WO2021181999A1 - Resin composition and method for recycling poly(vinyl acetal) resin - Google Patents

Resin composition and method for recycling poly(vinyl acetal) resin Download PDF

Info

Publication number
WO2021181999A1
WO2021181999A1 PCT/JP2021/005046 JP2021005046W WO2021181999A1 WO 2021181999 A1 WO2021181999 A1 WO 2021181999A1 JP 2021005046 W JP2021005046 W JP 2021005046W WO 2021181999 A1 WO2021181999 A1 WO 2021181999A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
plasticizer
polyvinyl acetal
infrared spectroscopic
spectroscopic spectrum
Prior art date
Application number
PCT/JP2021/005046
Other languages
French (fr)
Japanese (ja)
Inventor
一人 國領
幸次 増田
浩一 平尾
神澤 岳史
博之 脇坂
隆志 上田中
Original Assignee
株式会社ガラステクノシナジー
マスダ商事株式会社
滋賀県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガラステクノシナジー, マスダ商事株式会社, 滋賀県 filed Critical 株式会社ガラステクノシナジー
Priority to JP2022505855A priority Critical patent/JPWO2021181999A1/ja
Publication of WO2021181999A1 publication Critical patent/WO2021181999A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols

Definitions

  • the present invention particularly relates to a bleed-controlled resin composition and a method for recycling a polyvinyl acetal resin.
  • laminated glass has been widely used for windowpanes of automobiles and aircraft for the purpose of preventing glass fragments from scattering when broken.
  • the laminated glass there is one in which an interlayer film sheet containing a polyvinyl acetal resin such as polyvinyl butyral resin is interposed between glass plates and integrated.
  • the polyvinyl acetal resin for a laminated glass interlayer sheet contains about several tens of percent of a liquid plasticizer as an essential component for the purpose of adjusting the viscosity and imparting sound absorbing performance (see, for example, Patent Document 1). Therefore, in order to recycle the laminated glass sheet on the market, it is necessary to handle it in a state where the plasticizer is contained.
  • the plasticizer may bleed (bleed out), making it difficult to use as a product.
  • the present invention solves the above problems, and controls bleeding from a composition such as a plasticizer even when a material containing a large amount of a plasticizer such as an interlayer film sheet is contained, and is a raw material particularly in recycling.
  • the purpose is to obtain a resin composition that enables the utilization of resin.
  • the plasticizer preferably contains an ester compound having an ether bond in the molecule.
  • the flexible resin is ethylene propylene rubber, ethylene propylene diene rubber, butadiene rubber, styrene butadiene rubber, nitrile rubber, nitrile butadiene rubber, isoprene rubber, styrene butadiene / butylene / styrene elastomer, ethylene acetate. It is preferably at least one selected from the group consisting of vinyl copolymers and mixtures thereof.
  • the polyvinyl acetal resin is preferably at least one selected from the group consisting of polyvinyl acetal acetal and polyvinyl butyral.
  • the polyolefin-based resin is preferably at least one selected from the group consisting of polypropylene resin and polyethylene resin.
  • the method for recycling a polyvinyl acetal resin of the present invention is a method for recycling a polyvinyl acetal resin (excluding polyvinyl formal resin) containing a plasticizer, in which the polyvinyl acetal resin containing the plasticizer and a polyolefin resin are kneaded.
  • the bleed control agent is characterized by adding at least one flexible resin selected from the group consisting of synthetic rubbers, elastomers and copolymerized olefin resins.
  • a material containing a large amount of a plasticizer such as an interlayer film sheet is contained, bleeding from a composition such as a plasticizer can be controlled, and the raw material resin can be utilized especially in recycling.
  • a resin composition can be obtained.
  • FIG. 1 is an infrared spectroscopic spectrum for bleed evaluation measured using the resin composition of Example 1.
  • FIG. 2 is an infrared spectroscopic spectrum for bleed evaluation measured using the resin composition of Example 2.
  • FIG. 3 is an infrared spectroscopic spectrum for bleed evaluation measured using the resin composition of Example 3.
  • FIG. 4 is an infrared spectroscopic spectrum for bleed evaluation measured using the resin composition of Example 4.
  • FIG. 5 is an infrared spectroscopic spectrum for bleed evaluation measured using the resin composition of Example 5.
