging the insulating substance on the surface of the metal particles or the surface of the conductive portion from the viewpoint of further effectively enhancing the insulation reliability and the conduction reliability when the electrodes are electrically connected. Is preferably a physical method.
 上記金属粒子の外表面、上記導電部の外表面、及び上記絶縁性物質の外表面はそれぞれ、反応性官能基を有する化合物によって被覆されていてもよい。上記金属粒子の外表面又は上記導電部の外表面と上記絶縁性物質の外表面とは、直接化学結合していなくてもよく、反応性官能基を有する化合物によって間接的に化学結合していてもよい。上記金属粒子の外表面又は上記導電部の外表面にカルボキシル基を導入した後、該カルボキシル基がポリエチレンイミン等の高分子電解質を介して絶縁性物質の外表面の官能基と化学結合していてもよい。 The outer surface of the metal particles, the outer surface of the conductive portion, and the outer surface of the insulating substance may each be coated with a compound having a reactive functional group. The outer surface of the metal particles or the outer surface of the conductive portion and the outer surface of the insulating substance do not have to be directly chemically bonded, but are indirectly chemically bonded by a compound having a reactive functional group. May be good. After introducing a carboxyl group into the outer surface of the metal particles or the outer surface of the conductive portion, the carboxyl group is chemically bonded to the functional group on the outer surface of the insulating substance via a polyelectrolyte such as polyethyleneimine. May be good.
 上記絶縁性物質が絶縁性粒子である場合、上記絶縁性粒子の粒子径は、導電性粒子の粒子径及び導電性粒子の用途等によって適宜選択できる。上記絶縁性粒子の粒子径は、好ましくは10nm以上、より好ましくは100nm以上、さらに好ましくは300nm以上、特に好ましくは500nm以上であり、好ましくは4000nm以下、より好ましくは2000nm以下、さらに好ましくは1500nm以下、特に好ましくは1000nm以下である。絶縁性粒子の粒子径が上記下限以上であると導電性粒子がバインダー樹脂中に分散されたときに、複数の導電性粒子における金属粒子又は導電部同士が接触し難くなる。絶縁性粒子の粒子径が上記上限以下であると、電極間の接続の際に、電極と導電性粒子における金属粒子又は導電部との間の絶縁性粒子を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。 When the insulating substance is an insulating particle, the particle size of the insulating particle can be appropriately selected depending on the particle size of the conductive particle, the application of the conductive particle, and the like. The particle size of the insulating particles is preferably 10 nm or more, more preferably 100 nm or more, further preferably 300 nm or more, particularly preferably 500 nm or more, preferably 4000 nm or less, more preferably 2000 nm or less, still more preferably 1500 nm or less. , Especially preferably 1000 nm or less. When the particle size of the insulating particles is at least the above lower limit, when the conductive particles are dispersed in the binder resin, it becomes difficult for the metal particles or the conductive portions of the plurality of conductive particles to come into contact with each other. When the particle size of the insulating particles is not more than the above upper limit, the pressure is increased in order to eliminate the insulating particles between the metal particles or the conductive portion in the electrodes and the conductive particles when connecting the electrodes. There is no need to overheat and no need to heat to high temperatures.
 上記絶縁性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることが好ましい。絶縁性粒子の粒子径は、任意の絶縁性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各絶縁性粒子の粒子径の平均値を算出することや、粒度分布測定装置を用いて求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの絶縁性粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の絶縁性粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。粒度分布測定装置では、1個当たりの絶縁性粒子の粒子径は、球相当径での粒子径として求められる。上記絶縁性粒子の平均粒子径は、粒度分布測定装置を用いて算出することが好ましい。上記導電性粒子において、上記絶縁性粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。 The particle size of the insulating particles is preferably an average particle size, and preferably a number average particle size. The particle size of the insulating particles can be obtained by observing 50 arbitrary insulating particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each insulating particle, or using a particle size distribution measuring device. Be done. In observation with an electron microscope or an optical microscope, the particle size of each insulating particle is determined as the particle size in the equivalent circle diameter. When observed with an electron microscope or an optical microscope, the average particle diameter of any 50 insulating particles in the equivalent circle diameter is substantially equal to the average particle diameter in the equivalent diameter of the sphere. In the particle size distribution measuring device, the particle size of each insulating particle is determined as the particle size in the equivalent diameter of a sphere. The average particle size of the insulating particles is preferably calculated using a particle size distribution measuring device. When measuring the particle size of the insulating particles in the conductive particles, for example, the measurement can be performed as follows.
 導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂体を作製する。その検査用埋め込み樹脂体中の分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率5万倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子の絶縁性粒子を観察する。各導電性粒子における絶縁性粒子の粒子径を計測し、それらを算術平均して絶縁性粒子の粒子径とする。 Conductive particles are added to "Technobit 4000" manufactured by Kulzer so as to have a content of 30% by weight and dispersed to prepare an embedded resin body for conducting conductive particle inspection. A cross section of the conductive particles is cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the dispersed conductive particles in the embedded resin body for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification was set to 50,000 times, 50 conductive particles were randomly selected, and the insulating particles of each conductive particle were observed. do. The particle size of the insulating particles in each conductive particle is measured, and they are arithmetically averaged to obtain the particle size of the insulating particles.
 上記導電性粒子の粒子径の、上記絶縁性粒子の粒子径に対する比(導電性粒子の粒子径/絶縁性粒子の粒子径)は、好ましくは4以上、より好ましくは8以上であり、好ましくは200以下、より好ましくは100以下である。上記比(導電性粒子の粒子径/絶縁性粒子の粒子径)が上記下限以上及び上記上限以下であると、電極間を電気的に接続した場合に、絶縁信頼性及び導通信頼性をより一層効果的に高めることができる。 The ratio of the particle size of the conductive particles to the particle size of the insulating particles (particle size of the conductive particles / particle size of the insulating particles) is preferably 4 or more, more preferably 8 or more, and preferably 8. It is 200 or less, more preferably 100 or less. When the above ratio (particle size of conductive particles / particle size of insulating particles) is equal to or more than the above lower limit and less than or equal to the above upper limit, the insulation reliability and conduction reliability are further improved when the electrodes are electrically connected. Can be effectively enhanced.
 (導電材料)
 本発明に係る導電材料は、上述した導電性粒子と、バインダー樹脂とを含む。上記導電性粒子は、バインダー樹脂中に分散され、導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。
(Conductive material)
The conductive material according to the present invention includes the above-mentioned conductive particles and a binder resin. The conductive particles are preferably dispersed in the binder resin and used as a conductive material. The conductive material is preferably an anisotropic conductive material. The conductive material is preferably used for electrical connection of electrodes. The conductive material is preferably a circuit connection material.
 上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。上記バインダー樹脂は、熱可塑性成分(熱可塑性化合物)又は硬化性成分を含むことが好ましく、硬化性成分を含むことがより好ましい。上記硬化性成分としては、光硬化性成分及び熱硬化性成分が挙げられる。上記光硬化性成分は、光硬化性化合物及び光重合開始剤を含むことが好ましい。上記熱硬化性成分は、熱硬化性化合物及び熱硬化剤を含むことが好ましい。上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The binder resin is not particularly limited. As the binder resin, a known insulating resin is used. The binder resin preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component. Examples of the curable component include a photocurable component and a thermosetting component. The photocurable component preferably contains a photocurable compound and a photopolymerization initiator. The thermosetting component preferably contains a thermosetting compound and a thermosetting agent. Examples of the binder resin include vinyl resins, thermoplastic resins, curable resins, thermoplastic block copolymers, and elastomers. Only one kind of the binder resin may be used, or two or more kinds thereof may be used in combination.
