WO2021182215A1 - Safety device - Google Patents

Safety device Download PDF

Info

Publication number
WO2021182215A1
WO2021182215A1 PCT/JP2021/008103 JP2021008103W WO2021182215A1 WO 2021182215 A1 WO2021182215 A1 WO 2021182215A1 JP 2021008103 W JP2021008103 W JP 2021008103W WO 2021182215 A1 WO2021182215 A1 WO 2021182215A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
period
floodlight
light projection
control unit
Prior art date
Application number
PCT/JP2021/008103
Other languages
French (fr)
Japanese (ja)
Inventor
兼秀 天野
貴行 青木
秀起 佐々木
太一 鈴木
Original Assignee
株式会社アマダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダ filed Critical 株式会社アマダ
Publication of WO2021182215A1 publication Critical patent/WO2021182215A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/02Bending sheet metal along straight lines, e.g. to form simple curves on press brakes without making use of clamping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16PSAFETY DEVICES IN GENERAL; SAFETY DEVICES FOR PRESSES
    • F16P3/00Safety devices acting in conjunction with the control or operation of a machine; Control arrangements requiring the simultaneous use of two or more parts of the body
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric

Definitions

  • the present invention relates to a safety device.
  • Patent Document 1 discloses a bending machine provided with a safety device that detects an obstacle depending on whether or not light rays are blocked.
  • the safety device includes a floodlight that projects a light beam (detection light) for detecting an obstacle, and a light receiving unit for receiving the detection light that is projected from the floodlight.
  • the bending machine is configured to stop the machining operation when an obstacle is detected by the safety device.
  • a method in which a pulsed light beam having a predetermined frequency is used as detection light by blinking the floodlight at a predetermined cycle. According to this method, even when the disturbance light interferes, the disturbance light and the detection light can be distinguished by utilizing the difference in the frequency of the light rays.
  • the receiver of the safety device determines the light receiving state on the condition that it receives a pulsed light beam of a predetermined frequency. Therefore, even if light rays having different frequencies interfere with the light receiver, the light receiving unit does not determine that the light receiving state is in the light receiving state. However, when a light beam having the same design as the detection light output from the floodlight interferes with the receiver, the light receiving unit may erroneously determine that the light is in the light receiving state even though the detection light from the floodlight is blocked. There is sex.
  • One aspect of the present invention provides a safety device that supplies a safety signal to a processing machine that performs a specified operation and automatically stops the processing machine according to the state of the safety signal to manage the safety of the processing machine.
  • This safety device includes a first floodlight that outputs a light ray as a first light ray by periodically repeating blinking, and a detector that detects the light, and is the detector in a light receiving state that receives the first light ray?
  • the first receiver that determines whether the detector is in a light-shielding state that does not receive the first light beam and the first floodlight are controlled to output the first light beam from the first floodlight over the first floodlight period, and the first It has a first control unit that controls the state of the safety signal based on the determination state of the first light receiver during the light projection period.
  • the first control unit is the same as the first light beam output from the first floodlight when the first light receiver determines the light receiving state during the first non-light emitting period in which the first light beam is not output from the first floodlight. Determine the abnormal condition in which the designed rays interfere.
  • the determination state of the first light receiver is normally a light-shielding state. Therefore, when the determination state of the first light receiver is the light receiving state during the non-projection period of the first detection light, it is possible to determine the abnormal state in which the light rays having the same design as the first detection light interfere with each other.
  • FIG. 1 is a block diagram showing a configuration of a processing machine to which the safety device according to the present embodiment is applied.
  • FIG. 2 is a block diagram showing a configuration of a safety device according to the present embodiment.
  • FIG. 3 is an explanatory diagram showing a change in the detection signal in a situation where shading does not occur.
  • FIG. 4 is an explanatory diagram showing a change in the detection signal in a situation where shading occurs.
  • FIG. 5 is a flowchart showing the flow of operation of the press brake.
  • FIG. 6 is a flowchart showing the flow of the first abnormality determination process.
  • FIG. 7 is an explanatory diagram showing the state of the first detection light and the state of the second detection light in the first abnormality determination process in comparison with each other.
  • FIG. 1 is a block diagram showing a configuration of a processing machine to which the safety device according to the present embodiment is applied.
  • FIG. 2 is a block diagram showing a configuration of a safety device according to the present embodiment.
  • FIG. 8 is a flowchart showing the flow of the second abnormality determination process.
  • FIG. 9 is an explanatory diagram showing the state of the first detection light and the state of the second detection light in the second abnormality determination process in comparison with each other.
  • FIG. 10 is a flowchart showing the flow of the third abnormality determination process according to the first embodiment.
  • FIG. 11 is an explanatory diagram showing the state of the first detection light and the state of the second detection light in the third abnormality determination process according to the first embodiment in comparison with each other.
  • FIG. 12 is a flowchart showing the flow of the third abnormality determination process according to the second embodiment.
  • FIG. 13 is an explanatory diagram showing the state of the first detection light and the state of the second detection light in the third abnormality determination process according to the second mode in comparison with each other.
  • FIG. 1 is a block diagram showing a configuration of a processing machine to which the safety device according to the present embodiment is applied.
  • FIG. 2 is a block diagram showing a configuration of a safety device according to the present embodiment.
  • the safety device 50 according to the present embodiment supplies a safety signal to the processing machine performing the specified work, and manages the safety of the processing machine by automatically stopping the processing machine according to the state of the safety signal.
  • the safety device 50 includes a floodlight (first floodlight) 60 that outputs a light beam as a first ray LB by periodically repeating blinking, and a detector 80 that detects the light, and the detector 80 includes the first ray LB.
  • the receiver (first receiver) 70 for determining whether the light receiving state is a light receiving state in which the light is received or the detector 80 is not receiving the first ray LB, and the floodlight 60 are controlled to control the first light emitting period. It has a safety control device (first control unit) 100 that outputs the first ray LB from the floodlight 60 and controls the state of the safety signal based on the determination state of the light receiver 70 during the first flooding period. ..
  • the safety control device 100 emits a light ray having the same design as the first light ray LB output from the light projector 60. Determine the abnormal condition that interferes.
  • the term "period" is used to mean a period from a certain period to another, that is, a time having a range.
  • the safety device will be described by applying it to a press brake which is an example of a processing machine.
  • a schematic configuration of a press brake will be described with reference to FIG.
  • the press brake 1 is a processing machine that bends a plate-shaped work (sheet metal) W with a pair of dies.
  • the press brake 1 includes an upper table 10, a lower table 20, and a press brake control device 30.
  • the upper table 10 holds the punch 14 which is the upper mold. Specifically, an upper mold holder (not shown) is attached to the upper table 10, and a punch 14 is attached to the upper mold holder.
  • the upper table 10 is configured to move up and down by raising and lowering the hydraulic cylinders 11L and 11R provided on the left and right.
  • the individual hydraulic cylinders 11L and 11R are moved up and down by driving actuators 12L and 12R mainly composed of a pump and a motor.
  • the vertical position of the upper table 10 is detected by a position detection unit such as a linear encoder (not shown).
  • the position information detected by the position detection unit is supplied to the press brake control device 30.
  • the lower table 20 is provided below the upper table 10.
  • the lower table 20 holds a die 24 which is a lower mold.
  • a lower mold holder (not shown) is attached to the lower table 20, and a die 24 is attached to the lower mold holder.
  • the work W is arranged on the die 24.
  • the upper table 10 is lowered, the work W is sandwiched between the punch 14 and the die 24 and bent.
  • the press brake control device 30 can be configured by an NC device.
  • the press brake control device 30 controls the actuators 12L and 12R to raise or lower the hydraulic cylinders 11L and 11R.
  • the press brake control device 30 controls the vertical position of the upper table 10 based on the position information detected by the position detection unit. Further, when the safety signal is turned off from the safety control device 100, the press brake control device 30 stops the lowering of the upper table 10 and interrupts the bending process of the material by the press brake.
  • the press brake 1 is further provided with a safety device 50 for monitoring the intrusion of foreign matter (intruders) other than the work W into the space between the punch 14 and the die 24 (protection range).
  • the safety device 50 is mainly composed of a floodlight 60, a light receiver 70, and a safety control device 100.
  • the floodlight 60 is mounted on the right side of the upper table 10, for example, via the arm 15R.
  • the floodlight 60 emits the detection light LB so as to pass between the punch 14 and the die 24.
  • the receiver 70 is mounted on the left side of the upper table 10, for example, via the arm 15L.
  • the receiver 70 is arranged at a position facing the floodlight 60.
  • the receiver 70 receives the detection light that has passed between the punch 14 and the die 24.
  • the safety control device 100 is a control device that controls the safety device 50.
  • the safety control device 100 controls the floodlight 60 and the light receiver 70. Further, the safety control device 100 supplies a safety signal ON (operation permission signal) to the press brake control device 30 if it determines that there is no intrusion of an intruder based on the information acquired from the receiver 70. On the other hand, if the safety control device 100 determines that an intruder has invaded, the safety control device 100 supplies the press brake control device 30 with a safety signal off (operation stop signal).
  • the floodlight 60 outputs the detection light LB.
  • the detection light LB is, for example, a laser light.
  • the floodlight 60 includes a laser light source and a collimating lens that adjusts the beam light emitted by the laser light source in a parallel state.
  • the receiver 70 includes a detector 80 and a determination unit 90.
  • the detector 80 detects the detection light LB.
  • the detector 80 receives the detection light LB and outputs a detection signal (electric signal) Sd1 according to the intensity of the light.
  • the detection signal Sd1 output from the detector 80 is output to the determination unit 90.
  • the detector 80 can be composed of a photodiode or a two-dimensional image sensor.
  • the two-dimensional image sensor is, for example, a CCD (Charge Coupled Device).
  • the determination unit 90 determines whether the detector 80 is in the light receiving state of receiving the detection light LB or the detector 80 is in the light receiving state of not receiving the detection light LB. ..
  • the determination unit 90 outputs the determination signal Sd2 indicating the determination result to the safety control device 100.
  • the detector 80 and the determination unit 90 are integrated as the receiver 70.
  • the determination unit 90 may be provided outside the receiver 70.
  • the determination unit 90 may be configured as a part of the safety control device 100.
  • the safety control device 100 is mainly composed of a CPU, a ROM, a RAM, and an I / O interface.
  • the safety control device 100 controls the operation of the safety device 50 by having the CPU read various programs according to the processing contents from the ROM or the like, expand the programs in the RAM, and execute the expanded programs.
  • the safety control device 100 has a floodlight control unit 101 and a safety control unit 102 when viewed functionally.
  • the floodlight control unit 101 controls the floodlight 60 to control the detection light LB emitted from the floodlight 60.
  • the floodlight control unit 101 outputs a control signal Sc to the floodlight 60.
  • the floodlight 60 turns on when the control signal Sc is turned on, and turns off when the control signal Sc is turned off.
  • the safety control unit 102 determines the safety state of the press brake 1 based on the determination signal Sd2 output from the determination unit 90 and the operating state of the press brake 1.
  • the safety control unit 102 controls the safety signal supplied to the press brake control device 30 based on the confirmed safety state.
  • the safety control unit 102 manages the safety of the press brake 1 by automatically stopping the press brake 1 according to the state of the safety signal.
  • the safety control device 100 is configured by a CPU or the like, and the safety device 50 is controlled by software processing.
  • the safety control device 100 may be configured by a hardware circuit, and the safety device 50 may be controlled by the hardware circuit.
  • each safety control device 100 communicates with the safety control device 100 provided by another press brake 1 (another machine). Can be done.
  • the communication method between the devices may be wireless communication or wired communication. Through this communication, each safety control device 100 can acquire the operating state of another safety control device 100.
  • FIG. 3 is an explanatory diagram showing a change in the detection signal in a situation where shading does not occur.
  • FIG. 4 is an explanatory diagram showing a change in the detection signal in a situation where shading occurs.
  • Shading monitoring which is a basic operation of the safety device 50 according to the present embodiment, will be described.
  • the shading monitoring is an operation of outputting the detection light LB from the floodlight 60 and monitoring whether or not the detection light LB is shaded.
  • the light projection control unit 101 Prior to shading monitoring, the light projection control unit 101 starts the light projection process. When the light projection process is started, the light projection control unit 101 outputs a pulse-shaped control signal Sc that turns on and off at a predetermined frequency.
  • the floodlight 60 periodically blinks (on / off) according to the on / off of the control signal Sc from the floodlight control unit 101, and emits a pulse-shaped detection light LB having a predetermined frequency.
  • the floodlight control unit 101 alternately repeats a period in which the control signal Sc is continuously output and a period in which the output of the control signal Sc is stopped. As a result, as shown in FIG. 3, the projection period in which the detection light LB is emitted and the non-illumination period in which the detection light LB is not emitted are alternately switched.
  • One light projection cycle is configured by one light projection period and one non-light projection period, and the light projection control unit 101 repeats the light projection cycle during the period in which the light projection process is performed.
  • the length of the floodlight cycle that is, the length of the floodlight period and the length of the non-flooding period, and the frequency of the detection light LB are determined by predetermined values (default values) designed in advance.
  • the detection light LB output from the floodlight 60 passes between the punch 14 and the die 24 and is incident on the detector 80 of the receiver 70.
  • the detector 80 outputs the detection signal Sd1 according to the intensity of the incident detection light LB.
  • the detection signal Sd1 is input from the detector 80 to the determination unit 90 in accordance with the projection period of the detection light LB.
  • the determination unit 90 detects a signal converted by using the filter circuit. It is input as the signal Sd1.
  • the detection signal Sd1 shows the following response.
  • the detection signal Sd1 rises by receiving the detection light LB (timing Ta).
  • the detection signal Sd1 reaches the threshold voltage Vth at the timing Tb delayed by the delay of the rising response.
  • the detection signal Sd1 reaches a predetermined peak voltage and changes in this peak voltage.
  • the detection signal Sd1 falls (timing Tc). At this time, the detection signal Sd1 reaches the threshold voltage Vth at the timing Td delayed by the delay of the falling response. After that, the detection signal Sd1 reaches zero voltage.
  • the determination unit 90 determines that the detector 80 is in a light receiving state for receiving the detection light LB on the condition that the voltage of the detection signal Sd1 is equal to or higher than the threshold voltage Vth between the timing Tb and the timing Td. be able to.
  • the determination unit 90 is in a light-shielding state in which the detector 80 does not receive the detection light LB on condition that the voltage of the detection signal Sd1 is lower than the threshold voltage Vth after the timing Tb and before reaching the timing Td. It can be determined.
  • a timing signal indicating the projection period of the detection light LB is input from the safety control device 100 to the determination unit 90.
  • the determination unit 90 compares the voltage of the detection signal Sd1 with the predetermined threshold voltage Vth based on the timing signal (the projection period of the detection light LB). Then, the determination unit 90 determines whether the detector 80 is in a light receiving state in which the detection light LB is received, or the detector 80 is in a light blocking state in which the detection light LB is not received.
  • the determination unit 90 determines that the light is in the light receiving state. Then, the determination unit 90 outputs "1" indicating that the detection light LB is not blocked as the determination signal Sd2 indicating the determination result. On the other hand, when the detector 80 does not receive the detection light LB and the detection signal Sd1 having a threshold voltage Vth or higher is not output from the detector 80, it is determined that the light is shielded. Then, the determination unit 90 outputs "0" indicating that the detection light LB is blocked as the determination signal Sd2 indicating the determination result.
  • the safety control unit 102 confirms the safety state for the press brake 1 based on the determination signal Sd2 output from the determination unit 90 and the operating state of the press brake 1.
  • the safety control unit 102 generates and outputs a safety signal that determines whether or not to stop the descent of the upper table 10 based on the safety state.
  • the safety signal indicates the operation permission to continue the descent without stopping the descent of the upper table 10
  • the safety signal of the upper table 10 Indicates disapproval of operation to stop the descent.
  • the safety control device 100 If the detection light LB is not blocked by an intruder such as a hand, the judgment signal from the judgment unit 90 is "1". Therefore, the safety control device 100 outputs the value "1" as a safety signal. On the other hand, if the detection light LB is blocked by an intruder such as a hand, the determination signal from the determination unit 90 becomes “0”. Therefore, the safety control device 100 outputs a value "0" (off) as a safety signal. When the safety control unit 102 outputs "0" as a safety signal, the press brake control device 30 stops the lowering of the upper table 10 and interrupts the bending process of the material by the press brake 1.
  • the safety control unit 102 monitors the determination signal Sd2 during the flooded period and the non-flooded period of the detection light LB, and the detection signal Sd1 in the detector 80 does not remain stuck to the on side or the off side. Is determined.
  • the safety control unit 102 can detect a failure of the safety device 50 through such a determination.
  • a predetermined value is used for the length of the flooded period and the non-flooded period.
  • the safety device 50 according to the present embodiment has a specification that allows one or both of the flooded period and the non-flooded period to be changed from a predetermined value.
  • the safety control device 100 includes a hardware switch such as a DIP switch (not shown), and by switching the hardware switch, one or both lengths of the flooded period and the non-flooded period can be determined. It can be changed from the value.
  • the projection control unit 101 may perform software processing to change the length of one or both of the projection period and the non-illumination period from a predetermined value.
  • the press brake 1 may be installed alone, but also a plurality of press brakes 1 may be installed side by side.
  • a safety device 50 is mounted on each press brake 1.
  • the detection light LB output from each floodlight 60 is also a light beam of the same design. Therefore, it is necessary to consider the possibility that the detection light LB used in a certain safety device 50 interferes with another safety device 50.