  • FIG. 6 is an infrared spectroscopic spectrum of the resin composition of the reference example, which is an infrared spectroscopic spectrum of the surface of the test piece made of the PVB interlayer film of the process scrap and an infrared spectroscopic spectrum which is a reference for bleed evaluation.
  • FIG. 7 (A) is an infrared spectroscopic spectrum for bleed evaluation measured using the resin composition of Comparative Example 1
  • FIG. 7 (B) is a resin composition of Comparative Example 2.
  • 8 (A) to 8 (E) are infrared spectroscopic spectra for bleed evaluation measured using the resin compositions of Examples 6 to 10.
  • 9 (A) is an infrared spectroscopic spectrum for bleed evaluation measured using the resin composition of Example 11 and FIG.
  • FIG. 10A shows the results of gas chromatograph mass spectrometry using the resin composition of Comparative Example 3
  • FIG. 10B shows the results of Comparative Example 4
  • FIG. 10C shows the results of mass spectrometric analysis using the resin composition of Example 13. ..
  • the resin composition of the present invention contains a polyolefin-based resin, a polyvinyl acetal resin containing a plasticizer (excluding polyvinyl formal resin), and further contains a flexible resin.
  • the present invention was obtained by adding the flexible resin to a material containing a large amount of plasticizer such as an interlayer film sheet made of polyvinyl acetal resin such as PVB when kneading with a polyolefin resin in recycling. It has been found that the bleeding of the resin composition can be controlled and the bleeding suppressing effect of the contained plasticizer can be obtained.
  • the interlayer film sheet often contains an ester compound having an ether bond in the molecule because it has a good affinity with a polyvinyl acetal resin such as PVB. Therefore, in the present invention, the plasticizer preferably contains an ester compound having an ether bond in the molecule.
  • This ester compound is often contained in a material such as an interlayer film because it has a low environmental load as an ester, is highly productive, and can be provided at low cost. The compound is also excellent in conductivity performance and bleed resistance.
  • diethylene glycol di-2-ethylhexanoate triethylene glycol di-n-hexanoate, diethylene glycol di-n-hexanoate, triethylene glycol di-2-ethylhexanoate, bis adipate (2-( 2-Butoxyethoxy) ethyl) and the like can be mentioned.
  • Particularly preferred esters include triethylene glycol di-2-ethylhexanoate, bis adipate (2- (2-butoxyethoxy) ethyl) and the like.
  • the compound one kind may be blended alone, or two or more kinds of the said compound may be used in combination.
  • the flexible resin is at least one resin selected from the group consisting of synthetic rubber, elastomer and copolymerized olefin resin.
  • the synthetic rubber includes ethylene propylene rubber (EPM), ethylene propylene diene rubber (EPDM), butadiene rubber (BR), styrene butadiene rubber (SBR), nitrile rubber (NR), nitrile butadiene rubber (NBR), isoprene rubber, and It is preferably at least one selected from the group consisting of these mixtures.
  • EPM ethylene propylene rubber
  • EPDM ethylene propylene diene rubber
  • BR butadiene rubber
  • SBR styrene butadiene rubber
  • NR nitrile butadiene rubber
  • NBR nitrile butadiene rubber
  • isoprene rubber It is preferably at least one selected from the group consisting of these mixtures.
  • the elastomer styrene butadiene /
  • the flexible resin may be added in a small amount of about 2.5 parts by weight with respect to 60 parts by weight of the polyolefin resin and 20 parts by weight of the polyvinyl acetal resin containing the plasticizer corresponding to the interlayer film.
  • the bleeding suppressing effect of the plasticizer can be obtained.
  • the blending amount of the flexible resin is 5.0 parts by weight to 30 parts by weight, the bleeding suppressing effect is large, which is preferable. More preferably, it is in the range of 10 parts by weight to 20 parts by weight.
  • the polyvinyl acetal resin is preferably at least one selected from the group consisting of polyvinyl acetal acetal and polyvinyl butyral.
  • the molecular weight of the polyvinyl acetal resin is preferably 1,000 or more, more preferably 10,000 or more. According to the present invention, the molecular weight of the polyvinyl acetal resin may be in the range of 1.0 ⁇ 10 5 or more.
  • the polyolefin resin is preferably at least one selected from the group consisting of polypropylene resin, polyethylene resin, and various copolymers containing the resin as a main component. It is particularly preferable that the polyolefin resin is at least one selected from the group consisting of polypropylene resin and polyethylene resin. Further, as the polyolefin resin, one type may be blended alone, or two or more types of polyolefin resins may be used in combination.
