WO2021182535A1 - Run-flat tire - Google Patents

Run-flat tire Download PDF

Info

Publication number
WO2021182535A1
WO2021182535A1 PCT/JP2021/009644 JP2021009644W WO2021182535A1 WO 2021182535 A1 WO2021182535 A1 WO 2021182535A1 JP 2021009644 W JP2021009644 W JP 2021009644W WO 2021182535 A1 WO2021182535 A1 WO 2021182535A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
run
flat tire
vulcanization accelerator
tire according
Prior art date
Application number
PCT/JP2021/009644
Other languages
French (fr)
Japanese (ja)
Inventor
駿介 津田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2021182535A1 publication Critical patent/WO2021182535A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J107/00Adhesives based on natural rubber
    • C09J107/02Latex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/04Condensation polymers of aldehydes or ketones with phenols only
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/395Isocyanates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/41Phenol-aldehyde or phenol-ketone resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/693Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural or synthetic rubber, or derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a run-flat tire.
  • organic fibers such as polyester fibers have a high initial elastic modulus and excellent thermal dimensional stability. Therefore, rubber articles such as tires in the form of filaments, cords, cables, cord fabrics, sail cloths, etc.
  • Various adhesive compositions have been proposed in order to improve the adhesiveness between these fibers and rubber, which is extremely useful as a reinforcing material for the above.
  • an adhesive composition for example, an RFL (resorcin formalin latex) adhesive containing resorcin, formalin, rubber latex, etc. is used, and the technique for ensuring adhesive strength by thermally curing the RFL adhesive is known. (See, for example, Patent Documents 1 to 3 and the like).
  • the adhesive composition As for the adhesive composition, a technique using a resorcin formalin resin in which resorcin and formalin are initially condensed (see Patent Documents 4 and 5) and a tire cord made of polyester fiber or the like are pretreated with an epoxy resin. Techniques for improving adhesive strength are known. However, in recent years, the amount of resorcin, which is generally used in the above-mentioned adhesive composition, has been required to be reduced in consideration of the working environment.
  • an object of the present invention is to provide a run-flat tire in which the adhesive composition coated on the organic fiber cord does not contain resorcin, has a low environmental load, and has excellent rolling resistance. To do.
  • the present inventors have a carcass composed of one or more carcass plies extending from a pair of bead portions to a tread portion via a sidewall portion, and a pair of carcass arranged inside the carcass in the tire width direction in the sidewall portion.
  • a run-flat tire including a crescent-shaped side reinforcing rubber and a bead filler disposed on the outer side of the bead core of the sidewall portion in the tire radial direction was examined in order to achieve the above object.
  • specific polyphenols and aldehydes in the adhesive composition for coating the organic fiber cord high adhesive strength can be realized even when resorcin is not used, and further, side reinforcing rubber and bead filler can be realized. It was found that rolling resistance can be improved and run-flat durability can be improved by using a vulcanized rubber having a high proportion of monosulfide bonds and disulfide bonds.
  • the run-flat tire of the present invention is disposed of a carcass composed of one or more carcass plies extending from a pair of bead portions to a tread portion through a sidewall portion and inside the sidewall portion in the tire width direction of the carcus.
  • a run-flat tire comprising a pair of crescent-shaped side reinforcing rubbers and a bead filler disposed on the outer side of the bead core of the sidewall portion in the tire radial direction.
  • the run-flat tire has an organic fiber cord coated with an adhesive composition containing polyphenols and aldehydes.
  • the vulcanized rubber constituting at least one of the side reinforcing rubber and the bead filler is characterized in that the ratio of monosulfide bonds and disulfide bonds in the total sulfide bonds is 65% or more.
  • the vulcanized rubber has a ratio of monosulfide bond and disulfide bond in the total sulfide bond of 75% or more. This is because rolling resistance and run-flat durability can be further improved.
  • the rubber composition used for the former vulcanized rubber contains a rubber component, a filler, a vulcanizing agent, and a vulcanization accelerator, and the vulcanization accelerator is contained.
  • the vulcanization accelerator is contained.
  • the vulcanization accelerator further contains a sulfenamide-based vulcanization accelerator, and the rubber composition contains the thiuram-based vulcanization accelerator. It is more preferable that the mass ratio (a / b) of the amount (a) to the content (b) of the sulfenamide-based vulcanization accelerator is 0.60 to 1.25. This is because both run-flat durability and rolling resistance can be achieved at a higher level.
  • the content of the vulcanization accelerator is smaller than the content of the vulcanization agent. This is because the rolling resistance can be further improved.
  • the thiuram-based vulcanization accelerator contains at least tetrabenzyl thiuram disulfide. This is because the rolling resistance can be improved more reliably.
  • the adhesive composition further contains rubber latex. This is because better adhesion between the organic fiber and the rubber member can be obtained.
  • the adhesive composition further contains an isocyanate compound, and it is more preferable that the isocyanate compound is a (blocked) isocyanate group-containing aromatic compound. This is because better adhesion between the organic fiber and the rubber member can be obtained.
  • the polyphenols preferably have three or more hydroxyl groups. This is because better adhesion between the organic fiber and the rubber member can be obtained.
  • the aldehydes preferably have two or more aldehyde groups. This is because better adhesion between the organic fiber and the rubber member can be obtained.
  • the organic fiber cord is used at least for the carcass ply and / or the belt reinforcing layer. This is because, in addition to having a small impact on the environment, excellent durability can be achieved.
  • the organic fiber cord is preferably a hybrid cord formed by twisting filaments made of two types of organic fibers, and the two types of organic fibers constituting the hybrid cord are used.
  • Rayon, lyocell, polyester, nylon and polykenton are more preferred. This is because it is possible to achieve both low-speed and high-temperature steering stability and high-speed durability at a high level.
  • a run-flat tire in which the adhesive composition coated on the organic fiber cord does not contain resorcin, has a low environmental load, and has excellent rolling resistance. Can be done.
  • the run-flat tire of the present invention includes a tread portion 1, a pair of sidewall portions 2 (only one side is shown) extending inward in the tire radial direction from each side portion of the tread portion 1, and each of them. It is composed of a pair of bead portions 3 (only one side is shown) connected to the inside of the sidewall portion 2 in the tire radial direction.
  • a carcass 4 composed of a bead core 6 embedded in a pair of bead portions 3 and one or more carcass plies from the pair of bead portions 3 to the tread portion 1 via the sidewall portion 2.
  • the carcass 4 which can have a radial structure in which the organic fiber cord extends in the radial direction, has a toroid shape from the bead portion 3 to the tread portion 1 via the sidewall portion 2.
  • the main body portion 4a is moored to the bead portion 3 by the folded-back portion 4b which is connected to the main body portion 4a extending to and folded around the bead core 6.
  • a cord made of an organic fiber or the like is extended in a direction inclined with respect to the tire circumferential direction.
  • a belt layer 50 is provided in which the inner belt layer and the outer belt layer having cords extending in a direction intersecting the cords of the inner belt layer are sequentially arranged toward the outside in the tire radial direction.
  • a belt reinforcing layer 51 composed of a cord substantially extending in the tire circumferential direction can be arranged outside the belt layer 50 in the tire radial direction, but the structure of the belt layer or the like, the arrangement area, the number of layers, etc. Can be changed as needed.
  • the run-flat tire of FIG. 1 is arranged along the inner surface of the carcass 4, and has an inner liner 8 made of a rubber material or the like having excellent air permeability and a tire width of the carcass 4 in the sidewall portion 2. It includes a pair of side reinforcing rubbers 9 (only one side is shown) arranged inside in the direction. As shown in FIG. 1, the side reinforcing rubber 9 has a cross section shown along the tire axial direction, and the thickness is gradually reduced toward the inside and the outside in the tire radial direction, and toward the outside in the tire axial direction. It has a crescent shape that is curved in a convex shape.
  • the side reinforcing rubber 9 By arranging the side reinforcing rubber 9 in this way, even when the internal pressure of the tire is lowered due to a flat tire or the like, the side reinforcing rubber 9 contributes to supporting the weight of the vehicle body, so that it is possible to safely travel a certain distance. become.
  • the run-flat tire of the present invention has an organic fiber cord coated with an adhesive composition containing polyphenols and aldehydes. Since the adhesive composition for coating the organic fiber cord used for carcass ply and belts is composed of those containing specific polyphenols and aldehydes, resorcin is not used in consideration of the burden on the environment. Even in some cases, good adhesiveness can be achieved.
  • the adhesive composition contains polyphenols as a resin component. By including polyphenols in the adhesive composition, the adhesiveness of the resin composition can be enhanced.
  • the polyphenols are water-soluble polyphenols and are not limited as long as they are polyphenols other than resorcin (resorcinol), and the number of aromatic rings and the number of hydroxyl groups can be appropriately selected. can.
  • the polyphenols preferably have two or more hydroxyl groups, and more preferably three or more hydroxyl groups, from the viewpoint of realizing more excellent adhesiveness.
  • the polyphenol or the condensate of the polyphenol is water-soluble by the adhesive composition liquid containing water by containing three or more hydroxyl groups, so that the polyphenol or the condensate of the polyphenol can be uniformly distributed in the adhesive composition, so that better adhesiveness can be obtained. realizable.
  • the polyphenols are polyphenols containing a plurality of (two or more) aromatic rings, two or three hydroxyl groups are present at the ortho, meta or para position, respectively, in those aromatic rings.
  • polyphenols having three or more hydroxyl groups include the following polyphenols.
  • Phloroglucinol Morin (2', 4', 3,5,7-pentahydroxyflavone): Fluorogluside (2,4,6,3,'5'-biphenylpentol):
  • the adhesive composition contains aldehydes as a resin component in addition to the above-mentioned polyphenols. By containing aldehydes in the adhesive composition, high adhesiveness can be realized together with the above-mentioned polyphenols.
  • the aldehydes are not particularly limited and can be appropriately selected depending on the required performance.
  • derivatives of rudehydrs originating from the aldehydes are also included in the range of aldehydes.
  • aldehydes examples include monoaldehydes such as formaldehyde, acetaldehyde, butylaldehyde, achlorine, propionaldehyde, chloral, butylaldehyde, caproaldehyde, and allylaldehyde, and glioxal, malonaldehyde, succinaldehyde, glutaaldehyde, and azi.
  • aldehydes examples include aliphatic dialdehydes such as poaldehyde, aldehydes having an aromatic ring, and dialdehyde starch. These aldehydes may be used alone or in combination of two or more.
  • the aldehydes preferably contain aldehydes having an aromatic ring. This is because better adhesiveness can be obtained.
  • the aldehydes preferably do not contain formaldehyde.
  • "formaldehyde-free" means that the mass content of formaldehyde based on the total mass of aldehydes is less than 0.5% by mass.
  • the aldehydes having an aromatic ring are aromatic aldehydes containing at least one aromatic ring in one molecule and having at least one aldehyde group.
  • the aldehydes having an aromatic ring have a small environmental load, and form a relatively inexpensive resin having excellent mechanical strength, electrical insulation, acid resistance, water resistance, heat resistance, and the like. Can be done.
  • the aldehydes having an aromatic ring preferably have two or more aldehyde groups from the viewpoint of realizing better adhesiveness.
  • the degree of cross-linking of the thermosetting resin can be increased, so that the adhesiveness can be further enhanced.
  • the aldehydes have two or more aldehyde groups, it is more preferable that two or more aldehyde groups are present in one aromatic ring.
  • Each aldehyde group can be present at the ortho, meta or para position in one aromatic ring.
  • aldehydes examples include 1,2-benzenedicarboxardhide, 1,3-benzenedicarboxardhide, 1,4-benzenedicarbaldehyde 1,4-benzenedicarbaldehyde, and 2-hydroxy.
  • Benzene-1,3,5-tricarbaldehyde, a mixture of these compounds and the like can be mentioned.
  • aldehydes having an aromatic ring include not only those having a benzene ring but also heteroaromatic compounds.
  • aldehydes which are the heteroaromatic compounds include aldehydes having a furan ring as shown below. (In the formula, X includes O; R represents -H or -CHO.)
  • aldehydes having a furan ring examples include the following compounds.
  • R is -H or -CHO;
  • R1, R2 and R3 represent alkyl, aryl, arylalkyl, alkylaryl or cycloalkyl groups, respectively.
  • the polyphenols and the aldehydes are condensed, and the mass ratio of the polyphenols to the aldehydes having an aromatic ring (content of aldehydes having an aromatic ring / The content of polyphenols) is preferably 0.1 or more and 3 or less, and more preferably 0.25 or more and 2.5 or less. This is because a condensation reaction occurs between the polyphenols and the aldehydes having an aromatic ring, but the hardness and adhesiveness of the resin, which is the product of the condensation reaction, become more suitable.
  • the total content of the polyphenols and the aldehydes having an aromatic ring in the adhesive composition is preferably 3 to 30% by mass, more preferably 5 to 25% by mass. .. This is because better adhesiveness can be ensured without deteriorating workability and the like.
  • the mass ratio and total content of the polyphenols and the aldehydes having an aromatic ring are the mass (solid content ratio) of the dried product.
  • the adhesive composition preferably further contains an isocyanate compound in addition to the above-mentioned polyphenols and aldehydes.
  • the synergistic effect with polyphenols and aldehydes can greatly enhance the adhesiveness of the adhesive composition.
  • the isocyanate compound is a compound having an action of promoting adhesion to a resin material (for example, a phenol / aldehyde resin obtained by condensing polyphenols and aldehydes) which is an adherend of an adhesive composition.
  • a resin material for example, a phenol / aldehyde resin obtained by condensing polyphenols and aldehydes
  • a compound having an isocyanate group as a polar functional group is a compound having an action of promoting adhesion to a resin material (for example, a phenol / aldehyde resin obtained by condensing polyphenols and aldehydes) which is an adherend of an adhesive composition.
  • the type of the isocyanate compound is not particularly limited, but is preferably a (blocked) isocyanate group-containing aromatic compound from the viewpoint of further improving the adhesiveness.
  • blocked) isocyanate group-containing aromatics are distributed at positions near the interface between the adherend fiber and the adhesive composition, and an adhesion promoting effect is obtained. This action and effect makes it possible to further enhance the adhesion with the organic cord.
  • the (blocked) isocyanate group-containing aromatic compound is an aromatic compound having a (blocked) isocyanate group.
  • (blocked) isocyanate group means a blocked isocyanate group or an isocyanate group, and in addition to the isocyanate group, a blocked isocyanate group generated by reacting with a blocking agent for the isocyanate group and a block for the isocyanate group. It contains an isocyanate group that has not reacted with the agent, or an isocyanate group that is generated by dissociating a blocking agent of a blocked isocyanate group.
  • the (blocked) isocyanate group-containing aromatic compound preferably contains a molecular structure in which aromatics are bonded by an alkylene chain, and more preferably contains a molecular structure in which aromatics are methylene-bonded.
  • the molecular structure in which aromatics are bonded by an alkylene chain include a molecular structure found in diphenylmethane diisocyanate, polyphenylene polymethylene polyisocyanate, or a condensate of phenols and formaldehyde.
  • the (blocked) isocyanate group-containing aromatic compound for example, a compound containing an aromatic polyisocyanate and a heat-dissociable blocking agent, diphenylmethane diisocyanate or an aromatic polyisocyanate is blocked with a heat-dissociable blocking agent.
  • a heat-dissociable blocking agent examples include water-dispersible compounds and aqueous urethane compounds containing the above-mentioned components.
  • the compound containing the aromatic polyisocyanate and the heat-dissociable blocking agent include a blocked isocyanate compound containing diphenylmethane diisocyanate and a known isocyanate blocking agent.
  • a blocked isocyanate compound containing diphenylmethane diisocyanate and a known isocyanate blocking agent As the water-dispersible compound containing a component obtained by blocking the diphenylmethane diisocyanate or aromatic polyisocyanate with a thermal dissociable blocking agent, diphenylmethane diisocyanate or polymethylene polyphenyl polyisocyanate is used as a known blocking agent for blocking isocyanate groups. Examples of the reaction product blocked in.
  • the aqueous urethane compound is an organic polyisocyanate compound ( ⁇ ) containing a molecular structure in which aromatics are bonded by an alkylene chain, preferably a molecular structure in which aromatics are methylene bonded, and a compound having a plurality of active hydrogens ( It is obtained by reacting ⁇ ) with a thermally dissociable blocking agent ( ⁇ ) for an isocyanate group.
  • the aqueous urethane compound (F) not only acts as an adhesive improver due to its flexible molecular structure, but also acts as a flexible cross-linking agent to suppress the fluidization of the adhesive at high temperatures. Have.
  • water-based indicates that it is water-soluble or water-dispersible, and “water-soluble” does not necessarily mean completely water-soluble, but is partially water-soluble or has an adhesive composition. It means a substance that does not undergo phase separation in an aqueous solution of the substance.
  • aqueous urethane compound (F) for example, the following general formula (I):
  • A indicates a residue from which the active hydrogen of the organic polyisocyanate compound ( ⁇ ) containing a molecular structure in which aromatics are bonded by an alkylene chain is eliminated, and Y indicates a thermally dissociable block to the isocyanate group.
  • the active hydrogen of the agent ( ⁇ ) indicates the desorbed residue, Z indicates the residue of the compound ( ⁇ ) desorbed, and X indicates the active hydrogen of the compound ( ⁇ ) having a plurality of active hydrogens. It is a desorbed residue, n is an integer of 2 to 4, and p + m is an integer of 2 to 4 (m ⁇ 0.25)), and an aqueous urethane compound is preferable.
  • Examples of the organic polyisocyanate compound ( ⁇ ) containing a molecular structure in which the aromatics are bonded by an alkylene chain include methylene diphenyl polyisocyanate and polymethylene polyphenyl polyisocyanate.
  • the compound ( ⁇ ) having a plurality of active hydrogens is preferably a compound having 2 to 4 active hydrogens and having an average molecular weight of 5,000 or less.
  • Examples of such compound ( ⁇ ) include (i) polyhydric alcohols having 2 to 4 hydroxyl groups, and (ii) polyhydric amines having 2 to 4 primary and / or secondary amino groups.
  • thermally dissociable blocking agent ( ⁇ ) for the isocyanate group is a compound capable of liberating the isocyanate group by heat treatment, and examples thereof include known isocyanate blocking agents.
  • the compound ( ⁇ ) is a compound having at least one active hydrogen and anionic and / or nonionic hydrophilic groups.
  • Examples of the compound having at least one active hydrogen and an anionic hydrophilic group include aminosulfonic acids such as taurine, N-methyltaurine, N-butyltaurine and sulfanilic acid, and aminocarboxylic acids such as glycine and alanine. Be done.
  • aminosulfonic acids such as taurine, N-methyltaurine, N-butyltaurine and sulfanilic acid
  • aminocarboxylic acids such as glycine and alanine.
  • the content of the isocyanate compound in the adhesive composition is not particularly limited, but is preferably in the range of 5 to 65% by mass from the viewpoint of ensuring more reliable and excellent adhesiveness. More preferably, it is ⁇ 45% by mass.
  • the content of the isocyanate compound is the mass (solid content ratio) of the dried product.
  • the adhesive composition may substantially further contain rubber latex in addition to the polyphenols, aldehydes and isocyanate compounds described above. This is because the adhesiveness with the rubber member can be further improved.
  • the rubber latex is not particularly limited, and in addition to natural rubber (NR), polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR), and ethylene-propylene.
  • Synthetic rubbers such as -diene rubber (EPDM), chloroprene rubber (CR), butyl halide rubber, acryloni little-butadiene rubber (NBR), and vinylpyridine-styrene-butadiene copolymer rubber (Vp) can be used. These rubber components may be used alone or in a blend of two or more.
  • the rubber latex is preferably mixed with the phenols and the aldehydes before the isocyanate compound is blended. Further, the content of the rubber latex in the adhesive composition is preferably 20 to 70% by mass, more preferably 25 to 60% by mass.
  • the method for producing the adhesive composition for an organic fiber cord is not particularly limited, but for example, a method of mixing and aging raw materials such as the polyphenols, the aldehydes, and the rubber latex, or the polyphenols. Examples thereof include a method in which the rubber latex is further added and aged after the aldehydes and the like are mixed and aged. When the isocyanate compound is contained, the rubber latex can be added and aged, and then the isocyanate compound can be added.
  • the composition and content of the polycyclic aromatic hydrocarbon, the aldehydes, the rubber latex, and the isocyanate compound are the same as those described in the above-mentioned adhesive composition.
  • the run-flat tire of the present invention has an organic fiber cord coated with the adhesive composition, and the organic fiber cord coated with the adhesive composition is a rubber member such as a coated rubber. Adhesive to form a rubber-organic fiber cord composite. Since the obtained rubber-organic fiber cord composite uses the adhesive composition, the burden on the environment is small.
  • the rubber-organic fiber cord composite is, for example, as shown in FIG. 1, a belt such as the carcass ply 4, the belt layer 50, the belt reinforcing layer 51, and a flipper. It can be used as a peripheral reinforcing layer (not shown) or the like.
  • the rubber-organic fiber cord composite is preferably used for the carcass ply and / or the belt reinforcing layer. This is because the organic fiber cord coated with the adhesive composition can reduce the load on the environment and more effectively exhibit the excellent adhesiveness between the organic fiber and the rubber member.
  • the adhesive composition may cover at least a part of the organic fiber cord, but the adhesiveness between the rubber and the organic fiber cord can be further improved. It is preferable that the adhesive composition is coated on the entire surface of the organic fiber cord.
  • the material of the organic fiber cord is not particularly limited and can be appropriately selected depending on the intended use.
  • an aliphatic polyamide fiber cord such as polyester, 6-nylon, 6,6-nylon, 4,6-nylon, a polyketone fiber cord, and a synthetic resin represented by an aromatic polyamide fiber cord typified by paraphenylene terephthalamide. It can be used for textile materials.
  • the organic fiber cord is a hybrid cord made by twisting filaments made of two types of organic fibers from the viewpoint of achieving both low-speed and high-temperature steering stability and high-speed durability at a high level. Is preferable.
  • the hybrid cord preferably has a heat shrinkage stress (cN / dtex) at 177 ° C. of 0.20 cN / dtex or more, preferably 0.25 to 0.40 cN /. It is more preferable that it is within the range of dtex.
  • the hybrid cord has a tensile elastic modulus of 60 cN / dtex or less at 1% strain at 25 ° C., particularly 35 to 50 cN / dtex. It is preferable that the tensile elastic modulus at 3% strain at 25 ° C. is 30 cN / dtex or more, particularly 45 to 70 cN / dtex. Twice
  • the two types of organic fibers used in the hybrid cord are not particularly limited, but rayon, lyocell and the like can be mentioned as highly rigid organic fibers, and polyester and the like can be mentioned as organic fibers having a high heat shrinkage rate.
  • rayon, lyocell and the like can be mentioned as highly rigid organic fibers, and polyester and the like can be mentioned as organic fibers having a high heat shrinkage rate.
  • polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polytrimethylene terephthalate (PTT), nylon, polyketone (PK) and the like can be mentioned. More preferably, a combination of rayon or lyocell and nylon can be used.
  • As a method of adjusting the heat shrinkage stress and tensile elastic modulus of the hybrid cord using these organic fibers there is a method of controlling the tension at the time of the dip treatment. For example, the dip treatment is performed while applying a high tension. Therefore, the value of the heat shrinkage stress of the cord can be increased. That is,
  • the vulcanized rubber constituting at least one of the side reinforcing rubber 9 and the bead filler 7 has a monosulfide bond and a disulfide bond ratio of 65% or more in the total sulfide bond. be.
  • ratio of monosulfide bond and disulfide bond in total sulfide bond may be referred to as "mono / disulfide bond amount”.
  • vulcanized rubber having a mono / disulfide bond amount of 65% or more may be referred to as “vulcanized rubber of the present invention” or simply “vulcanized rubber”.
  • the sulfide bond of the vulture rubber is a monosulfide bond (—S—), a disulfide bond (—S—S—), a trisulfide bond (—S—S—S—), depending on the number of sulfur atoms. ..., But in the present specification, a sulfide bond (-[S] n-; 3 ⁇ n) in which three or more sulfur atoms are connected is referred to as a "polysulfide bond". Therefore, the amount of mono / disulfide bond is calculated by the following formula (1).
  • Mono / disulfide bond amount (%) 100 ⁇ [(monosulfide bond amount + disulfide bond amount) / total sulfide bond amount]
  • the total sulfide bond amount is calculated as monosulfide bond amount + disulfide bond amount + polysulfide bond amount.
  • the mono / disulfide bond amount, the monosulfide bond amount, the disulfide bond amount, and the polysulfide bond amount are all amounts with respect to the total sulfide bond amount, and the unit is "%". The method for measuring each binding amount will be described later.
  • the vulcanized rubber constituting at least one of the side reinforcing rubber 9 and the bead filler 7 has a network structure in which the mono / disulfide bond amount is 65% or more. Is forming.
  • the reason why the run-flat tire of the present invention has the above configuration and is excellent in rolling resistance and run-flat durability is not clear, but it is presumed to be due to the following reason.
  • the rubber component forms a three-dimensional network structure by sulfur cross-linking, but the heat resistance may be lowered depending on the bonding state of the network structure.
  • the heat resistance may be lowered depending on the bonding state of the network structure.
  • the rigidity does not change before and after the heat generation of the tire even if the tire has rigidity at a time when it is easily softened at a high temperature (for example, 180 ° C.).
  • a high temperature for example, 180 ° C.
  • the run-flat tire of the present invention uses vulcanized rubber having a mono / disulfide bond amount of 65% or more, and is considered to be difficult to soften at high temperatures. It is considered that the more the vulcan bond becomes a polysulfide bond in which three or more sulfur atoms are connected, the weaker the bond becomes and the more easily the crosslinked network structure for cross-linking the rubber component is broken. It is considered that increasing the bond ratio reduces the mesh breakage of the vulcanized rubber.
  • the vulcanized rubber of the present invention is considered to have a small decrease in mechanical properties. It is presumed that this is because the vulcanized rubber of the present invention is a vulcanized rubber having a rubber composition containing a rubber component and a vulcanization accelerator containing tetrabenzylthium disulfide. As a result, it is considered that the strength of the vulcanized rubber is maintained from before the heat generation to the heat generation and the high temperature. Further, since the vulcanized rubber is hard to soften at a high temperature, it is considered to contribute to the improvement of rolling resistance.
  • the run-flat tire of the present invention is considered to be excellent in rolling resistance and run-flat durability.
  • the vulcanized rubber used for the run-flat tire of the present invention needs to have a mono / disulfide bond amount of 65% or more, but from the above viewpoint, the mono / disulfide bond amount is preferably 75% or more. , 80% or more, more preferably 85% or more.
  • the mono / disulfide bond amount can be calculated by the swelling compression method.
  • the swelling compression method is a method of measuring the amount of each sulfide bond by utilizing the chemical properties of lithium aluminum hydride (LiAlH 4) and propane-2-thiol and piperidine.
  • Lithium aluminum hydride (LiAlH 4 ) selectively cleaves disulfide bonds and polysulfide bonds of vulcanized rubber, but does not cleave monosulfide bonds.
  • propane-2-thiol and piperidine cleave only polysulfide bonds, the ratio of each sulfide bond can be determined by utilizing the difference between these reagents.
  • the monosulfide network chain density is ⁇ M [mol / cm 3 ]
  • the disulfide network chain density is ⁇ D [mol / cm 3 ]
  • the polysulfide network chain density is ⁇ P [mol / cm 3 ]
  • the total sulfide network chain density is ⁇ . It is called T [mol / cm 3].
  • the total sulfide network chain density ( ⁇ T ) can be determined by swelling the vulcanized rubber with the same solvent containing no reagent.
  • ⁇ M and ( ⁇ M + ⁇ D ) are directly measured by the method described later.
  • ⁇ D can be calculated from ( ⁇ M + ⁇ D ) - ⁇ M.
  • ⁇ P can be calculated from ⁇ T ⁇ ( ⁇ M + ⁇ D).
  • the ratio of monosulfide bonds in total sulfide bonds is a value obtained by converting the monosulfide network chain density ( ⁇ M ) into a percentage with the total sulfide network chain density ( ⁇ T) as 100%.
  • the disulfide bond amount is converted from the disulfide network chain density ( ⁇ D )
  • the polysulfide bond amount is converted from the polysulfide network chain density ( ⁇ P ).
  • the measurement method of ⁇ M and ( ⁇ M + ⁇ D ) is as follows. First, a sheet having a thickness of 2 mm is cut out from the vulcanized rubber to obtain a vulcanized rubber sheet. The vulcanized rubber sheet is extracted with acetone for 24 hours and then vacuum dried for 24 hours. The dried vulcanized rubber sheet is cut into 2 mm ⁇ 2 mm squares and molded into a cubic vulcanized rubber sample. Next, the dimensions of the vulcanized rubber sample in the three directions of length, width, and thickness are precisely measured.
  • the solution (T ) is used for measuring the total sulfide bond amount ( ⁇ T) of the vulfurized rubber, the solution (M ) is used for measuring the monosulfide bond amount ( ⁇ M), and the polysulfide bond amount ( ⁇ P ) is measured.
  • the solution (P) is prepared as follows. Benzene (or toluene) and tetrahydrofuran (THF) are dehydrated and deoxidized, and the benzene (or toluene) and tetrahydrofuran (THF) are mixed 1: 1 on a volume basis. The mixed solution is put into a sealable container and replaced with nitrogen to obtain a solution (T).
  • the container containing the solution (T) is referred to as a container (1).
  • Lithium aluminum hydride (LiAlH 4 ) powder is added to the container (1) while substituting with nitrogen, and left to stand for 2 to 3 days. Divide the supernatant of the solution and use this as the solution (M).
  • the container from which the solution (M) is separated is referred to as a container (2).
  • the vulcanized rubber samples whose dimensions have been precisely measured in the three directions are placed in each of the three sealable containers, vacuum-dried for 1 hour, and then replaced with nitrogen. After that, the solution (T), the solution (M), and the solution (P) are put into the container containing the vulcanized rubber sample, sealed, and left at 30 ° C. for 24 hours to prepare the vulcanized rubber sample. Inflate. Next, the vulcanized rubber sample is taken out from each container under a nitrogen atmosphere, washed with the solution (T), and the dimensions of the swollen vulcanized rubber sample are precisely measured.
  • a load of 1 to 60 g is applied stepwise according to the magnitude of the swelling of the vulcanized rubber sample using a thermomechanical analyzer (TMA), and compressive stress and strain are applied. Find the relationship.
  • TMA thermomechanical analyzer
  • the above data is input to the theoretical formulas for swelling compression and network chain density of Fly, and each sulfide network chain density is calculated.
  • the measurement data is input to the formula (2), and the density of each sulfide network chain is calculated.
  • the measurement data is input to the formula (3), and the density of each sulfide network chain is calculated.
  • f represents the stress [N] and is obtained as the compressive stress measured by the thermomechanical analyzer.
  • k represents a constant.
  • T represents the measurement temperature [K].
  • is the sulfide network chain density [mol / cm 3 ]
  • ⁇ M is in the vulcanized rubber sample swollen with the solution (M)
  • ⁇ T is in the vulcanized rubber sample swollen with the solution (T).
  • ⁇ P applies to vulcanized rubber samples swollen with solution (P).
  • V 0 represents the total volume [cm 3 ] of the vulcanized rubber sample before swelling, and can be obtained from the dimensional measurement of the vulcanized rubber sample.
  • L 0 represents the thickness [m] of the vulcanized rubber sample before swelling, and can be obtained from the dimensional measurement of the vulcanized rubber sample.
  • L S0 represents the thickness [m] of the vulcanized rubber sample after swelling, and can be obtained from the dimensional measurement of the vulcanized rubber sample.
  • L S is the thickness after compression or elongation of the vulcanized rubber sample after swelling represent [m], found from the dimension measurements of the vulcanized rubber sample.
  • a 0 represents the cross-sectional area [m 2 ] of the vulcanized rubber sample before swelling, and can be obtained from the dimensional measurement of the vulcanized rubber sample.
  • represents the volume fraction [%] of the filler in the vulcanized rubber sample, and can be obtained from the dimensional measurement of the vulcanized rubber sample and the filler.
  • the rubber composition used for the vulcanized rubber (hereinafter, may be simply referred to as "rubber composition”) will be described.
  • the rubber composition used for the vulcanized rubber is not particularly limited as long as it can satisfy the above-mentioned mono / disulfide bond amount.
  • a rubber composition containing a rubber component, a filler, a vulcanizing agent, and a vulcanization accelerator can be used from the viewpoint of more reliably achieving the above-mentioned mono / disulfide bond amount.
  • the rubber component contained in the rubber composition is not particularly limited, and examples thereof include a diene-based rubber and a non-diene-based rubber.
  • the diene rubber at least one selected from the group consisting of natural rubber (NR) and synthetic diene rubber is used.
  • Specific examples of the synthetic diene rubber include polyisoprene rubber (IR), polybutadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), butadiene-isoprene copolymer rubber (BIR), and styrene-isoprene.
  • Examples thereof include copolymer rubber (SIR) and styrene-butadiene-isoprene copolymer rubber (SBIR).
  • SIR copolymer rubber
  • SBIR styrene-butadiene-isoprene copolymer rubber
  • diene rubber natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber and polybutadiene rubber are preferable, and natural rubber and polybutadiene rubber are more preferable.
  • non-diene rubber examples include ethylene propylene rubber (EPDM (also referred to as EPM)), maleic acid-modified ethylene propylene rubber (M-EPM), butyl rubber (IIR), isobutylene and aromatic vinyl or a diene monomer.
  • EPM ethylene propylene rubber
  • M-EPM maleic acid-modified ethylene propylene rubber
  • IIR butyl rubber
  • isobutylene and aromatic vinyl or a diene monomer.
  • Polymers, acrylic rubber (ACM), ionomers and the like can be mentioned.
  • the rubber component may be used alone or in combination of two or more. Further, the rubber component may be modified or unmodified, and when two or more types of rubber components are used, the unmodified rubber component and the modified rubber component may be mixed and used. .. Further, the rubber component may contain a diene-based rubber or a non-diene-based rubber, but from the viewpoint of obtaining a vulture rubber having a network structure excellent in softening resistance at high temperatures and mechanical strength, the rubber component may contain a diene-based rubber. It preferably contains at least a diene-based rubber, and more preferably consists of a diene-based rubber.
