WO2021182198A1 - 真空ポンプ - Google Patents

真空ポンプ Download PDF

Info

Publication number
WO2021182198A1
WO2021182198A1 PCT/JP2021/008025 JP2021008025W WO2021182198A1 WO 2021182198 A1 WO2021182198 A1 WO 2021182198A1 JP 2021008025 W JP2021008025 W JP 2021008025W WO 2021182198 A1 WO2021182198 A1 WO 2021182198A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum pump
rotor
casing
stator
electrode
Prior art date
Application number
PCT/JP2021/008025
Other languages
English (en)
French (fr)
Inventor
樺澤 剛志
Original Assignee
エドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ株式会社 filed Critical エドワーズ株式会社
Priority to KR1020227028182A priority Critical patent/KR20220146445A/ko
Priority to CN202180017185.5A priority patent/CN115103964A/zh
Priority to US17/908,475 priority patent/US20230097903A1/en
Priority to IL296173A priority patent/IL296173A/en
Priority to EP21768777.1A priority patent/EP4119795A4/en
Publication of WO2021182198A1 publication Critical patent/WO2021182198A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/20Filtering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0092Removing solid or liquid contaminants from the gas under pumping, e.g. by filtering or deposition; Purging; Scrubbing; Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/607Preventing clogging or obstruction of flow paths by dirt, dust, or foreign particles