  • FIG. 5 is a flowchart showing the operation flow of the press brake. With reference to FIG. 5, a series of operations of the press brake 1 and an operation of the safety device 50 for determining interference (abnormal state) due to a light beam having the same design as the detection light LB will be described.
  • this machine which is the main body of the explanation, and the other safety device 50 (hereinafter referred to as “other machine") that causes interference are designed to be the same. Therefore, the pulse period, the projection period, and the non-projection period of the detection light LB used in this machine are the same as the pulse period, the projection period, and the non-projection period of the detection light LB used in the other machine.
  • the detection light LB used in this machine is referred to as a first detection light LB1
  • the detection light LB used in another machine is referred to as a second detection light LB2.
  • the flow of determining the presence or absence of an abnormal state by three abnormality determination processes from the first abnormality determination process to the third abnormality determination process is shown. However, it is not necessary to execute all the abnormality determination processes in the series of operations of the press brake 1, and it is sufficient that at least one abnormality determination process is executed.
  • step S10 the safety control unit 102 performs the first abnormality determination process.
  • FIG. 6 is a flowchart showing the flow of the first abnormality determination process.
  • FIG. 7 is an explanatory diagram showing the state of the first detection light and the state of the second detection light in the first abnormality determination process in comparison with each other. The details of the first abnormality determination process will be described with reference to FIG.
  • the safety control unit 102 determines whether or not the determination unit 90 determines the light receiving state based on the determination signal Sd2 output from the determination unit 90. At the timing when the determination in step S100 is performed, the light projection process has not started. Therefore, as shown in FIG. 7, the first detection light LB1 has a non-light projection period.
  • the other safety device 50 is executing the processing operation, the light projection process is executed along with the shading monitoring.
  • the light projection period (timing T1-T2, T3-T4, T5-T6) and the non-light projection period (timing T2-T3, T4-T5) are alternately repeated. Therefore, during the non-projection period of the first detection light LB1, the projection period of the second detection light LB2 comes.
  • step S100 the determination unit 90 determines the light receiving state. Therefore, when the determination unit 90 determines the light receiving state, an affirmative determination is made in step S100, and the process proceeds to step S101. On the other hand, when the determination unit 90 determines the light-shielding state, a negative determination is made in step S100, and this routine ends.
  • step S101 the safety control unit 102 determines an abnormal state in which the second detection light LB2 interferes. Upon determining the abnormal state, the safety control unit 102 stops the operation of the press brake 1 by supplying a safety signal off (operation stop signal).
  • step S11 of FIG. 5 the light projection control unit 101 starts the light projection process.
  • the second abnormality determination process is executed in accordance with the start of the light projecting process.
  • FIG. 8 is a flowchart showing the flow of the second abnormality determination process.
  • FIG. 9 is an explanatory diagram showing the state of the first detection light and the state of the second detection light in the second abnormality determination process in comparison with each other. The details of the second abnormality determination process will be described with reference to FIG.
  • the floodlight control unit 101 acquires information from another machine.
  • the information acquired from the other machine is the timing of the light projection process executed by the other machine, specifically, the start timing of the light projection period.
  • step S111 the light projection control unit 101 determines the start timing of the light projection process. As shown in FIG. 9, for the second detection light LB2, the light projection period (timing T1-T2, T3-T4, T5-T6) and the non-light projection period (timing T2-T3, T4-T5) alternate. Is repeated in.
  • the projection control unit 101 determines the start timing of the projection process so that the non-projection period of the first detection light LB1 overlaps with the projection period of the second detection light LB2.
  • the floodlight control unit 101 sets the start timing of the floodlight processing so that the start timing of the non-flooding process of the first detection light LB1 and the start timing of the floodlight period of the second detection light LB2 coincide with each other.
  • the projection control unit 101 may determine the start timing of the projection process so that the non-projection period of the first detection light LB1 overlaps with a part of the projection period of the second detection light LB2.
  • step S112 the light projection control unit 101 starts the light projection process based on the start timing determined in step S111.
  • step S113 the safety control unit 102 determines whether or not the first detection light LB1 is in the non-light projection period. When the first detection light LB1 is in the non-light projection period, an affirmative determination is made in step S113, and the process proceeds to step S114. On the other hand, when the first detection light LB1 is in the flooding period, a negative determination is made in step S113, and the process returns to step S113.
  • step S114 the safety control unit 102 determines whether or not the determination unit 90 determines the light receiving state based on the determination signal Sd2 output from the determination unit 90.
  • the light projection period of the second detection light LB2 comes during the non-light projection period of the first detection light LB1.
  • step S114 When the second detection light LB2 interferes with the light receiver 70, the light receiving state is determined by the determination unit 90. Therefore, when the determination unit 90 determines the light receiving state, an affirmative determination is made in step S114, and the process proceeds to step S115. On the other hand, when the determination unit 90 determines the light-shielding state, a negative determination is made in step S114, and this routine ends.
  • step S115 the safety control unit 102 determines an abnormal state in which the second detection light LB2 interferes. Upon determining the abnormal state, the safety control unit 102 stops the operation of the press brake 1 by supplying a safety signal off (operation stop signal).
  • step S12 in FIG. 5 the press brake control device 30 executes a machining program and controls the press brake 1 based on the machining program. As a result, the press brake 1 starts processing.
  • step S13 the safety control unit 102 starts shading monitoring.
  • step S14 the safety control unit 102 determines whether or not it is the flooding period of the first detection light LB1. When it is the flooding period of the first detection light LB1, an affirmative determination is made in step S14, and the process proceeds to step S15. On the other hand, if it is not the projection period of the first detection light LB1, a negative determination is made in step S14, and the process proceeds to step S19.
  • step S15 the safety control unit 102 determines whether or not the determination result of the determination unit 90 is in the light receiving state. If the determination result of the determination unit 90 is in a light-shielded state, a negative determination is made in step S15, and the process proceeds to step S16. On the other hand, when the determination result of the determination unit 90 is in the light receiving state, an affirmative determination is made in step S15, and the process proceeds to step S18.
  • step S16 the safety control unit 102 outputs "0" as a safety signal (safety signal off).
  • step S17 the press brake control device 30 determines whether or not to continue machining. When continuing the processing, an affirmative determination is made in step S17, and the process returns to step S14. On the other hand, if the processing is not continued, a negative determination is made in step S17, and the process proceeds to step S21.
  • step S18 the safety control unit 102 outputs "1" as a safety signal (safety signal on).
  • step S19 the safety control unit 102 performs the third abnormality determination process.
  • This third abnormality determination process is preferably executed when the above-mentioned second abnormality determination process is not performed, but it may coexist with the second abnormality determination process.
  • FIG. 10 is a flowchart showing the flow of the third abnormality determination process according to the first embodiment.
  • FIG. 11 is an explanatory diagram showing the state of the first detection light and the state of the second detection light in the third abnormality determination process according to the first embodiment in comparison with each other. The details of the third abnormality determination process will be described with reference to FIG. First, as a premise for performing this third abnormality determination process, the projection period of the second detection light LB2 is different from the projection period of the first detection light LB1 by changing the setting of another device with a hardware switch or the like. , Has been changed from the specified value. In the example shown in FIG. 11, the projection period of the second detection light LB2 is changed to a time longer than a predetermined value.
  • the light projection period (timing T1-T3, T4-T6) and the non-light projection period (timing T3-T4) are alternately repeated.
  • the projection period of the second detection light LB2 comes.
  • the length of the projection period of the first detection light LB1 may be changed by changing the setting of this machine instead of changing the setting of another machine.
  • step S190 of FIG. 10 the safety control unit 102 determines whether or not the determination unit 90 determines the light receiving state based on the determination signal Sd2 output from the determination unit 90.
  • the determination unit 90 determines the light receiving state
  • an affirmative determination is made in step S190, and the process proceeds to step S191.
  • the determination unit 90 determines the light-shielding state
  • a negative determination is made in step S190, and this routine ends.
  • step S191 the safety control unit 102 determines an abnormal state in which the second detection light LB2 interferes. Upon determining the abnormal state, the safety control unit 102 stops the operation of the press brake 1 by supplying a safety signal off (operation stop signal).
  • FIG. 12 is a flowchart showing the flow of the third abnormality determination process according to the second form.
  • FIG. 13 is an explanatory diagram showing the state of the first detection light and the state of the second detection light in the third abnormality determination process according to the second mode in comparison with each other.
  • the third abnormality determination process may be an operation as shown below. The details of the third abnormality determination process will be described with reference to FIG.
  • step S195 the light projection control unit 101 determines whether or not the light projection cycle of the first detection light LB1 has ended. When the floodlight cycle is completed, an affirmative determination is made in step S195, and the process proceeds to step S196. On the other hand, if the light projection cycle is not completed, a negative determination is made in step S195, and the process proceeds to step S197.
  • step S196 the light projection control unit 101 determines the light projection period of the next light projection cycle.
  • the projection period can be determined based on, for example, a random number generated by a random number generator. As shown in FIG. 13, by determining the light projecting period for each light projecting cycle, the length of the light projecting period is dynamically changed while the light projecting process is continued. Regarding the first detection light LB1, the light projection period (timing T1-T3, T5-T8, T9-T10) and the non-light projection period (timing T3-T5, T8-T9) are alternately repeated.
  • the determination of the projection period of the projection cycle is also executed on other aircraft.
  • the light projection period (timing T1-T2, T4-T6, T7-T10) and the non-light projection period (timing T2-T4, T6-T7) are alternately repeated.
  • the projection period of the second detection light LB2 arrives during the non-projection period of the first detection light LB1 in the process in which the unit and the other unit continue the projection processing.
  • step S197 the safety control unit 102 determines whether or not the determination unit 90 determines the light receiving state based on the determination signal Sd2 output from the determination unit 90.
  • the determination unit 90 determines the light receiving state
  • an affirmative determination is made in step S197, and the process proceeds to step S198.
  • the determination unit 90 determines the light-shielding state
  • a negative determination is made in step S197, and this routine ends.
  • step S198 the safety control unit 102 determines an abnormal state in which the second detection light LB2 interferes. Upon determining the abnormal state, the safety control unit 102 stops the operation of the press brake 1 by supplying a safety signal off (operation stop signal).
  • step S20 of FIG. 5 the press brake control device 30 determines whether or not to finish the machining. When the processing is completed, an affirmative determination is made in step S20, and the process proceeds to step S21. On the other hand, if the machining is not completed, a negative determination is made in step S20, and the process returns to step S14.
  • step S21 the safety control unit 102 ends the shading monitoring.
  • step S23 the press brake control device 30 finishes processing.
  • step S24 the light projection control unit 101 ends the light projection process. As a result, a series of processes of the press brake 1 is completed.
  • the safety device 50 supplies a safety signal to the press brake 1 and manages the safety of the press brake 1 by automatically stopping the press brake 1 according to the state of the safety signal.
  • the safety device 50 is in a light receiving state in which the floodlight (first floodlight) 60 that outputs the first detection light LB1 and the detector 80 receive the first detection light LB1 or does not receive the first detection light LB1.
  • a safety control device (first) that controls the state of the safety signal based on the state of the light receiver (first light receiver) 70 that determines whether the light is shielded and the state of the light receiver 70 during the projection period of the first detection light LB1. 1 control unit) 100 and.
  • the safety control device 100 determines an abnormal state in which light rays having the same design as the first detection light LB1 interfere with each other.
  • the determination state of the light receiver 70 is normally a light-shielding state. Therefore, when the determination state of the light receiver 70 is the light receiving state during the non-projection period of the first detection light LB1, it is possible to determine an abnormal state in which light rays having the same design as the first detection light LB1 interfere with each other. .. As a result, it is possible to suppress a situation in which the light receiver 70 erroneously recognizes that the light is in a light receiving state even though the first detection light LB1 is shielded from light.
  • the light receiver 70 determines the light receiving state when receiving the pulse-shaped first detection light LB1 having a predetermined frequency. Therefore, even if a light ray other than a pulsed light ray having a predetermined frequency is received, it is not determined to be in a light receiving state, and the specifications are such that interference due to ambient light is taken into consideration. Therefore, it is possible to appropriately determine a peculiar abnormal state generated by the interference of light rays having the same design as the first detection light LB1.
  • the abnormal state is a state in which the second detection light LB2 output from the floodlight (second floodlight) 60 of another device different from the floodlight 60 interferes.
  • the floodlight 60 of the other machine is controlled by the safety control device (second control unit) 100 of the other machine, which is different from the safety control device 100 of this machine, and emits a light beam having the same design as the first detection light LB1. 2 Output as detection light LB2.
  • the second detection light LB2 having the same design as the first detection light LB1 When the second detection light LB2 having the same design as the first detection light LB1 is output from the floodlight 60 of another unit, the second detection light LB2 becomes a factor of interfering with the receiver 70 of this unit. Further, since the floodlight 60 of the other machine is independently controlled by the safety control device 100 of the other machine, it cannot be controlled by the safety control device 100 of this machine. Therefore, a situation occurs in which the projection period of the first detection light LB1 and the projection period of the second detection light LB2 overlap, which causes the second detection light LB2 to interfere with the receiver 70 of the present unit. .. However, according to the present embodiment, even in the case where the second detection light LB2 from the floodlight 60 of another machine interferes, the abnormal state can be determined.
  • the second floodlight is mounted on another device.
  • the second floodlight may be controlled by a second control unit different from the safety control device 100 of this machine. Therefore, the second floodlight may be a part of a plurality of safety devices 50 mounted on the machine, or may be a part of a device different from the press brake 1.
  • the safety control device 100 performs a light projecting process in which a light projecting period and a non-light projecting period are alternately repeated according to a period in which the machine performs a predetermined work (processing).
  • shading monitoring can be performed according to the processing period of this machine.
  • the safety control device 100 sets and sets the non-projection period of the first detection light LB1 over a predetermined period before executing the projection process of the first detection light LB1. Determine if there is an abnormal condition during the non-light projection period.
  • the non-flooding period can be set prior to the flooding process of the first detection light LB1
  • the abnormal state can be set without affecting the operation of the floodlight processing of the first detection light LB1.
  • Judgment processing can be performed.
  • the safety control device 100 acquires the execution timing of the light projection process of the second detection light LB2 by communicating with the safety control device 100 of another device.
  • the safety control device 100 sets the execution timing of the light projection process of the first detection light LB1 so that at least a part of the non-light emission period of the first detection light LB1 overlaps with the light projection period of the second detection light LB2. Control.
  • the safety control device 100 determines the presence or absence of an abnormal state during the non-light projection period of the first detection light LB1, which arrives during the light projection process of the first detection light LB1.
  • the length of the light projection period when the light projection process of the first detection light LB1 is executed is configured to be switchable from a predetermined value designed and determined.
  • the safety control device 100 determines the presence or absence of an abnormal state during the non-light projection period of the first detection light LB1, which arrives during the light projection process of the first detection light LB1.
  • the light projection period of the second detection light LB2 is performed in the process of performing the light projection processing of the first detection light LB1.
  • the non-light projection period of the first detection light LB1 can be overlapped. As a result, it is possible to determine the presence or absence of an abnormal state when the light projection process of the first detection light LB1 is being performed.
  • the safety control device 100 dynamically changes the length of the projection period of the first detection light LB1 while executing the projection processing of the first detection light LB1. There is. Then, the safety control device 100 determines the presence or absence of an abnormal state during the non-light projection period of the first detection light LB1, which arrives during the light projection process of the first detection light LB1.
  • the length of the flooding period of the first detection light LB1 can be dynamically changed.
  • the light projection period of the second detection light LB2 and the non-light projection period of the first detection light LB1 can be overlapped.
  • a mode is shown in which the length of the flooding period of the first detection light LB1 is changed.
  • the length of the non-projection period of the first detection light LB1 may be changed without changing the length of the projection period of the first detection light LB1.
  • the lengths of the flooded period and the non-flooded period of the first detection light LB1 may be changed, respectively.
  • the length of one or both of the light projection period and the non-light projection period of the second detection light LB2 may be changed.
  • the pulse-shaped detection light is not limited to the pulse-shaped light beam, but may be a flickering light such as a sinusoidal light beam that blinks periodically. Further, the floodlight does not need to be completely switched on and off, and may be a light that switches between a bright state and a darker state.