  • the resin composition of the present invention has optional components such as an inorganic filler, an organic filler, a pigment, a dye, a radical initiator, a flame retardant, an antioxidant, an antioxidant, an antibacterial agent, an antibacterial agent, and a bactericidal agent.
  • the general additives and the like may be contained as long as the effects in the present invention are not impaired.
  • the radical initiator a peroxide agent or the like can be preferably used.
  • the antioxidant polyphenols such as catechin can be preferably used.
  • the resin composition of the present invention can be produced, for example, by putting each material into a kneader, kneading them, and then producing them with an extrusion molding machine.
  • the bleeding characteristics of the obtained resin composition can be controlled only by adding the flexible resin as a third component at the time of kneading, and the raw material resin material in which bleeding is likely to occur after recycling can also be utilized.
  • the obtained resin composition may be pelletized, or may be processed into a sheet or a film. In particular, since sheets and films have a large surface area, even a small amount of bleeding can affect the entire product such as texture and performance. Therefore, it can be preferably used as an applicable product of the technique.
  • FIG. 6 is an infrared spectroscopic spectrum obtained by measuring the surface of the test piece sheet by ATR measurement using a diamond crystal using Spectrum One manufactured by Perkin Elmer Japan Co., Ltd. in order to observe bleeding of the test piece.
  • the broken line shows the infrared spectroscopic spectrum of the surface of the test piece when pressurized with a force of 40% by the pressurizing unit of the universal ATR attached to the apparatus. Further, what is shown by a solid line is an infrared spectroscopic spectrum measured as it is without wiping the diamond crystal after removing the test piece from the diamond crystal by releasing the pressure after the above measurement. It can be seen that there is a peak due to bleeding between 1700 cm -1 and 1800 cm -1.
  • the test piece is once pressurized and opened by the ATR pressurizing unit with a force of 40%, then the test piece is removed from the diamond crystal, and the infrared spectroscopic spectrum is used as it is without wiping the diamond crystal.
  • the bleeding performance was evaluated by measuring the “infrared spectroscopic spectrum for bleeding evaluation”) and comparing it with the bleeding amount in this reference example.
  • FIG. 7A is obtained by using low density polyethylene (LDPE, “Novatec HD” LC525, manufactured by Nippon Polyethylene Co., Ltd.) as the polyolefin resin, kneading the components corresponding to the interlayer film, and forming a sheet by the T-die method. Similar to the reference example, the test piece was once pressurized and opened with a force of 40% by the ATR pressurizing unit, then the test piece was removed from the diamond crystal, and the infrared measured as it was without wiping the diamond crystal. It is a spectroscopic spectrum (infrared spectroscopic spectrum for bleed evaluation). In the figure, the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece. Moreover, what is shown by a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
  • LDPE low density polyethylene
  • LC525 manufactured by Nippon Polyethylene Co., Ltd.
  • the intermediate layer corresponds components, the molecular weight of 1.15 ⁇ 10 5 PVB ( "S-LEC B ⁇ K" BH-A, manufactured by Sekisui Chemical Co., Ltd.) to, triethylene glycol di-2-Echiruhekisano as a plasticizer
  • To 60 parts by weight of the polyolefin resin 20 parts by weight of the intermediate film equivalent component was added and kneaded, and a sheet was formed by the T-die method to obtain a test piece.
  • Example 1 low-density polyethylene (LDPE, "Novatec HD” LC525, manufactured by Nippon Polyethylene Co., Ltd.) is used as a polyolefin resin, and an interlayer equivalent component and a flexible resin component are kneaded and sheet-formed by the T-die method.
  • the obtained test piece is an infrared spectroscopic spectrum (infrared spectroscopic spectrum for bleed evaluation) measured in the same manner as in the reference example.
  • the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece.
  • a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
  • the intermediate layer corresponds components, as in Comparative Example 1, the molecular weight of 1.15 ⁇ 10 5 PVB ( "S-LEC B ⁇ K" BH-A, manufactured by Sekisui Chemical Co., Ltd.) to, triethylene glycol as a plasticizer
  • a mixture of di-2-ethylhexanoate (G-260, manufactured by Sekisui Chemical Co., Ltd.) in a weight ratio of PVB: plasticizer 3: 1 was used.