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。 Examples of the vinyl resin include vinyl acetate resin, acrylic resin, styrene resin and the like. Examples of the thermoplastic resin include polyolefin resins, ethylene-vinyl acetate copolymers, and polyamide resins. Examples of the curable resin include epoxy resin, urethane resin, polyimide resin, unsaturated polyester resin and the like. The curable resin may be a room temperature curable resin, a thermosetting resin, a photocurable resin, or a moisture curable resin. The curable resin may be used in combination with a curing agent. Examples of the thermoplastic block copolymer include a styrene-butadiene-styrene block copolymer, a styrene-isoprene-styrene block copolymer, a hydrogenated additive of a styrene-butadiene-styrene block copolymer, and a styrene-isoprene. -Hydrogen additives of styrene block copolymer and the like can be mentioned. Examples of the elastomer include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
 上記導電材料は、上記導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。 In addition to the conductive particles and the binder resin, the conductive material includes, for example, a filler, a bulking agent, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a photostabilizer. It may contain various additives such as an agent, an ultraviolet absorber, a lubricant, an antistatic agent and a flame retardant.
 上記バインダー樹脂中に上記導電性粒子を分散させる方法として、従来公知の分散方法を用いることができる。上記バインダー樹脂中に上記導電性粒子を分散させる方法としては、例えば、以下の方法等が挙げられる。上記バインダー樹脂中に上記導電性粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法。上記導電性粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記バインダー樹脂中に添加し、プラネタリーミキサー等で混練して分散させる方法。上記バインダー樹脂を水又は有機溶剤等で希釈した後、上記導電性粒子を添加し、プラネタリーミキサー等で混練して分散させる方法。 As a method for dispersing the conductive particles in the binder resin, a conventionally known dispersion method can be used. Examples of the method for dispersing the conductive particles in the binder resin include the following methods. A method in which the conductive particles are added to the binder resin and then kneaded and dispersed with a planetary mixer or the like. A method in which the conductive particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, added to the binder resin, and kneaded and dispersed by a planetary mixer or the like. A method in which the binder resin is diluted with water or an organic solvent, the conductive particles are added, and the binder resin is kneaded and dispersed with a planetary mixer or the like.
 上記導電材料の25℃での粘度(η25)は、好ましくは30Pa・s以上、より好ましくは50Pa・s以上であり、好ましくは400Pa・s以下、より好ましくは300Pa・s以下である。上記導電材料の25℃での粘度が上記下限以上及び上記上限以下であると、電極間の接続信頼性をより一層効果的に高めることができる。上記粘度(η25)は、配合成分の種類及び配合量により適宜調整することができる。 The viscosity (η25) of the conductive material at 25 ° C. is preferably 30 Pa · s or more, more preferably 50 Pa · s or more, preferably 400 Pa · s or less, and more preferably 300 Pa · s or less. When the viscosity of the conductive material at 25 ° C. is at least the above lower limit and at least the above upper limit, the connection reliability between the electrodes can be further effectively improved. The viscosity (η25) can be appropriately adjusted depending on the type and amount of the compounding component.
 上記粘度(η25)は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定することができる。 The viscosity (η25) can be measured at 25 ° C. and 5 rpm using, for example, an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.).
 上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは異方性導電ペーストであることが好ましい。上記導電フィルムは異方性導電フィルムであることが好ましい。 The conductive material can be used as a conductive paste, a conductive film, or the like. When the conductive material according to the present invention is a conductive film, a film containing no conductive particles may be laminated on the conductive film containing the conductive particles. The conductive paste is preferably an anisotropic conductive paste. The conductive film is preferably an anisotropic conductive film.
 上記導電材料100重量%中、上記バインダー樹脂の含有率は、好ましくは10重量%以上、より好ましくは30重量%以上、さらに好ましくは50重量%以上、特に好ましくは70重量%以上であり、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有率が上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性がより一層高くなる。 The content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and particularly preferably 70% by weight or more. Is 99.99% by weight or less, more preferably 99.9% by weight or less. When the content of the binder resin is not less than the above lower limit and not more than the above upper limit, the conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further improved.
 上記導電材料100重量%中、上記導電性粒子の含有率は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上であり、好ましくは80重量%以下、より好ましくは60重量%以下、より一層好ましくは40重量%以下、さらに好ましくは20重量%以下、特に好ましくは10重量%以下である。上記導電性粒子の含有率が上記下限以上及び上記上限以下であると、電極間の接続抵抗をより一層効果的に低くすることができ、かつ、電極間の接続信頼性をより一層効果的に高めることができる。 The content of the conductive particles in 100% by weight of the conductive material is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 80% by weight or less, more preferably 60% by weight. % Or less, more preferably 40% by weight or less, still more preferably 20% by weight or less, and particularly preferably 10% by weight or less. When the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes can be further effectively lowered, and the connection reliability between the electrodes can be further effectively reduced. Can be enhanced.
 (接続構造体)
 本発明に係る接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部が、導電性粒子により形成されているか、又は、導電性粒子とバインダー樹脂とを含む導電材料により形成されており、上記導電性粒子が、上述した導電性粒子であり、上記第1の電極と上記第2の電極とが上記導電性粒子により電気的に接続されている。
(Connection structure)
The connection structure according to the present invention includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, and the above. It includes a connecting portion that connects to the second connection target member. In the connection structure according to the present invention, the connection portion is formed of conductive particles or is formed of a conductive material containing the conductive particles and the binder resin, and the conductive particles are described above. It is a conductive particle, and the first electrode and the second electrode are electrically connected by the conductive particle.
 上記接続構造体は、上記第1の接続対象部材と上記第2の接続対象部材との間に、上記導電性粒子又は上記導電材料を配置する工程と、熱圧着することにより導電接続する工程とを経て、得ることができる。上記導電性粒子が上記絶縁性物質を有する場合には、上記熱圧着時に、上記絶縁性物質が上記導電性粒子から脱離することが好ましい。 The connection structure includes a step of arranging the conductive particles or the conductive material between the first connection target member and the second connection target member, and a step of conducting a conductive connection by heat-bonding. Can be obtained through. When the conductive particles have the insulating substance, it is preferable that the insulating substance is desorbed from the conductive particles at the time of thermal pressure bonding.
 上記導電性粒子が単独で用いられた場合には、接続部自体が導電性粒子である。即ち、上記第1の接続対象部材と上記第2の接続対象部材とが上記導電性粒子により接続される。上記接続構造体を得るために用いられる上記導電材料は、異方性導電材料であることが好ましい。 When the above conductive particles are used alone, the connecting portion itself is a conductive particle. That is, the first connection target member and the second connection target member are connected by the conductive particles. The conductive material used to obtain the connection structure is preferably an anisotropic conductive material.
 図6に、本発明の第1の実施形態に係る導電性粒子を用いた接続構造体を模式的に正面断面図で示す。 FIG. 6 schematically shows a connection structure using conductive particles according to the first embodiment of the present invention in a front sectional view.