Abstract

A safety device 50 has a projector 60 that outputs detection light LB, a light receiver 70 that determines whether a detector 80 is in a light-receiving state in which the detection light LB is received, or a light-blocked state in which the detection light LB is not received, and a safety control device 100 that controls the state of a safety signal on the basis of the determined state from the light receiver 70 in a detection light LB projecting period. If the light receiver 70 determines the light-receiving state in a detection light LB non-projecting period, the safety control device 100 determines an irregular state in which there is interference from a light beam of the same design as the detection light LB.

Description

安全装置Safety device
 本発明は、安全装置に関する。 The present invention relates to a safety device.
 例えば特許文献1には、光線の遮断の有無によって障害物を検知する安全装置を備える曲げ加工機が開示されている。安全装置は、障害物を検知するための光線(検知光)を投光する投光器と、投光器から投光される検知光を受光するための受光部とを備えている。曲げ加工機は、安全装置によって障害物が検知されると、加工動作を停止するように構成されている。 For example, Patent Document 1 discloses a bending machine provided with a safety device that detects an obstacle depending on whether or not light rays are blocked. The safety device includes a floodlight that projects a light beam (detection light) for detecting an obstacle, and a light receiving unit for receiving the detection light that is projected from the floodlight. The bending machine is configured to stop the machining operation when an obstacle is detected by the safety device.
 また、この安全装置では、投光器を所定の周期で明滅させることで、所定周波数のパルス状の光線を検知光として利用する方法が知られている。この方法によれば、外乱光が干渉する場合であっても、光線の周波数の違いを利用して、外乱光と検知光とを区別することができる。 Further, in this safety device, a method is known in which a pulsed light beam having a predetermined frequency is used as detection light by blinking the floodlight at a predetermined cycle. According to this method, even when the disturbance light interferes, the disturbance light and the detection light can be distinguished by utilizing the difference in the frequency of the light rays.
特開2018-176228号公報JP-A-2018-176228
 安全装置の受光器は、所定周波数のパルス状の光線を受光したことを条件に、受光状態を判定している。そのため、周波数が異なる光線が受光器に干渉したとしても、受光部は受光状態とは判定しない。しかしながら、投光器から出力される検知光と同一設計の光線が受光器に干渉する場合、受光部は、投光器からの検知光が遮断されているにもかかわらず、受光状態と誤判定してしまう可能性がある。 The receiver of the safety device determines the light receiving state on the condition that it receives a pulsed light beam of a predetermined frequency. Therefore, even if light rays having different frequencies interfere with the light receiver, the light receiving unit does not determine that the light receiving state is in the light receiving state. However, when a light beam having the same design as the detection light output from the floodlight interferes with the receiver, the light receiving unit may erroneously determine that the light is in the light receiving state even though the detection light from the floodlight is blocked. There is sex.
 本発明の一態様は、規定の作業を行う加工機に対して安全信号を供給し、安全信号の状態に応じて加工機が自動停止することで加工機の安全を管理する安全装置を提供する。この安全装置は、明滅を周期的に繰り返すことにより、光線を第1光線として出力する第1投光器と、光を検知する検知器を含み、検知器が第1光線を受光する受光状態であるか、検知器が第1光線を受光しない遮光状態であるかを判定する第1受光器と、第1投光器を制御して第1投光期間にわたって第1投光器から第1光線を出力し、第1投光期間における第1受光器の判定状態に基づいて安全信号の状態を制御する第1制御部と、を有する。この場合、第1制御部は、第1投光器から第1光線を出力しない第1非投光期間において第1受光器が受光状態を判定した場合、第1投光器から出力される第1光線と同一設計の光線が干渉する異常状態を判定する。 One aspect of the present invention provides a safety device that supplies a safety signal to a processing machine that performs a specified operation and automatically stops the processing machine according to the state of the safety signal to manage the safety of the processing machine. .. This safety device includes a first floodlight that outputs a light ray as a first light ray by periodically repeating blinking, and a detector that detects the light, and is the detector in a light receiving state that receives the first light ray? , The first receiver that determines whether the detector is in a light-shielding state that does not receive the first light beam and the first floodlight are controlled to output the first light beam from the first floodlight over the first floodlight period, and the first It has a first control unit that controls the state of the safety signal based on the determination state of the first light receiver during the light projection period. In this case, the first control unit is the same as the first light beam output from the first floodlight when the first light receiver determines the light receiving state during the first non-light emitting period in which the first light beam is not output from the first floodlight. Determine the abnormal condition in which the designed rays interfere.
 第1検知光の第1非投光期間においては、第1投光器から第1検知光が出力されないため、本来ならば、第1受光器の判定状態は遮光状態となる。そのため、第1検知光の非投光期間に、第1受光器の判定状態が受光状態である場合には、第1検知光と同一設計の光線が干渉する異常状態を判定することができる。 Since the first detection light is not output from the first floodlight during the first non-flooding period of the first detection light, the determination state of the first light receiver is normally a light-shielding state. Therefore, when the determination state of the first light receiver is the light receiving state during the non-projection period of the first detection light, it is possible to determine the abnormal state in which the light rays having the same design as the first detection light interfere with each other.
 本発明の一態様によれば、投光器から出力される光線と同一設計の光線が干渉する状況を判定することができる。 According to one aspect of the present invention, it is possible to determine a situation in which a light beam of the same design as a light beam output from the floodlight interferes.
図1は、本実施形態に係る安全装置が適用された加工機の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a processing machine to which the safety device according to the present embodiment is applied. 図2は、本実施形態に係る安全装置の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of a safety device according to the present embodiment. 図3は、遮光が発生していない状況での検知信号の変化を示す説明図である。FIG. 3 is an explanatory diagram showing a change in the detection signal in a situation where shading does not occur. 図4は、遮光が発生した状況での検知信号の変化を示す説明図である。FIG. 4 is an explanatory diagram showing a change in the detection signal in a situation where shading occurs. 図5は、プレスブレーキの動作の流れを示すフローチャートである。FIG. 5 is a flowchart showing the flow of operation of the press brake. 図6は、第1異常判定処理の流れを示すフローチャートである。FIG. 6 is a flowchart showing the flow of the first abnormality determination process. 図7は、第1異常判定処理における第1検知光の状態と第2検知光の状態とを対比して示す説明図である。FIG. 7 is an explanatory diagram showing the state of the first detection light and the state of the second detection light in the first abnormality determination process in comparison with each other. 図8は、第2異常判定処理の流れを示すフローチャートである。FIG. 8 is a flowchart showing the flow of the second abnormality determination process. 図9は、第2異常判定処理における第1検知光の状態と第2検知光の状態とを対比して示す説明図である。FIG. 9 is an explanatory diagram showing the state of the first detection light and the state of the second detection light in the second abnormality determination process in comparison with each other. 図10は、第1形態に係る第3異常判定処理の流れを示すフローチャートである。FIG. 10 is a flowchart showing the flow of the third abnormality determination process according to the first embodiment. 図11は、第1形態に係る第3異常判定処理における第1検知光の状態と第2検知光の状態とを対比して示す説明図である。FIG. 11 is an explanatory diagram showing the state of the first detection light and the state of the second detection light in the third abnormality determination process according to the first embodiment in comparison with each other. 図12は、第2形態に係る第3異常判定処理の流れを示すフローチャートである。FIG. 12 is a flowchart showing the flow of the third abnormality determination process according to the second embodiment. 図13は、第2形態に係る第3異常判定処理における第1検知光の状態と第2検知光の状態とを対比して示す説明図である。FIG. 13 is an explanatory diagram showing the state of the first detection light and the state of the second detection light in the third abnormality determination process according to the second mode in comparison with each other.
 図1は、本実施形態に係る安全装置が適用された加工機の構成を示すブロック図である。図2は、本実施形態に係る安全装置の構成を示すブロック図である。本実施形態に係る安全装置50は、規定の作業を行う加工機に対して安全信号を供給し、安全信号の状態に応じて加工機が自動停止することで加工機の安全を管理する。安全装置50は、明滅を周期的に繰り返すことにより、光線を第1光線LBとして出力する投光器(第1投光器)60と、光を検知する検知器80を含み、検知器80が第1光線LBを受光する受光状態であるか、検知器80が第1光線LBを受光しない遮光状態であるかを判定する受光器(第1受光器)70と、投光器60を制御して第1投光期間にわたって投光器60から第1光線LBを出力し、第1投光期間における受光器70の判定状態に基づいて安全信号の状態を制御する安全制御装置(第1制御部)100とを有している。安全制御装置100は、投光器60から第1光線LBを出力しない第1非投光期間において受光器70が受光状態を判定した場合、投光器60から出力される第1光線LBと同一設計の光線が干渉する異常状態を判定する。なお、本明細書では、「期間」という用語を、一定の時期から他の一定の時期までの間、すなわち幅を持った時間という意味で用いる。 FIG. 1 is a block diagram showing a configuration of a processing machine to which the safety device according to the present embodiment is applied. FIG. 2 is a block diagram showing a configuration of a safety device according to the present embodiment. The safety device 50 according to the present embodiment supplies a safety signal to the processing machine performing the specified work, and manages the safety of the processing machine by automatically stopping the processing machine according to the state of the safety signal. The safety device 50 includes a floodlight (first floodlight) 60 that outputs a light beam as a first ray LB by periodically repeating blinking, and a detector 80 that detects the light, and the detector 80 includes the first ray LB. The receiver (first receiver) 70 for determining whether the light receiving state is a light receiving state in which the light is received or the detector 80 is not receiving the first ray LB, and the floodlight 60 are controlled to control the first light emitting period. It has a safety control device (first control unit) 100 that outputs the first ray LB from the floodlight 60 and controls the state of the safety signal based on the determination state of the light receiver 70 during the first flooding period. .. When the light receiver 70 determines the light receiving state during the first non-light projecting period in which the light projector 60 does not output the first light beam LB, the safety control device 100 emits a light ray having the same design as the first light ray LB output from the light projector 60. Determine the abnormal condition that interferes. In this specification, the term "period" is used to mean a period from a certain period to another, that is, a time having a range.
 本実施形態に係る安全装置を加工機の一例であるプレスブレーキに適用して説明する。まず、図1を用いて、プレスブレーキの概略的な構成を説明する。プレスブレーキ1は、一対の金型により板状のワーク(板金)Wに対して曲げ加工を行う加工機である。プレスブレーキ1は、上部テーブル10と、下部テーブル20と、プレスブレーキ制御装置30を備えている。 The safety device according to this embodiment will be described by applying it to a press brake which is an example of a processing machine. First, a schematic configuration of a press brake will be described with reference to FIG. The press brake 1 is a processing machine that bends a plate-shaped work (sheet metal) W with a pair of dies. The press brake 1 includes an upper table 10, a lower table 20, and a press brake control device 30.
 上部テーブル10は、上部金型であるパンチ14を保持する。具体的には、上部テーブル10には、図示されていない上部金型ホルダが取り付けられ、上部金型ホルダには、パンチ14が装着されている。 The upper table 10 holds the punch 14 which is the upper mold. Specifically, an upper mold holder (not shown) is attached to the upper table 10, and a punch 14 is attached to the upper mold holder.
 上部テーブル10は、左右に設けた油圧シリンダ11L、11Rの昇降によって上下動するように構成されている。個々の油圧シリンダ11L、11Rは、ポンプ及びモータを主体に構成されるアクチュエータ12L、12Rを駆動させることにより昇降される。上部テーブル10の上下方向の位置は、図示されていないリニアエンコーダなどの位置検知部によって検知される。位置検知部によって検知された位置情報は、プレスブレーキ制御装置30に供給される。 The upper table 10 is configured to move up and down by raising and lowering the hydraulic cylinders 11L and 11R provided on the left and right. The individual hydraulic cylinders 11L and 11R are moved up and down by driving actuators 12L and 12R mainly composed of a pump and a motor. The vertical position of the upper table 10 is detected by a position detection unit such as a linear encoder (not shown). The position information detected by the position detection unit is supplied to the press brake control device 30.
 下部テーブル20は、上部テーブル10の下方に設けられている。下部テーブル20は、下部金型であるダイ24を保持する。具体的には、下部テーブル20には、図示されていない下部金型ホルダが取り付けられ、下部金型ホルダには、ダイ24が装着されている。例えばワークWは、ダイ24上に配置されている。上部テーブル10を下降させると、ワークWはパンチ14とダイ24とによって挟まれて折り曲げられる。 The lower table 20 is provided below the upper table 10. The lower table 20 holds a die 24 which is a lower mold. Specifically, a lower mold holder (not shown) is attached to the lower table 20, and a die 24 is attached to the lower mold holder. For example, the work W is arranged on the die 24. When the upper table 10 is lowered, the work W is sandwiched between the punch 14 and the die 24 and bent.
 プレスブレーキ制御装置30は、NC装置によって構成することができる。プレスブレーキ制御装置30が、アクチュエータ12L、12Rを制御して、油圧シリンダ11L、11Rを上昇又は下降させる。プレスブレーキ制御装置30は、位置検知部によって検知される位置情報に基づいて、上部テーブル10の上下方向の位置を制御する。また、プレスブレーキ制御装置30は、安全制御装置100から安全信号がオフされると、上部テーブル10の下降を停止させ、プレスブレーキによる材料の曲げ加工を中断させる。 The press brake control device 30 can be configured by an NC device. The press brake control device 30 controls the actuators 12L and 12R to raise or lower the hydraulic cylinders 11L and 11R. The press brake control device 30 controls the vertical position of the upper table 10 based on the position information detected by the position detection unit. Further, when the safety signal is turned off from the safety control device 100, the press brake control device 30 stops the lowering of the upper table 10 and interrupts the bending process of the material by the press brake.
 プレスブレーキ1は、パンチ14とダイ24との間(防護範囲)へのワークW以外の異物(侵入物)が侵入することを監視するための安全装置50をさらに備えている。安全装置50は、投光器60と、受光器70と、安全制御装置100とを主体に構成されている。 The press brake 1 is further provided with a safety device 50 for monitoring the intrusion of foreign matter (intruders) other than the work W into the space between the punch 14 and the die 24 (protection range). The safety device 50 is mainly composed of a floodlight 60, a light receiver 70, and a safety control device 100.
 投光器60は、例えば上部テーブル10の右側に、アーム15Rを介して装着されている。投光器60は、パンチ14とダイ24との間を通過するように検知光LBを射出する。 The floodlight 60 is mounted on the right side of the upper table 10, for example, via the arm 15R. The floodlight 60 emits the detection light LB so as to pass between the punch 14 and the die 24.
 受光器70は、例えば上部テーブル10の左側に、アーム15Lを介して装着されている。受光器70は、投光器60と対向する位置に配置される。受光器70は、パンチ14とダイ24との間を通過した検知光を受光する。 The receiver 70 is mounted on the left side of the upper table 10, for example, via the arm 15L. The receiver 70 is arranged at a position facing the floodlight 60. The receiver 70 receives the detection light that has passed between the punch 14 and the die 24.
 安全制御装置100は、安全装置50を制御する制御装置である。安全制御装置100は、投光器60及び受光器70を制御する。また、安全制御装置100は、受光器70から取得した情報に基づいて、侵入物の侵入がないことを判定すれば、プレスブレーキ制御装置30に安全信号オン(動作許可信号)を供給する。一方、安全制御装置100は、侵入物の侵入があることを判定すれば、プレスブレーキ制御装置30に安全信号オフ(動作停止信号)を供給する。 The safety control device 100 is a control device that controls the safety device 50. The safety control device 100 controls the floodlight 60 and the light receiver 70. Further, the safety control device 100 supplies a safety signal ON (operation permission signal) to the press brake control device 30 if it determines that there is no intrusion of an intruder based on the information acquired from the receiver 70. On the other hand, if the safety control device 100 determines that an intruder has invaded, the safety control device 100 supplies the press brake control device 30 with a safety signal off (operation stop signal).
 図2を用いて、安全装置50の具体的な構成を説明する。投光器60は、検知光LBを出力する。検知光LBは、例えばレーザ光である。投光器60は、レーザ光源と、レーザ光源が射出したビーム光を平行状態に調整するコリメートレンズとで構成されている。 The specific configuration of the safety device 50 will be described with reference to FIG. The floodlight 60 outputs the detection light LB. The detection light LB is, for example, a laser light. The floodlight 60 includes a laser light source and a collimating lens that adjusts the beam light emitted by the laser light source in a parallel state.
 受光器70は、検知器80と、判定部90とで構成されている。 The receiver 70 includes a detector 80 and a determination unit 90.
 検知器80は、検知光LBを検知する。検知器80は、検知光LBを受光し、光の強度に応じた検知信号(電気信号)Sd1を出力する。検知器80から出力された検知信号Sd1は、判定部90へ出力される。検知器80は、フォトダイオード又は2次元撮像素子で構成することができる。2次元撮像素子は、例えばCCD(Charge Coupled Device)である。 The detector 80 detects the detection light LB. The detector 80 receives the detection light LB and outputs a detection signal (electric signal) Sd1 according to the intensity of the light. The detection signal Sd1 output from the detector 80 is output to the determination unit 90. The detector 80 can be composed of a photodiode or a two-dimensional image sensor. The two-dimensional image sensor is, for example, a CCD (Charge Coupled Device).
 判定部90は、検知器80の検知結果に基づいて、検知器80が検知光LBを受光する受光状態であるか、それとも検知器80が検知光LBを受光しない遮光状態であるかを判定する。判定部90は、判定結果を示す判定信号Sd2を安全制御装置100に出力する。 Based on the detection result of the detector 80, the determination unit 90 determines whether the detector 80 is in the light receiving state of receiving the detection light LB or the detector 80 is in the light receiving state of not receiving the detection light LB. .. The determination unit 90 outputs the determination signal Sd2 indicating the determination result to the safety control device 100.
