WO2021182409A1 - Displacement sensor and performance operation device - Google Patents

Displacement sensor and performance operation device Download PDF

Info

Publication number
WO2021182409A1
WO2021182409A1 PCT/JP2021/009027 JP2021009027W WO2021182409A1 WO 2021182409 A1 WO2021182409 A1 WO 2021182409A1 JP 2021009027 W JP2021009027 W JP 2021009027W WO 2021182409 A1 WO2021182409 A1 WO 2021182409A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
wiring pattern
insulating layer
detected
magnetic field
Prior art date
Application number
PCT/JP2021/009027
Other languages
French (fr)
Japanese (ja)
Inventor
石井 潤
Original Assignee
ヤマハ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ株式会社 filed Critical ヤマハ株式会社
Priority to JP2022507186A priority Critical patent/JP7327646B2/en
Priority to CN202190000320.0U priority patent/CN218297031U/en
Publication of WO2021182409A1 publication Critical patent/WO2021182409A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H1/00Details of electrophonic musical instruments
    • G10H1/32Constructional details
    • G10H1/34Switch arrangements, e.g. keyboards or mechanical switches specially adapted for electrophonic musical instruments

Definitions

  • This disclosure relates to a displacement sensor and a performance operation device.
  • Patent Document 1 has a configuration in which a displacement of a movable member is detected by using an exciting coil and a position detection coil installed on the fixed member and an excited coil installed on the movable member moving with respect to the fixed member.
  • Each of the exciting coil, the position detection coil, and the magnetized coil is formed in an annular shape parallel to the direction in which the movable member moves.
  • a magnetic field in the exciting coil by supplying a periodic signal, a magnetic field due to electromagnetic induction is generated in the excited coil.
  • the induced voltage generated in the position detection coil according to the magnetic field of the excited coil is generated as a detection signal indicating the position of the movable member.
  • one aspect of the present disclosure is to reduce damage to the coil installed in the movable member.
  • the displacement sensor is a displacement sensor that detects the displacement of the movable member according to the operation, and is installed on the movable member and formed of an insulating resin.
  • a relative position between the first coil of the detected portion and the second coil facing the first coil of the detected portion which includes a second coil that generates a magnetic field by supplying a current and a detected portion including a first coil protected by a protective member. It is provided with a signal generation unit that generates a detection signal according to the above.
  • FIG. 5 is a cross-sectional view taken along the line Aa in FIG. It is explanatory drawing of the magnetic field and the like generated by the 1st coil of the detected part. It is a top view which illustrates the specific structure of the signal generation part.
  • FIG. 8 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 11 is a cross-sectional view taken along the line CC in FIG. It is a top view of the detected part in 3rd Embodiment. It is a top view of the detected part in 4th Embodiment. It is the figure which applied the displacement sensor which concerns on a modification. It is the figure which applied the displacement sensor which concerns on a modification.
  • FIG. 1 is a block diagram illustrating a configuration of a keyboard instrument 100 to which a displacement sensor according to the first embodiment of the present disclosure is applied.
  • the keyboard instrument 100 is an electronic musical instrument including a keyboard 10, a detection system 15, an information processing device 30, and a sound emitting device 40.
  • the keyboard 10 is composed of a plurality of keys 12 including a plurality of white keys and a plurality of black keys. Each of the plurality of keys 12 is a movable member that is displaced according to the performance operation by the user.
  • the detection system 15 detects the displacement (position) of the key 12.
  • the information processing device 30 generates an acoustic signal V according to the result of detection by the detection system 15.
  • the acoustic signal V is a signal representing a musical tone having a pitch corresponding to the key 12 operated by the user.
  • the sound emitting device 40 emits the sound represented by the acoustic signal V.
  • a speaker or headphones are used as the sound emitting device 40.
  • FIG. 2 is a block diagram illustrating a specific configuration of the keyboard instrument 100 by focusing on one key 12 of the keyboard 10.
  • Each key 12 of the keyboard 10 is supported by the support member 14 with the fulcrum portion (balance pin) 13 as the fulcrum.
  • the support member 14 is a structure that supports each element of the keyboard instrument 100.
  • the end 121 of each key 12 is displaced in the vertical direction by the user pressing and releasing the key.
  • the detection system 15 generates a detection signal D at a level corresponding to the position Z of the end portion 121 in the vertical direction for each of the plurality of keys 12.
  • the position Z is represented by, for example, the amount of displacement of the end portion 121 with reference to the position of the end portion 121 in the released state in which no load acts on the key 12.
  • the detection system 15 includes a displacement sensor 20 provided for each key 12 and a signal processing circuit 21 common to each key 12.
  • the displacement sensor 20 is a position sensor that detects the position of each key 12, and includes a detected unit 50 and a signal generating unit 60.
  • the signal generation unit 60 is installed on the support member 14.
  • the detected unit 50 is installed on the key 12. Specifically, the detected unit 50 is installed on the bottom surface (hereinafter referred to as “installation surface”) 122 of the key 12.
  • the detected unit 50 includes the first coil 51.
  • the signal generation unit 60 includes a second coil 61.
  • the first coil 51 and the second coil 61 face each other in the vertical direction with a distance from each other.
  • the distance between the signal generation unit 60 and the detected unit 50 is adjusted according to the change in the position Z of the end portion 121 on the key 12 by pressing and releasing the key. Change.
  • FIG. 3 is a circuit diagram illustrating the electrical configuration of the detected unit 50 and the signal generating unit 60 constituting the displacement sensor 20.
  • the signal generation unit 60 includes an input terminal T1, an output terminal T2, a second coil 61, a capacitance element 62, a capacitance element 63, and a resistance element 64.
  • a resonance circuit is formed by the second coil 61, the capacitance element 62, the capacitance element 63, and the resistance element 64.
  • the input terminal T1 is connected to one end of the resistance element 64, and the other end of the resistance element 64 is connected to one end of the capacitance element 62 and one end of the second coil 61.
  • the other end of the second coil 61 is connected to one end of the output terminal T2 and the capacitance element 63.
  • the other end of the capacitance element 62 and the other end of the capacitance element 63 are grounded to the potential Gnd, which is a reference for zero voltage.
  • the detected unit 50 includes the first coil 51 and the capacitive element 52.
  • One end of the first coil 51 and one end of the capacitance element 52 are connected to each other, and the other end of the first coil 51 and the other end of the capacitance element 52 are connected to each other.
  • a resonance circuit is formed by the first coil 51 and the capacitive element 52.
  • the resonance frequency of the signal generation unit 60 is set according to the relationship with the resonance frequency of the detected unit 50, for example.
  • the resonance frequency of the signal generation unit 60 is set to, for example, a frequency substantially equal to the resonance frequency of the detected unit 50, or a frequency obtained by multiplying the resonance frequency of the detected unit 50 by a predetermined constant.
  • FIG. 4 is a block diagram illustrating a specific configuration of the signal processing circuit 21.
  • the signal processing circuit 21 includes a supply circuit 22 and an output circuit 23.
  • the supply circuit 22 supplies the reference signal R to each of the input terminals T1 of the plurality of signal generation units 60.
  • the reference signal R is a voltage signal whose level fluctuates periodically. For example, a periodic signal having an arbitrary waveform such as a sine wave is used as the reference signal R.
  • the supply circuit 22 supplies the reference signal R to each signal generation unit 60 in a time-division manner.
  • the supply circuit 22 is a demultiplexer that sequentially selects each of the plurality of signal generation units 60 and supplies the reference signal R to the selected signal generation unit 60. That is, the reference signal R is supplied to each of the plurality of signal generation units 60 in a time-division manner.
  • the period of the reference signal R is sufficiently shorter than the time length of the period during which the supply circuit 22 selects one signal generation unit 60.
  • the frequency of the reference signal R is substantially the same as the resonance frequency of the signal generation unit 60 and the detected unit 50.
  • the reference signal R is supplied to the input terminal T1 of the signal generation unit 60.
  • a current corresponding to the reference signal R is supplied to the second coil 61, a magnetic field is generated in the second coil 61.
  • An induced current is generated in the first coil 51 by electromagnetic induction due to the magnetic field generated in the second coil 61. Therefore, a magnetic field in a direction that cancels the change in the magnetic field of the second coil 61 is generated in the first coil 51.
  • the magnetic field generated in the first coil 51 changes according to the relative distance dr between the first coil 51 and the second coil 61.
  • the detection signal d of the level ⁇ (peak to peak value) corresponding to the relative distance dr between the first coil 51 and the second coil 61 is output from the output terminal T2 of the signal generation unit 60.
  • the detection signal d is a periodic signal whose level fluctuates in the same period as the reference signal R.
  • the output circuit 23 of FIG. 4 generates a detection signal D by arranging the detection signals d sequentially output from each of the plurality of signal generation units 60 on the time axis. That is, the detection signal D is a voltage signal of level ⁇ corresponding to the distance dr between the first coil 51 and the second coil 61 in each key 12. As described above, since the relative distance dr between the first coil 51 and the second coil 61 correlates with the position Z of each key 12, the detection signal D is expressed as a signal corresponding to each position Z of the plurality of keys 12. NS.
  • the detection signal D generated by the output circuit 23 is supplied to the information processing device 30.
  • the information processing device 30 of FIG. 2 analyzes the position Z of each key 12 by analyzing the detection signal D supplied from the signal processing circuit 21.
  • the information processing device 30 is realized by a computer system including a control device 31, a storage device 32, an A / D converter 33, and a sound source circuit 34.
  • the A / D converter 33 converts the detection signal D supplied from the signal processing circuit 21 from analog to digital.
  • the control device 31 is composed of a single or a plurality of processors that control each element of the keyboard instrument 100.
  • the control device 31 is one or more types such as a CPU (Central Processing Unit), an SPU (Sound Processing Unit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), or an ASIC (Application Specific Integrated Circuit). It consists of a processor.
  • the storage device 32 is a single or a plurality of memories for storing a program executed by the control device 31 and data used by the control device 31.
  • the storage device 32 is composed of a known recording medium such as a magnetic recording medium or a semiconductor recording medium.
  • the storage device 32 may be configured by combining a plurality of types of recording media.
  • a portable recording medium that can be attached to and detached from the keyboard instrument 100, or an external recording medium (for example, online storage) that the keyboard instrument 100 can communicate with may be used as the storage device 32.
  • the control device 31 analyzes the position Z of each key 12 by analyzing the detection signal D after conversion by the A / D converter 33. Further, the control device 31 instructs the sound source circuit 34 to pronounce a musical tone according to the position Z of each key 12.
  • the sound source circuit 34 generates an acoustic signal V representing a musical tone instructed by the control device 31. That is, the sound source circuit 34 detects that the key has reached a predetermined position according to the level ⁇ of the detection signal D, and starts generating the acoustic signal V. Then, for example, the volume of the acoustic signal V is controlled according to the speed change of the level ⁇ .
  • the musical sound corresponding to the performance operation by the user is emitted from the sound emitting device 40.
  • the musical sound is emitted when the user presses each key 12, and the musical sound is stopped when the key 12 is released.
  • the control device 31 may realize the function of the sound source circuit 34 by executing the program stored in the storage device 32.
  • the sound source circuit 34 or the control device 31 that realizes the function of the sound source circuit 34 functions as a sound control unit that generates an acoustic signal V corresponding to the level ⁇ of the detection signal D.
  • FIG. 8 is a plan view showing a specific configuration of the signal generation unit 60. That is, FIG. 8 is a plan view of the signal generation unit 60 as viewed from the detected unit 50 side. Further, FIG. 9 is a cross-sectional view taken along the line BB in FIG.
  • the signal generation unit 60 includes a base material 651 and wiring patterns 611 and 612.
  • the base material 651 is a plate-shaped member including the surface F3 and the surface F4.
  • the vertical direction is the arrangement direction of the plurality of keys 12 on the keyboard 10.
  • the surface F4 faces the support member 14.
  • the surface F3 is a surface opposite to the surface F4 and faces the detected portion 50.
  • the wiring pattern 611 is formed by patterning a conductive layer such as a copper foil provided on the surface F3.
  • the wiring pattern 612 is formed by patterning a conductive layer such as a copper foil provided on the surface F4.
  • the second coil 61 of the signal generation unit 60 has a fifth portion 621 formed in a spiral shape and a sixth portion of the wiring pattern 611 formed in a spiral shape in the same direction as the winding direction of the fifth portion 621. It is composed of 622 and.
  • One end of the fifth portion 621 is a node N11, and the other end of the fifth portion 621 is a via C11 located at the center of the spiral.
  • One end of the sixth portion 622 is a via C12 located at the center of the spiral, and the other end of the sixth portion 622 is a node N12.
  • Each of the via C11 and the via C12 is a circular opening penetrating the base material 651.
  • the via C11 and the via C12 are connected to each other via the wiring pattern 612.
  • Capacitive elements 62 and 63 and resistance elements 64 are mounted on the surface F3. Further, as described above, the reference signal R is supplied to the input terminal T1 from the supply circuit 22. From the output terminal T2, a detection signal d of level ⁇ corresponding to the distance dr between the first coil 51 and the second coil 61 is output.
  • the signal generation unit 60 for example, when a current flows in the route of node N12 ⁇ via C12 ⁇ via C11 ⁇ node N11, the current flows counterclockwise in the fifth part 621 and the current flows clockwise in the sixth part 622. .. Therefore, a magnetic field is generated in the fifth portion 621 in the front direction of the paper surface in FIG. 8 and in the upward direction in FIG. A magnetic field is generated. That is, as illustrated in FIG. 10, magnetic fields in opposite directions are generated in the fifth portion 621 and the sixth portion 622. As described above, on the keyboard 10, the plurality of keys 12 are arranged in the direction perpendicular to the paper surface of FIG.
  • the magnetic field generated in the fifth portion 621 and the sixth portion 622 in the opposite direction reduces the diffusion of the magnetic field between the signal generation units 60 facing each key 12 adjacent to each other.
  • a detection signal D that accurately reflects each position Z of the plurality of keys 12 is generated.
  • FIG. 10 the case where the current flows through the path of node N12 ⁇ ... ⁇ node N11 has been described, but when the current flows through the path of node N11 ⁇ ... ⁇ node N12, the direction of the magnetic field is also opposite. ..
  • the fifth portion 621 and the sixth portion 622 of the second coil 61 in the signal generation unit 60 are wiring patterns 611 formed in a spiral shape. Therefore, for example, as compared with a configuration in which the second coil 61 is formed by winding a conductive wire, there is an advantage that the second coil 61 can be easily manufactured and handled.
  • the detected portion 50 in the first embodiment is composed of a substrate including four layers of wiring patterns (wiring layers).
  • FIG. 5 is a plan view showing the wiring patterns from the first layer to the fourth layer in the detected unit 50 in a see-through state when viewed from the signal generation unit 60.
  • the wiring pattern closest to the installation surface 122 of the key 12 among the wiring patterns of the plurality of layers is set as the first layer for convenience, and is along the direction toward the second coil 61 of the signal generation unit 60.
  • the second layer, the third layer, and the fourth layer are arranged in this order. Further, in FIG. 5, the illustration of the capacitance element 52 is omitted for convenience.
  • FIG. 6 is a cross-sectional view taken along the line Aa in FIG.
  • the detected portion 50 of the first embodiment includes a wiring pattern 511 of the first layer, a base material 551, a wiring pattern 512 of the second layer, a base material 552, a wiring pattern 513 of the third layer, and a base material.
  • the 553 and the wiring pattern 514 of the fourth layer are laminated in this order. That is, in the detected portion 50, the wiring pattern and the base material are alternately arranged.
  • the base materials 551, 552 and 553 are rectangular plate-shaped members formed of an insulating resin.
  • the base materials 551 and 553 are prepregs obtained by impregnating, for example, a glass cloth with a resin such as epoxy and curing the prepreg, and the thickness is preferably 0.06 mm or more and 0.36 mm or less. Further, the base material 552 is a core material such as glass cloth, and the thickness is preferably 0.1 mm or more and 1.1 mm or less.
  • the surface F1 of the detected portion 50 is a surface attached to the installation surface 122 of the key 12. Therefore, the width W of the detected unit 50 is smaller than the width W of one key 12. Further, the surface F2 is a surface opposite to the surface F1. Therefore, the surface F2 faces the signal generation unit 60.
  • a plurality of vias C1 to C8 are provided in the detected unit 50.
  • Vias C1 to C8 are circular contact holes penetrating the base materials 551, 552, and 553.
  • the chip type capacitive element 52 is mounted on the terminal Na connected to the via C1 and the terminal Nb connected to the via C8. Specifically, one end of the capacitance element 52 is connected to the terminal Na, and the other end is connected to the terminal Nb.
  • the first coil 51 of the detected portion 50 is composed of a wiring pattern 512 of the second layer and a wiring pattern 513 of the third layer. Specifically, the first coil 51 includes a first portion 521 and a fourth portion 524 formed in a spiral shape in the wiring pattern 512, and a second portion 522 formed in a spiral shape in the wiring pattern 513. It is composed of a third part 523.
  • the center of the spiral in the first portion 521 and the center of the spiral in the second portion 522 is the via C3
  • the center of the spiral in the third portion 523 and the center of the spiral in the fourth portion 524 is the via C6. Therefore, when viewed in a plan view from the signal generation unit 60, the first portion 521 and the second portion 522 overlap each other, and the third portion 523 and the fourth portion 524 overlap each other. Further, the first portion 521 and the fourth portion 524 are adjacent to each other along the longitudinal direction of the key 12 in the second layer. Similarly, the third portion 523 and the fourth portion 524 are adjacent to each other along the longitudinal direction of the key 12 in the third layer.
  • the terminal Na is connected to one end (node N1) of the first portion 521 in the second layer via the via C1.
  • the other end of the first portion 521 is connected to one end of the second portion 522 in the third layer via the via C3.
  • the other end (node N2) of the second portion 522 is connected to one end (node N3) of the third portion 523 in the third layer.
  • the other end of the third portion 523 is connected to one end of the fourth portion 524 in the second layer via the via C6.
  • the other end (node N4) of the fourth portion 524 is connected to the terminal Nb of the first layer via the via C8.
  • the first portion 521, the second portion 522, the third portion 523, and the fourth portion 524 are connected in series in this order when viewed from the terminal Na.
  • the capacitance element 52 is mounted on the terminal Na and the terminal Nb, one end of the capacitance element 52 and one end of the first coil 51 are connected to each other, and the other end of the capacitance element 52 and the other end of the first coil 51 Are interconnected.
  • a notch 124 is provided on the installation surface 122 of the key 12, as shown in FIG.
  • the cutout portion 124 is a space recessed with respect to the installation surface 122.
  • the cutout portion 124 is provided by cutting the installation surface 122 with, for example, a drill or the like.
  • the capacitive element 52 projects from the surface F1 of the detected portion 50.
  • the surface F1 of the detected portion 50 comes into contact with the installation surface 122 of the key 12.
  • the capacitive element 52 is exposed before the detected portion 50 is installed on the installation surface 122, but the capacitive element 52 and the surface F1 are not exposed after the detected portion 50 is installed. Therefore, it is possible to prevent the capacitance element 52 from being damaged due to being caught by another member during maintenance of the keyboard instrument 100 or the like.
  • the first coil 51 moves away from the second coil 61, the first coil 51 has the same direction as the magnetic field generated by the second coil 61 in the direction of preventing the magnetic field generated by the second coil 61 from decreasing.
  • a directional magnetic field is generated. Therefore, in this case, a current is induced in the first coil 51 according to the magnetic field in the same direction as the magnetic field generated by the second coil 61.
  • the first coil 51 of the detected unit 50 moves away from the second coil 61 in a state where the second coil 61 of the signal generation unit 60 generates a magnetic field in the direction shown in FIG.
  • FIG. 7 a magnetic field in the same direction as the magnetic field generated by the second coil 61 is generated in the coil 51. Therefore, in FIG.
  • the current flows counterclockwise in the first portion 521 and the second portion 522, and the current flows clockwise in the third portion 523 and the fourth portion 524. Therefore, in this case, the current flows in the route of terminal Na ⁇ via C1 ⁇ node N1 ⁇ via C3 ⁇ node N2 ⁇ node N3 ⁇ via C6 ⁇ node N4 ⁇ via C8 ⁇ terminal Nb.
  • the magnetic field in the direction opposite to the magnetic field generated by the second coil 61 that is, FIG.
  • the magnetic field shown in is generated in the first coil 51. Therefore, similarly, the current flows in the path of terminal Na ⁇ ... ⁇ terminal Nb.
  • the first portion 521 and the second portion 522 of the first coil 51 are formed. The current flows clockwise, and the current flows counterclockwise in the third part 523 and the fourth part 524.
  • the first portion 521 and the fourth portion 524 are spirally formed wiring patterns 512, and the second portion 522 and the third portion 523 are spirally formed.
  • the first coil 51 is composed of a first portion 521, a second portion 522, a third portion 523, and a fourth portion 524 connected in series.
