WO2021182031A1 - 粒子解析システムおよび粒子解析方法 - Google Patents
粒子解析システムおよび粒子解析方法 Download PDFInfo
- Publication number
- WO2021182031A1 WO2021182031A1 PCT/JP2021/005679 JP2021005679W WO2021182031A1 WO 2021182031 A1 WO2021182031 A1 WO 2021182031A1 JP 2021005679 W JP2021005679 W JP 2021005679W WO 2021182031 A1 WO2021182031 A1 WO 2021182031A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- photodetector
- fluorescent dye
- value
- particles
- spectrum
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 136
- 238000004458 analytical method Methods 0.000 title claims abstract description 34
- 239000007850 fluorescent dye Substances 0.000 claims abstract description 130
- 238000001228 spectrum Methods 0.000 claims abstract description 104
- 230000010365 information processing Effects 0.000 claims abstract description 73
- 238000000034 method Methods 0.000 claims abstract description 42
- 238000012545 processing Methods 0.000 claims abstract description 26
- 238000000926 separation method Methods 0.000 claims abstract description 20
- 238000005259 measurement Methods 0.000 claims description 53
- 238000010186 staining Methods 0.000 claims description 49
- 230000005284 excitation Effects 0.000 claims description 37
- 230000001678 irradiating effect Effects 0.000 claims description 15
- 238000011156 evaluation Methods 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 5
- 230000005855 radiation Effects 0.000 abstract 2
- 210000004027 cell Anatomy 0.000 description 19
- 230000006872 improvement Effects 0.000 description 11
- 238000004891 communication Methods 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 230000003595 spectral effect Effects 0.000 description 9
- 238000001514 detection method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000004043 dyeing Methods 0.000 description 7
- 239000010419 fine particle Substances 0.000 description 6
- 238000005286 illumination Methods 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 238000001917 fluorescence detection Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 101000798109 Homo sapiens Melanotransferrin Proteins 0.000 description 2
- 102100032239 Melanotransferrin Human genes 0.000 description 2
- 206010036618 Premenstrual syndrome Diseases 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 229920000592 inorganic polymer Polymers 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 210000003463 organelle Anatomy 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical compound C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000723873 Tobacco mosaic virus Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 210000001808 exosome Anatomy 0.000 description 1
- 239000007863 gel particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1456—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
- G01N15/1459—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1434—Optical arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/01—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/149—Optical investigation techniques, e.g. flow cytometry specially adapted for sorting particles, e.g. by their size or optical properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1006—Investigating individual particles for cytology
Definitions
- the present invention relates to a particle analysis system and a particle analysis method.
- the fluorescence intensity of fluorescence generated from the fluorescent dye is obtained by irradiating the fine particles labeled with a fluorescent dye with excitation light such as laser light. And techniques for measuring spectra are used.
- An example of this technology is a flow cytometer. In the flow cytometer, excitation light is applied to the fine particles flowing in the flow path, and fluorescence, scattered light, etc. emitted from the fine particles are detected by a plurality of photodetectors (for example, PMT: Photo Multiplier Tube). NS.
- PMT Photo Multiplier Tube
- the central wavelengths of the fluorescence generated from each fluorescent dye may be close to each other.
- the fluorescence from each fluorescent dye cannot be properly separated, so that other than the fluorescence from the target fluorescent dye may leak to each photodetector.
- the fluorescence intensity is measured to be larger than the actual fluorescence intensity, so that an error may occur in the fluorescence intensity.
- the measurement spectrum measured by the optical detector is mathematically separated using the spectrum of each fluorescent dye (single staining spectrum), so that the fluorescence intensity from each fluorescent dye is obtained. Is known as a technique for calculating with high accuracy.
- the present application has been made in view of the above, and particles capable of separating measurement spectra obtained by irradiating particles labeled with a plurality of fluorescent dyes with excitation light with high accuracy for each fluorescent dye.
- the particle analysis system is based on a plurality of light detectors that acquire light generated by irradiating particles labeled with a plurality of fluorescent dyes with excitation light, and measurement values from the plurality of light detectors.
- the measurement spectrum is provided with an information processing unit that calculates the fluorescence intensity of each fluorescent dye by performing a separation process on a single-stained spectrum of each fluorescent dye, and the separation process is determined based on variations in the measured values. It is characterized in that it is carried out by using a weighted least-squares method (WLSM: Weighted Least Squares Method) including the weights to be obtained.
- WLSM Weighted Least Squares Method
- FIG. 1 shows a method of measuring the fluorescence intensity of each fluorescent dye.
- the particles are irradiated with two excitation lights (635 nm and 488 nm) having different wavelengths in a part AA1 of the flow path LS1 through which the particles flow.
- the fluorescent dye emits fluorescence.
- the fluorescence generated from this fluorescent dye is dispersed by the dichroic mirrors HA1 to HA4 that reflect the fluorescence of a specific band wavelength, passes through the bandpass filters FA1 to FA4, and corresponds to the fluorescence wavelength of each fluorescent dye by each PMTFL1 to FL4. Acquires the fluorescence intensity in the specified wavelength band.
- the central wavelengths of the fluorescence generated from each fluorescent dye are close to each other, the fluorescence overlaps, so that it is difficult to completely suppress leakage other than fluorescence from the target fluorescent dye. be.
- FIG. 2 shows a method of measuring the intensity of light in a continuous wavelength band.
- the light generated by irradiating the particles labeled with the plurality of fluorescent dyes with the excitation light goes to the prism BB1.
- the prism BB1 is used to disperse the light.
- the plurality of photodetectors CC1 acquire the intensity of the light dispersed by the prism BB1 for each wavelength band.
- the means for splitting the light is not limited to the prism BB1 and may be a diffraction grating.
- an optical system such as a dichroic mirror or a beam splitter that transmits or reflects light depending on the wavelength may be used.
- the fluorescence intensity of each fluorescent dye can be obtained by performing a mathematical separation process (unmixing process) on the detected value for each wavelength band acquired by the above method. As a result, even when the central wavelengths of the fluorescence generated from each fluorescent dye are close to each other, it is possible to suppress leakage of fluorescence other than the fluorescence from the target fluorescent dye.
- the flow cytometer as shown in FIG. 2 is sometimes called a "spectral flow cytometer".
- FIG. 3 is a diagram showing a particle analysis system 1 according to the embodiment.
- the particle analysis system 1 includes a display device 10, a measuring device 20, and an information processing device 100.
- the display device 10 has a screen on which, for example, a liquid crystal display, an EL (Electro-Luminescence), a CRT (Cathode Ray Tube), or the like is used.
- the display device 10 may correspond to 4K or 8K, or may be formed by a plurality of display devices.
- the display device 10 displays the intensity of fluorescence or the like (for example, fluorescence, phosphorescence, or scattered light) detected by the measuring device 20 as a spectrum (hereinafter, appropriately referred to as a “measurement spectrum”).
- the measuring device 20 can be a spectral type flow cytometer.
- the measuring device 20 is used to irradiate particles labeled with a plurality of fluorescent dyes with excitation light to detect the intensity of fluorescence or the like generated from each fluorescent dye.
- the measuring device 20 includes a light source 21, a flow path 22, a photodetector 23, and an equipment control unit 24.
- the excitation light from the light source 21 is applied to the particles S flowing through the flow path 22.
- the photodetector 23 detects fluorescence emitted from the particles S irradiated with the excitation light, scattered light scattered by the particles S, and the like. Further, although not shown in FIG. 4, for guiding the optical system such as a lens for guiding the excitation light to the particles S and the fluorescence generated from the particles S to the photodetector 23.
- An optical system is provided on the flow cytometer.
- Particle S is, for example, a biological particle such as a cell, a microorganism, or a biological particle, and includes a group of a plurality of biological particles.
- Particle S is, for example, animal cells (for example, blood cell lines), cells such as plant cells, bacteria such as Escherichia coli, viruses such as tobacco mosaic virus, or microorganisms such as yeast, chromosomes, liposomes. , Mitochondria, exosomes, or bio-related particles that make up cells such as various organelles (organelles), or bio-derived microparticles such as bio-related polymers such as nucleic acids, proteins, lipids, sugar chains, or complexes thereof. It may be.
- the particles S widely include synthetic particles such as latex particles, gel particles, and industrial particles.
- the industrial particles may be, for example, an organic or inorganic polymer material, a metal, or the like.
- Organic polymer materials include polystyrene, styrene / divinylbenzene, polymethylmethacrylate and the like.
- Inorganic polymer materials include glass, silica, magnetic materials and the like.
- Metals include colloidal gold, aluminum and the like. The shape of these particles is generally spherical, but may be non-spherical, and the size and mass are not particularly limited.
- the particles S are labeled (stained) with one or more fluorescent dyes. Labeling of the particles S with a fluorescent dye can be performed by a known method. For example, when the particle S is a cell, the fluorescently labeled antibody that selectively binds to the antigen present on the cell surface and the cell to be measured are mixed, and the fluorescently labeled antibody is bound to the antigen on the cell surface. Therefore, the cells to be measured can be labeled with a fluorescent dye.
- a fluorescently labeled antibody is an antibody to which a fluorescent dye is bound as a label.
- the fluorescently labeled antibody may be a biotin-labeled antibody bound to a fluorescent dye to which avidin is bound by an avidin-biodin reaction.
- the fluorescently labeled antibody may be one in which a fluorescent dye is directly bound to the antibody.
- the antibody either a polyclonal antibody or a monoclonal antibody can be used.
- the fluorescent dye for labeling cells is not particularly limited, and at least one or more known dyes used for staining cells or the like can be used.
- the light source 21 is a light source that emits excitation light having a predetermined wavelength.
- the light source 21 irradiates excitation light having wavelengths of 488 nm and 635 nm.
- FIG. 3 shows a case where the measuring device 20 includes one light source 21, the measuring device 20 may include a plurality of light sources 21.
- FIG. 5 shows an N (N is a positive integer) light source 21 represented by LD-1 to LD-N. N is, for example, 7 or 5.
- the N light sources 21 irradiate the particles with excitation light on different axes.
- the flow path 22 is a micro flow path for circulating particles flowing in the flow path in a line in the flow direction.
- the flow path 22 may be provided in the microchip or in the flow cell.
- the photodetector 23 is a photodetector for detecting the light generated by irradiating the particles labeled with the fluorescent dye with excitation light.
- the photodetector 23 uses a plurality of photodetectors to detect light in a different wavelength band in each photodetector.
- it is desirable that the wavelength band of light detected by each photodetector is continuous within a specific wavelength band, but a part of the wavelength band may be missing. Further, the wavelength bands of light detected by each photodetector may partially overlap.
- the photodetector 23 includes a detector 230 and N light receiving element units 231.
- the detector 230 detects forward scattered light generated by irradiating the particles with excitation light.
- the detector 230 is realized by, for example, a CCD (Charge Coupled Device), a CMOS (Complementary Metal Oxide Semiconductor), a photodiode, or the like.
- the measured value of the forward scattered light detected by the detector 230 is output to the information processing device 100 according to the present embodiment.
- the light receiving element unit 231 detects the light generated by irradiating the particles with excitation light. Each light receiving element unit 231 detects the light generated by the irradiation of the excitation light by the corresponding light source 21.
- the light receiving element unit 231 is, for example, a light receiving element array in which a plurality of PMTs (photomultiplier tubes) or photodiodes having different detection wavelength ranges are arranged one-dimensionally, an image sensor in which pixels are arranged in a two-dimensional lattice, and the like. It may be.
- the light receiving element array photoelectrically converts the fluorescence from the particles dispersed for each wavelength by a spectroscopic element such as a prism or a grating. Further, some light receiving element units 231 may detect laterally scattered light. Here, the laterally scattered light may be detected by a detector different from the light receiving element unit 231.
- Each light receiving element unit 231 has a detection wavelength band on the longer wavelength side than the excitation wavelength of the light source 21.
- the detection wavelength band is 360.5 to 843.8 nm
- the detection wavelength band is 413.6 to 843.8 nm.
- the detection wavelength band is 492.9 to 843.8 nm
- the detection wavelength band is 823.5 to 920.0 nm. be.
- the measurement spectrum is acquired from the light of each wavelength band detected by each light receiving element unit 231.
- a measured value of laterally scattered light is also generated from some of the light receiving element units 231.
- the acquired measurement spectrum is output to the information processing apparatus 100 according to the present embodiment.
- the device control unit 24 optimizes the parameters of the measuring device 20. For example, the device control unit 24 optimizes parameters such as the condition of the liquid flowing in the flow path of the flow path 22, the output of the excitation light emitted by the light source 21, and the sensitivity of the photodetector 23 to detect fluorescence. .. The device control unit 24 optimizes the parameters according to the calculation result by the information processing unit 132, which will be described later.