 本実施形態では、受光器70として検知器80と判定部90とが集約されている。しかしながら、判定部90は、受光器70の外部に設けてもよい。例えば、判定部90は、安全制御装置100の一部として構成してもよい。 In the present embodiment, the detector 80 and the determination unit 90 are integrated as the receiver 70. However, the determination unit 90 may be provided outside the receiver 70. For example, the determination unit 90 may be configured as a part of the safety control device 100.
 安全制御装置100は、CPU、ROM、RAM、及びI/Oインターフェースを主体として構成されている。安全制御装置100は、CPUがROMなどから処理内容に応じた各種プログラムを読み出し、RAMに展開し、展開した各種プログラムを実行することにより、安全装置50の動作を制御する。 The safety control device 100 is mainly composed of a CPU, a ROM, a RAM, and an I / O interface. The safety control device 100 controls the operation of the safety device 50 by having the CPU read various programs according to the processing contents from the ROM or the like, expand the programs in the RAM, and execute the expanded programs.
 安全制御装置100は、機能的に捉えた場合、投光制御部101と、安全制御部102とを有している。 The safety control device 100 has a floodlight control unit 101 and a safety control unit 102 when viewed functionally.
 投光制御部101は、投光器60を制御して、投光器60から射出される検知光LBを制御する。投光制御部101は、投光器60に制御信号Scを出力する。投光器60は、制御信号Scのオンに対応して点灯し、制御信号Scのオフに対応して消灯する。 The floodlight control unit 101 controls the floodlight 60 to control the detection light LB emitted from the floodlight 60. The floodlight control unit 101 outputs a control signal Sc to the floodlight 60. The floodlight 60 turns on when the control signal Sc is turned on, and turns off when the control signal Sc is turned off.
 安全制御部102は、判定部90から出力される判定信号Sd2と、プレスブレーキ1の動作状態とに基づいて、プレスブレーキ1の安全状態を判断する。安全制御部102は、確認した安全状態に基づいて、プレスブレーキ制御装置30に供給する安全信号を制御する。安全信号の状態に応じてプレスブレーキ1が自動停止することで、安全制御部102はプレスブレーキ1の安全を管理する。 The safety control unit 102 determines the safety state of the press brake 1 based on the determination signal Sd2 output from the determination unit 90 and the operating state of the press brake 1. The safety control unit 102 controls the safety signal supplied to the press brake control device 30 based on the confirmed safety state. The safety control unit 102 manages the safety of the press brake 1 by automatically stopping the press brake 1 according to the state of the safety signal.
 本実施形態では、安全制御装置100をCPUなどで構成し、ソフトウェア処理によって安全装置50の制御を行っている。しかしながら、安全制御装置100をハードウェアによる回路によって構成し、ハードウェアによる回路により安全装置50の制御を行ってもよい。 In the present embodiment, the safety control device 100 is configured by a CPU or the like, and the safety device 50 is controlled by software processing. However, the safety control device 100 may be configured by a hardware circuit, and the safety device 50 may be controlled by the hardware circuit.
 なお、複数のプレスブレーキ1が並存するような作業環境にあっては、個々の安全制御装置100は、他のプレスブレーキ1(他機)が備える安全制御装置100との間で通信を行うことができる。装置間の通信方法は、無線通信であっても、有線通信であってもよい。この通信を通じて、個々の安全制御装置100は、他の安全制御装置100の動作状態を取得することができる。 In a work environment where a plurality of press brakes 1 coexist, each safety control device 100 communicates with the safety control device 100 provided by another press brake 1 (another machine). Can be done. The communication method between the devices may be wireless communication or wired communication. Through this communication, each safety control device 100 can acquire the operating state of another safety control device 100.
 図3は、遮光が発生していない状況での検知信号の変化を示す説明図である。図4は、遮光が発生した状況での検知信号の変化を示す説明図である。本実施形態に係る安全装置50の基本的な動作である遮光監視について説明する。遮光監視とは、投光器60から検知光LBを出力し、この検知光LBが遮光されるかどうかを監視する動作をいう。 FIG. 3 is an explanatory diagram showing a change in the detection signal in a situation where shading does not occur. FIG. 4 is an explanatory diagram showing a change in the detection signal in a situation where shading occurs. Shading monitoring, which is a basic operation of the safety device 50 according to the present embodiment, will be described. The shading monitoring is an operation of outputting the detection light LB from the floodlight 60 and monitoring whether or not the detection light LB is shaded.
 遮光監視に先立ち、投光制御部101は、投光処理を開始する。投光処理を開始すると、投光制御部101は、所定の周波数でオンオフするパルス状の制御信号Scを出力する。投光器60は、投光制御部101からの制御信号Scのオンオフに応じて周期的に明滅(オンオフ)し、所定周波数のパルス状の検知光LBを射出する。 Prior to shading monitoring, the light projection control unit 101 starts the light projection process. When the light projection process is started, the light projection control unit 101 outputs a pulse-shaped control signal Sc that turns on and off at a predetermined frequency. The floodlight 60 periodically blinks (on / off) according to the on / off of the control signal Sc from the floodlight control unit 101, and emits a pulse-shaped detection light LB having a predetermined frequency.
 投光制御部101は、制御信号Scを継続的に出力する期間と、制御信号Scの出力を停止する期間とを交互に繰り返す。これにより、図3に示すように、検知光LBが射出される投光期間と、検知光LBが射出されない非投光期間とが交互に切り替わる。1つの投光期間と1つの非投光期間とで1つの投光サイクルが構成され、投光制御部101は、投光処理を行う期間において投光サイクルを繰り返す。 The floodlight control unit 101 alternately repeats a period in which the control signal Sc is continuously output and a period in which the output of the control signal Sc is stopped. As a result, as shown in FIG. 3, the projection period in which the detection light LB is emitted and the non-illumination period in which the detection light LB is not emitted are alternately switched. One light projection cycle is configured by one light projection period and one non-light projection period, and the light projection control unit 101 repeats the light projection cycle during the period in which the light projection process is performed.
 投光サイクルの長さ、すなわち、投光期間の長さ及び非投光期間の長さ、並びに、検知光LBの周波数は、予め設計された所定の値(デフォルト値)によって定められている。 The length of the floodlight cycle, that is, the length of the floodlight period and the length of the non-flooding period, and the frequency of the detection light LB are determined by predetermined values (default values) designed in advance.
 投光器60から出力された検知光LBは、パンチ14とダイ24との間を通過し、受光器70の検知器80に入射する。検知器80は、入射した検知光LBの強度に応じた検知信号Sd1を出力する。 The detection light LB output from the floodlight 60 passes between the punch 14 and the die 24 and is incident on the detector 80 of the receiver 70. The detector 80 outputs the detection signal Sd1 according to the intensity of the incident detection light LB.
 図3に示すように、判定部90には、検知光LBの投光期間に対応して、検知器80から検知信号Sd1が入力される。検知器80に入射する光線が、投光器60から出力された検知光LBに対応する所定周波数のパルス状の光線である場合、判定部90には、フィルタ回路を用いて変換された信号が、検知信号Sd1として入力される。 As shown in FIG. 3, the detection signal Sd1 is input from the detector 80 to the determination unit 90 in accordance with the projection period of the detection light LB. When the light ray incident on the detector 80 is a pulsed light ray having a predetermined frequency corresponding to the detection light LB output from the floodlight 60, the determination unit 90 detects a signal converted by using the filter circuit. It is input as the signal Sd1.
 検知光LBが遮られていない状態では、検知信号Sd1は、以下の応答を示す。検知光LBの投光期間が開始すると、検知光LBを受光することで、検知信号Sd1が立ち上がる(タイミングTa)。この際、検知信号Sd1は、立ち上がり応答の遅れ分だけ遅延したタイミングTbで閾値電圧Vthに到達する。その後、検知信号Sd1は、所定のピーク電圧へと到達し、このピーク電圧を推移する。 When the detection light LB is not blocked, the detection signal Sd1 shows the following response. When the projection period of the detection light LB starts, the detection signal Sd1 rises by receiving the detection light LB (timing Ta). At this time, the detection signal Sd1 reaches the threshold voltage Vth at the timing Tb delayed by the delay of the rising response. After that, the detection signal Sd1 reaches a predetermined peak voltage and changes in this peak voltage.
 検知光LBの投光期間が終了すると、検知信号Sd1が立ち下がる(タイミングTc)。この際、検知信号Sd1は、立ち下がり応答の遅れ分だけ遅延したタイミングTdで閾値電圧Vthまで到達する。その後、検知信号Sd1は、ゼロ電圧へと到達する。判定部90は、タイミングTbからタイミングTdまでの間に、検知信号Sd1の電圧が閾値電圧Vth以上であることを条件に、検知器80が検知光LBを受光する受光状態であることを判定することができる。 When the projection period of the detection light LB ends, the detection signal Sd1 falls (timing Tc). At this time, the detection signal Sd1 reaches the threshold voltage Vth at the timing Td delayed by the delay of the falling response. After that, the detection signal Sd1 reaches zero voltage. The determination unit 90 determines that the detector 80 is in a light receiving state for receiving the detection light LB on the condition that the voltage of the detection signal Sd1 is equal to or higher than the threshold voltage Vth between the timing Tb and the timing Td. be able to.
 一方、図4に示すように、投光期間のタイミングTeにおいて、人の手などの侵入物により、検知光LBが遮られたと仮定する。タイミングTeにおいて検知信号Sd1は立ち下がり、検知信号Sd1はタイミングTfにおいて閾値電圧Vthまで到達する。したがって、判定部90は、タイミングTb以降タイミングTdへと至る前に、検知信号Sd1の電圧が閾値電圧Vthより低下したことを条件に、検知器80が検知光LBを受光しない遮光状態であると判定することができる。 On the other hand, as shown in FIG. 4, it is assumed that the detection light LB is blocked by an intruder such as a human hand at the timing Te of the light projection period. At the timing Te, the detection signal Sd1 falls, and the detection signal Sd1 reaches the threshold voltage Vth at the timing Tf. Therefore, the determination unit 90 is in a light-shielding state in which the detector 80 does not receive the detection light LB on condition that the voltage of the detection signal Sd1 is lower than the threshold voltage Vth after the timing Tb and before reaching the timing Td. It can be determined.
 判定部90には、安全制御装置100から検知光LBの投光期間を示すタイミング信号が入力されている。判定部90は、タイミング信号(検知光LBの投光期間)に基づいて、検知信号Sd1の電圧と所定閾値電圧Vthとを比較する。そして、判定部90は、検知器80が検知光LBを受光する受光状態であるか、それとも検知器80が検知光LBを受光しない遮光状態であるかを判定する。 A timing signal indicating the projection period of the detection light LB is input from the safety control device 100 to the determination unit 90. The determination unit 90 compares the voltage of the detection signal Sd1 with the predetermined threshold voltage Vth based on the timing signal (the projection period of the detection light LB). Then, the determination unit 90 determines whether the detector 80 is in a light receiving state in which the detection light LB is received, or the detector 80 is in a light blocking state in which the detection light LB is not received.
 具体的には、判定部90は、検知器80が検知光LBを受光して、閾値電圧Vth以上の検知信号Sd1が検知器80から出力される場合には、受光状態であると判定する。そして、判定部90は、判定結果を示す判定信号Sd2として、検知光LBが遮られていないことを示す“1”を出力する。一方、検知器80が検知光LBを受光せず、閾値電圧Vth以上の検知信号Sd1が検知器80から出力されない場合には、遮光状態であると判定する。そして、判定部90は、判定結果を示す判定信号Sd2として、検知光LBが遮られたことを示す“0”を出力する。 Specifically, when the detector 80 receives the detection light LB and the detection signal Sd1 having the threshold voltage Vth or more is output from the detector 80, the determination unit 90 determines that the light is in the light receiving state. Then, the determination unit 90 outputs "1" indicating that the detection light LB is not blocked as the determination signal Sd2 indicating the determination result. On the other hand, when the detector 80 does not receive the detection light LB and the detection signal Sd1 having a threshold voltage Vth or higher is not output from the detector 80, it is determined that the light is shielded. Then, the determination unit 90 outputs "0" indicating that the detection light LB is blocked as the determination signal Sd2 indicating the determination result.
 安全制御部102は、判定部90から出力される判定信号Sd2と、プレスブレーキ1の動作状態とに基づいて、プレスブレーキ1に対する安全状態を確認する。安全制御部102は、安全状態に基づいて、上部テーブル10の下降を停止させるか否かを決定する安全信号を生成して出力する。安全信号は、値が“1”であれば(オン)、上部テーブル10の下降を停止させず下降を継続させる動作許可を示し、値が“0”であれば(オフ)、上部テーブル10の下降を停止させる動作不許可を示す。 The safety control unit 102 confirms the safety state for the press brake 1 based on the determination signal Sd2 output from the determination unit 90 and the operating state of the press brake 1. The safety control unit 102 generates and outputs a safety signal that determines whether or not to stop the descent of the upper table 10 based on the safety state. When the value is "1" (on), the safety signal indicates the operation permission to continue the descent without stopping the descent of the upper table 10, and when the value is "0" (off), the safety signal of the upper table 10 Indicates disapproval of operation to stop the descent.
 手などの侵入物によって検知光LBが遮られていなければ、判定部90からの判定信号は“1”となる。そこで、安全制御装置100は安全信号として値“1”を出力する。一方、手などの侵入物によって検知光LBが遮られれば、判定部90からの判定信号は“0”となる。そこで、安全制御装置100は安全信号として値“0”(オフ)を出力する。安全制御部102が安全信号として“0”を出力すると、プレスブレーキ制御装置30は上部テーブル10の下降を停止させ、プレスブレーキ1による材料の曲げ加工を中断させる。 If the detection light LB is not blocked by an intruder such as a hand, the judgment signal from the judgment unit 90 is "1". Therefore, the safety control device 100 outputs the value "1" as a safety signal. On the other hand, if the detection light LB is blocked by an intruder such as a hand, the determination signal from the determination unit 90 becomes “0”. Therefore, the safety control device 100 outputs a value "0" (off) as a safety signal. When the safety control unit 102 outputs "0" as a safety signal, the press brake control device 30 stops the lowering of the upper table 10 and interrupts the bending process of the material by the press brake 1.
 また、安全制御部102は、検知光LBの投光期間及び非投光期間における判定信号Sd2を監視し、検知器80における検知信号Sd1がオン側又はオフ側に張り付いたままとなっていないかを判定する。安全制御部102は、このような判定を通じて、安全装置50の故障検知を行うことができる。 Further, the safety control unit 102 monitors the determination signal Sd2 during the flooded period and the non-flooded period of the detection light LB, and the detection signal Sd1 in the detector 80 does not remain stuck to the on side or the off side. Is determined. The safety control unit 102 can detect a failure of the safety device 50 through such a determination.
 投光期間及び非投光期間の長さには、所定の値が用いられる。しかしながら、本実施形態に係る安全装置50は、投光期間及び非投光期間の一方又は両方を所定の値から変更することができる仕様となっている。安全制御装置100は、DIPスイッチ(図示せず)などのハードウェアスイッチを備えており、このハードウェアスイッチを切り替えることで、投光期間及び非投光期間の一方又は両方の長さを所定の値から変更することができる。なお、ハードウェアスイッチを用いる手法以外にも、投光制御部101がソフトウェア処理を行い、投光期間及び非投光期間の一方又は両方の長さを所定の値から変更してもよい。 A predetermined value is used for the length of the flooded period and the non-flooded period. However, the safety device 50 according to the present embodiment has a specification that allows one or both of the flooded period and the non-flooded period to be changed from a predetermined value. The safety control device 100 includes a hardware switch such as a DIP switch (not shown), and by switching the hardware switch, one or both lengths of the flooded period and the non-flooded period can be determined. It can be changed from the value. In addition to the method using the hardware switch, the projection control unit 101 may perform software processing to change the length of one or both of the projection period and the non-illumination period from a predetermined value.
 ところで、作業環境によっては、プレスブレーキ1を単体で設置するだけでなく、複数のプレスブレーキ1を並べて設置することがある。個々のプレスブレーキ1には安全装置50が搭載されている。これらの安全装置50が互いに同一設計の装置である場合、個々の投光器60から出力される検知光LBも同一設計の光線となる。そのため、ある安全装置50において利用される検知光LBが他の安全装置50に対して干渉する可能性を考慮する必要がある。 By the way, depending on the work environment, not only the press brake 1 may be installed alone, but also a plurality of press brakes 1 may be installed side by side. A safety device 50 is mounted on each press brake 1. When these safety devices 50 are devices of the same design, the detection light LB output from each floodlight 60 is also a light beam of the same design. Therefore, it is necessary to consider the possibility that the detection light LB used in a certain safety device 50 interferes with another safety device 50.
 図5は、プレスブレーキの動作の流れを示すフローチャートである。図5を参照し、プレスブレーキ1の一連の動作とともに、検知光LBと同一設計の光線による干渉(異常状態)を判定する安全装置50の動作を説明する。 FIG. 5 is a flowchart showing the operation flow of the press brake. With reference to FIG. 5, a series of operations of the press brake 1 and an operation of the safety device 50 for determining interference (abnormal state) due to a light beam having the same design as the detection light LB will be described.
 以下の説明では、作業環境に2つのプレスブレーキ1(安全装置50)が並存しているものとし、そのうちの一方の安全装置50(以下「本機」という)の動作を説明する。説明の主体となる本機と、干渉の原因となる他の安全装置50(以下「他機」という)とは同一設計とされている。したがって、本機において用いられる検知光LBのパルス周期、投光期間、及び非投光期間は、他機において用いられる検知光LBのパルス周期、投光期間、非投光期間と同一である。本機において用いられる検知光LBを第1検知光LB1といい、他機において用いられる検知光LBを第2検知光LB2という。 In the following description, it is assumed that two press brakes 1 (safety device 50) coexist in the work environment, and the operation of one of the safety devices 50 (hereinafter referred to as "this machine") will be described. This machine, which is the main body of the explanation, and the other safety device 50 (hereinafter referred to as "other machine") that causes interference are designed to be the same. Therefore, the pulse period, the projection period, and the non-projection period of the detection light LB used in this machine are the same as the pulse period, the projection period, and the non-projection period of the detection light LB used in the other machine. The detection light LB used in this machine is referred to as a first detection light LB1, and the detection light LB used in another machine is referred to as a second detection light LB2.