  • the diene-based rubber only one of the natural rubber and the synthetic diene-based rubber may be used, or both may be used, but from the viewpoint of improving the breaking characteristics such as tensile strength and breaking elongation, the diene-based rubber may be used. It is preferable to use natural rubber and synthetic diene rubber together.
  • the rubber component does not contain styrene-butadiene copolymer rubber (the content in the rubber component is 0% by mass). Therefore, from the viewpoint of improving the run flat durability of the tire and improving the low heat generation property, the rubber component is preferably composed of natural rubber, polyisoprene rubber and polybutadiene rubber, and is composed of natural rubber and polybutadiene rubber. Is more preferable. As described above, the rubber component may be modified or unmodified. For example, “consisting of natural rubber and polybutadiene rubber” includes unmodified natural rubber and modified polybutadiene.
  • the rubber component contains natural rubber
  • the ratio of the natural rubber is preferably 10% by mass or more, more preferably 20 to 80% by mass, and 30 to 30 to more, from the viewpoint of further improving the fracture characteristics such as tensile strength and fracture elongation. 70% by mass is more preferable.
  • the rubber component contains a filler, and the rubber component contains a modifying group in order to enhance the interaction with the filler (particularly carbon black).
  • the synthetic rubber it is preferable to include a polybutadiene rubber containing a modifying group (modified polybutadiene rubber).
  • the filler preferably contains at least carbon black
  • the modified polybutadiene rubber is preferably a modified polybutadiene rubber having at least one functional group that interacts with carbon black.
  • the functional group that interacts with carbon black is preferably a functional group that has an affinity for carbon black, and specifically, at least one selected from the group consisting of a tin-containing functional group, a silicon-containing functional group, and a nitrogen-containing functional group. Is preferable.
  • the modified polybutadiene rubber is a modified polybutadiene rubber having at least one functional group selected from the group consisting of a tin-containing functional group, a silicon-containing functional group and a nitrogen-containing functional group
  • the modified polybutadiene rubber is tin. It is preferably modified with a modifier such as a containing compound, a silicon-containing compound or a nitrogen-containing compound, and introduced with a tin-containing functional group, a silicon-containing functional group, a nitrogen-containing functional group or the like.
  • the modifier used in modifying the polymerization active site of the butadiene rubber with a modifier is preferably a nitrogen-containing compound, a silicon-containing compound, or a tin-containing compound.
  • a nitrogen-containing functional group, a silicon-containing functional group or a tin-containing functional group can be introduced by a modification reaction.
  • a modification functional group may be present at any of the polymerization initiation terminal, main chain and polymerization active end of polybutadiene.
  • the nitrogen-containing compound that can be used as the modifier preferably has a substituted or unsubstituted amino group, amide group, imino group, imidazole group, nitrile group or pyridyl group.
  • Suitable nitrogen-containing compounds as the modifier include isocyanate compounds such as diphenylmethane diisocyanate, crude MDI, trimethylhexamethylene diisocyanate, and tolylene diisocyanate, 4- (dimethylamino) benzophenone, 4- (diethylamino) benzophenone, and 4-dimethylamino. Examples thereof include benzilidenaniline, 4-dimethylaminobenzylene butylamine, dimethylimidazolidinone, N-methylpyrrolidone hexamethyleneimine and the like.
  • silicon-containing compound that can be used as the modifier examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and N- (1-methylpropanol) -3- (tri).
  • the modified agent represented is also preferred.
  • the modified polybutadiene rubber obtained by modifying with the modifier of the formula (I) has at least one kind of tin-carbon bond or silicon-carbon bond.
  • R 1 of the formula (I) include a methyl group, an ethyl group, an n-butyl group, a neofil group, a cyclohexyl group, an n-octyl group, a 2-ethylhexyl group and the like.
  • SnCl 4 , R 1 SnCl 3 , R 1 2 SnCl 2 , R 1 3 SnCl, SiCl 4 , R 1 SiCl 3 , R 1 2 SiCl 2 , R. 1 3 SiCl and the like are preferable, SnCl 4 and SiCl 4 are particularly preferred.
  • the modified polybutadiene rubber is preferably a modified polybutadiene rubber having a nitrogen-containing functional group, and more preferably an amine-modified polybutadiene rubber, from the viewpoint of reducing the heat generation of the vulcanized rubber and extending the durable life. preferable.
  • the amine-modified polybutadiene rubber preferably has a primary amino group or a secondary amino group as the amine-based functional group for modification, and is protected by a primary amino group or a removable group protected by a removable group. It is more preferable to introduce a secondary amino group, and it is further preferable to introduce a functional group containing a silicon atom in addition to these amino groups.
  • a primary amino group protected by a removable group also referred to as a protected primary amino group
  • examples of the secondary amino group protected by N, N- (trimethylsilyl) alkylamino group can be mentioned.
  • the N, N- (trimethylsilyl) alkylamino group-containing group may be either an acyclic residue or a cyclic residue.
  • the primary amine-modified polybutadiene rubber modified with a protected primary amino group is more preferable.
  • the functional group containing a silicon atom include a hydrocarbyloxysilyl group and / or a silanol group formed by bonding a hydrocarbyloxy group and / or a hydroxy group to a silicon atom.
  • Such a functional group for modification preferably has an amino group protected by a removable group and a silicon atom having a hydrocarbyloxy group and a hydroxy group bonded to the polymerization terminal of butadiene rubber, more preferably the same polymerization active terminal. It has 1 or more (for example, 1 or 2).
  • the butadiene rubber is preferably one in which at least 10% of the polymer chains have a living property or a pseudo-living property.
  • a polymerization reaction having living property an organic alkali metal compound is used as an initiator, and the conjugated diene compound alone in an organic solvent, a reaction in which a conjugated diene compound and an aromatic vinyl compound are anionically polymerized, or an organic solvent is used.
  • a reaction in which a conjugated diene compound alone using a catalyst containing a lanthanum series rare earth element compound or a conjugated diene compound and an aromatic vinyl compound are coordinated and anion-polymerized can be mentioned.
  • the former is preferable because it can obtain a conjugated diene moiety having a higher vinyl bond content than the latter.
  • the heat resistance of the vulcanized rubber can be improved by increasing the vinyl bond amount.
  • an organic lithium compound is preferable as the organic alkali metal compound used as an initiator of anionic polymerization.
  • the organic lithium compound is not particularly limited, but hydrocarbyl lithium and a lithium amide compound are preferably used.
  • hydrocarbyl lithium When the former hydrocarbyl lithium is used, it has a hydrocarbyl group at the polymerization initiation terminal and the other terminal has polymerization activity.
  • the butadiene rubber which is the part is obtained.
  • the latter lithium amide compound is used, a butadiene rubber having a nitrogen-containing group at the polymerization initiation terminal and the other terminal being a polymerization active site can be obtained.
  • the hydrocarbyllithium preferably has a hydrocarbyl group having 2 to 20 carbon atoms, and is, for example, ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, tert-octyllithium, n-decyl.
  • examples thereof include lithium, phenyllithium, 2-naphthyllithium, 2-butylphenyllithium, 4-phenylbutyllithium, cyclohexyllithium, cycloventillithium, and reaction products of diisopropenylbenzene and butyllithium.
  • n-butyllithium is particularly preferable.
  • examples of the lithium amide compound include lithium hexamethyleneimide, lithium pyrrolidide, lithium piperidide, lithium heptamethyleneimide, lithium dodecamethyleneimide, lithium dimethylamide, lithium diethylamide, lithium dibutylamide, lithium dipropylamide and lithium di.
  • lithium hexamethyleneimide lithium pyrrolidide
  • lithium piperidide lithium heptamethyleneimide
  • lithium dodecamethyleneimide is preferable from the viewpoint of the interaction effect with carbon black and the ability to initiate polymerization.
  • lithium hexamethyleneimide and lithium pyrrolidide are suitable.
  • these lithium amide compounds are prepared in advance from a secondary amine and a lithium compound and can be used for polymerization, but they can also be prepared in a polymerization system (in-Situ).
  • the amount of the polymerization initiator used is preferably selected in the range of 0.2 to 20 mmol per 100 g of the monomer.
  • the method for producing butadiene rubber by anionic polymerization using the organolithium compound as a polymerization initiator is not particularly limited, and a conventionally known method can be used.
  • a conjugated diene compound or a conjugated diene compound and an aromatic vinyl compound in a hydrocarbon-based solvent such as an aliphatic, alicyclic, or aromatic hydrocarbon compound
  • the above-mentioned A butadiene rubber having a desired active terminal can be obtained by anionically polymerizing a lithium compound as a polymerization initiator in the presence of a randomizer to be used, if desired.
  • the organic lithium compound when used as the polymerization initiator, not only the butadiene rubber having an active end but also the conjugated diene compound having an active end is compared with the case where the catalyst containing the above-mentioned lanthanum series rare earth element compound is used. And an aromatic vinyl compound copolymer can also be efficiently obtained.
  • the hydrocarbon solvent is preferably one having 3 to 8 carbon atoms, for example, propane, n-butene, isobutane, n-pentane, isopentane, n-hexane, cyclohexane, propene, 1-butene, isobutene, trans-2.
  • -Butene, cis-2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, benzene, toluene, xylene, ethylbenzene and the like can be mentioned. These may be used alone or in combination of two or more.
  • the monomer concentration in the solvent is preferably 5 to 50% by mass, more preferably 10 to 30% by mass.
  • the content of the aromatic vinyl compound in the charged monomer mixture is preferably in the range of 55% by mass or less.
  • a primary amine-modified polybutadiene rubber is produced by reacting the active terminal of the butadiene rubber having the active terminal obtained as described above with a protected primary amine compound as a modifier.
  • a protected primary amine compound By reacting the protected secondary amine compound, a secondary amine-modified polybutadiene rubber can be produced.
  • the protected primary amine compound an alkoxysilane compound having a protected primary amino group is suitable, and as the protected secondary amine compound, an alkoxysilane compound having a protected secondary amino group. Is preferable.
  • alkoxysilane compound having a protected primary amino group used as a modifier for obtaining the amine-modified polybutadiene rubber examples include N, N-bis (trimethylsilyl) aminopropylmethyldimethoxysilane and 1-trimethylsilyl-2, 2-Dimethoxy-1-aza-2-silacyclopentane, N, N-bis (trimethylsilyl) aminopropyltrimethoxysilane, N, N-bis (trimethylsilyl) aminopropyltriethoxysilane, N, N-bis (trimethylsilyl) Aminopropylmethyldiethoxysilane, N, N-bis (trimethylsilyl) aminoethyltrimethoxysilane, N, N-bis (trimethylsilyl) aminoethyltriethoxysilane, N, N-bis (trimethylsilyl) aminoethylmethyldimethoxysilane and N , N-bis (trimethylsilyl) aminoe
  • Examples of the modifier for obtaining the amine-modified polybutadiene rubber include N-methyl-N-trimethylsilylaminopropyl (methyl) dimethoxysilane, N-methyl-N-trimethylsilylaminopropyl (methyl) diethoxysilane, and N-trimethylsilyl.
  • this modifier may be a partial condensate.
  • the partial condensate refers to a product in which a part (not all) of the modifier SiOR (R is an alkyl group or the like) is formed into a SiOSi bond by condensation.
  • the amount of the modifier used is preferably 0.5 to 200 mmol / kg ⁇ butadiene rubber.
  • the amount used is more preferably 1 to 100 mmol / kg butadiene rubber, and particularly preferably 2 to 50 mmol / kg butadiene rubber.
  • the butadiene rubber means the mass of the butadiene rubber which does not contain additives such as an antiaging agent which is added at the time of production or after production.
  • the method of adding the denaturant is not particularly limited, and examples thereof include a method of adding the denaturant all at once, a method of adding the denaturant in divided portions, a method of adding the denaturant continuously, and the like. preferable.
  • the modifier can be bonded to any of the polymer main chain and side chain other than the polymerization start end and the polymerization end end, but the point that energy loss can be suppressed from the polymer end and the low heat generation property can be improved. Therefore, it is preferably introduced at the polymerization initiation terminal or the polymerization termination terminal.
  • a condensation accelerator in order to promote a condensation reaction involving an alkoxysilane compound having a protected primary amino group used as the modifier.
  • a condensation accelerator include compounds containing a third amino group, or among Group 3, Group 4, Group 5, Group 12, Group 13, Group 14, and Group 15 of the periodic table (long-period type).
  • An organic compound containing one or more of the elements to which any of the above belongs can be used.
  • the condensation accelerator used here can be added before the modification reaction, but is preferably added to the modification reaction system during and after the modification reaction. When added before the denaturation reaction, a direct reaction with the active terminal may occur and a hydrocarbyloxy group having a protected primary amino group at the active terminal may not be introduced.
  • the time for adding the condensation accelerator is usually 5 minutes to 5 hours after the start of the denaturation reaction, preferably 15 minutes to 1 hour after the start of the denaturation reaction.
  • condensation accelerator examples include tetramethoxytitanium, tetraethoxytitanium, tetra-n-propoxytitanium, tetraisopropoxytitanium, tetra-n-butoxytitanium, tetra-n-butoxytitanium oligomer, and tetra-.
  • tris (2-ethylhexanoate) bismus tris (laurate) bismus, tris (naphthenate) bismus, tris (steerate) bismus, tris (oleate) bismus, tris (linolate) bismus, tetraethoxyzirconium, Tetra-n-propoxyzirconium, tetraisopropoxyzirconium, tetra-n-butoxyzirconium, tetra-sec-butoxyzirconium, tetra-tert-butoxyzirconium, tetra (2-ethylhexyl) zirconium, zirconium tributoxystearate, zirconium tributoxy Acetylacetonate, zirconium dibutoxybis (acetylacetonate), zirconium tributoxyethylacetate, zirconium butoxyacetylacetonate bis (ethyla
  • a titanium compound is preferable, and a titanium metal alkoxide, a titanium metal carboxylate, or a titanium metal acetylacetonate complex salt is particularly preferable.
  • the amount of the condensation accelerator used is preferably 0.1 to 10 as the molar ratio of the number of moles of the compound to the total amount of hydrocarbyloxy groups present in the reaction system, preferably 0.5 to 5. Especially preferable.
  • the condensation reaction time is usually about 5 minutes to 10 hours, preferably about 15 minutes to 5 hours. By setting the condensation reaction time within the above range, the condensation reaction can be completed smoothly.
  • the pressure of the reaction system during the condensation reaction is usually 0.01 to 20 MPa, preferably 0.05 to 10 MPa.
  • the content of the modified rubber in the rubber component of the rubber composition is preferably 10 to 90% by mass, preferably 20 to 80%.
  • the mass% is more preferable, and 30 to 70% by mass is further preferable.
  • the rubber composition used for the vulcanized rubber can further contain a filler.
  • a filler By including the filler, the rigidity of the vulcanized rubber can be increased and softening resistance at a high temperature can be obtained.
  • the filler include metal oxides such as alumina, titania and silica, and reinforcing fillers such as clay, calcium carbonate and carbon black, and silica and carbon black are preferably used. Even if the air inside the tire is released and the side reinforcing rubber layer, bead filler, etc. are bent and the vulcanized rubber that constitutes these parts generates heat, low heat generation filling is performed from the viewpoint of suppressing the heat generation of the vulcanized rubber. It is preferable to use an agent.
  • the carbon black preferably has a DBP oil absorption amount (dibutyl phthalate oil absorption amount) of 120 to 180 mL / 100 g.
  • the DBP oil absorption amount is used as an index showing the degree of development (sometimes referred to as “structure”) of the aggregate structure of carbon black, and the larger the DBP oil absorption amount, the larger the aggregate tends to be.
  • carbon black having a DBP oil absorption of 120 mL / 100 g or more is referred to as high-structured carbon black.
  • the DBP oil absorption amount of the carbon black is more preferably 122 to 170 mL / 100 g, and further preferably 125 to 165 mL / 100 g.
  • the carbon black preferably contains carbon black having a large particle size and a high structure.
  • carbon black has a lower structure as the particle size increases.
  • the carbon black has a specific surface area of nitrogen adsorption of 15 to 39 m 2 / g and a DBP oil absorption of 120 to 180 mL / 100 g.
  • the carbon black preferably has a toluene coloring transmittance of 50% or more.
  • the toluene coloring permeability is 50% or more, the tar content present on the carbon black surface, especially the aromatic component, can be suppressed, the rubber component can be sufficiently reinforced, and the wear resistance of the vulcanized rubber can be improved. Can be improved.
  • the toluene coloring transmittance of carbon black is more preferably 60% or more, and further preferably 75% or more.
  • the toluene coloring permeability of carbon black may be 100%, but is usually less than 100%.
  • the toluene coloring permeability is measured by the method described in Item 8B of JIS K 6218: 1997, and is displayed as a percentage with pure toluene.
  • the content of carbon black in the rubber composition is 30 to 30 parts by mass with respect to 100 parts by mass of the rubber component from the viewpoint of further improving the softening resistance of the vulcanized rubber at a high temperature and further improving the run flat durability. It is preferably 100 parts by mass, more preferably 35 to 80 parts by mass, and even more preferably 40 to 70 parts by mass.
  • silica is not particularly limited, and examples thereof include wet silica (hydrous silicic acid), dry silica (silicic anhydride), and colloidal silica.
  • Silica may be a commercially available product, and may be obtained, for example, as NIPSIL AQ (trade name) of Tosoh Silica Co., Ltd., Zeosil 1115MP (trade name) of Rhodia, or VN-3 (trade name) of Evonik Degussa. Can be done.
  • the rubber composition is further used in order to strengthen the bond between the silica and the rubber component to enhance the reinforcing property and to improve the dispersibility of the silica in the rubber composition.
  • Silica coupling agent may be contained.
  • the filler may be used alone or in combination of two or more. Further, the filler may contain either one of carbon black and silica, or may contain both, but it is preferable that the filler contains at least carbon black, and one type of carbon black alone or two or more types of carbon black is used. It is more preferable to mix and use.
  • the content of the filler in the rubber composition is 30 to 30 parts by mass with respect to 100 parts by mass of the rubber component from the viewpoint of further improving rolling resistance and further improving run-flat durability. It is preferably 100 parts by mass, preferably 30 to 100 parts by mass, more preferably 35 to 80 parts by mass, and even more preferably 40 to 70 parts by mass.
  • the rubber composition used for the vulcanized rubber can further contain a vulcanizing agent.
  • the vulcanizing agent is not particularly limited, and sulfur is usually used, and examples thereof include powdered sulfur, precipitated sulfur, colloidal sulfur, surface-treated sulfur, and insoluble sulfur. Further, it is preferable that the total content of the vulcanization accelerator is smaller than the total content of the vulcanization agent in the rubber composition. More specifically, the mass ratio (d / c) of the total content (d) of the vulcanization accelerator described later and the total content (c) of the vulcanization agent is 0.55 to 0. It is preferably .99.
  • the total content of the vulcanization accelerator is made larger than the total content of the vulcanizer, but in the present invention. On the contrary, it is preferable that the total content of the vulcanization accelerator is smaller than the total content of the vulcanization agent. Further, it is sometimes said that a vulcanized rubber using a thiuram-based vulcanization accelerator and having a large proportion of monosulfide bonds and disulfide bonds has excellent heat resistance but a decrease in mechanical strength. However, in the present invention, both softening resistance at high temperature and mechanical strength can be achieved at the same time.
  • the present invention can achieve both softening resistance at high temperature and mechanical strength due to the inclusion of tetrabenzyl thiuram disulfide as a vulcanization accelerator.
  • the mass ratio (d / c) of the total content (d) of the vulcanization accelerator and the total content (c) of the vulcanization agent further improves the run-flat durability of the tire. From the viewpoint of the above, it is more preferably 0.55 to 0.95, further preferably 0.55 to 0.90, and particularly preferably 0.55 to 0.85.
  • the content of the vulcanizing agent in the rubber composition is preferably 2 to 12 parts by mass with respect to 100 parts by mass of the rubber component.
  • the content of the vulcanizing agent in the rubber composition is more preferably 3 to 10 parts by mass and further preferably 4 to 8 parts by mass with respect to 100 parts by mass of the rubber component. preferable.
  • the rubber composition can further contain a vulcanization accelerator, and it is preferable that the vulcanization accelerator contains a sulfur-based vulcanization accelerator.
  • the vulcanized rubber of the present invention has a large amount of mono / disulfide bonds and is excellent in heat resistance of the vulcanized rubber. Conventionally, it has been said that the mechanical strength of vulcanized rubber decreases as the amount of mono / disulfide bond increases, whereas the vulcanized rubber of the present invention maintains mechanical strength and is difficult to soften at high temperatures. It is considered that it is effective that the rubber composition contains a thiuram-based vulcanization accelerator as a vulcanization accelerator.
  • the content (a) of the thiuram-based vulcanization accelerator in the rubber composition is 1.0 to 2 with respect to 100 parts by mass of the rubber component. It is preferably 0.0 parts by mass.
  • the content (a) in the chiuram-based vulcanization-promoting rubber composition is 1.0 part by mass or more with respect to 100 parts by mass of the rubber component, sufficient runflat durability can be obtained, and the content can be obtained.
  • (a) is 2.0 parts by mass or less, rubber burning is unlikely to occur, and a decrease in mechanical strength of the vulcanized rubber can be suppressed.
  • the content (a) of the thiuram-based vulcanization accelerator is 1.2 to 1.8 mass by mass with respect to 100 parts by mass of the rubber component. It is more preferably parts, and even more preferably 1.3 to 1.7 parts by mass.
  • a technique is used in which a small amount of vulcanizing agent is used and a large amount of sulfurum-based vulcanization accelerator is used to increase the ratio of monosulfide bonds and disulfide bonds.
  • a large amount of vulcanizing agent is used. It is also possible to increase the proportion of monosulfide bonds and disulfide bonds by using less sulfur-based vulcanization accelerator.
  • the mass ratio (a / c) of the content (a) of the thiuram-based vulcanization accelerator and the content (c) of the vulcanizing agent is 0.22 to 0.32. Is preferable.
  • the mass ratio (A / c) is in the above range, the vulcanized rubber is excellent in rolling resistance and run-flat durability. From the same viewpoint, the mass ratio (a / c) is more preferably 0.25 to 0.32, and even more preferably 0.27 to 0.32.
  • the thiuram-based vulcanization accelerator is not particularly limited, and can be appropriately selected depending on the required performance of the vulcanized rubber. Examples thereof include tetrabenzyl thiuram disulfide, tetramethyl thiuram disulfide, tetraethyl thiuram disulfide, tetrakis (2-ethylhexyl) thiuram disulfide, tetramethyl thiuram monosulfide, dipentamethylene thiuram tetrasulfide and the like.
  • the sulfurum-based vulcanization accelerator preferably contains at least tetrabenzylthiuram disulfide.
  • the vulcanization accelerator preferably contains a sulfenamide-based vulcanization accelerator in addition to the thiuram-based vulcanization accelerator described above.
  • the sulfenamide-based vulcanization accelerator is a mass ratio (a /) of the content (a) of the thiuram-based vulcanization accelerator and the content (b) of the sulfenamide-based vulcanization accelerator in the rubber composition. It is preferable to use b) in the range of 0.60 to 1.25.
  • the mass ratio (a / b) is 0.60 or more, the softening resistance of the vulcanized rubber at a high temperature can be easily obtained, and the tire has excellent rolling resistance and run-flat durability. Further, when the mass ratio (a / b) is 1.25 or less, the fracture characteristics can be ensured. From the same viewpoint, the mass ratio (a / b) of the content (a) of the thiuram-based vulcanization accelerator and the content (b) of the sulfenamide-based vulcanization accelerator in the rubber composition is 0. It is preferably .62 to 1.22, and more preferably 0.64 to 1.20.
  • the content of the sulfenamide-based vulcanization accelerator in the rubber composition is preferably 0.80 to 3.33 parts by mass with respect to 100 parts by mass of the rubber component.
  • the content of the sulfenamide-based vulcanization accelerator is more preferably 1.00 to 3.00 parts by mass with respect to 100 parts by mass of the rubber component from the viewpoint of further improving rolling resistance and run-flat durability. It is preferably 1.10 to 2.80 parts by mass, and more preferably 1.10 to 2.80 parts by mass.
  • sulfenamide-based sulfide accelerator examples include N-cyclohexyl-2-benzothiazolyl sulfeneamide, N, N-dicyclohexyl-2-benzothiazolyl sulfeneamide, and N-tert-butyl-2-.
  • sulfenamide-based vulcanization accelerators may be used alone or in combination of two or more. Further, among the above-mentioned sulfenamide-based vulcanization accelerators, N-cyclohexyl-from the viewpoint of achieving both softening resistance at high temperature and mechanical strength of the vulcanized rubber and further improving runflat durability. It is preferable to contain at least one of 2-benzothiazolyl sulfenamide and N-tert-butyl-2-benzothiazolyl sulfenamide, and N-tert-butyl-2-benzothiazolyl sulfenamide. It is more preferable to include it.
  • the vulcanization accelerator includes guadinin-based, aldehyde-amine-based, aldehyde-ammonia-based, thiazole-based, thiourea-based, and dithio. It can also further contain a vulcanization accelerator such as a carbamate type or a zantate type.
  • a vulcanization accelerator such as a carbamate type or a zantate type.
  • the vulcanization accelerator is preferably composed of a sulfurum-based vulcanization accelerator and a sulfur amide-based vulcanization accelerator.
  • the rubber composition constituting the vulcanized rubber various chemicals usually used in the rubber industry, for example, a vulcanization retarder and a softening agent, are used as long as the effects of the present invention are not impaired.
  • Anti-aging agent, anti-scorch agent, vulcanization accelerator, zinc oxide (zinc oxide), stearic acid and the like can be contained.
  • the rubber composition contains a vulcanization retarder, it is possible to suppress rubber burning caused by overheating of the rubber composition during preparation of the rubber composition. In addition, the scorch stability of the rubber composition can be improved, and the rubber composition can be easily extruded from the kneader.
  • the rubber composition has a Mooney viscosity (ML 1 + 4 , 130 ° C.) of preferably 40 to 100, more preferably 50 to 90, and even more preferably 60 to 85. When the Mooney viscosity is in the above range, vulcanized rubber physical properties such as fracture resistance can be sufficiently obtained without impairing the manufacturing processability.
  • vulcanization retarder examples include phthalic anhydride, benzoic acid, salicylic acid, N-nitrosodiphenylamine, N- (cyclohexylthio) -phthalimide (CTP), sulfonamide derivative, diphenylurea, and bis (tridecyl) pentaerythritol-. Examples include diphosphite.
  • a commercially available product may be used as the vulcanization retarder, and examples thereof include Monsanto's trade name "Santguard PVI" [N- (cyclohexylthio) -phthalimide].
  • N- (cyclohexylthio) -phthalimide (CTP) is preferably used as the vulcanization retarder.
  • the content of the vulcanization retarder in the rubber composition is determined from the viewpoint of suppressing rubber burning of the rubber composition and improving scorch stability without interfering with the vulcanization reaction. It is preferably 0.1 to 1.0 parts by mass with respect to 100 parts by mass of the rubber component.
  • Examples of the softener include process oils and thermoplastic resins.
  • Examples of the process oil include mineral oil derived from minerals, aromatic oil derived from petroleum, paraffin oil, naphthenic oil, palm oil derived from natural products, and the like.
  • Examples of the thermoplastic resin include resins that soften or become liquid at high temperatures to soften the vulture rubber. Specific examples thereof include C5 type (cyclopentadiene type resin and dicyclopentadiene type resin).
  • C9-based, C5 / C9 mixed-based and other various petroleum-based resins terpene-based resins, terpene-aromatic compound-based resins, rosin-based resins, phenol resins, alkylphenol resins and other tackifiers (not including curing agents) And so on.
  • the anti-aging agent known ones can be used, and the present invention is not particularly limited, and examples thereof include phenol-based anti-aging agents, imidazole-based anti-aging agents, and amine-based anti-aging agents.
  • the blending amount of these anti-aging agents is usually 0.5 to 10 parts by mass, preferably 1 to 5 parts by mass with respect to 100 parts by mass of the rubber component.
  • the rubber composition is obtained by kneading the above-mentioned components.
  • the kneading method may follow the method normally practiced by those skilled in the art.
  • a kneader such as a roll, an internal mixer, or a Banbury rotor can be used.
  • a known molding machine such as an extrusion molding machine or a press machine may be used.
  • a vulcanization retarder may be further added and kneaded at 60 to 130 ° C. using a kneading roll machine or the like.
  • the conditions other than the run-flat tire of the present invention, the above-mentioned organic fiber cord, and at least one of the side reinforcing rubber and the bead filler are not particularly limited and can be manufactured according to a conventional method.
  • a rubber composition containing various chemicals is processed into each member at an unvulcanized stage, and is pasted and molded on a tire molding machine by a usual method to form a raw tire.
  • This raw tire is heated and pressurized in a vulcanizer to obtain a run-flat tire.
  • an inert gas such as nitrogen, argon or helium can be used in addition to normal or adjusted oxygen partial pressure.
  • this polymer solution is extracted with a methanol solution containing 1.3 g of 2,6-di-tert-butyl-p-cresol to stop the polymerization, then desolvated by steam stripping, and rolled at 110 ° C. Dry in to give unmodified polybutadiene.
  • the vinyl bond amount is 30% by mass.
  • the polymer solution obtained as described above was kept at a temperature of 50 ° C. without deactivating the polymerization catalyst, and the primary amino group was protected with N, N-bis (trimethylsilyl) amino.
  • Adhesive Compositions 1 to 4 First, phloroglucinol was dissolved in water at 100 ° C. to obtain a phloroglucinol-containing solution having a concentration of 10 wt%. Then, 33.5 g of a 10 wt% phloroglucinol solution was added at 18.2 g of 4% sodium hydroxide while maintaining at a high temperature and stirred, then diluted with 206 g of water, and 7.5 g of 25% aqueous ammonia was added. added.
  • a polyester cord for tires coated with the adhesive composition of each sample was embedded in an unvulcanized rubber composition containing a natural rubber, a rubber component composed of a styrene-butadiene copolymer, carbon black, and a cross-linking agent.
  • As a test piece it was vulcanized at 160 ° C. for 20 minutes under a pressure of 20 kgf / cm 2.
  • the obtained vulcanized product is cooled to room temperature, the cord is dug up from the vulcanized product, and the drag force (N / cord) when the cord is peeled off from the vulcanized product at a speed of 30 cm / min is set to room temperature of 25 ⁇ 1 ° C. Measured at ambient temperature. The drag force at this time was used as an index for evaluating the adhesiveness.
  • Table 3 shows the drag force at the time of peeling of the test piece when the adhesive compositions 1 to 4 obtained by the measurement were used.
  • Examples 1 to 3, Comparative Examples 1 to 3 Each component is kneaded with the compounding composition shown in Table 4 to prepare a rubber composition. Further, the obtained rubber composition is arranged on the side reinforcing rubber layer 8 and the bead filler 7 shown in FIG. 1, and radial run-flat tires for passenger cars having a tire size of 255 / 65R18, respectively, are manufactured according to a conventional method.
  • the maximum thickness of the side reinforcing rubber layer of each prototype tire is 14.0 mm, and the shapes of the side reinforcing rubber layers are the same.
  • an organic fiber cord having the adhesive composition 4 shown in Table 3 coated on the surface is used for the ply and the belt reinforcing layer 51 of the carcass 4.
  • benzene and tetrahydrofuran are dehydrated and deoxidized, the benzene and tetrahydrofuran (THF) are mixed 1: 1 on a volume basis, and the mixed solution is placed in a sealable container.
  • the container containing the solution (T) was put into the container (1) while the powder of lithium aluminum hydride (LiAlH 4 ) was replaced with nitrogen, and the mixture was allowed to stand for 2 days. Divide the supernatant of the solution and use this as the solution (M).
  • thermomechanical analyzer manufactured by NETZSCH, trade name "TMA 4000SA"
  • TMA 4000SA thermomechanical analyzer
  • the obtained data is input to the above-mentioned formula (2), and the total amount of monosulfide network chain density ( ⁇ M ), monosulfide network chain density and disulfide network chain density ( ⁇ M + ⁇ D ) [mol / cm 3 ] is calculated.
  • the disulfide network chain density ( ⁇ D ) [mol / cm 3 ] is calculated from ( ⁇ M + ⁇ D ) - ⁇ M
  • the polysulfide network chain density ( ⁇ P ) [mol / cm 3 ] is ⁇ T- ( ⁇ M + ⁇ ). Calculated from D).
  • the monosulfide network chain density ( ⁇ M ), the disulfide network chain density ( ⁇ D ), and the polysulfide network chain density ( ⁇ P ) are converted into percentages to obtain mono. Calculate the amount of sulfide bond, the amount of disulfide bond and the amount of polysulfide bond. The obtained result is applied to the above-mentioned formula (1) to calculate the mono / disulfide bond amount.
  • Run-flat durability Using the prototype tires produced in Examples 1 to 3 and Comparative Examples 1 to 3, the tires are run on a drum (speed 80 km / h) in a state where the internal pressure is not filled, until the tires cannot run. Measure the mileage and use it as the run-flat mileage.
  • the run-flat mileage is represented by an index with the run-flat mileage of the run-flat tire of Comparative Example 3 as 100. The larger the index value, the better the run-flat durability of the run-flat tire.
  • Vulcanization accelerator 1 Tetrakis (2-ethylhexyl) thiuram disulfide, manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd., trade name "Noxeller TOT-N”
  • Vulcanization accelerator 2 Tetrabenzyl thiuram disulfide, manufactured by Sanshin Chemical Industry Co., Ltd., trade name "Suncellor TBzTD”
  • the run-flat durability index of all the tires of Examples 1 to 3 in which the mono / disulfide bond amount of the vulcanized rubber is 65% or more exceeds 100. From this, it can be seen that the tire of the present invention has excellent run-flat durability. Further, all of the vulcanized rubbers of Examples 1 to 3 have a low heat generation index of 83 or less, and it can be seen that the tire using such vulcanized rubber does not easily generate heat and has excellent rolling resistance. On the other hand, the vulcanized rubbers of Comparative Examples 1 to 3 have a low heat generation index exceeding 83, and it can be seen that the low heat generation is lower than that of the examples. Further, it can be seen that the tires of Comparative Examples 1 to 3 have a run-flat durability index of 100 or less, and the run-flat durability is also inferior to that of the examples.
  • a run-flat tire in which the adhesive composition coated on the organic fiber cord does not contain resorcin, has a low environmental load, and has excellent rolling resistance. Can be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tires In General (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The purpose of the present invention is to provide a run-flat tire which comprises an organic fiber cord coated with an adhesive composition not containing resorcin and which has excellent rolling resistance in addition to having a low environmental impact. In order to meet this purpose, this run-flat tire is characterized in having an organic fiber cord coated with an adhesive composition containing polyphenols and aldehydes, and in a vulcanized rubber configuring a side reinforcing rubber component 9 and/or a bead filler 8, the ratio of monosulfide bonds and disulfide bonds to all sulfide bonds is greater than or equal to 65%.