  • This configuration has an advantage that the first coil 51 can be easily manufactured and handled as compared with a configuration in which the first coil 51 is formed by winding a conductive wire, for example. Further, it is easy to increase the inductance of the first coil 51 as compared with the case where the inductance of the first coil 51 is composed of only any portion. In other words, when the resonance frequency of the detected unit 50 is matched with the resonance frequency of the signal generation unit 60, the capacitance of the capacitive element 52 can be suppressed by the amount of increasing the inductance of the first coil 51.
  • the first portion 521 and the fourth portion 524 of the first coil 51 are covered with the base material 551 and the base material 552. That is, the first portion 521 and the fourth portion 524 are formed between the base material 551 and the base material 552.
  • the second portion 522 and the third portion 523 are covered with the base material 552 and the base material 553. That is, the second portion 522 and the third portion 523 are formed between the base material 552 and the base material 553. Therefore, the first coil 51 is protected by at least the base material 551 and the base material 553 functioning as protective members. That is, the first coil 51 facing the second coil 61 of the signal generation unit 60 is not exposed in the detected unit 50.
  • the base material 551 functions as an example of the first insulating layer
  • the wiring pattern 512 functions as an example of the first wiring pattern
  • the base material 552 functions as an example of the second insulating layer.
  • the wiring pattern 513 functions as an example of the second wiring pattern
  • the base material 553 functions as an example of the third insulating layer. Further, the base material 551 and the base material 553 function as an example of the protective member.
  • the detected portion 50 in the second embodiment is composed of a substrate including a two-layer wiring pattern.
  • FIG. 11 is a plan view showing the wiring patterns of the first layer and the second layer in the detected unit 50 in a state of being seen through from the signal generation unit 60. Note that in FIG. 11, the illustration of the capacitance element 52 is omitted for convenience. Further, FIG. 12 is a cross-sectional view taken along the line CC in FIG.
  • the detected portion 50 of the second embodiment is a laminate in which the wiring pattern 511 of the first layer, the base material 551, the wiring pattern 512 of the second layer, and the base material 552 are laminated in this order. That is, in the detected portion 50 of the second embodiment, the wiring pattern 513 of the third layer, the base material 553, and the wiring pattern 514 of the fourth layer are omitted as compared with the first embodiment.
  • Vias C1, C3, C6 and C8 are provided in the detected unit 50. These vias C1, C3, C6 and C8 are contact holes.
  • the capacitance element 52 is mounted in the region A1 including the terminal Na connected to the via C1 and the terminal Nb connected to the via C8.
  • the first coil 51 of the detected portion 50 is configured by the wiring pattern 512 of the second layer.
  • the first coil 51 is composed of a first portion 521 formed in a spiral shape and a second portion 522 formed in a spiral shape in the same direction in the wiring pattern 512.
  • the center of the spiral in the first portion 521 is the via C3
  • the center of the spiral in the second portion 522 is the via C6.
  • the via C3 and the via C6 are connected to each other via the wiring 515 which is a part of the wiring pattern 511.
  • the terminal Na in the region A1 is connected to one end (node N21) of the first portion 521 in the second layer via the via C1.
  • the other end of the first portion 521 is connected to the via C6 via the via C3 and the wiring 515 in the first layer.
  • the wiring 515 is connected to the second portion 522 in the second layer via the via C6.
  • the other end (node N22) of the second portion 522 is connected to the terminal Nb in the first layer via the via C8.
  • the first portion 521 and the second portion 522 are connected in series.
  • the total number of parts constituting the first coil 51 is halved as compared with the first embodiment, but the direction in which the magnetic field is generated is the same as that in the first embodiment. That is, magnetic fields in opposite directions are generated in the first portion 521 and the second portion 522. Since the plurality of keys 12 on the keyboard 10 are arranged in the direction perpendicular to the paper surface of FIG. 12, the diffusion of the magnetic field between the keys 12 adjacent to each other is reduced. Therefore, it is possible to generate a detection signal D that accurately reflects each position Z of the plurality of keys 12.
  • the first portion 521 and the second portion 522 constituting the first coil 51 are covered with the base material 551 and the base material 552, so that they are not exposed. That is, in the second embodiment, the base material 551 and the base material 552 function as protective members, so that the first coil 51 is protected. Therefore, also in the second embodiment, damage to the first coil 51 due to rubbing by a tool or the like is prevented. Further, in the second embodiment, as compared with the first embodiment, the wiring pattern 513 of the third layer, the base material 553, and the wiring pattern 514 of the fourth layer do not exist, so that the configuration becomes simpler accordingly.
  • the base material 551 functions as an example of the first insulating layer
  • the wiring pattern 512 functions as an example of the first wiring pattern
  • the base material 552 functions as an example of the second insulating layer.
  • the base material 551 and the base material 552 function as an example of the protective member.
  • the detected portion 50 in the third embodiment is composed of a substrate including four layers of wiring patterns as in the first embodiment.
  • FIG. 13 is a plan view showing the wiring patterns of the first layer and the second layer in the detected unit 50 in a state of being seen through from the signal generation unit 60. Note that in FIG. 13, the illustration of the capacitance element 52 is omitted for convenience.
  • the detected portion 50 of the third embodiment has a wiring pattern 511 of the first layer, a base material 551, a wiring pattern 512 of the second layer, and a base material 552.
  • the wiring pattern 513 of the third layer, the base material 553, and the wiring pattern 514 of the fourth layer are laminated in this order.
  • the first coil 51 of the detected portion 50 is composed of the first portion 521 of the wiring pattern 512 of the second layer and the second portion 522 of the wiring pattern 513 of the third layer. ..
  • the first portion 521 is formed in a spiral shape.
  • the second portion 522 is formed in a spiral shape in the direction opposite to that of the first portion 521.
  • the center of the spiral in the first portion 521 and the center of the spiral in the second portion 522 are vias C3. That is, in the third embodiment, the first portion 521 and the second portion 522 are connected to each other via the via C3.
  • the terminal Na in the region A1 is connected to one end (node N31) of the first portion 521 in the second layer via the via C1.
  • the other end of the first portion 521 is connected to one end of the second portion 522 in the third layer via the via C3.
  • the other end (node N32) of the second portion 522 is connected to the terminal Nb in the region A1 in the first layer via the via C8.
  • the structure of the detected portion 50 of the third embodiment can be sufficiently inferred from FIG. 6, which is a cross-sectional view of the first embodiment, and thus the illustration is omitted.
  • the second portion 522 constituting the first coil 51 is covered with the base material 552 and the base material 553, so that the first coil 51 is not exposed. That is, in the third embodiment, the base material 552 and the base material 553 function as protective members, so that the first coil 51 is protected. Therefore, also in the third embodiment, damage to the first coil 51 due to rubbing by a tool or the like is prevented. Further, in the third embodiment, the portion constituting the first coil 51 is halved as compared with the first embodiment, but the first portion 521 and the second portion 522 are positioned so as to overlap each other and the magnetic field. Occurs in the same direction. Therefore, the substrate area of the third embodiment is about half that of the first embodiment.
  • the base material 551 functions as an example of the first insulating layer
  • the wiring pattern 512 functions as an example of the first wiring pattern
  • the base material 552 functions as an example of the second insulating layer.
  • the wiring pattern 513 functions as an example of the second wiring pattern
  • the base material 553 functions as an example of the third insulating layer.
  • the base material 552 and the base material 553 function as an example of the protective member.
  • FIG. 14 is a plan view showing the wiring pattern in the detected unit 50 in a see-through state when viewed from the signal generating unit 60.
  • the first coil 51 of the detected portion 50 in the fourth embodiment is composed of either the first portion 521 or the second portion 522. That is, the detected unit 50 is switched from one of the state in which the first coil 51 is composed of the first portion 521 and the state in which the first coil 51 is composed of the second portion 522 to the other.
  • a jumper switch 560 is provided on the surface of the first layer.
  • the jumper switch 560 is a switch that connects either the via C21 or the via C22 to the terminal Na in the region A1. Specifically, when connecting the terminal Na to the via C21, the socket is inserted as shown in the right column in the figure, and when connecting the terminal Na to the via C22, as shown in the left column in the figure. The socket is plugged into.
  • the terminal Na is connected to one end (node N41) of the first portion 521 in the second layer via the via C21.
  • the terminal Na is connected to one end (node N42) of the second portion 522 in the third layer via the via C22.
  • the other end of the first portion 521 and the other end of the second portion 522 are connected to the terminal Nb in the region A1 in the first layer via the common via C3.
  • the jumper switch 560 in the initial initial state in which the detected portion 50 is installed, the jumper switch 560 is positioned as shown in the left column, and the second portion 522 functions as the first coil 51.
  • the jumper switch 560 if any trouble occurs in the second part 522, the jumper switch 560 is switched to the state shown in the right column, and the first part 521 functions as the first coil 51. That is, in the fourth embodiment, while the first portion 521 is used as a spare coil and the second portion 522 functions as the first coil 51, if a problem occurs in the second portion 522, the jumper switch 560 is switched.
  • the first portion 521 can function as the first coil 51.
  • the displacement sensor 20 of the fourth embodiment includes a detected portion 50 installed on a key 12, which is an example of a movable member, and a second coil 61 that generates a magnetic field by supplying an electric current. It includes a signal generation unit 60 including the signal generation unit 60.
  • the detected portion 50 includes a first portion 521 protected by a protective member (base material 551 or base material 552) formed of an insulating resin, and a second portion 522 which is an example of the third coil.
  • the jumper switch 560 functions as a switching unit for switching between a first state in which the first portion 521 constitutes a resonance circuit and a second state in which the second portion 522 constitutes a resonance circuit.
  • the signal generation unit 60 generates a detection signal according to the relative position between the resonance circuit of the detected unit 50 and the second coil 61.
  • the second portion 522 may or may not be protected by a protective member.
  • the fourth embodiment there may be no member covering the second portion 522, and even if the second portion 522 is damaged, if the jumper switch 560 is switched, the first portion 521 functions as the first coil 51. be able to. That is, in the fourth embodiment, when the first portion 521 functions as the first coil 51 by the jumper switch 560, the base material 552 functions as a protective member, so that the first coil 51 is protected.
  • the base material 551 functions as an example of the first insulating layer
  • the wiring pattern 512 functions as an example of the first wiring pattern
  • the base material 552 functions as an example of the second insulating layer.
  • the wiring pattern 513 functions as an example of the second wiring pattern
  • the base material 553 functions as an example of the third insulating layer.
  • FIG. 15 is a schematic diagram of a configuration in which the displacement sensor 20 is applied to the string striking mechanism 91 of the keyboard instrument 100.
  • the string striking mechanism 91 is an action mechanism that strikes a string (not shown) in conjunction with the displacement of each key 12 of the keyboard 10.
  • the string striking mechanism 91 includes a hammer 911 capable of striking a string by rotation and a transmission mechanism 912 (for example, a wipen, a jack, a repetition lever, etc.) that rotates the hammer 911 in conjunction with the displacement of the key 12. Is provided for each key 12.
  • the detected portion 50 is installed on a hammer 911 (for example, a hammer shank).
  • the signal generation unit 60 is installed on the support member 913.
  • the displacement sensor 20 detects the displacement of the hammer 911.
  • the support member 913 is a structure that supports, for example, the string striking mechanism 91.
  • the detected portion 50 may be installed on a movable member other than the hammer 911 in the string striking mechanism 91.
  • FIG. 16 is a schematic diagram of a configuration in which the displacement sensor 20 is applied to the pedal mechanism 92 of the keyboard instrument 100.
  • the pedal mechanism 92 includes a pedal 921 operated by the user with his / her foot, a support member 922 that supports the pedal 921, and an elastic body 923 that urges the pedal 921 upward in the vertical direction.
  • the detected portion 50 is installed on the bottom surface of the pedal 921.
  • the signal generation unit 60 is installed on the support member 922 so as to face the detected unit 50.
  • the displacement sensor 20 detects the displacement of the pedal 921.
  • the musical instrument in which the pedal mechanism 92 is used is not limited to the keyboard instrument 100.
  • a pedal mechanism 92 having the same configuration is used for any musical instrument such as a percussion instrument.
  • the object of detection by the displacement sensor is comprehensively expressed as a movable member that is displaced according to the playing motion.
  • the movable member includes a performance operator such as a key 12 or a pedal 921 directly operated by the user, and a structure such as a hammer 911 that is displaced in conjunction with an operation on the performance operator.
  • the movable member in the present disclosure is not limited to the member that is displaced according to the playing motion. That is, the movable member is comprehensively expressed as a displaceable member regardless of the trigger for causing the displacement.
  • the configuration in which the capacitance element 52 on the surface F1 is connected to the wiring pattern 511 formed on the surface F1 of the detected portion 50 is illustrated, but the wiring pattern (512 or 512 or) between the insulating layers is illustrated.
  • the capacitive element 52 on the surface F1 may be connected to 513) by, for example, a blind via.
  • the wiring pattern 511 may be omitted from the detected portion 50. That is, it is assumed that the wiring pattern 511 does not exist on the surface F1 of the detected portion 50.
  • the base material (552, 553) is exemplified as the protective member, but the form of the protective member is not limited to the above examples.
  • an insulating layer formed on the surface of a flat plate-shaped base material may be used as a “protective member”.
  • the insulating layer is, for example, a film body for the purpose of waterproofing, and is formed of an insulating material such as silicon, epoxy, or urethane.
  • Various processing techniques such as coating or potting are used to form the insulating layer.
  • the "protective member” is a concept that includes not only an independent base material but also a film body that covers the surface of the base material.
  • the configuration in which the keyboard instrument 100 includes the sound source circuit 34 is illustrated.
  • the sound source circuit 34 is used. It may be omitted.
  • the detection system 15 is used to record the performance content of the keyboard instrument 100.
  • the sound generation mechanism and the sound source circuit 34 are comprehensively expressed as a sound generation unit that generates sound according to the result of detection by the detection system 15.
  • the present disclosure is also specified as a device (performance operation device) that controls a musical sound by outputting an operation signal according to a performance operation to the sound source circuit 34 or a sounding mechanism.
  • the device not having the sound source circuit 34 or the sounding mechanism for example, the MIDI controller or the pedal mechanism 92 described above. It is included in the concept of instrument playing apparatus. That is, the performance operation device in the present disclosure is comprehensively expressed as a device operated by a performer (operator) for performance.
  • the entire surface is covered with a resin layer, but the entire surface may not necessarily be covered.
  • the protective member may be covered with a net-like member in the pattern.
  • the prismatic members may be arranged side by side at predetermined intervals or without leaving a space between the members in the longitudinal direction or the lateral direction of the substrate. Further, only the portion of the coil pattern may be covered with the protective member.
  • the displacement sensor according to the aspect (first aspect) of the present disclosure is a displacement sensor that detects the displacement of the movable member in response to an operation, and is installed on the movable member and protected by a protective member formed of an insulating resin. Detection according to the relative position of the first coil of the detected portion and the second coil facing the first coil of the detected portion, including the detected portion including the first coil and the second coil that generates a magnetic field by supplying a current. It includes a signal generation unit that generates a signal. According to this aspect, since the first coil is protected by the protective member, it is possible to prevent the first coil from being damaged by rubbing or the like.
  • the distance between the first coil and the second coil in the direction of the central axis of the second coil changes according to the displacement of the movable member.
  • the detected portion and the second coil move relatively in a plane perpendicular to the central axis of the second coil (that is, the detected portion and the second coil in the direction of the central axis of the second coil).
  • the level of the detection signal can be significantly changed with respect to the displacement of the movable member.
  • the detected portion includes a capacitive element connected to the first coil. According to this aspect, there is an advantage that the resonance frequency of the first coil and the capacitive element can be adjusted according to the capacitance of the capacitive element.
  • the movable member has an installation surface on which the detected portion is installed, the installation surface is provided with a notch, and the capacitive element is provided in the notch.
  • the detected portion is installed on the movable member.
  • the detected portion includes at least a first insulating layer, a first wiring pattern, and a second insulating layer, and the first wiring pattern is the said.
  • the first coil is a spiral-shaped portion included in the first wiring pattern.
  • the detected portion includes at least the first insulating layer, the first wiring pattern, the second insulating layer, the second wiring pattern, and the third insulating layer. Including, the first wiring pattern is located between the first insulating layer and the second insulating layer, and the second wiring pattern is located between the second insulating layer and the third insulating layer.
  • the first coil includes a first portion, a second portion, a third portion, and a fourth portion, and the first portion and the fourth portion are spiral-shaped portions included in the first wiring pattern.
  • the second portion and the third portion are spiral-shaped portions included in the second wiring pattern, and the first portion and the second portion overlap each other in a plan view, and the third portion and the third portion.
  • the fourth portion and the fourth portion overlap each other in a plan view, and the magnetic field generated by the first portion and the magnetic field generated by the second portion are in the first direction, and the magnetic field generated by the third portion. And the magnetic field generated by the fourth portion are the second direction opposite to the first direction.
  • a magnetic field in the first direction is generated in the first portion and the second portion, and a magnetic field in the direction opposite to the first direction is generated in the third portion and the fourth portion.
  • the diffusion of the magnetic field to the surroundings is reduced. Therefore, in a configuration in which a plurality of first coils corresponding to different movable members are close to each other, it is possible to generate a detection signal that reflects the displacement of each of the plurality of movable members with high accuracy.
  • planar view means observing along the direction perpendicular to the surface of the wiring pattern, or observing from the direction perpendicular to the surface of the insulating layer. Observing along the axial direction of the first coil may be expressed as "plan view”.
  • the detected portion includes at least a first insulating layer, a first wiring pattern, and a second insulating layer, and the first wiring pattern is the said.
  • the first coil Located between the first insulating layer and the second insulating layer, the first coil includes a first portion and a second portion, and the first portion and the second portion are in the first wiring pattern. It is a spiral-shaped portion included, and the magnetic field generated by the first portion and the magnetic field generated by the second portion are opposite to each other. According to this aspect, since the first portion and the second portion overlap in a plan view and the generated magnetic fields are in the same direction, the strength of the magnetic field is increased as compared with the single unit of the first portion or the second portion. be able to.
  • the detected portion includes at least the first insulating layer, the first wiring pattern, the second insulating layer, the second wiring pattern, and the third insulating layer. Including, the first wiring pattern is located between the first insulating layer and the second insulating layer, and the second wiring pattern is located between the second insulating layer and the third insulating layer.
  • the first coil includes a first portion and a second portion, the first portion is a spiral-shaped portion included in the first wiring pattern, and the second portion is included in the second wiring pattern. It is a spiral-shaped portion included, and the first portion and the second portion overlap each other in a plan view, and the magnetic field generated by the first portion and the magnetic field generated by the second portion mutually overlap. In the same direction. According to this aspect, since the first portion and the second portion overlap in a plan view, the space required for installing the detected portion is reduced.
  • the detected portion resonates with the third coil, the first state in which the first coil constitutes a resonance circuit, and the third coil. Includes a switching unit that switches between the second state that constitutes the circuit. According to this aspect, even if the other coil is damaged, the other coil can be used by replacing it with the first coil protected by the protective member.
  • the performance operation device generates the displacement sensor according to any one of the first to ninth aspects and an acoustic signal representing a sound according to the level of the detection signal. It is equipped with a sound control unit.
  • 100 keyboard instrument (playing operation device), 10 ... keyboard, 12 ... key, 15 ... detection system, 20 ... displacement sensor, 21 ... signal processing circuit, 22 ... supply circuit, 23 ... output circuit, 30 ... information processing device, 50 ... Detected part, 51 ... 1st coil, 52 ... Capacitive element, 521 ... 1st part, 522 ... 2nd part, 523 ... 3rd part, 524 ... 4th part, 551, 552, 535 ... Base material.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