- the information processing device 100 is an information processing device such as a PC or WS (Work Station).
- the information processing device 100 calculates the fluorescence intensity from each fluorescent dye by mathematically separating the measurement spectrum measured by the measuring device 20 using the spectrum of each fluorescent dye.
- the measurement spectrum according to the embodiment means that light generated by irradiating particles labeled with a plurality of fluorescent dyes having different fluorescence wavelength bands with excitation light is received by light detectors having different reception wavelength bands. It is a spectrum obtained by collecting the intensity of light from each light detector.
- the single-staining spectrum according to the embodiment means that light obtained by irradiating particles labeled with a single fluorescent dye with excitation light is similarly received by light detectors having different light-receiving wavelength bands, and each of them is used. It is a spectrum obtained by collecting the intensity of light from a light detector. Therefore, the monostaining spectrum shows the distribution of the fluorescence wavelengths of each fluorescent dye.
- FIG. 6 is a diagram showing an example of the information processing device 100 according to the embodiment.
- the information processing device 100 is a computer having a communication unit 110, a storage unit 120, and a control unit 130.
- the communication unit 110 is realized by, for example, a NIC (Network Interface Card) or the like.
- the communication unit 110 is connected to a network N (not shown) by wire or wirelessly, and transmits / receives information to / from the measuring device 20 or the like via the network N.
- the control unit 130 which will be described later, transmits / receives information to / from these devices via the communication unit 110.
- the storage unit 120 is realized by, for example, a semiconductor memory element such as a RAM (Random Access Memory) or a flash memory (Flash Memory), or a storage device such as a hard disk or an optical disk.
- the storage unit 120 stores the measurement spectrum transmitted from the measuring device 20.
- the storage unit 120 stores the single-staining spectrum of each fluorescent dye.
- control unit 130 for example, a program (an example of an information processing program) stored inside the information processing apparatus 100 is executed by a CPU (Central Processing Unit) or an MPU (Micro Processing Unit) using a RAM or the like as a work area. Is realized by. Further, the control unit 130 may be executed by an integrated circuit such as an ASIC (Application specific Integrated Circuit) or an FPGA (Field Programmable gate Array).
- ASIC Application specific Integrated Circuit
- FPGA Field Programmable gate Array
- control unit 130 has an acquisition unit 131, an information processing unit 132, and a providing unit 133, and realizes or executes the information processing function or operation described below.
- the internal configuration of the control unit 130 is not limited to the configuration shown in FIG. 6, and may be any other configuration as long as it can execute information processing described later.
- the acquisition unit 131 acquires the measurement spectrum transmitted from the measuring device 20. Specifically, the acquisition unit 131 acquires a measurement spectrum of light obtained by irradiating particles labeled with a fluorescent dye with excitation light. The measurement spectrum will be described with reference to FIGS. 7 and 8.
- FIG. 7 shows a single staining spectrum of each fluorescent dye.
- the acquisition unit 131 acquires a single staining spectrum of particles labeled with a single fluorescent dye.
- the plurality of fluorescent dyes labeled with the particles shown in FIG. 7 are fluorescent dye A, fluorescent dye B, fluorescent dye C, and fluorescent dye D. It should be noted that each fluorescent dye is different.
- the vertical axis of the two-dimensional plot shown in FIGS. 7 (a) to 7 (d) indicates the fluorescence intensity, and the horizontal axis indicates the photodetector number or wavelength.
- FIG. 7A shows a single-staining spectrum LA1 of the fluorescent dye A labeled with particles.
- FIG. 7B shows the single-staining spectrum LA2 of the fluorescent dye B labeled with particles.
- FIG. 7 (c) shows the single-staining spectrum LA3 of the fluorescent dye C labeled with particles.
- FIG. 7 (d) shows the single-staining spectrum LA4 of the fluorescent dye D labeled with particles.
- an autofluorescent spectrum may be included. The autofluorescence spectrum is obtained by irradiating unstained particles with excitation light.
- the single-staining spectrum may be acquired from the measuring device 20 or may be stored in the storage unit 120 in advance. Further, when the single staining spectrum is stored in the storage unit 120 in advance, it is preferably measured by the same measuring device 20, but it may be measured by a different measuring device.
- the storage unit 120 stores the name of each fluorescent dye, the measurement conditions at the time of measuring the single-staining spectrum, and the like in association with the single-staining spectrum.
- FIG. 8 shows the measurement spectrum.
- the vertical axis of the two-dimensional plot shown in FIG. 8 indicates the fluorescence intensity, and the horizontal axis indicates the photodetector number or wavelength. The horizontal axis indicates that the number of photodetectors is 32.
- the light intensity is plotted according to the number of each photodetector.
- the spectrum shown by this plot is the measurement spectrum LA11.
- the acquisition unit 131 acquires the light intensity corresponding to the number of each photodetector corresponding to the measurement spectrum LA11. The intensity of this light is the measured value.
- the measurement spectrum LA11 is a spectrum in which the single-staining spectra of the fluorescent dyes shown in FIG. 7 are combined.
- the information processing unit 132 separates the measurement spectrum obtained by collecting the measured values from each photodetector by the linear sum of the single-stained spectra obtained by the particles individually labeled with each fluorescent dye. Then, the information processing unit 132 calculates the fluorescence intensity of each fluorescent dye by performing separation processing on the measurement spectrum based on the measurement value from each photodetector with the single staining spectrum of each fluorescent dye. For example, the least squares method (LSM: Least Squares Method) is used to separate the measurement spectra by the linear sum of the monostained spectra. By using this least squares method, it is possible to separate the monostained spectra so that the linear sum and the measured spectrum have the highest fitting ratio. Specifically, the information processing unit 132 calculates the fluorescence intensity of each fluorescent dye based on the measurement spectrum and the least squares method, and separates the fluorescent dyes based on the calculated fluorescence intensity of each fluorescent dye.
- LSM Least Squares Method
- x n represents the fluorescence intensity of the nth fluorescent dye.
- S represents a determinant indicating the shape of the single staining spectrum.
- S T denotes a transposed matrix type S.
- y m denotes a measurement value of the m-th photodetector in the measured spectra.
- the information processing unit 132 calculates the fluorescence intensity of each fluorescent dye by inputting the measured value acquired by the acquisition unit 131 into the equation (1).
- the measured value of the photodetector when the measured value of the photodetector is small, the contribution of the fluorescence received into the photodetector may be small. Therefore, there is room for further improvement.
- L represents a determinant indicating the weight of the single staining spectrum.
- max (y i , 0) represents the larger value of the measured value of the i-th photodetector compared with the measured value of zero.
- the offset represents a value determined based on the measured value of each photodetector.
- the offset is a value determined for calculating the fluorescence intensity (x) of each fluorescent dye from the measured value (y) of each photodetector in the measurement spectrum.
- the offset is also a value that can be determined based on the variations and detection limits inherent in each photodetector.
- the offset is, for example, a weight determined based on variations in measurements from each photodetector. That is, the separation process is performed using a weighted least squares method that includes weights that are determined based on variations in measured values from each photodetector.
- the information processing unit 132 calculates the variation in the measured value of the unstained particles for each photodetector in order to set the offset to the optimum value for each photodetector.
- the variation may include, for example, a variation based on the area of the measured value of the unstained particles in each detector and a variation based on the height (peak value).
- the effect of WLSM will be described while explaining these two types of variations.
- the area-based variation is the standard deviation of the measured values of unstained particles in each detector.
- the information processing unit 132 sets the standard deviation value of the measured value of the unstained particles in each detector as the variation based on the area.
- the height-based variation is the average value of the measured values of the unstained particles in each detector.
- the information processing unit 132 sets the average value of the measured values of the unstained particles in each detector as a variation based on the height.
- FIG. 9 shows the relationship between the measured values of unstained particles in each detector and the area-based variation (standard deviation value of the measured spectrum).
- the particles shown in FIG. 9 are microbeads.
- the vertical axis of the two-dimensional plot shown in FIG. 9 indicates the fluorescence intensity, and the horizontal axis indicates the photodetector number or wavelength.
- the horizontal axis indicates that the number of photodetectors is 324.
- the fluorescence intensity is plotted according to the number of each photodetector.
- the measured values of the unstained particles and their variations are plotted.
- the plot shown by the solid line is the measured value of the unstained particles, and the plot shown by the dotted line is the variation.
- the information processing unit 132 sets the offset of a larger value as the variation of the measured value becomes larger. Then, the information processing unit 132 calculates the fluorescence intensity of each fluorescent dye by using an offset of a value that increases as the variation in the measured values increases. Since the same applies to the height, the description thereof will be omitted.
- FIG. 10 is a diagram showing plots of the variation of FIG. 9 in different modes.
- the degree of variation is displayed in a visible state.
- the vertical axis of the two-dimensional plot shown in FIG. 10 is displayed as a log. Therefore, for example, the variation of SS1 seems to be smaller than the variation of SS2, but in reality, the variation of SS1 may be larger.
- the plots of FIGS. 10 (a) to 10 (e) correspond to the plots of FIGS. 9 (a) to 9 (e), respectively.
- the photodetector numbers 0 to 64 in FIG. 10A correspond to the photodetector numbers 0 to 64 in FIG. 9A.
- FIG. 10B correspond to the photodetector numbers 0 to 64 in FIG. 9B.
- the photodetector numbers 130 to 194 in FIG. 10 (c) correspond to the photodetector numbers 0 to 64 in FIG. 9 (c).
- the photodetector numbers 195 to 259 in FIG. 10 (d) correspond to the photodetector numbers 0 to 64 in FIG. 9 (d).
- the photodetector numbers 260 to 324 of FIG. 10 (e) correspond to the photodetector numbers 0 to 64 of FIG. 9 (e).
- FIG. 11 is a diagram that makes it possible to visually recognize the degree of variation based on the height. The same description as in FIG. 10 will be omitted as appropriate.
- the height value itself can vary. From this, the information processing unit 132 can make the average value of the measurement spectrum vary.
- FIG. 12 shows a method of calculating the offset.
- the plot shown in FIG. 12 (a) shows the variability based on the area. Since the plot shown in FIG. 12A is similar to the plot shown by the dotted line in FIG. 9, the description of the plot will be omitted.
- the plot shown in FIG. 12B shows the offset.
- the plot shown in FIG. 12 (b) is a plot based on the value obtained by multiplying the plot shown in FIG. 12 (a) by a coefficient. Specifically, the plot shown in FIG. 12B is a plot based on the value obtained by multiplying the plot shown in FIG.
- the information processing unit 132 calculates the offset based on the measured value by fluorescence of the particles labeled with the plurality of fluorescent dyes. Further, since the measured values detected by each optical detector may include not many measured values due to the autofluorescence of the particles, the information processing unit 132 determines the fluorescence of the particles labeled with a plurality of fluorescent dyes. The offset may be calculated based on the value measured by the above and the value measured by the autofluorescence of the particles.
- the stain index is the stain index.
- the staining index will be described below.
- the measured fluorescence intensity differs depending on the nature of the fluorescent dye that labels the same particles.
- the stain index quantifies the fluorescence intensity according to the nature of the fluorescent dye that labels a particular particle.
- FIG. 13 shows a method of calculating the staining index.
- the staining index is defined as a value obtained by subtracting the average fluorescence intensity of the positive group MFI1 and the average fluorescence intensity of the negative group MFI2 by 2 times the standard deviation SD of the negative group MFI2.
- the distribution of the negative population may vary due to autofluorescence or non-specific staining. Since the staining index also considers the influence of such autofluorescence and non-specific staining as a factor, the fluorescence intensity can be quantified more appropriately.
- FIG. 14 shows the effect of setting the offset to the optimum value for each photodetector.
- the vertical axis of the two-dimensional plot shown in FIG. 14 shows the dyeing index, and the horizontal axis shows each fluorescent dye.
- AF594, APC, BUV563, BV605, and PE-Cy7 are used as each fluorescent dye.
- the information processing unit 132 calculates the staining index by regarding the particles stained with each of these fluorescent elements as a positive group and the unstained particles as a negative group.
- the staining index corresponding to each fluorescent dye is plotted.
- the staining index when the offset is set to the optimum value for each photodetector and the staining index when the offset is set to the fixed value are plotted.
- the plot shown by the solid line is the staining index when the offset is set to the optimum value for each photodetector
- the plot shown by the dotted line is the staining index when the offset is set to the fixed value.
- the larger the staining index the larger the difference between the positive group and the negative group, so that the separation performance is improved. Therefore, the information processing unit 132 can separate the measurement spectrum with high accuracy.