 また、本実施形態では、第1異常判定処理から第3異常判定処理までの3つの異常判定処理によって異常状態の有無を判定する流れを示す。ただし、プレスブレーキ1の一連の動作の中で全ての異常判定処理が実行される必要はなく、少なくとも1つの異常判定処理が実行されればよい。 Further, in the present embodiment, the flow of determining the presence or absence of an abnormal state by three abnormality determination processes from the first abnormality determination process to the third abnormality determination process is shown. However, it is not necessary to execute all the abnormality determination processes in the series of operations of the press brake 1, and it is sufficient that at least one abnormality determination process is executed.
 図5に示す処理は、プレスブレーキ制御装置30に対する加工開始の指示をトリガーとして実行される。まず、ステップS10において、安全制御部102は、第1異常判定処理を行う。 The process shown in FIG. 5 is executed with the instruction to start machining to the press brake control device 30 as a trigger. First, in step S10, the safety control unit 102 performs the first abnormality determination process.
 図6は、第1異常判定処理の流れを示すフローチャートである。図7は、第1異常判定処理における第1検知光の状態と第2検知光の状態とを対比して示す説明図である。図6を参照し、第1異常判定処理の詳細を説明する。ステップS100において、安全制御部102は、判定部90から出力される判定信号Sd2に基づいて、判定部90が受光状態を判定しているか否かを判断する。ステップS100の判断を行うタイミングでは、投光処理が開始されていない。したがって、図7に示すように、第1検知光LB1は非投光期間となる。一方、他の安全装置50が加工動作を実行している場合には、遮光監視に伴い投光処理が実行されている。第2検知光LB2については、投光期間(タイミングT1-T2、T3-T4、T5-T6)と非投光期間(タイミングT2-T3、T4-T5)とが交互に繰り返される。そのため、第1検知光LB1は非投光期間の間に、第2検知光LB2の投光期間が到来する。 FIG. 6 is a flowchart showing the flow of the first abnormality determination process. FIG. 7 is an explanatory diagram showing the state of the first detection light and the state of the second detection light in the first abnormality determination process in comparison with each other. The details of the first abnormality determination process will be described with reference to FIG. In step S100, the safety control unit 102 determines whether or not the determination unit 90 determines the light receiving state based on the determination signal Sd2 output from the determination unit 90. At the timing when the determination in step S100 is performed, the light projection process has not started. Therefore, as shown in FIG. 7, the first detection light LB1 has a non-light projection period. On the other hand, when the other safety device 50 is executing the processing operation, the light projection process is executed along with the shading monitoring. Regarding the second detection light LB2, the light projection period (timing T1-T2, T3-T4, T5-T6) and the non-light projection period (timing T2-T3, T4-T5) are alternately repeated. Therefore, during the non-projection period of the first detection light LB1, the projection period of the second detection light LB2 comes.
 第2検知光LB2が受光器70に干渉している場合には、判定部90によって受光状態が判定されることとなる。そこで、判定部90が受光状態を判定している場合には、ステップS100において肯定判定され、ステップS101に進む。一方、判定部90が遮光状態を判定している場合には、ステップS100において否定判定され、本ルーチンを終了する。 When the second detection light LB2 interferes with the light receiver 70, the light receiving state is determined by the determination unit 90. Therefore, when the determination unit 90 determines the light receiving state, an affirmative determination is made in step S100, and the process proceeds to step S101. On the other hand, when the determination unit 90 determines the light-shielding state, a negative determination is made in step S100, and this routine ends.
 ステップS101において、安全制御部102は、第2検知光LB2が干渉する異常状態を判定する。異常状態を判定すると、安全制御部102は、安全信号オフ(動作停止信号)を供給することによりプレスブレーキ1の動作を停止させる。 In step S101, the safety control unit 102 determines an abnormal state in which the second detection light LB2 interferes. Upon determining the abnormal state, the safety control unit 102 stops the operation of the press brake 1 by supplying a safety signal off (operation stop signal).
 図5のステップS11において、投光制御部101は、投光処理を開始する。この投光処理の開始に合わせて、第2異常判定処理が実行される。 In step S11 of FIG. 5, the light projection control unit 101 starts the light projection process. The second abnormality determination process is executed in accordance with the start of the light projecting process.
 図8は、第2異常判定処理の流れを示すフローチャートである。図9は、第2異常判定処理における第1検知光の状態と第2検知光の状態とを対比して示す説明図である。図8を参照し、第2異常判定処理の詳細を説明する。ステップS110において、投光制御部101は、他機から情報を取得する。他機から取得する情報は、他機が実行する投光処理のタイミング、具体的には、投光期間の開始タイミングである。 FIG. 8 is a flowchart showing the flow of the second abnormality determination process. FIG. 9 is an explanatory diagram showing the state of the first detection light and the state of the second detection light in the second abnormality determination process in comparison with each other. The details of the second abnormality determination process will be described with reference to FIG. In step S110, the floodlight control unit 101 acquires information from another machine. The information acquired from the other machine is the timing of the light projection process executed by the other machine, specifically, the start timing of the light projection period.
 ステップS111において、投光制御部101は、投光処理の開始タイミングを決定する。図9に示すように、第2検知光LB2については、投光期間(タイミングT1-T2、T3-T4、T5-T6)と非投光期間(タイミングT2-T3、T4-T5)とが交互に繰り返される。投光制御部101は、第2検知光LB2の投光期間に対して、第1検知光LB1の非投光期間が重なるように、投光処理の開始タイミングを決定する。例えば、投光制御部101は、第1検知光LB1の非投光処理の開始タイミングと、第2検知光LB2の投光期間の開始タイミングとが一致するように、投光処理の開始タイミングを設定する。この場合、第1検知光LB1については、投光期間(タイミングT2-T3、T4-T5)と非投光期間(タイミングT3-T4、T5-T6)とが交互に繰り返される。これにより、第1検知光LB1の非投光期間は、第2検知光LB2の投光期間と完全に重複する関係となる。もっとも、投光制御部101は、第1検知光LB1の非投光期間が第2検知光LB2の投光期間の一部と重複するように、投光処理の開始タイミングを決定すればよい。 In step S111, the light projection control unit 101 determines the start timing of the light projection process. As shown in FIG. 9, for the second detection light LB2, the light projection period (timing T1-T2, T3-T4, T5-T6) and the non-light projection period (timing T2-T3, T4-T5) alternate. Is repeated in. The projection control unit 101 determines the start timing of the projection process so that the non-projection period of the first detection light LB1 overlaps with the projection period of the second detection light LB2. For example, the floodlight control unit 101 sets the start timing of the floodlight processing so that the start timing of the non-flooding process of the first detection light LB1 and the start timing of the floodlight period of the second detection light LB2 coincide with each other. Set. In this case, with respect to the first detection light LB1, the light projection period (timing T2-T3, T4-T5) and the non-light projection period (timing T3-T4, T5-T6) are alternately repeated. As a result, the non-projection period of the first detection light LB1 completely overlaps with the projection period of the second detection light LB2. However, the projection control unit 101 may determine the start timing of the projection process so that the non-projection period of the first detection light LB1 overlaps with a part of the projection period of the second detection light LB2.
 ステップS112において、投光制御部101は、ステップS111で決定した開始タイミングに基づいて、投光処理を開始する。 In step S112, the light projection control unit 101 starts the light projection process based on the start timing determined in step S111.
 ステップS113において、安全制御部102は、第1検知光LB1の非投光期間であるが否かを判断する。第1検知光LB1の非投光期間である場合には、ステップS113で肯定判定され、ステップS114に進む。一方、第1検知光LB1の投光期間である場合には、ステップS113で否定判定され、ステップS113に戻る。 In step S113, the safety control unit 102 determines whether or not the first detection light LB1 is in the non-light projection period. When the first detection light LB1 is in the non-light projection period, an affirmative determination is made in step S113, and the process proceeds to step S114. On the other hand, when the first detection light LB1 is in the flooding period, a negative determination is made in step S113, and the process returns to step S113.
 ステップS114において、安全制御部102は、判定部90から出力される判定信号Sd2に基づいて、判定部90が受光状態を判定しているか否かを判断する。投光処理の開始タイミングの調整により、第1検知光LB1の非投光期間の間に、第2検知光LB2の投光期間が到来する。 In step S114, the safety control unit 102 determines whether or not the determination unit 90 determines the light receiving state based on the determination signal Sd2 output from the determination unit 90. By adjusting the start timing of the light projection process, the light projection period of the second detection light LB2 comes during the non-light projection period of the first detection light LB1.
 第2検知光LB2が受光器70に干渉している場合には、判定部90によって受光状態が判定されることとなる。そこで、判定部90が受光状態を判定している場合には、ステップS114において肯定判定され、ステップS115に進む。一方、判定部90が遮光状態を判定している場合には、ステップS114において否定判定され、本ルーチンを終了する。 When the second detection light LB2 interferes with the light receiver 70, the light receiving state is determined by the determination unit 90. Therefore, when the determination unit 90 determines the light receiving state, an affirmative determination is made in step S114, and the process proceeds to step S115. On the other hand, when the determination unit 90 determines the light-shielding state, a negative determination is made in step S114, and this routine ends.
 ステップS115において、安全制御部102は、第2検知光LB2が干渉する異常状態を判定する。異常状態を判定すると、安全制御部102は、安全信号オフ(動作停止信号)を供給することによりプレスブレーキ1の動作を停止させる。 In step S115, the safety control unit 102 determines an abnormal state in which the second detection light LB2 interferes. Upon determining the abnormal state, the safety control unit 102 stops the operation of the press brake 1 by supplying a safety signal off (operation stop signal).
 図5におけるステップS12において、プレスブレーキ制御装置30は、加工プログラムを実行し、加工プログラムに基づいてプレスブレーキ1を制御する。これにより、プレスブレーキ1は、加工を開始する。 In step S12 in FIG. 5, the press brake control device 30 executes a machining program and controls the press brake 1 based on the machining program. As a result, the press brake 1 starts processing.
 ステップS13において、安全制御部102は、遮光監視を開始する。 In step S13, the safety control unit 102 starts shading monitoring.
 ステップS14において、安全制御部102は、第1検知光LB1の投光期間であるか否かを判断する。第1検知光LB1の投光期間である場合には、ステップS14で肯定判定され、ステップS15に進む。一方、第1検知光LB1の投光期間ではない場合には、ステップS14で否定判定され、ステップS19に進む。 In step S14, the safety control unit 102 determines whether or not it is the flooding period of the first detection light LB1. When it is the flooding period of the first detection light LB1, an affirmative determination is made in step S14, and the process proceeds to step S15. On the other hand, if it is not the projection period of the first detection light LB1, a negative determination is made in step S14, and the process proceeds to step S19.
 ステップS15において、安全制御部102は、判定部90の判定結果が受光状態であるか否かを判断する。判定部90の判定結果が遮光状態である場合には、ステップS15で否定判定され、ステップS16に進む。一方、判定部90の判定結果が受光状態である場合には、ステップS15で肯定判定され、ステップS18に進む。 In step S15, the safety control unit 102 determines whether or not the determination result of the determination unit 90 is in the light receiving state. If the determination result of the determination unit 90 is in a light-shielded state, a negative determination is made in step S15, and the process proceeds to step S16. On the other hand, when the determination result of the determination unit 90 is in the light receiving state, an affirmative determination is made in step S15, and the process proceeds to step S18.
 ステップS16において、安全制御部102は、安全信号として“0”を出力する(安全信号オフ)。 In step S16, the safety control unit 102 outputs "0" as a safety signal (safety signal off).
 ステップS17において、プレスブレーキ制御装置30は、加工を継続するか否かを判断する。加工を継続する場合には、ステップS17で肯定判定され、ステップS14に戻る。一方、加工を継続しない場合には、ステップS17で否定判定され、ステップS21に進む。 In step S17, the press brake control device 30 determines whether or not to continue machining. When continuing the processing, an affirmative determination is made in step S17, and the process returns to step S14. On the other hand, if the processing is not continued, a negative determination is made in step S17, and the process proceeds to step S21.
 ステップS18において、安全制御部102は、安全信号として“1”を出力する(安全信号オン)。 In step S18, the safety control unit 102 outputs "1" as a safety signal (safety signal on).
 ステップS19において、安全制御部102は、第3異常判定処理を行う。この第3異常判定処理は、上述した第2異常判定処理を行わない場合に実行することが好ましいが、第2異常判定処理と並存してもよい。 In step S19, the safety control unit 102 performs the third abnormality determination process. This third abnormality determination process is preferably executed when the above-mentioned second abnormality determination process is not performed, but it may coexist with the second abnormality determination process.
 図10は、第1形態に係る第3異常判定処理の流れを示すフローチャートである。図11は、第1形態に係る第3異常判定処理における第1検知光の状態と第2検知光の状態とを対比して示す説明図である。図10を参照し、第3異常判定処理の詳細を説明する。まず、この第3異常判定処理を行う前提として、ハードウェアスイッチなどにより他機の設定を変更することで、第2検知光LB2の投光期間が第1検知光LB1の投光期間と異なるよう、所定の値から変更されている。図11に示す例では、第2検知光LB2の投光期間が所定の値よりも長い時間に変更されている。第2検知光LB2については、投光期間(タイミングT1-T3、T4-T6)と非投光期間(タイミングT3-T4)とが交互に繰り返される。第2検知光LB2の投光期間が第1検知光LB1の投光期間と異なるよう、所定の値から変更されることで、本機と他機とがそれぞれ投光処理を継続する過程の中で、第1検知光LB1の非投光期間の間に、第2検知光LB2の投光期間が到来する。もっとも、他機の設定変更に代えて、本機の設定を変更することで、第1検知光LB1の投光期間の長さを変えてもよい。 FIG. 10 is a flowchart showing the flow of the third abnormality determination process according to the first embodiment. FIG. 11 is an explanatory diagram showing the state of the first detection light and the state of the second detection light in the third abnormality determination process according to the first embodiment in comparison with each other. The details of the third abnormality determination process will be described with reference to FIG. First, as a premise for performing this third abnormality determination process, the projection period of the second detection light LB2 is different from the projection period of the first detection light LB1 by changing the setting of another device with a hardware switch or the like. , Has been changed from the specified value. In the example shown in FIG. 11, the projection period of the second detection light LB2 is changed to a time longer than a predetermined value. Regarding the second detection light LB2, the light projection period (timing T1-T3, T4-T6) and the non-light projection period (timing T3-T4) are alternately repeated. In the process of continuing the light projection process between this unit and another unit by changing from a predetermined value so that the light projection period of the second detection light LB2 is different from the light projection period of the first detection light LB1. Then, during the non-projection period of the first detection light LB1, the projection period of the second detection light LB2 comes. However, the length of the projection period of the first detection light LB1 may be changed by changing the setting of this machine instead of changing the setting of another machine.
 そこで、図10のステップS190において、安全制御部102は、判定部90から出力される判定信号Sd2に基づいて、判定部90が受光状態を判定しているか否かを判断する。判定部90が受光状態を判定している場合には、ステップS190において肯定判定され、ステップS191に進む。一方、判定部90が遮光状態を判定している場合には、ステップS190において否定判定され、本ルーチンを終了する。 Therefore, in step S190 of FIG. 10, the safety control unit 102 determines whether or not the determination unit 90 determines the light receiving state based on the determination signal Sd2 output from the determination unit 90. When the determination unit 90 determines the light receiving state, an affirmative determination is made in step S190, and the process proceeds to step S191. On the other hand, when the determination unit 90 determines the light-shielding state, a negative determination is made in step S190, and this routine ends.
 ステップS191において、安全制御部102は、第2検知光LB2が干渉する異常状態を判定する。異常状態を判定すると、安全制御部102は、安全信号オフ(動作停止信号)を供給することによりプレスブレーキ1の動作を停止させる。 In step S191, the safety control unit 102 determines an abnormal state in which the second detection light LB2 interferes. Upon determining the abnormal state, the safety control unit 102 stops the operation of the press brake 1 by supplying a safety signal off (operation stop signal).
 図12は、第2形態に係る第3異常判定処理の流れを示すフローチャートである。図13は、第2形態に係る第3異常判定処理における第1検知光の状態と第2検知光の状態とを対比して示す説明図である。第3異常判定処理は、次に示すような動作であってもよい。図12を参照し、第3異常判定処理の詳細を説明する。 FIG. 12 is a flowchart showing the flow of the third abnormality determination process according to the second form. FIG. 13 is an explanatory diagram showing the state of the first detection light and the state of the second detection light in the third abnormality determination process according to the second mode in comparison with each other. The third abnormality determination process may be an operation as shown below. The details of the third abnormality determination process will be described with reference to FIG.
 ステップS195において、投光制御部101は、第1検知光LB1の投光サイクルが終了したか否かを判断する。投光サイクルが終了した場合には、ステップS195において肯定判定され、ステップS196に進む。一方、投光サイクルが終了していない場合には、ステップS195において否定判定され、ステップS197に進む。 In step S195, the light projection control unit 101 determines whether or not the light projection cycle of the first detection light LB1 has ended. When the floodlight cycle is completed, an affirmative determination is made in step S195, and the process proceeds to step S196. On the other hand, if the light projection cycle is not completed, a negative determination is made in step S195, and the process proceeds to step S197.