Definitions

  • the present invention relates to a vacuum pump, and more particularly to a vacuum pump capable of eliminating deposits and the like formed by solidification of gas in the vacuum pump.
  • the turbo molecular pump portion has a rotary blade made of thin metal and a stator blade fixed to the casing inside the casing. Then, the rotary blade is operated at a high speed of, for example, several hundred m / sec, and the process gas used for the processing, which enters from the intake port side, is compressed inside the pump and exhausted from the exhaust port side.
  • the molecules of the process gas taken in from the intake port side of the vacuum pump collide with the stator blade while moving toward the exhaust port side due to the movement to the exhaust port side by the rotary blade blade, and the stator blade blade, the inner surface of the casing, etc. It is adsorbed on and deposited.
  • the deposits adsorbed on the stator blades and the inner surface of the casing obstruct the path of gas molecules toward the exhaust port side. For this reason, problems such as a decrease in the exhaust capacity of the turbo molecular pump, an abnormality in the processing pressure, and a decrease in the production efficiency due to the interruption of the processing of the sediment have occurred.
  • deposits peeled off from the stator blades and the inner surface of the casing flow back into the processing chamber of the semiconductor manufacturing apparatus, causing a problem of contaminating the wafer.
  • a vacuum pump is also proposed in which a vacuum pump is provided with a radical supply device that generates radicals that are adsorbed on the stator blades or the inner surface of the casing and decomposed by peeling off the deposits accumulated at the intake port of the vacuum pump (for example).
  • Patent Document 2 Japanese Patent Document 1
  • a radical supply unit is provided in the vicinity of an intake port of a vacuum pump, and radicals are supplied so as to be ejected from a nozzle of the radical supply unit toward the inner center.
  • Patent Document 2 adopts a configuration in which radicals from a radical supply unit are ejected from a nozzle provided near an intake port toward the inner center and supplied. Then, the radicals supplied from the radical supply unit are flowed together with the process gas in the casing toward the exhaust port side, and on the way, the deposits adsorbed on the stator blades and the inner surface of the casing are decomposed to decompose the process gas. It is discharged from the exhaust port together with. Since such radicals are unstable substances that give a large amount of energy to the raw material gas and forcibly separate the molecular bonds, they recombine in a relatively short time and lose their activity.
  • the pump even if the pump is supplied from the intake port of the vacuum pump, it recombines and loses its activity before reaching the vicinity of the exhaust port of the vacuum pump due to collisions between radicals, collisions with the stator blades and the casing, and the like.
  • radicals are supplied to the entire passage through which the process gas passes in a configuration in which radicals are ejected from the nozzle of the radical supply unit toward the inner center. Cannot be flushed on average. That is, since the radicals are sufficiently supplied near the nozzle outlet, cleaning can be performed effectively, but the radical supply is small at the location away from the nozzle outlet, and cleaning cannot be performed. Therefore, even if an attempt is made to route radicals in the circumferential direction with a manifold or the like, there is a problem that radicals are recombined in the manifold and the cleaning ability is reduced. Therefore, in order to clean the entire vacuum pump, it is necessary to install a plurality of nozzles of the radical supply section side by side in the circumferential direction, which is problematic in terms of cost.
  • the present invention has been proposed to achieve the above object, and the invention according to claim 1 is rotatably supported by a casing, a stator disposed inside the casing, and the stator.
  • a vacuum pump having a shaft and a cylindrical rotor rotatably contained in the casing together with the shaft, wherein at least one pair of electrodes for generating radicals is arranged in the casing. Provided a vacuum pump.
  • At least one pair of electrodes of a radical generator for generating radicals is provided in the casing.
  • a pair of electrodes produces radicals in the casing that decompose the deposits that deposit inside the casing.
  • the radicals generated in the casing come into contact with the sediment in the casing, the molecular chains on the surface of the sediment are cut and the sediment is decomposed into low molecular weight gas. Further, the gas decomposed to a low molecular weight is transferred to the exhaust port of the vacuum pump and effectively discharged to the outside from the exhaust port of the vacuum pump.
  • the deposits can be effectively decomposed and effectively discharged to the outside. can.
  • the invention according to claim 2 provides a vacuum pump in the configuration according to claim 1, further comprising a power source for applying a high frequency voltage to the electrodes.
  • a radical is exerted in the passage through which the process gas in the casing passes.
  • the power supply can be arranged either outside or inside the casing.
  • the electrodes are formed by arranging a plurality of cylindrical plate members concentrically with the axial center of the shaft at substantially equal intervals. To provide a vacuum pump.
  • the plate material of the electrode that generates radicals of the radical generator is made cylindrical, and a plurality of plate materials having, for example, different diameters are formed, and the plurality of cylindrical plate materials are formed on the shaft center of the shaft.
  • the electrodes of the radical generator are arranged substantially evenly over the entire passage through which the process gas passes in the casing. be able to.
  • digitals are generated substantially evenly in the entire passage through which the process gas in the casing passes, and the entire deposits deposited in the casing can be contacted to effectively perform cleaning.
  • the vacuum pump can be miniaturized.
  • the invention according to claim 4 is provided with a plurality of rotary blade blades protruding from the outer peripheral portion of the rotor in the configuration according to any one of claims 1 to 3, and the rotary blade blades.
  • a vacuum pump provided with a turbo molecular pump portion, which is provided with a stator blade blade which is vertically separated from the inner peripheral portion of the casing and is arranged so as to face the rotary blade blade.
  • a vacuum pump provided with a turbo molecular part can obtain a structure capable of effectively decomposing and discharging process gas deposits generated in the casing.
  • the invention according to claim 5 has a spiral or spiral shape on at least one of the outer peripheral portion of the rotor and the inner peripheral portion of the stator in the configuration according to any one of claims 1 to 4.
  • a vacuum pump provided with a threaded groove pump portion provided with a threaded groove.
  • a threaded groove pump section or a vacuum pump provided with both a threaded groove pump section and a turbo molecular section can effectively decompose and discharge process gas deposits generated in the casing.
  • the structure is obtained.
  • the invention according to claim 6 provides a plurality of rotary wing blades protruding from the outer peripheral portion of the rotor in the configuration according to any one of claims 1 to 3, and the rotary wing blades.
  • a screw groove pump portion provided with a spiral or spiral thread groove is provided on at least one of the inner peripheral portions of the above, and the electrode is a boundary between the turbo molecular pump portion and the thread groove pump portion.
  • a vacuum pump provided in.
  • the invention according to claim 7 provides a vacuum pump in which the electrode is provided on the intake port side of the rotor in the configuration according to any one of claims 1 to 6.
  • the invention according to claim 8 provides a vacuum pump in which the electrode is provided at a position intermediate in the axial direction of the rotor in the configuration according to any one of claims 1 to 7.
  • the electrode of the radical generator at a position intermediate in the axial direction of the rotor, it is effective that the process gas taken in from the intake port is deposited around the intermediate position in the axial direction in the casing. Can be removed as a radical.
  • the radical is an unstable substance that gives a large amount of energy to the raw material gas and forcibly separates the molecular bonds. Therefore, it has a drawback that it recombines in a relatively short time and loses its activity.
  • the process gas is deposited in the casing mainly in the vicinity of the exhaust port. Therefore, even if radicals are supplied to the vicinity of the intake port, effective cleaning may not be possible.
  • the electrode which is a part of the radical generator, is provided at the position intermediate in the axial direction of the stator, the process gas deposits accumulated near the exhaust port are effectively decomposed and are good to the outside. Can be discharged and cleaned.
  • the invention according to claim 9 is a vacuum pump in which, in the configuration according to any one of claims 1 to 8, a purge gas supply port for supplying purge gas is provided on the upstream side of the electrode in the casing. I will provide a.
  • the invention according to claim 10 has a control unit capable of switching and controlling the rotor to a rated rotation and a low speed rotation lower than the rating in the configuration according to any one of claims 1 to 9. , Provide a vacuum pump.
  • the purge gas may flow back.
  • the rotor is rotated at a low speed, it is possible to prevent the gasified purge gas such as O radical and F radical from flowing back to the device side such as a closed chamber connected to the intake side, and the intake side.
  • the device connected to can be prevented from being corroded by the purge gas.
  • the deposits deposited in the casing can be decomposed into low molecular weight gas by radicals and effectively discharged to the outside from the exhaust port of the vacuum pump. Further, if at least the electrode of the radical generator is provided in the casing at a place where deposits of process gas are likely to be generated, the deposits can be more effectively decomposed and discharged, so that the deposits are deposited in the casing. Things are reduced. As a result, the maintenance period of the pump can be extended. As a result, the frequency of removing the vacuum pump from the vacuum chamber or the like and overhauling it can be reduced, and the productivity of manufacturing equipment such as semiconductors and flat panels can be improved.
  • FIG. 1 It is a schematic longitudinal side view of the vacuum pump which concerns on embodiment of this invention. It is a figure which shows an example of the electrode structure in the radical generator installed in the casing of the vacuum pump, (a) is the plan view of the electrode structure, and (b) is the sectional view taken along the line AA of (a). be. It is a schematic longitudinal side view of the vacuum pump shown as another modification of the same vacuum pump shown in FIG. It is a schematic longitudinal side view of the vacuum pump shown as still another modification of the same vacuum pump shown in FIG. 1.
  • the present invention relates to a casing, a stator disposed inside the casing, and the stator in order to achieve an object of providing a vacuum pump capable of effectively decomposing deposits by radicals and discharging them.
  • a vacuum pump having a rotatably supported shaft and a cylindrical rotor rotatably encapsulated in the casing along with the shaft, at least one pair that produces radicals in the casing. It was realized by the configuration in which the electrodes of the above were arranged.
  • drawings may be exaggerated by enlarging the characteristic parts in order to make the features easy to understand, and the dimensional ratios and the like of the components are not always the same as the actual ones.
  • hatching of some components may be omitted in order to make the cross-sectional structure of the components easy to understand.
  • FIG. 1 is a schematic longitudinal side view of the vacuum pump 10 shown as an embodiment according to the embodiment of the present invention. In the following description, the vertical direction of FIG. 1 will be described as the vertical direction of the vacuum pump.
  • the vacuum pump 10 shown in FIG. 1 is a composite pump (also referred to as a “turbo molecular pump”) including a turbo molecular pump unit 10A, a thread groove pump unit 10B, and a radical generator 10C as a gas exhaust mechanism.
  • the vacuum pump 10 is used, for example, as a gas exhaust means for a process chamber or other closed chamber in a semiconductor manufacturing device, a flat panel display manufacturing device, a solar panel manufacturing device, and the like, and the overall operation is determined by the control unit 10D. It operates according to the procedure specified.
  • the vacuum pump 10 includes at least a part of a turbo molecular pump unit 10A and a thread groove pump unit 10B that exert an exhaust function, and a radical generator 10C that decomposes and discharges deposits accumulated inside the vacuum pump 10.
  • a casing 11 is provided.
  • a cylindrical pump case 11A, a pump base 11B, and a base end lid 11C are arranged in the cylindrical axial direction, and the pump case 11A and the pump base 11B are connected by a fastening member 12A, and the pump base is connected.
  • a mounting bolt 12B By connecting 11B and the base end lid 11C with a mounting bolt 12B, a bottomed substantially cylindrical shape is formed.
  • the upper end side of the pump case 11A (above the paper surface in FIG. 1) is open as an intake port 13A, and the peripheral surface on the upper end side is supplied with a first purge gas leading into the electrode portion 36A of the radical generator 10C.
  • Port 14A is provided.
  • a flange 15A is formed at the intake port 13A.
  • a closed chamber (not shown) that creates a high vacuum, such as a process chamber of a semiconductor manufacturing apparatus, is communicated with the flange 15A of the intake port 13A.
  • the flange 15A is formed with an annular groove 38 for mounting a bolt hole 37 for inserting a bolt (not shown) and an O-ring for maintaining airtightness between the flange on the closed chamber side.
  • a purge gas supply device (not shown) is communicated with the flange 15B of the first purge gas supply port 14A.
  • a purge gas supply device (not shown) is communicated with the flange 15B of the first purge gas supply port 14A, and the purge gas supply device connects to the first purge gas supply port 14A, for example, O2 (oxygen) and NF3 (nitrogen trifluoride). ) Etc. are supplied.
  • the pump base 11B is provided with an exhaust port 13B and a second purge gas supply port 14B.
  • the exhaust port 13B is provided with a flange 16A
  • the second purge gas supply port 14B is provided with a flange 16B.
  • An auxiliary pump or the like (not shown) is communicated with the flange 16A of the exhaust port 13B.
  • An auxiliary pump different from the auxiliary pump communicated with the first purge gas supply port 14A is connected to the flange 16B of the second purge gas supply port 14B, and from the second purge gas supply port 14B, for example, N2.
  • An inert gas such as (nitrogen) gas or Ar (argon) gas is flowed.
  • the second purge gas supply port 14B is connected to the stator column 35, which will be described later, and supplies purge gas into the electrical component storage portion 35a (the tubular inside of the stator column 35) of the stator column 35. It is used to protect electrical components from corrosive gas that may be contained in process gas or the like exhausted from a closed chamber connected to the vacuum pump 10.
  • the vacuum pumps 10 are arranged one above the other, but the vacuum pumps 10 are mounted sideways on the side of the closed chamber, or the intake port 13A is placed on the lower side for sealing. It can also be mounted on top of the chamber.
  • the structures exhibiting the exhaust function are roughly divided into a stator 17 fixed in the casing 11 and a rotor 18 rotatably arranged relative to the stator 17. And so on.
  • the rotor 18 is composed of a rotary blade 19 and a shaft 20 and the like.
  • the rotary blade 19 has a first cylindrical portion 21a arranged on the intake port 13A side (turbo molecular pump portion 10A) and a second cylindrical portion 21b arranged on the exhaust port 13B side (screw groove pump portion 10B). It has a cylindrical member 21 that is integrally formed.
  • the first cylindrical portion 21a is a member having a substantially cylindrical shape, and constitutes a rotary wing portion of the turbo molecular pump portion 10A.
  • a partition wall 23 for connecting to the shaft 20 is formed in the middle of the first cylindrical portion 21a in the axial direction.
  • the partition wall 23 is formed with a shaft hole 23a for inserting and mounting the upper end side of the shaft 20, and a bolt hole (not shown) to which a mounting bolt 24 for fixing the shaft 20 and the rotor blade 19 is mounted.
  • the second cylindrical portion 21b is a member having a cylindrical outer peripheral surface, and constitutes a rotary wing portion of the screw groove pump portion 10B.