This displacement sensor detects a movable member's displacement corresponding to an operation, and is provided with: a part to be detected that is installed in the movable member, and includes a first coil protected by a protection member formed by an insulating resin; and a signal generation part that includes a second coil for generating a magnetic field by supply of an electric current, and generates a detection signal corresponding to the relative positions of the first coil of the part to be detected and the second coil facing the first coil.

Description

変位センサーおよび演奏操作装置Displacement sensor and performance control device
 本開示は、変位センサーおよび演奏操作装置に関する。 This disclosure relates to a displacement sensor and a performance operation device.
 例えば鍵盤楽器における鍵等の可動部材の変位を検出するための各種の技術が、従来から提案されている。特許文献1には、固定部材に設置された励磁コイルおよび位置検出コイルと、固定部材に対して移動する可動部材に設置された被励磁コイルとを利用して、可動部材の変位を検出する構成が開示されている。励磁コイルと位置検出コイルと被励磁コイルとの各々は、可動部材が移動する方向に平行な環状に形成される。このような構成において、周期信号の供給により励磁コイルに磁界を発生させることで、被励磁コイルに電磁誘導による磁界が発生する。被励磁コイルの磁界に応じて位置検出コイルに発生する誘導電圧が、可動部材の位置を表す検出信号として生成される。 For example, various techniques for detecting the displacement of a movable member such as a key in a keyboard instrument have been conventionally proposed. Patent Document 1 has a configuration in which a displacement of a movable member is detected by using an exciting coil and a position detection coil installed on the fixed member and an excited coil installed on the movable member moving with respect to the fixed member. Is disclosed. Each of the exciting coil, the position detection coil, and the magnetized coil is formed in an annular shape parallel to the direction in which the movable member moves. In such a configuration, by generating a magnetic field in the exciting coil by supplying a periodic signal, a magnetic field due to electromagnetic induction is generated in the excited coil. The induced voltage generated in the position detection coil according to the magnetic field of the excited coil is generated as a detection signal indicating the position of the movable member.
特開平6-323803号公報Japanese Unexamined Patent Publication No. 6-323803
 しかしながら、特許文献1の技術において、可動部材をメンテナンスする際に、工具等によって、可動部材に設置されたコイルを損傷してしまう可能性があった。このような事情を考慮して、本開示のひとつの態様は、可動部材に設置されるコイルの損傷を低減することを目的とする。 However, in the technique of Patent Document 1, when the movable member is maintained, there is a possibility that the coil installed in the movable member may be damaged by a tool or the like. In view of such circumstances, one aspect of the present disclosure is to reduce damage to the coil installed in the movable member.
 上記目的を達成するために、本開示の一態様に係る変位センサーは、操作に応じた可動部材の変位を検出する変位センサーであって、前記可動部材に設置され、絶縁性樹脂により形成された保護部材で保護された第1コイルを含む被検出部と、電流の供給により磁界を発生する第2コイルを含み、前記被検出部の第1コイルとそれに対向する前記第2コイルとの相対位置に応じた検出信号を生成する信号生成部と、を具備する。 In order to achieve the above object, the displacement sensor according to one aspect of the present disclosure is a displacement sensor that detects the displacement of the movable member according to the operation, and is installed on the movable member and formed of an insulating resin. A relative position between the first coil of the detected portion and the second coil facing the first coil of the detected portion, which includes a second coil that generates a magnetic field by supplying a current and a detected portion including a first coil protected by a protective member. It is provided with a signal generation unit that generates a detection signal according to the above.
第1実施形態に係る変位センサーを適用した鍵盤楽器の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the keyboard instrument to which the displacement sensor which concerns on 1st Embodiment is applied. 鍵盤楽器の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of a keyboard instrument. 変位センサーにおける要部の回路を示す図である。It is a figure which shows the circuit of the main part in a displacement sensor. 信号処理回路の一例を示すブロック図である。It is a block diagram which shows an example of a signal processing circuit. 被検出部の配線パターンを示す平面図である。It is a top view which shows the wiring pattern of the detected part. 図5におけるA-a線の断面図である。FIG. 5 is a cross-sectional view taken along the line Aa in FIG. 被検出部の第1コイルにより発生する磁界等の説明図である。It is explanatory drawing of the magnetic field and the like generated by the 1st coil of the detected part. 信号生成部の具体的な構成を例示する平面図である。It is a top view which illustrates the specific structure of the signal generation part. 図8におけるB-b線の断面図である。FIG. 8 is a cross-sectional view taken along the line BB in FIG. 信号生成部の第2コイルにより発生する磁界の説明図である。It is explanatory drawing of the magnetic field generated by the 2nd coil of a signal generation part. 第2実施形態における被検出部の平面図である。It is a top view of the detected part in 2nd Embodiment. 図11におけるC-c線の断面図である。FIG. 11 is a cross-sectional view taken along the line CC in FIG. 第3実施形態における被検出部の平面図である。It is a top view of the detected part in 3rd Embodiment. 第4実施形態における被検出部の平面図である。It is a top view of the detected part in 4th Embodiment. 変形例に係る変位センサーを適用した図である。It is the figure which applied the displacement sensor which concerns on a modification. 変形例に係る変位センサーを適用した図である。It is the figure which applied the displacement sensor which concerns on a modification.
A:第1実施形態
 図1は、本開示の第1実施形態に係る変位センサーを適用した鍵盤楽器100の構成を例示するブロック図である。
 鍵盤楽器100は、鍵盤10と検出システム15と情報処理装置30と放音装置40とを具備する電子楽器である。鍵盤10は、複数の白鍵と複数の黒鍵とを含む複数の鍵12で構成される。複数の鍵12の各々は、利用者による演奏動作に応じて変位する可動部材である。検出システム15は、鍵12の変位(位置)を検出する。情報処理装置30は、検出システム15による検出の結果に応じた音響信号Vを生成する。音響信号Vは、利用者が操作した鍵12に対応する音高の楽音を表す信号である。放音装置40は、音響信号Vが表す音響を放音する。例えばスピーカまたはヘッドホンが放音装置40として利用される。
A: First Embodiment FIG. 1 is a block diagram illustrating a configuration of a keyboard instrument 100 to which a displacement sensor according to the first embodiment of the present disclosure is applied.
The keyboard instrument 100 is an electronic musical instrument including a keyboard 10, a detection system 15, an information processing device 30, and a sound emitting device 40. The keyboard 10 is composed of a plurality of keys 12 including a plurality of white keys and a plurality of black keys. Each of the plurality of keys 12 is a movable member that is displaced according to the performance operation by the user. The detection system 15 detects the displacement (position) of the key 12. The information processing device 30 generates an acoustic signal V according to the result of detection by the detection system 15. The acoustic signal V is a signal representing a musical tone having a pitch corresponding to the key 12 operated by the user. The sound emitting device 40 emits the sound represented by the acoustic signal V. For example, a speaker or headphones are used as the sound emitting device 40.
 図2は、鍵盤10のうち、1個の鍵12に着目して鍵盤楽器100の具体的な構成を例示するブロック図である。鍵盤10の各鍵12は、支点部(バランスピン)13を支点として支持部材14に支持される。支持部材14は、鍵盤楽器100の各要素を支持する構造体である。各鍵12の端部121は、利用者による押鍵および離鍵により鉛直方向に変位する。検出システム15は、複数の鍵12の各々について、鉛直方向における端部121の位置Zに応じたレベルの検出信号Dを生成する。位置Zは、例えば、鍵12に荷重が作用しない解放状態における端部121の位置を基準とした当該端部121の変位量で表現される。 FIG. 2 is a block diagram illustrating a specific configuration of the keyboard instrument 100 by focusing on one key 12 of the keyboard 10. Each key 12 of the keyboard 10 is supported by the support member 14 with the fulcrum portion (balance pin) 13 as the fulcrum. The support member 14 is a structure that supports each element of the keyboard instrument 100. The end 121 of each key 12 is displaced in the vertical direction by the user pressing and releasing the key. The detection system 15 generates a detection signal D at a level corresponding to the position Z of the end portion 121 in the vertical direction for each of the plurality of keys 12. The position Z is represented by, for example, the amount of displacement of the end portion 121 with reference to the position of the end portion 121 in the released state in which no load acts on the key 12.
 検出システム15は、鍵12毎に設けられる変位センサー20と各鍵12に共通の信号処理回路21とを具備する。変位センサー20は、各鍵12の位置を検出する位置センサーであり、被検出部50と信号生成部60とを含む。信号生成部60は、支持部材14に設置される。被検出部50は、鍵12に設置される。具体的には、被検出部50は、鍵12の底面(以下「設置面」という)122に設置される。被検出部50は第1コイル51を含む。信号生成部60は第2コイル61を含む。第1コイル51と第2コイル61とは、鉛直方向に相互に間隔をあけて対向する。信号生成部60と被検出部50との距離(第1コイル51と第2コイル61との距離)は、押鍵および離鍵により鍵12における端部121の位置Zが変化することに応じて変化する。 The detection system 15 includes a displacement sensor 20 provided for each key 12 and a signal processing circuit 21 common to each key 12. The displacement sensor 20 is a position sensor that detects the position of each key 12, and includes a detected unit 50 and a signal generating unit 60. The signal generation unit 60 is installed on the support member 14. The detected unit 50 is installed on the key 12. Specifically, the detected unit 50 is installed on the bottom surface (hereinafter referred to as “installation surface”) 122 of the key 12. The detected unit 50 includes the first coil 51. The signal generation unit 60 includes a second coil 61. The first coil 51 and the second coil 61 face each other in the vertical direction with a distance from each other. The distance between the signal generation unit 60 and the detected unit 50 (distance between the first coil 51 and the second coil 61) is adjusted according to the change in the position Z of the end portion 121 on the key 12 by pressing and releasing the key. Change.
 図3は、変位センサー20を構成する被検出部50と信号生成部60とにおける電気的な構成を例示する回路図である。信号生成部60は、入力端子T1と出力端子T2と第2コイル61と容量素子62と容量素子63と抵抗素子64とを含む。第2コイル61と容量素子62と容量素子63と抵抗素子64とによって共振回路が構成される。入力端子T1は抵抗素子64の一端に接続され、抵抗素子64の他端は容量素子62の一端および第2コイル61の一端に接続される。第2コイル61の他端は出力端子T2および容量素子63の一端に接続される。容量素子62の他端および容量素子63の他端は、電圧ゼロの基準である電位Gndに接地される。 FIG. 3 is a circuit diagram illustrating the electrical configuration of the detected unit 50 and the signal generating unit 60 constituting the displacement sensor 20. The signal generation unit 60 includes an input terminal T1, an output terminal T2, a second coil 61, a capacitance element 62, a capacitance element 63, and a resistance element 64. A resonance circuit is formed by the second coil 61, the capacitance element 62, the capacitance element 63, and the resistance element 64. The input terminal T1 is connected to one end of the resistance element 64, and the other end of the resistance element 64 is connected to one end of the capacitance element 62 and one end of the second coil 61. The other end of the second coil 61 is connected to one end of the output terminal T2 and the capacitance element 63. The other end of the capacitance element 62 and the other end of the capacitance element 63 are grounded to the potential Gnd, which is a reference for zero voltage.
 一方、被検出部50は、第1コイル51と容量素子52とを含む。第1コイル51の一端と容量素子52の一端とが相互に接続され、第1コイル51の他端と容量素子52の他端とが相互に接続される。第1コイル51と容量素子52とによって共振回路が構成される。信号生成部60の共振周波数は、例えば被検出部50の共振周波数との関係に応じて設定される。信号生成部60の共振周波数は、例えば、被検出部50の共振周波数とほぼ同等の周波数、または、被検出部50の共振周波数に所定の定数を乗算した周波数に設定される。 On the other hand, the detected unit 50 includes the first coil 51 and the capacitive element 52. One end of the first coil 51 and one end of the capacitance element 52 are connected to each other, and the other end of the first coil 51 and the other end of the capacitance element 52 are connected to each other. A resonance circuit is formed by the first coil 51 and the capacitive element 52. The resonance frequency of the signal generation unit 60 is set according to the relationship with the resonance frequency of the detected unit 50, for example. The resonance frequency of the signal generation unit 60 is set to, for example, a frequency substantially equal to the resonance frequency of the detected unit 50, or a frequency obtained by multiplying the resonance frequency of the detected unit 50 by a predetermined constant.
 図2の信号処理回路21は、第1コイル51と第2コイル61との距離drに応じたレベルの検出信号Dを生成する。
 図4は、信号処理回路21の具体的な構成を例示するブロック図である。信号処理回路21は、供給回路22と出力回路23とを具備する。供給回路22は、複数の信号生成部60の入力端子T1の各々に基準信号Rを供給する。基準信号Rは、周期的にレベルが変動する電圧信号である。例えば正弦波等の任意の波形の周期信号が基準信号Rとして利用される。供給回路22は、各信号生成部60に対して基準信号Rを時分割で供給する。具体的には、供給回路22は、複数の信号生成部60の各々を順次に選択し、選択状態の信号生成部60に対して基準信号Rを供給するデマルチプレクサである。すなわち、複数の信号生成部60の各々に対して時分割で基準信号Rが供給される。なお、基準信号Rの周期は、供給回路22が1個の信号生成部60を選択する期間の時間長よりも十分に短い。また、基準信号Rの周波数は、信号生成部60および被検出部50の共振周波数とほぼ同等である。
The signal processing circuit 21 of FIG. 2 generates a detection signal D at a level corresponding to the distance dr between the first coil 51 and the second coil 61.
FIG. 4 is a block diagram illustrating a specific configuration of the signal processing circuit 21. The signal processing circuit 21 includes a supply circuit 22 and an output circuit 23. The supply circuit 22 supplies the reference signal R to each of the input terminals T1 of the plurality of signal generation units 60. The reference signal R is a voltage signal whose level fluctuates periodically. For example, a periodic signal having an arbitrary waveform such as a sine wave is used as the reference signal R. The supply circuit 22 supplies the reference signal R to each signal generation unit 60 in a time-division manner. Specifically, the supply circuit 22 is a demultiplexer that sequentially selects each of the plurality of signal generation units 60 and supplies the reference signal R to the selected signal generation unit 60. That is, the reference signal R is supplied to each of the plurality of signal generation units 60 in a time-division manner. The period of the reference signal R is sufficiently shorter than the time length of the period during which the supply circuit 22 selects one signal generation unit 60. Further, the frequency of the reference signal R is substantially the same as the resonance frequency of the signal generation unit 60 and the detected unit 50.
 図3に例示される通り、基準信号Rは、信号生成部60の入力端子T1に供給される。基準信号Rに応じた電流が第2コイル61に供給されることで、当該第2コイル61に磁界が発生する。第2コイル61に発生した磁界による電磁誘導で第1コイル51には誘導電流が発生する。したがって、第2コイル61の磁界の変化を相殺する方向の磁界が第1コイル51に発生する。第1コイル51に発生する磁界は、第1コイル51と第2コイル61との相対距離drに応じて変化する。このため、第1コイル51と第2コイル61との相対距離drに応じたレベルδ(ピークトゥーピーク値)の検出信号dが信号生成部60の出力端子T2から出力される。検出信号dは、基準信号Rと同じ周期でレベルが変動する周期信号である。 As illustrated in FIG. 3, the reference signal R is supplied to the input terminal T1 of the signal generation unit 60. When a current corresponding to the reference signal R is supplied to the second coil 61, a magnetic field is generated in the second coil 61. An induced current is generated in the first coil 51 by electromagnetic induction due to the magnetic field generated in the second coil 61. Therefore, a magnetic field in a direction that cancels the change in the magnetic field of the second coil 61 is generated in the first coil 51. The magnetic field generated in the first coil 51 changes according to the relative distance dr between the first coil 51 and the second coil 61. Therefore, the detection signal d of the level δ (peak to peak value) corresponding to the relative distance dr between the first coil 51 and the second coil 61 is output from the output terminal T2 of the signal generation unit 60. The detection signal d is a periodic signal whose level fluctuates in the same period as the reference signal R.
 図4の出力回路23は、複数の信号生成部60の各々から順次に出力される検出信号dを時間軸上に配列することで検出信号Dを生成する。すなわち、検出信号Dは、各鍵12における第1コイル51と第2コイル61との距離drに応じたレベルδの電圧信号である。前述の通り第1コイル51と第2コイル61との相対距離drは各鍵12の位置Zに相関するから、検出信号Dは、複数の鍵12の各々の位置Zに応じた信号と表現される。出力回路23が生成した検出信号Dは、情報処理装置30に供給される。 The output circuit 23 of FIG. 4 generates a detection signal D by arranging the detection signals d sequentially output from each of the plurality of signal generation units 60 on the time axis. That is, the detection signal D is a voltage signal of level δ corresponding to the distance dr between the first coil 51 and the second coil 61 in each key 12. As described above, since the relative distance dr between the first coil 51 and the second coil 61 correlates with the position Z of each key 12, the detection signal D is expressed as a signal corresponding to each position Z of the plurality of keys 12. NS. The detection signal D generated by the output circuit 23 is supplied to the information processing device 30.
 図2の情報処理装置30は、信号処理回路21から供給される検出信号Dを解析することで各鍵12の位置Zを解析する。情報処理装置30は、制御装置31と記憶装置32とA/D変換器33と音源回路34とを具備するコンピュータシステムで実現される。 The information processing device 30 of FIG. 2 analyzes the position Z of each key 12 by analyzing the detection signal D supplied from the signal processing circuit 21. The information processing device 30 is realized by a computer system including a control device 31, a storage device 32, an A / D converter 33, and a sound source circuit 34.
 A/D変換器33は、信号処理回路21から供給される検出信号Dをアナログからデジタルに変換する。
 制御装置31は、鍵盤楽器100の各要素を制御する単数または複数のプロセッサで構成される。例えば、制御装置31は、CPU(Central Processing Unit)、SPU(Sound Processing Unit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、またはASIC(Application Specific Integrated Circuit)等の1種類以上のプロセッサで構成される。
The A / D converter 33 converts the detection signal D supplied from the signal processing circuit 21 from analog to digital.
The control device 31 is composed of a single or a plurality of processors that control each element of the keyboard instrument 100. For example, the control device 31 is one or more types such as a CPU (Central Processing Unit), an SPU (Sound Processing Unit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), or an ASIC (Application Specific Integrated Circuit). It consists of a processor.
 記憶装置32は、制御装置31が実行するプログラムと制御装置31が使用するデータとを記憶する単数または複数のメモリである。記憶装置32は、例えば磁気記録媒体または半導体記録媒体等の公知の記録媒体で構成される。なお、複数種の記録媒体の組合せにより記憶装置32を構成してもよい。また、鍵盤楽器100に着脱可能な可搬型の記録媒体、または、鍵盤楽器100が通信可能な外部記録媒体(例えばオンラインストレージ)を、記憶装置32として利用してもよい。 The storage device 32 is a single or a plurality of memories for storing a program executed by the control device 31 and data used by the control device 31. The storage device 32 is composed of a known recording medium such as a magnetic recording medium or a semiconductor recording medium. The storage device 32 may be configured by combining a plurality of types of recording media. Further, a portable recording medium that can be attached to and detached from the keyboard instrument 100, or an external recording medium (for example, online storage) that the keyboard instrument 100 can communicate with may be used as the storage device 32.
 制御装置31は、A/D変換器33による変換後の検出信号Dを解析することで各鍵12の位置Zを解析する。また、制御装置31は、各鍵12の位置Zに応じた楽音の発音を音源回路34に対して指示する。音源回路34は、制御装置31から指示された楽音を表す音響信号Vを生成する。すなわち、音源回路34は、検出信号Dのレベルδに応じて鍵が所定の位置に達したことを検出して音響信号Vの生成を開始する。そして、例えばレベルδの速度変化に応じて音響信号Vの音量が制御される。音響信号Vが音源回路34から放音装置40に供給されることで、利用者による演奏動作に応じた楽音が放音装置40から放音される。具体的には、利用者による各鍵12の押鍵により楽音が放音され、当該鍵12の離鍵により楽音が停止される。なお、記憶装置32に記憶されたプログラムを実行することで制御装置31が音源回路34の機能を実現してもよい。音源回路34、または、音源回路34の機能を実現する制御装置31は、検出信号Dのレベルδに応じた音響信号Vを生成する音制御部として機能する。 The control device 31 analyzes the position Z of each key 12 by analyzing the detection signal D after conversion by the A / D converter 33. Further, the control device 31 instructs the sound source circuit 34 to pronounce a musical tone according to the position Z of each key 12. The sound source circuit 34 generates an acoustic signal V representing a musical tone instructed by the control device 31. That is, the sound source circuit 34 detects that the key has reached a predetermined position according to the level δ of the detection signal D, and starts generating the acoustic signal V. Then, for example, the volume of the acoustic signal V is controlled according to the speed change of the level δ. By supplying the acoustic signal V from the sound source circuit 34 to the sound emitting device 40, the musical sound corresponding to the performance operation by the user is emitted from the sound emitting device 40. Specifically, the musical sound is emitted when the user presses each key 12, and the musical sound is stopped when the key 12 is released. The control device 31 may realize the function of the sound source circuit 34 by executing the program stored in the storage device 32. The sound source circuit 34 or the control device 31 that realizes the function of the sound source circuit 34 functions as a sound control unit that generates an acoustic signal V corresponding to the level δ of the detection signal D.