  • the polyolefin resin With respect to 60 parts by weight of the polyolefin resin, 20 parts by weight of the interlayer film equivalent component and 5 parts by weight of a block-type styrene-butadiene rubber B-SBR (“Nipol” NS380S, manufactured by Nippon Zeon Corporation) as a flexible resin component.
  • B-SBR block-type styrene-butadiene rubber
  • the mixture was kneaded and sheet-molded by the T-die method to obtain a test piece.
  • Example 2 A test piece was prepared in the same manner as in Example 1 except that 10 parts by weight of a block-type styrene-butadiene rubber B-SBR (“Nipol” NS380S, manufactured by Nippon Zeon Corporation) was added as a flexible resin component.
  • B-SBR block-type styrene-butadiene rubber
  • the result of measuring the infrared spectroscopic spectrum for bleed evaluation is shown in FIG.
  • the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece.
  • a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
  • Example 3 A test piece was prepared in the same manner as in Example 1 except that 15 parts by weight of a block-type styrene-butadiene rubber B-SBR (“Nipol” NS380S, manufactured by Nippon Zeon Corporation) was added as a flexible resin component.
  • B-SBR block-type styrene-butadiene rubber
  • the result of measuring the infrared spectroscopic spectrum for bleed evaluation is shown in FIG.
  • the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece.
  • a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
  • Example 4 A test piece was prepared in the same manner as in Example 1 except that 20 parts by weight of a random type styrene-butadiene rubber R-SBR (“Nipol” 1502, manufactured by Nippon Zeon Corporation) was added as a flexible resin component.
  • R-SBR random type styrene-butadiene rubber
  • the result of measuring the infrared spectroscopic spectrum for bleed evaluation is shown in FIG.
  • the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece.
  • a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
  • Example 5 Test piece as in Example 1 except that 20 parts by weight of ethylene vinyl acetate copolymer EVA (“Ultrasen” injection grade 633, manufactured by Tosoh Corporation), which is a copolymerized olefin resin, was added as a flexible resin component. was produced.
  • EVA ethylene vinyl acetate copolymer
  • the result of measuring the infrared spectroscopic spectrum for bleed evaluation is shown in FIG. In the figure, the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece.
  • a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
  • FIG. 7B shows a test piece obtained by kneading a component corresponding to an interlayer film using low-density polyethylene (LDPE, “Novatec HD” LC525, manufactured by Nippon Polyethylene Co., Ltd.) as a polyolefin resin and injection molding. It is an infrared spectroscopic spectrum (infrared spectroscopic spectrum for bleed evaluation) measured in the same manner as the reference example. In the figure, the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece. Moreover, what is shown by a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
  • LDPE low-density polyethylene
  • low-density polyethylene (LDPE, “Novatec HD” LC525, manufactured by Nippon Polyethylene Co., Ltd.) is used as the polyolefin resin, and the interlayer film equivalent component and the flexible resin component are kneaded and sheeted by the T-die method.
  • LDPE low-density polyethylene
  • the interlayer film equivalent component and the flexible resin component are kneaded and sheeted by the T-die method.
  • the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece.
  • what is shown by a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
  • PVB polymethyl methacrylate
  • PVB plasticizer
  • 3: 1 ester-based plasticizer
  • Example 7 A test piece was prepared in the same manner as in Example 6 except that 5 parts by weight of a block-type styrene-butadiene rubber B-SBR (“Nipol” NS380S, manufactured by Nippon Zeon Corporation) was added as a flexible resin component.
  • B-SBR block-type styrene-butadiene rubber
  • FIG. 8 (B) The result of measuring the infrared spectroscopic spectrum for bleed evaluation is shown in FIG. 8 (B).
  • the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece.
  • a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
  • Example 8 A test piece was prepared in the same manner as in Example 6 except that 10 parts by weight of a block-type styrene-butadiene rubber B-SBR (“Nipol” NS380S, manufactured by Nippon Zeon Corporation) was added as a flexible resin component.
  • B-SBR block-type styrene-butadiene rubber
  • FIG. 8 (C) The results of measuring the infrared spectroscopic spectrum for bleed evaluation are shown in FIG. 8 (C).
  • the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece.
  • a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
  • Example 9 A test piece was prepared in the same manner as in Example 6 except that 15 parts by weight of a block-type styrene-butadiene rubber B-SBR (“Nipol” NS380S, manufactured by Nippon Zeon Corporation) was added as a flexible resin component.