  • the shaft 20 is a cylindrical member that constitutes the shaft of the rotor 18, and a flange portion 20a that is screwed and fixed to the partition wall 23 of the first cylindrical portion 21a via a mounting bolt 24 is integrally formed at the upper end portion. It is formed. Then, the shaft 20 is inserted into the shaft hole 23a from the inside (lower side) of the first cylindrical portion 21a until the flange portion 20a abuts on the lower surface of the partition wall 23, and then the mounting bolt 24 is inserted into the partition wall 23. It is fixed and integrated with the cylindrical member 21 by screwing it from the upper surface side of the 23 through a bolt hole (not shown) to the mounting hole of the flange portion 20a.
  • a permanent magnet is fixed to the outer peripheral surface in the middle of the shaft 20 in the axial direction, and constitutes a portion of the motor portion 25 on the rotor side.
  • the magnetic pole formed by the permanent magnet on the outer circumference of the shaft 20 has an N pole on the outer peripheral surface and an S pole on the remaining half circumference.
  • a portion of the radial magnetic bearing portion 26 on the rotor 18 side for supporting the shaft 20 in the radial direction with respect to the motor portion 25 is formed on the upper end side (intake port 13A side) of the shaft 20 and is formed on the lower end side (lower end side (intake port 13A side).
  • the exhaust port 13B side) is also formed with a portion of the radial magnetic bearing portion 27 on the rotor 18 side for supporting the shaft 20 with respect to the motor portion 25 in the radial direction.
  • a portion on the rotor 18 side of the axial magnetic bearing portion 28 for supporting the shaft 20 in the axial direction (thrust direction) is formed at the lower end of the shaft 20, a portion on the rotor 18 side of the axial magnetic bearing portion 28 for supporting the shaft 20 in the axial direction (thrust direction) is formed.
  • portions of the radial displacement sensors 29 and 30 on the rotor 18 side are formed in the vicinity of the radial magnetic bearing portions 26 and 27, respectively, so that the displacement of the shaft 20 in the radial direction can be detected.
  • the radial magnetic bearing portions 26 and 27 and the rotor side portions of the radial displacement sensors 29 and 30 are made of laminated steel plates in which steel plates are laminated in the shaft direction of the rotor 18. This is to prevent an eddy current from being generated on the shaft 20 by the magnetic field generated by the coils forming the portions of the radial magnetic bearing portions 26 and 27 and the radial displacement sensors 29 and 30 on the rotor 18 side.
  • the rotor 19 is made of a metal such as stainless steel or an aluminum alloy.
  • a stator 17 is formed on the inner peripheral side of the casing 11.
  • the stator 17 includes a stator blade 31 and a spacer 34 provided on the intake port 13A side (turbo molecular pump portion 10A side), a thread groove spacer 32 provided on the exhaust port 13B side (thread groove pump portion 10B side), and the like. It is composed of a stator of the motor part 25, a stator of the radial magnetic bearing parts 26 and 27, a stator of the axial magnetic bearing part 28, a stator of the radial displacement sensors 29 and 30, a stator column 35 and the like. There is.
  • the stator blade 31 is composed of a stator blade 33 that is inclined by a predetermined angle from a plane perpendicular to the axis of the shaft 20 and extends from the inner peripheral surface of the casing 11 toward the shaft 20. Further, in the turbo molecular pump portion 10A, the stator blades 31 are formed in a plurality of stages in which the stator blades 33 are axially alternated with the rotary blades 22 of the rotary blades 19. The stator blades 33 of each stage are separated from each other by a cylindrical spacer 34.
  • the thread groove spacer 32 is a cylindrical member having a spiral groove 32a formed on the inner peripheral surface.
  • the inner peripheral surface of the thread groove spacer 32 faces the outer peripheral surface of the second cylindrical portion 21b of the cylindrical member 21 with a predetermined clearance (gap).
  • the direction of the spiral groove 32a formed in the thread groove spacer 32 is the direction toward the exhaust port 13B when the gas is transported in the rotation direction of the rotor 18 in the spiral groove 32a.
  • the depth of the spiral groove 32a becomes shallower as it approaches the exhaust port 13B, and the gas transported through the spiral groove 32a is compressed as it approaches the exhaust port 13B.
  • the stator blade 31 and the thread groove spacer 32 are made of a metal such as stainless steel or an aluminum alloy.
  • the pump base 11B is a member having a substantially short cylindrical shape having an opening 39 penetrating in the vertical direction at the center.
  • a stator column 35 having a cylindrical shape inserts and engages the lower end side into the opening 39, and the upper surface side is concentric with the central axis of the stator 17 toward the intake port 13A. It is attached to.
  • the stator column 35 supports the motor portion 25, the radial magnetic bearing portions 26 and 27, and the stator-side portions of the radial displacement sensors 29 and 30.
  • a base end lid 11C is attached to the lower surface side of the pump base 11B with mounting bolts 12B and is integrated with the pump base 11B. That is, the base end lid 11C forms the casing 11 together with the pump case 11A and the pump base 11B.
  • stator coils are arranged at equal intervals on the inner peripheral side of the stator coils so that a rotating magnetic field can be generated around the magnetic poles formed on the shaft 20. There is.
  • the radial magnetic bearing portions 26 and 27 are composed of coils arranged at 90 degree intervals around the rotation axis.
  • the radial magnetic bearing portions 26 and 27 magnetically levitate the shaft 20 in the radial direction by attracting the shaft 20 with the magnetic field generated by these coils.
  • An axial magnetic bearing portion 28 is formed at the bottom of the stator column 35.
  • the axial magnetic bearing portion 28 is composed of a disk protruding from the shaft 20 and coils arranged above and below the disk. The magnetic field generated by these coils attracts the disk, so that the shaft 20 magnetically levitates in the axial direction.
  • the radical generator 10C is arranged at the boundary between the turbo molecular pump portion 10A and the thread groove pump portion 10B, which is an axially intermediate position of the rotor 18 arranged in the casing 11.
  • the radical generator 10C includes an electrode portion 36A and a power supply 36B.
  • the power supply 36B of the radical generator 10C applies a high frequency voltage to the electrodes 36a1, 36a2, 36a3, 36a4, 36a5 of the electrode portion 36A of the radical generator 10C, and may be provided outside the casing 11.
  • the power supply 36B applies a voltage to each of the adjacent electrodes 36a1, 36a2, 36a3, 36a4, 36a5 so that different electrodes + and-are generated.
  • the electrode portion 36A of the radical generator 10C has a plan view shown in FIG. 2 (a) and a cross-sectional view taken along the line AA in FIG. 2 (b) (FIG. 1 is also A).
  • -As shown in the cross-sectional view taken along line A) it has a plurality of electrodes 36a1, 36a2, 36a3, 36a4, 36a5 made of a cylindrical plate material (five in this embodiment).
  • the electrodes 36a1, 36a2, 36a3, 36a4, and 36a5 are arranged at substantially equal intervals with the axial centers of the shafts 20 as concentric, by changing the diameters of the cylinders in order at substantially equal ratios.
  • the gap between the electrode 36a1 and the electrode 36a2 is the gap between the electrode 36a2 and the electrode 36a3, the gap between the electrode 36a3 and the electrode 36a4, and the gap between the electrode 36a4 and the electrode 36a5. It is almost equal. Further, among the electrodes 36a1, 36a2, 36a3, 36a4, and 36a5, the inner diameter of the electrode 36a1 arranged on the innermost side is larger than the outer diameter of the corresponding rotary blade 19, and the electrode 36a5 arranged on the outermost side. The outer diameter of the pump case 11A is smaller than the inner diameter of the corresponding pump case 11A.
  • the electrode portion 36A formed in this way horizontally fills the entire passage of the process gas in the casing 11 between the rotor 18 and the pump case 11A in a horizontal state substantially perpendicular to the axis center of the shaft 20. It is arranged concentrically with the shaft 20 so as to cross it. Therefore, in the vacuum pump 10 of this embodiment, the process gas that enters from the intake port 13A and flows through the casing 11 and the purge gas supplied from the first purge gas supply port 14A are the electrodes 36a1, 36a2, and 36a3 of the electrode portion 36A. , 36a4, and 36a5, and flow toward the exhaust port 13B.
  • the radical generator 10C in a state where a high frequency voltage is applied from the power supply 36B to each of the electrodes 36a1, 36a2, 36a3, 36a4, 36a5 of the electrode portion 36A, for example O2 described above from the first purge gas supply port 14A,
  • a purge gas such as NF3
  • O radicals and F radicals are generated when the purge gas passes between the electrodes 36a1, 36a2, 36a3, 36a4, and 36a5.
  • the O radical and the F radical flow toward the exhaust port 13B, a large amount of energy is given to the deposit deposited inside the casing 11, and the molecular chain on the surface of the deposit is forcibly cut to form a low molecular weight gas.
  • the gas decomposed into low molecular weight is transferred to the exhaust port 13B, and functions to be discharged from the exhaust port 13B to the outside of the vacuum pump 10.
  • the control unit 10D is composed of, for example, a microcomputer, and according to a program incorporated in the computer, the motor unit 25, the radial magnetic bearing units 26, 27, the axial magnetic bearing unit 28, and the radical generator are in accordance with a predetermined procedure. 10C, the start / stop of the auxiliary pump communicated with the first purge gas supply port 14A and the auxiliary pump communicated with the second purge gas supply port 14B are controlled.
  • the vacuum pump 10 configured as described above operates as follows and discharges gas from the vacuum container.
  • the radial magnetic bearing units 26 and 27 and the axial magnetic bearing unit 28 are activated, the entire rotor 18 is magnetically levitated via the shaft 20, and the rotor 18 is placed in the space in a non-contact manner. To support.
  • the motor unit 25 is driven by the control of the control unit 10D to rotate the shaft 20 in a predetermined direction. That is, the rotor 18 is rotated in a predetermined direction.
  • the rotation speed is, for example, about 30,000 rotations per minute.
  • the rotation direction of the rotor 18 is clockwise when viewed from the intake port side, but the vacuum pump 10 can be configured to rotate counterclockwise.
  • the control unit 10D drives the radical generator 10C between the process processes, applies a high frequency voltage to the electrodes 36a1, 36a2, 36a3, 36a4, and 36a5 of the electrode unit 36A, and further, the first purge gas.
  • Purge gas such as O2 and NF3 is supplied from the supply port 14A, and the purge gas is flowed toward the exhaust port 13B in the passage through which the process gas flows.
  • the control unit 10D controls the drive of the motor unit 25, switches the rotation of the motor unit 25 to a low speed rotation lower than the rated rotation, and drives the rotor 18 at a low speed. Then, while the rotor 18 is rotating at a constant speed, purge gas such as O2 and NF3 is flowed from the first purge gas supply port 14A.
  • purge gas such as O2 and NF3 is flowed from the first purge gas supply port 14A.
  • O radicals and F radicals are generated in the radical generator 10C when the purge gas passes between the electrodes 36a1, 36a2, 36a3, 36a4, and 36a5.
  • the reason why the rotor 18 is rotated at a low speed when flowing the purge gas is that the purge gas surely flows to the exhaust port 13B side and does not flow back into the vacuum chamber from the intake port 13A side, and is inside the vacuum chamber. This is to avoid corrosion and the like. Therefore, the low molecular weight gas decomposed by the purge gas is discharged to the outside of the casing 11 from the exhaust port 13B, so that the deposits deposited in the casing 11 can be reduced. This makes it possible to extend the maintenance period of the pump and reduce the frequency of removing the vacuum pump from and overhauling it.
  • an inert gas such as N2 (nitrogen) gas or Ar (argon) gas is flowed into the stator column 35 from the second purge gas supply port 14B, and the stator column 35 is driven.
  • N2 (nitrogen) gas or Ar (argon) gas is flowed into the stator column 35 from the second purge gas supply port 14B, and the stator column 35 is driven.
  • the electric parts and the like stored in the electric parts storage portion 35a of the 35 are protected from the corrosive gas.
  • the process gas is deposited in the casing mainly in the vicinity of the exhaust port 13B. Therefore, even if radicals are supplied to the vicinity of the intake port 13A, effective cleaning may not be possible.
  • the electrode portion 36A of the radical generator 10C is provided at a position intermediate in the axial direction of the rotor 18, that is, at a position at the boundary between the turbo molecular pump portion 10A and the thread groove pump portion 10B. , The deposit of the process gas to be deposited on the downstream side (exhaust port 13B side) of the electrode portion 36A of the radical generator 10C can be effectively decomposed and discharged to the outside satisfactorily.
  • the plurality of electrodes 36a1, 36a2, 36a3, 36a4, and 36a5 of the electrode portion 36A in the radical generator 10C are arranged concentrically in a cylindrical shape, and cross the entire passage through which the process gas and the purge gas pass in the casing 11. Therefore, the space occupied by the radical generator 10C in the casing 11 can be reduced and the size can be reduced. This makes it possible to reduce the size of the vacuum pump 10. It should be noted that at least one pair of electrodes of the electrode portion 36A is sufficient, and if the number of electrodes is increased, the amount of radicals generated increases, and the effect of decomposing deposits by radicals can be further improved.
  • the structure in which the electrode portion 36A of the radical generator 10C is arranged at an axially intermediate position of the rotor 18, that is, at the boundary between the turbo molecular pump portion 10A and the thread groove pump portion 10B is disclosed.
  • the position where the electrode portion 36A of the radical generator 10C is provided is not limited to the position of the structure of the above embodiment, for example, the position in the vacuum pump 10 shown in FIGS. 3 and 4 as a modification of this embodiment. It may be.
  • FIG. 3 is a schematic longitudinal side view showing a modification of the vacuum pump 10 shown in FIG. Since the members in FIG. 3 having the same reference numerals as those in FIG. 1 are the same members as those shown in FIG. 1, duplicate description will be omitted.
  • the electrode portion 36A of the radical generator 10C is provided at a position intermediate in the axial direction of the turbo molecular pump portion 10A.
  • the electrode portion 36A of the radical generator 10C is provided at an axially intermediate position of the rotor 18, that is, at an axially intermediate position of the turbo molecular pump portion 10A.
  • the deposit of the process gas to be deposited on the downstream side (exhaust port 13B side) of the electrode portion 36A can be effectively decomposed and discharged to the outside satisfactorily.
  • FIG. 4 is a schematic longitudinal side view showing another modification of the vacuum pump 10 shown in FIG. Since the members having the same reference numerals as those in FIG. 1 in FIG. 4 are the same members as those shown in FIG. 1, duplicate description will be omitted.
  • the electrode portion 36A of the radical generator 10C is provided in the casing 11 at a position between the first purge gas supply port 14A and the rotor 18 in the axial direction of the rotor 18. ..
  • the electrode portion 36A of the radical generator 10C is provided in the casing 11 of the rotor 18 at a position between the first purge gas supply port 14A and the rotor 18, so that the electrodes are installed. A large space can be secured for this, so that the number of electrodes can be increased (10 in this modification) as compared with the vacuum pumps 10 shown in FIGS. 1 and 3, and more digital can be generated.
  • the present invention can be modified in various ways as long as it does not deviate from the spirit of the present invention, and it is natural that the present invention extends to the modified ones.
  • the spiral groove 32a is provided on the inner peripheral surface of the fixed cylinder (screw groove spacer 32)
  • the spiral on the outer peripheral surface side of the second cylindrical portion 21b of the cylindrical member 21 has been described.
  • the screw groove pump portion 10B may be formed by providing the screw grooves of the above, or by providing spiral screw grooves on both of them.
  • a disk protruding from the outer peripheral surface of the cylindrical member 21 and a disk protruding from the inner surface of the casing 11 may be provided, and a spiral thread groove may be provided on the facing surface to form the screw groove pump portion 10B. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Electrophonic Musical Instruments (AREA)