- FIG. 15 is a diagram showing FIG. 14 in different modes. Therefore, the same description as in FIG. 14 will be omitted.
- the ratio (improvement rate) of the value obtained by dividing the dyeing index when the offset is set to the optimum value for each photodetector by the dyeing index when the offset is set to a fixed value is plotted.
- the vertical axis of the two-dimensional plot shown in FIG. 15 shows the improvement rate, and the horizontal axis shows each fluorescent dye.
- SA11 shows an improvement rate of 100%. As shown in FIG. 15, the improvement rate exceeds 100% for each fluorescent dye.
- the providing unit 133 provides information on the fluorescence intensity of each fluorescent dye calculated by the information processing unit 132.
- the storage unit 120 stores information regarding the fluorescence intensity of each fluorescent dye calculated by the information processing unit 132.
- the display device 10 displays information on the fluorescence intensity provided by the providing unit 133. As a result, the user can appropriately grasp the fluorescence intensity of each fluorescent dye.
- the display device 10 displays a histogram, a two-dimensional plot, a three-dimensional plot, a spectrum plot, a tree plot, a t-SNE plot, and the like based on the calculated fluorescence intensity of each fluorescent dye.
- FIG. 16 is a flowchart showing a processing procedure according to the embodiment.
- the information processing apparatus 100 acquires the measured values of the unstained particles in each photodetector (step S101).
- the information processing apparatus 100 sets the WLSM offset for each photodetector based on the variation in the measured values of the unstained particles in each photodetector (step S102). Subsequently, the information processing apparatus 100 calculates the fluorescence intensity of each target fluorescent dye by inputting the measurement spectrum and the single staining spectrum of each photodetector into the WLSM (step S103).
- the measurement spectrum is measured by the measuring device 20 from the particles labeled with the fluorescent dye.
- the measured value of the unstained particles is also measured by the measuring device 20, but the measured value or the variation of the unstained particles can be stored in the storage unit 120 in advance before the measurement spectrum is acquired. It is also possible to calculate the fluorescence intensity of each fluorescent dye by using the variation of the unstained particles stored in the storage unit 120.
- a cell sorter is a device (separator) that separates particles that emit specific fluorescence by controlling the movement destination of the particles based on the fluorescence information detected by the flow cytometer.
- a preparative device such as this cell sorter
- the flow of particles is measured and analyzed, and the process of determining whether or not to sort the particles based on the measurement and analysis results is limited to the particles flowing through the device. You may be required to do it in time. Therefore, in a sorting device such as a cell sorter, it is desired to determine whether or not a particle is a sorting target more quickly and in real time.
- the sorter sorts a part of the particles to be sorted. Specifically, first, the preparator generates droplets for preparative use and charges the droplets of the particles to be sorted. The preparator then moves the generated droplets into the electric field generated by the polarizing plate. At this time, since the charged droplets are attracted to the charged polarizing plate side, the moving direction of the droplets is changed. As a result, the separator can separate the droplets of the particles to be sorted and the droplets of the particles not to be sorted, so that the particles to be sorted can be sorted. It becomes.
- the preparative method of the preparator may be either a jet-in-air method or a cuvette flow cell method.
- the particles may be separated by being ejected to the outside of the flow cell or the microchip, or may be separated inside the microchip. Whether or not to sort the particles may be determined by a logic circuit provided in the sorting device (for example, an FPGA (field-programmable gate array) circuit), and is determined by an instruction from the information processing device 100. May be done.
- a logic circuit provided in the sorting device (for example, an FPGA (field-programmable gate array) circuit), and is determined by an instruction from the information processing device 100. May be done.
- the user confirms the information on the fluorescence intensity on the display device 10 based on a chart such as a two-dimensional plot, and identifies the region containing the particles to be sorted.
- the information processing device 100 determines the conditions for preparative determination based on the information regarding the region containing the particles to be preparative specified by the user, and stores the conditions in the storage unit 120.
- the information processing unit 132 performs a separation process on the measurement spectrum based on the detection value acquired by the photodetector.
- the information processing apparatus 100 identifies the particles to be sorted by comparing the fluorescence intensity acquired by the separation process with the conditions for sorting determination, and outputs a sorting instruction to the sorting device.
- the preparative determination may be performed using a machine learning algorithm such as a neural network.
- the machine learning algorithm is supervised learning in which information about the measurement spectrum of the particle to be sorted specified by the user is used as a teacher.
- a learning model may be constructed using a machine learning algorithm such as a random forest, a support vector machine, or deep learning.
- WLSM when the fluorescence intensity of each fluorescent dye is calculated using WLSM (hereinafter, appropriately referred to as “Noise Base WLSM”) excluding the term for calculating max (y i, 0). Will be explained.
- the following formula (3) represents Noise Base WLSM. The same description as WLSM or LSM will be omitted as appropriate.
- the difference between WLSM and Noise Base WLSM is whether or not there is a term of max (y i, 0). Since there is no term of max (y i , 0) in Noise Base WLSM, the processing time may be shorter than that of WLSM. As a result, the information processing unit 132 can quickly calculate the fluorescence intensity of each fluorescent dye by using the Noise Base WLSM.
- FIG. 17 shows the difference between the results when Noise Base WLSM is used and when LSM is used.
- the ratio (improvement rate) of the value obtained by dividing the staining index when Noise Base WLSM is used by the staining index when LSM is used is plotted.
- the vertical axis of the two-dimensional plot shown in FIG. 17 shows the improvement rate, and the horizontal axis shows each fluorescent dye.
- SA22 shows an improvement rate of 100%. As shown in FIG. 17, the improvement rate exceeds 100% for each fluorescent dye.
- the information processing unit 132 can calculate the fluorescence intensity of each fluorescent dye with higher accuracy than the LSM.
- WSI whole slide imaging
- a sample placed on the stage is scanned by the excitation light from the light source.
- a two-dimensional imager such as a line sensor in which pixels are linearly arranged is used as a photodetector.
- the line sensor receives the fluorescence emitted from the sample to generate two-dimensional or three-dimensional image data (spectral image) for the entire sample.
- the generated spectral image is input to the information processing apparatus 100 and subjected to separation processing in the same manner as in the above-described embodiment, and the fluorescence intensity of each fluorescent dye is acquired.
- the sample is typically composed of slides containing an observation target such as a tissue section, but of course other than that may be used.
- the specimen is stained with a plurality of fluorescent dyes.
- the light source is composed of a plurality of line illuminations corresponding to the excitation wavelengths of the fluorescent dye, and the wavelengths constituting the first line illumination and the wavelengths constituting the second line illumination are different from each other.
- the line-shaped fluorescence excited by these line illuminations is observed in the photodetector via the optical system.
- the photodetector has an observation slit having a plurality of slits through which fluorescence excited by a plurality of line illuminations can pass, and at least one imaging element capable of individually receiving the fluorescence that has passed through the observation slits.
- Two-dimensional imagers such as CCD (Charge Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor) are used as the image sensor.
- the photodetector acquires fluorescence spectroscopic data (x, ⁇ ) using a pixel array in one direction (for example, the vertical direction) of the imaging element as a wavelength channel from each line illumination.
- the obtained spectral data (x, ⁇ ) are recorded in the information processing apparatus 100 in a state in which the spectral data excited from which excitation wavelength is associated with each other.
- the information processing unit 132 obtains the autofluorescence of the sample and the intensity distribution of the fluorescent dye from the captured spectral data (measurement spectrum) based on the autofluorescence of the sample and the standard spectra of the dye alone stored in the storage unit 120 in advance. Separate calculation. The calculated intensity distribution is stored in the storage unit 120, output to the display device 10, and displayed as an image.
- the information processing apparatus 100 may acquire any light as a measurement spectrum as long as it is light emitted by a fluorescent dye.
- the information processing apparatus 100 may acquire a spectrum of phosphorescence emitted by a fluorescent dye or a spectrum of scattered light as a measurement spectrum.
- the information processing apparatus 100 calculates the fluorescence intensity of phosphorescence or scattered light by collecting the measured values of phosphorescence or scattered light from each photodetector and separating the measurement spectrum obtained.
- the measuring device 20 shows an example of splitting the fluorescence generated from the fluorescent dye by using a prism, but the present invention is not limited to this example. Any measuring device 20 may be used as long as it can disperse the fluorescence generated from the fluorescent dye.
- the measuring device 20 may use a diffraction grating to disperse the fluorescence generated from the fluorescent dye.
- the measuring device 20 and the information processing device 100 are separate devices, but the measuring device 20 and the information processing device 100 may be integrated.
- the function of the information processing device 100 may be implemented in a computer that controls the operation of the measuring device 20.
- the function of the information processing device 100 may be implemented in an arbitrary computer provided in the housing of the measuring device 20.
- the measured values according to the embodiment and the spectrum obtained by collecting the measured values may include signals other than the light emitted by the fluorescent dye and the signal due to the autofluorescence of the particles.
- the measured values according to the embodiment and the spectrum obtained by collecting the measured values may include a noise signal from the measuring device 20, a signal due to Raman shift of the excitation light, and the like.
- FIG. 18 is a hardware configuration diagram showing an example of a computer that realizes the functions of the information processing device 100.
- the computer 1000 has a CPU 1100, a RAM 1200, a ROM 1300, an HDD 1400, a communication interface (I / F) 1500, an input / output interface (I / F) 1600, and a media interface (I / F) 1700.
- the CPU 1100 operates based on the program stored in the ROM 1300 or the HDD 1400, and controls each part.
- the ROM 1300 stores a boot program executed by the CPU 1100 when the computer 1000 is started, a program depending on the hardware of the computer 1000, and the like.
- the HDD 1400 stores a program executed by the CPU 1100, data used by such a program, and the like.
- the communication interface 1500 receives data from another device via a predetermined communication network and sends it to the CPU 1100, and transmits the data generated by the CPU 1100 to the other device via the predetermined communication network.
- the CPU 1100 controls an output device such as a display or a printer and an input device such as a keyboard or a mouse via the input / output interface 1600.
- the CPU 1100 acquires data from the input device via the input / output interface 1600. Further, the CPU 1100 outputs the generated data to the output device via the input / output interface 1600.
- the media interface 1700 reads the program or data stored in the recording medium 1800 and provides the program or data to the CPU 1100 via the RAM 1200.
- the CPU 1100 loads the program from the recording medium 1800 onto the RAM 1200 via the media interface 1700, and executes the loaded program.
- the recording medium 1800 is, for example, an optical recording medium such as a DVD (Digital Versatile Disc) or PD (Phase change rewritable disk), a magneto-optical recording medium such as an MO (Magneto-Optical disk), a tape medium, a magnetic recording medium, or a semiconductor memory. And so on.
- the CPU 1100 of the computer 1000 executes the program loaded on the RAM 1200 to execute the acquisition unit 131, the information processing unit 132, the providing unit 133, and the like.
- the CPU 1100 of the computer 1000 reads and executes these programs from the recording medium 1800, but as another example, these programs may be acquired from another device via a predetermined communication network.
- the HDD 1400 stores the particle analysis program according to the present disclosure and the data in the storage unit 120.
- each component of each device shown in the figure is a functional concept, and does not necessarily have to be physically configured as shown in the figure. That is, the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or part of the device is functionally or physically dispersed / physically distributed in any unit according to various loads and usage conditions. Can be integrated and configured.
- section, module, unit can be read as “means” or “circuit”.
- acquisition unit can be read as an acquisition means or an acquisition circuit.
- the present technology can also have the following configurations.
- An information processing unit that calculates the fluorescence intensity of each fluorescent dye by performing separation processing on the measurement spectrum based on the measured values from the plurality of photodetectors with a single staining spectrum of each fluorescent dye. With The separation process is performed by using a weighted least squares method (WLSM) including weights determined based on the variation of the measured values.
- WLSM weighted least squares method
- the information processing unit The particle analysis system according to (1) above, which calculates the fluorescence intensity using the evaluation function represented by the following formula (4).
- S represents a determinant showing the shape of the single staining spectrum.
- S T represents a transposed matrix equation of S.
- L represents a determinant indicating the weight of the single staining spectrum.
- max (y i , 0) represents the larger value of the measured value of the i-th photodetector compared with the measured value of zero.
- the offset represents the value of the weight, which is determined based on the measured value of each photodetector.
- the information processing unit The particle analysis system according to (1), wherein the fluorescence intensity is calculated using the evaluation function represented by the following formula (5).
- S represents a determinant showing the shape of the single staining spectrum.
- S T represents a transposed matrix equation of S.
- L represents a determinant indicating the weight of the single staining spectrum.
- the offset represents the value of the weight, which is determined based on the measured value of each photodetector.