  • B-SBR block-type styrene-butadiene rubber
  • FIG. 8 (D) The results of measuring the infrared spectroscopic spectrum for bleed evaluation are shown in FIG. 8 (D).
  • the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece.
  • a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
  • Example 10 A test piece was prepared in the same manner as in Example 6 except that 20 parts by weight of a block-type styrene-butadiene rubber B-SBR (“Nipol” NS380S, manufactured by Nippon Zeon Corporation) was added as a flexible resin component.
  • B-SBR block-type styrene-butadiene rubber
  • FIG. 8 (E) The result of measuring the infrared spectroscopic spectrum for bleed evaluation is shown in FIG. 8 (E).
  • the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece.
  • a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
  • Example 11 A test piece was prepared in the same manner as in Example 6 except that 20 parts by weight of a high diene type ethylene propylene diene rubber (EPDM, "ESPRENE505", manufactured by Sumitomo Chemical Co., Ltd.) was added as a flexible resin component.
  • EPDM high diene type ethylene propylene diene rubber
  • FIG. 9 (A) The result of measuring the infrared spectroscopic spectrum for bleed evaluation is shown in FIG. 9 (A).
  • the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece.
  • a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
  • Example 12 Test piece as in Example 6 except that 20 parts by weight of ethylene vinyl acetate copolymer EVA (“Ultrasen” injection grade 633, manufactured by Tosoh Corporation), which is a copolymerized olefin resin, was added as a flexible resin component. was produced.
  • EVA ethylene vinyl acetate copolymer
  • FIG. 9 (B) The result of measuring the infrared spectroscopic spectrum for bleed evaluation is shown in FIG. 9 (B).
  • the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece.
  • a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
  • the method for preparing the test piece for measurement used in the above is as follows. When there was a material that was not blended in each test piece, the step was appropriately omitted and the following production method was applied.
  • each material was processed into a shape that can be put into the hopper of a twin-screw extruder (for example, a powder or granular material of several millimeters square).
  • each material was mixed in advance before being put into the hopper of the twin-screw extruder.
  • each material processed as described above was kneaded using a twin-screw extruder equipped with a T-type die (T die) as a die.
  • T die T-type die
  • the operating conditions of the device were a screw rotation speed of 250 rpm and a feeder discharge rate of 15 g / min.
  • the twin-screw extruder has six cylinders of the first to sixth cylinders, and the set temperature of each cylinder is set to 160 ° C. for the first cylinder to the sixth cylinder and the T die.
  • Each material was heated and mixed with a twin-screw extruder, and the resin mixture was extruded from the T-die of the twin-screw extruder.
  • the extruded mixture was a sheet, which was immediately cooled and solidified with a rotary cooling roll set at 25 ° C., and then wound around a paper tube to obtain a test piece.
  • FIG. 10A is obtained by using low density polyethylene (LDPE, “Novatec HD” LC525, manufactured by Nippon Polyethylene Co., Ltd.) as the polyolefin resin, kneading the components corresponding to the interlayer film, and forming a sheet by a heat pressing method. This is the result of extracting the surface component of the test piece and measuring the extracted component by the gas chromatograph mass spectrometry method.
  • LDPE low density polyethylene
  • LC525 low density polyethylene
  • the intermediate layer corresponds components, the molecular weight of 1.15 ⁇ 10 5 PVB ( "S-LEC B ⁇ K" BH-A, manufactured by Sekisui Chemical Co., Ltd.) to, triethylene glycol di-2-Echiruhekisano as a plasticizer
  • To 60 parts by weight of the polyolefin resin 20 parts by weight of the interlayer film equivalent component was added and kneaded in a batch manner, and a sheet was formed by a heat pressing method to obtain a test piece.
  • FIG. 10B is obtained by using low density polyethylene (LDPE, “Novatec HD” LC525, manufactured by Nippon Polyethylene Co., Ltd.) as the polyolefin resin, kneading the components corresponding to the interlayer film, and forming a sheet by a heat pressing method. This is the result of extracting the surface component of the test piece and measuring the extracted component by the gas chromatograph mass spectrometry method.