Abstract

ケーシング(11)と、ケーシング(11)の内側に配設されるステータ(17)と、ステータ(17)に対し回転自在に支持されたシャフト(20)を有するとともに、シャフト(20)と共にケーシング(11)に回転可能に内包される円筒状のロータ(18)と、を備えた真空ポンプであって、ケーシング(11)内に、ラジカルを生成させるラジカル発生装置(10C)の一部である電極部(36A)を配設した。

Description

真空ポンプ

 本発明は、真空ポンプに関するものであり、特に、真空ポンプ内にガスが固化して生成される堆積物等を無くすことができる真空ポンプに関するものである。

 近年、被処理基板であるウエハから半導体素子を形成するプロセスにおいて、ウエハを高真空に保持された半導体製造装置の処理室内で処理して、製品の半導体素子を作る方法が取られている。ウエハを真空室で加工処理する半導体製造装置では、高真空度を達成して保持するためにターボ分子ポンプ部及びネジ溝ポンプ部などを備えた真空ポンプが用いられている(例えば、特許文献1参照)。

 ターボ分子ポンプ部は、ケーシングの内部に、薄い金属製の回転可能な回転翼とケーシングに固定されたステータ翼を有している。そして、回転翼を、例えば数百m/秒の高速で運転させ、吸気口側から入る、処理に用いたプロセスガスを、ポンプ内部で圧縮して排気口側から排気するようにしている。

 ところで、真空ポンプの吸気口側より取り込まれたプロセスガスの分子は、回転翼ブレードによる排気口側への移動により、排気口側へ進む間にステータ翼ブレードにぶつかり、ステータ翼ブレードやケーシング内面等に吸着されて堆積する。このステータ翼ブレードやケーシング内面に吸着した堆積物は、排気口側に向うガス分子の進路を妨げる。このため、ターボ分子ポンプの排気能力の低下や、処理圧力の異常、堆積物の処理中断による生産効率の低下などの問題が発生していた。

 また、ステータ翼やケーシング内面から剥がれた堆積物が半導体製造装置の処理室に逆流し、ウエハを汚染する問題が発生していた。

 その対策として、真空ポンプの吸気口にステータ翼ブレードやケーシング内面等に吸着されて堆積する堆積物を剥離して分解するラジカルを発生するラジカル供給装置を設けた真空ポンプも提案されている(例えば、特許文献2参照)。

 特許文献2で知られる技術は、真空ポンプの吸気口の近傍に、ラジカル供給部を設け、ラジカル供給部のノズルから内側中心に向けてラジカルを噴出するようにして供給している。

特開2019-82120公報 特開2008-248825号公報

 特許文献2に記載の発明は、ラジカル供給部からのラジカルを、吸気口の近傍に設けたノズルから内側中心に向け噴出して供給する構成を採っている。そして、ラジカル供給部から供給されるラジカルは、ケーシング内を排気口側に向かってプロセスガスと共に流され、途中、ステータ翼ブレードやケーシング内面などに吸着している堆積物を分解して、プロセスガスと共に排気口から排出される。このようなラジカルは、原料ガスに大きなエネルギーを与えて、強制的に分子結合を引き離す不安定な物質であるため、比較的短時間で再結合し、活性を失ってしまう。そのため、真空ポンプの吸気口から供給しても、ラジカル同士の衝突、ステータ翼ブレードやケーシングとの衝突などにより、真空ポンプの排気口付近まで到達する前に再結合して活性を失ってしまう。

 一方、プロセスガスが堆積するのは、主に真空ポンプの排気口付近であるため、ラジカルを吸気口付近に供給しても、効果的にクリーニングできないという問題点があった。

 また、真空ポンプの吸気口付近にラジカル供給部を設置する場合、ラジカル供給部のノズルからラジカルを内側中心に向けて噴出するようにして供給している構成では、プロセスガスが通る通路全体にラジカルを平均して流すことができない。すなわち、ノズル流出口に近いところではラジカルが十分に供給されるので、効果的にクリーニングができるが、ノズル流出口から離れた箇所ではラジカルの供給が少なく、クリーニングができない。そこで、マニホールド等でラジカルを円周方向に引き回そうとしても、マニホールド内で再結合してしまい、洗浄能力が減少するという問題点があった。そのため、真空ポンプ全体をクリーニングするためには、ラジカル供給部のノズルを、円周方向に複数並べて設置する必要があり、コストがかかるという問題点もあった。

 そこで、堆積物をラジカルにより分解して、効果的に排出できる真空ポンプを提供するめに解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。

 本発明は上記目的を達成するために提案されたものであり、請求項1に記載の発明は、ケーシングと、前記ケーシングの内側に配設されるステータと、前記ステータに対し回転自在に支持されたシャフトを有するとともに、前記シャフトと共に前記ケーシングに回転可能に内包される円筒状のロータと、を備えた真空ポンプであって、前記ケーシング内に、ラジカルを生成する少なくとも1対の電極が配設された、真空ポンプを提供する。

 この構成によれば、ケーシング内に、ラジカルを発生させるラジカル発生装置の少なくとも1対の電極を設けている。1対の電極は、ケーシング内部に堆積する堆積物を分解するラジカルをケーシング内に生成する。そして、ケーシング内に生成されたラジカルが、ケーシング内で堆積物と接触すると、堆積物の表面の分子鎖が切断され、堆積物が低分子量のガスに分解される。また、低分子量に分解されたガスは、真空ポンプの排気口まで移送され、真空ポンプの排気口から外部に効果的に排出される。

 また、ラジカル発生装置の少なくとも1対の電極を、ケーシング内で、プロセスガスの堆積物が発生し易い箇所に設けることにより、堆積物を効果的に分解して外部に効果的に排出することができる。

 請求項2に記載の発明は、請求項1に記載の構成において、前記電極に高周波電圧を印加する電源をさらに備えている、真空ポンプを提供する。

 この構成によれば、ケーシング内のプロセスガスが通る通路中に少なくとも1対の電極を配置し、その電極間に電源から高周波電圧を印加すると、ケーシング内のプロセスガスが通る通路中にラジカルを効果的に生成することができる。なお、電源は、ケーシングの外側又は内側のいずれに配置することもできる。

 請求項3に記載の発明は、請求項1又は2に記載の構成において、前記電極は、円筒状に形成された板材を、前記シャフトの軸中心を同心として略等間隔で複数配設してなる、真空ポンプを提供する。

 この構成によれば、ラジカル発生装置のラジカルを生成する電極の板材を円筒状にするとともに、例えば直径を変えて複数個形成し、この円筒状をした複数個の板材を、シャフトの軸中心を同心として略等間隔で配設し、かつ、ケーシング内のプロセスガスが通る通路全体を横切る形で配置すると、ラジカル発生装置の電極は、ケーシング内のプロセスガスが通る通路全体に略均等に配置することができる。これにより、ケーシング内のプロセスガスが通る通路全体にデジカルが略均等に生成され、ケーシング内に堆積する堆積物全体に接触して、効果的にクリーニングを行うことができる。また、ラジカル発生装置の複数の電極を円筒状にして、ケーシング内のプロセスガスが通る通路全体を横切る形で配置することにより、ケーシング内におけるラジカル発生装置が占めるスペースを少なく、かつ、コンパクトにすることができるので、真空ポンプの小型化が可能になる。

 請求項4に記載の発明は、請求項1乃至3のいずれか1項に記載の構成において、前記ロータの外周部から突出された複数の回転翼ブレードを設けるとともに、前記回転翼ブレードに対して軸方向に離間して前記ケーシングの内周部から突出され、前記回転翼ブレードと面対向して配置されたステータ翼ブレードを設けてなる、ターボ分子ポンプ部を備えた、真空ポンプを提供する。