- the weight is a value calculated based on the measured value by autofluorescence of the particles detected by each photodetector.
- the weight is a value calculated based on the measured value by the autofluorescence of the particles detected by each light detector and the measured value by the fluorescence of the particles labeled with the plurality of fluorescent dyes.
- the particle analysis system according to any one of 1) to (4).
- (6) The particle analysis system according to any one of (1) to (5) above, wherein the weight is a standard deviation value calculated based on an area in which the measured values are integrated in each photodetector.
- the fluorescence intensity of each fluorescent dye was calculated by performing separation processing on the measurement spectrum based on the measured values from the plurality of photodetectors with the single staining spectrum of each fluorescent dye.
- the separation process is a particle analysis method performed by using a weighted least squares method (WLSM) including weights determined based on the variation of the measured values.
- WLSM weighted least squares method
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
複数の蛍光色素により標識された粒子に励起光を照射することによって得られる測定スペクトルを、蛍光色素ごとに高精度に分離する。複数の蛍光色素により標識された粒子に励起光を照射することで生じる光を取得する、複数の光検出器(23)と、複数の光検出器(23)からの測定値に基づく測定スペクトルを、各蛍光色素の単染色スペクトルで分離処理を実施することにより各蛍光色素の蛍光強度を算出する情報処理部(132)と、を備え、分離処理は、測定値のばらつきに基づき決定される重みを含む重み付け最小二乗法(WLSM:Weighted Least Squares Method)を用いて実施される粒子解析システム(1)。
Description
本発明は、粒子解析システムおよび粒子解析方法に関する。
細胞、微生物又はリポゾーム等の微小粒子が有する特性を分析するために、蛍光色素を用いて標識された微小粒子にレーザ光等の励起光を照射することによって、蛍光色素から発生する蛍光の蛍光強度やスペクトルを測定する技術が用いられる。この技術の一例が、フローサイトメータである。フローサイトメータでは、流路内を流通する微小粒子に励起光を照射し、微小粒子から発せられた蛍光や散乱光等が複数の光検出器(例えば、PMT:Photo Multiplier Tube)等により検出される。近年では、微小粒子が有する特性をより詳細に分析するために、複数の蛍光色素で標識した微小粒子を解析する技術が用いられている。
しかしながら、複数の蛍光色素を用いて標識する場合、各蛍光色素から発生する蛍光の中心波長が近接する場合がある。この場合には、蛍光のスペクトルが重複する波長帯域が存在する可能性がある。蛍光のスペクトルが重複された波長帯域では、各蛍光色素からの蛍光を適切に分離できないため、各光検出器には目的とする蛍光色素からの蛍光以外が漏れ込むことがある。この蛍光の漏れ込みが生じると、実際の蛍光強度よりも大きく測定されるため、蛍光強度に誤差が生じる可能性がある。
この蛍光強度の誤差を是正するために、光検出器により測定された測定スペクトルを、各蛍光色素のスペクトル(単染色スペクトル)を用いて数学的に分離することにより、各蛍光色素からの蛍光強度を高精度に算出する技術が知られている。
しかしながら、従来の技術では、光検出器により測定された測定スペクトルを、蛍光色素ごとに高精度に分離することが困難である場合がある。
本願は、上記に鑑みてなされたものであって、複数の蛍光色素により標識された粒子に励起光を照射することによって得られる測定スペクトルを、蛍光色素ごとに高精度に分離することができる粒子解析システムおよび粒子解析方法を提案する。
本願に係る粒子解析システムは、複数の蛍光色素により標識された粒子に励起光を照射することで生じる光を取得する、複数の光検出器と、前記複数の光検出器からの測定値に基づく測定スペクトルを、各蛍光色素の単染色スペクトルで分離処理を実施することにより当該各蛍光色素の蛍光強度を算出する情報処理部と、を備え、前記分離処理は、当該測定値のばらつきに基づき決定される重みを含む重み付け最小二乗法(WLSM:Weighted Least Squares Method)を用いて実施されることを特徴とする。
以下に、本願に係る粒子解析システムおよび粒子解析方法を実施するための形態(以下、「実施形態」と呼ぶ)について図面を参照しつつ詳細に説明する。なお、この実施形態により本願に係る粒子解析システムおよび粒子解析方法が限定されるものではない。また、以下の各実施形態において同一の部位には同一の符号を付し、重複する説明は省略される。
以下に示す項目順序に従って本開示を説明する。
1.フローサイトメータによる蛍光検出
2.実施形態に係るシステムの構成
3.情報処理の一例
3.1.情報処理装置100
3.2.処理手順
4.変形例
5.処理のバリエーション
5.1.ホールスライドイメージング(WSI)への適用
5.2.種々のスペクトルの測定
5.3.プリズム以外の分光の対象物
5.4.装置の一体
5.5.その他のシグナル
6.ハードウェア構成
7.その他
1.フローサイトメータによる蛍光検出
2.実施形態に係るシステムの構成
3.情報処理の一例
3.1.情報処理装置100
3.2.処理手順
4.変形例
5.処理のバリエーション
5.1.ホールスライドイメージング(WSI)への適用
5.2.種々のスペクトルの測定
5.3.プリズム以外の分光の対象物
5.4.装置の一体
5.5.その他のシグナル
6.ハードウェア構成
7.その他
(実施形態)
〔1.フローサイトメータによる蛍光検出〕
フローサイトメータにおける蛍光検出には、粒子を標識した蛍光色素の蛍光波長に応じた光学系をユーザが選択し、蛍光色素毎の蛍光強度を測定する方法の他に、連続した波長帯域における光の強度を取得する方法もある。以下、それぞれの方法について説明する。
〔1.フローサイトメータによる蛍光検出〕
フローサイトメータにおける蛍光検出には、粒子を標識した蛍光色素の蛍光波長に応じた光学系をユーザが選択し、蛍光色素毎の蛍光強度を測定する方法の他に、連続した波長帯域における光の強度を取得する方法もある。以下、それぞれの方法について説明する。
図1は、蛍光色素毎の蛍光強度を測定する方法を示す。図1に示す方法では、粒子が流れる流路LS1の一部AA1において、波長の異なる2つの励起光(635nm及び488nm)が粒子に照射される。そして、粒子に励起光が照射されることによって、蛍光色素は蛍光を発する。この蛍光色素から発生する蛍光は、特定の帯域の波長の蛍光を反射させるダイクロイックミラーHA1乃至HA4で分光され、バンドパスフィルタFA1乃至FA4を通り、各PMTFL1乃至FL4により各蛍光色素の蛍光波長に対応した波長帯域での蛍光強度を取得する。図1に示す方法では、各蛍光色素から発生する蛍光の中心波長が近接する場合には、蛍光が重なり合うため、目的とする蛍光色素からの蛍光以外の漏れ込みを完全に抑制することが困難である。
図2は、連続な波長帯域の光の強度を測定する方法を示す。図2では、複数の蛍光色素が標識された粒子に励起光を照射することによって発生する光は、プリズムBB1へ向かう。図2では、プリズムBB1を用いて、光を分光する。複数の光検出器CC1は、プリズムBB1で分光された光の強度を波長帯域毎に取得する。ここで光を分光する手段はプリズムBB1に限らず、回折格子でもよい。また、ダイクロイックミラー又はビームスプリッタ等の波長に応じて光を透過または反射する光学系を用いても良い。ダイクロイックミラー又はビームスプリッタ等の光学系を複数の光検出器の受光面側にそれぞれ配置することで、光の各波長帯域の強度を取得することが可能である。上記手法により取得した波長帯域毎の検出値に対して数学的な分離処理(unmixing処理)を実施することで、各蛍光色素の蛍光強度を取得することができる。これにより、各蛍光色素から発生する蛍光の中心波長が近接する場合でも、目的とする蛍光色素からの蛍光以外の漏れ込みを抑制することが可能となる。図2に示すようなフローサイトメータは、「スペクトル型フローサイトメータ」と呼ばれることがある。
〔2.実施形態に係るシステムの構成〕
図3を用いて、実施形態に係る粒子解析システム1について説明する。図3は、実施形態に係る粒子解析システム1を示す図である。図3に示すように、粒子解析システム1は、表示装置10と、測定装置20と、情報処理装置100とを含む。
図3を用いて、実施形態に係る粒子解析システム1について説明する。図3は、実施形態に係る粒子解析システム1を示す図である。図3に示すように、粒子解析システム1は、表示装置10と、測定装置20と、情報処理装置100とを含む。
表示装置10は、例えば、液晶、EL(Electro-Luminescence)、CRT(Cathode Ray Tube)などが用いられた画面を有する。表示装置10は、4Kや8Kに対応していてもよいし、複数の表示装置により形成されてもよい。表示装置10は、測定装置20で検出された蛍光等(例えば、蛍光や燐光や散乱光)の強度をスペクトル(以下、適宜、「測定スペクトル」とする。)として表示する。
測定装置20は、スペクトル型フローサイトメータとすることができる。測定装置20は、複数の蛍光色素により標識された粒子に励起光を照射して、各蛍光色素から発生する蛍光等の強度を検出するために用いられる。図3に示すように、測定装置20は、光源21と、流路22と、光検出器23と、機器制御部24とを含む。
図4を参照すると、フローサイトメータでは、光源21からの励起光が流路22を流れる粒子Sに対して照射される。光検出器23は、励起光の照射された粒子Sから放射する蛍光や粒子Sで散乱した散乱光等を検出する。また、図4には示されていないが、励起光を粒子Sへと導光するためのレンズ等の光学系、及び粒子Sから発生される蛍光等を光検出器23に導光するための光学系が、フローサイトメータに設けられる。
粒子Sは、例えば、細胞、微生物又は生体関連粒子などの生体由来粒子であり、複数の生体由来粒子の集団を含む。粒子Sは、例えば、動物細胞(例えば、血球系細胞など)、若しくは植物細胞などの細胞、大腸菌等の細菌類、タバコモザイクウイルス等のウイルス類、若しくはイースト等の菌類などの微生物、染色体、リポソーム、ミトコンドリア、エクソソーム若しくは各種オルガネラ(細胞小器官)などの細胞を構成する生体関連粒子、又は核酸、タンパク質、脂質、糖鎖、若しくはこれらの複合体などの生体関連高分子などの生体由来の微小粒子であってもよい。更に、粒子Sは、ラテックス粒子やゲル粒子、工業用粒子などの合成粒子などが広く含まれるものとする。また、工業用粒子は、例えば有機もしくは無機高分子材料、金属などであってもよい。有機高分子材料には、ポリスチレン、スチレン・ジビニルベンゼン、ポリメチルメタクリレートなどが含まれる。無機高分子材料には、ガラス、シリカ、磁性体材料などが含まれる。金属には、金コロイド、アルミなどが含まれる。これら粒子の形状は、一般には球形であるのが普通であるが、非球形であってもよく、また大きさや質量なども特に限定されない。
ここで、粒子Sは、1つ以上の蛍光色素によって標識(染色)されている。蛍光色素による粒子Sの標識は、公知の手法によって行うことができる。例えば、粒子Sが細胞である場合、細胞表面に存在する抗原に対して選択的に結合する蛍光標識抗体と、測定対象の細胞とを混合し、細胞表面の抗原に蛍光標識抗体を結合させることで、測定対象の細胞を蛍光色素にて標識することができる。
蛍光標識抗体は、標識として蛍光色素を結合させた抗体である。具体的には、蛍光標識抗体は、ビオチン標識した抗体に、アビジンを結合させた蛍光色素をアビジン-ビオジン反応によって結合させたものであってもよい。または、蛍光標識抗体は、抗体に蛍光色素を直接結合させたものであってもよい。なお、抗体は、ポリクローナル抗体又はモノクローナル抗体のいずれを用いることも可能である。また、細胞を標識するための蛍光色素も特に限定されず、細胞等の染色に使用される公知の色素を少なくとも1つ以上用いることが可能である。
光源21は、所定波長の励起光を発する光源である。図1及び2では、光源21は、488nmと635nmの波長の励起光を照射する。また、図3では、測定装置20に1台の光源21が含まれる場合を示すが、測定装置20には、複数台の光源21が含まれてもよい。図5では、LD-1~LD-Nで表されるN(Nは正の整数)台の光源21を示す。Nは、例えば7や5である。N台の光源21は、異なる軸で粒子に励起光を照射する。
流路22は、流路内を流れる粒子を流れ方向に一列に流通させるためのマイクロ流路である。流路22は、マイクロチップ内又はフローセル内に設けられていてもよい。
光検出器23は、蛍光色素が標識された粒子に励起光を照射することにより生じた光を検出するための光検出器である。光検出器23は、複数の光検出器を用いて、各光検出器で異なる波長帯域の光を検出する。ここで、各光検出器が検出する光の波長帯域は特定の波長帯域内で連続しているのが望ましいが、一部の波長帯域が欠けていてもよい。また、各光検出器が検出する光の波長帯域は一部重複していてもよい。
また、図5に示すように、光検出器23は、ディテクタ230、N個の受光素子ユニット231を備える。
ディテクタ230は、粒子に励起光を照射することにより生じた前方散乱光を検出する。ディテクタ230は、例えば、CCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)、又はフォトダイオード等により実現される。ディテクタ230により検出された前方散乱光の測定値は、本実施形態に係る情報処理装置100に出力される。