Description

ランフラットタイヤRun flat tire
 本発明は、ランフラットタイヤに関するものである。 The present invention relates to a run-flat tire.
 従来、ポリエステル繊維等の有機繊維は、高い初期弾性率や、優れた熱時寸法安定性を有しているため、フィラメント、コード、ケーブル、コード織物、帆布等の形態で、タイヤ等のゴム物品の補強材として極めて有用であり、これらの繊維とゴムとの接着性を改良させるため、種々の接着剤組成物が提案されている。接着剤組成物として、例えば、レゾルシンや、ホルマリン、ゴムラテックス等を含むRFL(レゾルシン・ホルマリン・ラテックス)接着剤を用い、該RFL接着剤を熱硬化させることにより接着力を確保する技術が、知られている(例えば、特許文献1~3等を参照。)。 Conventionally, organic fibers such as polyester fibers have a high initial elastic modulus and excellent thermal dimensional stability. Therefore, rubber articles such as tires in the form of filaments, cords, cables, cord fabrics, sail cloths, etc. Various adhesive compositions have been proposed in order to improve the adhesiveness between these fibers and rubber, which is extremely useful as a reinforcing material for the above. As an adhesive composition, for example, an RFL (resorcin formalin latex) adhesive containing resorcin, formalin, rubber latex, etc. is used, and the technique for ensuring adhesive strength by thermally curing the RFL adhesive is known. (See, for example, Patent Documents 1 to 3 and the like).
 また、接着剤組成物については、レゾルシンとホルマリンを初期縮合させたレゾルシンホルマリン樹脂を用いる技術(特許文献4、5参照)や、エポキシ樹脂でポリエステル繊維等からなるタイヤコードを前処理することにより、接着力の向上を図る技術が知られている。
 ただし、上述した接着剤組成物に一般的用いられているレゾルシンは、近年、作業環境を考慮して、使用量の削減が求められている。
As for the adhesive composition, a technique using a resorcin formalin resin in which resorcin and formalin are initially condensed (see Patent Documents 4 and 5) and a tire cord made of polyester fiber or the like are pretreated with an epoxy resin. Techniques for improving adhesive strength are known.
However, in recent years, the amount of resorcin, which is generally used in the above-mentioned adhesive composition, has been required to be reduced in consideration of the working environment.
 そのため、レゾルシンを含まず、環境への配慮がされた接着剤組成物や、接着方法がいくつか提案されている(例えば、特許文献6を参照。)。
 しかしながら、レゾルシンを含有しない接着剤組成物は、硬化に時間を要するため、生産性や、接着性の点でさらなる改善が求められている。
 また、接着対象の有機繊維としてポリエチレンテレフタラート(PET)繊維を用いる場合、レゾルシンを含有しない接着剤組成物の、接着性能が十分に得られないことが多く、特に改善が望まれていた。これは、熱的寸法性の良いポリエチレンテレフタレートを代表とする主鎖中にエステル結合を有する線状高分子であるポリエステル繊維材料をゴム製品の補強材として使用すると、構造的に緻密であり、また、官能基が少ないポリエステル繊維材料はこのRFL等のラテックスと水溶性フェノールを架橋する原材料を混合させて得られる接着剤組成物では、殆ど接着が得られないためである。
Therefore, some adhesive compositions and bonding methods that do not contain resorcin and are environmentally friendly have been proposed (see, for example, Patent Document 6).
However, since the adhesive composition containing no resorcin requires a long time to cure, further improvement is required in terms of productivity and adhesiveness.
Further, when polyethylene terephthalate (PET) fiber is used as the organic fiber to be adhered, the adhesive performance of the adhesive composition containing no resorcin is often not sufficiently obtained, and improvement has been particularly desired. This is structurally dense when a polyester fiber material, which is a linear polymer having an ester bond in the main chain represented by polyethylene terephthalate having good thermal dimensions, is used as a reinforcing material for rubber products. This is because the polyester fiber material having few functional groups can hardly adhere to the adhesive composition obtained by mixing the latex such as RFL and the raw material for cross-linking the water-soluble phenol.
 また、ランフラットタイヤについては、上述した環境へ配慮した接着剤組成物の要求に加えて、環境負荷の観点やタイヤ寿命を延ばす観点から、転がり抵抗性やランフラット耐久性に優れたタイヤの開発も望まれている。 Regarding run-flat tires, in addition to the above-mentioned requirements for environmentally friendly adhesive compositions, the development of tires with excellent rolling resistance and run-flat durability from the viewpoint of environmental load and extension of tire life. Is also desired.
特開昭58-2370号公報Japanese Unexamined Patent Publication No. 58-2370 特開昭60-92371号公報Japanese Unexamined Patent Publication No. 60-92371 特開昭60-96674号公報Japanese Unexamined Patent Publication No. 60-96674 特開昭63-249784号公報Japanese Unexamined Patent Publication No. 63-2497884 特公昭63-61433号公報Special Publication No. 63-61433 特開2010-255153号公報Japanese Unexamined Patent Publication No. 2010-255153
 そのため、本発明の目的は、有機繊維コードにコーティングされる接着剤組成物に、レゾルシンが含まれず、環境への負荷が少ないことに加えて、優れた転がり抵抗性を有する、ランフラットタイヤを提供することにある。 Therefore, an object of the present invention is to provide a run-flat tire in which the adhesive composition coated on the organic fiber cord does not contain resorcin, has a low environmental load, and has excellent rolling resistance. To do.
 本発明者らは、一対のビード部からサイドウォール部を経てトレッド部に至る一枚以上のカーカスプライからなるカーカスと、前記サイドウォール部において前記カーカスのタイヤ幅方向内側に配設された一対の断面三日月状のサイド補強ゴムと、前記サイドウォール部のビードコアのタイヤ径方向外側に配設されたビードフィラーと、を具える、ランフラットタイヤについて、前記目的を達成するべく検討を行った。
 その結果、有機繊維コードをコーティングする接着剤組成物中に、特定のポリフェノール類及びアルデヒド類を含有させることによって、レゾルシンを用いない場合でも高い接着力を実現できること、さらに、サイド補強ゴムやビードフィラーについて、モノスルフィド結合及びジスルフィド結合の割合が高い加硫ゴムを用いることによって、転がり抵抗性を向上させることができ、ランフラット耐久性についても改善できることを見出した。
The present inventors have a carcass composed of one or more carcass plies extending from a pair of bead portions to a tread portion via a sidewall portion, and a pair of carcass arranged inside the carcass in the tire width direction in the sidewall portion. A run-flat tire including a crescent-shaped side reinforcing rubber and a bead filler disposed on the outer side of the bead core of the sidewall portion in the tire radial direction was examined in order to achieve the above object.
As a result, by including specific polyphenols and aldehydes in the adhesive composition for coating the organic fiber cord, high adhesive strength can be realized even when resorcin is not used, and further, side reinforcing rubber and bead filler can be realized. It was found that rolling resistance can be improved and run-flat durability can be improved by using a vulcanized rubber having a high proportion of monosulfide bonds and disulfide bonds.
 すなわち、本発明のランフラットタイヤは、一対のビード部からサイドウォール部を経てトレッド部に至る一枚以上のカーカスプライからなるカーカスと、前記サイドウォール部において前記カーカスのタイヤ幅方向内側に配設された一対の断面三日月状のサイド補強ゴムと、前記サイドウォール部のビードコアのタイヤ径方向外側に配設されたビードフィラーと、を具える、ランフラットタイヤであって、
 前記ランフラットタイヤは、ポリフェノール類及びアルデヒド類を含む接着剤組成物がコーティングされた、有機繊維コードを有し、
 前記サイド補強ゴム及び前記ビードフィラーのうちの少なくとも1つを構成する加硫ゴムは、全スルフィド結合中のモノスルフィド結合及びジスルフィド結合の割合が65%以上であることを特徴とする。
 前記構成により、有機繊維コードにコーティングされる接着剤組成物に、レゾルシンが含まれず、環境への負荷が少ないことに加えて、優れた転がり抵抗性を実現できる。
That is, the run-flat tire of the present invention is disposed of a carcass composed of one or more carcass plies extending from a pair of bead portions to a tread portion through a sidewall portion and inside the sidewall portion in the tire width direction of the carcus. A run-flat tire comprising a pair of crescent-shaped side reinforcing rubbers and a bead filler disposed on the outer side of the bead core of the sidewall portion in the tire radial direction.
The run-flat tire has an organic fiber cord coated with an adhesive composition containing polyphenols and aldehydes.
The vulcanized rubber constituting at least one of the side reinforcing rubber and the bead filler is characterized in that the ratio of monosulfide bonds and disulfide bonds in the total sulfide bonds is 65% or more.
With the above configuration, the adhesive composition coated on the organic fiber cord does not contain resorcin, has a low environmental load, and can realize excellent rolling resistance.
 また、本発明のランフラットタイヤでは、前記加硫ゴムは、全スルフィド結合中のモノスルフィド結合及びジスルフィド結合の割合が75%以上であることが好ましい。転がり抵抗性及びランフラット耐久性をより改善できるためである。 Further, in the run-flat tire of the present invention, it is preferable that the vulcanized rubber has a ratio of monosulfide bond and disulfide bond in the total sulfide bond of 75% or more. This is because rolling resistance and run-flat durability can be further improved.
 さらに、本発明のランフラットタイヤでは、前前記加硫ゴムに用いられるゴム組成物は、ゴム成分と、充填剤と、加硫剤と、加硫促進剤と、を含み、前記加硫促進剤が、チウラム系加硫促進剤を含有することが好ましい。より確実に転がり抵抗性を改善できるためである。 Further, in the run-flat tire of the present invention, the rubber composition used for the former vulcanized rubber contains a rubber component, a filler, a vulcanizing agent, and a vulcanization accelerator, and the vulcanization accelerator is contained. However, it is preferable to contain a thiuram-based vulcanization accelerator. This is because the rolling resistance can be improved more reliably.
 さらにまた、本発明のランフラットタイヤでは、前記加硫促進剤が、スルフェンアミド系加硫促進剤をさらに含有することがより好ましく、前記ゴム組成物における、前記チウラム系加硫促進剤の含有量(a)と前記スルフェンアミド系加硫促進剤の含有量(b)の質量比(a/b)が0.60~1.25であることがさらに好ましい。ランフラット耐久性及び転がり抵抗性をより高いレベルで両立できるためである。 Furthermore, in the run flat tire of the present invention, it is more preferable that the vulcanization accelerator further contains a sulfenamide-based vulcanization accelerator, and the rubber composition contains the thiuram-based vulcanization accelerator. It is more preferable that the mass ratio (a / b) of the amount (a) to the content (b) of the sulfenamide-based vulcanization accelerator is 0.60 to 1.25. This is because both run-flat durability and rolling resistance can be achieved at a higher level.
 さらに、本発明のランフラットタイヤでは、前記加硫促進剤の含有量が前記加硫剤の含有量よりも少ないことが好ましい。転がり抵抗性をより改善できるためである。 Further, in the run-flat tire of the present invention, it is preferable that the content of the vulcanization accelerator is smaller than the content of the vulcanization agent. This is because the rolling resistance can be further improved.
 さらにまた、本発明のランフラットタイヤでは、前記チウラム系加硫促進剤が、少なくともテトラベンジルチウラムジスルフィドを含むことが好ましい。より確実に、転がり抵抗性を改善できるためである。 Furthermore, in the run-flat tire of the present invention, it is preferable that the thiuram-based vulcanization accelerator contains at least tetrabenzyl thiuram disulfide. This is because the rolling resistance can be improved more reliably.
 また、本発明のランフラットタイヤでは、前記接着剤組成物が、さらにゴムラテックスを含むことが好ましい。有機繊維とゴム部材とのより優れた接着性が得られるためである。 Further, in the run-flat tire of the present invention, it is preferable that the adhesive composition further contains rubber latex. This is because better adhesion between the organic fiber and the rubber member can be obtained.
 さらにまた、本発明のランフラットタイヤでは、前記接着剤組成物が、さらにイソシアネート化合物を含むことが好ましく、該イソシアネート化合物が、(ブロックド)イソシアネート基含有芳香族化合物であることがより好ましい。有機繊維とゴム部材とのより優れた接着性が得られるためである。 Furthermore, in the run-flat tire of the present invention, it is preferable that the adhesive composition further contains an isocyanate compound, and it is more preferable that the isocyanate compound is a (blocked) isocyanate group-containing aromatic compound. This is because better adhesion between the organic fiber and the rubber member can be obtained.
 また、本発明のランフラットタイヤでは、前記ポリフェノール類は、3つ以上の水酸基を有することが好ましい。有機繊維とゴム部材とのより優れた接着性が得られるためである。 Further, in the run-flat tire of the present invention, the polyphenols preferably have three or more hydroxyl groups. This is because better adhesion between the organic fiber and the rubber member can be obtained.
 さらに、本発明のランフラットタイヤでは前記アルデヒド類は、2つ以上のアルデヒド基を有することが好ましい。有機繊維とゴム部材とのより優れた接着性が得られるためである。 Further, in the run-flat tire of the present invention, the aldehydes preferably have two or more aldehyde groups. This is because better adhesion between the organic fiber and the rubber member can be obtained.
 また、本発明のランフラットタイヤでは、前記有機繊維コードが、少なくともカーカスプライ及び/又はベルト補強層に用いられることが好ましい。環境への負荷が少ないことに加えて、優れた耐久性を実現できるためである。 Further, in the run-flat tire of the present invention, it is preferable that the organic fiber cord is used at least for the carcass ply and / or the belt reinforcing layer. This is because, in addition to having a small impact on the environment, excellent durability can be achieved.
 さらにまた、本発明のランフラットタイヤでは、前記有機繊維コードが、2種の有機繊維からなるフィラメントを撚り合わせてなるハイブリッドコードであることが好ましく、該ハイブリッドコードを構成する2種の有機繊維が、レーヨン、リヨセル、ポリエステル、ナイロン及びポリケントンからなる群より選択されることをことがより好ましい。低速及び高温時の操縦安定性と、高速耐久性とを高いレベルで両立できるためである。 Furthermore, in the run-flat tire of the present invention, the organic fiber cord is preferably a hybrid cord formed by twisting filaments made of two types of organic fibers, and the two types of organic fibers constituting the hybrid cord are used. , Rayon, lyocell, polyester, nylon and polykenton are more preferred. This is because it is possible to achieve both low-speed and high-temperature steering stability and high-speed durability at a high level.
 本発明によれば、有機繊維コードにコーティングされる接着剤組成物に、レゾルシンが含まれず、環境への負荷が少ないことに加えて、優れた転がり抵抗性を有する、ランフラットタイヤを提供することができる。 According to the present invention, there is provided a run-flat tire in which the adhesive composition coated on the organic fiber cord does not contain resorcin, has a low environmental load, and has excellent rolling resistance. Can be done.
本発明のランフラットタイヤの一実施形態のタイヤ半部について、タイヤ軸方向に沿った断面である。It is a cross section of the tire half portion of one embodiment of the run-flat tire of the present invention along the tire axial direction.
 以下、必要に応じて図面を参照時ながら、本発明のランフラットタイヤの実施形態について説明する。
 本発明のランフラットタイヤは、図1に示すように、トレッド部1、そのトレッド部1のそれぞれの側部からタイヤ半径方向内側に延びる一対のサイドウォール部2(片側のみ図示)、及び、各サイドウォール部2のタイヤ半径方向内側に連なる一対のビード部3(片側のみ図示)からなる。
Hereinafter, embodiments of the run-flat tire of the present invention will be described with reference to the drawings as necessary.
As shown in FIG. 1, the run-flat tire of the present invention includes a tread portion 1, a pair of sidewall portions 2 (only one side is shown) extending inward in the tire radial direction from each side portion of the tread portion 1, and each of them. It is composed of a pair of bead portions 3 (only one side is shown) connected to the inside of the sidewall portion 2 in the tire radial direction.
 また、図1に示すランフラットタイヤでは、一対のビード部3に埋設したビードコア6と、一対のビード部3からサイドウォール部2を経てトレッド部1に至る一枚以上のカーカスプライからなるカーカス4と、ビードコア6のタイヤ径方向外側にされたビードフィラー7と、カーカス4のクラウン域のタイヤ半径方向外側に配設したベルト5と、ベルト5のタイヤ半径方向外側に配設されて、トレッド路面を形成するトレッドゴム11とを具える。
 なお、有機繊維コードをラジアル方向に延在させてなるラジアル構造とすることができるカーカス4は、図1に示すランフラットタイヤでは、ビード部3からサイドウォール部2を経てトレッド部1までトロイド状に延びる本体部分4aに連なって、ビードコア6の周りに折り返した折り返し部分4bにより、該本体部分4aをビード部3に係留してなるものである。
Further, in the run-flat tire shown in FIG. 1, a carcass 4 composed of a bead core 6 embedded in a pair of bead portions 3 and one or more carcass plies from the pair of bead portions 3 to the tread portion 1 via the sidewall portion 2. The bead filler 7 on the outer side of the bead core 6 in the tire radial direction, the belt 5 arranged on the outer side in the tire radial direction of the crown region of the carcass 4, and the tread road surface arranged on the outer side in the tire radial direction of the belt 5. It is provided with a tread rubber 11 for forming a tire.
In the run-flat tire shown in FIG. 1, the carcass 4, which can have a radial structure in which the organic fiber cord extends in the radial direction, has a toroid shape from the bead portion 3 to the tread portion 1 via the sidewall portion 2. The main body portion 4a is moored to the bead portion 3 by the folded-back portion 4b which is connected to the main body portion 4a extending to and folded around the bead core 6.
 またここで、前記カーカス4のタイヤ半径方向外側に位置するベルト5は、例えば、図1に示すように、有機繊維等からなるコードを、タイヤ周方向に対して傾斜する向きに延在させてなる内側ベルト層及びその内側ベルト層のコードと交差する向きにコードを延在させてなる外側ベルト層のそれぞれをタイヤ半径方向の外側に向けて順次に配置してなるベルト層50を設けるとともに、ベルト層50のタイヤ半径方向外側に、実質的にタイヤ周方向に延びるコードからなるベルト補強層51を配置して構成することができるが、ベルト層等の構成、配設域、及び層数等は、必要に応じて適宜変更することができる。 Further, here, in the belt 5 located outside the tire radial direction of the carcass 4, for example, as shown in FIG. 1, a cord made of an organic fiber or the like is extended in a direction inclined with respect to the tire circumferential direction. A belt layer 50 is provided in which the inner belt layer and the outer belt layer having cords extending in a direction intersecting the cords of the inner belt layer are sequentially arranged toward the outside in the tire radial direction. A belt reinforcing layer 51 composed of a cord substantially extending in the tire circumferential direction can be arranged outside the belt layer 50 in the tire radial direction, but the structure of the belt layer or the like, the arrangement area, the number of layers, etc. Can be changed as needed.
 さらに、図1のランフラットタイヤは、カーカス4の内面に沿って配置されて、空気不透過性に優れるゴム材料等からなるインナーライナー8と、前記サイドウォール部2において、前記カーカス4のタイヤ幅方向内側に配設された一対のサイド補強ゴム9(片側のみ図示)とを具える。
 図1の示すところでは、前記サイド補強ゴム9は、タイヤ軸方向に沿う図示の断面で、タイヤ半径方向の内側及び外側のそれぞれに向けて厚みを漸減させるとともに、タイヤ軸方向の外側に向けて凸状に湾曲させてなる三日月状をなしている。
 このようなサイド補強ゴム9の配設により、パンク等によってタイヤの内圧が低下した状態でも、サイド補強ゴム9が車体重量の支持に寄与することで、ある程度の距離を安全に走行することが可能になる。
Further, the run-flat tire of FIG. 1 is arranged along the inner surface of the carcass 4, and has an inner liner 8 made of a rubber material or the like having excellent air permeability and a tire width of the carcass 4 in the sidewall portion 2. It includes a pair of side reinforcing rubbers 9 (only one side is shown) arranged inside in the direction.
As shown in FIG. 1, the side reinforcing rubber 9 has a cross section shown along the tire axial direction, and the thickness is gradually reduced toward the inside and the outside in the tire radial direction, and toward the outside in the tire axial direction. It has a crescent shape that is curved in a convex shape.
By arranging the side reinforcing rubber 9 in this way, even when the internal pressure of the tire is lowered due to a flat tire or the like, the side reinforcing rubber 9 contributes to supporting the weight of the vehicle body, so that it is possible to safely travel a certain distance. become.
<接着剤組成物がコーティングされた有機繊維コード>
 そして、本発明のランフラットタイヤでは、ポリフェノール類及びアルデヒド類を含む接着剤組成物がコーティングされた、有機繊維コードを有する。
 カーカスプライや、ベルト等に用いられる有機繊維コードをコーティングする接着剤組成物が、特定のポリフェノール類及びアルデヒド類を含有するものから構成することで、環境への負荷を考慮してレゾルシンを用いない場合であっても、良好な接着性を実現できる。
<Organic fiber cord coated with adhesive composition>
The run-flat tire of the present invention has an organic fiber cord coated with an adhesive composition containing polyphenols and aldehydes.
Since the adhesive composition for coating the organic fiber cord used for carcass ply and belts is composed of those containing specific polyphenols and aldehydes, resorcin is not used in consideration of the burden on the environment. Even in some cases, good adhesiveness can be achieved.
(ポリフェノール類)
 前記接着剤組成物は、樹脂成分としてポリフェノール類を含む。接着剤組成物中にポリフェノール類を含むことで、樹脂組成物の接着性を高めることができる。
 ここで、前記ポリフェノール類については、水溶性のポリフェノール類であり、レゾルシン(レゾルシノール)以外のポリフェノールであれば限定はされず、芳香族環の数や、水酸基の数についても、適宜選択することができる。
(Polyphenols)
The adhesive composition contains polyphenols as a resin component. By including polyphenols in the adhesive composition, the adhesiveness of the resin composition can be enhanced.
Here, the polyphenols are water-soluble polyphenols and are not limited as long as they are polyphenols other than resorcin (resorcinol), and the number of aromatic rings and the number of hydroxyl groups can be appropriately selected. can.
 また、前記ポリフェノール類は、より優れた接着性を実現する観点からは、2個以上の水酸基を有することが好ましく、3つ以上の水酸基を有することがより好ましい。3つ以上の水酸基を含むことにより水分を含む接着剤組成物液により前記ポリフェノールあるいは前記ポリフェノールの縮合物は水溶することで接着剤組成物内に均一して分布できるので、より優れた接着性を実現できる。
 さらに、前記ポリフェノール類が、複数個(2個以上)の芳香環を含むポリフェノールの場合、それらの芳香環では、各々、2個又は3個の水酸基がオルト、メタ又はパラ位に存在する。
Further, the polyphenols preferably have two or more hydroxyl groups, and more preferably three or more hydroxyl groups, from the viewpoint of realizing more excellent adhesiveness. The polyphenol or the condensate of the polyphenol is water-soluble by the adhesive composition liquid containing water by containing three or more hydroxyl groups, so that the polyphenol or the condensate of the polyphenol can be uniformly distributed in the adhesive composition, so that better adhesiveness can be obtained. realizable.
Further, when the polyphenols are polyphenols containing a plurality of (two or more) aromatic rings, two or three hydroxyl groups are present at the ortho, meta or para position, respectively, in those aromatic rings.
 上述した3つ以上の水酸基を有するポリフェノール類としては、例えば以下に示すポリフェノール類が挙げられる。
フロログルシノール:
Figure JPOXMLDOC01-appb-C000001
モリン(2’,4’,3,5,7-ペンタヒドロキシフラボン):
Figure JPOXMLDOC01-appb-C000002
フロログルシド(2,4,6,3,’5’-ビフェニルペントール):
Figure JPOXMLDOC01-appb-C000003
Examples of the above-mentioned polyphenols having three or more hydroxyl groups include the following polyphenols.
Phloroglucinol:
Figure JPOXMLDOC01-appb-C000001
Morin (2', 4', 3,5,7-pentahydroxyflavone):
Figure JPOXMLDOC01-appb-C000002
Fluorogluside (2,4,6,3,'5'-biphenylpentol):
Figure JPOXMLDOC01-appb-C000003
(アルデヒド類)
 前記接着剤組成物は、上述したポリフェノール類に加えて、樹脂成分としてアルデヒド類を含む。接着剤組成物中にアルデヒド類を含有することで、上述したポリフェノール類と共に高い接着性を実現できる。
 ここで、前記アルデヒド類については、特に限定はされず、要求される性能に応じて、適宜選択することができる。なお、本発明では、前記アルデヒド類が発生源であるルデヒド類の誘導体も、アルデヒド類の範囲に含まれる。
(Aldehydes)
The adhesive composition contains aldehydes as a resin component in addition to the above-mentioned polyphenols. By containing aldehydes in the adhesive composition, high adhesiveness can be realized together with the above-mentioned polyphenols.
Here, the aldehydes are not particularly limited and can be appropriately selected depending on the required performance. In the present invention, derivatives of rudehydrs originating from the aldehydes are also included in the range of aldehydes.
 前記アルデヒド類としては、例えば、ホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、アクロレイン、プロピオンアルデヒド、クロラール、ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド等のモノアルデヒドや、グリオキザール、マロンアルデヒド、スクシンアルデヒド、グルタルアルデヒド、アジポアルデヒド等の脂肪族ジアルデヒド類、芳香族環を有するアルデヒド、ジアルデヒドデンプンなどが挙げられる。これらのアルデヒド類は、一種類を用いても、複数種を混合して用いてもよい。
 これらの中でも、前記アルデヒド類は、芳香族環を有するアルデヒド類を含有することが好ましい。より優れた接着性を得ることができるためである。
 なお、前記アルデヒド類については、ホルムアルデヒドを含まないことが好ましい。なお、本発明において「ホルムアルデヒドを含まない」とは、アルデヒド類の総質量に基づくホルムアルデヒドの質量含有量が0.5質量%未満であることを意味する。
Examples of the aldehydes include monoaldehydes such as formaldehyde, acetaldehyde, butylaldehyde, achlorine, propionaldehyde, chloral, butylaldehyde, caproaldehyde, and allylaldehyde, and glioxal, malonaldehyde, succinaldehyde, glutaaldehyde, and azi. Examples thereof include aliphatic dialdehydes such as poaldehyde, aldehydes having an aromatic ring, and dialdehyde starch. These aldehydes may be used alone or in combination of two or more.
Among these, the aldehydes preferably contain aldehydes having an aromatic ring. This is because better adhesiveness can be obtained.
The aldehydes preferably do not contain formaldehyde. In the present invention, "formaldehyde-free" means that the mass content of formaldehyde based on the total mass of aldehydes is less than 0.5% by mass.
 また、前記芳香環を有するアルデヒド類は、1分子内に、少なくとも1つの芳香環を含み、少なくとも 1つのアルデヒド基を有する芳香族アルデヒドである。前記芳香環を有するアルデヒド類は、環境への負荷が少なく、また、優れた機械的強度、電気絶縁性、耐酸性、耐水性、耐熱性等を備えた、比較的安価な樹脂を形成することができる。 Further, the aldehydes having an aromatic ring are aromatic aldehydes containing at least one aromatic ring in one molecule and having at least one aldehyde group. The aldehydes having an aromatic ring have a small environmental load, and form a relatively inexpensive resin having excellent mechanical strength, electrical insulation, acid resistance, water resistance, heat resistance, and the like. Can be done.
 また、前記芳香族環を有するアルデヒド類は、より優れた接着性を実現する観点からは、2つ以上のアルデヒド基を有することが好ましい。前記アルデヒド類が、複数のアルデヒド基により架橋し、縮合することによって、熱硬化性樹脂の架橋度を高くすることができるため、接着性をより高めることができる。
 さらに、前記アルデヒド類が、2つ以上のアルデヒド基を有する場合、1つの芳香族環において、2つ以上のアルデヒド基が存在することがより好ましい。なお、各アルデヒド基は、1つの芳香族環において、オルト、メタ又はパラの位置に存在することができる。
Further, the aldehydes having an aromatic ring preferably have two or more aldehyde groups from the viewpoint of realizing better adhesiveness. By cross-linking and condensing the aldehydes with a plurality of aldehyde groups, the degree of cross-linking of the thermosetting resin can be increased, so that the adhesiveness can be further enhanced.
Further, when the aldehydes have two or more aldehyde groups, it is more preferable that two or more aldehyde groups are present in one aromatic ring. Each aldehyde group can be present at the ortho, meta or para position in one aromatic ring.
 このようなアルデヒド類としては、例えば、1,2-ベンゼンジカルボキサルデヒド、1,3-ベンゼンジカルボキサルデヒド、1,4-ベンゼンジカルボアルデヒド1,4-ベンゼンジカルボアルデヒド、2-ヒドロキシベンゼン-1,3,5-トリカルボアルデヒド、これらの化合物の混合物等が挙げられる。 Examples of such aldehydes include 1,2-benzenedicarboxardhide, 1,3-benzenedicarboxardhide, 1,4-benzenedicarbaldehyde 1,4-benzenedicarbaldehyde, and 2-hydroxy. Benzene-1,3,5-tricarbaldehyde, a mixture of these compounds and the like can be mentioned.
 これらの中でも、より優れた接着性を実現できる観点から、前記芳香族環を有するアルデヒド類として、1,4-ベンゼンジカルボアルデヒドを少なくとも用いることが好ましい。
Figure JPOXMLDOC01-appb-C000004
Among these, from the viewpoint of achieving better adhesiveness, it is preferable to use at least 1,4-benzenedicarbaldehyde as the aldehydes having an aromatic ring.
Figure JPOXMLDOC01-appb-C000004
 また、前記芳香族環を有するアルデヒド類については、ベンゼン環を有するものだけでなく、複素芳香族化合物も含まれる。
 前記複素芳香族化合物であるアルデヒド類としては、例えば、以下に示すようなフラン環を有するアルデヒド類が挙げられる。
Figure JPOXMLDOC01-appb-C000005
(式中、Xは、Oを含み;Rは、-Hまたは-CHOを示す。)
Further, the aldehydes having an aromatic ring include not only those having a benzene ring but also heteroaromatic compounds.
Examples of the aldehydes which are the heteroaromatic compounds include aldehydes having a furan ring as shown below.
Figure JPOXMLDOC01-appb-C000005
(In the formula, X includes O; R represents -H or -CHO.)
 前記のフラン環を有するアルデヒド類として、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは、-Hまたは-CHO;R1、R2及びR3は、それぞれ、アルキル、アリール、アリールアルキル、アルキルアリール又はシクロアルキル基を示す。)
Examples of the aldehydes having a furan ring include the following compounds.
Figure JPOXMLDOC01-appb-C000006
(In the formula, R is -H or -CHO; R1, R2 and R3 represent alkyl, aryl, arylalkyl, alkylaryl or cycloalkyl groups, respectively.)
 なお、前記接着剤組成物では、前記ポリフェノール類及び前記アルデヒド類が縮合された状態であり、前記ポリフェノール類と前記芳香環を有するアルデヒド類との質量比(芳香環を有するアルデヒド類の含有量/ポリフェノール類の含有量)は、0.1以上、3以下であることが好ましく、0.25以上、2.5以下であることがより好ましい。前記ポリフェノール類と前記芳香環を有するアルデヒド類との間では、縮合反応が起こるが、その生成物である樹脂の硬度、接着性がより適したものになるからである。  In the adhesive composition, the polyphenols and the aldehydes are condensed, and the mass ratio of the polyphenols to the aldehydes having an aromatic ring (content of aldehydes having an aromatic ring / The content of polyphenols) is preferably 0.1 or more and 3 or less, and more preferably 0.25 or more and 2.5 or less. This is because a condensation reaction occurs between the polyphenols and the aldehydes having an aromatic ring, but the hardness and adhesiveness of the resin, which is the product of the condensation reaction, become more suitable.
 また、前記接着剤組成物中の、前記ポリフェノール類及び前記芳香族環を有するアルデヒド類の合計含有量は、3~30質量%であることが好ましく、5~25質量%であることがより好ましい。作業性等を悪化させることなく、より優れた接着性を確保できるためである。
 なお、前記ポリフェノール類及び前記芳香族環を有するアルデヒド類の質量比並びに合計含有量は、乾燥物の質量(固形分比)である。
The total content of the polyphenols and the aldehydes having an aromatic ring in the adhesive composition is preferably 3 to 30% by mass, more preferably 5 to 25% by mass. .. This is because better adhesiveness can be ensured without deteriorating workability and the like.
The mass ratio and total content of the polyphenols and the aldehydes having an aromatic ring are the mass (solid content ratio) of the dried product.
(イソシアネート化合物)
 前記接着剤組成物は、上述したポリフェノール類及びアルデヒド類に加えて、イソシアネート化合物をさらに含むことが好ましい。ポリフェノール類及びアルデヒド類との相乗効果によって、接着剤組成物の接着性を大きく高めることができる。
(Isocyanate compound)
The adhesive composition preferably further contains an isocyanate compound in addition to the above-mentioned polyphenols and aldehydes. The synergistic effect with polyphenols and aldehydes can greatly enhance the adhesiveness of the adhesive composition.
 ここで、前記イソシアネート化合物は、接着剤組成物の被着体である樹脂材料(例えば、ポリフェノール類及びアルデヒド類を縮合させたフェノール/アルデヒド樹脂) への接着を促進させる作用を有する化合物であって、極性官能基としてイソシアネート基を有する化合物である。 Here, the isocyanate compound is a compound having an action of promoting adhesion to a resin material (for example, a phenol / aldehyde resin obtained by condensing polyphenols and aldehydes) which is an adherend of an adhesive composition. , A compound having an isocyanate group as a polar functional group.
 前記イソシアネート化合物の種類については、特に限定はされないが、接着性をより向上できる観点から、(ブロックド)イソシアネート基含有芳香族化合物であることが好ましい。本発明の接着剤組成物中に、前記イソシアネート化合物を含ませると、被着体繊維と接着剤組成物の界面近傍の位置にブロックド)イソシアネート基含有芳香族が分布し、接着促進効果が得られる作用が得られ、この作用効果により、有機コードとの接着をより高度化することができる。
 前記(ブロックド)イソシアネート基含有芳香族化合物は、(ブロックド)イソシアネート基を有する芳香族化合物である。また、「(ブロックド)イソシアネート基」とは、ブロックドイソシアネート基又はイソシアネート基を意味し、イソシアネート基の他、イソシアネート基に対するブロック化剤と反応して生じたブロックドイソシアネート基、イソシアネート基に対するブロック化剤と未反応のイソシアネート基、又はブロックドイソシアネート基のブロック化剤が解離して生じたイソシアネート基等を含む。
The type of the isocyanate compound is not particularly limited, but is preferably a (blocked) isocyanate group-containing aromatic compound from the viewpoint of further improving the adhesiveness. When the isocyanate compound is contained in the adhesive composition of the present invention, blocked) isocyanate group-containing aromatics are distributed at positions near the interface between the adherend fiber and the adhesive composition, and an adhesion promoting effect is obtained. This action and effect makes it possible to further enhance the adhesion with the organic cord.
The (blocked) isocyanate group-containing aromatic compound is an aromatic compound having a (blocked) isocyanate group. Further, "(blocked) isocyanate group" means a blocked isocyanate group or an isocyanate group, and in addition to the isocyanate group, a blocked isocyanate group generated by reacting with a blocking agent for the isocyanate group and a block for the isocyanate group. It contains an isocyanate group that has not reacted with the agent, or an isocyanate group that is generated by dissociating a blocking agent of a blocked isocyanate group.
 さらに、前記(ブロックド)イソシアネート基含有芳香族化合物は、芳香族類がアルキレン鎖で結合された分子構造を含むのが好ましく、芳香族類がメチレン結合した分子構造を含むことがより好ましい。芳香族類がアルキレン鎖で結合された分子構造としては、例えば、ジフェニルメタンジイソシアネート、ポリフェニレンポリメチレンポリイソシアネート、又はフェノール類とホルムアルデヒドとの縮合物等にみられる分子構造が挙げられる。 Further, the (blocked) isocyanate group-containing aromatic compound preferably contains a molecular structure in which aromatics are bonded by an alkylene chain, and more preferably contains a molecular structure in which aromatics are methylene-bonded. Examples of the molecular structure in which aromatics are bonded by an alkylene chain include a molecular structure found in diphenylmethane diisocyanate, polyphenylene polymethylene polyisocyanate, or a condensate of phenols and formaldehyde.
 なお、前記(ブロックド)イソシアネート基含有芳香族化合物としては、例えば、芳香族ポリイソシアネートと熱解離性ブロック化剤を含む化合物、ジフェニルメタンジイソシアネート又は芳香族ポリイソシアネートを熱解離性ブロック化剤でブロック化した成分を含む水分散性化合物、水性ウレタン化合物等が挙げられる。 As the (blocked) isocyanate group-containing aromatic compound, for example, a compound containing an aromatic polyisocyanate and a heat-dissociable blocking agent, diphenylmethane diisocyanate or an aromatic polyisocyanate is blocked with a heat-dissociable blocking agent. Examples thereof include water-dispersible compounds and aqueous urethane compounds containing the above-mentioned components.