 図6に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1,第2の接続対象部材52,53を接続している接続部54とを備える。接続部54は、導電性粒子1を含む導電材料を硬化させることにより形成されている。なお、図6では、導電性粒子1は、図示の便宜上、略図的に示されている。導電性粒子1に代えて、導電性粒子1A,1B,1C,1D等の他の導電性粒子を用いてもよい。 The connection structure 51 shown in FIG. 6 connects a first connection target member 52, a second connection target member 53, and a connection portion 54 connecting the first and second connection target members 52 and 53. Be prepared. The connecting portion 54 is formed by curing a conductive material containing the conductive particles 1. In FIG. 6, the conductive particles 1 are shown schematicly for convenience of illustration. Instead of the conductive particles 1, other conductive particles such as conductive particles 1A, 1B, 1C, and 1D may be used.
 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例としては、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧時の圧力は、好ましくは40MPa以上、より好ましくは60MPa以上であり、好ましくは90MPa以下、より好ましくは70MPa以下である。上記加熱時の温度は、好ましくは80℃以上、より好ましくは100℃以上であり、好ましくは140℃以下、より好ましくは120℃以下である。 The manufacturing method of the above connection structure is not particularly limited. As an example of a method for manufacturing a connection structure, the conductive material is arranged between a first connection target member and a second connection target member, and after obtaining a laminate, the laminate is heated and pressurized. The method and the like can be mentioned. The pressure at the time of pressurization is preferably 40 MPa or more, more preferably 60 MPa or more, preferably 90 MPa or less, and more preferably 70 MPa or less. The temperature at the time of heating is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, preferably 140 ° C. or lower, and more preferably 120 ° C. or lower.
 本発明に係る接続構造体では、上述した導電性粒子が用いられているので、上記加熱及び加圧の際に、導電性粒子が良好に圧縮され、導電性粒子の表面(例えば導電部)に導通経路が形成されるだけではなく、導電性粒子の内部にも導通経路が良好に形成される。結果として、上述した1)-3)の本発明の効果を発揮することができ、また、電極が破損するリスクも抑えることができる。 Since the above-mentioned conductive particles are used in the connection structure according to the present invention, the conductive particles are satisfactorily compressed during the above heating and pressurization, and are satisfactorily compressed on the surface of the conductive particles (for example, a conductive portion). Not only the conduction path is formed, but also the conduction path is satisfactorily formed inside the conductive particles. As a result, the effects of the above-mentioned 1) -3) of the present invention can be exhibited, and the risk of electrode breakage can be suppressed.
 上記第1の接続対象部材及び第2の接続対象部材は、特に限定されない。上記第1の接続対象部材及び第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1の接続対象部材及び第2の接続対象部材は、電子部品であることが好ましい。 The first connection target member and the second connection target member are not particularly limited. Specific examples of the first connection target member and the second connection target member include electronic components such as semiconductor chips, semiconductor packages, LED chips, LED packages, capacitors and diodes, resin films, printed circuit boards, and flexible devices. Examples thereof include electronic components such as printed circuit boards, flexible flat cables, rigid flexible boards, glass epoxy boards, and circuit boards such as glass boards. The first connection target member and the second connection target member are preferably electronic components.
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。 Examples of the electrodes provided on the connection target member include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes, SUS electrodes, and tungsten electrodes. When the member to be connected is a flexible printed substrate, the electrodes are preferably gold electrodes, nickel electrodes, tin electrodes, silver electrodes or copper electrodes. When the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode. When the electrode is an aluminum electrode, it may be an electrode formed only of aluminum, or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer. Examples of the material of the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al and Ga.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.
 (実施例1)
 (1)金属粒子形成用基材粒子の作製
 種粒子として平均粒子径0.9μmのポリスチレン粒子を用意した。上記ポリスチレン粒子3.9重量部と、イオン交換水500重量部と、5重量%ポリビニルアルコール水溶液120重量部とを混合し、混合液を調製した。上記混合液を超音波により分散させた後、セパラブルフラスコに入れて、均一に撹拌した。
(Example 1)
(1) Preparation of Base Particles for Metal Particle Formation Polystyrene particles having an average particle diameter of 0.9 μm were prepared as seed particles. A mixed solution was prepared by mixing 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion-exchanged water, and 120 parts by weight of a 5% by weight polyvinyl alcohol aqueous solution. After the above mixed solution was dispersed by ultrasonic waves, it was placed in a separable flask and stirred uniformly.
 次に、ジビニルベンゼン(モノマー成分)150重量部と、2,2’-アゾビス(イソ酪酸メチル)(和光純薬工業社製「V-601」)2重量部と、過酸化ベンゾイル(日油社製「ナイパーBW」)2重量部とを混合した。さらに、ラウリル硫酸トリエタノールアミン9重量部と、トルエン(溶媒)50重量部と、イオン交換水1100重量部とを添加し、乳化液を調製した。 Next, 150 parts by weight of divinylbenzene (monomer component), 2 parts by weight of 2,2'-azobis (methyl isobutyrate) ("V-601" manufactured by Wako Pure Chemical Industries, Ltd.), and benzoyl peroxide (NOF Corporation). 2 parts by weight of "NOF BW" manufactured by Japan, Ltd. was mixed. Further, 9 parts by weight of triethanolamine lauryl sulfate, 50 parts by weight of toluene (solvent), and 1100 parts by weight of ion-exchanged water were added to prepare an emulsion.
 セパラブルフラスコ中の上記混合液に、上記乳化液を数回に分けて添加し、12時間撹拌し、種粒子にモノマーを吸収させて、モノマーが膨潤した種粒子を含む懸濁液を得た。 The emulsion was added to the mixture in a separable flask in several portions, and the mixture was stirred for 12 hours to allow the seed particles to absorb the monomer to obtain a suspension containing the seed particles in which the monomer was swollen. ..
 その後、5重量%ポリビニルアルコール水溶液490重量部を添加し、加熱を開始して85℃で9時間反応させ、粒子径4.0μm、CV値3.0%の金属粒子形成用基材粒子を得た。 Then, 490 parts by weight of a 5 wt% polyvinyl alcohol aqueous solution was added, heating was started, and the mixture was reacted at 85 ° C. for 9 hours to obtain base particles for forming metal particles having a particle size of 4.0 μm and a CV value of 3.0%. rice field.
 (2)金属粒子(導電性粒子)の作製
 得られた金属粒子形成用基材粒子を洗浄し、乾燥した後、パラジウム触媒液を5重量%含むアルカリ溶液1000重量部に、該基材粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、金属粒子形成用基材粒子を取り出した。次いで、金属粒子形成用基材粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、該基材粒子の表面を活性化させた。表面が活性化された金属粒子形成用基材粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、分散液を得た。
(2) Preparation of Metal Particles (Conductive Particles) The obtained base particles for forming metal particles are washed and dried, and then the base particles 10 are added to 1000 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution. After dispersing the parts by weight using an ultrasonic disperser, the base particles for forming metal particles were taken out by filtering the solution. Next, the base particles for forming metal particles were added to 100 parts by weight of a 1 wt% solution of dimethylamine borane to activate the surface of the substrate particles. After thoroughly washing the surface-activated metal particle-forming substrate particles with water, the particles were added to 500 parts by weight of distilled water and dispersed to obtain a dispersion liquid.
 また、硫酸ニッケル0.35mol/L、ジメチルアミンボラン1.38mol/L及びクエン酸ナトリウム0.5mol/Lを含むニッケルめっき液(pH8.5)を用意した。 Further, a nickel plating solution (pH 8.5) containing nickel sulfate 0.35 mol / L, dimethylamine borane 1.38 mol / L and sodium citrate 0.5 mol / L was prepared.