 この構成によれば、ターボ分子部を備えた真空ポンプで、ケーシング内で発生するプロセスガスの堆積物を、効果的に分解して排出できる構造が得られる。

 請求項5に記載の発明は、請求項1乃至4のいずれか1項に記載の構成において、前記ロータの外周部と前記ステータの内周部の少なくともどちらか一方に、螺旋状又は渦巻き状のネジ溝を設けてなる、ネジ溝ポンプ部を備えた、真空ポンプを提供する。

 この構成によれば、ネジ溝ポンプ部、又は、ネジ溝ポンプ部とターボ分子部の両方を備えた真空ポンプで、ケーシング内で発生するプロセスガスの堆積物を、効果的に分解して排出できる構造が得られる。

 請求項6に記載の発明は、請求項1乃至3のいずれか1項に記載の構成において、前記ロータの外周部から突出された複数の回転翼ブレードを設けるとともに、前記回転翼ブレードに対して軸方向に離間して前記ケーシングの内周部から突出され、前記回転翼ブレードと面対向して配置されたステータ翼ブレードを設けてなる、ターボ分子ポンプ部と、前記ロータの外周部と前記ステータの内周部の少なくともどちらか一方に、螺旋状又は渦巻き状のネジ溝を設けてなる、ネジ溝ポンプ部と、を備え、前記電極が、前記ターボ分子ポンプ部と前記ネジ溝ポンプ部の境界に設けられた、真空ポンプを提供する。

 この構成によれば、ラジカル発生装置の電極等をターボ分子ポンプ部と前記ネジ溝ポンプ部の境界に設けることにより、ターボ分子ポンプ部とネジ溝ポンプ部の境界位置周辺に堆積するプロセスガスの堆積物を効果的に分解させて外部に良好に排出し、クリーニングをすることができる。

 請求項7に記載の発明は、請求項1乃至6のいずれか1項に記載の構成において、前記電極を、前記ロータより吸気口側に設けた、真空ポンプを提供する。

 この構成によれば、ラジカル発生装置の電極を、ロータより吸気口側に設けることにより、ラジカル発生装置の電極を配置するスペースが大きくとれ、ラジカル生成用の電極をより多く配置することができる。これにより、ラジカルをより多く生成して堆積物を更に効果的に分解させて外部に排出し、クリーニングをすることができる。

 請求項8に記載の発明は、請求項1乃至7のいずれか1項に記載の構成において、前記電極を、前記ロータの軸方向中間の位置に設けた、真空ポンプを提供する。

 この構成によれば、ラジカル発生装置の電極を、ロータの軸方向中間の位置に設けることにより、吸気口から取り込まれたプロセスガスが、ケーシング内の軸方向中間の位置周辺で堆積するのを効果的に除去することができる。そのラジカルは、原料ガスに大きなエネルギーを与えて強制的に分子結合を引き離す、不安定な物質である。そのため、比較的短時間で再結合し、活性を失ってしまう欠点を有している。一方、ケーシング内にプロセスガスが堆積するのは、主に排気口付近である。そのため、吸気口付近にラジカルを供給しても、効果的にクリーニングできないこともある。しかしながら、この構成では、ラジカル発生装置の一部である電極をステータの軸方向中間の位置に設けているので、排気口付近に堆積するプロセスガスの堆積物を効果的に分解させて外部へ良好に排出し、クリーニングをすることができる。

 請求項9に記載の発明は、請求項1乃至8のいずれか1項に記載の構成において、前記ケーシング内の、前記電極より上流側に、パージガスを供給するパージガス供給ポートを設けた、真空ポンプを提供する。

 この構成によれば、ラジカル発生装置の電極より上流側に設けたパージガス供給ポートから、例えばO2(酸素)、NF3(三フッ化窒素)等のパージガスを流すと、O(酸素)ラジカル、F(フッ素)ラジカルが生成され、生成されたOラジカル、Fラジカル等によりプロセスガスの堆積物を低分子量のガスに分解して、排気口から外部に排出することができる。これにより、ケーシング内に堆積する堆積物を更に減少させることができる。

 請求項10に記載の発明は、請求項1乃至9のいずれか1項に記載の構成において、前記ロータを、定格回転と、定格よりも低速の低速回転とに切り換え制御可能な制御部を有する、真空ポンプを提供する。

 この構成によれば、例えばO2、NF3等のパージガスを供給してOラジカル、Fラジカル等を発生させているときに、パージガスが逆流する虞がある。しかし、ロータを低速で回転させておくと、Oラジカル、Fラジカル等のガス化されたパージガスが吸気側に接続された密閉チャンバなどの装置側に逆流するのを防止することができ、吸気側に接続される装置がパージガスによって腐食するのを防止できる。

 発明によれば、ケーシング内に堆積された堆積物を、ラジカルにより低分子量のガスに分解して真空ポンプの排気口から外部に効果的に排出することができる。また、ラジカル発生装置の少なくとも電極を、ケーシング内でプロセスガスの堆積物が発生し易い箇所に設けると、堆積物を更に効果的に分解して排出することができるので、ケーシング内に堆積する堆積物が減る。これにより、ポンプのメンテナンス期間を延ばすことができる。その結果、真空ポンプを真空チャンバ等から取り外してオーバーホールする頻度を少なくして、半導体、フラットパネル等の製造装置の生産性の向上を図ることができる。

本発明の実施の形態に係る真空ポンプの概略縦断側面図である。 同上真空ポンプのケーシング内に設置されるラジカル発生装置における電極構成の一例を示す図で、(a)は電極構成の平面図、(b)は(a)のA-A線矢視断面図である。 図1に示した同上真空ポンプの他の変形例として示す真空ポンプの概略縦断側面図である。 図1に示した同上真空ポンプの更に他の変形例として示す真空ポンプの概略縦断側面図である。

 本発明は、堆積物をラジカルにより分解して、効果的に排出できる真空ポンプを提供するという目的を達成するために、ケーシングと、前記ケーシングの内側に配設されるステータと、前記ステータに対し回転自在に支持されたシャフトを有するとともに、前記シャフトと共に前記ケーシングに回転可能に内包される円筒状のロータと、を備えた真空ポンプであって、前記ケーシング内に、ラジカルを生成する少なくとも1対の電極が配設された、構成としたことにより実現した。

 以下、本発明の実施形態に係る一実施例を添付図面に基づいて詳細に説明する。なお、以下の実施例において、構成要素の数、数値、量、範囲等に言及する場合、特に明示した場合及び原理的に明らかに特定の数に限定される場合を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも構わない。

 また、構成要素等の形状、位置関係に言及するときは、特に明示した場合及び原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似又は類似するもの等を含む。

 また、図面は、特徴を分かり易くするために特徴的な部分を拡大する等して誇張する場合があり、構成要素の寸法比率等が実際と同じであるとは限らない。また、断面図では、構成要素の断面構造を分かり易くするために、一部の構成要素のハッチングを省略することがある。

 また、以下の説明において、上下や左右等の方向を示す表現は、絶対的なものではなく、本発明の真空ポンプの各部が描かれている姿勢である場合に適切であるが、その姿勢が変化した場合には姿勢の変化に応じて変更して解釈されるべきものである。また、実施例の説明の全体を通じて同じ要素には同じ符号を付している。

 図1は本発明の実施形態に係る一実施例として示す真空ポンプ10の概略縦断側面図である。以下の説明において、図1の上下方向を真空ポンプの上下として説明する。

 図1に示す真空ポンプ10は、ガス排気機構としてのターボ分子ポンプ部10Aとネジ溝ポンプ部10Bとラジカル発生装置10Cを備えた複合ポンプ(「ターボ分子ポンプ」とも言う)である。真空ポンプ10は、例えば、半導体製造装置、フラット・パネル・ディスプレイ製造装置、ソーラー・パネル製造装置におけるプロセスチャンバやその他密閉チャンバのガス排気手段等として使用され、また全体の動作は制御部10Dにより決められた手順で動作される。

 真空ポンプ10は、排気機能を発揮させるターボ分子ポンプ部10Aとネジ溝ポンプ部10B、及び、真空ポンプ10内部に堆積する堆積物を分解して排出するラジカル発生装置10Cの少なくとも一部を、包括して内包するケーシング11を備えている。

 ケーシング11は、筒状のポンプケース11Aとポンプベース11Bとベース端蓋11Cを、その筒軸方向に配置し、ポンプケース11Aとポンプベース11Bとの間を締結部材12Aで連結するとともに、ポンプベース11Bとベース端蓋11Cとの間を取付ボルト12Bで連結することにより、有底の略円筒形状に形成されている。

 ポンプケース11Aの上端部側(図1において紙面上方)は、吸気口13Aとして開口しており、また上端部側の周面にはラジカル発生装置10Cの電極部36A内に通じる第1のパージガス供給ポート14Aが設けてある。吸気口13Aにはフランジ15Aが形成されている。なお、吸気口13Aのフランジ15Aには、例えば、半導体製造装置のプロセスチャンバ等、高真空となる図示しない密閉チャンバが連通接続される。そのフランジ15Aには、図示しないボルトを挿通するためのボルト穴37と、上記密閉チャンバ側のフランジとの間の気密性を保つためのOリングを装着する環状溝38が形成されている。

 一方、第1のパージガス供給ポート14Aのフランジ15Bには、図示しないパージガス供給装置が連通接続される。そして、第1のパージガス供給ポート14Aのフランジ15Bには、図示しないパージガス供給装置が連通接続され、パージガス供給装置から第1のパージガス供給ポート14Aに、例えばO2(酸素)、NF3(三フッ化窒素)等のパージガスが供給される。