 前記芳香族ポリイソシアネートと熱解離性ブロック化剤とを含む化合物としては、ジフェニルメタンジイソシアネートと公知のイソシアネートブロック化剤を含むブロックドイソシアネート化合物等が好適に挙げられる。前記ジフェニルメタンジイソシアネート又は芳香族ポリイソシアネートを熱解離性ブロック化剤でブロック化した成分を含む水分散性化合物としては、ジフェニルメタンジイソシアネート又はポリメチレンポリフェニルポリイソシアネートを、イソシアネート基をブロックする公知のブロック化剤でブロックした反応生成物が挙げられる。具体的には、エラストロンBN69(第一工業製薬(株)製)、エラストロンBN77(第一工業製薬(株)製)やメイカネートTP-10(明成化学工業(株)製)等の市販のブロックドポリイソシアネート化合物を用いることができる。 Preferable examples of the compound containing the aromatic polyisocyanate and the heat-dissociable blocking agent include a blocked isocyanate compound containing diphenylmethane diisocyanate and a known isocyanate blocking agent. As the water-dispersible compound containing a component obtained by blocking the diphenylmethane diisocyanate or aromatic polyisocyanate with a thermal dissociable blocking agent, diphenylmethane diisocyanate or polymethylene polyphenyl polyisocyanate is used as a known blocking agent for blocking isocyanate groups. Examples of the reaction product blocked in. Specifically, commercially available blocked products such as Elastron BN69 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Erastron BN77 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and Meicanate TP-10 (manufactured by Meisei Kagaku Kogyo Co., Ltd.) Polyisocyanate compounds can be used.
 前記水性ウレタン化合物は、芳香族類がアルキレン鎖で結合された分子構造、好ましくは芳香族類がメチレン結合した分子構造を含有する有機ポリイソシアネート化合物(α)と、複数の活性水素を有する化合物(β)と、イソシアネート基に対する熱解離性ブロック化剤(γ)とを反応させて得られる。また、水性ウレタン化合物(F)は、その可撓性のある分子構造から、接着改良剤としての作用のみならず、可撓性のある架橋剤として接着剤の高温時流動化を抑止する作用も有する。
 なお、「水性」とは、水溶性または水分散性であることを示し、「水溶性」とは必ずしも完全な水溶性を意味するのではなく、部分的に水溶性のもの、あるいは接着剤組成物の水溶液中で相分離しないものを意味する。
The aqueous urethane compound is an organic polyisocyanate compound (α) containing a molecular structure in which aromatics are bonded by an alkylene chain, preferably a molecular structure in which aromatics are methylene bonded, and a compound having a plurality of active hydrogens ( It is obtained by reacting β) with a thermally dissociable blocking agent (γ) for an isocyanate group. In addition, the aqueous urethane compound (F) not only acts as an adhesive improver due to its flexible molecular structure, but also acts as a flexible cross-linking agent to suppress the fluidization of the adhesive at high temperatures. Have.
In addition, "water-based" indicates that it is water-soluble or water-dispersible, and "water-soluble" does not necessarily mean completely water-soluble, but is partially water-soluble or has an adhesive composition. It means a substance that does not undergo phase separation in an aqueous solution of the substance.
 ここで、前記水性ウレタン化合物(F)としては、例えば、下記一般式(I):
Figure JPOXMLDOC01-appb-C000007
(式中、Aは芳香族類がアルキレン鎖で結合された分子構造を含有する有機ポリイソシアネート化合物(α)の活性水素が脱離した残基を示し、Yはイソシアネート基に対する熱解離性ブロック化剤(γ)の活性水素が脱離した残基を示し、Zは化合物(δ)の活性水素が脱離した残基を示し、Xは複数の活性水素を有する化合物(β)の活性水素が脱離した残基であり、nは2~4の整数であり、p+mは2~4の整数(m≧0.25)である。)で表される水性ウレタン化合物が好ましい。
Here, as the aqueous urethane compound (F), for example, the following general formula (I):
Figure JPOXMLDOC01-appb-C000007
(In the formula, A indicates a residue from which the active hydrogen of the organic polyisocyanate compound (α) containing a molecular structure in which aromatics are bonded by an alkylene chain is eliminated, and Y indicates a thermally dissociable block to the isocyanate group. The active hydrogen of the agent (γ) indicates the desorbed residue, Z indicates the residue of the compound (δ) desorbed, and X indicates the active hydrogen of the compound (β) having a plurality of active hydrogens. It is a desorbed residue, n is an integer of 2 to 4, and p + m is an integer of 2 to 4 (m ≧ 0.25)), and an aqueous urethane compound is preferable.
 なお、前記芳香族類がアルキレン鎖で結合された分子構造を含有する有機ポリイソシアネート化合物(α)としては、メチレンジフェニルポリイソシアネート、ポリメチレンポリフェニルポリイソシアネート等が挙げられる。
 また、前記複数の活性水素を有する化合物(β)は、好ましくは2~4個の活性水素を有し、平均分子量が5,000以下の化合物である。かかる化合物(β)としては、(i)2~4個の水酸基を有する多価アルコール類、(ii)2~4個の第一級及び/又は第二級アミノ基を有する多価アミン類、(iii)2~4個の第一級及び/又は第二級アミノ基と水酸基を有するアミノアルコール類、(iv)2~4個の水酸基を有するポリエステルポリオール類、(v)2~4個の水酸基を有するポリブタジエンポリオール類及びそれらと他のビニルモノマーとの共重合体、(vi)2~4個の水酸基を有するポリクロロプレンポリオール類及びそれらと他のビニルモノマーとの共重合体、(vii)2~4個の水酸基を有するポリエーテルポリオール類であって、多価アミン、多価フェノール及びアミノアルコール類のC2~C4のアルキレンオキサイド重付加物、C3以上の多価アルコール類のC2~C4のアルキレンオキサイド重付加物、C2~C4のアルキレンオキサイド共重合物、又はC3~C4のアルキレンオキサイド重合物等が挙げられる。
 さらに、前記イソシアネート基に対する熱解離性ブロック化剤(γ)は、熱処理によりイソシアネート基を遊離することが可能な化合物であり、公知のイソシアネートブロック化剤が挙げられる。
 さらにまた、前記化合物(δ)は、少なくとも1つの活性水素とアニオン性及び/又は非イオン性の親水性基を有する化合物である。少なくとも1つの活性水素とアニオン性の親水基を有する化合物としては、例えば、タウリン、N-メチルタウリン、N-ブチルタウリン、スルファニル酸等のアミノスルホン酸類、グリシン、アラニン等のアミノカルボン酸類等が挙げられる。一方、少なくとも1つの活性水素と非イオン性の親水基を有する化合物としては、例えば、親水性ポリエーテル鎖を有する化合物類が挙げられる。
Examples of the organic polyisocyanate compound (α) containing a molecular structure in which the aromatics are bonded by an alkylene chain include methylene diphenyl polyisocyanate and polymethylene polyphenyl polyisocyanate.
The compound (β) having a plurality of active hydrogens is preferably a compound having 2 to 4 active hydrogens and having an average molecular weight of 5,000 or less. Examples of such compound (β) include (i) polyhydric alcohols having 2 to 4 hydroxyl groups, and (ii) polyhydric amines having 2 to 4 primary and / or secondary amino groups. (Iii) Amino alcohols having 2 to 4 primary and / or secondary amino groups and hydroxyl groups, (iv) Polyester polyols having 2 to 4 hydroxyl groups, (v) 2 to 4 Polybutadiene polyols having hydroxyl groups and copolymers of them with other vinyl monomers, (vi) Polychloroprene polyols having 2 to 4 hydroxyl groups and copolymers of them with other vinyl monomers, (vii). Polyether polyols having 2 to 4 hydroxyl groups, which are C2-C4 alkylene oxide heavy additions of polyhydric amines, polyhydric phenols and amino alcohols, and C2-C4 of C3 and higher polyhydric alcohols. Examples thereof include alkylene oxide heavy adducts, alkylene oxide copolymers of C2 to C4, and alkylene oxide polymers of C3 to C4.
Further, the thermally dissociable blocking agent (γ) for the isocyanate group is a compound capable of liberating the isocyanate group by heat treatment, and examples thereof include known isocyanate blocking agents.
Furthermore, the compound (δ) is a compound having at least one active hydrogen and anionic and / or nonionic hydrophilic groups. Examples of the compound having at least one active hydrogen and an anionic hydrophilic group include aminosulfonic acids such as taurine, N-methyltaurine, N-butyltaurine and sulfanilic acid, and aminocarboxylic acids such as glycine and alanine. Be done. On the other hand, as a compound having at least one active hydrogen and a nonionic hydrophilic group, for example, compounds having a hydrophilic polyether chain can be mentioned.
 また、前記接着剤組成物における、前記イソシアネート化合物の含有量は、特に限定はされないが、より確実に優れた接着性を確保する観点から、5~65質量%の範囲であることが好ましく、10~45質量%であることがより好ましい。
 なお、前記イソシアネート化合物の含有量は、乾燥物の質量(固形分比)である。
The content of the isocyanate compound in the adhesive composition is not particularly limited, but is preferably in the range of 5 to 65% by mass from the viewpoint of ensuring more reliable and excellent adhesiveness. More preferably, it is ~ 45% by mass.
The content of the isocyanate compound is the mass (solid content ratio) of the dried product.
(ゴムラテックス)
 前記接着剤組成物は、上述したポリフェノール類、アルデヒド類及びイソシアネート化合物に加えて、実質的にはゴムラテックスをさらに含むことができる。ゴム部材との接着性をより高めることができるためである。
(Rubber latex)
The adhesive composition may substantially further contain rubber latex in addition to the polyphenols, aldehydes and isocyanate compounds described above. This is because the adhesiveness with the rubber member can be further improved.
 ここで、前記ゴムラテックスについては、特に限定はされず、天然ゴム(NR)の他、ポリイソプレンゴム(IR)、スチレン-ブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、エチレン-プロピレン-ジエンゴム(EPDM)、クロロプレンゴム(CR)、ハロゲン化ブチルゴム、アクリロニリトル-ブタジエンゴム(NBR)、ビニルピリジン-スチレン-ブタジエン共重合体ゴム(Vp)等の合成ゴムを用いることができる。これらのゴム成分は、一種単独で用いてもよいし、二種以上をブレンドして用いてもよい。 Here, the rubber latex is not particularly limited, and in addition to natural rubber (NR), polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR), and ethylene-propylene. Synthetic rubbers such as -diene rubber (EPDM), chloroprene rubber (CR), butyl halide rubber, acryloni little-butadiene rubber (NBR), and vinylpyridine-styrene-butadiene copolymer rubber (Vp) can be used. These rubber components may be used alone or in a blend of two or more.
 また、前記ゴムラテックスについては、前記イソシアネート化合物を配合する前に、前記フェノール類及び前記アルデヒド類と混合させることが好ましい。
 さらに、前記接着剤組成物中の前記ゴムラテックスの含有量は、20~70質量%であることが好ましく、25~60質量%であることがより好ましい。
Further, the rubber latex is preferably mixed with the phenols and the aldehydes before the isocyanate compound is blended.
Further, the content of the rubber latex in the adhesive composition is preferably 20 to 70% by mass, more preferably 25 to 60% by mass.
 なお、前記有機繊維コード用接着剤組成物の製造方法は、特に限定はされないが、例えば、前記ポリフェノール類、前記アルデヒド類、前記ゴムラテックス等の原材料を混合し、熟成する方法、又は、前記ポリフェノール類と前記アルデヒド類とを混合して熟成した後に、前記ゴムラテックスをさらに加えて熟成する方法、等が挙げられる。また、前記イソシアネート化合物を含む場合には、前記ゴムラテックスを加え、熟成した後に、イソシアネート化合物を加えることができる。
 なお、前記多環芳香族炭化水素、前記アルデヒド類、前記ゴムラテックス及び前記イソシアネート化合物の構成や含有量等については、上述した前記接着剤組成物の中で説明した内容と同様である。
The method for producing the adhesive composition for an organic fiber cord is not particularly limited, but for example, a method of mixing and aging raw materials such as the polyphenols, the aldehydes, and the rubber latex, or the polyphenols. Examples thereof include a method in which the rubber latex is further added and aged after the aldehydes and the like are mixed and aged. When the isocyanate compound is contained, the rubber latex can be added and aged, and then the isocyanate compound can be added.
The composition and content of the polycyclic aromatic hydrocarbon, the aldehydes, the rubber latex, and the isocyanate compound are the same as those described in the above-mentioned adhesive composition.
(ゴム-有機繊維コード複合体)
 ここで、本発明のランフラットタイヤでは、前記接着剤組成物がコーティングされた有機繊維コードを有しており、前記接着剤組成物がコーティングされた有機繊維コードは、コーティングゴム等のゴム部材と接着し、ゴム-有機繊維コード複合体を形成している。
 得られたゴム-有機繊維コード複合体は、前記接着剤組成物を用いているため、環境への負荷が小さい。
(Rubber-organic fiber cord composite)
Here, the run-flat tire of the present invention has an organic fiber cord coated with the adhesive composition, and the organic fiber cord coated with the adhesive composition is a rubber member such as a coated rubber. Adhesive to form a rubber-organic fiber cord composite.
Since the obtained rubber-organic fiber cord composite uses the adhesive composition, the burden on the environment is small.
 ここで、本発明のランフラットタイヤにおいて、前記ゴム-有機繊維コード複合体は、例えば、図1に示すように、前記カーカスプライ4、前記ベルト層50、前記ベルト補強層51、フリッパー等のベルト周り補強層(図示せず)等として用いることが可能である。
 これらの中でも、前記ゴム-有機繊維コード複合体は、カーカスプライ及び/又はベルト補強層に用いられることが好ましい。前記接着剤組成物がコーティングされた有機繊維コードの環境への負荷低減や、有機繊維とゴム部材との優れた接着性等を、より効果的に発揮できるためである。
Here, in the run-flat tire of the present invention, the rubber-organic fiber cord composite is, for example, as shown in FIG. 1, a belt such as the carcass ply 4, the belt layer 50, the belt reinforcing layer 51, and a flipper. It can be used as a peripheral reinforcing layer (not shown) or the like.
Among these, the rubber-organic fiber cord composite is preferably used for the carcass ply and / or the belt reinforcing layer. This is because the organic fiber cord coated with the adhesive composition can reduce the load on the environment and more effectively exhibit the excellent adhesiveness between the organic fiber and the rubber member.
 なお、前記ゴム-有機繊維コード複合体において、前記接着剤組成物は、前記有機繊維コードの少なくとも一部を覆っていればよいが、ゴムと有機繊維コードとの接着性をより向上できる点からは、前記接着剤組成物が前記有機繊維コードの全面にコーティングされていることが好ましい。 In the rubber-organic fiber cord composite, the adhesive composition may cover at least a part of the organic fiber cord, but the adhesiveness between the rubber and the organic fiber cord can be further improved. It is preferable that the adhesive composition is coated on the entire surface of the organic fiber cord.
 また、前記有機繊維コードの材料については、特に限定はされず、用途によって適宜選択することができる。例えば、ポリエステル、6-ナイロン、6,6-ナイロン、4,6-ナイロン等の脂肪族ポリアミド繊維コード、ポリケトン繊維コード、パラフェニレンテレフタルアミドに代表される芳香族ポリアミド繊維コードに代表される合成樹脂繊維材料に使用することができる。 The material of the organic fiber cord is not particularly limited and can be appropriately selected depending on the intended use. For example, an aliphatic polyamide fiber cord such as polyester, 6-nylon, 6,6-nylon, 4,6-nylon, a polyketone fiber cord, and a synthetic resin represented by an aromatic polyamide fiber cord typified by paraphenylene terephthalamide. It can be used for textile materials.
 また、前記有機繊維コードについては、低速及び高温時の操縦安定性と、高速耐久性とを高いレベルで両立する観点から、2種の有機繊維からなるフィラメントを撚り合わせてなるハイブリッドコードであることが好ましい。 The organic fiber cord is a hybrid cord made by twisting filaments made of two types of organic fibers from the viewpoint of achieving both low-speed and high-temperature steering stability and high-speed durability at a high level. Is preferable.
 さらに、高速耐久性をより向上させる観点からは、前記ハイブリッドコードは、177℃における熱収縮応力(cN/dtex)が0.20cN/dtex以上であることが好ましく、0.25~0.40cN/dtexの範囲内であることがより好ましい。 Further, from the viewpoint of further improving high-speed durability, the hybrid cord preferably has a heat shrinkage stress (cN / dtex) at 177 ° C. of 0.20 cN / dtex or more, preferably 0.25 to 0.40 cN /. It is more preferable that it is within the range of dtex.
 さらにまた、低速及び高温時の操縦安定性をより向上させる観点からは、前記ハイブリッドコードは、25℃における1%歪時の引張弾性率が60cN/dtex以下、特には35~50cN/dtexであることが好ましく、25℃における3%歪時の引張弾性率が30cN/dtex以上、特には45~70cN/dtexであることが好ましい。  Furthermore, from the viewpoint of further improving the steering stability at low speed and high temperature, the hybrid cord has a tensile elastic modulus of 60 cN / dtex or less at 1% strain at 25 ° C., particularly 35 to 50 cN / dtex. It is preferable that the tensile elastic modulus at 3% strain at 25 ° C. is 30 cN / dtex or more, particularly 45 to 70 cN / dtex. Twice
 前記ハイブリッドコードに用いる2種の有機繊維としては、特に制限されるものではないが、剛性の高い有機繊維として、レーヨン、リヨセルなどを挙げることができ、熱収縮率の高い有機繊維として、ポリエステル、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリトリメチレンテレフタレート(PTT)等、ナイロン、ポリケトン(PK)等を挙げることができる。より好適には、レーヨン又はリヨセルと、ナイロンとの組み合わせを用いることができる。
 なお、これら有機繊維を用いたハイブリッドコードの熱収縮応力及び引張弾性率を調整する方法としては、ディップ処理時におけるテンションを制御する方法が挙げられ、例えば、高いテンションを掛けながらディップ処理を行うことで、コードの熱収縮応力の値を大きくすることができる。すなわち、各有機繊維において固有の物性値範囲はあるものの、ディップ処理条件を制御することにより、その範囲内で物性値を調整して、所望の物性を有するハイブリッドコードを得ることができる。
The two types of organic fibers used in the hybrid cord are not particularly limited, but rayon, lyocell and the like can be mentioned as highly rigid organic fibers, and polyester and the like can be mentioned as organic fibers having a high heat shrinkage rate. For example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polytrimethylene terephthalate (PTT), nylon, polyketone (PK) and the like can be mentioned. More preferably, a combination of rayon or lyocell and nylon can be used.
As a method of adjusting the heat shrinkage stress and tensile elastic modulus of the hybrid cord using these organic fibers, there is a method of controlling the tension at the time of the dip treatment. For example, the dip treatment is performed while applying a high tension. Therefore, the value of the heat shrinkage stress of the cord can be increased. That is, although each organic fiber has a unique range of physical characteristics, by controlling the dip treatment conditions, the physical properties can be adjusted within that range to obtain a hybrid cord having desired physical properties.
<サイド補強ゴム、ビードフィラー>
 本発明のランフラットタイヤでは、前記サイド補強ゴム9及び前記ビードフィラー7のうちの少なくとも1つを構成する加硫ゴムは、全スルフィド結合中のモノスルフィド結合及びジスルフィド結合の割合が65%以上である。
 サイド補強ゴム9やビードフィラー7について、モノスルフィド結合及びジスルフィド結合の割合が高い加硫ゴムを用いることによって、転がり抵抗性を向上できることに加えて、ランフラット耐久性についても改善を図ることができる。
 なお、上述した「全スルフィド結合中のモノスルフィド結合及びジスルフィド結合の割合」を、「モノ/ジスルフィド結合量」と称することがある。また、「モノ/ジスルフィド結合量が65%以上である加硫ゴム」を、「本発明の加硫ゴム」、又は、単に「加硫ゴム」と称することがある。
<Side reinforcement rubber, bead filler>
In the run-flat tire of the present invention, the vulcanized rubber constituting at least one of the side reinforcing rubber 9 and the bead filler 7 has a monosulfide bond and a disulfide bond ratio of 65% or more in the total sulfide bond. be.
By using a vulcanized rubber having a high proportion of monosulfide bonds and disulfide bonds for the side reinforcing rubber 9 and the bead filler 7, the rolling resistance can be improved and the run-flat durability can also be improved. ..
The above-mentioned "ratio of monosulfide bond and disulfide bond in total sulfide bond" may be referred to as "mono / disulfide bond amount". Further, "vulcanized rubber having a mono / disulfide bond amount of 65% or more" may be referred to as "vulcanized rubber of the present invention" or simply "vulcanized rubber".
 ここで、前記加硫ゴムのスルフィド結合は、硫黄原子の数量により、モノスルフィド結合(-S-)、ジスルフィド結合(-S-S-)、トリスルフィド結合(-S-S-S-)、・・・と称されるが、本明細書では、硫黄原子が3つ以上連なるスルフィド結合(-[S]n-;3≦n)を「ポリスルフィド結合」と称する。従って、モノ/ジスルフィド結合量は、次の式(1)により算出される。
式(1):
モノ/ジスルフィド結合量(%)=100×〔(モノスルフィド結合量+ジスルフィド結合量)/全スルフィド結合量〕
 また、全スルフィド結合量は、モノスルフィド結合量+ジスルフィド結合量+ポリスルフィド結合量として算出される。なお、モノ/ジスルフィド結合量、モノスルフィド結合量、ジスルフィド結合量、及びポリスルフィド結合量は、いずれも、全スルフィド結合量に対する量であり、単位は「%」である。各結合量の測定方法は後述する。
Here, the sulfide bond of the vulture rubber is a monosulfide bond (—S—), a disulfide bond (—S—S—), a trisulfide bond (—S—S—S—), depending on the number of sulfur atoms. ..., But in the present specification, a sulfide bond (-[S] n-; 3 ≦ n) in which three or more sulfur atoms are connected is referred to as a "polysulfide bond". Therefore, the amount of mono / disulfide bond is calculated by the following formula (1).
Equation (1):
Mono / disulfide bond amount (%) = 100 × [(monosulfide bond amount + disulfide bond amount) / total sulfide bond amount]
The total sulfide bond amount is calculated as monosulfide bond amount + disulfide bond amount + polysulfide bond amount. The mono / disulfide bond amount, the monosulfide bond amount, the disulfide bond amount, and the polysulfide bond amount are all amounts with respect to the total sulfide bond amount, and the unit is "%". The method for measuring each binding amount will be described later.
 本発明のランフラットタイヤでは、上述したように、前記サイド補強ゴム9及び前記ビードフィラー7のうちの少なくとも1つを構成する加硫ゴムが、モノ/ジスルフィド結合量が65%以上となる網目構造を形成している。本発明のランフラットタイヤが前記構成であることで、転がり抵抗性及びランフラット耐久性に優れる理由は定かではないが、次の理由によるものと推察される。 In the run-flat tire of the present invention, as described above, the vulcanized rubber constituting at least one of the side reinforcing rubber 9 and the bead filler 7 has a network structure in which the mono / disulfide bond amount is 65% or more. Is forming. The reason why the run-flat tire of the present invention has the above configuration and is excellent in rolling resistance and run-flat durability is not clear, but it is presumed to be due to the following reason.
 前記加硫ゴムは、ゴム成分が硫黄架橋により3次元の網目構造を形成しているが、網目構造の結合状況によっては耐熱性が低くなることがあった。タイヤがパンクし、タイヤ内の空気が抜けると、タイヤが撓んで高温になるが、それでも車体を支え走行可能なようにするのがランフラットタイヤである。また、乗り心地、走行性等も考慮すれば、高温(例えば、180℃)で軟化しやすい時点でタイヤが剛性を有していても、タイヤの発熱前後で剛性が変わらないことが好ましい。
 しかしながら、従来のランフラット耐久性の改善を図ったタイヤ(例えば、国際公開第2016/143755号、国際公開第2016/143756号、国際公開第2016/143757号等を参照。)については、180℃での引張応力が高いものの、加硫ゴム強度の温度依存性が実証されておらず、タイヤの発熱前後において、タイヤの強度を持続することができなかった。
In the vulcanized rubber, the rubber component forms a three-dimensional network structure by sulfur cross-linking, but the heat resistance may be lowered depending on the bonding state of the network structure. When a tire punctures and the air inside the tire is released, the tire bends and becomes hot, but it is a run-flat tire that still supports the vehicle body and makes it possible to run. Further, in consideration of riding comfort, running performance, etc., it is preferable that the rigidity does not change before and after the heat generation of the tire even if the tire has rigidity at a time when it is easily softened at a high temperature (for example, 180 ° C.).
However, for tires with improved durability of conventional run-flat tires (see, for example, International Publication No. 2016/143755, International Publication No. 2016/143756, International Publication No. 2016/143757, etc.), 180 ° C. Although the tensile stress was high, the temperature dependence of the vulcanized rubber strength was not demonstrated, and the tire strength could not be maintained before and after the heat generation of the tire.
 これに対し、本発明のランフラットタイヤには、モノ/ジスルフィド結合量が65%以上となる加硫ゴムが用いられており、高温で軟化しにくいと考えられる。
 前記スルフィド結合は、硫黄原子が3つ以上連なるポリスルフィド結合となるほど、結合が弱くなり、ゴム成分を架橋する架橋網目構造が壊れ易くなると考えられるため、ポリスルフィド結合量を小さく抑え、モノスルフィド結合とジスルフィド結合の割合を多くすることで、加硫ゴムの網目破壊が減少すると考えられる。
 一般に、モノスルフィド結合とジスルフィド結合の割合が多いと、加硫ゴムの機械的物性が低下すると言われるが、それに反して、本発明の加硫ゴムは機械的物性の低下も少ないと考えられる。これは、本発明の加硫ゴムが、ゴム成分と、テトラベンジルチウラムジスルフィドを含む加硫促進剤とを含有するゴム組成物の加硫ゴムであるためと推察される。その結果、加硫ゴムの発熱前から発熱し高温に至るまで強度が持続するものと考えられる。さらに、前記加硫ゴムは、高温で軟化しにくいため、転がり抵抗性の改善にも寄与すると考えられる。
On the other hand, the run-flat tire of the present invention uses vulcanized rubber having a mono / disulfide bond amount of 65% or more, and is considered to be difficult to soften at high temperatures.
It is considered that the more the vulcan bond becomes a polysulfide bond in which three or more sulfur atoms are connected, the weaker the bond becomes and the more easily the crosslinked network structure for cross-linking the rubber component is broken. It is considered that increasing the bond ratio reduces the mesh breakage of the vulcanized rubber.
Generally, it is said that when the ratio of monosulfide bond to disulfide bond is large, the mechanical properties of the vulcanized rubber deteriorate, but on the contrary, the vulcanized rubber of the present invention is considered to have a small decrease in mechanical properties. It is presumed that this is because the vulcanized rubber of the present invention is a vulcanized rubber having a rubber composition containing a rubber component and a vulcanization accelerator containing tetrabenzylthium disulfide. As a result, it is considered that the strength of the vulcanized rubber is maintained from before the heat generation to the heat generation and the high temperature. Further, since the vulcanized rubber is hard to soften at a high temperature, it is considered to contribute to the improvement of rolling resistance.
 以上の理由から、本発明のランフラットタイヤは、転がり抵抗性及びランフラット耐久性に優れると考えられる。
 本発明のランフラットタイヤに用いられる加硫ゴムは、モノ/ジスルフィド結合量が65%以上であることを要するが、上述した観点から、モノ/ジスルフィド結合量は、75%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることが更に好ましい。
For the above reasons, the run-flat tire of the present invention is considered to be excellent in rolling resistance and run-flat durability.
The vulcanized rubber used for the run-flat tire of the present invention needs to have a mono / disulfide bond amount of 65% or more, but from the above viewpoint, the mono / disulfide bond amount is preferably 75% or more. , 80% or more, more preferably 85% or more.
 前記モノ/ジスルフィド結合量は、膨潤圧縮法により算出することができる。
 膨潤圧縮法は、リチウムアルミニウムハイドライド(LiAlH)及びプロパン-2-チオールとピペリジンの化学特性を利用して、各スルフィド結合量を測定する方法である。
 リチウムアルミニウムハイドライド(LiAlH)は、加硫ゴムのジスルフィド結合及びポリスルフィド結合を選択的に切断し、モノスルフィド結合は切断しない。一方、プロパン-2-チオールとピペリジンはポリスルフィド結合のみを切断することから、これらの試薬の違いを利用することで、各スルフィド結合の割合を求めることができる。
The mono / disulfide bond amount can be calculated by the swelling compression method.
The swelling compression method is a method of measuring the amount of each sulfide bond by utilizing the chemical properties of lithium aluminum hydride (LiAlH 4) and propane-2-thiol and piperidine.
Lithium aluminum hydride (LiAlH 4 ) selectively cleaves disulfide bonds and polysulfide bonds of vulcanized rubber, but does not cleave monosulfide bonds. On the other hand, since propane-2-thiol and piperidine cleave only polysulfide bonds, the ratio of each sulfide bond can be determined by utilizing the difference between these reagents.
 モノスルフィド網目鎖密度をν〔mol/cm〕、ジスルフィド網目鎖密度をν〔mol/cm〕、ポリスルフィド網目鎖密度をν〔mol/cm〕、全スルフィド網目鎖密度をν〔mol/cm〕と称する。
 全スルフィド網目鎖密度(ν)は、試薬を含まない同一溶媒で加硫ゴムを膨潤させることで求めることができる。
 νと(ν+ν)は後述する方法で直接測定する。
 νは(ν+ν)-νから算出することができる。
 νはν-(ν+ν)から算出することができる。
The monosulfide network chain density is ν M [mol / cm 3 ], the disulfide network chain density is ν D [mol / cm 3 ], the polysulfide network chain density is ν P [mol / cm 3 ], and the total sulfide network chain density is ν. It is called T [mol / cm 3].
The total sulfide network chain density (ν T ) can be determined by swelling the vulcanized rubber with the same solvent containing no reagent.
ν M and (ν M + ν D ) are directly measured by the method described later.
ν D can be calculated from (ν M + ν D ) -ν M.
ν P can be calculated from ν T − (ν M + ν D).
 全スルフィド結合中のモノスルフィド結合の割合(モノスルフィド結合量)は、全スルフィド網目鎖密度(ν)を100%として、モノスルフィド網目鎖密度(ν)を百分率に換算した値である。同様にして、ジスルフィド結合量をジスルフィド網目鎖密度(ν)から換算し、ポリスルフィド結合量をポリスルフィド網目鎖密度(ν)から換算する。
 モノ/ジスルフィド結合量は、既述の式(1):
 モノ/ジスルフィド結合量
=100×〔(モノスルフィド結合量+ジスルフィド結合量)/全スルフィド結合量〕
により算出される。
The ratio of monosulfide bonds in total sulfide bonds (amount of monosulfide bonds) is a value obtained by converting the monosulfide network chain density (ν M ) into a percentage with the total sulfide network chain density (ν T) as 100%. Similarly, the disulfide bond amount is converted from the disulfide network chain density (ν D ), and the polysulfide bond amount is converted from the polysulfide network chain density (ν P ).
The amount of mono / disulfide bond is determined by the above-mentioned formula (1):
Mono / disulfide bond amount = 100 × [(monosulfide bond amount + disulfide bond amount) / total sulfide bond amount]
Is calculated by.
 νと(ν+ν)の測定方法は、次のとおりである。
 まず、加硫ゴムから、厚さ2mmのシートを切り取り、加硫ゴムシートを得る。加硫ゴムシートをアセトンで24時間抽出後、24時間真空乾燥する。乾燥後の加硫ゴムシートを2mm×2mm四方に裁断して、立方体状の加硫ゴム試料に成形する。次いで、加硫ゴム試料の縦、横、厚さの三方向の寸法を精測する。
The measurement method of ν M and (ν M + ν D ) is as follows.
First, a sheet having a thickness of 2 mm is cut out from the vulcanized rubber to obtain a vulcanized rubber sheet. The vulcanized rubber sheet is extracted with acetone for 24 hours and then vacuum dried for 24 hours. The dried vulcanized rubber sheet is cut into 2 mm × 2 mm squares and molded into a cubic vulcanized rubber sample. Next, the dimensions of the vulcanized rubber sample in the three directions of length, width, and thickness are precisely measured.
 次に、前記加硫ゴムの全スルフィド結合量(ν)測定用として溶液(T)、モノスルフィド結合量(ν)測定用として溶液(M)、ポリスルフィド結合量(ν)測定用として溶液(P)を、次のようにして調製する。
 ベンゼン(又はトルエン)と、テトラヒドロフラン(THF)を、脱水及び脱酸素し、当該ベンゼン(又はトルエン)と、テトラヒドロフラン(THF)とを、体積基準で、1:1で混合する。混合液を密閉可能な容器に投入し、窒素置換して、溶液(T)とする。溶液(T)の入った前記容器を容器(1)称する。
Next, the solution (T ) is used for measuring the total sulfide bond amount (ν T) of the vulfurized rubber, the solution (M ) is used for measuring the monosulfide bond amount (ν M), and the polysulfide bond amount (ν P ) is measured. The solution (P) is prepared as follows.
Benzene (or toluene) and tetrahydrofuran (THF) are dehydrated and deoxidized, and the benzene (or toluene) and tetrahydrofuran (THF) are mixed 1: 1 on a volume basis. The mixed solution is put into a sealable container and replaced with nitrogen to obtain a solution (T). The container containing the solution (T) is referred to as a container (1).
 容器(1)に、リチウムアルミニウムハイドライド(LiAlH)の粉末を窒素置換しながら投入し、2~3日放置する。溶液の上澄みを分取し、これを溶液(M)とする。溶液(M)を分取した容器を容器(2)と称する。 Lithium aluminum hydride (LiAlH 4 ) powder is added to the container (1) while substituting with nitrogen, and left to stand for 2 to 3 days. Divide the supernatant of the solution and use this as the solution (M). The container from which the solution (M) is separated is referred to as a container (2).
 プロパン-2-チオール及びピペリジンを脱水及び脱酸素し、当該プロパン-2-チオール及びピペリジンを、等モル採取し、窒素置換しながら容器(2)に投入する。このようにして溶液(P)を得る。 Dehydrate and deoxidize propane-2-thiol and piperidine, collect equimolar amounts of the propane-2-thiol and piperidine, and put them into the container (2) while substituting with nitrogen. In this way, the solution (P) is obtained.
 三方向の寸法を精測した加硫ゴム試料を、密閉可能な容器3つにそれぞれ投入し、それぞれ1時間真空乾燥してから窒素置換する。その後、加硫ゴム試料の入った容器に、溶液(T)、溶液(M)、溶液(P)を、それぞれ投入し、密閉して、30℃で24時間放置して、加硫ゴム試料を膨潤させる。
 次いで、窒素雰囲気下で、各容器から加硫ゴム試料を取り出し、溶液(T)で洗浄し、膨潤した加硫ゴム試料の寸法を精測する。また、膨潤した加硫ゴム試料について、熱機械分析装置(TMA;thermomechanical analyzer)を用い、加硫ゴム試料の膨潤の大小に応じて1~60gまでの荷重を段階的に加え、圧縮応力と歪みの関係を求める。
 以上のデータを、Floryの膨潤圧縮と網目鎖密度の理論式に入力して、各スルフィド網目鎖密度を算出する。
 加硫ゴム試料が充填剤を含まない純ゴムの場合は、式(2)に測定データを入力し、各スルフィド網目鎖密度を算出する。
Figure JPOXMLDOC01-appb-M000008
The vulcanized rubber samples whose dimensions have been precisely measured in the three directions are placed in each of the three sealable containers, vacuum-dried for 1 hour, and then replaced with nitrogen. After that, the solution (T), the solution (M), and the solution (P) are put into the container containing the vulcanized rubber sample, sealed, and left at 30 ° C. for 24 hours to prepare the vulcanized rubber sample. Inflate.
Next, the vulcanized rubber sample is taken out from each container under a nitrogen atmosphere, washed with the solution (T), and the dimensions of the swollen vulcanized rubber sample are precisely measured. Further, for the swollen vulcanized rubber sample, a load of 1 to 60 g is applied stepwise according to the magnitude of the swelling of the vulcanized rubber sample using a thermomechanical analyzer (TMA), and compressive stress and strain are applied. Find the relationship.
The above data is input to the theoretical formulas for swelling compression and network chain density of Fly, and each sulfide network chain density is calculated.
When the vulcanized rubber sample is pure rubber containing no filler, the measurement data is input to the formula (2), and the density of each sulfide network chain is calculated.
Figure JPOXMLDOC01-appb-M000008
 加硫ゴム試料が充填剤を含む充填系の場合は、式(3)に測定データを入力し、各スルフィド網目鎖密度を算出する。
Figure JPOXMLDOC01-appb-M000009
When the vulcanized rubber sample is a filling system containing a filler, the measurement data is input to the formula (3), and the density of each sulfide network chain is calculated.
Figure JPOXMLDOC01-appb-M000009
 式(2)及び(3)において、
fは、応力〔N〕を表し、熱機械分析装置で測定した圧縮応力として求まる。
kは、定数を表す。
Tは、測定温度〔K〕を表す。
νは、スルフィド網目鎖密度〔mol/cm〕であり、溶液(M)で膨潤した加硫ゴム試料においてはνが、溶液(T)で膨潤した加硫ゴム試料においてはνが、溶液(P)で膨潤した加硫ゴム試料においてはνが当てはまる。