受光素子ユニット231は、粒子に励起光を照射することにより生じた光を検出する。各受光素子ユニット231は、対応する光源21による励起光の照射により生じた光を検出する。受光素子ユニット231は、例えば、検出する波長域が異なる複数のPMT(Photo Multiplier Tube)又はフォトダイオードを一次元等に配列させた受光素子アレイや、画素が2次元格子状に配列したイメージセンサなどであってもよい。受光素子アレイは、プリズム又はグレーティングなどの分光素子によって、波長ごとに分光された粒子からの蛍光を光電変換する。また、一部の受光素子ユニット231は、側方散乱光を検出してもよい。ここで、側方散乱光は、受光素子ユニット231とは別のディテクタにて検出されてもよい。
各受光素子ユニット231は、光源21の励起波長より長波長側の検出波長帯域を有する。例えば、励起波長が320nm及び355nmの場合には、検出波長帯域は360.5~843.8nmであり、励起波長が405nmの場合には、検出波長帯域は413.6~843.8nmである。また、励起波長が488nm、561nm及び638nmの場合には、検出波長帯域は492.9~843.8nmであり、励起波長が808nmの場合には、検出波長帯域は823.5~920.0nmである。
各受光素子ユニット231で検出した各波長帯域の光より測定スペクトルが取得される。また、一部の受光素子ユニット231からは側方散乱光の測定値も生成される。取得された測定スペクトルは本実施形態に係る情報処理装置100へと出力される。
機器制御部24は、測定装置20のパラメータを最適化する。例えば、機器制御部24は、流路22の流路内を流れる送液の条件や、光源21が発する励起光の出力や、光検出器23が蛍光を検出する感度などのパラメータを最適化する。機器制御部24は、後述する情報処理部132による算出結果に応じて、パラメータを最適化する。
情報処理装置100は、PC、WS(Work Station)等の情報処理装置である。情報処理装置100は、測定装置20によって測定された測定スペクトルを、各蛍光色素のスペクトルを用いて数学的に分離することにより、各蛍光色素からの蛍光強度を算出する。
なお、実施形態に係る測定スペクトルとは、蛍光波長帯域の異なる複数の蛍光色素により標識された粒子に励起光を照射することによって生じた光を、受光波長帯域の異なる光検出器で受光し、各光検出器から光の強度を収集して得られるスペクトルである。また、実施形態に係る単染色スペクトルとは、単一の蛍光色素で標識された粒子に励起光を照射することにより得られる光を、同様に受光波長帯域の異なる光検出器で受光し、各光検出器から光の強度を収集して得られるスペクトルである。したがって、単染色スペクトルは、各蛍光色素の蛍光波長の分布を示す。
〔3.情報処理の一例〕
〔3-1.情報処理装置100〕
次に、図6を用いて、実施形態に係る情報処理装置100について説明する。図6は、実施形態に係る情報処理装置100の一例を示す図である。図6に示すように、情報処理装置100は、通信部110と、記憶部120と、制御部130とを有するコンピュータである。
〔3-1.情報処理装置100〕
次に、図6を用いて、実施形態に係る情報処理装置100について説明する。図6は、実施形態に係る情報処理装置100の一例を示す図である。図6に示すように、情報処理装置100は、通信部110と、記憶部120と、制御部130とを有するコンピュータである。
通信部110は、例えば、NIC(Network Interface Card)等によって実現される。通信部110は、図示しないネットワークNと有線又は無線で接続され、ネットワークNを介して、測定装置20等との間で情報の送受信を行う。後述する制御部130は、通信部110を介して、これらの装置との間で情報の送受信を行う。
記憶部120は、例えば、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現される。記憶部120は、測定装置20から送信された測定スペクトルを記憶する。また、記憶部120は、各蛍光色素の単染色スペクトルを記憶する。
制御部130は、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)によって、情報処理装置100内部に記憶されたプログラム(情報処理プログラムの一例)がRAM等を作業領域として実行されることにより実現される。また、制御部130は、例えばASIC(Application specific Integrated Circuit)やFPGA(Field Programmable gate Array)等の集積回路により実行されてもよい。
図6に示すように、制御部130は、取得部131と、情報処理部132と、提供部133とを有し、以下に説明する情報処理の機能や作用を実現または実行する。なお、制御部130の内部構成は、図6に示した構成に限られず、後述する情報処理を実行可能な構成であれば他の構成であってもよい。
取得部131は、測定装置20から送信された測定スペクトルを取得する。具体的には、取得部131は、蛍光色素が標識された粒子に励起光を照射することにより得られる光の測定スペクトルを取得する。図7及び8を用いて、測定スペクトルを説明する。
図7は、各蛍光色素の単染色スペクトルを示す。取得部131は、単一の蛍光色素で標識された粒子の単染色スペクトルを取得する。図7に示す粒子を標識した複数の蛍光色素は、蛍光色素Aと、蛍光色素Bと、蛍光色素Cと、蛍光色素Dである。なお、それぞれの蛍光色素は異なるものとする。図7(a)乃至(d)に示す2次元プロットの縦軸は蛍光強度を示し、横軸は光検出器の番号又は波長を示す。図7(a)は、粒子を標識した蛍光色素Aの単染色スペクトルLA1を示す。図7(b)は、粒子を標識した蛍光色素Bの単染色スペクトルLA2を示す。図7(c)は、粒子を標識した蛍光色素Cの単染色スペクトルLA3を示す。図7(d)は、粒子を標識した蛍光色素Dの単染色スペクトルLA4を示す。また、各蛍光色素の単染色スペクトルとしたが、自家蛍光スペクトルを含んでも良い。自家蛍光スペクトルとは、無染色粒子に励起光を照射することにより取得される。ここで、単染色スペクトルは、測定装置20から取得されてもよいし、予め記憶部120に記憶されていてもよい。更に、単染色スペクトルが記憶部120に予め記憶されている場合、同一の測定装置20で測定されたものであるのが好ましいが、異なる測定装置で測定されたものであってもよい。記憶部120では、単染色スペクトルに紐づけて各蛍光色素の名称、単染色スペクトル測定時の測定条件等が記憶される。
図8は、測定スペクトルを示す。図8に示す2次元プロットの縦軸は蛍光強度を示し、横軸は光検出器の番号又は波長を示す。また、横軸は、光検出器の数が32であることを示す。図8では、各光検出器の番号に応じて光の強度がプロットされる。このプロットにより示されるスペクトルが測定スペクトルLA11である。取得部131は、測定スペクトルLA11に対応する各光検出器の番号に応じた光の強度を取得する。この光の強度が、測定値である。また、測定スペクトルLA11は、図7に示す各蛍光色素の単染色スペクトルを組み合わせたスペクトルである。
情報処理部132は、各光検出器から測定値を収集して得られる測定スペクトルを、各蛍光色素を個別に標識した粒子で得られる単染色スペクトルの線形和により分離する。そして、情報処理部132は、各光検出器からの測定値に基づく測定スペクトルを、各蛍光色素の単染色スペクトルで分離処理を実施することにより、各蛍光色素の蛍光強度を算出する。なお、単染色スペクトルの線形和による測定スペクトルの分離には、例えば最小二乗法(LSM:Least Squares Method)が用いられる。この最小二乗法を用いることによって、単染色スペクトルの線形和と測定スペクトルとのフィッティング率が最も高くなるように分離することができる。具体的には、情報処理部132は、測定スペクトルと最小二乗法とに基づいて、各蛍光色素の蛍光強度を算出し、算出された各蛍光色素の蛍光強度に基づいて分離する。下記式(1)は、LSMを示す。
情報処理部132は、取得部131により取得された測定値を、式(1)に入力することにより、各蛍光色素の蛍光強度を算出する。しかしながら、LSMでは、光検出器の測定値が小さい場合には、その光検出器に入光された蛍光の寄与が小さくなる場合がある。このため、更なる改善の余地がある。
以下、LSMの代わりに、重み付け最小二乗法(WLSM:Weighted Least Square Method)を用いて、各蛍光色素の蛍光強度を算出する場合を説明する。下記式(2)は、WLSMを示す。なお、LSMと同様の説明は適宜省略する。
従来、式(2)のオフセットには、測定装置20の開発段階の評価に基づいて、実験的に分離の精度が最大となる定数が固定値として用いられていた。しかしながら、LSMの場合と同様に、i番目の光検出器の測定値が小さい場合には、その光検出器に入力される蛍光の寄与が小さくなる場合がある。このため、オフセットを光検出器ごとに最適値に設定することが望まれる。
式(2)に示すように、オフセットは、測定スペクトルにおける各光検出器の測定値(y)から各蛍光色素の蛍光強度(x)を算出するために決定される値である。オフセットは、各光検出器固有のばらつきや検出限界に基づいて決定され得る値でもある。オフセットは、例えば、各光検出器からの測定値のばらつきに基づき決定される重みである。すなわち、分離処理は、各光検出器からの測定値のばらつきに基づき決定される重みを含む重み付け最小二乗法を用いて実施される。
情報処理部132は、オフセットを光検出器ごとに最適値に設定するために、光検出器ごとに無染色粒子の測定値のばらつきを算出する。ここで、ばらつきとは、例えば、各検出器における無染色粒子の測定値のエリア(面積)に基づくばらつきや、ハイト(ピーク値)に基づくばらつきが含まれ得る。以下、この2種類のばらつきを説明しながらWLSMの効果を説明する。
エリアに基づくばらつきとは、各検出器における無染色粒子の測定値の標準偏差値である。情報処理部132は、各検出器における無染色粒子の測定値の標準偏差値を、エリアに基づくばらつきとする。また、ハイトに基づくばらつきとは、各検出器における無染色粒子の測定値の平均値である。情報処理部132は、各検出器における無染色粒子の測定値の平均値を、ハイトに基づくばらつきとする。
図9は、各検出器における無染色粒子の測定値と、エリアに基づくばらつき(測定スペクトルの標準偏差値)との関係性を示す。図9に示す粒子は、マイクロビーズである。図9に示す2次元プロットの縦軸は蛍光強度を示し、横軸は光検出器の番号又は波長を示す。また、横軸は光検出器の数が324であることを示す。図9では、各光検出器の番号に応じて蛍光強度がプロットされる。図9では、無染色粒子の測定値とそのばらつきがプロットされる。実線で示すプロットが無染色粒子の測定値であり、点線で示すプロットがばらつきである。このばらつきが大きいほど、測定値のデータの信頼性が低い可能性が高い。このため、ばらつきが大きい光検出器では、大きな値のオフセットを設定することで、その光検出器に入力される蛍光の寄与を小さくする。このことから、情報処理部132は、オフセットを光検出器ごとに最適値に設定するために、測定値のばらつきが大きいほど大きい値のオフセットを設定する。そして、情報処理部132は、測定値のばらつきが大きいほど大きい値のオフセットを用いて、各蛍光色素の蛍光強度を算出する。なお、ハイトの場合も同様であるため、説明を省略する。
図10は、図9のばらつきのプロットを異なる態様で表示した図である。図10では、ばらつきの度合を視認可能な状態で表示する。図10に示す2次元プロットの縦軸はログで表示されている。このため、例えばSS1のばらつきは、SS2のばらつきよりも小さくみえるが、実際には、SS1のばらつきのほうが大きい場合もある。図10(a)~(e)のプロットは、図9(a)~(e)のプロットのそれぞれに対応する。具体的には、図10(a)の光検出器の番号0~64は、図9(a)の光検出器の番号0~64に対応する。図10(b)の光検出器の番号65~129は、図9(b)の光検出器の番号0~64に対応する。図10(c)の光検出器の番号130~194は、図9(c)の光検出器の番号0~64に対応する。図10(d)の光検出器の番号195~259は、図9(d)の光検出器の番号0~64に対応する。図10(e)の光検出器の番号260~324は、図9(e)の光検出器の番号0~64に対応する。
図11は、ハイトに基づくばらつきの度合を視認可能にした図である。図10と同様の説明は、適宜省略する。ハイトを用いるメリットの一例として、粒子の自家蛍光が小さい場合には、自家蛍光による測定スペクトルへの影響も小さい。そのため、ハイトの値そのものがばらつきとなり得る。このことから、情報処理部132は、測定スペクトルの平均値を、ばらつきとすることができる。
ここで、オフセットの算出方法を説明する。情報処理部132は、各検出器におけるばらつきに、例えば係数を乗じることにより、大きな値のオフセットを設定する。図12は、オフセットの算出方法を示す。図12(a)に示すプロットは、エリアに基づくばらつきを示す。図12(a)に示すプロットは、図9の点線で示すプロットと同様であるため、プロットの説明は省略する。図12(b)に示すプロットは、オフセットを示す。図12(b)に示すプロットは、図12(a)に示すプロットに係数を乗じた値に基づくプロットである。具体的には、図12(b)に示すプロットは、図12(a)に示すプロットに約5倍の係数を乗じた値に基づくプロットである。このことから、情報処理部132は、複数の蛍光色素を標識した粒子の蛍光による測定値に基づいて、オフセットを算出する。また、各光検出器で検出される測定値には、粒子の自家蛍光による測定値も多からず含まれる可能性もあるため、情報処理部132は、複数の蛍光色素を標識した粒子の蛍光による測定値と、粒子の自家蛍光による測定値とに基づいて、オフセットを算出するとしてもよい。
オフセットを光検出器ごとに最適値に設定することによる効果を示す一つの方法が、染色指数(Stain Index)である。以下、染色指数を説明する。同一の粒子を標識する蛍光色素の性質によって、測定される蛍光強度が異なる。染色指数は、特定の粒子を標識する蛍光色素の性質によって蛍光強度を数値化する。図13は、染色指数の算出方法を示す。図13に示すように、染色指数は、陽性集団MFI1の平均蛍光強度と陰性集団MFI2の平均蛍光強度を差し引いた値を陰性集団MFI2の標準偏差SDの2倍で除した値として定義される。また、自家蛍光や非特異染色などによって、陰性集団の分布にばらつきが生じる場合もある。染色指数は、このような自家蛍光や非特異染色などによる影響もファクターとするため、より適切に蛍光強度を数値化することができる。
図14は、オフセットを光検出器ごとに最適値に設定したことによる効果を示す。図14に示す2次元プロットの縦軸は染色指数を示し、横軸は各蛍光色素を示す。図14では、各蛍光色素として、AF594、APC、BUV563、BV605、PE-Cy7が用いられる。情報処理部132は、これらの各蛍光要素を用いて染色された粒子を陽性集団とし、無染色の粒子を陰性集団として、染色指数を算出する。図14では、各蛍光色素に応じた染色指数がプロットされる。図14では、オフセットを光検出器ごとに最適値に設定した場合の染色指数と、オフセットを固定値に設定した場合の染色指数とがプロットされる。実線で示すプロットがオフセットを光検出器ごとに最適値に設定した場合の染色指数であり、点線で示すプロットがオフセットを固定値に設定した場合の染色指数である。ここで、染色指数が大きいほど、陽性集団と陰性集団との差が大きくなるため、分離性能が向上する。このため、情報処理部132は、測定スペクトルを高精度に分離することができる。