 得られた分散液を60℃にて攪拌しながら、上記ニッケルめっき液150重量部を分散液に徐々に滴下し、無電解ニッケルめっきを行った。その後、分散液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、金属粒子形成用基材粒子の内部にニッケルが析出した粒子を得た。 While stirring the obtained dispersion at 60 ° C., 150 parts by weight of the nickel plating solution was gradually added dropwise to the dispersion to perform electroless nickel plating. Then, the dispersion liquid was filtered to take out the particles, washed with water, and dried to obtain particles in which nickel was precipitated inside the base particles for forming metal particles.
 また、得られた上記ニッケルが析出した粒子を、窒素流通下で400℃及び12時間加熱した後、0.1Nの硝酸で洗浄することにより、多孔質構造を有する金属粒子を得た。 Further, the obtained particles on which the nickel was precipitated were heated at 400 ° C. for 12 hours under nitrogen flow and then washed with 0.1 N nitric acid to obtain metal particles having a porous structure.
 (3)導電材料(異方性導電ペースト)の作製
 得られた金属粒子(導電性粒子)7重量部と、ビスフェノールA型フェノキシ樹脂25重量部と、フルオレン型エポキシ樹脂4重量部と、フェノールノボラック型エポキシ樹脂30重量部と、SI-60L(三新化学工業社製)とを配合して、3分間脱泡及び攪拌することで、導電材料(異方性導電ペースト)を得た。
(3) Preparation of conductive material (anisotropic conductive paste) 7 parts by weight of the obtained metal particles (conductive particles), 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and phenol novolac. A conductive material (anisotropic conductive paste) was obtained by blending 30 parts by weight of the type epoxy resin and SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.), defoaming and stirring for 3 minutes.
 (4)接続構造体の作製
 L/Sが10μm/10μmであるIZO電極パターン(第1の電極、電極表面の金属のビッカース硬度100Hv)が上面に形成された透明ガラス基板(第1の接続対象部材)を用意した。また、L/Sが10μm/10μmであるAu電極パターン(第2の電極、電極表面の金属のビッカース硬度50Hv)が下面に形成された半導体チップ(第2の接続対象部材)を用意した。上記透明ガラス基板上に、得られた異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が100℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、55MPaの圧力をかけて異方性導電ペースト層を100℃で硬化させ、接続構造体を得た。
(4) Preparation of Connection Structure A transparent glass substrate having an IZO electrode pattern (first electrode, Vickers hardness of metal on the electrode surface of 100 Hv) having an L / S of 10 μm / 10 μm formed on the upper surface (first connection target). Members) were prepared. Further, a semiconductor chip (second connection target member) having an Au electrode pattern (second electrode, Vickers hardness of metal on the electrode surface 50 Hv) having an L / S of 10 μm / 10 μm formed on the lower surface was prepared. The obtained anisotropic conductive paste was coated on the transparent glass substrate so as to have a thickness of 30 μm to form an anisotropic conductive paste layer. Next, the semiconductor chips were laminated on the anisotropic conductive paste layer so that the electrodes face each other. After that, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 100 ° C., the pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 55 MPa is applied to form the anisotropic conductive paste layer. It was cured at 100 ° C. to obtain a connecting structure.
 (実施例2)
 (1)金属粒子(基材粒子)の作製
 実施例1で得られた金属粒子(導電性粒子)を、実施例2における基材粒子としての金属粒子として用いた。
(Example 2)
(1) Preparation of Metal Particles (Base Material Particles) The metal particles (conductive particles) obtained in Example 1 were used as the metal particles as the base material particles in Example 2.
 (2)導電性粒子の作製
 硫酸ニッケル0.35mol/L、ジメチルアミンボラン1.38mol/L及びクエン酸ナトリウム0.5mol/Lを含むニッケルめっき液(pH8.5)を用意した。
(2) Preparation of Conductive Particles A nickel plating solution (pH 8.5) containing nickel sulfate 0.35 mol / L, dimethylamine borane 1.38 mol / L and sodium citrate 0.5 mol / L was prepared.
 上記金属粒子を純水中に分散させて分散液を得た。得られた分散液を60℃にて攪拌しながら、上記ニッケルめっき液50重量部を分散液に徐々に滴下し、無電解ニッケルめっきを行った。その後、分散液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、金属粒子(基材粒子)の表面にニッケル-ボロン導電層が形成され、導電部を表面に有する導電性粒子を得た。 The above metal particles were dispersed in pure water to obtain a dispersion liquid. While stirring the obtained dispersion at 60 ° C., 50 parts by weight of the nickel plating solution was gradually added dropwise to the dispersion to perform electroless nickel plating. Then, by filtering the dispersion liquid, the particles are taken out, washed with water, and dried to form a nickel-boron conductive layer on the surface of the metal particles (base particle), and the conductive particles have a conductive portion on the surface. Got
 (3)導電材料(異方性導電ペースト)及び接続構造体の作製
 得られた導電性粒子を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体を得た。
(3) Preparation of Conductive Material (Anisically Conductive Paste) and Connection Structure A conductive material and a connection structure were obtained in the same manner as in Example 1 except that the obtained conductive particles were used.
 (実施例3)
 ニッケルめっき液の使用量を50重量部から100重量部に変更したこと以外は、実施例2と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 3)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 2 except that the amount of the nickel plating solution used was changed from 50 parts by weight to 100 parts by weight.
 (実施例4)
 10g/Lエチレンジアミン4酢酸ナトリウムと10g/Lクエン酸ナトリウムとを含む溶液500gに、シアン化金カリウム5gを添加して金めっき液を用意した。
(Example 4)
A gold plating solution was prepared by adding 5 g of potassium gold cyanide to 500 g of a solution containing 10 g / L sodium ethylenediamine 4 acetate and 10 g / L sodium citrate.
 実施例3で得られたニッケル-ボロン導電層を有する導電性粒子10重量部を、金めっき液500重量部に入れて、70℃で30分間浸漬させ、無電解金めっきを行った。その後、液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、金属粒子(基材粒子)の表面にニッケル-ボロン-金導電層が形成され、導電部を表面に有する導電性粒子を得た。得られた導電性粒子を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体を得た。 10 parts by weight of the conductive particles having the nickel-boron conductive layer obtained in Example 3 were placed in 500 parts by weight of the gold plating solution and immersed at 70 ° C. for 30 minutes to perform electroless gold plating. Then, by filtering the liquid, the particles are taken out, washed with water, and dried to form a nickel-boron-gold conductive layer on the surface of the metal particles (base particles), and the conductive portion has a conductive portion on the surface. Obtained particles. A conductive material and a connecting structure were obtained in the same manner as in Example 1 except that the obtained conductive particles were used.
 (実施例5)
 10g/Lエチレンジアミン、3.0g/L硫酸パラジウム、5.0g/Lギ酸ナトリウムを含むパラジウムめっき液を用意した。
(Example 5)
A palladium plating solution containing 10 g / L ethylenediamine, 3.0 g / L palladium sulfate, and 5.0 g / L sodium formate was prepared.
 実施例3で得られたニッケル-ボロン導電層を有する導電性粒子10重量部を、蒸留水200重量部に加え、分散させることにより、分散液を得た。得られた分散液を70℃に加熱した後、上記パラジウムめっき液700重量部を分散液に10分間かけて滴下することで、無電解パラジウムめっきを行った。その後、分散液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、金属粒子(基材粒子)の表面にニッケル-ボロン-パラジウム導電層が形成され、導電部を表面に有する導電性粒子を得た。得られた導電性粒子を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体を得た。 A dispersion liquid was obtained by adding 10 parts by weight of the conductive particles having the nickel-boron conductive layer obtained in Example 3 to 200 parts by weight of distilled water and dispersing them. After heating the obtained dispersion to 70 ° C., 700 parts by weight of the palladium plating solution was added dropwise to the dispersion over 10 minutes to perform electroless palladium plating. Then, by filtering the dispersion liquid, the particles are taken out, washed with water, and dried to form a nickel-boron-palladium conductive layer on the surface of the metal particles (base particle), and the conductive portion has a conductive portion on the surface. Sex particles were obtained. A conductive material and a connecting structure were obtained in the same manner as in Example 1 except that the obtained conductive particles were used.