は、膨潤前の加硫ゴム試料の全体積〔cm〕を表し、加硫ゴム試料の寸法測定より求まる。
αは、膨潤後の加硫ゴム試料の圧縮又は伸長比であり、α=L/LS0より求まる。
は、膨潤前の加硫ゴム試料の厚さ〔m〕を表し、加硫ゴム試料の寸法測定より求まる。
S0は、膨潤後の加硫ゴム試料の厚さ〔m〕を表し、加硫ゴム試料の寸法測定より求まる。
は、膨潤後の加硫ゴム試料の圧縮又は伸長後の厚さ〔m〕を表し、加硫ゴム試料の寸法測定より求まる。
は、膨潤前の加硫ゴム試料の断面積〔m〕を表し、加硫ゴム試料の寸法測定より求まる。
φは、加硫ゴム試料中の充填剤の体積分率〔%〕を表し、加硫ゴム試料と充填剤の寸法測定より求まる。
In equations (2) and (3)
f represents the stress [N] and is obtained as the compressive stress measured by the thermomechanical analyzer.
k represents a constant.
T represents the measurement temperature [K].
ν is the sulfide network chain density [mol / cm 3 ], and ν M is in the vulcanized rubber sample swollen with the solution (M), and ν T is in the vulcanized rubber sample swollen with the solution (T). Ν P applies to vulcanized rubber samples swollen with solution (P).
V 0 represents the total volume [cm 3 ] of the vulcanized rubber sample before swelling, and can be obtained from the dimensional measurement of the vulcanized rubber sample.
α is the compression or elongation ratio of the vulcanized rubber sample after swelling, and can be obtained from α = L S / L S 0.
L 0 represents the thickness [m] of the vulcanized rubber sample before swelling, and can be obtained from the dimensional measurement of the vulcanized rubber sample.
L S0 represents the thickness [m] of the vulcanized rubber sample after swelling, and can be obtained from the dimensional measurement of the vulcanized rubber sample.
L S is the thickness after compression or elongation of the vulcanized rubber sample after swelling represent [m], found from the dimension measurements of the vulcanized rubber sample.
A 0 represents the cross-sectional area [m 2 ] of the vulcanized rubber sample before swelling, and can be obtained from the dimensional measurement of the vulcanized rubber sample.
φ represents the volume fraction [%] of the filler in the vulcanized rubber sample, and can be obtained from the dimensional measurement of the vulcanized rubber sample and the filler.
 次に、前記加硫ゴムに用いられるゴム組成物(以下、単に「ゴム組成物」ということがある。)について説明する。
 前記加硫ゴムに用いられるゴム組成物は、上述したモノ/ジスルフィド結合量を満たすことができるものであれば特に限定はされない。例えば、上述したモノ/ジスルフィド結合量を、より確実に達成できる観点から、ゴム成分と、充填剤と、加硫剤と、加硫促進剤と、を含むゴム組成物を用いることができる。
Next, the rubber composition used for the vulcanized rubber (hereinafter, may be simply referred to as "rubber composition") will be described.
The rubber composition used for the vulcanized rubber is not particularly limited as long as it can satisfy the above-mentioned mono / disulfide bond amount. For example, a rubber composition containing a rubber component, a filler, a vulcanizing agent, and a vulcanization accelerator can be used from the viewpoint of more reliably achieving the above-mentioned mono / disulfide bond amount.
(ゴム成分)
 前記ゴム組成物に含まれるゴム成分としては、特に限定はされないが、例えば、ジエン系ゴム及び非ジエン系ゴムが挙げられる。
 ジエン系ゴムは、天然ゴム(NR)及び合成ジエン系ゴムからなる群より選択される少なくとも1種が用いられる。
 合成ジエン系ゴムとしては、具体的には、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、ブタジエン-イソプレン共重合体ゴム(BIR)、スチレン-イソプレン共重合体ゴム(SIR)、スチレン-ブタジエン-イソプレン共重合体ゴム(SBIR)等が挙げられる。
 前記ジエン系ゴムとしては、天然ゴム、ポリイソプレンゴム、スチレン-ブタジエン共重合体ゴム及びポリブタジエンゴムが好ましく、天然ゴム及びポリブタジエンゴムがより好ましい。
(Rubber component)
The rubber component contained in the rubber composition is not particularly limited, and examples thereof include a diene-based rubber and a non-diene-based rubber.
As the diene rubber, at least one selected from the group consisting of natural rubber (NR) and synthetic diene rubber is used.
Specific examples of the synthetic diene rubber include polyisoprene rubber (IR), polybutadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), butadiene-isoprene copolymer rubber (BIR), and styrene-isoprene. Examples thereof include copolymer rubber (SIR) and styrene-butadiene-isoprene copolymer rubber (SBIR).
As the diene rubber, natural rubber, polyisoprene rubber, styrene-butadiene copolymer rubber and polybutadiene rubber are preferable, and natural rubber and polybutadiene rubber are more preferable.
 非ジエン系ゴムとしては、例えば、エチレンプロピレンゴム(EPDM(EPMとも称する))、マレイン酸変性エチレンプロピレンゴム(M-EPM)、ブチルゴム(IIR)、イソブチレンと芳香族ビニル又はジエン系モノマーとの共重合体、アクリルゴム(ACM)、アイオノマー等が挙げられる。 Examples of the non-diene rubber include ethylene propylene rubber (EPDM (also referred to as EPM)), maleic acid-modified ethylene propylene rubber (M-EPM), butyl rubber (IIR), isobutylene and aromatic vinyl or a diene monomer. Polymers, acrylic rubber (ACM), ionomers and the like can be mentioned.
 なお、前記ゴム成分は、一種単独で用いてもよいし、二種以上をブレンドして用いてもよい。
 また、前記ゴム成分は、変性されていてもよいし、未変性でもよく、二種以上のゴム成分を用いる場合は、未変性のゴム成分と変性されたゴム成分を混合して用いてもよい。
 さらに、前記ゴム成分は、ジエン系ゴムを含んでもよいし、非ジエン系ゴムを含んでもよいが、高温での耐軟化性及び機械的強度に優れた網目構造の加硫ゴムを得る観点から、少なくともジエン系ゴムを含むことが好ましく、ジエン系ゴムからなることがより好ましい。
 さらにまた、前記ジエン系ゴムは、天然ゴムと合成ジエン系ゴムのいずれか一方のみ用いてもよいし、両方を用いてもよいが、引張強度、破壊伸びなどの破壊特性を向上する観点から、天然ゴムと合成ジエン系ゴムを併用することが好ましい。
The rubber component may be used alone or in combination of two or more.
Further, the rubber component may be modified or unmodified, and when two or more types of rubber components are used, the unmodified rubber component and the modified rubber component may be mixed and used. ..
Further, the rubber component may contain a diene-based rubber or a non-diene-based rubber, but from the viewpoint of obtaining a vulture rubber having a network structure excellent in softening resistance at high temperatures and mechanical strength, the rubber component may contain a diene-based rubber. It preferably contains at least a diene-based rubber, and more preferably consists of a diene-based rubber.
Furthermore, as the diene-based rubber, only one of the natural rubber and the synthetic diene-based rubber may be used, or both may be used, but from the viewpoint of improving the breaking characteristics such as tensile strength and breaking elongation, the diene-based rubber may be used. It is preferable to use natural rubber and synthetic diene rubber together.
 前記加硫ゴムの発熱抑制の観点からは、前記ゴム成分は、スチレン-ブタジエン共重合体ゴムを含まない(ゴム成分中の含有量が0質量%)であることが好ましい。
 よって、タイヤのランフラット耐久性を向上し、かつ、低発熱性を向上する観点から、ゴム成分は、天然ゴム、ポリイソプレンゴム及びポリブタジエンゴムからなることが好ましく、天然ゴム及びポリブタジエンゴムかならなることがより好ましい。なお、既述のように、前記ゴム成分は変性されていても未変性であってもよく、例えば、「天然ゴム及びポリブタジエンゴムかならなる」には、未変性の天然ゴム及び変性されたポリブタジエンゴムを用いた態様、変性された天然ゴム及び変性されたポリブタジエンゴムを用いた態様等を含む。
 前記ゴム成分が天然ゴムを含む場合、天然ゴムの割合は、引張強度、破壊伸びなどの破壊特性をより向上する観点から、10質量%以上が好ましく、20~80質量%がより好ましく、30~70質量%が更に好ましい。
From the viewpoint of suppressing heat generation of the vulcanized rubber, it is preferable that the rubber component does not contain styrene-butadiene copolymer rubber (the content in the rubber component is 0% by mass).
Therefore, from the viewpoint of improving the run flat durability of the tire and improving the low heat generation property, the rubber component is preferably composed of natural rubber, polyisoprene rubber and polybutadiene rubber, and is composed of natural rubber and polybutadiene rubber. Is more preferable. As described above, the rubber component may be modified or unmodified. For example, "consisting of natural rubber and polybutadiene rubber" includes unmodified natural rubber and modified polybutadiene. It includes a mode using rubber, a mode using modified natural rubber and a mode using modified polybutadiene rubber, and the like.
When the rubber component contains natural rubber, the ratio of the natural rubber is preferably 10% by mass or more, more preferably 20 to 80% by mass, and 30 to 30 to more, from the viewpoint of further improving the fracture characteristics such as tensile strength and fracture elongation. 70% by mass is more preferable.
 前記ゴム成分は、加硫ゴムの低発熱性を向上する観点からは、変性基を含むゴム(変性ゴムと称することがある)を用いることが好ましく、変性基を含む合成ゴムを用いることがより好ましい。
 前記サイド補強ゴムの補強性を向上する観点から、ゴム組成物は充填剤を含有しており、充填剤(特に、カーボンブラック)との相互作用を高めるために、ゴム成分は、変性基を含む合成ゴムとして、変性基を含むポリブタジエンゴム(変性ポリブタジエンゴム)を含むことが好ましい。
 後述するように、充填剤は少なくともカーボンブラックを含有することが好ましく、変性ポリブタジエンゴムは、カーボンブラックと相互作用する官能基を少なくとも一つ有する変性ポリブタジエンゴムであることが好ましい。カーボンブラックと相互作用する官能基は、カーボンブラックと親和性を有する官能基が好ましく、具体的には、スズ含有官能基、ケイ素含有官能基及び窒素含有官能基からなる群から選択される少なくとも一種であることが好ましい。
From the viewpoint of improving the low heat generation of the vulcanized rubber, it is preferable to use a rubber containing a modifying group (sometimes referred to as a modified rubber) as the rubber component, and it is more preferable to use a synthetic rubber containing a modifying group. preferable.
From the viewpoint of improving the reinforcing property of the side reinforcing rubber, the rubber composition contains a filler, and the rubber component contains a modifying group in order to enhance the interaction with the filler (particularly carbon black). As the synthetic rubber, it is preferable to include a polybutadiene rubber containing a modifying group (modified polybutadiene rubber).
As will be described later, the filler preferably contains at least carbon black, and the modified polybutadiene rubber is preferably a modified polybutadiene rubber having at least one functional group that interacts with carbon black. The functional group that interacts with carbon black is preferably a functional group that has an affinity for carbon black, and specifically, at least one selected from the group consisting of a tin-containing functional group, a silicon-containing functional group, and a nitrogen-containing functional group. Is preferable.
 前記変性ポリブタジエンゴムが、スズ含有官能基、ケイ素含有官能基及び窒素含有官能基からなる群から選択される少なくとも一種の官能基を少なくとも一つ有する変性ポリブタジエンゴムである場合、変性ポリブタジエンゴムは、スズ含有化合物、ケイ素含有化合物又は窒素含有化合物等の変性剤で変性され、スズ含有官能基、ケイ素含有官能基又は窒素含有官能基等を導入したものであることが好ましい。
 ブタジエンゴムの重合活性部位を変性剤で変性するにあたって、使用する変性剤としては、窒素含有化合物、ケイ素含有化合物及びスズ含有化合物が好ましい。この場合、変性反応により、窒素含有官能基、ケイ素含有官能基又はスズ含有官能基を導入することができる。
 このような変性用官能基は、ポリブタジエンの重合開始末端、主鎖及び重合活性末端のいずれかに存在すればよい。
When the modified polybutadiene rubber is a modified polybutadiene rubber having at least one functional group selected from the group consisting of a tin-containing functional group, a silicon-containing functional group and a nitrogen-containing functional group, the modified polybutadiene rubber is tin. It is preferably modified with a modifier such as a containing compound, a silicon-containing compound or a nitrogen-containing compound, and introduced with a tin-containing functional group, a silicon-containing functional group, a nitrogen-containing functional group or the like.
The modifier used in modifying the polymerization active site of the butadiene rubber with a modifier is preferably a nitrogen-containing compound, a silicon-containing compound, or a tin-containing compound. In this case, a nitrogen-containing functional group, a silicon-containing functional group or a tin-containing functional group can be introduced by a modification reaction.
Such a modification functional group may be present at any of the polymerization initiation terminal, main chain and polymerization active end of polybutadiene.
 前記変性剤として用いることができる窒素含有化合物は、置換若しくは非置換のアミノ基、アミド基、イミノ基、イミダゾール基、ニトリル基又はピリジル基を有することが好ましい。該変性剤として好適な窒素含有化合物としては、ジフェニルメタンジイソシアネート、クルードMDI、トリメチルヘキサメチレンジイソシアネート、トリレンジイソシアネート等のイソシアネート化合物、4-(ジメチルアミノ)ベンゾフェノン、4-(ジエチルアミノ)ベンゾフェノン、4-ジメチルアミノベンジリデンアニリン、4-ジメチルアミノベンジリデンブチルアミン、ジメチルイミダゾリジノン、N-メチルピロリドンヘキサメチレンイミン等が挙げられる。 The nitrogen-containing compound that can be used as the modifier preferably has a substituted or unsubstituted amino group, amide group, imino group, imidazole group, nitrile group or pyridyl group. Suitable nitrogen-containing compounds as the modifier include isocyanate compounds such as diphenylmethane diisocyanate, crude MDI, trimethylhexamethylene diisocyanate, and tolylene diisocyanate, 4- (dimethylamino) benzophenone, 4- (diethylamino) benzophenone, and 4-dimethylamino. Examples thereof include benzilidenaniline, 4-dimethylaminobenzylene butylamine, dimethylimidazolidinone, N-methylpyrrolidone hexamethyleneimine and the like.
 また、上記変性剤として用いることができるケイ素含有化合物としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、N-(1-メチルプロピリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(3-トリエトキシシリルプロピル)-4,5-ジヒドロイミダゾール、3-メタクリロイロキシプロピルトリメトキシシラン、3-イソシアナトプロピルトリエトキシシラン、3-トリエトキシシリルプロピルコハク酸無水物、3-(1-ヘキサメチレンイミノ)プロピル(トリエトキシ)シラン、(1-ヘキサメチレンイミノ)メチル(トリメトキシ)シラン、3-ジエチルアミノプロピル(トリエトキシ)シラン、3-ジメチルアミノプロピル(トリエトキシ)シラン、2-(トリメトキシシリルエチル)ピリジン、2-(トリエトキシシリルエチル)ピリジン、2-シアノエチルトリエトキシシラン、テトラエトキシシラン等が挙げられる。これらケイ素含有化合物は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、該ケイ素含有化合物の部分縮合物も用いることができる。 Examples of the silicon-containing compound that can be used as the modifier include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and N- (1-methylpropanol) -3- (tri). Ethoxysilyl) -1-propaneamine, N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propaneamine, N- (3-triethoxysilylpropyl) -4,5-dihydro Imidazole, 3-methacryloyloxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-triethoxysilylpropylsuccinate anhydride, 3- (1-hexamethyleneimino) propyl (triethoxy) silane, (1- Hexamethylene imino) methyl (trimethoxy) silane, 3-diethylaminopropyl (triethoxy) silane, 3-dimethylaminopropyl (triethoxy) silane, 2- (trimethoxysilylethyl) pyridine, 2- (triethoxysilylethyl) pyridine, 2 -Cyanoethyltriethoxysilane, tetraethoxysilane and the like can be mentioned. These silicon-containing compounds may be used alone or in combination of two or more. Further, a partial condensate of the silicon-containing compound can also be used.
 さらに、上記変性剤としては、下記式(I):
     R ZX    (I)
[式中、Rは、それぞれ独立して炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基及び炭素数7~20のアラルキル基からなる群から選択され;Zは、スズ又はケイ素であり;Xは、それぞれ独立して塩素又は臭素であり;aは0~3で、bは1~4で、但し、a+b=4である]で表される変性剤も好ましい。なお、式(I)の変性剤で変性して得られる変性ポリブタジエンゴムは、少なくとも一種のスズ-炭素結合又はケイ素-炭素結合を有する。
Further, as the above-mentioned denaturant, the following formula (I):
R 1 a ZX b (I)
[In the formula, R 1 is independently composed of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms. Selected from the group; Z is tin or silicon; X is independently chlorine or bromine; a is 0 to 3, b is 1 to 4, but a + b = 4]. The modified agent represented is also preferred. The modified polybutadiene rubber obtained by modifying with the modifier of the formula (I) has at least one kind of tin-carbon bond or silicon-carbon bond.
 式(I)のRとして、具体的には、メチル基、エチル基、n-ブチル基、ネオフィル基、シクロヘキシル基、n-オクチル基、2-エチルヘキシル基等が挙げられる。また、式(I)の変性剤として、具体的には、SnCl、RSnCl、R SnCl、R SnCl、SiCl、RSiCl、R SiCl、R SiCl等が好ましく、SnCl及びSiClが特に好ましい。 Specific examples of R 1 of the formula (I) include a methyl group, an ethyl group, an n-butyl group, a neofil group, a cyclohexyl group, an n-octyl group, a 2-ethylhexyl group and the like. Further, as the denaturant of the formula (I), specifically, SnCl 4 , R 1 SnCl 3 , R 1 2 SnCl 2 , R 1 3 SnCl, SiCl 4 , R 1 SiCl 3 , R 1 2 SiCl 2 , R. 1 3 SiCl and the like are preferable, SnCl 4 and SiCl 4 are particularly preferred.
 前記変性ポリブタジエンゴムとしては、以上の中でも、加硫ゴムを低発熱化し、耐久寿命を延ばす観点から、窒素含有官能基を有する変性ポリブタジエンゴムであることが好ましく、アミン変性ポリブタジエンゴムであることがより好ましい。 Among the above, the modified polybutadiene rubber is preferably a modified polybutadiene rubber having a nitrogen-containing functional group, and more preferably an amine-modified polybutadiene rubber, from the viewpoint of reducing the heat generation of the vulcanized rubber and extending the durable life. preferable.
 前記アミン変性ポリブタジエンゴムは、変性用アミン系官能基として、第1級アミノ基又は第2級アミノ基が好ましく、脱離可能基で保護された第1級アミノ基又は脱離可能基で保護された第2級アミノ基を導入したものがより好ましく、これらアミノ基に加え、さらにケイ素原子を含む官能基を導入したものが更に好ましい。
 脱離可能基で保護された第1級アミノ基(保護化第1級アミノ基ともいう。)の例としては、N,N-ビス(トリメチルシリル)アミノ基を挙げることができ、脱離可能基で保護された第2級アミノ基の例としてはN,N-(トリメチルシリル)アルキルアミノ基を挙げることができる。このN,N-(トリメチルシリル)アルキルアミノ基含有基としては、非環状残基、及び環状残基のいずれであってもよい。
 上記のアミン変性ポリブタジエンゴムのうち、保護化第1級アミノ基で変性された第1級アミン変性ポリブタジエンゴムが更に好適である。
 前記ケイ素原子を含む官能基としては、ケイ素原子にヒドロカルビルオキシ基及び/又はヒドロキシ基が結合してなるヒドロカルビルオキシシリル基及び/又はシラノール基を挙げることができる。
 このような変性用官能基は、好ましくはブタジエンゴムの重合末端、より好ましくは同一重合活性末端に、脱離可能基で保護されたアミノ基と、ヒドロカルビルオキシ基及びヒドロキシ基が結合したケイ素原子を1以上(例えば、1又は2)とを有するものである。
The amine-modified polybutadiene rubber preferably has a primary amino group or a secondary amino group as the amine-based functional group for modification, and is protected by a primary amino group or a removable group protected by a removable group. It is more preferable to introduce a secondary amino group, and it is further preferable to introduce a functional group containing a silicon atom in addition to these amino groups.
Examples of a primary amino group protected by a removable group (also referred to as a protected primary amino group) include an N, N-bis (trimethylsilyl) amino group, which is a removable group. Examples of the secondary amino group protected by N, N- (trimethylsilyl) alkylamino group can be mentioned. The N, N- (trimethylsilyl) alkylamino group-containing group may be either an acyclic residue or a cyclic residue.
Among the above amine-modified polybutadiene rubbers, the primary amine-modified polybutadiene rubber modified with a protected primary amino group is more preferable.
Examples of the functional group containing a silicon atom include a hydrocarbyloxysilyl group and / or a silanol group formed by bonding a hydrocarbyloxy group and / or a hydroxy group to a silicon atom.
Such a functional group for modification preferably has an amino group protected by a removable group and a silicon atom having a hydrocarbyloxy group and a hydroxy group bonded to the polymerization terminal of butadiene rubber, more preferably the same polymerization active terminal. It has 1 or more (for example, 1 or 2).
 ブタジエンゴムの活性末端に、保護化第1級アミンを反応させて変性させるには、該ブタジエンゴムは、少なくとも10%のポリマー鎖がリビング性又は擬似リビング性を有するものが好ましい。このようなリビング性を有する重合反応としては、有機アルカリ金属化合物を開始剤とし、有機溶媒中で共役ジエン化合物単独、又は共役ジエン化合物と芳香族ビニル化合物とをアニオン重合させる反応か、あるいは有機溶媒中でランタン系列希土類元素化合物を含む触媒による共役ジエン化合物単独、又は共役ジエン化合物と芳香族ビニル化合物とを配位アニオン重合させる反応が挙げられる。前者は、後者に比較して共役ジエン部分のビニル結合含有量の高いものを得ることができるので好ましい。ビニル結合量を高くすることによって加硫ゴムの耐熱性を向上させることができる。 In order to modify the active terminal of the butadiene rubber by reacting with a protected primary amine, the butadiene rubber is preferably one in which at least 10% of the polymer chains have a living property or a pseudo-living property. As such a polymerization reaction having living property, an organic alkali metal compound is used as an initiator, and the conjugated diene compound alone in an organic solvent, a reaction in which a conjugated diene compound and an aromatic vinyl compound are anionically polymerized, or an organic solvent is used. Among them, a reaction in which a conjugated diene compound alone using a catalyst containing a lanthanum series rare earth element compound or a conjugated diene compound and an aromatic vinyl compound are coordinated and anion-polymerized can be mentioned. The former is preferable because it can obtain a conjugated diene moiety having a higher vinyl bond content than the latter. The heat resistance of the vulcanized rubber can be improved by increasing the vinyl bond amount.
 ここで、アニオン重合の開始剤として用いられる有機アルカリ金属化合物としては、有機リチウム化合物が好ましい。有機リチウム化合物としては、特に制限はないが、ヒドロカルビルリチウム及びリチウムアミド化合物が好ましく用いられ、前者のヒドロカルビルリチウムを用いる場合には、重合開始末端にヒドロカルビル基を有し、かつ他方の末端が重合活性部位であるブタジエンゴムが得られる。また、後者のリチウムアミド化合物を用いる場合には、重合開始末端に窒素含有基を有し、他方の末端が重合活性部位であるブタジエンゴムが得られる。 Here, as the organic alkali metal compound used as an initiator of anionic polymerization, an organic lithium compound is preferable. The organic lithium compound is not particularly limited, but hydrocarbyl lithium and a lithium amide compound are preferably used. When the former hydrocarbyl lithium is used, it has a hydrocarbyl group at the polymerization initiation terminal and the other terminal has polymerization activity. The butadiene rubber which is the part is obtained. When the latter lithium amide compound is used, a butadiene rubber having a nitrogen-containing group at the polymerization initiation terminal and the other terminal being a polymerization active site can be obtained.
 前記ヒドロカルビルリチウムとしては、炭素数2~20のヒドロカルビル基を有するものが好ましく、例えばエチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-オクチルリチウム、n-デシルリチウム、フェニルリチウム、2-ナフチルリチウム、2-ブチルフェニルリチウム、4-フェニルブチルリチウム、シクロへキシルリチウム、シクロベンチルリチウム、ジイソプロペニルベンゼンとブチルリチウムとの反応生成物等が挙げられるが、これらの中で、特にn-ブチルリチウムが好適である。 The hydrocarbyllithium preferably has a hydrocarbyl group having 2 to 20 carbon atoms, and is, for example, ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, sec-butyllithium, tert-octyllithium, n-decyl. Examples thereof include lithium, phenyllithium, 2-naphthyllithium, 2-butylphenyllithium, 4-phenylbutyllithium, cyclohexyllithium, cycloventillithium, and reaction products of diisopropenylbenzene and butyllithium. Of these, n-butyllithium is particularly preferable.
 一方、リチウムアミド化合物としては、例えばリチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミド、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジブチルアミド、リチウムジプロピルアミド、リチウムジへプチルアミド、リチウムジへキシルアミド、リチウムジオクチルアミド、リチウムジ-2-エチルへキシルアミド、リチウムジデシルアミド、リチウム-N-メチルピベラジド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミド等が挙げられる。これらの中で、カーボンブラックに対する相互作用効果及び重合開始能の点から、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピぺリジド、リチウムへプタメチレンイミド、リチウムドデカメチレンイミド等の環状リチウムアミドが好ましく、特にリチウムヘキサメチレンイミド及びリチウムピロリジドが好適である。
 これらのリチウムアミド化合物は、一般に、第2級アミンとリチウム化合物とから、予め調製したものを重合に使用することができるが、重合系中(in-Situ)で調製することもできる。また、この重合開始剤の使用量は、好ましくは単量体100g当たり、0.2~20ミリモルの範囲で選定される。
On the other hand, examples of the lithium amide compound include lithium hexamethyleneimide, lithium pyrrolidide, lithium piperidide, lithium heptamethyleneimide, lithium dodecamethyleneimide, lithium dimethylamide, lithium diethylamide, lithium dibutylamide, lithium dipropylamide and lithium di. Heptylamide, lithiumdihexylamide, lithiumdioctylamide, lithiumdi-2-ethylhexylamide, lithiumdidecylamide, lithium-N-methylpyverazide, lithiumethylpropylamide, lithiumethylbutylamide, lithiumethylbenzylamide, lithiummethylphenethylamide, etc. Can be mentioned. Among these, cyclic lithium amides such as lithium hexamethyleneimide, lithium pyrrolidide, lithium piperidide, lithium heptamethyleneimide, and lithium dodecamethyleneimide are preferable from the viewpoint of the interaction effect with carbon black and the ability to initiate polymerization. In particular, lithium hexamethyleneimide and lithium pyrrolidide are suitable.
Generally, these lithium amide compounds are prepared in advance from a secondary amine and a lithium compound and can be used for polymerization, but they can also be prepared in a polymerization system (in-Situ). The amount of the polymerization initiator used is preferably selected in the range of 0.2 to 20 mmol per 100 g of the monomer.
 前記有機リチウム化合物を重合開始剤として用い、アニオン重合によってブタジエンゴムを製造する方法としては、特に制限はなく、従来公知の方法を用いることができる。
 具体的には、反応に不活性な有機溶剤、例えば脂肪族、脂環族、芳香族炭化水素化合物等の炭化水素系溶剤中において、共役ジエン化合物又は共役ジエン化合物と芳香族ビニル化合物を、前記リチウム化合物を重合開始剤として、所望により、用いられるランダマイザーの存在下にアニオン重合させることにより、目的の活性末端を有するブタジエンゴムが得られる。
 また、有機リチウム化合物を重合開始剤として用いた場合には、前述のランタン系列希土類元素化合物を含む触媒を用いた場合に比べ、活性末端を有するブタジエンゴムのみならず、活性末端を有する共役ジエン化合物と芳香族ビニル化合物の共重合体も効率よく得ることができる。
The method for producing butadiene rubber by anionic polymerization using the organolithium compound as a polymerization initiator is not particularly limited, and a conventionally known method can be used.
Specifically, in an organic solvent inert to the reaction, for example, a conjugated diene compound or a conjugated diene compound and an aromatic vinyl compound in a hydrocarbon-based solvent such as an aliphatic, alicyclic, or aromatic hydrocarbon compound, the above-mentioned A butadiene rubber having a desired active terminal can be obtained by anionically polymerizing a lithium compound as a polymerization initiator in the presence of a randomizer to be used, if desired.
Further, when the organic lithium compound is used as the polymerization initiator, not only the butadiene rubber having an active end but also the conjugated diene compound having an active end is compared with the case where the catalyst containing the above-mentioned lanthanum series rare earth element compound is used. And an aromatic vinyl compound copolymer can also be efficiently obtained.
 前記炭化水素系溶剤としては、炭素数3~8のものが好ましく、例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-ヘキサン、シクロヘキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンテン、2-ペンテン、1-へキセン、2-へキセン、ベンゼン、トルエン、キシレン、エチルベンゼン等を挙げることができる。これらは単独で用いてもよく、二種以上を混合して用いてもよい。
 また、溶媒中の単量体濃度は、好ましくは5~50質量%、より好ましくは10~30質量%である。尚、共役ジエン化合物と芳香族ビニル化合物を用いて共重合を行う場合、仕込み単量体混合物中の芳香族ビニル化合物の含量は55質量%以下の範囲が好ましい。
The hydrocarbon solvent is preferably one having 3 to 8 carbon atoms, for example, propane, n-butene, isobutane, n-pentane, isopentane, n-hexane, cyclohexane, propene, 1-butene, isobutene, trans-2. -Butene, cis-2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, benzene, toluene, xylene, ethylbenzene and the like can be mentioned. These may be used alone or in combination of two or more.
The monomer concentration in the solvent is preferably 5 to 50% by mass, more preferably 10 to 30% by mass. When copolymerization is carried out using the conjugated diene compound and the aromatic vinyl compound, the content of the aromatic vinyl compound in the charged monomer mixture is preferably in the range of 55% by mass or less.
 本発明においては、上述のようにして得られた活性末端を有するブタジエンゴムの活性末端に、変性剤として、保護化第1級アミン化合物を反応させることにより、第1級アミン変性ポリブタジエンゴムを製造することができ、保護化第2級アミン化合物を反応させることにより、第2級アミン変性ポリブタジエンゴムを製造することができる。上記保護化第1級アミン化合物としては、保護化第1級アミノ基を有するアルコキシシラン化合物が好適であり、保護化第2級アミン化合物としては、保護化第2級アミノ基を有するアルコキシシラン化合物が好適である。 In the present invention, a primary amine-modified polybutadiene rubber is produced by reacting the active terminal of the butadiene rubber having the active terminal obtained as described above with a protected primary amine compound as a modifier. By reacting the protected secondary amine compound, a secondary amine-modified polybutadiene rubber can be produced. As the protected primary amine compound, an alkoxysilane compound having a protected primary amino group is suitable, and as the protected secondary amine compound, an alkoxysilane compound having a protected secondary amino group. Is preferable.
 前記アミン変性ポリブタジエンゴムを得るための変性剤として用いられる保護化第1級アミノ基を有するアルコキシシラン化合物としては、例えばN,N-ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、1-トリメチルシリル-2,2-ジメトキシ-1-アザ-2-シラシクロペンタン、N,N-ビス(トリメチルシリル)アミノプロピルトリメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルトリエトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルトリメトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルトリエトキシシラン、N,N-ビス(トリメチルシリル)アミノエチルメチルジメトキシシラン及びN,N-ビス(トリメチルシリル)アミノエチルメチルジエトキシシラン等を挙げることができ、好ましくは、N,N-ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン又は1-トリメチルシリル-2,2-ジメトキシ-1-アザ-2-シラシクロペンタンである。 Examples of the alkoxysilane compound having a protected primary amino group used as a modifier for obtaining the amine-modified polybutadiene rubber include N, N-bis (trimethylsilyl) aminopropylmethyldimethoxysilane and 1-trimethylsilyl-2, 2-Dimethoxy-1-aza-2-silacyclopentane, N, N-bis (trimethylsilyl) aminopropyltrimethoxysilane, N, N-bis (trimethylsilyl) aminopropyltriethoxysilane, N, N-bis (trimethylsilyl) Aminopropylmethyldiethoxysilane, N, N-bis (trimethylsilyl) aminoethyltrimethoxysilane, N, N-bis (trimethylsilyl) aminoethyltriethoxysilane, N, N-bis (trimethylsilyl) aminoethylmethyldimethoxysilane and N , N-bis (trimethylsilyl) aminoethylmethyldiethoxysilane, etc., preferably N, N-bis (trimethylsilyl) aminopropylmethyldimethoxysilane, N, N-bis (trimethylsilyl) aminopropylmethyldiethoxy. Silane or 1-trimethylsilyl-2,2-dimethoxy-1-aza-2-silacyclopentane.
 また、前記アミン変性ポリブタジエンゴムを得るための変性剤としては、N-メチル-N-トリメチルシリルアミノプロピル(メチル)ジメトキシシラン、N-メチル-N-トリメチルシリルアミノプロピル(メチル)ジエトキシシラン、N-トリメチルシリル(ヘキサメチレンイミン-2-イル)プロピル(メチル)ジメトキシシラン、N-トリメチルシリル(ヘキサメチレンイミン-2-イル)プロピル(メチル)ジエトキシシラン、N-トリメチルシリル(ピロリジン-2-イル)プロピル(メチル)ジメトキシシラン、N-トリメチルシリル(ピロリジン-2-イル)プロピル(メチル)ジエトキシシラン、N-トリメチルシリル(ピペリジン-2-イル)プロピル(メチル)ジメトキシシラン、N-トリメチルシリル(ピペリジン-2-イル)プロピル(メチル)ジエトキシシラン、N-トリメチルシリル(イミダゾール-2-イル)プロピル(メチル)ジメトキシシラン、N-トリメチルシリル(イミダゾール-2-イル)プロピル(メチル)ジエトキシシラン、N-トリメチルシリル(4,5-ジヒドロイミダゾール-5-イル)プロピル(メチル)ジメトキシシラン、N-トリメチルシリル(4,5-ジヒドロイミダゾール-5-イル)プロピル(メチル)ジエトキシシランなどの保護化第2級アミノ基を有するアルコキシシラン化合物;N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1-メチルエチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-エチリデン-3-(トリエトキシシリル)-1-プロパンアミン、N-(1-メチルプロピリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(4-N,N-ジメチルアミノベンジリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(シクロヘキシリデン)-3-(トリエトキシシリル)-1-プロパンアミンなどのイミノ基を有するアルコキシシラン化合物;3-ジメチルアミノプロピル(トリエトキシ)シラン、3-ジメチルアミノプロピル(トリメトキシ)シラン、3-ジエチルアミノプロピル(トリエトキシ)シラン、3-ジエチルアミノプロピル(トリメトキシ)シラン、2-ジメチルアミノエチル(トリエトキシ)シラン、2-ジメチルアミノエチル(トリメトキシ)シラン、3-ジメチルアミノプロピル(ジエトキシ)メチルシラン、3-ジブチルアミノプロピル(トリエトキシ)シランなどのアミノ基を有するアルコキシシラン化合物なども挙げられる。
 これらの変性剤は、一種単独で用いてもよく、二種以上組み合わせて用いてもよい。またこの変性剤は部分縮合物であってもよい。
 ここで、部分縮合物とは、変性剤のSiOR(Rはアルキル基等)の一部(全部ではない)が縮合によりSiOSi結合になったものをいう。
Examples of the modifier for obtaining the amine-modified polybutadiene rubber include N-methyl-N-trimethylsilylaminopropyl (methyl) dimethoxysilane, N-methyl-N-trimethylsilylaminopropyl (methyl) diethoxysilane, and N-trimethylsilyl. (Hexamethyleneimine-2-yl) propyl (methyl) dimethoxysilane, N-trimethylsilyl (hexamethyleneimin-2-yl) propyl (methyl) diethoxysilane, N-trimethylsilyl (pyrrolidin-2-yl) propyl (methyl) Dimethoxysilane, N-trimethylsilyl (pyrrolidin-2-yl) propyl (methyl) diethoxysilane, N-trimethylsilyl (piperidin-2-yl) propyl (methyl) dimethoxysilane, N-trimethylsilyl (piperidin-2-yl) propyl ( Methyl) diethoxysilane, N-trimethylsilyl (imidazol-2-yl) propyl (methyl) dimethoxysilane, N-trimethylsilyl (imidazol-2-yl) propyl (methyl) diethoxysilane, N-trimethylsilyl (4,5-dihydro) An alkoxysilane compound having a protected secondary amino group such as imidazole-5-yl) propyl (methyl) dimethoxysilane, N-trimethylsilyl (4,5-dihydroimidazol-5-yl) propyl (methyl) diethoxysilane; N- (1,3-dimethylbutylidene) -3- (triethoxysilyl) -1-propaneamine, N- (1-methylethylidene) -3- (triethoxysilyl) -1-propaneamine, N-ethylidene -3- (Triethoxysilyl) -1-propaneamine, N- (1-methylpropanol) -3- (Triethoxysilyl) -1-propaneamine, N- (4-N, N-dimethylaminobenzylidene) An alkoxysilane compound having an imino group such as -3- (triethoxysilyl) -1-propaneamine, N- (cyclohexylidene) -3- (triethoxysilyl) -1-propaneamine; 3-dimethylaminopropyl ( Triethoxy) silane, 3-dimethylaminopropyl (trimethoxy) silane, 3-diethylaminopropyl (triethoxy) silane, 3-diethylaminopropyl (trimethoxy) silane, 2-dimethylaminoethyl (triethoxy) silane, 2-dimethylaminoethyl (trimethoxy) Silane, 3-dimethylaminopropyl (diethoxy) methylsilane , An alkoxysilane compound having an amino group such as 3-dibutylaminopropyl (triethoxy) silane, and the like can also be mentioned.