  • LDPE low density polyethylene
  • FIG. 10C shows a sheet using low-density polyethylene (LDPE, “Novatec HD” LC525, manufactured by Japan Polyethylene Corporation) as a polyolefin resin, kneading an interlayer film-equivalent component and a flexible resin component, and using a heat pressing method.
  • LDPE low-density polyethylene
  • LC525 low-density polyethylene
  • the polyolefin resin With respect to 60 parts by weight of the polyolefin resin, 20 parts by weight of the interlayer film equivalent component and ethylene vinyl acetate copolymer EVA (“Ultrasen” grade 633 for injection, which is a copolymerized olefin resin as a flexible resin component, Toso Co., Ltd.) (Manufactured by the company) 10 parts by weight was added, batch kneading was performed, and a sheet was formed by a heating press method to obtain a test piece.
  • EVA ethylene vinyl acetate copolymer
  • the method for producing the test piece for measurement used in Comparative Examples 3 and 4 and Example 13 is as follows. (Batch type kneading) Each material was put into a batch type kneader (10S100, manufactured by Toyo Seiki Seisakusho Co., Ltd.) set at 140 ° C. and kneaded at a rotation speed of 12.5 rpm for 10 minutes to obtain a kneaded sample.
  • the above-described embodiment is merely an example for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and the above-described embodiment can be appropriately modified and implemented within a range that does not deviate from the gist thereof.
  • the present invention it is possible to utilize the polyvinyl acetal for a laminated glass interlayer film sheet containing a liquid plasticizer, which is on the market. According to the present invention, it is possible to utilize materials such as used glass interlayer films, which have had to be discarded until now, as valuable resources because it is difficult to recycle due to difficulty in handling and problems in terms of properties. Not only will it have the effect of reducing the burden on the environment, but it will also contribute significantly to industrial use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

In the present invention, obtained is a resin composition in which bleeding of a plasticizer or the like from the composition is controlled even in cases where a raw material containing a large amount of a plasticizer is contained therein, such as an intermediate sheet, and which enables use of a raw material resin in recycling. This resin composition is characterized by: containing a polyolefin-based resin and a poly(vinyl acetal) resin (excluding a poly(vinyl formal) resin) that contains a plasticizer; and further containing at least one type of flexible resin selected from the group consisting of a synthetic rubber, an elastomer and a copolymer olefin resin. When the poly(vinyl acetal) resin containing a plasticizer and the polyolefin-based resin are kneaded, at least one type of flexible resin selected from the group consisting of a synthetic rubber, an elastomer and a copolymer olefin resin is added as a bleeding control agent.

Description

樹脂組成物、およびポリビニルアセタール樹脂のリサイクル方法Resin composition and polyvinyl acetal resin recycling method
 本発明は、特に、ブリードを制御した樹脂組成物、およびポリビニルアセタール樹脂のリサイクル方法に関する。 The present invention particularly relates to a bleed-controlled resin composition and a method for recycling a polyvinyl acetal resin.
 近年、自動車や航空機の窓ガラス等には、破損時のガラスの破片の飛散を防止すること等を目的として、合わせガラスが広く用いられている。合わせガラスとしては、ガラス板の間に、例えばポリビニルブチラール樹脂等のポリビニルアセタール樹脂を含有する中間膜シートを介在させて一体化させたものがある。一般的に、合わせガラス中間膜シート用ポリビニルアセタール樹脂には、粘度調整や吸音性能付与を目的として、液体可塑剤が必須成分として数10%程度含有されている(例えば、特許文献1参照)。そのため、市場に出回っている合わせガラスシートをリサイクルするには、前記可塑剤が含まれた状態で取扱うこととなる。しかし、前記中間膜シート素材をポリオレフィン系樹脂等の他の樹脂にブレンドして成形を行うと、前記可塑剤がブリード(滲み出し)し、製品として用いることが困難となる場合があった。 In recent years, laminated glass has been widely used for windowpanes of automobiles and aircraft for the purpose of preventing glass fragments from scattering when broken. As the laminated glass, there is one in which an interlayer film sheet containing a polyvinyl acetal resin such as polyvinyl butyral resin is interposed between glass plates and integrated. Generally, the polyvinyl acetal resin for a laminated glass interlayer sheet contains about several tens of percent of a liquid plasticizer as an essential component for the purpose of adjusting the viscosity and imparting sound absorbing performance (see, for example, Patent Document 1). Therefore, in order to recycle the laminated glass sheet on the market, it is necessary to handle it in a state where the plasticizer is contained. However, when the interlayer film sheet material is blended with another resin such as a polyolefin resin and molded, the plasticizer may bleed (bleed out), making it difficult to use as a product.