 (実施例6)
 ニッケルめっき液の使用量を50重量部から200重量部に変更したこと以外は、実施例2と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 6)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 2 except that the amount of the nickel plating solution used was changed from 50 parts by weight to 200 parts by weight.
 (実施例7)
 実施例6で得られたニッケル-ボロン導電層を有する導電性粒子を用いて、実施例4に記載の条件で無電解金めっきを行った。このようにして、ニッケル-ボロン-金導電層を有する導電性粒子を得た。この導電性粒子を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体を得た。
(Example 7)
Electroless gold plating was performed under the conditions described in Example 4 using the conductive particles having the nickel-boron conductive layer obtained in Example 6. In this way, conductive particles having a nickel-boron-gold conductive layer were obtained. A conductive material and a connecting structure were obtained in the same manner as in Example 1 except that the conductive particles were used.
 (実施例8)
 実施例6で得られたニッケル-ボロン導電層を有する導電性粒子を用いて、実施例5に記載の条件で無電解パラジウムめっきを行った。このようにして、ニッケル-ボロン-パラジウム導電層を有する導電性粒子を得た。この導電性粒子を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体を得た。
(Example 8)
Electroless palladium plating was performed under the conditions described in Example 5 using the conductive particles having the nickel-boron conductive layer obtained in Example 6. In this way, conductive particles having a nickel-boron-palladium conductive layer were obtained. A conductive material and a connecting structure were obtained in the same manner as in Example 1 except that the conductive particles were used.
 (実施例9)
 (1)芯物質が付着した金属粒子(基材粒子)の作製
 実施例1の「(2)金属粒子(導電性粒子)の作製」において、分散液中にニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて添加することにより、芯物質が付着しており、かつ多孔質構造を有する金属粒子(基材粒子)を得た。
(Example 9)
(1) Preparation of metal particles (base particles) to which a core substance is attached In "(2) Preparation of metal particles (conductive particles)" of Example 1, a nickel particle slurry (average particle diameter 100 nm) is contained in a dispersion liquid. By adding 1 g over 3 minutes, metal particles (base particle) to which the core substance was attached and having a porous structure were obtained.
 (2)絶縁性粒子が付着していない導電性粒子の作製
 ニッケルめっき液の使用量を50重量部から300重量部に変更したこと以外は実施例2と同様にして、導電性粒子(絶縁性粒子が付着していない導電性粒子)を得た。
(2) Preparation of Conductive Particles to which Insulating Particles Are Not Adhered Conductive particles (insulating property) in the same manner as in Example 2 except that the amount of the nickel plating solution used was changed from 50 parts by weight to 300 parts by weight. Conductive particles to which no particles were attached) were obtained.
 (3)絶縁性粒子の作製
 4つ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブを取り付けた1000mLセパラブルフラスコに、下記のモノマー組成物を入れた後、下記モノマー組成物の固形分が10重量%となるように蒸留水を入れ、200rpmで攪拌し、窒素雰囲気下60℃で24時間重合を行った。上記モノマー組成物は、メタクリル酸メチル360mmol、メタクリル酸グリシジル45mmol、パラスチリルジエチルホスフィン20mmol、ジメタクリル酸エチレングリコール13mmol、ポリビニルピロリドン0.5mmol、及び2,2’-アゾビス{2-[N-(2-カルボキシエチル)アミジノ]プロパン}1mmolを含む。反応終了後、凍結乾燥して、パラスチリルジエチルホスフィンに由来するリン原子を表面に有する絶縁性粒子(粒子径360nm)を得た。
(3) Preparation of Insulating Particles After putting the following monomer composition in a 1000 mL separable flask equipped with a four-mouth separable cover, a stirring blade, a three-way cock, a cooling tube and a temperature probe, the following monomer composition Distilled water was added so that the solid content was 10% by weight, the mixture was stirred at 200 rpm, and polymerization was carried out at 60 ° C. for 24 hours under a nitrogen atmosphere. The monomer composition comprises 360 mmol of methyl methacrylate, 45 mmol of glycidyl methacrylate, 20 mmol of parastyryldiethylphosphine, 13 mmol of ethylene glycol dimethacrylate, 0.5 mmol of polyvinylpyrrolidone, and 2,2'-azobis {2- [N- (2). -Carboxyethyl) amidino] propane} 1 mmol. After completion of the reaction, the reaction was freeze-dried to obtain insulating particles (particle size 360 nm) having a phosphorus atom derived from parastilyl diethylphosphine on the surface.
 (4)絶縁性粒子付き導電性粒子の作製
 得られた絶縁性粒子を超音波照射下で蒸留水に分散させ、絶縁性粒子の10重量%水分散液を得た。得られた絶縁性粒子が付着していない導電性粒子10gを蒸留水500mLに分散させ、絶縁性粒子の10重量%水分散液1gを添加し、室温で8時間攪拌した。3μmのメッシュフィルターで濾過した後、さらにメタノールで洗浄、乾燥し、絶縁性粒子付き導電性粒子を得た。
(4) Preparation of Conductive Particles with Insulating Particles The obtained insulating particles were dispersed in distilled water under ultrasonic irradiation to obtain a 10 wt% aqueous dispersion of the insulating particles. 10 g of the obtained conductive particles to which the insulating particles were not attached were dispersed in 500 mL of distilled water, 1 g of a 10 wt% aqueous dispersion of the insulating particles was added, and the mixture was stirred at room temperature for 8 hours. After filtering with a 3 μm mesh filter, the mixture was further washed with methanol and dried to obtain conductive particles with insulating particles.
 (5)導電材料(異方性導電ペースト)及び接続構造体の作製
 得られた絶縁性粒子付き導電性粒子を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体を得た。
(5) Preparation of Conductive Material (Anisically Conductive Paste) and Connection Structure The conductive material and connection structure are prepared in the same manner as in Example 1 except that the obtained conductive particles with insulating particles are used. Obtained.
 (実施例10)
 無電解ニッケルめっきを行ったあとに無電解金めっきを行ったこと以外は、実施例9と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 10)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 9 except that electroless gold plating was performed after electroless nickel plating.
 (実施例11)
 無電解ニッケルめっきを行ったあとに無電解パラジウムめっきを行ったこと以外は、実施例9と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 11)
Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 9 except that electroless nickel plating was performed and then electroless palladium plating was performed.
 (実施例12)
 ジビニルベンゼン(モノマー成分)150重量部と、2,2’-アゾビス(イソ酪酸メチル)(和光純薬工業社製「V-601」)2重量部と、過酸化ベンゾイル(日油社製「ナイパーBW」)2重量部とを混合した。さらに、ラウリル硫酸トリエタノールアミン9重量部と、トルエン(溶媒)50重量部と、イオン交換水1100重量部とを添加し、乳化液を調製した。その後、Silica Porus Glass(SPG)膜(細孔平均径約2μm)を用いて、乳化を行った。
(Example 12)
150 parts by weight of divinylbenzene (monomer component), 2 parts by weight of 2,2'-azobis (methyl isobutyrate) ("V-601" manufactured by Wako Pure Chemical Industries, Ltd.), and benzoyl peroxide ("Niper" manufactured by NOF Corporation). BW ") 2 parts by weight were mixed. Further, 9 parts by weight of triethanolamine lauryl sulfate, 50 parts by weight of toluene (solvent), and 1100 parts by weight of ion-exchanged water were added to prepare an emulsion. Then, emulsification was performed using a Silicona Porus Glass (SPG) membrane (pore average diameter of about 2 μm).