These denaturants may be used alone or in combination of two or more. Further, this modifier may be a partial condensate.
Here, the partial condensate refers to a product in which a part (not all) of the modifier SiOR (R is an alkyl group or the like) is formed into a SiOSi bond by condensation.
 前記変性剤による変性反応において、該変性剤の使用量は、好ましくは0.5~200mmol/kg・ブタジエンゴムである。同使用量は、さらに好ましくは1~100mmol/kg・ブタジエンゴムであり、特に好ましくは2~50mmol/kg・ブタジエンゴムである。ここで、ブタジエンゴムとは、製造時又は製造後、添加される老化防止剤等の添加剤を含まないブタジエンゴムの質量を意味する。変性剤の使用量を前記範囲にすることによって、充填剤、特にカーボンブラックの分散性に優れ、加硫ゴムの耐破壊特性及び低発熱性が改良される。
 なお、前記変性剤の添加方法は、特に制限されず、一括して添加する方法、分割して添加する方法、あるいは、連続的に添加する方法等が挙げられるが、一括して添加する方法が好ましい。
 また、変性剤は、重合開始末端や重合終了末端以外に重合体主鎖や側鎖のいずれに結合させることもできるが、重合体末端からエネルギー消失を抑制して低発熱性を改良しうる点から、重合開始末端あるいは重合終了末端に導入されていることが好ましい。
In the modification reaction with the modifier, the amount of the modifier used is preferably 0.5 to 200 mmol / kg · butadiene rubber. The amount used is more preferably 1 to 100 mmol / kg butadiene rubber, and particularly preferably 2 to 50 mmol / kg butadiene rubber. Here, the butadiene rubber means the mass of the butadiene rubber which does not contain additives such as an antiaging agent which is added at the time of production or after production. By setting the amount of the modifier used within the above range, the dispersibility of the filler, particularly carbon black, is excellent, and the fracture resistance and low heat generation of the vulcanized rubber are improved.
The method of adding the denaturant is not particularly limited, and examples thereof include a method of adding the denaturant all at once, a method of adding the denaturant in divided portions, a method of adding the denaturant continuously, and the like. preferable.
Further, the modifier can be bonded to any of the polymer main chain and side chain other than the polymerization start end and the polymerization end end, but the point that energy loss can be suppressed from the polymer end and the low heat generation property can be improved. Therefore, it is preferably introduced at the polymerization initiation terminal or the polymerization termination terminal.
 また、前記変性剤として用いる保護化第1級アミノ基を有するアルコキシシラン化合物が関与する縮合反応を促進するために、縮合促進剤を用いることが好ましい。
 このような縮合促進剤としては、第三アミノ基を含有する化合物、又は周期律表(長周期型)の3族、4族、5族、12族、13族、14族及び15族のうちのいずれかの属する元素を一種以上含有する有機化合物を用いることができる。さらに縮合促進剤として、チタン(Ti)、ジルコニウム(Zr)、ビスマス(Bi)、アルミニウム(Al)、及びスズ(Sn)からなる群から選択される少なくとも一種以上の金属を含有する、アルコキシド、カルボン酸塩、又はアセチルアセトナート錯塩であることが好ましい。
 ここで用いる縮合促進剤は、前記変性反応前に添加することもできるが、変性反応の途中及び又は終了後に変性反応系に添加することが好ましい。変性反応前に添加した場合、活性末端との直接反応が起こり、活性末端に保護された第一アミノ基を有するヒドロカルビロキシ基が導入されない場合がある。
 縮合促進剤の添加時期としては、通常、変性反応開始5分~5時間後、好ましくは変性反応開始15分~1時間後である。
Further, it is preferable to use a condensation accelerator in order to promote a condensation reaction involving an alkoxysilane compound having a protected primary amino group used as the modifier.
Examples of such a condensation accelerator include compounds containing a third amino group, or among Group 3, Group 4, Group 5, Group 12, Group 13, Group 14, and Group 15 of the periodic table (long-period type). An organic compound containing one or more of the elements to which any of the above belongs can be used. Further, as a condensation accelerator, an alkoxide or a carboxylic compound containing at least one metal selected from the group consisting of titanium (Ti), zirconium (Zr), bismuth (Bi), aluminum (Al), and tin (Sn). It is preferably a acid salt or an acetylacetonate complex salt.
The condensation accelerator used here can be added before the modification reaction, but is preferably added to the modification reaction system during and after the modification reaction. When added before the denaturation reaction, a direct reaction with the active terminal may occur and a hydrocarbyloxy group having a protected primary amino group at the active terminal may not be introduced.
The time for adding the condensation accelerator is usually 5 minutes to 5 hours after the start of the denaturation reaction, preferably 15 minutes to 1 hour after the start of the denaturation reaction.
 縮合促進剤としては、具体的には、例えば、テトラメトキシチタニウム、テトラエトキシチタニウム、テトラ-n-プロポキシチタニウム、テトライソプロポキシチタニウム、テトラ-n-ブトキシチタニウム、テトラ-n-ブトキシチタニウムオリゴマー、テトラ-sec-ブトキシチタニウム、テトラ-tert-ブトキシチタニウム、テトラ(2-エチルヘキシル)チタニウム、ビス(オクタンジオレート)ビス(2-エチルヘキシル)チタニウム、テトラ(オクタンジオレート)チタニウム、チタニウムラクテート、チタニウムジプロポキシビス(トリエタノールアミネート)、チタニウムジブトキシビス(トリエタノールアミネート)、チタニウムトリブトキシステアレート、チタニウムトリプロポキシステアレート、チタニウムエチルヘキシルジオレート、チタニウムトリプロポキシアセチルアセトネート、チタニウムジプロポキシビス(アセチルアセトネート)、チタニウムトリプロポキシエチルアセトアセテート、チタニウムプロポキシアセチルアセトネートビス(エチルアセトアセテート)、チタニウムトリブトキシアセチルアセトネート、チタニウムジブトキシビス(アセチルアセトネート)、チタニウムトリブトキシエチルアセトアセテート、チタニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)、チタニウムテトラキス(アセチルアセトネート)、チタニウムジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2-エチルヘキサノエート)チタニウムオキサイド、ビス(ラウレート)チタニウムオキサイド、ビス(ナフテネート)チタニウムオキサイド、ビス(ステアレート)チタニウムオキサイド、ビス(オレエート)チタニウムオキサイド、ビス(リノレート)チタニウムオキサイド、テトラキス(2-エチルヘキサノエート)チタニウム、テトラキス(ラウレート)チタニウム、テトラキス(ナフテネート)チタニウム、テトラキス(ステアレート)チタニウム、テトラキス(オレエート)チタニウム、テトラキス(リノレート)チタニウム、テトラキス(2-エチル-1,3-ヘキサンジオラト)チタン等のチタニウムを含む化合物を挙げることができる。 Specific examples of the condensation accelerator include tetramethoxytitanium, tetraethoxytitanium, tetra-n-propoxytitanium, tetraisopropoxytitanium, tetra-n-butoxytitanium, tetra-n-butoxytitanium oligomer, and tetra-. sec-butoxytitanium, tetra-tert-butoxytitanium, tetra (2-ethylhexyl) titanium, bis (octanediolate) bis (2-ethylhexyl) titanium, tetra (octanediolate) titanium, titanium lactate, titanium dipropoxybis ( (Triethanolaminate), Titanium dibutoxybis (Triethanolaminate), Titanium tributoxystearate, Titanium tripropoxystearate, Titanium ethylhexyl diolate, Titanium tripropoxyacetylacetonate, Titanium dipropoxybis (acetylacetonate) , Titanium tripropoxyethyl acetoacetate, titanium propoxyacetyl acetoacetate bis (ethyl acetoacetate), titanium tributoxyacetyl acetonate, titanium dibutoxybis (acetyl acetonate), titanium tributoxyethyl acetoacetate, titanium butoxy acetyl acetoate bis (Ethylacetacetate), Titanium Tetrax (Acetylacetonate), Titanium Diacetylacetonate Bis (Ethylacetacetate), Bis (2-ethylhexanoate) Titanium Oxide, Bis (Laurate) Titanium Oxide, Bis (Naftenate) Titanium Oxide , Bis (steerate) titanium oxide, bis (oleate) titanium oxide, bis (linolate) titanium oxide, tetrakis (2-ethylhexanoate) titanium, tetrakis (laurate) titanium, tetrakis (naphthenate) titanium, tetrakis (steerate) ) Titanium, tetrakis (oleate) titanium, tetrakis (linolate) titanium, tetrakis (2-ethyl-1,3-hexanediorat) titanium and other titanium-containing compounds can be mentioned.
 また、例えば、トリス(2-エチルヘキサノエート)ビスマス、トリス(ラウレート)ビスマス、トリス(ナフテネート)ビスマス、トリス(ステアレート)ビスマス、トリス(オレエート)ビスマス、トリス(リノレート)ビスマス、テトラエトキシジルコニウム、テトラ-n-プロポキシジルコニウム、テトライソプロポキシジルコニウム、テトラ-n-ブトキシジルコニウム、テトラ-sec-ブトキシジルコニウム、テトラ-tert-ブトキシジルコニウム、テトラ(2-エチルヘキシル)ジルコニウム、ジルコニウムトリブトキシステアレート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムテトラキス(アセチルアセトネート)、ジルコニウムジアセチルアセトネートビス(エチルアセトアセテート)、ビス(2-エチルヘキサノエート)ジルコニウムオキサイド、ビス(ラウレート)ジルコニウムオキサイド、ビス(ナフテネート)ジルコニウムオキサイド、ビス(ステアレート)ジルコニウムオキサイド、ビス(オレエート)ジルコニウムオキサイド、ビス(リノレート)ジルコニウムオキサイド、テトラキス(2-エチルヘキサノエート)ジルコニウム、テトラキス(ラウレート)ジルコニウム、テトラキス(ナフテネート)ジルコニウム、テトラキス(ステアレート)ジルコニウム、テトラキス(オレエート)ジルコニウム、テトラキス(リノレート)ジルコニウム等のビスマスまたはジルコニウムを含む化合物を挙げることができる。 Also, for example, tris (2-ethylhexanoate) bismus, tris (laurate) bismus, tris (naphthenate) bismus, tris (steerate) bismus, tris (oleate) bismus, tris (linolate) bismus, tetraethoxyzirconium, Tetra-n-propoxyzirconium, tetraisopropoxyzirconium, tetra-n-butoxyzirconium, tetra-sec-butoxyzirconium, tetra-tert-butoxyzirconium, tetra (2-ethylhexyl) zirconium, zirconium tributoxystearate, zirconium tributoxy Acetylacetonate, zirconium dibutoxybis (acetylacetonate), zirconium tributoxyethylacetate, zirconium butoxyacetylacetonate bis (ethylacetate acetate), zirconium tetrakis (acetylacetonate), zirconium diacetylacetonate bis (ethylacetacetate) ), Bis (2-ethylhexanoate) zirconium oxide, Bis (laurate) zirconium oxide, Bis (naphthenate) zirconium oxide, Bis (steerate) zirconium oxide, Bis (oleate) zirconium oxide, Bis (linolate) zirconium oxide, Compounds containing bismuth or zirconium such as tetrakis (2-ethylhexanoate) zirconium, tetrakis (laurate) zirconium, tetrakis (naphthenate) zirconium, tetrakis (steerate) zirconium, tetrakis (oleate) zirconium, tetrakis (linolate) zirconium. Can be mentioned.
 さらに、例えば、トリエトキシアルミニウム、トリ-n-プロポキシアルミニウム、トリイソプロポキシアルミニウム、トリ-n-ブトキシアルミニウム、トリ-sec-ブトキシアルミニウム、トリ-tert-ブトキシアルミニウム、トリ(2-1エチルヘキシル)アルミニウム、アルミニウムジブトキシステアレート、アルミニウムジブトキシアセチルアセトネート、アルミニウムブトキシビス(アセチルアセトネート)、アルミニウムジブトキシエチルアセトアセテート、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、トリス(2-エチルヘキサノエート)アルミニウム、トリス(ラウレート)アルミニウム、トリス(ナフテネート)アルミニウム、トリス(ステアレート)アルミニウム、トリス(オレエート)アルミニウム、トリス(リノレート)アルミニウム等のアルミニウムを含む化合物を挙げることができる。 Further, for example, triethoxyaluminum, tri-n-propoxyaluminum, triisopropoxyaluminum, tri-n-butoxyaluminum, tri-sec-butoxyaluminum, tri-tert-butoxyaluminum, tri (2-1 ethylhexyl) aluminum, Aluminum dibutoxystearate, aluminum dibutoxyacetylacetonate, aluminum butoxybis (acetylacetonate), aluminum dibutoxyethylacetate, aluminumtris (acetylacetonate), aluminumtris (ethylacetacetate), tris (2-ethyl) Examples thereof include compounds containing aluminum such as hexanoate) aluminum, tris (laurate) aluminum, tris (naphthenate) aluminum, tris (steerate) aluminum, tris (oleate) aluminum, and tris (linolate) aluminum.
 上述の縮合促進剤の内、チタン化合物が好ましく、チタン金属のアルコキシド、チタン金属のカルボン酸塩、又はチタン金属のアセチルアセトナート錯塩が特に好ましい。
 この縮合促進剤の使用量としては、前記化合物のモル数が、反応系内に存在するヒドロカルビロキシ基総量に対するモル比として、0.1~10となることが好ましく、0.5~5が特に好ましい。縮合促進剤の使用量を前記範囲にすることによって縮合反応が効率よく進行する。
 なお、縮合反応時間は、通常、5分~10時間、好ましくは15分~5時間程度である。縮合反応時間を前記範囲にすることによって縮合反応を円滑に完結することができる。
 また、縮合反応時の反応系の圧力は、通常、0.01~20MPa、好ましくは0.05~10MPaである。
Among the above-mentioned condensation accelerators, a titanium compound is preferable, and a titanium metal alkoxide, a titanium metal carboxylate, or a titanium metal acetylacetonate complex salt is particularly preferable.
The amount of the condensation accelerator used is preferably 0.1 to 10 as the molar ratio of the number of moles of the compound to the total amount of hydrocarbyloxy groups present in the reaction system, preferably 0.5 to 5. Especially preferable. By setting the amount of the condensation accelerator to be used within the above range, the condensation reaction proceeds efficiently.
The condensation reaction time is usually about 5 minutes to 10 hours, preferably about 15 minutes to 5 hours. By setting the condensation reaction time within the above range, the condensation reaction can be completed smoothly.
The pressure of the reaction system during the condensation reaction is usually 0.01 to 20 MPa, preferably 0.05 to 10 MPa.
 前記加硫ゴムの低発熱性及び高温耐軟化性を向上する観点からは、前記ゴム組成物のゴム成分中の変性ゴムの含有量は、10~90質量%であることが好ましく、20~80質量%がより好ましく、30~70質量%が更に好ましい。 From the viewpoint of improving the low heat generation property and the high temperature softening resistance of the vulcanized rubber, the content of the modified rubber in the rubber component of the rubber composition is preferably 10 to 90% by mass, preferably 20 to 80%. The mass% is more preferable, and 30 to 70% by mass is further preferable.
(充填剤)
 前記加硫ゴムに用いられるゴム組成物は、さらに、充填剤を含むことができる。前記充填剤を含むことで、加硫ゴムの剛性を高め、高温での耐軟化性を得ることができる。
 前記充填剤としては、例えば、アルミナ、チタニア、シリカ等の金属酸化物、クレー、炭酸カルシウム及びカーボンブラック等補強性充填剤が挙げられ、シリカ及びカーボンブラックが好ましく用いられる。タイヤ内の空気が抜け、サイド補強ゴム層、ビードフィラー等が撓んで、これらの部位を構成する加硫ゴムが発熱した場合でも、加硫ゴムの発熱を抑制する観点から、低発熱性の充填剤を用いることが好ましい。
(filler)
The rubber composition used for the vulcanized rubber can further contain a filler. By including the filler, the rigidity of the vulcanized rubber can be increased and softening resistance at a high temperature can be obtained.
Examples of the filler include metal oxides such as alumina, titania and silica, and reinforcing fillers such as clay, calcium carbonate and carbon black, and silica and carbon black are preferably used. Even if the air inside the tire is released and the side reinforcing rubber layer, bead filler, etc. are bent and the vulcanized rubber that constitutes these parts generates heat, low heat generation filling is performed from the viewpoint of suppressing the heat generation of the vulcanized rubber. It is preferable to use an agent.
 ここで、前記カーボンブラックは、DBP吸油量(ジブチルフタレート吸油量)が120~180mL/100gであることが好ましい。
 DBP吸油量は、カーボンブラックの凝集体構造の発達度合(「ストラクチャー」と称することがある)を表す指標として用いられ、DBP吸油量が大きいほど凝集体が大きくなる傾向にある。本明細書においては、DBP吸油量が120mL/100g以上であるカーボンブラックを、高ストラクチャーのカーボンブラックと称する。
 DBP吸油量が120mL/100g以上であることで、加硫ゴムの引張強度及び耐圧縮性を向上し、タイヤの高温軟化抑制性を向上することができ、DBP吸油量が180mL/100g以下であることで、発熱を抑制することができ、高温軟化抑制性を向上することができる。
 同様の観点から、前記カーボンブラックのDBP吸油量は、122~170mL/100gであることがより好ましく、125~165mL/100gであることがさらに好ましい。
Here, the carbon black preferably has a DBP oil absorption amount (dibutyl phthalate oil absorption amount) of 120 to 180 mL / 100 g.
The DBP oil absorption amount is used as an index showing the degree of development (sometimes referred to as “structure”) of the aggregate structure of carbon black, and the larger the DBP oil absorption amount, the larger the aggregate tends to be. In the present specification, carbon black having a DBP oil absorption of 120 mL / 100 g or more is referred to as high-structured carbon black.
When the DBP oil absorption amount is 120 mL / 100 g or more, the tensile strength and compression resistance of the vulcanized rubber can be improved, the high temperature softening inhibitory property of the tire can be improved, and the DBP oil absorption amount is 180 mL / 100 g or less. As a result, heat generation can be suppressed and high-temperature softening inhibitory property can be improved.
From the same viewpoint, the DBP oil absorption amount of the carbon black is more preferably 122 to 170 mL / 100 g, and further preferably 125 to 165 mL / 100 g.
 さらに、前記カーボンブラックは、大粒径かつ高ストラクチャーのカーボンブラックを含むことが好ましい。一般に、カーボンブラックは、粒径が大きくなるほどストラクチャーが低くなるものであるが、大粒径であっても高ストラクチャーのカーボンブラックを用いることで、発熱性をより抑制し、かつ引張強度及び圧縮強度をより向上することができるので、ランフラットタイヤの高温での耐軟化性をより向上することができる。
 具体的には、前記カーボンブラックの窒素吸着比表面積が15~39m/gであり、かつ、DBP吸油量が120~180mL/100gであることが好ましい。
Further, the carbon black preferably contains carbon black having a large particle size and a high structure. In general, carbon black has a lower structure as the particle size increases. However, by using carbon black with a high structure even if the particle size is large, heat generation is further suppressed, and tensile strength and compressive strength are further suppressed. Therefore, the softening resistance of the run-flat tire at a high temperature can be further improved.
Specifically, it is preferable that the carbon black has a specific surface area of nitrogen adsorption of 15 to 39 m 2 / g and a DBP oil absorption of 120 to 180 mL / 100 g.
 さらにまた、前記カーボンブラックは、トルエン着色透過度が50%以上であることが好ましい。
 トルエン着色透過度が50%以上であることで、カーボンブラック表面に存在するタール分、特に芳香族成分が抑制され、ゴム成分を充分に補強することができ、加硫ゴムの耐摩耗性等を向上することができる。カーボンブラックのトルエン着色透過度は、60%以上であることがより好ましく、75%以上であることがさらに好ましい。カーボンブラックのトルエン着色透過度は100%でもよいが、通常、100%未満である。
 なお、トルエン着色透過度は、JIS K 6218:1997の第8項B法に記載の方法により測定され、純粋なトルエンとの百分率で表示される。
Furthermore, the carbon black preferably has a toluene coloring transmittance of 50% or more.
When the toluene coloring permeability is 50% or more, the tar content present on the carbon black surface, especially the aromatic component, can be suppressed, the rubber component can be sufficiently reinforced, and the wear resistance of the vulcanized rubber can be improved. Can be improved. The toluene coloring transmittance of carbon black is more preferably 60% or more, and further preferably 75% or more. The toluene coloring permeability of carbon black may be 100%, but is usually less than 100%.
The toluene coloring permeability is measured by the method described in Item 8B of JIS K 6218: 1997, and is displayed as a percentage with pure toluene.
 前記ゴム組成物中のカーボンブラックの含有量は、加硫ゴムの高温での耐軟化性をより向上し、ランフラット耐久性をより向上する観点から、ゴム成分100質量部に対して、30~100質量部であることが好ましく、35~80質量部であることがより好ましく、40~70質量部であることが更に好ましい。 The content of carbon black in the rubber composition is 30 to 30 parts by mass with respect to 100 parts by mass of the rubber component from the viewpoint of further improving the softening resistance of the vulcanized rubber at a high temperature and further improving the run flat durability. It is preferably 100 parts by mass, more preferably 35 to 80 parts by mass, and even more preferably 40 to 70 parts by mass.
 前記シリカの種類は、特に限定されないが、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、コロイダルシリカ等が挙げられる。シリカは、市販品でもよく、例えば、東ソー・シリカ株式会社のNIPSIL AQ(商品名)、ローディア社のZeosil 1115MP(商品名)、エボニックデグッサ社のVN-3(商品名)として、入手することができる。
 また、充填剤としてシリカを用いる場合、シリカ-ゴム成分間の結合を強化して補強性を高めた上で、ゴム組成物中のシリカの分散性を向上させるために、ゴム組成物は、更に、シランカップリング剤を含んでいてもよい。
The type of silica is not particularly limited, and examples thereof include wet silica (hydrous silicic acid), dry silica (silicic anhydride), and colloidal silica. Silica may be a commercially available product, and may be obtained, for example, as NIPSIL AQ (trade name) of Tosoh Silica Co., Ltd., Zeosil 1115MP (trade name) of Rhodia, or VN-3 (trade name) of Evonik Degussa. Can be done.
When silica is used as the filler, the rubber composition is further used in order to strengthen the bond between the silica and the rubber component to enhance the reinforcing property and to improve the dispersibility of the silica in the rubber composition. , Silica coupling agent may be contained.
 なお、前記ゴム組成物において、前記充填剤は、1種単独で用いてもよいし、2種以上を混合して用いることもできる。また、前記充填剤は、カーボンブラック及びシリカのいずれか一方を含んでもよいし、両方を含んでもよいが、少なくともカーボンブラックを含むことが好ましく、カーボンブラックを1種単独で、又は2種以上を混合して用いることがより好ましい。 In the rubber composition, the filler may be used alone or in combination of two or more. Further, the filler may contain either one of carbon black and silica, or may contain both, but it is preferable that the filler contains at least carbon black, and one type of carbon black alone or two or more types of carbon black is used. It is more preferable to mix and use.
 また、前記ゴム組成物中の充填剤の含有量(全合計量)は、転がり抵抗性をより改善し、ランフラット耐久性をより向上する観点から、ゴム成分100質量部に対して、30~100質量部であることが好ましく、30~100質量部であることが好ましく、35~80質量部であることがより好ましく、40~70質量部であることが更に好ましい。 The content of the filler in the rubber composition (total amount) is 30 to 30 parts by mass with respect to 100 parts by mass of the rubber component from the viewpoint of further improving rolling resistance and further improving run-flat durability. It is preferably 100 parts by mass, preferably 30 to 100 parts by mass, more preferably 35 to 80 parts by mass, and even more preferably 40 to 70 parts by mass.
(加硫剤)
 前記加硫ゴムに用いられるゴム組成物は、さらに加硫剤を含むことができる。
 前記加硫剤は、特に制限はなく、通常、硫黄を用い、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄等を挙げることができる。
 さらに、前記ゴム組成物は、加硫促進剤の合計の含有量が、加硫剤の合計の含有量よりも少ないことが好ましい。より具体的には、後述する加硫促進剤の合計の含有量(d)と、前記加硫剤の合計の含有量(c)との質量比(d/c)が、0.55~0.99であることが好ましい。
(Vulcanizing agent)
The rubber composition used for the vulcanized rubber can further contain a vulcanizing agent.
The vulcanizing agent is not particularly limited, and sulfur is usually used, and examples thereof include powdered sulfur, precipitated sulfur, colloidal sulfur, surface-treated sulfur, and insoluble sulfur.
Further, it is preferable that the total content of the vulcanization accelerator is smaller than the total content of the vulcanization agent in the rubber composition. More specifically, the mass ratio (d / c) of the total content (d) of the vulcanization accelerator described later and the total content (c) of the vulcanization agent is 0.55 to 0. It is preferably .99.
 一般に、加硫ゴムの網目構造におけるモノスルフィド結合及びジスルフィド結合の割合を高めるには、加硫促進剤の合計の含有量を、加硫剤の合計の含有量よりも多くするが、本発明では、反対に、加硫促進剤の合計の含有量を、加硫剤の合計の含有量よりも少なくすることが好ましい。更に、チウラム系の加硫促進剤を用い、モノスルフィド結合及びジスルフィド結合の割合が多い加硫ゴムは、耐熱性に優れる一方で、機械的強度が低下すると言われることがある。しかし、本発明においては、高温での耐軟化性と機械的強度を両立することができる。かかる理由は定かではないが、本発明では、加硫促進剤として、テトラベンジルチウラムジスルフィドを含むことに起因して、高温での耐軟化性と機械的強度を両立することができると考えられる。
 同様の観点から、加硫促進剤の合計の含有量(d)と、加硫剤の合計の含有量(c)との質量比(d/c)は、タイヤのランフラット耐久性をより向上する観点から、0.55~0.95であることがより好ましく、0.55~0.90であることがさらに好ましく、0.55~0.85であることが特に好ましい。
Generally, in order to increase the proportion of monosulfide bonds and disulfide bonds in the network structure of vulcanized rubber, the total content of the vulcanization accelerator is made larger than the total content of the vulcanizer, but in the present invention. On the contrary, it is preferable that the total content of the vulcanization accelerator is smaller than the total content of the vulcanization agent. Further, it is sometimes said that a vulcanized rubber using a thiuram-based vulcanization accelerator and having a large proportion of monosulfide bonds and disulfide bonds has excellent heat resistance but a decrease in mechanical strength. However, in the present invention, both softening resistance at high temperature and mechanical strength can be achieved at the same time. Although the reason for this is not clear, it is considered that the present invention can achieve both softening resistance at high temperature and mechanical strength due to the inclusion of tetrabenzyl thiuram disulfide as a vulcanization accelerator.
From the same viewpoint, the mass ratio (d / c) of the total content (d) of the vulcanization accelerator and the total content (c) of the vulcanization agent further improves the run-flat durability of the tire. From the viewpoint of the above, it is more preferably 0.55 to 0.95, further preferably 0.55 to 0.90, and particularly preferably 0.55 to 0.85.
 なお、前記ゴム組成物中の加硫剤の含有量は、ゴム成分100質量部に対して、2~12質量部が好ましい。この含有量が2質量部以上であることで加硫を充分に進行させることができ、12質量部以下をとすることで、加硫ゴムの耐老化性を抑制することができる。
 同様の観点から、前記ゴム組成物中の加硫剤の含有量は、ゴム成分100質量部に対して、3~10質量部であることがより好ましく、4~8質量部であることがさらに好ましい。
The content of the vulcanizing agent in the rubber composition is preferably 2 to 12 parts by mass with respect to 100 parts by mass of the rubber component. When the content is 2 parts by mass or more, vulcanization can be sufficiently proceeded, and when it is 12 parts by mass or less, the aging resistance of the vulcanized rubber can be suppressed.
From the same viewpoint, the content of the vulcanizing agent in the rubber composition is more preferably 3 to 10 parts by mass and further preferably 4 to 8 parts by mass with respect to 100 parts by mass of the rubber component. preferable.
(加硫促進剤)
 前記ゴム組成物は、さらに加硫促進剤を含むことができ、該加硫促進剤がチウラム系加硫促進剤を含有することが好ましい。
 既述のように、本発明の加硫ゴムは、モノ/ジスルフィド結合量が多く、加硫ゴムの耐熱性に優れる。従来、モノ/ジスルフィド結合量の多さに伴い、加硫ゴムは機械的強度が低下すると言われてきたことに反し、本発明の加硫ゴムは機械的強度を保ち、高温で軟化しにくい。これは、ゴム組成物が、加硫促進剤として、チウラム系加硫促進剤を含むことが有効であると考えられる。
(Vulcanization accelerator)
The rubber composition can further contain a vulcanization accelerator, and it is preferable that the vulcanization accelerator contains a sulfur-based vulcanization accelerator.
As described above, the vulcanized rubber of the present invention has a large amount of mono / disulfide bonds and is excellent in heat resistance of the vulcanized rubber. Conventionally, it has been said that the mechanical strength of vulcanized rubber decreases as the amount of mono / disulfide bond increases, whereas the vulcanized rubber of the present invention maintains mechanical strength and is difficult to soften at high temperatures. It is considered that it is effective that the rubber composition contains a thiuram-based vulcanization accelerator as a vulcanization accelerator.
 タイヤの転がり抵抗性及びランフラット耐久性をより向上させる観点から、前記チウラム系加硫促進剤のゴム組成物中の含有量(a)は、ゴム成分100質量部に対して1.0~2.0質量部であることが好ましい。
 前記チウラム系加硫促進のゴム組成物中の含有量(a)が、ゴム成分100質量部に対して1.0質量部以上であることで、十分なランフラット耐久性が得られ、含有量(a)が2.0質量部以下であることで、ゴム焼けが生じにくく、加硫ゴムの機械的強度の低下を抑制することができる。
 タイヤの転がり抵抗性及びランフラット耐久性をより向上する観点から、前記チウラム系加硫促進剤の含有量(a)は、前記ゴム成分100質量部に対して、1.2~1.8質量部であることがより好ましく、1.3~1.7質量部であることがさらに好ましい。
From the viewpoint of further improving the rolling resistance and run-flat durability of the tire, the content (a) of the thiuram-based vulcanization accelerator in the rubber composition is 1.0 to 2 with respect to 100 parts by mass of the rubber component. It is preferably 0.0 parts by mass.
When the content (a) in the chiuram-based vulcanization-promoting rubber composition is 1.0 part by mass or more with respect to 100 parts by mass of the rubber component, sufficient runflat durability can be obtained, and the content can be obtained. When (a) is 2.0 parts by mass or less, rubber burning is unlikely to occur, and a decrease in mechanical strength of the vulcanized rubber can be suppressed.
From the viewpoint of further improving the rolling resistance and run-flat durability of the tire, the content (a) of the thiuram-based vulcanization accelerator is 1.2 to 1.8 mass by mass with respect to 100 parts by mass of the rubber component. It is more preferably parts, and even more preferably 1.3 to 1.7 parts by mass.
 また、一般的には、加硫剤を少なく用い、チウラム系加硫促進剤を多く用いてモノスルフィド結合及びジスルフィド結合の割合を高める技術が用いられるが、本発明においては、加硫剤を多く用い、チウラム系加硫促進剤を少なく用いて、モノスルフィド結合及びジスルフィド結合の割合を高めることもできる。
 具体的には、チウラム系加硫促進剤の含有量(a)と、前記加硫剤の含有量(c)との質量比(a/c)が、0.22~0.32であることが好ましい。質量比(A/c)が上記範囲であることで、加硫ゴムが転がり抵抗性及びランフラット耐久性に優れる。
 同様の観点から、前記質量比(a/c)は、0.25~0.32であることがより好ましく、0.27~0.32であることがさらに好ましい。
In addition, generally, a technique is used in which a small amount of vulcanizing agent is used and a large amount of sulfurum-based vulcanization accelerator is used to increase the ratio of monosulfide bonds and disulfide bonds. However, in the present invention, a large amount of vulcanizing agent is used. It is also possible to increase the proportion of monosulfide bonds and disulfide bonds by using less sulfur-based vulcanization accelerator.
Specifically, the mass ratio (a / c) of the content (a) of the thiuram-based vulcanization accelerator and the content (c) of the vulcanizing agent is 0.22 to 0.32. Is preferable. When the mass ratio (A / c) is in the above range, the vulcanized rubber is excellent in rolling resistance and run-flat durability.
From the same viewpoint, the mass ratio (a / c) is more preferably 0.25 to 0.32, and even more preferably 0.27 to 0.32.
 前記チウラム系加硫促進剤については、特に限定はされず、要求される加硫ゴムの性能に応じて適宜選択することができる。としては、テトラベンジルチウラムジスルフィド、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラキス(2-エチルヘキシル)チウラムジスルフィド、テトラメチルチウラムモノスルフィド、ジペンタメチレンチウラムテトラスルフィド等があげられる。
 ただし、前記加硫促進剤の合計の含有量を、前記加硫剤の合計の含有量よりも少なくする成分組成とする場合、モノスルフィド結合とジスルフィド結合の割合を増やして、加硫ゴムの高温での耐軟化性を上げながら、機械的強度も向上させる観点から、チウラム系加硫促進剤が、少なくともテトラベンジルチウラムジスルフィドを含むことが好ましい。
The thiuram-based vulcanization accelerator is not particularly limited, and can be appropriately selected depending on the required performance of the vulcanized rubber. Examples thereof include tetrabenzyl thiuram disulfide, tetramethyl thiuram disulfide, tetraethyl thiuram disulfide, tetrakis (2-ethylhexyl) thiuram disulfide, tetramethyl thiuram monosulfide, dipentamethylene thiuram tetrasulfide and the like.
However, when the total content of the vulcanization accelerator is set to be smaller than the total content of the vulcanizing agent, the ratio of monosulfide bond and disulfide bond is increased to increase the high temperature of the vulcanized rubber. From the viewpoint of improving the mechanical strength while increasing the softening resistance in the above, the sulfurum-based vulcanization accelerator preferably contains at least tetrabenzylthiuram disulfide.
 前記加硫促進剤については、上述したチウラム系加硫促進剤に加えて、スルフェンアミド系加硫促進剤を含有することが好ましい。
 前記加硫促進剤中に、スルフェンアミド系加硫促進剤を含むことで、タイヤのランフラット耐久性をより向上することができる。
 スルフェンアミド系加硫促進剤は、前記チウラム系加硫促進剤の含有量(a)と、ゴム組成物中のスルフェンアミド系加硫促進剤の含有量(b)の質量比(a/b)が0.60~1.25となる範囲で用いることが好ましい。前記質量比(a/b)が0.60以上であることで、加硫ゴムの高温時の耐軟化性が得られ易く、タイヤは転がり抵抗性及びランフラット耐久性に優れる。また、質量比(a/b)が1.25以下であることで破壊特性を確保することができる。
 同様の観点から、前記チウラム系加硫促進剤の含有量(a)と、ゴム組成物中のスルフェンアミド系加硫促進剤の含有量(b)の質量比(a/b)は、0.62~1.22であることが好ましく、0.64~1.20であることがより好ましい。
The vulcanization accelerator preferably contains a sulfenamide-based vulcanization accelerator in addition to the thiuram-based vulcanization accelerator described above.
By including the sulfenamide-based vulcanization accelerator in the vulcanization accelerator, the run-flat durability of the tire can be further improved.
The sulfenamide-based vulcanization accelerator is a mass ratio (a /) of the content (a) of the thiuram-based vulcanization accelerator and the content (b) of the sulfenamide-based vulcanization accelerator in the rubber composition. It is preferable to use b) in the range of 0.60 to 1.25. When the mass ratio (a / b) is 0.60 or more, the softening resistance of the vulcanized rubber at a high temperature can be easily obtained, and the tire has excellent rolling resistance and run-flat durability. Further, when the mass ratio (a / b) is 1.25 or less, the fracture characteristics can be ensured.
From the same viewpoint, the mass ratio (a / b) of the content (a) of the thiuram-based vulcanization accelerator and the content (b) of the sulfenamide-based vulcanization accelerator in the rubber composition is 0. It is preferably .62 to 1.22, and more preferably 0.64 to 1.20.
 より具体的には、前記ゴム組成物中のスルフェンアミド系加硫促進剤の含有量は、前記ゴム成分100質量部に対して0.80~3.33質量部であることが好ましい。スルフェンアミド系加硫促進剤の含有量は、転がり抵抗性及びランフラット耐久性をより向上する観点から、ゴム成分100質量部に対して1.00~3.00質量部であることがより好ましく、1.10~2.80質量部であることが更に好ましい。 More specifically, the content of the sulfenamide-based vulcanization accelerator in the rubber composition is preferably 0.80 to 3.33 parts by mass with respect to 100 parts by mass of the rubber component. The content of the sulfenamide-based vulcanization accelerator is more preferably 1.00 to 3.00 parts by mass with respect to 100 parts by mass of the rubber component from the viewpoint of further improving rolling resistance and run-flat durability. It is preferably 1.10 to 2.80 parts by mass, and more preferably 1.10 to 2.80 parts by mass.