 まず、変位センサー20の信号生成部60について説明する。図8は、当該信号生成部60の具体的な構成を示す平面図である。すなわち、図8は、信号生成部60を被検出部50側からみた平面図である。また、図9は、図8におけるB-b線の断面図である。 First, the signal generation unit 60 of the displacement sensor 20 will be described. FIG. 8 is a plan view showing a specific configuration of the signal generation unit 60. That is, FIG. 8 is a plan view of the signal generation unit 60 as viewed from the detected unit 50 side. Further, FIG. 9 is a cross-sectional view taken along the line BB in FIG.
 信号生成部60は、基材651と、配線パターン611および612とを含む。基材651は、表面F3と表面F4とを含む板状部材である。なお、図8において上下方向が鍵盤10における複数の鍵12の配列方向である。表面F4は、支持部材14に対向する。表面F3は、表面F4とは反対側の表面であり、被検出部50に対向する。 The signal generation unit 60 includes a base material 651 and wiring patterns 611 and 612. The base material 651 is a plate-shaped member including the surface F3 and the surface F4. In FIG. 8, the vertical direction is the arrangement direction of the plurality of keys 12 on the keyboard 10. The surface F4 faces the support member 14. The surface F3 is a surface opposite to the surface F4 and faces the detected portion 50.
  配線パターン611は、表面F3に設けられた銅箔等の導電層のパターニングにより形成される。配線パターン612は、表面F4に設けられた銅箔等の導電層のパターニングにより形成される。 The wiring pattern 611 is formed by patterning a conductive layer such as a copper foil provided on the surface F3. The wiring pattern 612 is formed by patterning a conductive layer such as a copper foil provided on the surface F4.
 信号生成部60の第2コイル61は、配線パターン611のうち、渦巻き状に形成された第5部分621と、当該第5部分621の巻方向と同方向の渦巻き状に形成された第6部分622とによって構成される。
 第5部分621の一端はノードN11であり、当該第5部分621の他端は渦巻きの中心に位置するビアC11である。第6部分622の一端は渦巻きの中心に位置するビアC12であり、第6部分622の他端はノードN12である。ビアC11およびビアC12の各々は、基材651を貫通する円形状の開孔である。ビアC11とビアC12とは、配線パターン612を介して相互に接続される。
The second coil 61 of the signal generation unit 60 has a fifth portion 621 formed in a spiral shape and a sixth portion of the wiring pattern 611 formed in a spiral shape in the same direction as the winding direction of the fifth portion 621. It is composed of 622 and.
One end of the fifth portion 621 is a node N11, and the other end of the fifth portion 621 is a via C11 located at the center of the spiral. One end of the sixth portion 622 is a via C12 located at the center of the spiral, and the other end of the sixth portion 622 is a node N12. Each of the via C11 and the via C12 is a circular opening penetrating the base material 651. The via C11 and the via C12 are connected to each other via the wiring pattern 612.
 なお、表面F3には、容量素子62、63および抵抗素子64が実装される。また、前述の通り、入力端子T1には、基準信号Rが供給回路22から供給される。出力端子T2からは、第1コイル51と第2コイル61との距離drに応じたレベルδの検出信号dが出力される。 Capacitive elements 62 and 63 and resistance elements 64 are mounted on the surface F3. Further, as described above, the reference signal R is supplied to the input terminal T1 from the supply circuit 22. From the output terminal T2, a detection signal d of level δ corresponding to the distance dr between the first coil 51 and the second coil 61 is output.
 信号生成部60において、例えば電流がノードN12→ビアC12→ビアC11→ノードN11という経路で流れる場合、第5部分621では電流が反時計回りで流れ、第6部分622では電流が時計回りで流れる。このため、第5部分621には、図8の紙面手前方向、および図10の上方向の磁界が発生し、第6部分622には、図8の紙面奧方向、および図10の下方向の磁界が発生する。
 すなわち、図10に例示される通り、第5部分621と第6部分622とにおいては互いに逆方向の磁界が発生する。前述の通り、鍵盤10において複数の鍵12は図10の紙面垂直方向に配列する。したがって、第5部分621と第6部分622とに逆方向の磁界が発生することで、相互に隣り合う各鍵12に対向する信号生成部60の間にわたる磁界の拡散が低減される。磁界の拡散が低減される結果、複数の鍵12の各々の位置Zを高精度に反映した検出信号Dが生成される。
 なお、図10では、電流がノードN12→…→ノードN11という経路で流れる場合を説明したが、電流がノードN11→…→ノードN12という経路で流れる場合には、磁界の方向も逆向きとなる。
In the signal generation unit 60, for example, when a current flows in the route of node N12 → via C12 → via C11 → node N11, the current flows counterclockwise in the fifth part 621 and the current flows clockwise in the sixth part 622. .. Therefore, a magnetic field is generated in the fifth portion 621 in the front direction of the paper surface in FIG. 8 and in the upward direction in FIG. A magnetic field is generated.
That is, as illustrated in FIG. 10, magnetic fields in opposite directions are generated in the fifth portion 621 and the sixth portion 622. As described above, on the keyboard 10, the plurality of keys 12 are arranged in the direction perpendicular to the paper surface of FIG. Therefore, the magnetic field generated in the fifth portion 621 and the sixth portion 622 in the opposite direction reduces the diffusion of the magnetic field between the signal generation units 60 facing each key 12 adjacent to each other. As a result of reducing the diffusion of the magnetic field, a detection signal D that accurately reflects each position Z of the plurality of keys 12 is generated.
In FIG. 10, the case where the current flows through the path of node N12 → ... → node N11 has been described, but when the current flows through the path of node N11 → ... → node N12, the direction of the magnetic field is also opposite. ..
 以上に説明した通り、信号生成部60における第2コイル61の第5部分621および第6部分622は、渦巻き状に形成された配線パターン611である。このため、例えば第2コイル61を導電線の巻回により形成する構成と比較して、第2コイル61の製造および取扱が容易であるという利点がある。 As described above, the fifth portion 621 and the sixth portion 622 of the second coil 61 in the signal generation unit 60 are wiring patterns 611 formed in a spiral shape. Therefore, for example, as compared with a configuration in which the second coil 61 is formed by winding a conductive wire, there is an advantage that the second coil 61 can be easily manufactured and handled.
 次に、変位センサー20の被検出部50について説明する。第1実施形態における被検出部50は、4層の配線パターン(配線層)を含む基板により構成される。図5は、当該被検出部50における第1層から第4層までの配線パターンを、信号生成部60からみて透視した状態で示す平面図である。
 なお、被検出部50において、複数層の配線パターンのうち鍵12の設置面122に最も近い配線パターンを便宜的に第1層とし、信号生成部60の第2コイル61に向かう方向に沿って順番に第2層、第3層、第4層としている。また、図5においては、容量素子52の図示が便宜的に省略されている。
Next, the detected portion 50 of the displacement sensor 20 will be described. The detected portion 50 in the first embodiment is composed of a substrate including four layers of wiring patterns (wiring layers). FIG. 5 is a plan view showing the wiring patterns from the first layer to the fourth layer in the detected unit 50 in a see-through state when viewed from the signal generation unit 60.
In the detected unit 50, the wiring pattern closest to the installation surface 122 of the key 12 among the wiring patterns of the plurality of layers is set as the first layer for convenience, and is along the direction toward the second coil 61 of the signal generation unit 60. The second layer, the third layer, and the fourth layer are arranged in this order. Further, in FIG. 5, the illustration of the capacitance element 52 is omitted for convenience.
 図6は、図5におけるA-a線の断面図である。
 第1実施形態の被検出部50は、第1層の配線パターン511と、基材551と、第2層の配線パターン512と、基材552と、第3層の配線パターン513と、基材553と、第4層の配線パターン514とがこの順で積層された積層体である。すなわち、被検出部50では、配線パターンと基材とが交互に配置される。
 基材551、552および553は、絶縁性樹脂により形成された矩形状の板状部材である。具体的には、基材551および553は、例えばガラスクロスにエポキシなどの樹脂を含浸させて硬化させたプリプレグであり、厚さ0.06mm以上0.36mm以下が好ましい。また、基材552は、例えばガラスクロスなどのコア材であり、厚さ0.1mm以上1.1mm以下が好ましい。
FIG. 6 is a cross-sectional view taken along the line Aa in FIG.
The detected portion 50 of the first embodiment includes a wiring pattern 511 of the first layer, a base material 551, a wiring pattern 512 of the second layer, a base material 552, a wiring pattern 513 of the third layer, and a base material. The 553 and the wiring pattern 514 of the fourth layer are laminated in this order. That is, in the detected portion 50, the wiring pattern and the base material are alternately arranged.
The base materials 551, 552 and 553 are rectangular plate-shaped members formed of an insulating resin. Specifically, the base materials 551 and 553 are prepregs obtained by impregnating, for example, a glass cloth with a resin such as epoxy and curing the prepreg, and the thickness is preferably 0.06 mm or more and 0.36 mm or less. Further, the base material 552 is a core material such as glass cloth, and the thickness is preferably 0.1 mm or more and 1.1 mm or less.
 被検出部50の表面F1は、鍵12の設置面122に取り付けられる面である。このため、被検出部50の横幅Wは、1個の鍵12の横幅を下回る。また、表面F2は、表面F1とは反対側の表面である。このため、表面F2は信号生成部60に対向する。 The surface F1 of the detected portion 50 is a surface attached to the installation surface 122 of the key 12. Therefore, the width W of the detected unit 50 is smaller than the width W of one key 12. Further, the surface F2 is a surface opposite to the surface F1. Therefore, the surface F2 faces the signal generation unit 60.
 被検出部50には、複数のビアC1~C8が設けられる。ビアC1~C8は、基材551、552、553を貫通する円形状のコンタクトホールである。 A plurality of vias C1 to C8 are provided in the detected unit 50. Vias C1 to C8 are circular contact holes penetrating the base materials 551, 552, and 553.
 配線パターン511のうち、ビアC1に接続された端子Naと、ビアC8に接続された端子Nbとには、チップ型の容量素子52が実装される。具体的には、容量素子52の一端が端子Naに接続され、他端が端子Nbに接続される。
 被検出部50の第1コイル51は、第2層の配線パターン512と第3層の配線パターン513とによって構成される。詳細には、第1コイル51は、配線パターン512のうち、渦巻き状に形成された第1部分521および第4部分524と、配線パターン513のうち、渦巻き状に形成された第2部分522および第3部分523と、によって構成される。
In the wiring pattern 511, the chip type capacitive element 52 is mounted on the terminal Na connected to the via C1 and the terminal Nb connected to the via C8. Specifically, one end of the capacitance element 52 is connected to the terminal Na, and the other end is connected to the terminal Nb.
The first coil 51 of the detected portion 50 is composed of a wiring pattern 512 of the second layer and a wiring pattern 513 of the third layer. Specifically, the first coil 51 includes a first portion 521 and a fourth portion 524 formed in a spiral shape in the wiring pattern 512, and a second portion 522 formed in a spiral shape in the wiring pattern 513. It is composed of a third part 523.
 なお、第1部分521における渦巻きの中心および第2部分522における渦巻きの中心はビアC3であり、また、第3部分523における渦巻きの中心および第4部分524における渦巻きの中心はビアC6である。このため、信号生成部60から平面視したときに第1部分521と第2部分522とが相互に重なり、第3部分523と第4部分524とが相互に重なる。
 また、第1部分521と第4部分524とは、第2層において鍵12の長手方向に沿って相互に隣り合う。同様に、第3部分523と第4部分524とは、第3層において鍵12の長手方向に沿って相互に隣り合う。
The center of the spiral in the first portion 521 and the center of the spiral in the second portion 522 is the via C3, and the center of the spiral in the third portion 523 and the center of the spiral in the fourth portion 524 is the via C6. Therefore, when viewed in a plan view from the signal generation unit 60, the first portion 521 and the second portion 522 overlap each other, and the third portion 523 and the fourth portion 524 overlap each other.
Further, the first portion 521 and the fourth portion 524 are adjacent to each other along the longitudinal direction of the key 12 in the second layer. Similarly, the third portion 523 and the fourth portion 524 are adjacent to each other along the longitudinal direction of the key 12 in the third layer.
 端子Naは、ビアC1を介して、第2層における第1部分521の一端(ノードN1)に接続される。第1部分521の他端は、ビアC3を介して、第3層における第2部分522の一端に接続される。第2部分522の他端(ノードN2)は、第3層において第3部分523の一端(ノードN3)に接続される。第3部分523の他端は、ビアC6を介して、第2層における第4部分524の一端に接続される。第4部分524の他端(ノードN4)は、ビアC8を介して第1層の端子Nbに接続される。このように本実施形態では、第1コイル51においては、端子Naからみて第1部分521、第2部分522、第3部分523および第4部分524がこの順で直列接続されている。
 端子Naおよび端子Nbに容量素子52が実装されると、当該容量素子52の一端と第1コイル51の一端とが相互に接続され、容量素子52の他端と第1コイル51の他端とが相互に接続される。
The terminal Na is connected to one end (node N1) of the first portion 521 in the second layer via the via C1. The other end of the first portion 521 is connected to one end of the second portion 522 in the third layer via the via C3. The other end (node N2) of the second portion 522 is connected to one end (node N3) of the third portion 523 in the third layer. The other end of the third portion 523 is connected to one end of the fourth portion 524 in the second layer via the via C6. The other end (node N4) of the fourth portion 524 is connected to the terminal Nb of the first layer via the via C8. As described above, in the present embodiment, in the first coil 51, the first portion 521, the second portion 522, the third portion 523, and the fourth portion 524 are connected in series in this order when viewed from the terminal Na.
When the capacitance element 52 is mounted on the terminal Na and the terminal Nb, one end of the capacitance element 52 and one end of the first coil 51 are connected to each other, and the other end of the capacitance element 52 and the other end of the first coil 51 Are interconnected.
 鍵12の設置面122には、図7に示されるように、切欠部124が設けられる。切欠部124は、設置面122に対して窪んだ空間である。この切欠部124は、例えばドリルなどによって設置面122を切削することで設けられる。他方、被検出部50においては、容量素子52が被検出部50の表面F1から突出する。そして、切欠部124に容量素子52が収容された状態で、被検出部50の表面F1が、鍵12の設置面122に接触する。
 被検出部50が設置面122に設置される前においては容量素子52が露出するが、被検出部50の設置後においては、容量素子52および表面F1が露出しない。したがって、鍵盤楽器100のメンテナンス等において容量素子52が他の部材に引っかかることで当該容量素子52が破損してしまうことを防止できる。
A notch 124 is provided on the installation surface 122 of the key 12, as shown in FIG. The cutout portion 124 is a space recessed with respect to the installation surface 122. The cutout portion 124 is provided by cutting the installation surface 122 with, for example, a drill or the like. On the other hand, in the detected portion 50, the capacitive element 52 projects from the surface F1 of the detected portion 50. Then, with the capacitance element 52 accommodated in the notch portion 124, the surface F1 of the detected portion 50 comes into contact with the installation surface 122 of the key 12.
The capacitive element 52 is exposed before the detected portion 50 is installed on the installation surface 122, but the capacitive element 52 and the surface F1 are not exposed after the detected portion 50 is installed. Therefore, it is possible to prevent the capacitance element 52 from being damaged due to being caught by another member during maintenance of the keyboard instrument 100 or the like.
 第1コイル51が第2コイル61から離れる方向に移動する場合、第1コイル51には、第2コイル61による磁界が減るのを阻止する方向の、すなわち、第2コイル61の発生磁界と同方向の磁界が発生する。したがって、この場合、第1コイル51には、第2コイル61による磁界と同方向の磁界に応じた電流が誘起される。
 例えば、信号生成部60の第2コイル61によって図10に示される方向の磁界が発生した状態において、被検出部50の第1コイル51が第2コイル61から離れる方向に移動する場合、第1コイル51には、図7に示されるように第2コイル61による磁界と同方向の磁界が発生する。
 このため、図5において、第1コイル51のうち、第1部分521および第2部分522では電流が反時計回りで流れ、第3部分523および第4部分524では電流が時計回りで流れる。したがって、この場合、電流は、端子Na→ビアC1→ノードN1→ビアC3→ノードN2→ノードN3→ビアC6→ノードN4→ビアC8→端子Nbという経路で流れる。
When the first coil 51 moves away from the second coil 61, the first coil 51 has the same direction as the magnetic field generated by the second coil 61 in the direction of preventing the magnetic field generated by the second coil 61 from decreasing. A directional magnetic field is generated. Therefore, in this case, a current is induced in the first coil 51 according to the magnetic field in the same direction as the magnetic field generated by the second coil 61.
For example, when the first coil 51 of the detected unit 50 moves away from the second coil 61 in a state where the second coil 61 of the signal generation unit 60 generates a magnetic field in the direction shown in FIG. As shown in FIG. 7, a magnetic field in the same direction as the magnetic field generated by the second coil 61 is generated in the coil 51.
Therefore, in FIG. 5, of the first coil 51, the current flows counterclockwise in the first portion 521 and the second portion 522, and the current flows clockwise in the third portion 523 and the fourth portion 524. Therefore, in this case, the current flows in the route of terminal Na → via C1 → node N1 → via C3 → node N2 → node N3 → via C6 → node N4 → via C8 → terminal Nb.
 なお、第2コイル61によって図10とは反対方向の磁界が発生した状態において、第1コイル51が第2コイル61に近づく場合、第2コイル61による磁界と逆方向の磁界、すなわち、図7に示される磁界が、第1コイル51に発生する。このため、同様に電流は、端子Na→…→端子Nbという経路で流れる。
 また、第2コイル61によって図10に示される方向の磁界が発生した状態において、第1コイル51が第2コイル61に近づく場合、第1コイル51のうち、第1部分521および第2部分522では電流が時計回りで流れ、第3部分523および第4部分524では電流が反時計回りで流れる。第2コイル61によって図10とは反対方向の磁界が発生した状態で、第1コイル51が第2コイル61から離れる場合も同様に、第1部分521および第2部分522では電流が時計回りで流れ、第3部分523および第4部分524では電流が反時計回りで流れる。したがって、これらの場合、電流は、逆方向の端子Nb→…→端子Naという経路で流れる。
When the first coil 51 approaches the second coil 61 in a state where the second coil 61 generates a magnetic field in the direction opposite to that of FIG. 10, the magnetic field in the direction opposite to the magnetic field generated by the second coil 61, that is, FIG. The magnetic field shown in is generated in the first coil 51. Therefore, similarly, the current flows in the path of terminal Na → ... → terminal Nb.
Further, when the first coil 51 approaches the second coil 61 in a state where the magnetic field in the direction shown in FIG. 10 is generated by the second coil 61, the first portion 521 and the second portion 522 of the first coil 51 are formed. The current flows clockwise, and the current flows counterclockwise in the third part 523 and the fourth part 524. Similarly, when the first coil 51 is separated from the second coil 61 in a state where the second coil 61 generates a magnetic field in the direction opposite to that in FIG. 10, the currents in the first portion 521 and the second portion 522 are clockwise. Flow, current flows counterclockwise in the third portion 523 and the fourth portion 524. Therefore, in these cases, the current flows in the path of terminal Nb → ... → terminal Na in the opposite direction.
 第1実施形態では、第1コイル51のうち、第1部分521および第4部分524は、渦巻き状に形成された配線パターン512であり、第2部分522および第3部分523は、渦巻き状に形成された配線パターン513である。第1コイル51は、第1部分521、第2部分522、第3部分523および第4部分524の直列接続で構成される。
 この構成により、例えば第1コイル51を導電線の巻回により形成する構成と比較して、第1コイル51の製造および取扱が容易であるという利点がある。また、第1コイル51のインダクタンスを、何れかの部分のみで構成する場合と比較して、高めることが容易である。換言すれば、被検出部50の共振周波数を信号生成部60の共振周波数に合わせる場合、第1コイル51のインダクタンスを高める分だけ、容量素子52の容量を小さく抑えることができる。
In the first embodiment, of the first coil 51, the first portion 521 and the fourth portion 524 are spirally formed wiring patterns 512, and the second portion 522 and the third portion 523 are spirally formed. The formed wiring pattern 513. The first coil 51 is composed of a first portion 521, a second portion 522, a third portion 523, and a fourth portion 524 connected in series.
This configuration has an advantage that the first coil 51 can be easily manufactured and handled as compared with a configuration in which the first coil 51 is formed by winding a conductive wire, for example. Further, it is easy to increase the inductance of the first coil 51 as compared with the case where the inductance of the first coil 51 is composed of only any portion. In other words, when the resonance frequency of the detected unit 50 is matched with the resonance frequency of the signal generation unit 60, the capacitance of the capacitive element 52 can be suppressed by the amount of increasing the inductance of the first coil 51.
 また、第1実施形態では、被検出部50において、第1コイル51のうち第1部分521および第4部分524は、基材551および基材552で覆われる。すなわち、第1部分521および第4部分524が基材551と基材552との間に形成される。また、第2部分522および第3部分523は、基材552および基材553で覆われる。すなわち、第2部分522および第3部分523が基材552と基材553との間に形成される。
 このため、第1コイル51は、少なくとも基材551および基材553が保護部材として機能することで保護される。すなわち、信号生成部60の第2コイル61に対向する第1コイル51は、被検出部50において露出しない。したがって、メンテナンス等のために鍵盤楽器100を分解して鍵12を取り外したときでも、第1コイル51が露出しないので、工具等による擦れによる当該第1コイル51の損傷が防止される。
 なお、第1実施形態では、基材551が第1絶縁層の一例として機能し、配線パターン512が第1配線パターンの一例として機能し、基材552が第2絶縁層の一例として機能し、配線パターン513が第2配線パターンの一例として機能し、基材553が第3絶縁層の一例として機能する。また、基材551および基材553は、保護部材の一例として機能する。
Further, in the first embodiment, in the detected portion 50, the first portion 521 and the fourth portion 524 of the first coil 51 are covered with the base material 551 and the base material 552. That is, the first portion 521 and the fourth portion 524 are formed between the base material 551 and the base material 552. Further, the second portion 522 and the third portion 523 are covered with the base material 552 and the base material 553. That is, the second portion 522 and the third portion 523 are formed between the base material 552 and the base material 553.