 ステップS196において、投光制御部101は、次回に到来する投光サイクルの投光期間を決定する。投光期間の決定は、例えば乱数発生器によって発生する乱数をベースに決定することができる。図13に示すように、投光サイクル毎に投光期間を決定することで、投光処理を継続するなかで投光期間の長さが動的に変更されることとなる。第1検知光LB1については、投光期間(タイミングT1-T3、T5-T8、T9-T10)と非投光期間(タイミングT3-T5、T8-T9)とが交互に繰り返される。 In step S196, the light projection control unit 101 determines the light projection period of the next light projection cycle. The projection period can be determined based on, for example, a random number generated by a random number generator. As shown in FIG. 13, by determining the light projecting period for each light projecting cycle, the length of the light projecting period is dynamically changed while the light projecting process is continued. Regarding the first detection light LB1, the light projection period (timing T1-T3, T5-T8, T9-T10) and the non-light projection period (timing T3-T5, T8-T9) are alternately repeated.
 また、投光サイクルの投光期間の決定は、他機においても実行される。第2検知光LB2については、投光期間(タイミングT1-T2、T4-T6、T7-T10)と非投光期間(タイミングT2-T4、T6-T7)とが交互に繰り返される。その結果、本機と他機とがそれぞれ投光処理を継続する過程の中で、第1検知光LB1の非投光期間の間に、第2検知光LB2の投光期間が到来する。 In addition, the determination of the projection period of the projection cycle is also executed on other aircraft. Regarding the second detection light LB2, the light projection period (timing T1-T2, T4-T6, T7-T10) and the non-light projection period (timing T2-T4, T6-T7) are alternately repeated. As a result, the projection period of the second detection light LB2 arrives during the non-projection period of the first detection light LB1 in the process in which the unit and the other unit continue the projection processing.
 ステップS197において、安全制御部102は、判定部90から出力される判定信号Sd2に基づいて、判定部90が受光状態を判定しているか否かを判断する。判定部90が受光状態を判定している場合には、ステップS197において肯定判定され、ステップS198に進む。一方、判定部90が遮光状態を判定している場合には、ステップS197において否定判定され、本ルーチンを終了する。 In step S197, the safety control unit 102 determines whether or not the determination unit 90 determines the light receiving state based on the determination signal Sd2 output from the determination unit 90. When the determination unit 90 determines the light receiving state, an affirmative determination is made in step S197, and the process proceeds to step S198. On the other hand, when the determination unit 90 determines the light-shielding state, a negative determination is made in step S197, and this routine ends.
 ステップS198において、安全制御部102は、第2検知光LB2が干渉する異常状態を判定する。異常状態を判定すると、安全制御部102は、安全信号オフ(動作停止信号)を供給することによりプレスブレーキ1の動作を停止させる。 In step S198, the safety control unit 102 determines an abnormal state in which the second detection light LB2 interferes. Upon determining the abnormal state, the safety control unit 102 stops the operation of the press brake 1 by supplying a safety signal off (operation stop signal).
 図5のステップS20において、プレスブレーキ制御装置30は、加工を終了するか否かを判断する。加工を終了する場合には、ステップS20において肯定判定され、ステップS21に進む。一方、加工を終了しない場合には、ステップS20において否定判定され、ステップS14に戻る。 In step S20 of FIG. 5, the press brake control device 30 determines whether or not to finish the machining. When the processing is completed, an affirmative determination is made in step S20, and the process proceeds to step S21. On the other hand, if the machining is not completed, a negative determination is made in step S20, and the process returns to step S14.
 ステップS21において、安全制御部102は、遮光監視を終了する。 In step S21, the safety control unit 102 ends the shading monitoring.
 ステップS23において、プレスブレーキ制御装置30は、加工を終了する。 In step S23, the press brake control device 30 finishes processing.
 ステップS24において、投光制御部101は、投光処理を終了する。これにより、プレスブレーキ1の一連の処理が終了する。 In step S24, the light projection control unit 101 ends the light projection process. As a result, a series of processes of the press brake 1 is completed.
 このように本実施形態において、安全装置50は、プレスブレーキ1に対して安全信号を供給し、安全信号の状態に応じてプレスブレーキ1が自動停止することでプレスブレーキ1の安全を管理する。この安全装置50は、第1検知光LB1を出力する投光器(第1投光器)60と、検知器80が第1検知光LB1を受光する受光状態であるか、それとも第1検知光LB1を受光しない遮光状態であるかを判定する受光器(第1受光器)70と、第1検知光LB1の投光期間における受光器70の判定状態に基づいて安全信号の状態を制御する安全制御装置(第1制御部)100と、を有している。安全制御装置100は、第1検知光LB1の非投光期間において受光器70が受光状態を判定した場合、第1検知光LB1と同一設計の光線が干渉する異常状態を判定している。 As described above, in the present embodiment, the safety device 50 supplies a safety signal to the press brake 1 and manages the safety of the press brake 1 by automatically stopping the press brake 1 according to the state of the safety signal. The safety device 50 is in a light receiving state in which the floodlight (first floodlight) 60 that outputs the first detection light LB1 and the detector 80 receive the first detection light LB1 or does not receive the first detection light LB1. A safety control device (first) that controls the state of the safety signal based on the state of the light receiver (first light receiver) 70 that determines whether the light is shielded and the state of the light receiver 70 during the projection period of the first detection light LB1. 1 control unit) 100 and. When the light receiver 70 determines the light receiving state during the non-projection period of the first detection light LB1, the safety control device 100 determines an abnormal state in which light rays having the same design as the first detection light LB1 interfere with each other.
 第1検知光LB1の非投光期間においては、投光器60から第1検知光LB1が出力されないため、本来ならば、受光器70の判定状態は遮光状態となる。そのため、第1検知光LB1の非投光期間に、受光器70の判定状態が受光状態である場合には、第1検知光LB1と同一設計の光線が干渉する異常状態を判定することができる。これにより、第1検知光LB1が遮光されているにも関わらず、受光状態であると受光器70が誤認識する状況を抑制することができる。 Since the first detection light LB1 is not output from the floodlight 60 during the non-light projection period of the first detection light LB1, the determination state of the light receiver 70 is normally a light-shielding state. Therefore, when the determination state of the light receiver 70 is the light receiving state during the non-projection period of the first detection light LB1, it is possible to determine an abnormal state in which light rays having the same design as the first detection light LB1 interfere with each other. .. As a result, it is possible to suppress a situation in which the light receiver 70 erroneously recognizes that the light is in a light receiving state even though the first detection light LB1 is shielded from light.
 また、本実施形態において、受光器70は、所定周波数のパルス状の第1検知光LB1を受光する場合に、受光状態を判定する。そのため、所定周波数のパルス状の光線以外の光線を受光したとしても、受光状態と判定することはなく、外乱光による干渉を考慮した仕様となっている。したがって、第1検知光LB1と同一設計の光線の干渉で発生する特異な異常状態を適切に判定することができる。 Further, in the present embodiment, the light receiver 70 determines the light receiving state when receiving the pulse-shaped first detection light LB1 having a predetermined frequency. Therefore, even if a light ray other than a pulsed light ray having a predetermined frequency is received, it is not determined to be in a light receiving state, and the specifications are such that interference due to ambient light is taken into consideration. Therefore, it is possible to appropriately determine a peculiar abnormal state generated by the interference of light rays having the same design as the first detection light LB1.
 本実施形態において、異常状態は、投光器60とは異なる他機の投光器(第2投光器)60から出力される第2検知光LB2が干渉する状態である。この場合、他機の投光器60は、本機の安全制御装置100とは異なる、他機の安全制御装置(第2制御部)100により制御され、第1検知光LB1と同一設計の光線を第2検知光LB2として出力している。 In the present embodiment, the abnormal state is a state in which the second detection light LB2 output from the floodlight (second floodlight) 60 of another device different from the floodlight 60 interferes. In this case, the floodlight 60 of the other machine is controlled by the safety control device (second control unit) 100 of the other machine, which is different from the safety control device 100 of this machine, and emits a light beam having the same design as the first detection light LB1. 2 Output as detection light LB2.
 第1検知光LB1と同一設計の第2検知光LB2が他機の投光器60から出力される場合には、第2検知光LB2は本機の受光器70に対して干渉する要因となる。また、他機の投光器60は、他機の安全制御装置100によって独自に制御されるため、本機の安全制御装置100からは制御することができない。よって、第1検知光LB1の投光期間と第2検知光LB2の投光期間とが重複する状況が発生し、第2検知光LB2が本機の受光器70に対して干渉する要因となる。しかしながら、本実施形態によれば、他機の投光器60からの第2検知光LB2が干渉するような場合であっても、異常状態を判定することができる。 When the second detection light LB2 having the same design as the first detection light LB1 is output from the floodlight 60 of another unit, the second detection light LB2 becomes a factor of interfering with the receiver 70 of this unit. Further, since the floodlight 60 of the other machine is independently controlled by the safety control device 100 of the other machine, it cannot be controlled by the safety control device 100 of this machine. Therefore, a situation occurs in which the projection period of the first detection light LB1 and the projection period of the second detection light LB2 overlap, which causes the second detection light LB2 to interfere with the receiver 70 of the present unit. .. However, according to the present embodiment, even in the case where the second detection light LB2 from the floodlight 60 of another machine interferes, the abnormal state can be determined.
 なお、本実施形態では、第2投光器が他機に搭載された構成を想定している。しかしながら、第2投光器は、本機の安全制御装置100とは異なる第2制御部によって制御されるものであればよい。よって、第2投光器は、本機が搭載する、複数の安全装置50の一部であってもよいし、また、プレスブレーキ1とは異なる装置の一部であってもよい。 In this embodiment, it is assumed that the second floodlight is mounted on another device. However, the second floodlight may be controlled by a second control unit different from the safety control device 100 of this machine. Therefore, the second floodlight may be a part of a plurality of safety devices 50 mounted on the machine, or may be a part of a device different from the press brake 1.
 また、本実施形態において、安全制御装置100は、本機が規定の作業(加工)を行う期間に合わせて、投光期間と非投光期間とを交互に繰り返す投光処理を行う。 Further, in the present embodiment, the safety control device 100 performs a light projecting process in which a light projecting period and a non-light projecting period are alternately repeated according to a period in which the machine performs a predetermined work (processing).
 この構成によれば、本機が加工を行う期間に合わせて遮光監視を行うことができる。 According to this configuration, shading monitoring can be performed according to the processing period of this machine.
 また、本実施形態において、安全制御装置100は、第1検知光LB1の投光処理を実行する前に、予め定められた期間にわたって第1検知光LB1の非投光期間を設定し、設定した非投光期間において異常状態の有無を判定する。 Further, in the present embodiment, the safety control device 100 sets and sets the non-projection period of the first detection light LB1 over a predetermined period before executing the projection process of the first detection light LB1. Determine if there is an abnormal condition during the non-light projection period.
 この構成によれば、第1検知光LB1の投光処理に先立ち非投光期間を設定することができるので、第1検知光LB1の投光処理の動作に影響を与えることなく、異常状態を判定する処理を行うことができる。 According to this configuration, since the non-flooding period can be set prior to the flooding process of the first detection light LB1, the abnormal state can be set without affecting the operation of the floodlight processing of the first detection light LB1. Judgment processing can be performed.
 また、本実施形態において、安全制御装置100は、他機の安全制御装置100と通信することで第2検知光LB2の投光処理の実行タイミングを取得する。安全制御装置100は、少なくとも第1検知光LB1の非投光期間の一部が第2検知光LB2の投光期間に対して重なるように、第1検知光LB1の投光処理の実行タイミングを制御する。そして、安全制御装置100は、第1検知光LB1の投光処理を実行中に到来する、第1検知光LB1の非投光期間において、異常状態の有無を判定する。 Further, in the present embodiment, the safety control device 100 acquires the execution timing of the light projection process of the second detection light LB2 by communicating with the safety control device 100 of another device. The safety control device 100 sets the execution timing of the light projection process of the first detection light LB1 so that at least a part of the non-light emission period of the first detection light LB1 overlaps with the light projection period of the second detection light LB2. Control. Then, the safety control device 100 determines the presence or absence of an abnormal state during the non-light projection period of the first detection light LB1, which arrives during the light projection process of the first detection light LB1.
 この構成によれば、第2検知光LB2の投光処理の実行タイミングとの関係で、第1検知光LB1の投光処理の実行タイミングを制御することができる。これにより、第1検知光LB1の非投光期間と第2検知光LB2の投光期間とを重複させることができるので、第1検知光LB1の投光処理を行っているなかで異常状態の有無を判定することができる。 According to this configuration, it is possible to control the execution timing of the projection processing of the first detection light LB1 in relation to the execution timing of the projection processing of the second detection light LB2. As a result, the non-projection period of the first detection light LB1 and the projection period of the second detection light LB2 can be overlapped with each other. The presence or absence can be determined.
 また、本実施形態において、第1検知光LB1の投光処理を実行するときの投光期間の長さは、定め設計された所定の値から切り替え可能に構成されている。安全制御装置100は、第1検知光LB1の投光処理を実行中に到来する、第1検知光LB1の非投光期間において異常状態の有無を判定している。 Further, in the present embodiment, the length of the light projection period when the light projection process of the first detection light LB1 is executed is configured to be switchable from a predetermined value designed and determined. The safety control device 100 determines the presence or absence of an abnormal state during the non-light projection period of the first detection light LB1, which arrives during the light projection process of the first detection light LB1.
 この構成によれば、第1検知光LB1の投光期間の長さが切り替えられている場合には、第1検知光LB1の投光処理を行う過程で、第2検知光LB2の投光期間と第1検知光LB1の非投光期間とを重複させることができる。これにより、第1検知光LB1の投光処理を行っているときに、異常状態の有無を判定することができる。 According to this configuration, when the length of the light projection period of the first detection light LB1 is switched, the light projection period of the second detection light LB2 is performed in the process of performing the light projection processing of the first detection light LB1. And the non-light projection period of the first detection light LB1 can be overlapped. As a result, it is possible to determine the presence or absence of an abnormal state when the light projection process of the first detection light LB1 is being performed.
 また、本実施形態において、安全制御装置100は、第1検知光LB1の投光処理を実行している最中に、第1検知光LB1の投光期間の長さを動的に変更している。そして、安全制御装置100は、第1検知光LB1の投光処理を実行中に到来する、第1検知光LB1の非投光期間において、異常状態の有無を判定している。 Further, in the present embodiment, the safety control device 100 dynamically changes the length of the projection period of the first detection light LB1 while executing the projection processing of the first detection light LB1. There is. Then, the safety control device 100 determines the presence or absence of an abnormal state during the non-light projection period of the first detection light LB1, which arrives during the light projection process of the first detection light LB1.
 この構成によれば、第1検知光LB1の投光期間の長さを動的に変更することができる。これにより、第1検知光LB1の投光処理を行う過程で、第2検知光LB2の投光期間と第1検知光LB1の非投光期間とを重複させることができる。これにより、第1検知光LB1の投光処理を行っているときに、異常状態の有無を判定することができる。 According to this configuration, the length of the flooding period of the first detection light LB1 can be dynamically changed. Thereby, in the process of performing the light projection process of the first detection light LB1, the light projection period of the second detection light LB2 and the non-light projection period of the first detection light LB1 can be overlapped. As a result, it is possible to determine the presence or absence of an abnormal state when the light projection process of the first detection light LB1 is being performed.
 なお、本実施形態では、第1検知光LB1の投光期間の長さを変更する形態を示した。しかしながら、第1検知光LB1の投光期間の長さを変更せずに、第1検知光LB1の非投光期間の長さを変更してもよい。また、第1検知光LB1の投光期間及び非投光期間の長さをそれぞれ変更してもよい。また、第1検知光LB1に代えて、第2検知光LB2の投光期間又は非投光期間の一方又は両方の長さを変更するものであってもよい。 In the present embodiment, a mode is shown in which the length of the flooding period of the first detection light LB1 is changed. However, the length of the non-projection period of the first detection light LB1 may be changed without changing the length of the projection period of the first detection light LB1. Further, the lengths of the flooded period and the non-flooded period of the first detection light LB1 may be changed, respectively. Further, instead of the first detection light LB1, the length of one or both of the light projection period and the non-light projection period of the second detection light LB2 may be changed.
 本発明は以上説明した本実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。 The present invention is not limited to the present embodiment described above, and various modifications can be made without departing from the gist of the present invention.
 パルス状の検知光は、パルス形状の光線に限らず、正弦波状の光線など周期的に明滅する明滅光であればよい。また、投光器は、点灯と消灯とが完全に切り替わる必要はなく、明るい状態と、これよりも暗い状態とが切り替わる光であればよい。 The pulse-shaped detection light is not limited to the pulse-shaped light beam, but may be a flickering light such as a sinusoidal light beam that blinks periodically. Further, the floodlight does not need to be completely switched on and off, and may be a light that switches between a bright state and a darker state.
 本願の開示は、2020年3月9日に出願された特願2020-039911号に記載の主題と関連しており、それらの全ての開示内容は引用によりここに援用される。 The disclosure of the present application is related to the subject matter described in Japanese Patent Application No. 2020-039911, which was filed on March 9, 2020, and all the disclosure contents thereof are incorporated herein by reference.