図15は、図14を異なる態様で表示した図である。このため、図14と同様の説明は省略する。図15では、オフセットを光検出器ごとに最適値に設定した場合の染色指数を、オフセットを固定値に設定した場合の染色指数で除した値の割合(改善率)がプロットされる。図15に示す2次元プロットの縦軸は改善率を示し、横軸は各蛍光色素を示す。SA11は100%の改善率を示す。図15に示すように、全ての各蛍光色素において、改善率は100%を超える。
提供部133は、情報処理部132により算出された各蛍光色素の蛍光強度に関する情報を提供する。また、記憶部120は、情報処理部132により算出された各蛍光色素の蛍光強度に関する情報を記憶する。表示装置10は、提供部133から提供された蛍光強度に関する情報を表示する。これにより、ユーザは、各蛍光色素の蛍光強度を適切に把握することができる。ここで、表示装置10は、算出された各蛍光色素の蛍光強度に基づきヒストグラム、二次元プロット、三次元プロット、スペクトルプロット、treeプロット、t-SNEプロット等を表示する。
〔3-2.処理手順〕
次に、図16を用いて、実施形態に係る処理手順を説明する。図16は、実施形態に係る処理手順を示すフローチャートである。図16に示すように、情報処理装置100は、各光検出器における無染色粒子の測定値を取得する(ステップS101)。
次に、図16を用いて、実施形態に係る処理手順を説明する。図16は、実施形態に係る処理手順を示すフローチャートである。図16に示すように、情報処理装置100は、各光検出器における無染色粒子の測定値を取得する(ステップS101)。
また、情報処理装置100は、各光検出器における無染色粒子の測定値のばらつきに基づいて、光検出器ごとにWLSMのオフセットを設定する(ステップS102)。続いて、情報処理装置100は、各光検出器における測定スペクトルと単染色スペクトルをWLSMに入力することで、対象となる各蛍光色素の蛍光強度を算出する(ステップS103)。ここで、測定スペクトルは、蛍光色素で標識された粒子より測定装置20にて測定されたものである。また、無染色粒子の測定値も測定装置20にて測定されたものであるが、無染色粒子の測定値又はばらつきは測定スペクトル取得前に予め記憶部120に記憶しておくこともできる。記憶部120にて記憶された無染色粒子のばらつきを用いて、各蛍光色素の蛍光強度を算出することもできる。
〔4.変形例〕
上述したWLSMでは、測定データごとにmax(yi,0)とオフセットとを算出するため、処理に時間が掛かる可能性がある。以下、上述したWLSMよりも処理時間を短縮する必要がある場合の処理を説明する。このような場合の一例が、セルソータを用いる場合である。
上述したWLSMでは、測定データごとにmax(yi,0)とオフセットとを算出するため、処理に時間が掛かる可能性がある。以下、上述したWLSMよりも処理時間を短縮する必要がある場合の処理を説明する。このような場合の一例が、セルソータを用いる場合である。
セルソータとは、フローサイトメータにて検出された蛍光情報に基づいて、粒子の移動先を制御することで、特定の蛍光を発する粒子を分取する装置(分取器)である。このセルソータなどの分取装置では、流れる粒子について測定及び解析を行い、測定及び解析結果に基づいて、粒子を分取するか否かを判別する処理を粒子が装置内を通流する限られた時間内に行うことが求められる場合がある。したがって、セルソータなどの分取装置では、粒子が分取対象であるか否かをより迅速かつリアルタイムで判別することが望まれる。
分取器は、分取対象となった粒子の一部を分取する。具体的には、まず、分取器は、分取の液滴を生成し、分取対象となる粒子の液滴を荷電させる。次に、分取器は、生成した液滴を偏向板により生成された電場中に移動させる。このとき、荷電した液滴は、帯電した偏光板側に引き寄せられるため、液滴の移動方向が変更される。これにより、分取器は、分取対象となる粒子の液滴と、分取対象ではない粒子の液滴とを分離することができるため、分取対象となる粒子を分取することが可能となる。なお、分取器の分取方式は、ジェットインエアー方式又はキュベットフローセル方式のいずれであってもよい。また、粒子は、フローセル又はマイクロチップの外部に射出されることで分取されてもよく、マイクロチップの内部にて分取されてもよい。粒子を分取するか否かは、分取装置に備えられたロジック回路(例えば、FPGA(field-programmable gate array)回路)にて判断されてもよく、情報処理装置100からの指示にて判断されてもよい。
ユーザは、表示装置10にて蛍光強度に関する情報を2次元プロット等の図表に基づき確認し、分取対象となる粒子を含む領域を特定する。情報処理装置100は、ユーザにより特定された分取対象となる粒子を含む領域に関する情報に基づき分取判断の条件を決定し、記憶部120に記憶する。情報処理部132は、光検出器により取得された検出値に基づく測定スペクトルに対して、分離処理を実施する。情報処理装置100は、分離処理により取得された蛍光強度を分取判断の条件と比較することで、分取対象となる粒子を特定し、分取器に分取指示を出力する。ここで、分取判断はニューラルネットワーク等の機械学習アルゴリズムを用いて実施しても良い。この場合、機械学習のアルゴリズムは、ユーザにより特定された分取対象となる粒子の測定スペクトルに関する情報を教師とする教師あり学習である。例えば、ランダムフォレスト、サポートベクターマシン、又はディープラーニングなどの機械学習アルゴリズムを用いて学習モデルを構築してもよい。
以下、上述したWLSMにおいて、max(yi,0)の算出の項を除したWLSM(以下、適宜、「Noise Base WLSM」とする。)を用いて、各蛍光色素の蛍光強度を算出する場合を説明する。下記式(3)は、Noise Base WLSMを示す。なお、WLSM又はLSMと同様の説明は適宜省略する。
WLSMと、Noise Base WLSMとの違いは、max(yi,0)の項があるか否かである。Noise Base WLSMでは、max(yi,0)の項がないため、WLSMよりも処理時間が短くなる場合がある。これにより、情報処理部132は、Noise Base WLSMを用いて、各蛍光色素の蛍光強度を迅速に算出することができる。
図17は、Noise Base WLSMを用いた場合と、LSMを用いた場合との結果の差を示す。図17では、Noise Base WLSMを用いた場合の染色指数を、LSMを用いた場合の染色指数で除した値の割合(改善率)をプロットする。図17に示す2次元プロットの縦軸は改善率を示し、横軸は各蛍光色素を示す。なお、SA22は100%の改善率を示す。図17に示すように、全ての各蛍光色素において、改善率は100%を超える。情報処理部132は、Noise Base WLSMを用いることで、LSMよりも高精度に、各蛍光色素の蛍光強度を算出することができる。
〔5.処理のバリエーション〕
〔5-1.WSIへの適用〕
上述した実施形態では、スペクトル型フローサイトメータを例示したが、本開示に係る技術は、フローサイトメータに限定されず、例えば、ホールスライドイメージング(WSI)などの医療機器にも適用することが可能となる。
〔5-1.WSIへの適用〕
上述した実施形態では、スペクトル型フローサイトメータを例示したが、本開示に係る技術は、フローサイトメータに限定されず、例えば、ホールスライドイメージング(WSI)などの医療機器にも適用することが可能となる。
ホールスライドイメージング(WSI)では、測定対象である検体は、ステージ上に載置され、ステージ上に載置された検体が光源からの励起光によって走査される。また、ホールスライドイメージング(WSI)では、光検出器として、画素が直線状に配列したラインセンサなどの2次元イメージャが用いられる。ラインセンサは、励起光がステージ上の検体を走査した際に、検体から放射された蛍光を受光することで、検体全体に対する2次元又は3次元の画像データ(スペクトル画像)を生成する。
生成されたスペクトル画像は、上述した実施形態と同様に、情報処理装置100に入力されて分離処理が行われ、各蛍光色素の蛍光強度を取得する。
検体は、典型的には、組織切片等の観察対象を含むスライドで構成されるが、勿論それ以外であってもよい。検体は、複数の蛍光色素によって染色されている。光源は蛍光色素の励起波長に対応した複数のライン照明からなり、1つめのライン照明を構成する波長と、2つめのライン照明を構成する波長は相互に異なっている。これらライン照明により励起されるライン状の蛍光は、光学系を介して光検出器において観測される。
光検出器は、複数のライン照明によって励起された蛍光がそれぞれ通過可能な複数のスリット部を有する観測スリットと、観測スリットを通過した蛍光を個々に受光可能な少なくとも1つの撮像素子とを有する。撮像素子には、CCD(Charge Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)などの2次元イメージャが採用される。
光検出器は、それぞれのライン照明から、撮像素子の1方向(例えば垂直方向)の画素アレイを波長のチャンネルとして利用した蛍光の分光データ(x、λ)を取得する。得られた分光データ(x、λ)は、それぞれどの励起波長から励起された分光データであるかが紐づけられた状態で情報処理装置100に記録される。
情報処理部132は、記憶部120にあらかじめ記憶された検体の自家蛍光及び色素単体の各標準スペクトルを基に、撮影された分光データ(測定スペクトル)から検体の自家蛍光及び蛍光色素の強度分布を分離計算する。算出された強度分布は記憶部120に記憶されるとともに、表示装置10へ出力されて画像として表示される。
以上のように、WSIに対しても、スペクトル型フローサイトメータと同様に、検体の自家蛍光及び蛍光色素の強度分布を取得することが可能である。
〔5-2.種々のスペクトルの測定〕
上記実施形態では、蛍光色素が発する蛍光のスペクトルを測定スペクトルとして取得する例を示したが、この例に限られない。情報処理装置100は、蛍光色素が発する光であれば、どのような光を測定スペクトルとして取得してもよい。例えば、情報処理装置100は、蛍光色素が発する燐光のスペクトルや、散乱光のスペクトルを測定スペクトルとして取得してもよい。この場合には、情報処理装置100は、各光検出器から燐光や散乱光の測定値を収集して得られる測定スペクトルを分離することにより、燐光又は散乱光の蛍光強度を算出する。
上記実施形態では、蛍光色素が発する蛍光のスペクトルを測定スペクトルとして取得する例を示したが、この例に限られない。情報処理装置100は、蛍光色素が発する光であれば、どのような光を測定スペクトルとして取得してもよい。例えば、情報処理装置100は、蛍光色素が発する燐光のスペクトルや、散乱光のスペクトルを測定スペクトルとして取得してもよい。この場合には、情報処理装置100は、各光検出器から燐光や散乱光の測定値を収集して得られる測定スペクトルを分離することにより、燐光又は散乱光の蛍光強度を算出する。
〔5-3.プリズム以外の分光の対象物〕
上記実施形態では、測定装置20が、プリズムを用いることにより、蛍光色素から発生する蛍光を分光する例を示したが、この例に限られない。測定装置20は、蛍光色素から発生する蛍光を分光することができるものであれば、どのようなものを用いてもよい。例えば、測定装置20は、回折格子を用いて、蛍光色素から発生する蛍光を分光してもよい。
上記実施形態では、測定装置20が、プリズムを用いることにより、蛍光色素から発生する蛍光を分光する例を示したが、この例に限られない。測定装置20は、蛍光色素から発生する蛍光を分光することができるものであれば、どのようなものを用いてもよい。例えば、測定装置20は、回折格子を用いて、蛍光色素から発生する蛍光を分光してもよい。
〔5-4.装置の一体〕
上記実施形態では、測定装置20と情報処理装置100とは、別装置である場合を示したが、測定装置20と情報処理装置100とが一体であってもよい。例えば、情報処理装置100の機能は、測定装置20の動作を制御するコンピュータに実装されていてもよい。また、情報処理装置100の機能は、測定装置20の筐体内に設けられた任意のコンピュータに実装されていてもよい。
上記実施形態では、測定装置20と情報処理装置100とは、別装置である場合を示したが、測定装置20と情報処理装置100とが一体であってもよい。例えば、情報処理装置100の機能は、測定装置20の動作を制御するコンピュータに実装されていてもよい。また、情報処理装置100の機能は、測定装置20の筐体内に設けられた任意のコンピュータに実装されていてもよい。
〔5-5.その他のシグナル〕
実施形態に係る測定値及びその測定値を収集して得られるスペクトルには、蛍光色素が発する光や粒子の自家蛍光によるシグナル以外のシグナルも含まれていてもよい。例えば、実施形態に係る測定値及びその測定値を収集して得られるスペクトルには、測定装置20によるノイズのシグナルや、励起光のラマンシフトによるシグナルなども含まれていてもよい。
実施形態に係る測定値及びその測定値を収集して得られるスペクトルには、蛍光色素が発する光や粒子の自家蛍光によるシグナル以外のシグナルも含まれていてもよい。例えば、実施形態に係る測定値及びその測定値を収集して得られるスペクトルには、測定装置20によるノイズのシグナルや、励起光のラマンシフトによるシグナルなども含まれていてもよい。
〔6.ハードウェア構成〕
また、上述してきた実施形態に係る情報処理装置100や測定装置20は、例えば、図18に示すような構成のコンピュータ1000によって実現される。図18は、情報処理装置100の機能を実現するコンピュータの一例を示すハードウェア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM1300、HDD1400、通信インターフェイス(I/F)1500、入出力インターフェイス(I/F)1600、及びメディアインターフェイス(I/F)1700を有する。
また、上述してきた実施形態に係る情報処理装置100や測定装置20は、例えば、図18に示すような構成のコンピュータ1000によって実現される。図18は、情報処理装置100の機能を実現するコンピュータの一例を示すハードウェア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM1300、HDD1400、通信インターフェイス(I/F)1500、入出力インターフェイス(I/F)1600、及びメディアインターフェイス(I/F)1700を有する。
CPU1100は、ROM1300またはHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。
HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を格納する。通信インターフェイス1500は、所定の通信網を介して他の機器からデータを受信してCPU1100へ送り、CPU1100が生成したデータを所定の通信網を介して他の機器へ送信する。