 その後、5重量%ポリビニルアルコール水溶液490重量部を添加し、加熱を開始して85℃で9時間反応させ、重合を行った。重合後の粒子の全量を遠心分離により水洗浄した後、得られた基材粒子を分級操作することで、平均粒子径4.0μm、CV値13.2%の金属粒子形成用基材粒子を得た。得られた金属粒子形成用基材粒子を用いたこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。 After that, 490 parts by weight of a 5 wt% polyvinyl alcohol aqueous solution was added, heating was started, and the mixture was reacted at 85 ° C. for 9 hours to carry out polymerization. After washing the entire amount of the polymerized particles with water by centrifugation, the obtained base particles are classified to obtain metal particle-forming base particles having an average particle diameter of 4.0 μm and a CV value of 13.2%. Obtained. Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the obtained base particles for forming metal particles were used.
 (実施例13)
 実施例12において得られた金属粒子形成用基材粒子をさらに分級操作することにより、平均粒子径4.0μm、CV値8.3%の金属粒子形成用基材粒子を得た。得られた金属粒子形成用基材粒子を用いたこと以外は、実施例1と同様にして、導電性粒子、導電材料及び接続構造体を得た。
(Example 13)
By further classifying the metal particle-forming base particles obtained in Example 12, metal particle-forming base particles having an average particle diameter of 4.0 μm and a CV value of 8.3% were obtained. Conductive particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 1 except that the obtained base particles for forming metal particles were used.
 (実施例14)
 実施例12で得られた金属粒子形成用基材粒子を用いたこと以外は、実施例9と同様にして、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
(Example 14)
Conductive particles with insulating particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 9 except that the base particles for forming metal particles obtained in Example 12 were used.
 (実施例15)
 無電解ニッケルめっきを行った後に無電解金めっきを行ったこと以外は、実施例14と同様にして、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
(Example 15)
Conductive particles with insulating particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 14, except that electroless nickel plating was performed and then electroless gold plating was performed.
 (実施例16)
 無電解ニッケルめっきを行った後に無電解パラジウムめっき行ったこと以外は、実施例14と同様にして、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
(Example 16)
Conductive particles with insulating particles, a conductive material, and a connecting structure were obtained in the same manner as in Example 14, except that electroless nickel plating was performed and then electroless palladium plating was performed.
 (比較例1)
 (1)樹脂粒子(基材粒子)の作製
 種粒子として平均粒子径0.93μmのポリスチレン粒子を用意した。上記ポリスチレン粒子3.9重量部と、イオン交換水500重量部と、ポリビニルアルコールの5重量%水溶液120重量部とを混合し、混合液を調製した。上記混合液を超音波により分散させた後、セパラブルフラスコに入れて、均一に撹拌した。
(Comparative Example 1)
(1) Preparation of Resin Particles (Base Particles) Polystyrene particles having an average particle diameter of 0.93 μm were prepared as seed particles. A mixed solution was prepared by mixing 3.9 parts by weight of the polystyrene particles, 500 parts by weight of ion-exchanged water, and 120 parts by weight of a 5% by weight aqueous solution of polyvinyl alcohol. After the above mixed solution was dispersed by ultrasonic waves, it was placed in a separable flask and stirred uniformly.
 次に、2,2’-アゾビス(イソ酪酸メチル)(和光純薬工業社製「V-601」)2重量部と、過酸化ベンゾイル(日油社製「ナイパーBW」)2重量部とを混合し、さらにジビニルベンゼン150重量部と、ラウリル硫酸トリエタノールアミン9重量部と、エタノール30重量部と、イオン交換水1100重量部とを添加し、乳化液を調製した。 Next, 2 parts by weight of 2,2'-azobis (methyl isobutyrate) ("V-601" manufactured by Wako Pure Chemical Industries, Ltd.) and 2 parts by weight of benzoyl peroxide ("Niper BW" manufactured by Nichiyu Co., Ltd.) were added. After mixing, 150 parts by weight of divinylbenzene, 9 parts by weight of triethanolamine lauryl sulfate, 30 parts by weight of ethanol, and 1100 parts by weight of ion-exchanged water were added to prepare an emulsion.
 セパラブルフラスコ中の上記混合液に、上記乳化液を数回に分けて添加し、12時間撹拌し、種粒子にモノマーを吸収させて、モノマーが膨潤した種粒子を含む懸濁液を得た。 The emulsion was added to the mixture in a separable flask in several portions, and the mixture was stirred for 12 hours to allow the seed particles to absorb the monomer to obtain a suspension containing the seed particles in which the monomer was swollen. ..
 その後、ポリビニルアルコールの5重量%水溶液490重量部を添加し、加熱を開始して85℃で9時間反応させ、樹脂粒子を得た。得られた樹脂粒子は、非多孔質構造(中実構造)を有する。 Then, 490 parts by weight of a 5 wt% aqueous solution of polyvinyl alcohol was added, heating was started, and the mixture was reacted at 85 ° C. for 9 hours to obtain resin particles. The obtained resin particles have a non-porous structure (solid structure).
 (2)導電性粒子の作製
 得られた樹脂粒子を用いたこと以外は、実施例1の「(2)金属粒子(導電性粒子)の作製」に記載の方法と同様にして、無電解ニッケルめっきを行った。この無電解ニッケルめっきを行った粒子を導電性粒子とした。
(2) Preparation of Conductive Particles Electroless nickel is produced in the same manner as in "(2) Preparation of metal particles (conductive particles)" of Example 1 except that the obtained resin particles are used. Plating was performed. The particles subjected to this electroless nickel plating were used as conductive particles.
 (3)導電材料(異方性導電ペースト)及び接続構造体の作製
 得られた導電性粒子を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体を得た。
(3) Preparation of Conductive Material (Anisically Conductive Paste) and Connection Structure A conductive material and a connection structure were obtained in the same manner as in Example 1 except that the obtained conductive particles were used.
 (比較例2)
 (1)金属粒子の作製
 ニッケル粒子(中実構造、平均粒子径4.0μm、粒子径のCV値30%)を10重量部用意した。このニッケル粒子に対して、実施例4と同様にして無電解金めっきを行った。このようにして、非多孔質構造(中実構造)を有する金属粒子を得た。
(Comparative Example 2)
(1) Preparation of Metal Particles 10 parts by weight of nickel particles (solid structure, average particle diameter 4.0 μm, CV value of particle diameter 30%) were prepared. The nickel particles were electroless gold plated in the same manner as in Example 4. In this way, metal particles having a non-porous structure (solid structure) were obtained.
 (2)導電材料(異方性導電ペースト)及び接続構造体の作製
 得られた金属粒子を用いたこと以外は、実施例1と同様にして、導電材料及び接続構造体を得た。
(2) Preparation of Conductive Material (Anisically Conductive Paste) and Connection Structure A conductive material and a connection structure were obtained in the same manner as in Example 1 except that the obtained metal particles were used.