Therefore, the first coil 51 is protected by at least the base material 551 and the base material 553 functioning as protective members. That is, the first coil 51 facing the second coil 61 of the signal generation unit 60 is not exposed in the detected unit 50. Therefore, even when the keyboard instrument 100 is disassembled and the key 12 is removed for maintenance or the like, the first coil 51 is not exposed, so that the first coil 51 is prevented from being damaged by rubbing with a tool or the like.
In the first embodiment, the base material 551 functions as an example of the first insulating layer, the wiring pattern 512 functions as an example of the first wiring pattern, and the base material 552 functions as an example of the second insulating layer. The wiring pattern 513 functions as an example of the second wiring pattern, and the base material 553 functions as an example of the third insulating layer. Further, the base material 551 and the base material 553 function as an example of the protective member.
B:第2実施形態
 次に第2実施形態について説明する。なお、以下に例示する各構成において機能が第1実施形態と同様である要素については、第1実施形態の説明で使用した符号を流用して各々の詳細な説明を適宜に省略する。
B: Second Embodiment Next, the second embodiment will be described. For the elements having the same functions as those of the first embodiment in each of the configurations illustrated below, the reference numerals used in the description of the first embodiment will be diverted and detailed description of each will be omitted as appropriate.
 第2実施形態における被検出部50は、2層の配線パターンを含む基板により構成される。図11は、当該被検出部50における第1層および第2層の配線パターンを、信号生成部60からみて透視した状態で示す平面図である。なお、図11においては、容量素子52の図示が便宜的に省略されている。また、図12は、図11におけるC-c線の断面図である。 The detected portion 50 in the second embodiment is composed of a substrate including a two-layer wiring pattern. FIG. 11 is a plan view showing the wiring patterns of the first layer and the second layer in the detected unit 50 in a state of being seen through from the signal generation unit 60. Note that in FIG. 11, the illustration of the capacitance element 52 is omitted for convenience. Further, FIG. 12 is a cross-sectional view taken along the line CC in FIG.
 第2実施形態の被検出部50は、第1層の配線パターン511と、基材551と、第2層の配線パターン512と、基材552とがこの順で積層された積層体である。すなわち、第2実施形態の被検出部50においては、第1実施形態と比較して、第3層の配線パターン513と、基材553と、第4層の配線パターン514とが省略される。 The detected portion 50 of the second embodiment is a laminate in which the wiring pattern 511 of the first layer, the base material 551, the wiring pattern 512 of the second layer, and the base material 552 are laminated in this order. That is, in the detected portion 50 of the second embodiment, the wiring pattern 513 of the third layer, the base material 553, and the wiring pattern 514 of the fourth layer are omitted as compared with the first embodiment.
 被検出部50には、ビアC1、C3、C6およびC8が設けられる。これらのビアC1、C3、C6およびC8は、コンタクトホールである。 Vias C1, C3, C6 and C8 are provided in the detected unit 50. These vias C1, C3, C6 and C8 are contact holes.
 第1層の配線パターン511のうち、ビアC1に接続された端子Naと、ビアC8に接続された端子Nbとを含む領域A1には、容量素子52が実装される。
 被検出部50の第1コイル51は、第2層の配線パターン512によって構成される。詳細には、第1コイル51は、配線パターン512のうち、渦巻き状に形成された第1部分521と、同方向で渦巻き状に形成された第2部分522とによって構成される。
 なお、第2実施形態において、第1部分521における渦巻きの中心はビアC3であり、第2部分522における渦巻きの中心はビアC6である。ビアC3およびビアC6は、配線パターン511の一部である配線515を介して相互に接続される。
In the wiring pattern 511 of the first layer, the capacitance element 52 is mounted in the region A1 including the terminal Na connected to the via C1 and the terminal Nb connected to the via C8.
The first coil 51 of the detected portion 50 is configured by the wiring pattern 512 of the second layer. Specifically, the first coil 51 is composed of a first portion 521 formed in a spiral shape and a second portion 522 formed in a spiral shape in the same direction in the wiring pattern 512.
In the second embodiment, the center of the spiral in the first portion 521 is the via C3, and the center of the spiral in the second portion 522 is the via C6. The via C3 and the via C6 are connected to each other via the wiring 515 which is a part of the wiring pattern 511.
 すなわち、第2実施形態において、領域A1内の端子Naは、ビアC1を介して、第2層における第1部分521の一端(ノードN21)に接続される。第1部分521の他端は、ビアC3を介して、第1層における配線515を介してビアC6に接続される。配線515は、ビアC6を介して、第2層における第2部分522に接続される。第2部分522の他端(ノードN22)は、ビアC8を介して、第1層における端子Nbに接続される。
 このように第2実施形態の第1コイル51においては、第1部分521および第2部分522が直列接続される。
That is, in the second embodiment, the terminal Na in the region A1 is connected to one end (node N21) of the first portion 521 in the second layer via the via C1. The other end of the first portion 521 is connected to the via C6 via the via C3 and the wiring 515 in the first layer. The wiring 515 is connected to the second portion 522 in the second layer via the via C6. The other end (node N22) of the second portion 522 is connected to the terminal Nb in the first layer via the via C8.
As described above, in the first coil 51 of the second embodiment, the first portion 521 and the second portion 522 are connected in series.
 第2実施形態は、第1実施形態と比較すると、第1コイル51を構成する部分の総数が半分となるが、磁界の発生方向は第1実施形態と同様である。すなわち、第1部分521と第2部分522とでは互いに逆方向の磁界が発生する。鍵盤10において複数の鍵12は図12の紙面垂直方向に配列するから、相互に隣り合う各鍵12の間にわたる磁界の拡散が低減される。したがって、複数の鍵12の各々の位置Zを高精度に反映した検出信号Dを生成できる。 In the second embodiment, the total number of parts constituting the first coil 51 is halved as compared with the first embodiment, but the direction in which the magnetic field is generated is the same as that in the first embodiment. That is, magnetic fields in opposite directions are generated in the first portion 521 and the second portion 522. Since the plurality of keys 12 on the keyboard 10 are arranged in the direction perpendicular to the paper surface of FIG. 12, the diffusion of the magnetic field between the keys 12 adjacent to each other is reduced. Therefore, it is possible to generate a detection signal D that accurately reflects each position Z of the plurality of keys 12.
 第2実施形態では、第1コイル51を構成する第1部分521および第2部分522が基材551および基材552で覆われるので、露出することがない。すなわち、第2実施形態では、基材551および基材552が保護部材として機能するので、第1コイル51が保護される。したがって、第2実施形態においても、工具等による擦れによる当該第1コイル51の損傷が防止される。
 また、第2実施形態では、第1実施形態と比較して、第3層の配線パターン513、基材553および第4層の配線パターン514が存在しないので、その分、構成が簡易と成る。
 なお、第2実施形態では、基材551が第1絶縁層の一例として機能し、配線パターン512が第1配線パターンの一例として機能し、基材552が第2絶縁層の一例として機能する。基材551および基材552は、保護部材の一例として機能する。
In the second embodiment, the first portion 521 and the second portion 522 constituting the first coil 51 are covered with the base material 551 and the base material 552, so that they are not exposed. That is, in the second embodiment, the base material 551 and the base material 552 function as protective members, so that the first coil 51 is protected. Therefore, also in the second embodiment, damage to the first coil 51 due to rubbing by a tool or the like is prevented.
Further, in the second embodiment, as compared with the first embodiment, the wiring pattern 513 of the third layer, the base material 553, and the wiring pattern 514 of the fourth layer do not exist, so that the configuration becomes simpler accordingly.
In the second embodiment, the base material 551 functions as an example of the first insulating layer, the wiring pattern 512 functions as an example of the first wiring pattern, and the base material 552 functions as an example of the second insulating layer. The base material 551 and the base material 552 function as an example of the protective member.
C:第3実施形態
 第3実施形態について説明する。第3実施形態における被検出部50は、第1実施形態と同様に、4層の配線パターンを含む基板により構成される。図13は、当該被検出部50における第1層および第2層の配線パターンを、信号生成部60からみて透視した状態で示す平面図である。なお、図13においては、容量素子52の図示が便宜的に省略されている。第3実施形態の被検出部50は、図6に例示した第1実施形態と同様に、第1層の配線パターン511と、基材551と、第2層の配線パターン512と、基材552と、第3層の配線パターン513と、基材553と、第4層の配線パターン514とがこの順で積層された積層体である。
C: Third Embodiment The third embodiment will be described. The detected portion 50 in the third embodiment is composed of a substrate including four layers of wiring patterns as in the first embodiment. FIG. 13 is a plan view showing the wiring patterns of the first layer and the second layer in the detected unit 50 in a state of being seen through from the signal generation unit 60. Note that in FIG. 13, the illustration of the capacitance element 52 is omitted for convenience. Similar to the first embodiment illustrated in FIG. 6, the detected portion 50 of the third embodiment has a wiring pattern 511 of the first layer, a base material 551, a wiring pattern 512 of the second layer, and a base material 552. , The wiring pattern 513 of the third layer, the base material 553, and the wiring pattern 514 of the fourth layer are laminated in this order.
 第3実施形態において、被検出部50の第1コイル51は、第2層の配線パターン512のうち第1部分521と、第3層の配線パターン513のうち第2部分522とによって構成される。第1部分521は、渦巻き状に形成されている。第2部分522は、第1部分521とは逆方向の渦巻き状に形成されている。
 なお、第2実施形態において、第1部分521における渦巻きの中心と第2部分522における渦巻きの中心とはビアC3である。すなわち、第3実施形態において、第1部分521と第2部分522とは、ビアC3を介して相互に接続される。
In the third embodiment, the first coil 51 of the detected portion 50 is composed of the first portion 521 of the wiring pattern 512 of the second layer and the second portion 522 of the wiring pattern 513 of the third layer. .. The first portion 521 is formed in a spiral shape. The second portion 522 is formed in a spiral shape in the direction opposite to that of the first portion 521.
In the second embodiment, the center of the spiral in the first portion 521 and the center of the spiral in the second portion 522 are vias C3. That is, in the third embodiment, the first portion 521 and the second portion 522 are connected to each other via the via C3.
 詳細には、第3実施形態において、領域A1内の端子Naは、ビアC1を介して、第2層における第1部分521の一端(ノードN31)に接続される。第1部分521の他端は、ビアC3を介して、第3層における第2部分522の一端に接続される。第2部分522の他端(ノードN32)は、ビアC8を介して、第1層における領域A1内の端子Nbに接続される。
 なお、第3実施形態の被検出部50の構造については、第1実施形態の断面図である図6によって十分に類推可能であるので、図示を省略している。
Specifically, in the third embodiment, the terminal Na in the region A1 is connected to one end (node N31) of the first portion 521 in the second layer via the via C1. The other end of the first portion 521 is connected to one end of the second portion 522 in the third layer via the via C3. The other end (node N32) of the second portion 522 is connected to the terminal Nb in the region A1 in the first layer via the via C8.
The structure of the detected portion 50 of the third embodiment can be sufficiently inferred from FIG. 6, which is a cross-sectional view of the first embodiment, and thus the illustration is omitted.
 第3実施形態では、第1実施形態と同様に、第1コイル51を構成する第2部分522が基材552および基材553で覆われるので、露出することがない。すなわち、第3実施形態では、基材552および基材553が保護部材として機能するので、第1コイル51が保護される。したがって、第3実施形態においても、工具等による擦れによる当該第1コイル51の損傷が防止される。
 また、第3実施形態は、第1実施形態と比較すると、第1コイル51を構成する部分が半分となるが、第1部分521と第2部分522とは相互に重なって位置し、かつ磁界は同方向に発生する。このため、第3実施形態は、第1実施形態と比較して基板面積がおおよそ半分で済む。すなわち、被検出部50の設置に必要なスペースが削減される。
 なお、第3実施形態では、基材551が第1絶縁層の一例として機能し、配線パターン512が第1配線パターンの一例として機能し、基材552が第2絶縁層の一例として機能し、配線パターン513が第2配線パターンの一例として機能し、基材553が第3絶縁層の一例として機能する。基材552および基材553は保護部材の一例として機能する。
In the third embodiment, as in the first embodiment, the second portion 522 constituting the first coil 51 is covered with the base material 552 and the base material 553, so that the first coil 51 is not exposed. That is, in the third embodiment, the base material 552 and the base material 553 function as protective members, so that the first coil 51 is protected. Therefore, also in the third embodiment, damage to the first coil 51 due to rubbing by a tool or the like is prevented.
Further, in the third embodiment, the portion constituting the first coil 51 is halved as compared with the first embodiment, but the first portion 521 and the second portion 522 are positioned so as to overlap each other and the magnetic field. Occurs in the same direction. Therefore, the substrate area of the third embodiment is about half that of the first embodiment. That is, the space required for installing the detected unit 50 is reduced.
In the third embodiment, the base material 551 functions as an example of the first insulating layer, the wiring pattern 512 functions as an example of the first wiring pattern, and the base material 552 functions as an example of the second insulating layer. The wiring pattern 513 functions as an example of the second wiring pattern, and the base material 553 functions as an example of the third insulating layer. The base material 552 and the base material 553 function as an example of the protective member.
D:第4実施形態
 第4実施形態について説明する。図14は、被検出部50における配線パターンを、信号生成部60からみて透視した状態で示す平面図である。第4実施形態における被検出部50の第1コイル51は、第1部分521または第2部分522の何れかにより構成される。すなわち、被検出部50は、第1コイル51が第1部分521で構成される状態と、第1コイル51が第2部分522で構成される状態との一方から他方に切替えられる。
 第1層の表面には、ジャンパースイッチ560が設けられる。ジャンパースイッチ560は、ビアC21またはビアC22の何れかを領域A1内の端子Naに接続するスイッチである。詳細には、端子NaをビアC21に接続する場合には、図において右欄で示されるようにソケットが差し込まれ、端子NaをビアC22に接続する場合には、図において左欄で示されるようにソケットが差し込まれる。
D: Fourth Embodiment The fourth embodiment will be described. FIG. 14 is a plan view showing the wiring pattern in the detected unit 50 in a see-through state when viewed from the signal generating unit 60. The first coil 51 of the detected portion 50 in the fourth embodiment is composed of either the first portion 521 or the second portion 522. That is, the detected unit 50 is switched from one of the state in which the first coil 51 is composed of the first portion 521 and the state in which the first coil 51 is composed of the second portion 522 to the other.
A jumper switch 560 is provided on the surface of the first layer. The jumper switch 560 is a switch that connects either the via C21 or the via C22 to the terminal Na in the region A1. Specifically, when connecting the terminal Na to the via C21, the socket is inserted as shown in the right column in the figure, and when connecting the terminal Na to the via C22, as shown in the left column in the figure. The socket is plugged into.
 なお、ジャンパースイッチ560が右欄で示されるように位置する場合、端子Naは、ビアC21を介して、第2層における第1部分521の一端(ノードN41)に接続される。ジャンパースイッチ560が左欄で示されるように位置する場合、端子Naは、ビアC22を介して、第3層における第2部分522の一端(ノードN42)に接続される。
 第1部分521の他端および第2部分522の他端は、共通のビアC3を介して、第1層における領域A1内の端子Nbに接続される。
When the jumper switch 560 is located as shown in the right column, the terminal Na is connected to one end (node N41) of the first portion 521 in the second layer via the via C21. When the jumper switch 560 is located as shown in the left column, the terminal Na is connected to one end (node N42) of the second portion 522 in the third layer via the via C22.
The other end of the first portion 521 and the other end of the second portion 522 are connected to the terminal Nb in the region A1 in the first layer via the common via C3.
 第4実施形態では、例えば被検出部50が設置された当初の初期状態では、ジャンパースイッチ560が左欄で示されるように位置して、第2部分522を第1コイル51として機能させる。一方、第2部分522になんらかの不具合が生じたならば、ジャンパースイッチ560を右欄で示される状態に切り替えて、第1部分521を第1コイル51として機能させる。
 すなわち、第4実施形態では、第1部分521を予備コイルとし、第2部分522を第1コイル51として機能させる一方で、第2部分522に不具合が生じたならば、ジャンパースイッチ560の切り替えによって、第1部分521を第1コイル51として機能させることができる。
In the fourth embodiment, for example, in the initial initial state in which the detected portion 50 is installed, the jumper switch 560 is positioned as shown in the left column, and the second portion 522 functions as the first coil 51. On the other hand, if any trouble occurs in the second part 522, the jumper switch 560 is switched to the state shown in the right column, and the first part 521 functions as the first coil 51.
That is, in the fourth embodiment, while the first portion 521 is used as a spare coil and the second portion 522 functions as the first coil 51, if a problem occurs in the second portion 522, the jumper switch 560 is switched. , The first portion 521 can function as the first coil 51.
 以上の説明から理解される通り、第4実施形態の変位センサー20は、可動部材の一例である鍵12に設置された被検出部50と、電流の供給により磁界を発生する第2コイル61を含む信号生成部60とを具備する。被検出部50は、絶縁性樹脂により形成された保護部材(基材551または基材552)で保護された第1部分521と、第3コイルの一例である第2部分522とを含む。ジャンパースイッチ560は、第1部分521が共振回路を構成する第1状態と、第2部分522が共振回路を構成する第2状態とを切替える切替部として機能する。信号生成部60は、被検出部50の共振回路と第2コイル61との相対位置に応じた検出信号を生成する。なお、第2部分522は、保護部材により保護されてもよいし保護されなくてもよい。 As understood from the above description, the displacement sensor 20 of the fourth embodiment includes a detected portion 50 installed on a key 12, which is an example of a movable member, and a second coil 61 that generates a magnetic field by supplying an electric current. It includes a signal generation unit 60 including the signal generation unit 60. The detected portion 50 includes a first portion 521 protected by a protective member (base material 551 or base material 552) formed of an insulating resin, and a second portion 522 which is an example of the third coil. The jumper switch 560 functions as a switching unit for switching between a first state in which the first portion 521 constitutes a resonance circuit and a second state in which the second portion 522 constitutes a resonance circuit. The signal generation unit 60 generates a detection signal according to the relative position between the resonance circuit of the detected unit 50 and the second coil 61. The second portion 522 may or may not be protected by a protective member.
 第4実施形態では、第2部分522を覆う部材はなくてもよいし、仮に第2部分522が損傷しても、ジャンパースイッチ560を切り替えれば、第1部分521を第1コイル51として機能させることができる。すなわち、第4実施形態では、ジャンパースイッチ560によって第1部分521を第1コイル51として機能させる場合、基材552が保護部材として機能するので、第1コイル51が保護される。
 なお、第4実施形態では、基材551が第1絶縁層の一例として機能し、配線パターン512が第1配線パターンの一例として機能し、基材552が第2絶縁層の一例として機能し、配線パターン513が第2配線パターンの一例として機能し、基材553が第3絶縁層の一例として機能する。
In the fourth embodiment, there may be no member covering the second portion 522, and even if the second portion 522 is damaged, if the jumper switch 560 is switched, the first portion 521 functions as the first coil 51. be able to. That is, in the fourth embodiment, when the first portion 521 functions as the first coil 51 by the jumper switch 560, the base material 552 functions as a protective member, so that the first coil 51 is protected.
In the fourth embodiment, the base material 551 functions as an example of the first insulating layer, the wiring pattern 512 functions as an example of the first wiring pattern, and the base material 552 functions as an example of the second insulating layer. The wiring pattern 513 functions as an example of the second wiring pattern, and the base material 553 functions as an example of the third insulating layer.
E:変形例
 以上に例示した各態様に付加される具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様を、相互に矛盾しない範囲で適宜に併合してもよい。
E: Deformation example Specific deformation modes added to each of the above-exemplified modes are illustrated below. Two or more embodiments arbitrarily selected from the following examples may be appropriately merged to the extent that they do not contradict each other.
(1)上述した各形態においては、鍵盤楽器100の鍵12の変位を検出する構成を例示したが、変位センサー20により変位が検出される可動部材は鍵12に限定されない。可動部材の具体的な態様を以下に例示する。 (1) In each of the above-described embodiments, the configuration for detecting the displacement of the key 12 of the keyboard instrument 100 is illustrated, but the movable member whose displacement is detected by the displacement sensor 20 is not limited to the key 12. Specific embodiments of the movable member will be illustrated below.
[態様1]
 図15は、鍵盤楽器100の打弦機構91に変位センサー20を適用した構成の模式図である。打弦機構91は、アコースティックピアノと同様に、鍵盤10の各鍵12の変位に連動して弦(図示略)を打撃するアクション機構である。具体的には、打弦機構91は、回動により打弦可能なハンマー911と、鍵12の変位に連動してハンマー911を回動させる伝達機構912(例えばウィペン、ジャック、レペティションレバー等)とを、鍵12毎に具備する。
 被検出部50がハンマー911(例えばハンマーシャンク)に設置される。また、信号生成部60は支持部材913に設置される。このような構成において、変位センサー20は、ハンマー911の変位を検出する。具体的には、支持部材913は、例えば打弦機構91を支持する構造体である。なお、被検出部50は、打弦機構91におけるハンマー911以外の可動部材に設置してもよい。
[Aspect 1]