 前記スルフェンアミド系加硫促進剤としては、例えば、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミド、N-メチル-2-ベンゾチアゾリルスルフェンアミド、N-エチル-2-ベンゾチアゾリルスルフェンアミド、N-プロピル-2-ベンゾチアゾリルスルフェンアミド、N-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-ペンチル-2-ベンゾチアゾリルスルフェンアミド、N-ヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-ヘプチル-2-ベンゾチアゾリルスルフェンアミド、N-オクチル-2-ベンゾチアゾリルスルフェンアミド、N-2-エチルヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-デシル-2-ベンゾチアゾリルスルフェンアミド、N-ドデシル-2-ベンゾチアゾリルスルフェンアミド、N-ステアリル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジメチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジエチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジプロピル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジブチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジペンチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジヘキシル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジヘプチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジオクチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジ-2-エチルヘキシルベンゾチアゾリルスルフェンアミド、N,N-ジデシル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジドデシル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジステアリル-2-ベンゾチアゾリルスルフェンアミド等が挙げられる。これらのスルフェンアミド系加硫促進剤は、1種単独で用いてもよいし、2種以上を用いてもよい。
 さらに、前記スルフェンアミド系加硫促進剤は、上述した中でも、加硫ゴムの高温での耐軟化性と機械的強度を両立し、ランフラット耐久性をより向上する観点から、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド及びN-tert-ブチル-2-ベンゾチアゾリルスルフェンアミドのうちの少なくとも1つを含むことが好ましく、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミドを含むことがより好ましい。
Examples of the sulfenamide-based sulfide accelerator include N-cyclohexyl-2-benzothiazolyl sulfeneamide, N, N-dicyclohexyl-2-benzothiazolyl sulfeneamide, and N-tert-butyl-2-. Benthiazolyl sulphenamide, N-oxydiethylene-2-benzothiazolyl sulphenamide, N-methyl-2-benzothiazolyl sulphenamide, N-ethyl-2-benzothiazolyl sulphenamide, N-propyl -2-benzothiazolyl sulphenamide, N-butyl-2-benzothiazolyl sulphenamide, N-pentyl-2-benzothiazolyl sulphenamide, N-hexyl-2-benzothiazolyl sulphenamide, N -Heptyl-2-benzothiazolyl sulphenamide, N-octyl-2-benzothiazolyl sulphenamide, N-2-ethylhexyl-2-benzothiazolyl sulphenamide, N-decyl-2-benzothiazolyl sulphenamide Fenamide, N-dodecyl-2-benzothiazolyl sulphenamide, N-stearyl-2-benzothiazolyl sulphenamide, N, N-dimethyl-2-benzothiazolyl sulphenamide, N, N-diethyl- 2-benzothiazolyl sulphenamide, N, N-dipropyl-2-benzothiazolyl sulphenamide, N, N-dibutyl-2-benzothiazolyl sulphenamide, N, N-dipentyl-2-benzothiazoli Rusulfenamide, N, N-dihexyl-2-benzothiazolyl sulphenamide, N, N-diheptyl-2-benzothiazolyl sulphenamide, N, N-dioctyl-2-benzothiazolyl sulphenamide, N , N-di-2-ethylhexylbenzothiazolyl sulphenamide, N, N-didecil-2-benzothiazolyl sulphenamide, N, N-didodecyl-2-benzothiazolyl sulphenamide, N, N-di Examples thereof include stearyl-2-benzothiazolyl sulfeneamide. These sulfenamide-based vulcanization accelerators may be used alone or in combination of two or more.
Further, among the above-mentioned sulfenamide-based vulcanization accelerators, N-cyclohexyl-from the viewpoint of achieving both softening resistance at high temperature and mechanical strength of the vulcanized rubber and further improving runflat durability. It is preferable to contain at least one of 2-benzothiazolyl sulfenamide and N-tert-butyl-2-benzothiazolyl sulfenamide, and N-tert-butyl-2-benzothiazolyl sulfenamide. It is more preferable to include it.
 なお、前記加硫促進剤は、前記チウラム系加硫促進剤及び前記スルフェンアミド系加硫促進剤の他、グアジニン系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、チオ尿素系、ジチオカルバメート系、ザンテート系等の加硫促進剤をさらに含有することもできる。
 ただし、前記加硫促進剤の合計の含有量を、加硫剤の合計の含有量よりも少なくする成分組成においては、モノスルフィド結合とジスルフィド結合の割合を増やして、加硫ゴムの高温での耐軟化性を上げながら、機械的強度も向上する観点から、前記加硫促進剤が、チウラム系加硫促進剤及びスルフェンアミド系加硫促進剤からなることが好ましい。
In addition to the sulfurum-based vulcanization accelerator and the sulfenamide-based vulcanization accelerator, the vulcanization accelerator includes guadinin-based, aldehyde-amine-based, aldehyde-ammonia-based, thiazole-based, thiourea-based, and dithio. It can also further contain a vulcanization accelerator such as a carbamate type or a zantate type.
However, in the component composition in which the total content of the vulcanization accelerator is smaller than the total content of the vulcanizing agent, the ratio of the monosulfide bond and the disulfide bond is increased to increase the high temperature of the vulcanized rubber. From the viewpoint of improving the mechanical strength while increasing the softening resistance, the vulcanization accelerator is preferably composed of a sulfurum-based vulcanization accelerator and a sulfur amide-based vulcanization accelerator.
 なお、前記加硫ゴムを構成するゴム組成物については、本発明の効果が損なわれない範囲で、要求に応じて、通常ゴム工業界で用いられる各種薬品、例えば、加硫遅延剤、軟化剤、老化防止剤、スコーチ防止剤、加硫促進助剤亜鉛華(酸化亜鉛)、ステアリン酸などを含有することができる。 Regarding the rubber composition constituting the vulcanized rubber, various chemicals usually used in the rubber industry, for example, a vulcanization retarder and a softening agent, are used as long as the effects of the present invention are not impaired. , Anti-aging agent, anti-scorch agent, vulcanization accelerator, zinc oxide (zinc oxide), stearic acid and the like can be contained.
 前記ゴム組成物が加硫遅延剤を含むことで、ゴム組成物の調製時にゴム組成物の過加熱に起因するゴム焼けを抑制することができる。また、前記ゴム組成物のスコーチ安定性を良好にして、ゴム組成物の混練機からの押し出しを容易にすることができる。
 なお、ゴム組成物は、ムーニー粘度(ML1+4,130℃)が、好ましくは40~100、より好ましくは50~90、更に好ましくは60~85である。ムーニー粘度が上記範囲であることで、製造加工性を損なわずに、耐破壊特性を始めとする加硫ゴム物性が十分に得られる。
 前記加硫遅延剤としては、例えば、無水フタル酸、安息香酸、サリチル酸、N-ニトロソジフェニルアミン、N-(シクロヘキシルチオ)-フタルイミド(CTP)、スルホンアミド誘導体、ジフェニルウレア、ビス(トリデシル)ペンタエリスリトール-ジホスファイト等が挙げられる。加硫遅延剤は市販製品を用いてもよく、例えば、モンサント社製、商品名「サントガードPVI」〔N-(シクロヘキシルチオ)-フタルイミド〕等が挙げられる。以上の中でも、加硫遅延剤は、N-(シクロヘキシルチオ)-フタルイミド(CTP)が好ましく用いられる。
 前記加硫遅延剤を用いる場合、加硫反応を妨げずにゴム組成物のゴム焼けを抑制し、スコーチ安定性を良好にする観点から、ゴム組成物中の加硫遅延剤の含有量は、ゴム成分100質量部に対して0.1~1.0質量部であることが好ましい。
When the rubber composition contains a vulcanization retarder, it is possible to suppress rubber burning caused by overheating of the rubber composition during preparation of the rubber composition. In addition, the scorch stability of the rubber composition can be improved, and the rubber composition can be easily extruded from the kneader.
The rubber composition has a Mooney viscosity (ML 1 + 4 , 130 ° C.) of preferably 40 to 100, more preferably 50 to 90, and even more preferably 60 to 85. When the Mooney viscosity is in the above range, vulcanized rubber physical properties such as fracture resistance can be sufficiently obtained without impairing the manufacturing processability.
Examples of the vulcanization retarder include phthalic anhydride, benzoic acid, salicylic acid, N-nitrosodiphenylamine, N- (cyclohexylthio) -phthalimide (CTP), sulfonamide derivative, diphenylurea, and bis (tridecyl) pentaerythritol-. Examples include diphosphite. A commercially available product may be used as the vulcanization retarder, and examples thereof include Monsanto's trade name "Santguard PVI" [N- (cyclohexylthio) -phthalimide]. Among the above, N- (cyclohexylthio) -phthalimide (CTP) is preferably used as the vulcanization retarder.
When the vulcanization retarder is used, the content of the vulcanization retarder in the rubber composition is determined from the viewpoint of suppressing rubber burning of the rubber composition and improving scorch stability without interfering with the vulcanization reaction. It is preferably 0.1 to 1.0 parts by mass with respect to 100 parts by mass of the rubber component.
 前記軟化剤としては、プロセスオイル、熱可塑性樹脂等が挙げられる。
 プロセスオイルは、例えば、鉱物由来のミネラルオイル、石油由来のアロマチックオイル、パラフィンオイル、ナフテンオイル、天然物由来のパームオイル等が挙げられる。
 また、熱可塑性樹脂としては、高温時に軟化又は液体状となり、加硫ゴムを柔軟にする樹脂が挙げられ、具体的には、例えば、C5系(シクロペンタジエン系樹脂、ジシクロペンタジエン系樹脂を含む)、C9系、C5/C9混合系等の各種石油系樹脂、テルペン系樹脂、テルペン-芳香族化合物系樹脂、ロジン系樹脂、フェノール樹脂、アルキルフェノール樹脂等の粘着付与剤(硬化剤を含まない)等が挙げられる。
Examples of the softener include process oils and thermoplastic resins.
Examples of the process oil include mineral oil derived from minerals, aromatic oil derived from petroleum, paraffin oil, naphthenic oil, palm oil derived from natural products, and the like.
Examples of the thermoplastic resin include resins that soften or become liquid at high temperatures to soften the vulture rubber. Specific examples thereof include C5 type (cyclopentadiene type resin and dicyclopentadiene type resin). ), C9-based, C5 / C9 mixed-based and other various petroleum-based resins, terpene-based resins, terpene-aromatic compound-based resins, rosin-based resins, phenol resins, alkylphenol resins and other tackifiers (not including curing agents) And so on.
 前記老化防止剤としては、公知のものを用いることができ、特に制限されないが、フェノール系老化防止剤、イミダゾール系老化防止剤、アミン系老化防止剤などを挙げることができる。これら老化防止剤の配合量は、前記ゴム成分100質量部に対し、通常0.5~10質量部、好ましくは1~5質量部である。 As the anti-aging agent, known ones can be used, and the present invention is not particularly limited, and examples thereof include phenol-based anti-aging agents, imidazole-based anti-aging agents, and amine-based anti-aging agents. The blending amount of these anti-aging agents is usually 0.5 to 10 parts by mass, preferably 1 to 5 parts by mass with respect to 100 parts by mass of the rubber component.
 このように、前記ゴム組成物は、既述の成分を混練することにより得られる。混練方法は、当業者が通常実施する方法に従えばよい。混練に際してはロール、インターナルミキサー、バンバリーローター等の混練機を用いることができる。更に、シート状、帯状等に成形する際には、押出成形機、プレス機等の公知の成形機を用いればよい。
 例えば、硫黄、加硫促進剤(必要に応じて、更に加硫遅延剤)、及び酸化亜鉛以外の全成分を、100~200℃で混練した後、硫黄、加硫促進剤、及び酸化亜鉛(必要に応じて、更に加硫遅延剤)を添加して、混練ロール機等を用い、60~130℃で混練すればよい。
As described above, the rubber composition is obtained by kneading the above-mentioned components. The kneading method may follow the method normally practiced by those skilled in the art. For kneading, a kneader such as a roll, an internal mixer, or a Banbury rotor can be used. Further, when molding into a sheet shape, a strip shape or the like, a known molding machine such as an extrusion molding machine or a press machine may be used.
For example, after kneading all components except sulfur, vulcanization accelerator (and further vulcanization retarder if necessary), and zinc oxide at 100-200 ° C, sulfur, vulcanization accelerator, and zinc oxide (if necessary). If necessary, a vulcanization retarder) may be further added and kneaded at 60 to 130 ° C. using a kneading roll machine or the like.
 なお、本発明のランフラットタイヤ、上述した有機繊維コード、並びに、サイド補強ゴム及びビードフィラーのうちの少なくとも1つ以外の条件については、特に限定はされず、常法に従って製造することができる。例えば、各種薬品を含有させたゴム組成物が未加硫の段階で各部材に加工され、タイヤ成形機上で通常の方法により貼り付け成形され、生タイヤが成形される。この生タイヤを加硫機中で加熱加圧して、ランフラットタイヤが得られる。
 また、該タイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
The conditions other than the run-flat tire of the present invention, the above-mentioned organic fiber cord, and at least one of the side reinforcing rubber and the bead filler are not particularly limited and can be manufactured according to a conventional method. For example, a rubber composition containing various chemicals is processed into each member at an unvulcanized stage, and is pasted and molded on a tire molding machine by a usual method to form a raw tire. This raw tire is heated and pressurized in a vulcanizer to obtain a run-flat tire.
Further, as the gas to be filled in the tire, an inert gas such as nitrogen, argon or helium can be used in addition to normal or adjusted oxygen partial pressure.
 以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
 なお、本発明の各実施例及び比較例のサンプルは、過去に測定したデータから予測して算出している。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
The samples of each of the examples and comparative examples of the present invention are predicted and calculated from the data measured in the past.
(製造例1)一級アミン変性ポリブタジエンゴム
 窒素置換された5Lオートクレーブに、窒素下、シクロヘキサン1.4kg、1,3-ブタジエン250g、2,2-ジテトラヒドロフリルプロパン(0.285mmol)シクロヘキサン溶液として注入し、これに2.85mmolのn-ブチルリチウム(BuLi)を加えた後、攪拌装置を備えた50℃温水浴中で4.5時間重合を行なう。1,3-ブタジエンの反応転化率は、ほぼ100%である。この重合体溶液の一部を、2,6-ジ-tert-ブチル-p-クレゾール1.3gを含むメタノール溶液に抜き取り重合を停止させた後、スチームストリッピングにより脱溶媒し、110℃のロールで乾燥して、変性前のポリブタジエンを得る。得られた変性前のポリブタジエンについてミクロ構造(ビニル結合量)を測定した結果、ビニル結合量は30質量%である。
 前記のように得られた重合体溶液を、重合体溶液を、重合触媒を失活させることなく、温度50℃に保ち、第1級アミノ基が保護されたN,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン1129mg(3.364mmol)を加えて、変性反応を15分間行う。
 この後、縮合促進剤であるテトラキス(2-エチル-1,3-ヘキサンジオラト)チタン8.11gを加え、更に15分間攪拌する。
 最後に反応後の重合体溶液に、金属ハロゲン化合物として四塩化ケイ素242mgを添加し、2,6-ジ-tert-ブチル-p-クレゾールを添加した。次いで、スチームストリッピングにより脱溶媒及び保護された第1級アミノ基の脱保護を行い、110℃に調温された熟ロールによりゴムを乾燥し、第1級アミン変性ポリブタジエンゴムPを得る。
 得られた変性ポリブタジエンについてミクロ構造(ビニル結合量)を測定した結果、ビニル結合量は30質量%である。
(Production Example 1) Primary amine-modified polybutadiene rubber Injected into a nitrogen-substituted 5 L autoclave as a cyclohexane solution of 1.4 kg of cyclohexane, 250 g of 1,3-butadiene, and 2,2-ditetrahydrofurylpropane (0.285 mmol) under nitrogen. Then, 2.85 mmol of n-butyllithium (BuLi) is added thereto, and then polymerization is carried out in a warm water bath at 50 ° C. equipped with a stirrer for 4.5 hours. The reaction conversion rate of 1,3-butadiene is almost 100%. A part of this polymer solution is extracted with a methanol solution containing 1.3 g of 2,6-di-tert-butyl-p-cresol to stop the polymerization, then desolvated by steam stripping, and rolled at 110 ° C. Dry in to give unmodified polybutadiene. As a result of measuring the microstructure (vinyl bond amount) of the obtained polybutadiene before modification, the vinyl bond amount is 30% by mass.
The polymer solution obtained as described above was kept at a temperature of 50 ° C. without deactivating the polymerization catalyst, and the primary amino group was protected with N, N-bis (trimethylsilyl) amino. Add 1129 mg (3.364 mmol) of propylmethyldiethoxysilane and carry out the modification reaction for 15 minutes.
After that, 8.11 g of tetrakis (2-ethyl-1,3-hexanediorat) titanium as a condensation accelerator is added, and the mixture is further stirred for 15 minutes.
Finally, 242 mg of silicon tetrachloride was added as a metal halogen compound to the polymer solution after the reaction, and 2,6-di-tert-butyl-p-cresol was added. Next, the solvent and the protected primary amino group are deprotected by steam stripping, and the rubber is dried by a mature roll adjusted to 110 ° C. to obtain a primary amine-modified polybutadiene rubber P.
As a result of measuring the microstructure (vinyl bond amount) of the obtained modified polybutadiene, the vinyl bond amount is 30% by mass.
(製造例2)接着剤組成物1~4
 まず、フロログルシノールを、100℃の水に溶解させ、濃度10wt%のフロログルシノール含有溶液を得た。
 その後、10wt%フロログルシノール溶液33.5gを、高温下で維持して攪拌しながら、4%水酸化ナトリウム18.2gを加えた後、水206gで希釈し、25%アンモニア水を7.5g加えた。前記溶液に、1,4-ベンゼンジカルボアルデヒド6.4gを漸次的に加え、フロログルシノール・1,4-ベンゼンジカルボアルデヒド含有溶液を得た後、表3に示す温度及び時間で熟成を行い、フェノール/アルデヒド樹脂を得た。
 前記フロログルシノール・1,4-ベンゼンジカルボアルデヒド含有溶液の熟成により得たフェノール/アルデヒド樹脂に、ビニルピリジン-スチレン-ブタジエン共重合体ゴム(Vp)を加え、27℃で24時間ゴムの熟成を行う。さらに前記フェノール/アルデヒド樹脂およびVpの混合液に、表2の配合比となるよう、特定のイソシアネート化合物を加えた。
 接着剤組成物1~4の配合成分については、配合Aとして表1及び2に示す。なお、表1は、固形成分としての配合量(質量%)、表2は、溶液状態での配合量(質量%)を示す。
(Production Example 2) Adhesive Compositions 1 to 4
First, phloroglucinol was dissolved in water at 100 ° C. to obtain a phloroglucinol-containing solution having a concentration of 10 wt%.
Then, 33.5 g of a 10 wt% phloroglucinol solution was added at 18.2 g of 4% sodium hydroxide while maintaining at a high temperature and stirred, then diluted with 206 g of water, and 7.5 g of 25% aqueous ammonia was added. added. 6.4 g of 1,4-benzenedicarbaldehyde was gradually added to the solution to obtain a phloroglucinol / 1,4-benzenedicarbaldehyde-containing solution, which was then aged at the temperature and time shown in Table 3. This was carried out to obtain a phenol / aldehyde resin.
Vinylpyridine-styrene-butadiene copolymer rubber (Vp) is added to the phenol / aldehyde resin obtained by aging the phloroglucinol / 1,4-benzenedicarbaldehyde-containing solution, and the rubber is aged at 27 ° C. for 24 hours. I do. Further, a specific isocyanate compound was added to the mixed solution of the phenol / aldehyde resin and Vp so as to have the blending ratio shown in Table 2.
The compounding components of the adhesive compositions 1 to 4 are shown in Tables 1 and 2 as compounding A. In addition, Table 1 shows the compounding amount (mass%) as a solid component, and Table 2 shows the compounding amount (mass%) in a solution state.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
*1: 富士フィルム和光純薬(株)製、10%水溶液として使用
*2: 東京化成工業(株)製、純度98%
*3: 関東化学(株)製、1N NaOH水溶液
*4: 関東化学(株)製、25%アンモニア水溶液
*5: Sime Darby社製、HYTEX HA
*6: JSR(株)製、SBR ラテックス 2108
*7: 日本A&L(株)製、PYRATEX
*8: 第一工業製薬(株)製、BN77、固形分濃度18%となるように希釈して使用
* 1: Made by Fuji Film Wako Pure Chemical Industries, Ltd., used as a 10% aqueous solution * 2: Made by Tokyo Chemical Industry Co., Ltd., purity 98%
* 3: Kanto Chemical Co., Ltd., 1N NaOH aqueous solution * 4: Kanto Chemical Co., Ltd., 25% ammonia aqueous solution * 5: Sime Darby, HYTEX HA
* 6: SBR Latex 2108 manufactured by JSR Corporation
* 7: Made by Japan A & L Co., Ltd., PYRATEX
* 8: Manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., BN77, diluted to a solid content concentration of 18%.
<接着性評価>
 天然ゴム、スチレン-ブタジエン共重合体からなるゴム成分、カーボンブラック、架橋剤を含む未加硫状態のゴム組成物に、各サンプルの接着剤組成物をコーティングしたタイヤ用ポリエステルコードを埋め込み、これを試験片として、160℃で20分間、20kgf/cmの加圧下で加硫した。
 得られた加硫物を室温まで冷却し、該加硫物からコードを掘り起こし、30cm/分の速度でコードを加硫物から剥離する時の抗力(N/cord)を25±1℃の室温雰囲気温度にて測定した。なお、このときの抗力を接着性評価の指標とした。
 測定によって得られた接着剤組成物1~4を用いた際の試験片の剥離時の抗力を表3に示す。
<Adhesiveness evaluation>
A polyester cord for tires coated with the adhesive composition of each sample was embedded in an unvulcanized rubber composition containing a natural rubber, a rubber component composed of a styrene-butadiene copolymer, carbon black, and a cross-linking agent. As a test piece, it was vulcanized at 160 ° C. for 20 minutes under a pressure of 20 kgf / cm 2.
The obtained vulcanized product is cooled to room temperature, the cord is dug up from the vulcanized product, and the drag force (N / cord) when the cord is peeled off from the vulcanized product at a speed of 30 cm / min is set to room temperature of 25 ± 1 ° C. Measured at ambient temperature. The drag force at this time was used as an index for evaluating the adhesiveness.
Table 3 shows the drag force at the time of peeling of the test piece when the adhesive compositions 1 to 4 obtained by the measurement were used.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
[実施例1~3、比較例1~3]
 表4に示す配合組成で各成分を混練し、ゴム組成物を調製する。
 また、得られたゴム組成物を、図1に示すサイド補強ゴム層8及びビードフィラー7に配設し、それぞれタイヤサイズ255/65R18のサイズの乗用車用ラジアルランフラットタイヤを定法に従って製造する。なお、各試作タイヤのサイド補強ゴム層の最大厚みは14.0mmとし、サイド補強ゴム層の形状は、いずれも同一である。また、カーカス4のプライ及びベルト補強層51には、表3に示す接着剤組成物4が表面にコーティングされた有機繊維コードを用いている。
[Examples 1 to 3, Comparative Examples 1 to 3]
Each component is kneaded with the compounding composition shown in Table 4 to prepare a rubber composition.
Further, the obtained rubber composition is arranged on the side reinforcing rubber layer 8 and the bead filler 7 shown in FIG. 1, and radial run-flat tires for passenger cars having a tire size of 255 / 65R18, respectively, are manufactured according to a conventional method. The maximum thickness of the side reinforcing rubber layer of each prototype tire is 14.0 mm, and the shapes of the side reinforcing rubber layers are the same. Further, for the ply and the belt reinforcing layer 51 of the carcass 4, an organic fiber cord having the adhesive composition 4 shown in Table 3 coated on the surface is used.
<加硫ゴムの物性測定、性能評価>
(1)モノ/ジスルフィド結合量及びポリスルフィド結合量
 得られたゴム組成物を加硫して得られた加硫ゴムから、厚さ2mmのシートを切り取り、加硫ゴムシートを得た。加硫ゴムシートをアセトンで24時間抽出後、24時間真空乾燥した。乾燥後の加硫ゴムシートを2mm×2mm四方に裁断して、立方体状の加硫ゴム試料に成形した。次いで、加硫ゴム試料の縦、横、厚さの三方向の寸法を精測する。
 次に、ベンゼンと、テトラヒドロフラン(THF)を、脱水及び脱酸素し、当該ベンゼンと、テトラヒドロフラン(THF)とを、体積基準で、1:1で混合し、混合液を密閉可能な容器に投入し、窒素置換して、溶液(T)とする。
 溶液(T)の入った前記容器を容器(1)に、リチウムアルミニウムハイドライド(LiAlH)の粉末を窒素置換しながら投入し、2日放置した。溶液の上澄みを分取し、これを溶液(M)とする。
 プロパン-2-チオール及びピペリジンを脱水及び脱酸素し、当該プロパン-2-チオール及びピペリジンを、等モル採取し、溶液(M)を分取した容器を容器(2)に、窒素置換しながら投入して溶液(P)を得る。
 三方向の寸法を精測した加硫ゴム試料を、密閉可能な容器3つにそれぞれ投入し、それぞれ1時間真空乾燥してから窒素置換した後、加硫ゴム試料の入った容器に、溶液(T)、溶液(M)、溶液(P)を、それぞれ投入し、密閉して、30℃で24時間放置して、加硫ゴム試料を膨潤させる。
 次いで、窒素雰囲気下で、各容器から加硫ゴム試料を取り出し、溶液(T)で洗浄し、膨潤した加硫ゴム試料の寸法を精測する。また、膨潤した加硫ゴム試料について、熱機械分析装置(NETZSCH社製、商品名「TMA 4000SA」)を用い、加硫ゴム試料の膨潤の大小に応じて1~100gまでの荷重を段階的に加え、圧縮応力と歪みの関係を求める。
 得られたデータを、既述の式(2)に入力し、モノスルフィド網目鎖密度(ν)と、モノスルフィド網目鎖密度及びジスルフィド網目鎖密度の合計量(ν+ν)〔mol/cm〕を求める。
 ジスルフィド網目鎖密度(ν)〔mol/cm〕を(ν+ν)-νから算出し、ポリスルフィド網目鎖密度(ν)〔mol/cm〕をν-(ν+ν)から算出する。
 更に、全スルフィド網目鎖密度(ν)を100%として、モノスルフィド網目鎖密度(ν)、ジスルフィド網目鎖密度(ν)、ポリスルフィド網目鎖密度(ν)を百分率に換算し、モノスルフィド結合量、ジスルフィド結合量及びポリスルフィド結合量を算出する。得られた結果を既述の式(1)に当てはめ、モノ/ジスルフィド結合量を算出する。
<Measurement of physical properties and performance evaluation of vulcanized rubber>
(1) Amount of mono / disulfide bond and amount of polysulfide bond A sheet having a thickness of 2 mm was cut out from the vulcanized rubber obtained by vulcanizing the obtained rubber composition to obtain a vulcanized rubber sheet. The vulcanized rubber sheet was extracted with acetone for 24 hours and then vacuum dried for 24 hours. The dried vulcanized rubber sheet was cut into 2 mm × 2 mm squares and molded into a cubic vulcanized rubber sample. Next, the dimensions of the vulcanized rubber sample in the three directions of length, width, and thickness are precisely measured.
Next, benzene and tetrahydrofuran (THF) are dehydrated and deoxidized, the benzene and tetrahydrofuran (THF) are mixed 1: 1 on a volume basis, and the mixed solution is placed in a sealable container. , Nitrogen substitution to obtain solution (T).
The container containing the solution (T) was put into the container (1) while the powder of lithium aluminum hydride (LiAlH 4 ) was replaced with nitrogen, and the mixture was allowed to stand for 2 days. Divide the supernatant of the solution and use this as the solution (M).
Dehydrate and deoxidize propane-2-thiol and piperidine, collect equimolars of the propane-2-thiol and piperidine, and put the container (M) from which the solution (M) has been separated into the container (2) while substituting nitrogen. To obtain the solution (P).
The vulcanized rubber samples whose dimensions have been precisely measured in the three directions are placed in each of the three hermetically sealed containers, vacuum-dried for 1 hour each, and then replaced with nitrogen. T), solution (M), and solution (P) are added, sealed, and left at 30 ° C. for 24 hours to swell the vulcanized rubber sample.
Next, the vulcanized rubber sample is taken out from each container under a nitrogen atmosphere, washed with the solution (T), and the dimensions of the swollen vulcanized rubber sample are precisely measured. Further, for the swollen vulcanized rubber sample, a thermomechanical analyzer (manufactured by NETZSCH, trade name "TMA 4000SA") is used to gradually apply a load of 1 to 100 g according to the magnitude of the swelling of the vulcanized rubber sample. In addition, the relationship between compressive stress and strain is calculated.
The obtained data is input to the above-mentioned formula (2), and the total amount of monosulfide network chain density (ν M ), monosulfide network chain density and disulfide network chain density (ν M + ν D ) [mol / cm 3 ] is calculated.
The disulfide network chain density (ν D ) [mol / cm 3 ] is calculated from (ν M + ν D ) -ν M , and the polysulfide network chain density (ν P ) [mol / cm 3 ] is ν T-M + ν). Calculated from D).
Furthermore, assuming that the total sulfide network chain density (ν T ) is 100%, the monosulfide network chain density (ν M ), the disulfide network chain density (ν D ), and the polysulfide network chain density (ν P ) are converted into percentages to obtain mono. Calculate the amount of sulfide bond, the amount of disulfide bond and the amount of polysulfide bond. The obtained result is applied to the above-mentioned formula (1) to calculate the mono / disulfide bond amount.
(2)ランフラット耐久性
 実施例1~3及び比較例1~3で作製した試作タイヤを用い、内圧非充填状態でドラム走行(速度80km/h)させ、タイヤが走行不能になるまでのドラム走行距離を測定し、ランフラット走行距離とする。
 表4では、ランフラット走行距離を、比較例3のランフラットタイヤのランフラット走行距離を100とした指数で表わしている。指数値は、大きいほど、ランフラットタイヤのランフラット耐久性に優れる。
(2) Run-flat durability Using the prototype tires produced in Examples 1 to 3 and Comparative Examples 1 to 3, the tires are run on a drum (speed 80 km / h) in a state where the internal pressure is not filled, until the tires cannot run. Measure the mileage and use it as the run-flat mileage.
In Table 4, the run-flat mileage is represented by an index with the run-flat mileage of the run-flat tire of Comparative Example 3 as 100. The larger the index value, the better the run-flat durability of the run-flat tire.
(3)低発熱性
 実施例1~3、比較例1~3のゴム組成物を加硫して得られた加硫ゴムについて、粘弾性測定装置(レオメトリックス社製)を使用し、温度60℃、歪5%、周波数15Hzでtanδを測定する。
 表4では、tanδを、比較例3のtanδを100とした指数で表わしている。発熱性指数が小さいほど、加硫ゴムは低発熱性に優れ、該加硫ゴムを用いたランフラットタイヤは低発熱性に優れるといえる。許容範囲は83以下である。
(3) Low heat generation With respect to the vulcanized rubber obtained by vulcanizing the rubber compositions of Examples 1 to 3 and Comparative Examples 1 to 3, a viscoelasticity measuring device (manufactured by Leometrics) was used and the temperature was 60. Measure tan δ at ° C., 5% strain, and 15 Hz frequency.
In Table 4, tan δ is represented by an index with tan δ of Comparative Example 3 as 100. It can be said that the smaller the heat generation index, the more excellent the vulcanized rubber is in low heat generation, and the run-flat tire using the vulcanized rubber is excellent in low heat generation. The permissible range is 83 or less.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 なお、表4中の変性ポリブタジエンゴム(一級アミン変性ポリブタジエンゴム)以外の各成分の詳細は以下のとおりである。
天然ゴム:RSS#1
カーボンブラック1:旭カーボン社製、商品名「旭#52」
〔窒素吸着法比表面積28m/g、DBP吸油量128ml/100g、トルエン着色透過度=65%〕
カーボンブラック2:旭カーボン社製、商品名「旭#60」
〔窒素吸着法比表面積40m/g、DBP吸油量114ml/100g、トルエン着色透過度=80%〕
カーボンブラック3:東海カーボン社製、商品名「Seast FY」
〔窒素吸着法比表面積29m/g、DBP吸油量152ml/100g、トルエン着色透過度=80%〕
カーボンブラック4:Cabot社製、商品名「SP5000A」
〔窒素吸着法比表面積28m/g、DBP吸油量120ml/100g、トルエン着色透過度=99%〕
熱硬化性樹脂:フェノール樹脂、住友ベークライト社製、商品名「スミライトレジンPR-50731」
硬化剤:ヘキサメトキシメチルメラミン、富士フィルム和光純薬社製
加硫促進剤1(TOT):テトラキス(2-エチルヘキシル)チウラムジスルフィド、大内新興化学工業社製、商品名「ノクセラー TOT-N」
加硫促進剤2(TBzTD):テトラベンジルチウラムジスルフィド、三新化学工業社製、商品名「サンセラー TBzTD」
加硫促進剤3(NS):N-t-ブチル-2-ベンゾチアジルスルフェンアミド、大内新興化学工業社製、商品名「ノクセラー NS」
加硫遅延剤(PVI):モンサント社製、商品名「サントガードPVI」〔N-(シクロヘキシルチオ)-フタルイミド〕
硫黄:鶴見化学工業社製、商品名「粉末硫黄」
ステアリン酸:新日本理化社製、商品名「ステアリン酸50S」
亜鉛華:ハクスイテック社製、商品名「3号亜鉛華」
老化防止剤(6C):N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン、大内新興化学工業社製、商品名「ノクラック 6C」製「ノクセラーTOT-N」
The details of each component other than the modified polybutadiene rubber (primary amine modified polybutadiene rubber) in Table 4 are as follows.
Natural rubber: RSS # 1
Carbon Black 1: Made by Asahi Carbon Co., Ltd., product name "Asahi # 52"
[Nitrogen adsorption method specific surface area 28 m 2 / g, DBP oil absorption 128 ml / 100 g, toluene coloring permeability = 65%]
Carbon Black 2: Made by Asahi Carbon Co., Ltd., product name "Asahi # 60"
[Nitrogen adsorption method specific surface area 40 m 2 / g, DBP oil absorption 114 ml / 100 g, toluene coloring permeability = 80%]
Carbon Black 3: Made by Tokai Carbon Co., Ltd., product name "Seast FY"
[Nitrogen adsorption method specific surface area 29 m 2 / g, DBP oil absorption 152 ml / 100 g, toluene coloring permeability = 80%]
Carbon Black 4: Made by Cabot, trade name "SP5000A"
[Nitrogen adsorption method specific surface area 28 m 2 / g, DBP oil absorption 120 ml / 100 g, toluene coloring permeability = 99%]
Thermosetting resin: Phenol resin, manufactured by Sumitomo Bakelite, trade name "Sumilite Resin PR-50731"
Hardener: Hexamethoxymethylmelamine, Fuji Film Wako Pure Chemical Industries, Ltd. Vulcanization accelerator 1 (TOT): Tetrakis (2-ethylhexyl) thiuram disulfide, manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd., trade name "Noxeller TOT-N"
Vulcanization accelerator 2 (TBzTD): Tetrabenzyl thiuram disulfide, manufactured by Sanshin Chemical Industry Co., Ltd., trade name "Suncellor TBzTD"
Vulcanization Accelerator 3 (NS): Nt-Butyl-2-benzothiadylsulfenamide, manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd., trade name "Noxeller NS"
Vulcanization retarder (PVI): manufactured by Monsanto, trade name "Santguard PVI" [N- (cyclohexylthio) -phthalimide]
Sulfur: Made by Tsurumi Chemical Industry Co., Ltd., trade name "powdered sulfur"
Stearic acid: Made by Shin Nihon Rika Co., Ltd., trade name "Stearic acid 50S"
Zinc Oxide: Made by HakusuiTech Co., Ltd., Product name "No. 3 Zinc Oxide"
Anti-aging agent (6C): N-Phenyl-N'-(1,3-dimethylbutyl) -p-phenylenediamine, manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd., trade name "Nocrack 6C", "Noxeller TOT-N"
 表4の結果から加硫ゴムのモノ/ジスルフィド結合量が65%以上である実施例1~3のタイヤは、いずれもランフラット耐久性の指数が100を超えていることがわかる。このことから、本発明のタイヤは、ランフラット耐久性に優れることがわかる。
 また、実施例1~3の加硫ゴムはいずれも低発熱性指数が83以下であり、かかる加硫ゴムを用いたタイヤは発熱しにくく、転がり抵抗性にも優れることがわかる。
 一方、比較例1~3の加硫ゴムは低発熱性指数が83を超え、低発熱性が実施例よりもおとることがわかる。また、比較例1~3のタイヤは、ランフラット耐久性の指数が100以下であり、ランフラット耐久性についても実施例より劣ることがわかる。
From the results in Table 4, it can be seen that the run-flat durability index of all the tires of Examples 1 to 3 in which the mono / disulfide bond amount of the vulcanized rubber is 65% or more exceeds 100. From this, it can be seen that the tire of the present invention has excellent run-flat durability.
Further, all of the vulcanized rubbers of Examples 1 to 3 have a low heat generation index of 83 or less, and it can be seen that the tire using such vulcanized rubber does not easily generate heat and has excellent rolling resistance.
On the other hand, the vulcanized rubbers of Comparative Examples 1 to 3 have a low heat generation index exceeding 83, and it can be seen that the low heat generation is lower than that of the examples. Further, it can be seen that the tires of Comparative Examples 1 to 3 have a run-flat durability index of 100 or less, and the run-flat durability is also inferior to that of the examples.
 本発明によれば、有機繊維コードにコーティングされる接着剤組成物に、レゾルシンが含まれず、環境への負荷が少ないことに加えて、優れた転がり抵抗性を有する、ランフラットタイヤを提供することができる。 According to the present invention, there is provided a run-flat tire in which the adhesive composition coated on the organic fiber cord does not contain resorcin, has a low environmental load, and has excellent rolling resistance. Can be done.
1  トレッド部
2  サイドウォール部
3  ビード部
4  カーカス
5  ベルト
6  ビードコア
7  ビードフィラー
8  インナーライナー
9  サイド補強ゴム
11 トレッドゴム
50 ベルト層
51 ベルト補強層
 