 一方、ポンプベース11Bには、排気口13Bと第2のパージガス供給ポート14Bが設けられている。排気口13Bにはフランジ16Aが設けられ、第2のパージガス供給ポート14Bにはフランジ16Bが設けられている。なお、排気口13Bのフランジ16Aには、図示しない補助ポンプ等が連通接続される。第2のパージガス供給ポート14Bのフランジ16Bには、第1のパージガス供給ポート14Aに連通接続される補助ポンプとは別の補助ポンプが接続され、第2のパージガス供給ポート14Bからは、例えば、N2(窒素)ガスやAr(アルゴン)ガス等の不活性ガスが流される。第2のパージガス供給ポート14Bは、後述する固定子コラム35内に通じており、固定子コラム35の電気部品収納部35a(固定子コラム35の筒状内部)内にパージガスを供給することで、真空ポンプ10に接続された密閉チャンバから排気されて来るプロセスガスなどに含まれる虞がある腐食性ガスから、電気部品を保護するために利用される。

 なお、図1に示す実施例では、真空ポンプ10を上下に配置した構造になっているが、真空ポンプ10を横にして密閉チャンバの横に取り付ける、あるいは、吸気口13Aを下側にして密閉チャンバの上部に取り付けることもできる。

 真空ポンプ10の構成を更に詳述すると、排気機能を発揮する構造物は、大きく分けてケーシング11内に固定されたステータ17と、ステータ17に対して相対的に回転可能に配置されたロータ18等から構成されている。

 ロータ18は、回転翼19とシャフト20等から構成されている。

回転翼19は、吸気口13A側(ターボ分子ポンプ部10A)に配置される第1の円筒部21aと排気口13B側(ネジ溝ポンプ部10B)に配置される第2の円筒部21bとを一体に形成してなる、円筒部材21を有している。

 第1の円筒部21aは、概略円筒形状をした部材であり、ターボ分子ポンプ部10Aの回転翼部を構成している。第1の円筒部21aの外周面、すなわちロータ18の外周部には、回転翼19及びシャフト20の軸中心と並行な面から外側に向かって放射状に伸びた、複数の回転翼ブレード22を回転方向に略等間隔で設けている。また、各回転翼ブレード22は、水平方向に対して所定の角度だけ同方向に傾斜している。そして、第1の円筒部21aでは、これら放射状に延びる複数の回転翼ブレード22が、軸方向に所定の間隔をおいて複数段形成されている。

 また、第1の円筒部21aの軸方向中程には、シャフト20と結合するための隔壁23が形成されている。隔壁23には、シャフト20の上端側を挿入して取り付けるための軸穴23aと、シャフト20と回転翼19を固定している取付ボルト24が取り付けられた図示しないボルト穴が形成されている。

 第2の円筒部21bは、外周面が円筒形状をした部材であり、ネジ溝ポンプ部10Bの回転翼部を構成している。

 シャフト20は、ロータ18の軸を構成する円柱部材であって、上端部には、取付ボルト24を介して第1の円筒部21aの隔壁23とネジ止め固定される、鍔部20aが一体に形成されている。そして、シャフト20は、第1の円筒部21aの内側(下側)から、鍔部20aが隔壁23の下面に当接するまで、上端部を軸穴23aに挿入した後、取付ボルト24を、隔壁23の上面側から図示せぬボルト穴を通して鍔部20aの取付孔にネジ止めすることにより、円筒部材21に固定されて一体化されている。

 また、シャフト20の軸方向中程には、外周面に永久磁石が固着してあり、モータ部25の回転子側の部分を構成している。この永久磁石が、シャフト20の外周に形成している磁極は、外周面の半周がN極、残りの半周がS極となる。

 更に、シャフト20の上端側(吸気口13A側)に、シャフト20をモータ部25に対してラジアル方向に支持するための、ラジアル磁気軸受部26におけるロータ18側の部分が形成され、下端側(排気口13B側)に、同じくシャフト20をモータ部25に対してラジアル方向に支持するための、ラジアル磁気軸受部27におけるロータ18側の部分が形成されている。また、シャフト20の下端には、シャフト20を軸方向(スラスト方向)に支持するためのアキシャル磁気軸受部28のロータ18側の部分が形成されている。

 また、ラジアル磁気軸受部26、27の近傍には、それぞれラジアル変位センサ29、30のロータ18側の部分が形成されており、シャフト20のラジアル方向の変位が検出できるようになっている。

 これら、ラジアル磁気軸受部26、27及びラジアル変位センサ29、30の回転子側の部分は、ロータ18のシャフト方向に鋼版を積層した積層鋼板により構成されている。これは、ラジアル磁気軸受部26、27、ラジアル変位センサ29、30のロータ18側の部分を構成するコイルが発生する磁界によって、シャフト20に渦電流が発生するのを防ぐためである。

 回転翼19は、ステンレスやアルミニウム合金等の金属を用いて構成されている。

 ケーシング11の内周側には、ステータ17が形成されている。ステータ17は、吸気口13A側(ターボ分子ポンプ部10A側)に設けられたステータ翼31及びスペーサ34と、排気口13B側(ネジ溝ポンプ部10B側)に設けられたネジ溝スペーサ32と、モータ部25の固定子と、ラジアル磁気軸受部26、27の固定子と、アキシャル磁気軸受部28の固定子と、ラジアル変位センサ29、30の固定子と、固定子コラム35等から構成されている。

 ステータ翼31は、シャフト20の軸線に垂直な平面から所定の角度だけ傾斜して、ケーシング11の内周面からシャフト20に向かって伸びたステータ翼ブレード33から構成されている。また、ステータ翼31は、ターボ分子ポンプ部10Aでは、ステータ翼ブレード33が軸方向に、回転翼19の回転翼ブレード22と互い違いに複数段形成されている。各段のステータ翼ブレード33は、円筒形状をしたスペーサ34により互いに隔てられている。

 ネジ溝スペーサ32は、内周面に螺旋溝32aが形成された円柱部材である。ネジ溝スペーサ32の内周面は、所定のクリアランス(間隙)を隔てて円筒部材21における第2の円筒部21bの外周面に対面するようになっている。ネジ溝スペーサ32に形成された螺旋溝32aの方向は、螺旋溝32a内をロータ18の回転方向にガスが輸送された場合、排気口13Bに向かう方向である。螺旋溝32aの深さは排気口13Bに近づくにつれて浅くなるようになっており、螺旋溝32aを輸送されるガスは排気口13Bに近づくにつれて圧縮されるようになっている。

 ステータ翼31やネジ溝スペーサ32はステンレスやアルミニウム合金などの金属を用いて構成されている。

 ポンプベース11Bは、中央に上下方向に貫通している開口39を有した概略短円筒形状を有した部材である。ポンプベース11Bの上面側には、円筒形状を有する固定子コラム35が、開口39内に下端側を差し込み係合させて、上面側を吸気口13Aの方向に向けてステータ17の中心軸線と同心に取り付けられている。固定子コラム35は、モータ部25、ラジアル磁気軸受部26、27、及びラジアル変位センサ29、30の固定子側の部分を支持している。一方、ポンプベース11Bの下面側には、ベース端蓋11Cが取付ボルト12Bで取り付けられ、ポンプベース11Bと一体化されている。すなわち、ベース端蓋11Cは、ポンプケース11A、ポンプベース11Bと共にケーシング11を形成している。

 モータ部25では、所定の極数の固定子コイルが固定子コイルの内周側に等間隔で配設されており、シャフト20に形成された磁極の周囲に回転磁界を発生できるようになっている。

 ラジアル磁気軸受部26、27は、回転軸線の回りの90度ごとに配設されたコイルから構成されている。ラジアル磁気軸受部26、27は、これらコイルの発生する磁界でシャフト20を吸引することにより、シャフト20をラジアル方向に磁気浮上させる。

 固定子コラム35の底部には、アキシャル磁気軸受部28が形成されている。アキシャル磁気軸受部28は、シャフト20から張り出した円板と、この円板の上下に配設されたコイルから構成されている。これらコイルが発生する磁界がこの円板を吸引することにより、シャフト20が軸方向に磁気浮上する。

 ラジカル発生装置10Cは、図1に示すように、ケーシング11内に配置されたロータ18の軸方向中間の位置である、ターボ分子ポンプ部10Aとネジ溝ポンプ部10Bの境界に配置されている。

 ラジカル発生装置10Cは、電極部36Aと電源36Bを備えている。ラジカル発生装置10Cの電源36Bは、ラジカル発生装置10Cにおける電極部36Aの電極36a1、36a2、36a3、36a4、36a5に高周波電圧を印加するものであり、ケーシング11の外側に設けられる場合もある。電源36Bは、隣り合う各電極36a1、36a2、36a3、36a4、36a5に+、-の異なる電極が生成されるように電圧を印加する。

 一方、ラジカル発生装置10Cの電極部36Aは、図2の(a)にその平面図を、また、図2の(b)に(a)のA-A線断面矢視図(図1もA-A線断面矢視図に相当する)を示しているように、円筒状をした板材でなる複数枚(本実施例では5枚)の電極36a1、36a2、36a3、36a4、36a5を有している。各電極36a1、36a2、36a3、36a4、36a5は、各円筒の直径の大きさを略等しい比率で順に変え、これをシャフト20の軸中心を同心として略等間隔で配置されている。したがって、電極36a1と電極36a2との間の隙間は、電極36a2と電極36a3との間の隙間と、電極36a3と電極36a4との間の隙間、及び、電極36a4と電極36a5との間の隙間と略等しくなっている。また、各電極36a1、36a2、36a3、36a4、36a5の中、最も内側に配置される電極36a1の内径は、対応している回転翼19の外径よりも大きく、最も外側に配置される電極36a5の外径は、対応しているポンプケース11Aの内径よりも小さく形成されている。