 (評価)
 (1)導電性粒子の比表面積
 得られた導電性粒子について、カンタクローム・インスツルメンツ社製「NOVA4200e」を用いて、窒素の吸着等温線を測定した。測定結果から、BET法に準拠して、導電性粒子の比表面積を算出した。
(evaluation)
(1) Specific Surface Area of Conductive Particles With respect to the obtained conductive particles, the adsorption isotherm of nitrogen was measured using "NOVA4200e" manufactured by Cantachrome Instruments. From the measurement results, the specific surface area of the conductive particles was calculated according to the BET method.
 (2)導電性粒子の比重
 真比重計(島津製作所社製「アキュピックII」)を用いて、得られた導電性粒子の比重を測定した。
(2) Specific Density of Conductive Particles The specific gravity of the obtained conductive particles was measured using a true hydrometer (“Acupic II” manufactured by Shimadzu Corporation).
 (3)導電性粒子の粒子径及び変動係数
 得られた導電性粒子について、粒度分布測定装置(ベックマンコールター社製「Multisizer4」)を用いて、約100000個の樹脂粒子の粒子径を測定し、平均値を算出した。また、導電性粒子の粒子径の測定結果から、導電性粒子の粒子径の変動係数(CV値)を下記式から算出した。
(3) Particle size and coefficient of variation of conductive particles With respect to the obtained conductive particles, the particle size of about 100,000 resin particles was measured using a particle size distribution measuring device (“Multisizer4” manufactured by Beckman Coulter). The average value was calculated. Further, from the measurement result of the particle size of the conductive particles, the coefficient of variation (CV value) of the particle size of the conductive particles was calculated from the following formula.
 CV値(%)=(ρ/Dn)×100
 ρ:変動係数の粒子径の標準偏差
 Dn:変動係数の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of the particle size of the coefficient of variation Dn: Average value of the particle size of the coefficient of variation
 (4)金属粒子100重量%中の樹脂の含有率
 ICP発光分析法により金属粒子中の金属の含有率(重量%)を測定した。下記式により、金属粒子100重量%中の樹脂の含有率を求めた。
(4) Resin content in 100% by weight of metal particles The content of metal in metal particles (% by weight) was measured by ICP emission spectrometry. The resin content in 100% by weight of the metal particles was determined by the following formula.
 樹脂の含有率(重量%)=100-金属粒子中の金属の含有率(重量%) Resin content (% by weight) = 100-Metal content in metal particles (% by weight)
 (5)導電部の厚み
 実施例2~11、14~16、比較例1、2の導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、検査用埋め込み樹脂体を作製した。その検査用埋め込み樹脂体中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出した。
(5) Thickness of Conductive Part Addition to "Technobit 4000" manufactured by Kulzer so that the content of the conductive particles of Examples 2 to 11, 14 to 16 and Comparative Examples 1 and 2 is 30% by weight. It was dispersed to prepare an embedded resin body for inspection. A cross section of the conductive particles was cut out using an ion milling device (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the embedded resin body for inspection.
 そして、電界放射型透過電子顕微鏡(FE-TEM)(日本電子社製「JEM-ARM200F」)を用いて、画像倍率5万倍に設定し、50個の導電性粒子を無作為に選択し、それぞれの導電性粒子の導電部を観察した。各導電性粒子における導電部の厚みを計測し、それを算術平均して導電部の厚みとした。 Then, using a field emission transmission electron microscope (FE-TEM) (“JEM-ARM200F” manufactured by JEOL Ltd.), the image magnification was set to 50,000 times, and 50 conductive particles were randomly selected. The conductive part of each conductive particle was observed. The thickness of the conductive portion of each conductive particle was measured, and the thickness was calculated and averaged to obtain the thickness of the conductive portion.
 (6)接続抵抗値(上下の電極間)
 得られた20個の接続構造体の上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。
(6) Connection resistance value (between the upper and lower electrodes)
The connection resistance between the upper and lower electrodes of the obtained 20 connection structures was measured by the 4-terminal method, respectively. The average value of the connection resistance was calculated. From the relationship of voltage = current x resistance, the connection resistance can be obtained by measuring the voltage when a constant current is passed.
 (7)耐電流特性
 接続構造体の電流値を0.01A~1Aまで変化させたときに電圧値が20V以上となるときの平均電流値を測定した。
(7) Withstand current characteristics The average current value when the voltage value became 20 V or more when the current value of the connected structure was changed from 0.01 A to 1 A was measured.
 [耐電流特性の判定基準]
 ○○:電圧値が20V以上となるときの平均電流値が0.5A以上
 ○:電圧値が20V以上となるときの平均電流値が0.1A以上0.5A未満
 ×:電圧値が20V以上となるときの平均電流値が0.1A未満
[Criteria for determining withstand current characteristics]
○○: Average current value when the voltage value is 20V or more is 0.5A or more ○: Average current value when the voltage value is 20V or more is 0.1A or more and less than 0.5A ×: Voltage value is 20V or more The average current value when becomes less than 0.1A
 (8)絶縁信頼性(横方向に隣り合う電極間)
 上記(6)接続抵抗の評価で得られた20個の接続構造体において、隣接する電極間のリークの有無を、テスターで抵抗値を測定することにより評価した。絶縁信頼性を下記の基準で評価した。
(8) Insulation reliability (between adjacent electrodes in the lateral direction)
In the 20 connection structures obtained in the above (6) Evaluation of connection resistance, the presence or absence of leakage between adjacent electrodes was evaluated by measuring the resistance value with a tester. Insulation reliability was evaluated according to the following criteria.
 [絶縁信頼性の判定基準]
 ○:抵抗値が10Ω以上の接続構造体の個数が15個以上
 ×:抵抗値が10Ω以上の接続構造体の個数が15個未満
[Criteria for insulation reliability]
○: The number of resistance 10 8 Omega more connecting structure 15 or more ×: number of resistance 10 8 Omega more connection structure is less than 15
 結果を下記の表1~3に示す。 The results are shown in Tables 1 to 3 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 1,1A,1B,1C,1D…導電性粒子
 1Ba…突起
 2…金属粒子
 3,3A,3B,3C…導電部
 3Ba,3Ca…突起
 4…芯物質
 5…絶縁性物質
 11…導電性粒子
 21…導電性粒子
 22…導電部
 31C…第1の導電部
 32C…第2の導電部
 31Ca,32Ca…突起
 51…接続構造体
 52…第1の接続対象部材
 52a…第1の電極
 53…第2の接続対象部材
 53a…第2の電極
 54…接続部
1,1A, 1B, 1C, 1D ... Conductive particles 1Ba ... Protrusions 2 ... Metal particles 3,3A, 3B, 3C ... Conductive parts 3Ba, 3Ca ... Protrusions 4 ... Core material 5 ... Insulating material 11 ... Conductive particles 21 ... Conductive particles 22 ... Conductive part 31C ... First conductive part 32C ... Second conductive part 31Ca, 32Ca ... Protrusions 51 ... Connection structure 52 ... First connection target member 52a ... First electrode 53 ... Second Connection target member 53a ... Second electrode 54 ... Connection part

Claims (13)

  1.  多孔質構造を有する金属粒子を備え、
     以下の構成A、又は、以下の構成Bを備える、導電性粒子。
     構成A:導電性粒子の比表面積が10m/g以上である。
     構成B:導電性粒子の比表面積が10m/g未満であり、かつ比重が1g/cm以上8g/cm以下である。
    With metal particles having a porous structure,
    A conductive particle having the following configuration A or the following configuration B.