FIG. 15 is a schematic diagram of a configuration in which the displacement sensor 20 is applied to the string striking mechanism 91 of the keyboard instrument 100. Similar to an acoustic piano, the string striking mechanism 91 is an action mechanism that strikes a string (not shown) in conjunction with the displacement of each key 12 of the keyboard 10. Specifically, the string striking mechanism 91 includes a hammer 911 capable of striking a string by rotation and a transmission mechanism 912 (for example, a wipen, a jack, a repetition lever, etc.) that rotates the hammer 911 in conjunction with the displacement of the key 12. Is provided for each key 12.
The detected portion 50 is installed on a hammer 911 (for example, a hammer shank). Further, the signal generation unit 60 is installed on the support member 913. In such a configuration, the displacement sensor 20 detects the displacement of the hammer 911. Specifically, the support member 913 is a structure that supports, for example, the string striking mechanism 91. The detected portion 50 may be installed on a movable member other than the hammer 911 in the string striking mechanism 91.
[態様2]
 図16は、鍵盤楽器100のペダル機構92に変位センサー20を適用した構成の模式図である。ペダル機構92は、利用者が足で操作するペダル921と、ペダル921を支持する支持部材922と、鉛直方向の上方にペダル921を付勢する弾性体923とを具備する。
 被検出部50がペダル921の底面に設置される。また、信号生成部60は、被検出部50に対向するように支持部材922に設置される。このような構成において、変位センサー20はペダル921の変位を検出する。
 なお、ペダル機構92が利用される楽器は鍵盤楽器100に限定されない。例えば打楽器等の任意の楽器にも同様の構成のペダル機構92が利用される。
[Aspect 2]
FIG. 16 is a schematic diagram of a configuration in which the displacement sensor 20 is applied to the pedal mechanism 92 of the keyboard instrument 100. The pedal mechanism 92 includes a pedal 921 operated by the user with his / her foot, a support member 922 that supports the pedal 921, and an elastic body 923 that urges the pedal 921 upward in the vertical direction.
The detected portion 50 is installed on the bottom surface of the pedal 921. Further, the signal generation unit 60 is installed on the support member 922 so as to face the detected unit 50. In such a configuration, the displacement sensor 20 detects the displacement of the pedal 921.
The musical instrument in which the pedal mechanism 92 is used is not limited to the keyboard instrument 100. For example, a pedal mechanism 92 having the same configuration is used for any musical instrument such as a percussion instrument.
 以上の例示から理解される通り、変位センサーによる検出の対象は、演奏動作に応じて変位する可動部材として包括的に表現される。可動部材は、利用者が直接的に操作する鍵12またはペダル921等の演奏操作子のほか、演奏操作子に対する操作に連動して変位するハンマー911等の構造体を含む。ただし、本開示における可動部材は、演奏動作に応じて変位する部材に限定されない。すなわち、可動部材は、変位を発生させる契機に関わらず、変位可能な部材として包括的に表現される。 As understood from the above examples, the object of detection by the displacement sensor is comprehensively expressed as a movable member that is displaced according to the playing motion. The movable member includes a performance operator such as a key 12 or a pedal 921 directly operated by the user, and a structure such as a hammer 911 that is displaced in conjunction with an operation on the performance operator. However, the movable member in the present disclosure is not limited to the member that is displaced according to the playing motion. That is, the movable member is comprehensively expressed as a displaceable member regardless of the trigger for causing the displacement.
(2)上述の実施形態においては、被検出部50の表面F1に形成された配線パターン511に表面F1上の容量素子52が接続される構成を例示したが、絶縁層間の配線パターン(512または513)に対して例えばブラインドビアにより表面F1上の容量素子52を接続してもよい。容量素子52が絶縁層間の配線パターンに接続される構成においては、被検出部50から配線パターン511が省略されてもよい。すなわち、被検出部50の表面F1に配線パターン511が存在しない構成も想定される。以上の構成において、設置面122の切欠部124に容量素子52が収容される前述の構成を採用すれば、容量素子52の破損を抑制できるという前述の効果は格別に顕著である。 (2) In the above-described embodiment, the configuration in which the capacitance element 52 on the surface F1 is connected to the wiring pattern 511 formed on the surface F1 of the detected portion 50 is illustrated, but the wiring pattern (512 or 512 or) between the insulating layers is illustrated. The capacitive element 52 on the surface F1 may be connected to 513) by, for example, a blind via. In the configuration in which the capacitance element 52 is connected to the wiring pattern between the insulating layers, the wiring pattern 511 may be omitted from the detected portion 50. That is, it is assumed that the wiring pattern 511 does not exist on the surface F1 of the detected portion 50. In the above configuration, if the above-mentioned configuration in which the capacitance element 52 is accommodated in the cutout portion 124 of the installation surface 122 is adopted, the above-mentioned effect that the damage of the capacitance element 52 can be suppressed is particularly remarkable.
(3)上述の実施形態においては、基材(552,553)を保護部材として例示したが、保護部材の形態は以上の例示に限定されない。例えば、平板状の基材の表面に形成された絶縁層を「保護部材」として利用してもよい。絶縁層は、例えば防水を目的とした膜体であり、例えばシリコン,エポキシまたはウレタン等の絶縁材料により形成される。絶縁層の形成には、例えばコーティングまたはポッティング等の各種の加工技術が利用される。以上の説明から理解される通り、「保護部材」は、独立した基材のほか、基材の表面を被覆する膜体も含む概念である。 (3) In the above-described embodiment, the base material (552, 553) is exemplified as the protective member, but the form of the protective member is not limited to the above examples. For example, an insulating layer formed on the surface of a flat plate-shaped base material may be used as a “protective member”. The insulating layer is, for example, a film body for the purpose of waterproofing, and is formed of an insulating material such as silicon, epoxy, or urethane. Various processing techniques such as coating or potting are used to form the insulating layer. As understood from the above description, the "protective member" is a concept that includes not only an independent base material but also a film body that covers the surface of the base material.
(4)前述の各形態においては、鍵盤楽器100が音源回路34を具備する構成を例示したが、例えば鍵盤楽器100が打弦機構91等の発音機構を具備する構成においては、音源回路34を省略してもよい。検出システム15は、鍵盤楽器100の演奏内容を記録するために利用される。発音機構および音源回路34は、検出システム15による検出の結果に応じて音を生成する音生成部として包括的に表現される。 (4) In each of the above-described embodiments, the configuration in which the keyboard instrument 100 includes the sound source circuit 34 is illustrated. However, in the configuration in which the keyboard instrument 100 includes a sound source circuit such as a string striking mechanism 91, the sound source circuit 34 is used. It may be omitted. The detection system 15 is used to record the performance content of the keyboard instrument 100. The sound generation mechanism and the sound source circuit 34 are comprehensively expressed as a sound generation unit that generates sound according to the result of detection by the detection system 15.
 以上の説明から理解される通り、本開示は、音源回路34または発音機構に対して演奏動作に応じた操作信号を出力することで楽音を制御する装置(演奏操作装置)としても特定される。前述の各形態の例示のように音源回路34または発音機構を具備する楽器(鍵盤楽器100)のほか、音源回路34または発音機構を具備しない機器(例えばMIDIコントローラまたは前述のペダル機構92)が、演奏操作装置(instrument playing apparatus)の概念には包含される。すなわち、本開示における演奏操作装置は、演奏者(操作者)が演奏のために操作する装置として包括的に表現される。 As understood from the above description, the present disclosure is also specified as a device (performance operation device) that controls a musical sound by outputting an operation signal according to a performance operation to the sound source circuit 34 or a sounding mechanism. In addition to the musical instrument having the sound source circuit 34 or the sounding mechanism (keyboard instrument 100) as illustrated in each of the above-described forms, the device not having the sound source circuit 34 or the sounding mechanism (for example, the MIDI controller or the pedal mechanism 92 described above) is used. It is included in the concept of instrument playing apparatus. That is, the performance operation device in the present disclosure is comprehensively expressed as a device operated by a performer (operator) for performance.
(5)上述の実施形態においては、本開示の保護部材として、表面全体をすべて樹脂層で覆う構成として示したが、必ずしも全体を覆っていなくてもよい。例えば、保護部材を網状の部材でパターンを覆うようにしてもよい。また、角柱状の部材を基板の長手あるいは短手方向に部材間の間隔を開けずに、あるいは所定の間隔で並べて配置するようにしてもよい。また、コイルパターンの部分だけを保護部材で覆うようにしてもよい。 (5) In the above-described embodiment, as the protective member of the present disclosure, the entire surface is covered with a resin layer, but the entire surface may not necessarily be covered. For example, the protective member may be covered with a net-like member in the pattern. Further, the prismatic members may be arranged side by side at predetermined intervals or without leaving a space between the members in the longitudinal direction or the lateral direction of the substrate. Further, only the portion of the coil pattern may be covered with the protective member.
F:付記
 上述した実施形態等から、例えば以下のような態様が把握される。
F: Appendix From the above-described embodiments and the like, for example, the following aspects can be grasped.
 本開示の態様(第1態様)に係る変位センサーは、操作に応じた可動部材の変位を検出する変位センサーであって、前記可動部材に設置され、絶縁性樹脂により形成された保護部材で保護された第1コイルを含む被検出部と、電流の供給により磁界を発生する第2コイルを含み、前記被検出部の第1コイルとそれに対向する前記第2コイルとの相対位置に応じた検出信号を生成する信号生成部と、を具備する。
 この態様によれば、第1コイルが保護部材で保護されるので、第1コイルが擦れ等による損傷してしまうことを防止できる。
The displacement sensor according to the aspect (first aspect) of the present disclosure is a displacement sensor that detects the displacement of the movable member in response to an operation, and is installed on the movable member and protected by a protective member formed of an insulating resin. Detection according to the relative position of the first coil of the detected portion and the second coil facing the first coil of the detected portion, including the detected portion including the first coil and the second coil that generates a magnetic field by supplying a current. It includes a signal generation unit that generates a signal.
According to this aspect, since the first coil is protected by the protective member, it is possible to prevent the first coil from being damaged by rubbing or the like.
 前記第1態様の例(第2態様)において、前記第2コイルの中心軸の方向における前記第1コイルと前記第2コイルとの距離が、前記可動部材の変位に応じて変化する。
 この態様によれば、第2コイルの中心軸に垂直な面内において被検出部と第2コイルとが相対的に移動する構成(すなわち、第2コイルの中心軸の方向における被検出部と第2コイルとの距離は変化しない構成)と比較して、可動部材の変位に対して検出信号のレベルを大きく変化させることが可能である。
In the example of the first aspect (second aspect), the distance between the first coil and the second coil in the direction of the central axis of the second coil changes according to the displacement of the movable member.
According to this aspect, the detected portion and the second coil move relatively in a plane perpendicular to the central axis of the second coil (that is, the detected portion and the second coil in the direction of the central axis of the second coil). Compared with the configuration in which the distance between the two coils does not change), the level of the detection signal can be significantly changed with respect to the displacement of the movable member.
 第1または第2態様の例(第3態様)において、前記被検出部は、前記第1コイルに接続される容量素子を含む。この態様によれば、容量素子の容量に応じて、第1コイルおよび容量素子による共振周波数を調整できる、という利点がある。 In the example of the first or second aspect (third aspect), the detected portion includes a capacitive element connected to the first coil. According to this aspect, there is an advantage that the resonance frequency of the first coil and the capacitive element can be adjusted according to the capacitance of the capacitive element.
 第3態様の例(第4態様)において、前記可動部材は、前記被検出部が設置される設置面を有し、前記設置面には切欠部が設けられ、前記容量素子が前記切欠部に収容された状態で、前記被検出部が前記可動部材に設置される。
 この態様によれば、基板に実装される容量素子が露出しないので、容量素子が、例えばメンテナンス等において他の部材に引っかかることで破損してしまうことを防止できる。
In the example of the third aspect (fourth aspect), the movable member has an installation surface on which the detected portion is installed, the installation surface is provided with a notch, and the capacitive element is provided in the notch. In the housed state, the detected portion is installed on the movable member.
According to this aspect, since the capacitive element mounted on the substrate is not exposed, it is possible to prevent the capacitive element from being damaged by being caught by another member during maintenance, for example.
 第1乃至第4態様の何れかの例(第5態様)において、前記被検出部は、少なくとも第1絶縁層、第1配線パターンおよび第2絶縁層を含み、前記第1配線パターンが、前記第1絶縁層および前記第2絶縁層の間に位置し、前記第1コイルは、前記第1配線パターンに含まれる渦巻き形状の部分である。
 この態様によれば、例えば第1コイルを導電線の巻回により形成する構成と比較して、第1コイルの製造および取扱が容易であるという利点がある。
In any of the first to fourth aspects (fifth aspect), the detected portion includes at least a first insulating layer, a first wiring pattern, and a second insulating layer, and the first wiring pattern is the said. Located between the first insulating layer and the second insulating layer, the first coil is a spiral-shaped portion included in the first wiring pattern.
According to this aspect, there is an advantage that the first coil can be easily manufactured and handled as compared with a configuration in which the first coil is formed by winding a conductive wire, for example.
 第1乃至第4態様の何れかの例(第6態様)において、前記被検出部は、少なくとも第1絶縁層、第1配線パターン、第2絶縁層、第2配線パターンおよび第3絶縁層を含み、前記第1配線パターンが、前記第1絶縁層および前記第2絶縁層の間に位置し、前記第2配線パターンが、前記第2絶縁層および前記第3絶縁層の間に位置し、前記第1コイルは、第1部分と第2部分と第3部分と第4部分とを含み、前記第1部分および前記第4部分は、前記第1配線パターンに含まれる渦巻き形状の部分であり、前記第2部分および前記第3部分は、前記第2配線パターンに含まれる渦巻き形状の部分であり、前記第1部分と前記第2部分とは平面視で相互に重なり、前記第3部分と前記第4部分とは平面視で相互に重なり、前記第1部分により生成される磁界と前記第2部分により生成される磁界とは、第1方向であり、前記第3部分により生成される磁界と前記第4部分により生成される磁界とは、前記第1方向とは逆方向の第2方向である。
 この態様によれば、第1部分と第2部分とに第1方向の磁界が発生し、第3部分と第4部分とに第1方向とは逆方向の磁界が発生するので、第1コイルから周囲に対する磁界の拡散が低減される。したがって、相異なる可動部材に対応する複数の第1コイルが相互に近接する構成において、複数の可動部材の各々の変位を高精度に反映した検出信号を生成できる。
In any of the first to fourth aspects (sixth aspect), the detected portion includes at least the first insulating layer, the first wiring pattern, the second insulating layer, the second wiring pattern, and the third insulating layer. Including, the first wiring pattern is located between the first insulating layer and the second insulating layer, and the second wiring pattern is located between the second insulating layer and the third insulating layer. The first coil includes a first portion, a second portion, a third portion, and a fourth portion, and the first portion and the fourth portion are spiral-shaped portions included in the first wiring pattern. The second portion and the third portion are spiral-shaped portions included in the second wiring pattern, and the first portion and the second portion overlap each other in a plan view, and the third portion and the third portion. The fourth portion and the fourth portion overlap each other in a plan view, and the magnetic field generated by the first portion and the magnetic field generated by the second portion are in the first direction, and the magnetic field generated by the third portion. And the magnetic field generated by the fourth portion are the second direction opposite to the first direction.
According to this aspect, a magnetic field in the first direction is generated in the first portion and the second portion, and a magnetic field in the direction opposite to the first direction is generated in the third portion and the fourth portion. The diffusion of the magnetic field to the surroundings is reduced. Therefore, in a configuration in which a plurality of first coils corresponding to different movable members are close to each other, it is possible to generate a detection signal that reflects the displacement of each of the plurality of movable members with high accuracy.
 なお、「平面視」とは、配線パターンの表面に垂直な方向に沿って観察すること、または、絶縁層の表面に垂直な方向からみて観察することを意味する。第1コイルの軸方向に沿って観察することを「平面視」と表現してもよい。 Note that "planar view" means observing along the direction perpendicular to the surface of the wiring pattern, or observing from the direction perpendicular to the surface of the insulating layer. Observing along the axial direction of the first coil may be expressed as "plan view".
 第1乃至第4態様の何れかの例(第7態様)において、前記被検出部は、少なくとも第1絶縁層、第1配線パターンおよび第2絶縁層を含み、前記第1配線パターンが、前記第1絶縁層および前記第2絶縁層の間に位置し、前記第1コイルは、第1部分と第2部分とを含み、前記第1部分および前記第2部分は、前記第1配線パターンに含まれる渦巻き形状の部分であり、前記第1部分により生成される磁界と前記第2部分により生成される磁界とは、相互に逆方向である。
 この態様によれば、第1部分と第2部分とは、平面視で重なり、発生磁界が同方向であるので、第1部分または第2部分の単体と比較して磁界の強さを大きくすることができる。
In any of the first to fourth aspects (seventh aspect), the detected portion includes at least a first insulating layer, a first wiring pattern, and a second insulating layer, and the first wiring pattern is the said. Located between the first insulating layer and the second insulating layer, the first coil includes a first portion and a second portion, and the first portion and the second portion are in the first wiring pattern. It is a spiral-shaped portion included, and the magnetic field generated by the first portion and the magnetic field generated by the second portion are opposite to each other.
According to this aspect, since the first portion and the second portion overlap in a plan view and the generated magnetic fields are in the same direction, the strength of the magnetic field is increased as compared with the single unit of the first portion or the second portion. be able to.
 第1乃至第4態様の何れかの例(第8態様)において、前記被検出部は、少なくとも第1絶縁層、第1配線パターン、第2絶縁層、第2配線パターンおよび第3絶縁層を含み、前記第1配線パターンが、前記第1絶縁層および前記第2絶縁層の間に位置し、前記第2配線パターンが、前記第2絶縁層および前記第3絶縁層の間に位置し、前記第1コイルは、第1部分と第2部分とを含み、前記第1部分は、前記第1配線パターンに含まれる渦巻き形状の部分であり、前記第2部分は、前記第2配線パターンに含まれる渦巻き形状の部分であり、前記第1部分および前記第2部分は平面視で相互に重なり、前記第1部分により生成される磁界と前記第2部分により生成される磁界とは、相互に同方向である。
 この態様によれば、第1部分と第2部分とが平面視で重なるので、被検出部の設置に必要なスペースが削減される。
In any of the first to fourth aspects (eighth aspect), the detected portion includes at least the first insulating layer, the first wiring pattern, the second insulating layer, the second wiring pattern, and the third insulating layer. Including, the first wiring pattern is located between the first insulating layer and the second insulating layer, and the second wiring pattern is located between the second insulating layer and the third insulating layer. The first coil includes a first portion and a second portion, the first portion is a spiral-shaped portion included in the first wiring pattern, and the second portion is included in the second wiring pattern. It is a spiral-shaped portion included, and the first portion and the second portion overlap each other in a plan view, and the magnetic field generated by the first portion and the magnetic field generated by the second portion mutually overlap. In the same direction.
According to this aspect, since the first portion and the second portion overlap in a plan view, the space required for installing the detected portion is reduced.
 第1乃至第4態様の何れかの例(第9態様)において、前記被検出部は、第3コイルと、前記第1コイルが共振回路を構成する第1状態と、前記第3コイルが共振回路を構成する第2状態とを切替える切替部とを含む。この態様によれば、他のコイルが損傷しても、当該他のコイルを、保護部材で保護された第1コイルに置き換えて使用することができる。 In any of the first to fourth aspects (9th aspect), the detected portion resonates with the third coil, the first state in which the first coil constitutes a resonance circuit, and the third coil. Includes a switching unit that switches between the second state that constitutes the circuit. According to this aspect, even if the other coil is damaged, the other coil can be used by replacing it with the first coil protected by the protective member.
 本開示のひとつの態様(第10態様)に係る演奏操作装置は、第1乃至第9態様の何れかに記載の変位センサーと、前記検出信号のレベルに応じた音を表す音響信号を生成する音制御部とを具備する。 The performance operation device according to one aspect (10th aspect) of the present disclosure generates the displacement sensor according to any one of the first to ninth aspects and an acoustic signal representing a sound according to the level of the detection signal. It is equipped with a sound control unit.
 100…鍵盤楽器(演奏操作装置)、10…鍵盤、12…鍵、15…検出システム、20…変位センサー、21…信号処理回路、22…供給回路、23…出力回路、30…情報処理装置、50…被検出部、51…第1コイル、52…容量素子、521…第1部分、522…第2部分、523…第3部分、524…第4部分、551、552、553…基材。 100 ... keyboard instrument (playing operation device), 10 ... keyboard, 12 ... key, 15 ... detection system, 20 ... displacement sensor, 21 ... signal processing circuit, 22 ... supply circuit, 23 ... output circuit, 30 ... information processing device, 50 ... Detected part, 51 ... 1st coil, 52 ... Capacitive element, 521 ... 1st part, 522 ... 2nd part, 523 ... 3rd part, 524 ... 4th part, 551, 552, 535 ... Base material.