 そして、このように形成された電極部36Aは、ロータ18とポンプケース11Aとの間に、シャフト20の軸中心と略直角な水平状態で、ケーシング11内のプロセスガスの通路内全体を水平に横切るようにして、シャフト20と同心的に配設されている。したがって、この実施例の真空ポンプ10では、吸気口13Aから入ってケーシング11内を流れるプロセスガス及び第1のパージガス供給ポート14Aから供給されるパージガスは、電極部36Aの各電極36a1、36a2、36a3、36a4、36a5との間の隙間を通って排気口13Bに向かって流れる。

 そして、ラジカル発生装置10Cでは、電極部36Aの各電極36a1、36a2、36a3、36a4、36a5に電源36Bから高周波電圧が印加されている状態で、第1のパージガス供給ポート14Aから上述した例えばO2、NF3等のパージガスが供給されると、パージガスが各電極36a1、36a2、36a3、36a4、36a5間を通過するときに、Oラジカル、Fラジカルが生成される。また、Oラジカル、Fラジカルが排気口13Bに向かって流れるとき、ケーシング11の内部に堆積する堆積物に大きなエネルギーを与え、強制的に堆積物の表面の分子鎖を切断して低分子量のガスに分解し、低分子量に分解したガスを排気口13Bまで移送し、排気口13Bから真空ポンプ10の外部に排出するように機能する。

 制御部10Dは、例えばマイクロコンピュータで構成されており、マイクロコンピュータに組み込まれているプログラムに従って、所定の手順で、モータ部25、ラジアル磁気軸受部26、27、アキシャル磁気軸受部28、ラジカル発生装置10C、第1のパージガス供給ポート14Aに連通接続される補助ポンプ、及び、第2のパージガス供給ポート14Bに連通接続される補助ポンプの起動・停止などを制御する。

 以上のように構成された真空ポンプ10は、以下のように動作し、真空容器からガスを排出する。

 まず、制御部10Dの制御により、ラジアル磁気軸受部26、27及びアキシャル磁気軸受部28が起動され、シャフト20を介してロータ18の全体を磁気浮上させて、ロータ18を非接触で空間中に支持する。

 次に、制御部10Dの制御によりモータ部25が駆動され、シャフト20を所定の方向に回転させる。すなわち、ロータ18を所定の方向に回転させる。回転速度は、例えば毎分3万回転程度である。本実施例では、ロータ18の回転方向は吸気口側から見て時計回り方向とするが、反時計回り方向に回転するように真空ポンプ10を構成することも可能である。

 ロータ18が回転すると、回転翼19の回転翼ブレード22とステータ17のステータ翼31のステータ翼ブレード33の作用により、吸気口13Aからガスが吸引され、下段に行くほど圧縮される。ターボ分子ポンプ部10Aで圧縮されたガスは、更にネジ溝ポンプ部10Bで圧縮され、排気口13Bから排出される。

 ところで、真空ポンプ10では、真空ポンプ10内でプロセスガスを圧縮する過程で、ガスが固化し、ケーシング11の内部に堆積する。そこで、制御部10Dは、プロセス処理の合間に、ラジカル発生装置10Cを駆動させ、電極部36Aの各電極36a1、36a2、36a3、36a4、36a5に高周波電圧を付加した状態で、さらに第1のパージガス供給ポート14AからO2、NF3等のパージガスを供給させ、プロセスガスが流れる通路内にパージガスを排気口13Bへ向けて流す。

 また、パージガスを流すとき、制御部10Dはモータ部25の駆動を制御し、モータ部25の回転を定格回転よりも低い低速回転に切り換え、ロータ18の駆動を低速で運転させる。そして、ロータ18が定速回転をしている状態で第1のパージガス供給ポート14AからO2、NF3等のパージガスを流す。第1のパージガス供給ポート14Aからパージガスが流されると、パージガスが各電極36a1、36a2、36a3、36a4、36a5間を通過するとき、ラジカル発生装置10C内でOラジカル、Fラジカルが生成される。また、生成されたOラジカル、Fラジカルが排気口13Bに向かって流れるとき、Oラジカル、Fラジカルがケーシング11の内部に堆積する堆積物に触れると、堆積物に大きなエネルギーを与え、強制的に堆積物の表面の分子鎖を切断して低分子量のガスに分解する。そして、低分子量に分解されたガスは排気口13Bを通って外部に排出される。これにより、ケーシング11内に堆積する堆積物を減少させることができる。

 なお、パージガスを流すときに、ロータ18を低速で回転させておく理由は、パージガスが排気口13B側に確実に流れて、吸気口13A側から真空チャンバ内に逆流しないようにし、真空チャンバ内の腐食等を避けるためである。したがって、パージガスによって分解された低分子量のガスは、排気口13Bからケーシング11の外へ排出されるので、ケーシング11内に堆積する堆積物を減らすことができる。これにより、ポンプのメンテナンス期間を延ばすことができ、真空ポンプをから取り外してオーバーホールする頻度を減少させることが可能になる。

 また、真空ポンプ10の駆動中、第2のパージガス供給ポート14Bからは、例えば、N2(窒素)ガスやAr(アルゴン)ガス等の不活性ガスが固定子コラム35内に流され、固定子コラム35の電気部品収納部35a内に収納されている電気部品等を腐食性ガスから保護する。

 また、ラジカルは、原料ガスに大きなエネルギーを与えて強制的に分子結合を引き離す、不安定な物質である。そのため比較的短時間で再結合し、活性を失ってしまう欠点を有している。一方、ケーシング内にプロセスガスが堆積するのは、主に排気口13B付近である。そのため、吸気口13A付近にラジカルを供給しても、効果的にクリーニングできないこともある。しかしながら、本実施例における真空ポンプ10では、ラジカル発生装置10Cの電極部36Aをロータ18の軸方向中間の位置、すなわちターボ分子ポンプ部10Aとネジ溝ポンプ部10Bの境界の位置に設けているので、ラジカル発生装置10Cの電極部36Aよりも下流側(排気口13B側)で堆積しようとするプロセスガスの堆積物を効果的に分解させて外部へ良好に排出することができる。

 また、ラジカル発生装置10Cにおける電極部36Aの複数の電極36a1、36a2、36a3、36a4、36a5を各々円筒状にして同心的に配置し、ケーシング11内のプロセスガス及びパージガスが通る通路全体を横切る形で配設しているので、ケーシング11内におけるラジカル発生装置10Cが占めるスペースを少なく、かつ、コンパクトすることができる。これにより、真空ポンプ10の小型化が可能になる。なお、電極部36Aの電極は少なくとも1対あればよく、電極の数を増やすとラジカルの生成量が増えてラジカルによる堆積物の分解効果を更に向上させることができる。

 なお、上記実施例の構造では、ラジカル発生装置10Cの電極部36Aをロータ18の軸方向中間の位置、すなわちターボ分子ポンプ部10Aとネジ溝ポンプ部10Bの境界に配置されている構造を開示したが、ラジカル発生装置10Cの電極部36Aの設ける位置は、上記実施例の構造の位置に限ることなく、例えば、本実施例の変形例として示す図3、図4に示す真空ポンプ10内の位置であってもよいものである。

 すなわち、図3は図1に示した真空ポンプ10の一変形例を示す概略縦断側面図である。なお、図3で図1と同じ符号を付している部材は、図1に示した部材と同一部材であるので、重複説明は省略する。

 図3に示す真空ポンプ10は、ラジカル発生装置10Cの電極部36Aを、ターボ分子ポンプ部10Aの軸方向中間の位置に設けたものである。この変形例における真空ポンプ10では、ラジカル発生装置10Cの電極部36Aをロータ18の軸方向中間の位置、すなわちターボ分子ポンプ部10Aの軸方向中間の位置に設けているので、ラジカル発生装置10Cの電極部36Aよりも下流側(排気口13B側)で堆積しようとするプロセスガスの堆積物を効果的に分解させて外部へ良好に排出することができる。

 図4は図1に示した真空ポンプ10の他の変形例を示す概略縦断側面図である。なお、図4で図1と同じ符号を付している部材は、図1に示した部材と同一部材であるので、重複説明は省略する。

 図4に示す真空ポンプ10は、ラジカル発生装置10Cの電極部36Aを、ケーシング11内で、ロータ18の軸方向において、第1のパージガス供給ポート14Aとロータ18との間の位置に設けている。この変形例における真空ポンプ10では、ラジカル発生装置10Cの電極部36Aをロータ18のケーシング11内で、第1のパージガス供給ポート14Aとロータ18との間の位置に設けているので、電極を設置するためのスペースが大きく確保でき、これにより図1、図3に示した真空ポンプ10よりも電極の数を多く(本変形例では10枚)配置し、デジカルをより多く生成することができる。これにより、ラジカル発生装置10Cの電極部36Aよりも下流側(排気口13B側)となる、ターボ分子ポンプ部10A内とネジ溝ポンプ部10B内を通るプロセスガスの堆積物を更に効果的に分解させて排気口13Bから外部へ良好に排出することができる。

 なお、本発明は、本発明の精神を逸脱しない限り種々の改変を成すことができ、そして、本発明が該改変されたものに及ぶことは当然である。

 また、固定円筒(ネジ溝スペーサ32)の内周面に螺旋状の螺旋溝32aを設けた実施例を用いて説明したが、円筒部材21の第2の円筒部21bの外周面側に螺旋状のネジ溝を設ける、又は両方に螺旋状のネジ溝を設けてネジ溝ポンプ部10Bを構成しても良い。

 また、円筒部材21の外周面から突出した円板と、ケーシング11の内側面から突出した円板を設け、対向面に渦巻き状のネジ溝を設けてネジ溝ポンプ部10Bを構成しても良い。