CPU1100は、入出力インターフェイス1600を介して、ディスプレイやプリンタ等の出力装置、及び、キーボードやマウス等の入力装置を制御する。CPU1100は、入出力インターフェイス1600を介して、入力装置からデータを取得する。また、CPU1100は、生成したデータを入出力インターフェイス1600を介して出力装置へ出力する。
メディアインターフェイス1700は、記録媒体1800に格納されたプログラムまたはデータを読み取り、RAM1200を介してCPU1100に提供する。CPU1100は、かかるプログラムを、メディアインターフェイス1700を介して記録媒体1800からRAM1200上にロードし、ロードしたプログラムを実行する。記録媒体1800は、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。
例えば、コンピュータ1000が実施形態に係る情報処理装置100として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされたプログラムを実行することにより、取得部131、情報処理部132、提供部133等の機能を実現する。コンピュータ1000のCPU1100は、これらのプログラムを記録媒体1800から読み取って実行するが、他の例として、他の装置から所定の通信網を介してこれらのプログラムを取得してもよい。また、HDD1400には、本開示に係る粒子解析プログラムや、記憶部120内のデータが格納される。
〔7.その他〕
また、上記実施形態および変形例において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
また、上記実施形態および変形例において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。
また、上述してきた実施形態および変形例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。
以上、本願の実施形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、発明の開示の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。
また、上述してきた「部(section、module、unit)」は、「手段」や「回路」などに読み替えることができる。例えば、取得部は、取得手段や取得回路に読み替えることができる。
なお、本技術は以下のような構成も取ることができる。
(1)
複数の蛍光色素により標識された粒子に励起光を照射することで生じる光を取得する、複数の光検出器と、
前記複数の光検出器からの測定値に基づく測定スペクトルを、各蛍光色素の単染色スペクトルで分離処理を実施することにより当該各蛍光色素の蛍光強度を算出する情報処理部と、
を備え、
前記分離処理は、当該測定値のばらつきに基づき決定される重みを含む重み付け最小二乗法(WLSM:Weighted Least Squares Method)を用いて実施される
粒子解析システム。
(2)
前記情報処理部は、
下記式(4)で示される評価関数を用いて、前記蛍光強度を算出する
前記(1)に記載の粒子解析システム。
式中、Sは、単染色スペクトルの形状を示す行列式を表す。STは、Sの転置行列式を表す。Lは、単染色スペクトルの重みを示す行列式を表す。xn(n=1~蛍光色素の数)は、n番目の蛍光色素の蛍光強度を表す。ym(m=1~光検出器の数)は、m番目の光検出器の測定値を示す。max(yi,0)は、i番目の光検出器の測定値と測定値がゼロとを比較して大きい方の値を表す。オフセット(offset)は、各光検出器の測定値に基づいて決定される前記重みの値を表す。
(3)
前記情報処理部は、
下記式(5)で示される評価関数を用いて、前記蛍光強度を算出する
前記(1)に記載の粒子解析システム。
式中、Sは、単染色スペクトルの形状を示す行列式を表す。STは、Sの転置行列式を表す。Lは、単染色スペクトルの重みを示す行列式を表す。xn(n=1~蛍光色素の数)は、n番目の蛍光色素の蛍光強度を表す。ym(m=1~光検出器の数)は、m番目の光検出器の測定値を示す。オフセット(offset)は、各光検出器の測定値に基づいて決定される前記重みの値を表す。
(4)
前記重みは、各光検出器において検出された前記粒子の自家蛍光による前記測定値に基づいて算出される値である
前記(1)~(3)のいずれか1つに記載の粒子解析システム。
(5)
前記重みは、各光検出器において検出された前記粒子の自家蛍光による前記測定値と前記複数の蛍光色素を標識した当該粒子の蛍光による当該測定値とに基づいて算出される値である
前記(1)~(4)のいずれか1つに記載の粒子解析システム。
(6)
前記重みは、各光検出器において、前記測定値を積分したエリアに基づいて算出される標準偏差値である
前記(1)~(5)のいずれか1つに記載の粒子解析システム。
(7)
前記重みは、各光検出器において、前記測定値のピーク値を示すハイトに基づいて算出される平均値である
前記(1)~(6)のいずれか1つに記載の粒子解析システム。
(8)
前記情報処理部による処理結果に基づいて、特定の蛍光を発する粒子を分取する分取器、を更に備える
前記(1)~(7)のいずれか1つに記載の粒子解析システム。
(9)
複数の蛍光色素により標識された粒子に励起光を照射することで生じる光を、複数の光検出器で取得し、
前記複数の光検出器からの測定値に基づく測定スペクトルを、各蛍光色素の単染色スペクトルで分離処理を実施することにより当該各蛍光色素の蛍光強度を算出し、
前記分離処理は、当該測定値のばらつきに基づき決定される重みを含む重み付け最小二乗法(WLSM:Weighted Least Squares Method)を用いて実施される
粒子解析方法。
(1)
複数の蛍光色素により標識された粒子に励起光を照射することで生じる光を取得する、複数の光検出器と、
前記複数の光検出器からの測定値に基づく測定スペクトルを、各蛍光色素の単染色スペクトルで分離処理を実施することにより当該各蛍光色素の蛍光強度を算出する情報処理部と、
を備え、
前記分離処理は、当該測定値のばらつきに基づき決定される重みを含む重み付け最小二乗法(WLSM:Weighted Least Squares Method)を用いて実施される
粒子解析システム。
(2)
前記情報処理部は、
下記式(4)で示される評価関数を用いて、前記蛍光強度を算出する
前記(1)に記載の粒子解析システム。
(3)
前記情報処理部は、
下記式(5)で示される評価関数を用いて、前記蛍光強度を算出する
前記(1)に記載の粒子解析システム。
(4)
前記重みは、各光検出器において検出された前記粒子の自家蛍光による前記測定値に基づいて算出される値である
前記(1)~(3)のいずれか1つに記載の粒子解析システム。
(5)
前記重みは、各光検出器において検出された前記粒子の自家蛍光による前記測定値と前記複数の蛍光色素を標識した当該粒子の蛍光による当該測定値とに基づいて算出される値である
前記(1)~(4)のいずれか1つに記載の粒子解析システム。
(6)
前記重みは、各光検出器において、前記測定値を積分したエリアに基づいて算出される標準偏差値である
前記(1)~(5)のいずれか1つに記載の粒子解析システム。
(7)
前記重みは、各光検出器において、前記測定値のピーク値を示すハイトに基づいて算出される平均値である
前記(1)~(6)のいずれか1つに記載の粒子解析システム。
(8)
前記情報処理部による処理結果に基づいて、特定の蛍光を発する粒子を分取する分取器、を更に備える
前記(1)~(7)のいずれか1つに記載の粒子解析システム。
(9)
複数の蛍光色素により標識された粒子に励起光を照射することで生じる光を、複数の光検出器で取得し、
前記複数の光検出器からの測定値に基づく測定スペクトルを、各蛍光色素の単染色スペクトルで分離処理を実施することにより当該各蛍光色素の蛍光強度を算出し、
前記分離処理は、当該測定値のばらつきに基づき決定される重みを含む重み付け最小二乗法(WLSM:Weighted Least Squares Method)を用いて実施される
粒子解析方法。
1 粒子解析システム
10 表示装置
20 測定装置
21 光源
22 流路
23 光検出器
24 機器制御部
100 情報処理装置
110 通信部
120 記憶部
130 制御部
131 取得部
132 情報処理部
133 提供部
230 ディテクタ
231 受光素子ユニット
N ネットワーク
10 表示装置
20 測定装置
21 光源
22 流路
23 光検出器
24 機器制御部
100 情報処理装置
110 通信部
120 記憶部
130 制御部
131 取得部
132 情報処理部
133 提供部
230 ディテクタ
231 受光素子ユニット
N ネットワーク
Claims (9)
- 複数の蛍光色素により標識された粒子に励起光を照射することで生じる光を取得する、複数の光検出器と、
前記複数の光検出器からの測定値に基づく測定スペクトルを、各蛍光色素の単染色スペクトルで分離処理を実施することにより当該各蛍光色素の蛍光強度を算出する情報処理部と、
を備え、
前記分離処理は、当該測定値のばらつきに基づき決定される重みを含む重み付け最小二乗法(WLSM:Weighted Least Squares Method)を用いて実施される
粒子解析システム。 - 前記重みは、各光検出器において検出された前記粒子の自家蛍光による前記測定値に基づいて算出される値である
請求項1に記載の粒子解析システム。 - 前記重みは、各光検出器において検出された前記粒子の自家蛍光による前記測定値と前記複数の蛍光色素を標識した当該粒子の蛍光による当該測定値とに基づいて算出される値である
請求項1に記載の粒子解析システム。 - 前記重みは、各光検出器において、前記測定値を積分したエリアに基づいて算出される標準偏差値である
請求項1に記載の粒子解析システム。 - 前記重みは、各光検出器において、前記測定値のピーク値を示すハイトに基づいて算出される平均値である
請求項1に記載の粒子解析システム。 - 前記情報処理部による処理結果に基づいて、特定の蛍光を発する粒子を分取する分取器、を更に備える
請求項1に記載の粒子解析システム。 - 複数の蛍光色素により標識された粒子に励起光を照射することで生じる光を、複数の光検出器で取得し、
前記複数の光検出器からの測定値に基づく測定スペクトルを、各蛍光色素の単染色スペクトルで分離処理を実施することにより当該各蛍光色素の蛍光強度を算出し、
前記分離処理は、当該測定値のばらつきに基づき決定される重みを含む重み付け最小二乗法(WLSM:Weighted Least Squares Method)を用いて実施される
粒子解析方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112021001620.2T DE112021001620T5 (de) | 2020-03-13 | 2021-02-16 | Teilchenanalysesystem und teilchenanalyseverfahren |
US17/905,545 US20240201066A1 (en) | 2020-03-13 | 2021-02-16 | Particle analysis system and particle analysis method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-044118 | 2020-03-13 | ||
JP2020044118A JP2021143988A (ja) | 2020-03-13 | 2020-03-13 | 粒子解析システムおよび粒子解析方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021182031A1 true WO2021182031A1 (ja) | 2021-09-16 |
Family
ID=77672191
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/005679 WO2021182031A1 (ja) | 2020-03-13 | 2021-02-16 | 粒子解析システムおよび粒子解析方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240201066A1 (ja) |
JP (1) | JP2021143988A (ja) |
DE (1) | DE112021001620T5 (ja) |
WO (1) | WO2021182031A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116698709B (zh) * | 2023-06-09 | 2024-03-12 | 深圳市益希医疗器械有限公司 | 一种流式细胞仪的数据处理方法及流式细胞仪 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007097171A1 (ja) * | 2006-02-23 | 2007-08-30 | Nikon Corporation | スペクトル画像処理方法、スペクトル画像処理プログラム、及びスペクトルイメージングシステム |
WO2018198586A1 (ja) * | 2017-04-24 | 2018-11-01 | ソニー株式会社 | 情報処理装置、微粒子分取システム、プログラム及び微粒子分取方法 |
WO2019049442A1 (ja) * | 2017-09-08 | 2019-03-14 | ソニー株式会社 | 微小粒子測定装置、情報処理装置および情報処理方法 |
WO2019230878A1 (ja) * | 2018-05-30 | 2019-12-05 | ソニー株式会社 | 蛍光観察装置及び蛍光観察方法 |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6015667A (en) * | 1996-06-03 | 2000-01-18 | The Perkin-Emer Corporation | Multicomponent analysis method including the determination of a statistical confidence interval |
US7283684B1 (en) * | 2003-05-20 | 2007-10-16 | Sandia Corporation | Spectral compression algorithms for the analysis of very large multivariate images |
WO2005098379A1 (en) * | 2004-04-08 | 2005-10-20 | Purdue Research Foundation | Multi-spectral detector and analysis system |
DK2884258T3 (da) * | 2004-07-27 | 2017-01-02 | Beckman Coulter Inc | Forbedring af flowcytometrisk diskrimination med computerimplementeret geometrisk transformation |