Claims (10)

  1.  操作に応じた可動部材の変位を検出する変位センサーであって、
     前記可動部材に設置され、絶縁性樹脂により形成された保護部材で保護された第1コイルを含む被検出部と、
     電流の供給により磁界を発生する第2コイルを含み、前記被検出部の第1コイルとそれに対向する前記第2コイルとの相対位置に応じた検出信号を生成する信号生成部と、
     を具備する変位センサー。
    It is a displacement sensor that detects the displacement of movable members according to the operation.
    A detected portion including a first coil installed on the movable member and protected by a protective member formed of an insulating resin.
    A signal generation unit that includes a second coil that generates a magnetic field by supplying an electric current and generates a detection signal according to a relative position between the first coil of the detected unit and the second coil facing the first coil.
    Displacement sensor equipped with.
  2.  前記第2コイルの中心軸の方向における前記第1コイルと前記第2コイルとの距離が、前記可動部材の変位に応じて変化する
     請求項1に記載の変位センサー。
    The displacement sensor according to claim 1, wherein the distance between the first coil and the second coil in the direction of the central axis of the second coil changes according to the displacement of the movable member.
  3.  前記被検出部は、
     前記第1コイルに接続される容量素子を含む
     請求項1または2に記載の変位センサー。
    The detected part is
    The displacement sensor according to claim 1 or 2, which includes a capacitive element connected to the first coil.
  4.  前記可動部材は、前記被検出部が設置される設置面を有し、
     前記設置面には切欠部が設けられ、
     前記容量素子が前記切欠部に収容された状態で、前記被検出部が前記可動部材に設置される
     請求項3に記載の変位センサー。
    The movable member has an installation surface on which the detected portion is installed.
    A notch is provided on the installation surface.
    The displacement sensor according to claim 3, wherein the detected portion is installed in the movable member in a state where the capacitive element is housed in the notch portion.
  5.  前記被検出部は、
     少なくとも第1絶縁層、第1配線パターンおよび第2絶縁層を含み、
     前記第1配線パターンが、前記第1絶縁層および前記第2絶縁層の間に位置し、
     前記第1コイルは、前記第1配線パターンに含まれる渦巻き形状の部分である
     請求項1乃至4の何れかに記載の変位センサー。
    The detected part is
    Includes at least a first insulating layer, a first wiring pattern and a second insulating layer.
    The first wiring pattern is located between the first insulating layer and the second insulating layer.
    The displacement sensor according to any one of claims 1 to 4, wherein the first coil is a spiral-shaped portion included in the first wiring pattern.
  6.  前記被検出部は、
     少なくとも第1絶縁層、第1配線パターン、第2絶縁層、第2配線パターンおよび第3絶縁層を含み、
     前記第1配線パターンが、前記第1絶縁層および前記第2絶縁層の間に位置し、
     前記第2配線パターンが、前記第2絶縁層および前記第3絶縁層の間に位置し、
     前記第1コイルは、第1部分と第2部分と第3部分と第4部分とを含み、
     前記第1部分および前記第4部分は、前記第1配線パターンに含まれる渦巻き形状の部分であり、
     前記第2部分および前記第3部分は、前記第2配線パターンに含まれる渦巻き形状の部分であり、
     前記第1部分と前記第2部分とは平面視で相互に重なり、
     前記第3部分と前記第4部分とは平面視で相互に重なり、
     前記第1部分により生成される磁界と前記第2部分により生成される磁界とは、第1方向であり、
     前記第3部分により生成される磁界と前記第4部分により生成される磁界とは、前記第1方向とは逆方向の第2方向である
     請求項1乃至4の何れかに記載の変位センサー。
    The detected part is
    Includes at least a first insulating layer, a first wiring pattern, a second insulating layer, a second wiring pattern and a third insulating layer.
    The first wiring pattern is located between the first insulating layer and the second insulating layer.
    The second wiring pattern is located between the second insulating layer and the third insulating layer.
    The first coil includes a first portion, a second portion, a third portion, and a fourth portion.
    The first portion and the fourth portion are spiral-shaped portions included in the first wiring pattern.
    The second portion and the third portion are spiral-shaped portions included in the second wiring pattern.
    The first part and the second part overlap each other in a plan view.
    The third part and the fourth part overlap each other in a plan view.
    The magnetic field generated by the first portion and the magnetic field generated by the second portion are in the first direction.
    The displacement sensor according to any one of claims 1 to 4, wherein the magnetic field generated by the third portion and the magnetic field generated by the fourth portion are in the second direction opposite to the first direction.
  7.  前記被検出部は、
     少なくとも第1絶縁層、第1配線パターンおよび第2絶縁層を含み、
     前記第1配線パターンが、前記第1絶縁層および前記第2絶縁層の間に位置し、
     前記第1コイルは、第1部分と第2部分とを含み、
     前記第1部分および前記第2部分は、前記第1配線パターンに含まれる渦巻き形状の部分であり、
     前記第1部分により生成される磁界と前記第2部分により生成される磁界とは、相互に逆方向である
     請求項1乃至4の何れかに記載の変位センサー。
    The detected part is
    Includes at least a first insulating layer, a first wiring pattern and a second insulating layer.
    The first wiring pattern is located between the first insulating layer and the second insulating layer.
    The first coil includes a first portion and a second portion.
    The first portion and the second portion are spiral-shaped portions included in the first wiring pattern.
    The displacement sensor according to any one of claims 1 to 4, wherein the magnetic field generated by the first portion and the magnetic field generated by the second portion are in opposite directions to each other.
  8.  前記被検出部は、
     少なくとも第1絶縁層、第1配線パターン、第2絶縁層、第2配線パターンおよび第3絶縁層を含み、
     前記第1配線パターンが、前記第1絶縁層および前記第2絶縁層の間に位置し、
     前記第2配線パターンが、前記第2絶縁層および前記第3絶縁層の間に位置し、
     前記第1コイルは、第1部分と第2部分とを含み、
     前記第1部分は、前記第1配線パターンに含まれる渦巻き形状の部分であり、
     前記第2部分は、前記第2配線パターンに含まれる渦巻き形状の部分であり、
     前記第1部分および前記第2部分は平面視で相互に重なり、
     前記第1部分により生成される磁界と前記第2部分により生成される磁界とは、相互に同方向である
     請求項1乃至4の何れかに記載の変位センサー。
    The detected part is
    Includes at least a first insulating layer, a first wiring pattern, a second insulating layer, a second wiring pattern and a third insulating layer.
    The first wiring pattern is located between the first insulating layer and the second insulating layer.
    The second wiring pattern is located between the second insulating layer and the third insulating layer.
    The first coil includes a first portion and a second portion.
    The first portion is a spiral-shaped portion included in the first wiring pattern.
    The second portion is a spiral-shaped portion included in the second wiring pattern.
    The first part and the second part overlap each other in a plan view.
    The displacement sensor according to any one of claims 1 to 4, wherein the magnetic field generated by the first portion and the magnetic field generated by the second portion are in the same direction as each other.
  9.  前記被検出部は、
     第3コイルと、
     前記第1コイルが共振回路を構成する第1状態と、前記第3コイルが共振回路を構成する第2状態とを切替える切替部とを含む
     請求項1乃至4の何れかに記載の変位センサー。
    The detected part is
    With the third coil
    The displacement sensor according to any one of claims 1 to 4, further comprising a switching unit for switching between a first state in which the first coil constitutes a resonance circuit and a second state in which the third coil constitutes a resonance circuit.
  10.  請求項1乃至9の何れかに記載の変位センサーと、
     前記検出信号のレベルに応じた音を表す音響信号を生成する音制御部と、
     を具備する演奏操作装置。
    The displacement sensor according to any one of claims 1 to 9,
    A sound control unit that generates an acoustic signal that represents a sound according to the level of the detection signal, and a sound control unit.
    A performance operation device equipped with.
PCT/JP2021/009027 2020-03-12 2021-03-08 Displacement sensor and performance operation device WO2021182409A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022507186A JP7327646B2 (en) 2020-03-12 2021-03-08 Displacement sensor and performance control device
CN202190000320.0U CN218297031U (en) 2020-03-12 2021-03-08 Displacement sensor and musical performance operating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-042520 2020-03-12
JP2020042520 2020-03-12