10   :真空ポンプ

10A  :ターボ分子ポンプ部

10B  :ネジ溝ポンプ部

10C  :ラジカル発生装置

10D  :制御部

11   :ケーシング

11A  :ポンプケース

11B  :ポンプベース

11C  :ベース端蓋

12A  :締結部材

12B  :取付ボルト

13   :吸気口

13A  :吸気口

13B  :排気口

14A  :第1のパージガス供給ポート

14B  :第2のパージガス供給ポート

15A  :フランジ

15B  :フランジ

16A  :フランジ

16B  :フランジ

17   :ステータ

18   :ロータ

19   :回転翼

20   :シャフト

20a  :鍔部

21   :円筒部材

21a  :第1の円筒部

21b  :第2の円筒部

22   :回転翼ブレード

23   :隔壁

23a  :軸穴

24   :取付ボルト

25   :モータ部

26   :ラジアル磁気軸受部

27   :ラジアル磁気軸受部

28   :アキシャル磁気軸受部

29   :ラジアル変位センサ

30   :ラジアル変位センサ

31   :ステータ翼

32   :ネジ溝スペーサ

32a  :螺旋溝(ネジ溝)

33   :ステータ翼ブレード

34   :スペーサ

35   :固定子コラム

35a  :電気部品収納部

36A  :電極部

36B  :電源

36a1 :電極

36a2 :電極

36a3 :電極

36a4 :電極

36a5 :電極

37   :ボルト穴

38   :環状溝

39   :開口

Claims (10)


  1.  ケーシングと、

     前記ケーシングの内側に配設されるステータと、

     前記ステータに対し回転自在に支持されたシャフトを有するとともに、前記シャフトと共に前記ケーシングに回転可能に内包される円筒状のロータと、

     を備えた真空ポンプであって、

     前記ケーシング内に、ラジカルを生成する少なくとも1対の電極が配設された、

     ことを特徴とする真空ポンプ。

  2.  前記電極に高周波電圧を印加する電源をさらに備えている、

    ことを特徴とする請求項1に記載の真空ポンプ。

  3.  前記電極は、円筒状に形成された板材を、前記シャフトの軸中心を同心として略等間隔で複数配設してなる、

     ことを特徴とする請求項1又は2に記載の真空ポンプ。

  4.  前記ロータの外周部から突出された複数の回転翼ブレードを設けるとともに、前記回転翼ブレードに対して軸方向に離間して前記ケーシングの内周部から突出され、前記回転翼ブレードと面対向して配置されたステータ翼ブレードを設けてなる、ターボ分子ポンプ部を備えた、

     ことを特徴とする請求項1乃至3のいずれか1項に記載の真空ポンプ。

  5.  前記ロータの外周部と前記ステータの内周部の少なくともどちらか一方に、螺旋状又は渦巻き状のネジ溝を設けてなる、ネジ溝ポンプ部を備えた、

     ことを特徴とする請求項1乃至4のいずれか1項に記載の真空ポンプ。

  6.  前記ロータの外周部から突出された複数の回転翼ブレードを設けるとともに、前記回転翼ブレードに対して軸方向に離間して前記ケーシングの内周部から突出され、前記回転翼ブレードと面対向して配置されたステータ翼ブレードを設けてなる、ターボ分子ポンプ部と、

     前記ロータの外周部と前記ステータの内周部の少なくともどちらか一方に、螺旋状又は渦巻き状のネジ溝を設けてなる、ネジ溝ポンプ部と、

    を備え、

     前記電極が、前記ターボ分子ポンプ部と前記ネジ溝ポンプ部の境界に設けられた、

     ことを特徴とする請求項1乃至3のいずれか1項に記載の真空ポンプ。

  7.  前記電極を、前記ロータより吸気口側に設けた、

     ことを特徴とする請求項1乃至6のいずれか1項に記載の真空ポンプ。

  8.  前記電極を、前記ロータの軸方向中間の位置に設けた、

     ことを特徴とする請求項1乃至7のいずれか1項に記載の真空ポンプ。

  9.  前記ケーシング内の、前記電極より上流側に、パージガスを供給するパージガス供給ポートを設けた、

     ことを特徴とする請求項1乃至8のいずれか1項に記載の真空ポンプ。

  10.  前記ロータを、定格回転と、定格よりも低速の低速回転とに切り換え制御可能な制御部を有する、

     ことを特徴とする請求項1乃至9のいずれか1項に記載の真空ポンプ。
PCT/JP2021/008025 2020-03-09 2021-03-02 真空ポンプ WO2021182198A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227028182A KR20220146445A (ko) 2020-03-09 2021-03-02 진공 펌프
CN202180017185.5A CN115103964A (zh) 2020-03-09 2021-03-02 真空泵
US17/908,475 US20230097903A1 (en) 2020-03-09 2021-03-02 Vacuum pump
IL296173A IL296173A (en) 2020-03-09 2021-03-02 Vacuum pump
EP21768777.1A EP4119795A4 (en) 2020-03-09 2021-03-02 VACUUM PUMP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020040374A JP7361640B2 (ja) 2020-03-09 2020-03-09 真空ポンプ
JP2020-040374 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021182198A1 true WO2021182198A1 (ja) 2021-09-16

Family

ID=77669550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008025 WO2021182198A1 (ja) 2020-03-09 2021-03-02 真空ポンプ

Country Status (7)

Country Link
US (1) US20230097903A1 (ja)
EP (1) EP4119795A4 (ja)
JP (1) JP7361640B2 (ja)
KR (1) KR20220146445A (ja)
CN (1) CN115103964A (ja)
IL (1) IL296173A (ja)
WO (1) WO2021182198A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7437254B2 (ja) * 2020-07-14 2024-02-22 エドワーズ株式会社 真空ポンプ、及び、真空ポンプの洗浄システム
JP2023173733A (ja) * 2022-05-26 2023-12-07 エドワーズ株式会社 真空ポンプ及び真空排気システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305197A (ja) * 1988-05-31 1989-12-08 Daikin Ind Ltd 分子式真空ポンプ
JPH02271098A (ja) * 1989-02-23 1990-11-06 Jeol Ltd ターボ分子ポンプによる排気装置
JP2008248825A (ja) 2007-03-30 2008-10-16 Tokyo Electron Ltd ターボ分子ポンプの洗浄方法
JP2019082120A (ja) 2017-10-27 2019-05-30 エドワーズ株式会社 真空ポンプ、ロータ、ロータフィン、およびケーシング
WO2019122873A1 (en) * 2017-12-21 2019-06-27 Edwards Limited A vacuum pumping arrangement
CN110863989A (zh) * 2018-08-28 2020-03-06 韩国机械研究院 具有远程等离子体装置的真空泵系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2783883B1 (fr) * 1998-09-10 2000-11-10 Cit Alcatel Procede et dispositif pour eviter les depots dans une pompe turbomoleculaire a palier magnetique ou gazeux
DE10115394B4 (de) * 2001-03-29 2005-03-24 Christof Diener Maschinenbauteil und/oder verfahrenstechnische Anlage mit einem Hohlraum und Reinigungsverfahren hierfür
JP6842328B2 (ja) * 2017-03-23 2021-03-17 エドワーズ株式会社 真空ポンプ、主センサ、及び、ネジ溝ステータ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305197A (ja) * 1988-05-31 1989-12-08 Daikin Ind Ltd 分子式真空ポンプ
JPH02271098A (ja) * 1989-02-23 1990-11-06 Jeol Ltd ターボ分子ポンプによる排気装置
JP2008248825A (ja) 2007-03-30 2008-10-16 Tokyo Electron Ltd ターボ分子ポンプの洗浄方法
JP2019082120A (ja) 2017-10-27 2019-05-30 エドワーズ株式会社 真空ポンプ、ロータ、ロータフィン、およびケーシング
WO2019122873A1 (en) * 2017-12-21 2019-06-27 Edwards Limited A vacuum pumping arrangement
CN110863989A (zh) * 2018-08-28 2020-03-06 韩国机械研究院 具有远程等离子体装置的真空泵系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4119795A4

Also Published As

Publication number Publication date
JP2021139359A (ja) 2021-09-16
EP4119795A4 (en) 2024-04-10
JP7361640B2 (ja) 2023-10-16
EP4119795A1 (en) 2023-01-18
CN115103964A (zh) 2022-09-23
IL296173A (en) 2022-11-01
KR20220146445A (ko) 2022-11-01
US20230097903A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
WO2021182198A1 (ja) 真空ポンプ
EP1318309B1 (en) Vacuum pump
KR102576491B1 (ko) 진공 펌프 및 그 진공 펌프에 이용되는 가요성 커버 및 로터
JP2015143513A (ja) 真空ポンプ
WO2021172144A1 (ja) 真空ポンプ、及び、真空ポンプ構成部品
KR102167210B1 (ko) 진공 펌프
JP6390478B2 (ja) 真空ポンプ
JP3000356B1 (ja) 真空ポンプ及び真空装置
US7686600B2 (en) Vaccum pump having shaft seal to prevent corrosion and to ensure smooth operation
EP4184013A1 (en) Vacuum pump and cleaning system for vacuum pump
WO2022186076A1 (ja) 真空ポンプ、及び、真空排気装置
JPH05209589A (ja) 流体回転装置
CN112867867B (zh) 真空泵、以及真空泵构成零件
JP5156649B2 (ja) 真空ポンプ
WO2023228863A1 (ja) 真空ポンプ及び真空排気システム
WO2021230209A1 (ja) 真空ポンプ、及び、ステータ部品
CN115917147A (zh) 真空排气系统的清洗装置
JP2000110777A (ja) ターボ分子ポンプとその保護動作方法
JP2003278691A (ja) 真空ポンプ
EP4227537A1 (en) Vacuum pump and vacuum exhaust system which uses same
JP7347964B2 (ja) 真空ポンプ及び該真空ポンプに備えられた保護部
JP2525848Y2 (ja) 真空ポンプ
JP2023125364A (ja) 真空排気システム
JP2001221187A (ja) ターボ形ドライポンプ
JPH04353296A (ja) 真空ポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021768777

Country of ref document: EP

Effective date: 20221010