EP1855102B8 (en) * | 2005-02-15 | 2012-03-14 | Mitsui Engineering and Shipbuilding Co, Ltd. | Fluorescence detecting device and fluorescence detecting method |
US8055035B2 (en) * | 2006-02-23 | 2011-11-08 | Nikon Corporation | Spectral image processing method, computer-executable spectral image processing program, and spectral imaging system |
JP2010043934A (ja) * | 2008-08-12 | 2010-02-25 | Fujifilm Corp | 検出方法、検出用試料セル、検出用キット及び検出装置 |
US8415161B2 (en) * | 2008-11-13 | 2013-04-09 | Becton, Dickinson And Company | Instrument setup system for a fluorescence analyzer |
JP5985140B2 (ja) * | 2010-04-28 | 2016-09-06 | ソニー株式会社 | 蛍光強度補正方法、蛍光強度算出方法及び蛍光強度算出装置 |
JP5601098B2 (ja) * | 2010-09-03 | 2014-10-08 | ソニー株式会社 | 蛍光強度補正方法及び蛍光強度算出装置 |
JP5834584B2 (ja) * | 2011-07-25 | 2015-12-24 | ソニー株式会社 | 情報処理装置、情報処理方法、プログラム及び蛍光スペクトルの強度補正方法 |
JP5772425B2 (ja) * | 2011-09-13 | 2015-09-02 | ソニー株式会社 | 微小粒子測定装置 |
WO2013192563A1 (en) * | 2012-06-22 | 2013-12-27 | De Novo Software Llc | Systems and methods for unmixing data captured by a flow cytometer |
EP2975384B1 (en) * | 2013-03-15 | 2020-06-24 | Sony Corporation | Microparticle analyzing device, microparticle analyzing method, program, and microparticle analyzing system |
JP2016028229A (ja) * | 2014-07-08 | 2016-02-25 | キヤノン株式会社 | データ処理装置、及びそれを有するデータ表示システム、試料情報取得システム、データ処理方法、プログラム、記憶媒体 |
JP6790490B2 (ja) * | 2015-09-18 | 2020-11-25 | ソニー株式会社 | 情報処理装置、情報処理方法及び情報処理システム |
CN108474730A (zh) * | 2016-01-22 | 2018-08-31 | 索尼公司 | 微粒测量设备、信息处理设备、以及信息处理方法 |
US11131622B2 (en) * | 2016-05-06 | 2021-09-28 | Sony Corporation | Information processing device, information processing method, and information processing system |
CN114636472A (zh) * | 2016-07-25 | 2022-06-17 | 厦泰生物科技公司 | 紧凑波长检测模块 |
US11187584B2 (en) * | 2017-04-13 | 2021-11-30 | Captl Llc | Photon counting and spectroscopy |
JP7010293B2 (ja) * | 2017-08-08 | 2022-01-26 | ソニーグループ株式会社 | 情報処理装置、情報処理方法及びプログラム |
AU2019416121A1 (en) * | 2018-12-28 | 2021-05-20 | Becton, Dickinson And Company | Methods for spectrally resolving fluorophores of a sample and systems for same |
JP2020139824A (ja) * | 2019-02-27 | 2020-09-03 | ソニー株式会社 | 微小粒子解析装置、解析装置、解析プログラム、および微小粒子解析システム |
WO2020179586A1 (ja) * | 2019-03-04 | 2020-09-10 | ソニー株式会社 | 情報処理装置、及び顕微鏡システム |
CN114008444A (zh) * | 2019-06-24 | 2022-02-01 | 索尼集团公司 | 具有自体荧光光谱校正的粒子分析系统 |
JP2021032674A (ja) * | 2019-08-23 | 2021-03-01 | ソニー株式会社 | 情報処理装置、表示方法、プログラム及び情報処理システム |
JP2021081342A (ja) * | 2019-11-20 | 2021-05-27 | ソニーグループ株式会社 | 情報処理システムおよび情報処理装置 |
EP4130711A4 (en) * | 2020-03-24 | 2023-09-27 | Sony Group Corporation | INFORMATION PROCESSING APPARATUS, INFORMATION PROCESSING METHOD AND INFORMATION PROCESSING PROGRAM |
EP4139656A4 (en) * | 2020-04-20 | 2023-11-01 | Becton, Dickinson and Company | DEVICE AND METHOD FOR THE QUANTITATIVE CHARACTERIZATION OF A LIGHT DETECTOR |
US20230092756A1 (en) * | 2020-04-20 | 2023-03-23 | Sony Group Corporation | Information processing system, information processing method, program, information processing device, and calculation device |
WO2021220556A1 (ja) * | 2020-04-28 | 2021-11-04 | ソニーグループ株式会社 | 機械学習システム、機械学習装置、及び機械学習方法 |
JPWO2022004500A1 (ja) * | 2020-06-30 | 2022-01-06 | ||
US20230296492A1 (en) * | 2020-08-13 | 2023-09-21 | Sony Group Corporation | Information processing apparatus, flow cytometer system, sorting system, and information processing method |
WO2022239457A1 (ja) * | 2021-05-10 | 2022-11-17 | ソニーグループ株式会社 | 情報処理装置、情報処理方法及びプログラム |
US20240288354A1 (en) * | 2021-06-23 | 2024-08-29 | Sony Group Corporation | Particle analysis system, information processing apparatus, and sorting apparatus |
US20240280468A1 (en) * | 2021-06-30 | 2024-08-22 | Sony Group Corporation | Biological sample analyzer |
-
2020
- 2020-03-13 JP JP2020044118A patent/JP2021143988A/ja active Pending
-
2021
- 2021-02-16 US US17/905,545 patent/US20240201066A1/en active Pending
- 2021-02-16 DE DE112021001620.2T patent/DE112021001620T5/de active Pending
- 2021-02-16 WO PCT/JP2021/005679 patent/WO2021182031A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007097171A1 (ja) * | 2006-02-23 | 2007-08-30 | Nikon Corporation | スペクトル画像処理方法、スペクトル画像処理プログラム、及びスペクトルイメージングシステム |
WO2018198586A1 (ja) * | 2017-04-24 | 2018-11-01 | ソニー株式会社 | 情報処理装置、微粒子分取システム、プログラム及び微粒子分取方法 |
WO2019049442A1 (ja) * | 2017-09-08 | 2019-03-14 | ソニー株式会社 | 微小粒子測定装置、情報処理装置および情報処理方法 |
WO2019230878A1 (ja) * | 2018-05-30 | 2019-12-05 | ソニー株式会社 | 蛍光観察装置及び蛍光観察方法 |
Also Published As
Publication number | Publication date |
---|---|
DE112021001620T5 (de) | 2022-12-29 |
JP2021143988A (ja) | 2021-09-24 |
US20240201066A1 (en) | 2024-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE49543E1 (en) | Fine particle measuring apparatus | |
CN114062231B (zh) | 分析装置 | |
US7009699B2 (en) | Method for investigating a sample | |
Garini et al. | Spectral imaging: principles and applications | |
US7420674B2 (en) | Method and arrangement for analyzing samples | |
Nolan et al. | Spectral flow cytometry | |
CN106226247A (zh) | 一种基于高光谱显微成像技术的细胞检测方法 | |
US8060316B2 (en) | Methods, data structures, and systems for classifying microparticles | |
US9797836B1 (en) | Hyperspectral imaging flow cytometer | |
CN107064096A (zh) | 基于高光谱成像的混合物粉末无损定量检测装置及方法 | |
US11727612B2 (en) | Microparticle analyzing apparatus and data displaying method | |
JP6954406B2 (ja) | 粒子測定システム及び粒子測定方法 | |
JP2021162393A (ja) | 情報処理装置、情報処理方法、プログラム及び光学測定システム | |
US6552794B2 (en) | Optical detection method for improved sensitivity | |
WO2021182031A1 (ja) | 粒子解析システムおよび粒子解析方法 | |
US9292938B2 (en) | Methods and systems for image data processing | |
US20220283073A1 (en) | Information processing device, information processing method, program, and information processing system | |
JP7010293B2 (ja) | 情報処理装置、情報処理方法及びプログラム | |
JP2021063664A (ja) | 情報処理装置、粒子測定装置、情報処理方法、粒子測定方法、及びコンピュータプログラム | |
Nieman et al. | Hyperspectral imaging system for quantitative identification and discrimination of fluorescent labels in the presence of autofluorescence | |
US20240210397A1 (en) | High parameter flow cytometric assay to identify human myeloid derived suppressive cells | |
WO2024176614A1 (ja) | 色素データ取得方法、色素データ取得装置、及び色素データ取得プログラム | |
Bell et al. | An integrated digital imaging system and microarray mapping software for rapid multiplexed quantitation of protein microarray immunoassays | |
Rana | Integration of hyperspectral imaging system for optimized data acquisition and control to revolutionize pathology applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21767279 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 17905545 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21767279 Country of ref document: EP Kind code of ref document: A1 |