Claims (8)

  1.  規定の作業を行う加工機に対して安全信号を供給し、前記安全信号の状態に応じて前記加工機が自動停止することで前記加工機の安全を管理する安全装置において、
     明滅を周期的に繰り返すことにより、光線を第1光線として出力する第1投光器と、
     光を検知する検知器を含み、前記検知器が前記第1光線を受光する受光状態であるか、前記検知器が前記第1光線を受光しない遮光状態であるかを判定する第1受光器と、
     前記第1投光器を制御して第1投光期間にわたって前記第1投光器から前記第1光線を出力し、前記第1投光期間における前記第1受光器の判定状態に基づいて前記安全信号の状態を制御する第1制御部と、
     を有し、
     前記第1制御部は、
     前記第1投光器から前記第1光線を出力しない第1非投光期間において前記第1受光器が前記受光状態を判定した場合、前記第1投光器から出力される前記第1光線と同一設計の光線が干渉する異常状態を判定する
     安全装置。
    In a safety device that manages the safety of a processing machine by supplying a safety signal to a processing machine that performs a specified operation and automatically stopping the processing machine according to the state of the safety signal.
    A first floodlight that outputs light rays as the first light rays by periodically repeating blinking,
    A first receiver that includes a detector that detects light and determines whether the detector is in a light receiving state that receives the first light ray or the detector is in a light blocking state that does not receive the first light ray. ,
    The first floodlight is controlled to output the first light beam from the first floodlight over the first floodlight period, and the state of the safety signal is based on the determination state of the first receiver during the first floodlight period. The first control unit that controls
    Have,
    The first control unit
    When the first light receiver determines the light receiving state during the first non-light emitting period in which the first light beam is not output from the first floodlight, a light ray having the same design as the first light ray output from the first floodlight. A safety device that determines an abnormal condition in which light interferes.
  2.  前記異常状態は、前記第1投光器とは異なる第2投光器から出力される第2光線が干渉する状態であり、
     前記第2投光器は、前記第1制御部とは異なる第2制御部により制御され、前記第1投光器から出力される前記第1光線と同一設計の光線を前記第2光線として出力する
     請求項1記載の安全装置。
    The abnormal state is a state in which a second light beam output from a second floodlight different from the first floodlight interferes.
    The second floodlight is controlled by a second control unit different from the first control unit, and outputs a ray having the same design as the first ray output from the first floodlight as the second ray. The safety device described.
  3.  前記第1光線及び前記第2光線のそれぞれは、所定の周波数で明滅する明滅光である
     ことを特徴とする請求項2記載の安全装置。
    The safety device according to claim 2, wherein each of the first ray and the second ray is a blinking light that blinks at a predetermined frequency.
  4.  前記第1制御部は、
     前記加工機が前記規定の作業を行う期間に合わせて、前記第1投光期間と前記第1非投光期間とを交互に繰り返す第1投光処理を行う
     請求項1又は2記載の安全装置。
    The first control unit
    The safety device according to claim 1 or 2, wherein the first light projection process is performed by alternately repeating the first light projection period and the first non-light projection period according to the period in which the processing machine performs the specified work. ..
  5.  前記第1制御部は、
     前記第1投光処理を実行する前に、予め定められた期間にわたって前記第1非投光期間を設定し、
     設定した前記第1非投光期間において、前記異常状態の有無を判定する
     請求項4記載の安全装置。
    The first control unit
    Before executing the first light projection process, the first non-light projection period is set over a predetermined period.
    The safety device according to claim 4, wherein the presence or absence of the abnormal state is determined during the set first non-light projection period.
  6.  前記第1制御部は、
     前記加工機が前記規定の作業を行う期間に合わせて、前記第1投光期間と前記第1非投光期間とを交互に繰り返す第1投光処理を行い、
     前記第2制御部は、
     前記第2投光器から前記第2光線を出力する第2投光期間と、前記第2投光器から前記第2光線を出力しない第2非投光期間とを交互に繰り返す第2投光処理を行うとともに、
     前記第1制御部は、
     前記第2制御部と通信することで前記第2投光処理の実行タイミングを取得し、
     少なくとも前記第1非投光期間の一部が前記第2投光期間に対して重なるように、前記第1投光処理の実行タイミングを制御し、
     前記第1投光処理を実行中に到来する前記第1非投光期間において、前記異常状態の有無を判定する
     請求項2記載の安全装置。
    The first control unit
    In accordance with the period during which the processing machine performs the specified work, the first light projection process is performed by alternately repeating the first light projection period and the first non-light projection period.
    The second control unit
    A second light projection process is performed in which a second light projecting period in which the second light beam is output from the second floodlight and a second non-light projecting period in which the second light beam is not output from the second light beam are alternately repeated. ,
    The first control unit
    By communicating with the second control unit, the execution timing of the second floodlight processing is acquired, and the execution timing is acquired.
    The execution timing of the first light projection process is controlled so that at least a part of the first non-light projection period overlaps with the second light projection period.
    The safety device according to claim 2, wherein the presence or absence of the abnormal state is determined during the first non-light projection period that arrives during the execution of the first light projection process.
  7.  前記第1投光処理における前記第1投光期間及び前記第1非投光期間の一方又は両方は、予め設計された所定の値から変更可能に構成され、
     前記第1制御部は、
     前記第1投光処理を実行中に到来する前記第1非投光期間において、前記異常状態の有無を判定する
     請求項4記載の安全装置。
    One or both of the first light projection period and the first non-light projection period in the first light projection process is configured to be changeable from a predetermined value designed in advance.
    The first control unit
    The safety device according to claim 4, wherein the presence or absence of the abnormal state is determined during the first non-light projection period that arrives during the execution of the first light projection process.
  8.  前記第1制御部は、
     前記第1投光処理を実行している最中に、前記第1投光期間及び前記第1非投光期間の一方又は両方の長さを動的に変更し、
     前記第1投光処理を実行中に到来する前記第1非投光期間において、前記異常状態の有無を判定する
     請求項4記載の安全装置。
    The first control unit
    During the execution of the first light projection process, the length of one or both of the first light projection period and the first non-light projection period is dynamically changed.
    The safety device according to claim 4, wherein the presence or absence of the abnormal state is determined during the first non-light projection period that arrives during the execution of the first light projection process.
PCT/JP2021/008103 2020-03-09 2021-03-03 Safety device WO2021182215A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-039911 2020-03-09
JP2020039911A JP2021137868A (en) 2020-03-09 2020-03-09 Safety device