    Configuration A: The specific surface area of the conductive particles is 10 m 2 / g or more.
    Configuration B: The specific surface area of the conductive particles is less than 10 m 2 / g, and the specific gravity is 1 g / cm 3 or more and 8 g / cm 3 or less.
  2.  前記構成Aを備える、請求項1に記載の導電性粒子。 The conductive particle according to claim 1, further comprising the configuration A.
  3.  前記構成Bを備える、請求項1に記載の導電性粒子。 The conductive particle according to claim 1, further comprising the configuration B.
  4.  前記金属粒子の外表面上に配置された導電部を備える、請求項1~3のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 3, further comprising a conductive portion arranged on the outer surface of the metal particle.
  5.  前記構成Aが備えられる場合に、前記導電部の厚みが50nm未満であり、
     前記構成Bが備えられる場合に、前記導電部の厚みが50nm以上である、請求項4に記載の導電性粒子。
    When the configuration A is provided, the thickness of the conductive portion is less than 50 nm.
    The conductive particle according to claim 4, wherein the conductive portion has a thickness of 50 nm or more when the configuration B is provided.
  6.  前記導電部の外表面上に配置された絶縁性物質をさらに備える、請求項4又は5に記載の導電性粒子。 The conductive particles according to claim 4 or 5, further comprising an insulating substance arranged on the outer surface of the conductive portion.
  7.  前記導電部の外表面に突起を有する、請求項4~6のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 4 to 6, which has protrusions on the outer surface of the conductive portion.
  8.  導電性粒子の粒子径の変動係数が20%以下である、請求項1~7のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 7, wherein the coefficient of variation of the particle size of the conductive particle is 20% or less.
  9.  前記金属粒子が、樹脂を含まないか又は含み、
     前記金属粒子が樹脂を含む場合に、前記金属粒子100重量%中、前記樹脂の含有率が10重量%以下である、請求項1~8のいずれか1項に記載の導電性粒子。
    The metal particles do not contain or contain resin,
    The conductive particle according to any one of claims 1 to 8, wherein when the metal particles contain a resin, the content of the resin is 10% by weight or less in 100% by weight of the metal particles.
  10.  導電性粒子の粒子径が、0.1μm以上1000μm以下である、請求項1~9のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 9, wherein the conductive particle has a particle size of 0.1 μm or more and 1000 μm or less.
  11.  前記金属粒子を構成する金属が、ニッケルを含む、請求項1~10のいずれか1項に記載の導電性粒子。 The conductive particle according to any one of claims 1 to 10, wherein the metal constituting the metal particle contains nickel.
  12.  請求項1~11のいずれか1項に記載の導電性粒子と、
     バインダー樹脂とを含む、導電材料。
    The conductive particles according to any one of claims 1 to 11.
    Conductive material, including binder resin.
  13.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部とを備え、
     前記接続部が、導電性粒子により形成されているか、又は、導電性粒子とバインダー樹脂とを含む導電材料により形成されており、
     前記導電性粒子が、請求項1~11のいずれか1項に記載の導電性粒子であり、
     前記第1の電極と前記第2の電極とが前記導電性粒子により電気的に接続されている、接続構造体。
    A first connection target member having a first electrode on its surface,
    A second connection target member having a second electrode on the surface,
    The first connection target member and the connection portion connecting the second connection target member are provided.
    The connecting portion is formed of conductive particles, or is formed of a conductive material containing the conductive particles and a binder resin.
    The conductive particles according to any one of claims 1 to 11, wherein the conductive particles are the conductive particles.
    A connection structure in which the first electrode and the second electrode are electrically connected by the conductive particles.
PCT/JP2021/010105 2020-03-13 2021-03-12 Conductive particles, conductive material and connection structure WO2021182617A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022506852A JPWO2021182617A1 (en) 2020-03-13 2021-03-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-044192 2020-03-13
JP2020044192 2020-03-13

Publications (1)

Publication Number Publication Date
WO2021182617A1 true WO2021182617A1 (en) 2021-09-16

Family

ID=77670719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010105 WO2021182617A1 (en) 2020-03-13 2021-03-12 Conductive particles, conductive material and connection structure

Country Status (3)

Country Link
JP (1) JPWO2021182617A1 (en)
TW (1) TW202141658A (en)
WO (1) WO2021182617A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143497A (en) * 2002-10-23 2004-05-20 Asahi Kasei Corp Porous metal particle
JP2011057889A (en) * 2009-09-11 2011-03-24 Sekisui Chem Co Ltd Metal-compounded organic resin particle and method for producing metal-compounded organic resin particle
WO2012063747A1 (en) * 2010-11-08 2012-05-18 ナミックス株式会社 Metal particles and manufacturing method for same
JP2013014813A (en) * 2011-07-06 2013-01-24 Murata Mfg Co Ltd Porous metal particle, and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004143497A (en) * 2002-10-23 2004-05-20 Asahi Kasei Corp Porous metal particle
JP2011057889A (en) * 2009-09-11 2011-03-24 Sekisui Chem Co Ltd Metal-compounded organic resin particle and method for producing metal-compounded organic resin particle
WO2012063747A1 (en) * 2010-11-08 2012-05-18 ナミックス株式会社 Metal particles and manufacturing method for same
JP2013014813A (en) * 2011-07-06 2013-01-24 Murata Mfg Co Ltd Porous metal particle, and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2021182617A1 (en) 2021-09-16
TW202141658A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
KR101942602B1 (en) Conductive particles, conductive material, and connection structure
KR20140043305A (en) Conductive particles, conductive material and connection structure
JP6084868B2 (en) Conductive particles, conductive materials, and connection structures
JP7335687B2 (en) Substrate particles, conductive particles, conductive materials and connection structures
WO2019194135A1 (en) Conductive particles having insulating particles, conductive material, and connection structure
JPWO2020175691A1 (en) Conductive particles, conductive materials and connecting structures
KR20190132341A (en) Electroconductive particle, electroconductive material, and bonded structure
JP7463069B2 (en) Conductive particles, conductive material, connection structure, and method for producing connection structure
WO2021182617A1 (en) Conductive particles, conductive material and connection structure
JP5996806B2 (en) Conductive particles, conductive materials, and connection structures
JP2022022293A (en) Conductive particle, conductive material, and connection structure
WO2022092188A1 (en) Electroconductive particles, electroconductive material, and connection structure
JP6200318B2 (en) Conductive particles, conductive materials, and connection structures
JP7180981B2 (en) Conductive particles, conductive materials and connecting structures
JP7271543B2 (en) Conductive particles with insulating particles, conductive materials and connection structures
WO2024034386A1 (en) Electroconductive particles, electroconductive material, and connection structure
JP7328856B2 (en) Conductive particles, conductive materials and connecting structures
WO2022260159A1 (en) Coated particles, coated particle production method, resin composition, and connection structure
WO2022260158A1 (en) Coated particles, resin composition, and connection structure
JP7348839B2 (en) Base material particles, conductive particles, conductive materials and connected structures
JP7132274B2 (en) Conductive particles, conductive materials and connecting structures
WO2022131359A2 (en) Conductive particles, socket, conducting material, and connection structure
WO2019194134A1 (en) Conductive particles having insulating particles, production method for conductive particles having insulating particles, conductive material, and connection structure
JP2020013787A (en) Conductive material and connection structure
JP2024035972A (en) Coated particles, resin compositions and connected structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767980

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022506852

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767980

Country of ref document: EP

Kind code of ref document: A1