Publications (1)

Publication Number Publication Date
WO2021182409A1 true WO2021182409A1 (en) 2021-09-16

Family

ID=77670885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009027 WO2021182409A1 (en) 2020-03-12 2021-03-08 Displacement sensor and performance operation device

Country Status (3)

Country Link
JP (1) JP7327646B2 (en)
CN (1) CN218297031U (en)
WO (1) WO2021182409A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220246122A1 (en) * 2017-12-20 2022-08-04 Sonuus Limited Keyboard sensor systems and methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193389A1 (en) * 2020-03-26 2021-09-30 ヤマハ株式会社 Displacement sensor and electronic musical instrument

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149211A (en) * 1998-05-07 2000-05-30 Canon Inc Plane coil parts for magnetic head, magneto-optical recording magnetic head and magneto-optical recorder
JP2002110422A (en) * 2000-09-28 2002-04-12 Murata Mfg Co Ltd Chip coil parts
JP2010122012A (en) * 2008-11-18 2010-06-03 Jtekt Corp Substrate type double layer coil and displacement sensor apparatus
WO2019122867A1 (en) * 2017-12-20 2019-06-27 Sonuus Limited Keyboard sensor systems and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149211A (en) * 1998-05-07 2000-05-30 Canon Inc Plane coil parts for magnetic head, magneto-optical recording magnetic head and magneto-optical recorder
JP2002110422A (en) * 2000-09-28 2002-04-12 Murata Mfg Co Ltd Chip coil parts
JP2010122012A (en) * 2008-11-18 2010-06-03 Jtekt Corp Substrate type double layer coil and displacement sensor apparatus
WO2019122867A1 (en) * 2017-12-20 2019-06-27 Sonuus Limited Keyboard sensor systems and methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220246122A1 (en) * 2017-12-20 2022-08-04 Sonuus Limited Keyboard sensor systems and methods
US12112732B2 (en) * 2017-12-20 2024-10-08 Sonuus Limited Keyboard sensor systems and methods

Also Published As

Publication number Publication date
JP7327646B2 (en) 2023-08-16
JPWO2021182409A1 (en) 2021-09-16
CN218297031U (en) 2023-01-13

Similar Documents

Publication Publication Date Title
WO2021182409A1 (en) Displacement sensor and performance operation device
JP2024052929A (en) Performance operation device
WO2021193389A1 (en) Displacement sensor and electronic musical instrument
US20220277717A1 (en) Detection system, musical instrument playing apparatus, and musical keyboard instrument
US20220277719A1 (en) Musical instrument playing apparatus and musical keyboard instrument
TW200501050A (en) Automatic player keyboard musical instrument equipped with key sensors shared between automatic playing system and recording system
WO2022075102A1 (en) Circuit board and detection system
US6723908B2 (en) Pick guard with electronic control housing and interface for acoustic guitar
US20240078984A1 (en) Detection system for musical instrument and musical instrument
JP6992267B2 (en) Switching equipment for keyboard equipment
CN114651302A (en) Input device and sound signal generating device
US20230386442A1 (en) Detection system and keyboard instrument
JP7290926B2 (en) electronic musical instrument
WO2023228746A1 (en) Detection system and musical instrument
WO2023228745A1 (en) Detection system and musical instrument
CN101753659A (en) Electrical playing device and handheld type communication device
JP2016180822A (en) String press position detection device, string press detect method, program and electronic musical instrument
JP2009217031A (en) Keyboard instrument and clamp for connector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767567

Country of ref document: EP

Kind code of ref document: A1