Publications (1)

Publication Number Publication Date
WO2021182215A1 true WO2021182215A1 (en) 2021-09-16

Family

ID=77667421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008103 WO2021182215A1 (en) 2020-03-09 2021-03-03 Safety device

Country Status (2)

Country Link
JP (1) JP2021137868A (en)
WO (1) WO2021182215A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575421A (en) * 1991-06-17 1993-03-26 Sunx Ltd Multi-axis photoelectric switch
JPH11260215A (en) * 1998-03-13 1999-09-24 Omron Corp Photoelectric sensor and multiple optical axis photoelectric sensor
JP2017205772A (en) * 2016-05-17 2017-11-24 株式会社ジェイアール西日本テクノス Safety apparatus and press machine
JP2018176228A (en) * 2017-04-14 2018-11-15 日本車輌製造株式会社 Bending machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575421A (en) * 1991-06-17 1993-03-26 Sunx Ltd Multi-axis photoelectric switch
JPH11260215A (en) * 1998-03-13 1999-09-24 Omron Corp Photoelectric sensor and multiple optical axis photoelectric sensor
JP2017205772A (en) * 2016-05-17 2017-11-24 株式会社ジェイアール西日本テクノス Safety apparatus and press machine
JP2018176228A (en) * 2017-04-14 2018-11-15 日本車輌製造株式会社 Bending machine

Also Published As

Publication number Publication date
JP2021137868A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US6803574B2 (en) Night vision device for vehicles
US8094036B2 (en) Monitoring device for a laser machining device
US10618170B2 (en) Robot system
JP2003222295A (en) Method and device for controlling safety-related function of machine
JP2008543586A (en) Imaging and safety systems and methods for industrial machines
JP2003053597A (en) Protective device for machine such as, in particular, bending press machine, cutting machine and punching machine
US9970230B2 (en) Device for monitoring a machine movement and method for monitoring a machine movement
US20180126682A1 (en) Deformation Device and Method for Operating a Deformation Device
WO2021182215A1 (en) Safety device
JP4511345B2 (en) Safety system
US20180328537A1 (en) Safety device and method for monitoring a machine
KR101657141B1 (en) Glare protecting apparatus and method for controlling the same
JP2006061958A (en) Press brake
US20210373526A1 (en) Optoelectronic safety sensor and method for safeguarding a machine
JP3636325B2 (en) Safety equipment for processing machines
JP2003019688A (en) Safety device of robot
JP7213124B2 (en) Safety device
US20210261044A1 (en) Combined radar and lighting unit and laser radar apparatus
JP2021531979A (en) How to operate a bending press
US6334077B1 (en) Operation apparatus for press
KR102150245B1 (en) A strip centering device and control method of the same
JPH0530787U (en) Photoelectric switch
JP2021176210A (en) Safety device
JP2017189800A (en) Safety device of press brake and control method of press brake
KR100255173B1 (en) Scanning laser radar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21769004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21769004

Country of ref document: EP

Kind code of ref document: A1