1 Tread part 2 Side wall part 3 Bead part 4 Carcass 5 Belt 6 Bead core 7 Bead filler 8 Inner liner 9 Side reinforcement rubber 11 Tread rubber 50 Belt layer 51 Belt reinforcement layer

Claims (15)

  1.  一対のビード部からサイドウォール部を経てトレッド部に至る一枚以上のカーカスプライからなるカーカスと、前記サイドウォール部において前記カーカスのタイヤ幅方向内側に配設された一対の断面三日月状のサイド補強ゴムと、前記サイドウォール部のビードコアのタイヤ径方向外側に配設されたビードフィラーと、を具える、ランフラットタイヤであって、
     前記ランフラットタイヤは、ポリフェノール類及びアルデヒド類を含む接着剤組成物がコーティングされた、有機繊維コードを有し、
     前記サイド補強ゴム及び前記ビードフィラーのうちの少なくとも1つを構成する加硫ゴムは、全スルフィド結合中のモノスルフィド結合及びジスルフィド結合の割合が65%以上であることを特徴とする、ランフラットタイヤ。
    A carcass composed of one or more carcass plies extending from a pair of bead portions to a tread portion via a sidewall portion, and a pair of crescent-shaped side reinforcements having a cross section arranged inside the carcass in the tire width direction in the sidewall portion. A run-flat tire comprising rubber and a bead filler disposed on the outer side of the bead core of the sidewall portion in the tire radial direction.
    The run-flat tire has an organic fiber cord coated with an adhesive composition containing polyphenols and aldehydes.
    The vulcanized rubber constituting at least one of the side reinforcing rubber and the bead filler is a run-flat tire characterized in that the ratio of monosulfide bonds and disulfide bonds in the total sulfide bonds is 65% or more. ..
  2.  前記加硫ゴムは、全スルフィド結合中のモノスルフィド結合及びジスルフィド結合の割合が75%以上であることを特徴とする、請求項1に記載のランフラットタイヤ。 The run-flat tire according to claim 1, wherein the vulcanized rubber has a ratio of monosulfide bonds and disulfide bonds in all sulfide bonds of 75% or more.
  3.  前記加硫ゴムに用いられるゴム組成物は、ゴム成分と、充填剤と、加硫剤と、加硫促進剤と、を含み、前記加硫促進剤が、チウラム系加硫促進剤を含有することを特徴とする、請求項1又は2に記載のランフラットタイヤ。 The rubber composition used for the vulcanized rubber contains a rubber component, a filler, a vulcanizing agent, and a vulcanization accelerator, and the vulcanization accelerator contains a thiuram-based vulcanization accelerator. The run-flat tire according to claim 1 or 2, wherein the run-flat tire is characterized in that.
  4.  前記加硫促進剤が、スルフェンアミド系加硫促進剤をさらに含有することを特徴とする、請求項3に記載のランフラットタイヤ。 The run-flat tire according to claim 3, wherein the vulcanization accelerator further contains a sulfenamide-based vulcanization accelerator.
  5.  前記ゴム組成物における、前記チウラム系加硫促進剤の含有量(a)と前記スルフェンアミド系加硫促進剤の含有量(b)の質量比(a/b)が0.60~1.25であることを特徴とする、請求項4に記載のランフラットタイヤ。 The mass ratio (a / b) of the content (a) of the sulfurum-based vulcanization accelerator and the content (b) of the sulfenamide-based vulcanization accelerator in the rubber composition is 0.60 to 1. The run-flat tire according to claim 4, wherein the tire is 25.
  6.  前記ゴム組成物における、前記加硫促進剤の含有量が前記加硫剤の含有量よりも少ないことを特徴とする、請求項3~5のいずれか1項に記載のランフラットタイヤ。 The run-flat tire according to any one of claims 3 to 5, wherein the content of the vulcanization accelerator in the rubber composition is smaller than the content of the vulcanization agent.
  7.  前記チウラム系加硫促進剤が、少なくともテトラベンジルチウラムジスルフィドを含むことを特徴とする、請求項3~6のいずれか1項に記載のランフラットタイヤ。 The run-flat tire according to any one of claims 3 to 6, wherein the thiuram-based vulcanization accelerator contains at least tetrabenzyl thiuram disulfide.
  8.  前記接着剤組成物が、さらにゴムラテックスを含むことを特徴とする、請求項1~7のいずれか1項に記載のランフラットタイヤ。 The run-flat tire according to any one of claims 1 to 7, wherein the adhesive composition further contains a rubber latex.
  9.  前記接着剤組成物が、さらにイソシアネート化合物を含むことを特徴とする、請求項1~8のいずれか1項に記載のランフラットタイヤ。 The run-flat tire according to any one of claims 1 to 8, wherein the adhesive composition further contains an isocyanate compound.
  10.  前記ポリフェノール類は、3つ以上の水酸基を有することを特徴とする、請求項1~9のいずれか1項に記載のランフラットタイヤ。 The run-flat tire according to any one of claims 1 to 9, wherein the polyphenols have three or more hydroxyl groups.
  11.  前記アルデヒド類は、2つ以上のアルデヒド基を有することを特徴とする、請求項1~10のいずれか1項に記載のランフラットタイヤ。 The run-flat tire according to any one of claims 1 to 10, wherein the aldehydes have two or more aldehyde groups.
  12.  前記イソシアネート化合物が、(ブロックド)イソシアネート基含有芳香族化合物であることを特徴とする、請求項9に記載のランフラットタイヤ。 The run-flat tire according to claim 9, wherein the isocyanate compound is a (blocked) isocyanate group-containing aromatic compound.
  13.  前記有機繊維コードが、カーカスプライ及び/又はベルト補強層に用いられることを特徴とする、請求項1~12のいずれか1項に記載のランフラットタイヤ。 The run-flat tire according to any one of claims 1 to 12, wherein the organic fiber cord is used for a carcass ply and / or a belt reinforcing layer.
  14.  前記有機繊維コードが、2種の有機繊維からなるフィラメントを撚り合わせてなるハイブリッドコードであることを特徴とする、請求項1~13のいずれか1項に記載のランフラットタイヤ。 The run-flat tire according to any one of claims 1 to 13, wherein the organic fiber cord is a hybrid cord formed by twisting filaments made of two types of organic fibers.
  15.  前記ハイブリッドコードを構成する2種の有機繊維が、レーヨン、リヨセル、ポリエステル、ナイロン及びポリケントンからなる群より選択されることを特徴とする、請求項14に記載のランフラットタイヤ。
     
    The run-flat tire according to claim 14, wherein the two types of organic fibers constituting the hybrid cord are selected from the group consisting of rayon, lyocell, polyester, nylon and polykenton.
PCT/JP2021/009644 2020-03-11 2021-03-10 Run-flat tire WO2021182535A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-042194 2020-03-11
JP2020042194A JP2021142843A (en) 2020-03-11 2020-03-11 Run-flat tire

Publications (1)

Publication Number Publication Date
WO2021182535A1 true WO2021182535A1 (en) 2021-09-16

Family

ID=77672056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009644 WO2021182535A1 (en) 2020-03-11 2021-03-10 Run-flat tire

Country Status (2)

Country Link
JP (1) JP2021142843A (en)
WO (1) WO2021182535A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174105A (en) * 2007-12-25 2009-08-06 Bridgestone Corp Method for producing adhesive composition for organic fiber cord, adhesive composition for organic fiber cord and method for producing rubber product
JP2010189492A (en) * 2009-02-17 2010-09-02 Bridgestone Corp Adhesive composition for organic fiber cord and rubber reinforcing material using the same, tire, and adhesion method
JP2012214928A (en) * 2011-03-31 2012-11-08 Bridgestone Corp Run flat tire
JP2013226983A (en) * 2012-04-26 2013-11-07 Bridgestone Corp Run-flat tire
JP2014525973A (en) * 2011-08-04 2014-10-02 コンパニー ゼネラール デ エタブリッスマン ミシュラン Water-based adhesive composition based on polyaldehyde and polyphenol
JP2014528970A (en) * 2011-08-04 2014-10-30 コンパニー ゼネラール デ エタブリッスマン ミシュラン Aqueous adhesive composition based on polyaldehyde and phloroglucinol
JP2016528337A (en) * 2013-07-16 2016-09-15 カンパニー ジェネラレ デ エスタブリシュメンツ ミシュラン Aqueous adhesive composition containing main components of bio-derived aldehyde and polyphenol
WO2016143756A1 (en) * 2015-03-06 2016-09-15 株式会社ブリヂストン Rubber composition and tire using same
JP2017512262A (en) * 2014-02-06 2017-05-18 コンパニー ゼネラール デ エタブリッスマン ミシュラン Rubber composite reinforced with at least one steel reinforcing element provided with adhesion by an adhesive composition containing an aromatic aldehyde and polyphenol
WO2018230464A1 (en) * 2017-06-16 2018-12-20 株式会社ブリヂストン Side-reinforcing rubber for run-flat tire and run-flat tire
WO2018230463A1 (en) * 2017-06-16 2018-12-20 株式会社ブリヂストン Vulcanized rubber, tire, and run-flat tire
JP2019518087A (en) * 2016-04-01 2019-06-27 コンパニー ゼネラール デ エタブリッスマン ミシュラン Aqueous adhesive composition comprising thermosetting resin and latex

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174105A (en) * 2007-12-25 2009-08-06 Bridgestone Corp Method for producing adhesive composition for organic fiber cord, adhesive composition for organic fiber cord and method for producing rubber product
JP2010189492A (en) * 2009-02-17 2010-09-02 Bridgestone Corp Adhesive composition for organic fiber cord and rubber reinforcing material using the same, tire, and adhesion method
JP2012214928A (en) * 2011-03-31 2012-11-08 Bridgestone Corp Run flat tire
JP2014525973A (en) * 2011-08-04 2014-10-02 コンパニー ゼネラール デ エタブリッスマン ミシュラン Water-based adhesive composition based on polyaldehyde and polyphenol
JP2014528970A (en) * 2011-08-04 2014-10-30 コンパニー ゼネラール デ エタブリッスマン ミシュラン Aqueous adhesive composition based on polyaldehyde and phloroglucinol
JP2013226983A (en) * 2012-04-26 2013-11-07 Bridgestone Corp Run-flat tire
JP2016528337A (en) * 2013-07-16 2016-09-15 カンパニー ジェネラレ デ エスタブリシュメンツ ミシュラン Aqueous adhesive composition containing main components of bio-derived aldehyde and polyphenol
JP2017512262A (en) * 2014-02-06 2017-05-18 コンパニー ゼネラール デ エタブリッスマン ミシュラン Rubber composite reinforced with at least one steel reinforcing element provided with adhesion by an adhesive composition containing an aromatic aldehyde and polyphenol
WO2016143756A1 (en) * 2015-03-06 2016-09-15 株式会社ブリヂストン Rubber composition and tire using same
JP2019518087A (en) * 2016-04-01 2019-06-27 コンパニー ゼネラール デ エタブリッスマン ミシュラン Aqueous adhesive composition comprising thermosetting resin and latex
WO2018230464A1 (en) * 2017-06-16 2018-12-20 株式会社ブリヂストン Side-reinforcing rubber for run-flat tire and run-flat tire
WO2018230463A1 (en) * 2017-06-16 2018-12-20 株式会社ブリヂストン Vulcanized rubber, tire, and run-flat tire

Also Published As

Publication number Publication date
JP2021142843A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
RU2424910C2 (en) Auto tire
JP4467627B2 (en) tire
EP3266820B1 (en) Rubber composition and tire using same
KR20140053899A (en) Rubber composition for tires, and pneumatic tire
JP6998951B2 (en) Vulcanized rubber, tires, and run-flat tires
WO2016039009A1 (en) Pneumatic tire
JP7059272B2 (en) Side reinforcement rubber for run-flat tires and run-flat tires
WO2021066099A1 (en) Run-flat tire
JP2010116027A (en) Pneumatic tire
WO2021182535A1 (en) Run-flat tire
JP7324712B2 (en) Rubber composition and tire using the same
JP7216014B2 (en) tire
JP7444647B2 (en) pneumatic tires
JP6908222B2 (en) Side reinforcing rubber composition for run-flat tires, side reinforcing rubber for run-flat tires, and run-flat tires
WO2021066106A1 (en) Rubber composition and run-flat tire
WO2021182537A1 (en) Pneumatic tire
JP7496365B2 (en) Run-flat tires
JP2011255881A (en) Pneumatic tire
JP5334520B2 (en) Pneumatic tire
EP3495417B1 (en) Rubber composition for tire and pneumatic tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768115

Country of ref document: EP

Kind code of ref document: A1