国際公開第2010/095749号International Publication No. 2010/095749
 本発明は、上記課題を解決するものであり、中間膜シート等の可塑剤が多く含まれる素材を含む場合であっても、可塑剤等の組成物からのブリードを制御し、特にリサイクルにおける原料樹脂の利活用も可能となる樹脂組成物を得ることを目的とする。 The present invention solves the above problems, and controls bleeding from a composition such as a plasticizer even when a material containing a large amount of a plasticizer such as an interlayer film sheet is contained, and is a raw material particularly in recycling. The purpose is to obtain a resin composition that enables the utilization of resin.
 前記目的を達成するために、本発明の樹脂組成物は、ポリオレフィン系樹脂と、可塑剤を含有するポリビニルアセタール樹脂(ポリビニルホルマール樹脂を除く)とを含み、さらに、合成ゴム、エラストマーおよび共重合オレフィン樹脂からなる群から選ばれる少なくとも1種の柔軟性樹脂を含み、前記ポリオレフィン系樹脂の含有量と前記ポリビニルアセタール樹脂の含有量との重量比が、ポリオレフィン系樹脂:ポリビニルアセタール樹脂=99.9:0.1~0.1:99.9の範囲内にあることを特徴とする。 In order to achieve the above object, the resin composition of the present invention contains a polyolefin resin and a polyvinyl acetal resin (excluding polyvinyl formal resin) containing a plasticizing agent, and further comprises a synthetic rubber, an elastomer and a copolymerized olefin. It contains at least one flexible resin selected from the group consisting of resins, and the weight ratio of the content of the polyolefin resin to the content of the polyvinyl acetal resin is determined by the weight ratio of the polyolefin resin: polyvinyl acetal resin = 99.9: It is characterized in that it is in the range of 0.1 to 0.1: 99.9.
 本発明の樹脂組成物において、前記可塑剤は、分子中にエーテル結合を有するエステル化合物を含むことが好ましい。 In the resin composition of the present invention, the plasticizer preferably contains an ester compound having an ether bond in the molecule.
 本発明の樹脂組成物において、前記柔軟性樹脂は、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、ブタジエンゴム、スチレンブタジエンゴム、ニトリルゴム、ニトリルブタジエンゴム、イソプレンゴム、スチレンブタジエン/ブチレン/スチレンエラストマー、エチレン酢酸ビニル共重合体およびこれらの混合物からなる群より選ばれる少なくとも1種であることが好ましい。 In the resin composition of the present invention, the flexible resin is ethylene propylene rubber, ethylene propylene diene rubber, butadiene rubber, styrene butadiene rubber, nitrile rubber, nitrile butadiene rubber, isoprene rubber, styrene butadiene / butylene / styrene elastomer, ethylene acetate. It is preferably at least one selected from the group consisting of vinyl copolymers and mixtures thereof.
 本発明の樹脂組成物において、前記ポリビニルアセタール樹脂は、ポリビニルアセトアセタールおよびポリビニルブチラールからなる群より選ばれる少なくとも1種であることが好ましい。 In the resin composition of the present invention, the polyvinyl acetal resin is preferably at least one selected from the group consisting of polyvinyl acetal acetal and polyvinyl butyral.
 本発明の樹脂組成物において、前記ポリオレフィン系樹脂は、ポリプロピレン樹脂およびポリエチレン樹脂からなる群より選ばれる少なくとも1種であることが好ましい。 In the resin composition of the present invention, the polyolefin-based resin is preferably at least one selected from the group consisting of polypropylene resin and polyethylene resin.
 本発明のポリビニルアセタール樹脂のリサイクル方法は、可塑剤を含有するポリビニルアセタール樹脂(ポリビニルホルマール樹脂を除く)のリサイクル方法であって、前記可塑剤を含有するポリビニルアセタール樹脂とポリオレフィン系樹脂とを混練する際に、ブリード制御剤として、合成ゴム、エラストマーおよび共重合オレフィン樹脂からなる群から選ばれる少なくとも1種の柔軟性樹脂を添加することを特徴とする。 The method for recycling a polyvinyl acetal resin of the present invention is a method for recycling a polyvinyl acetal resin (excluding polyvinyl formal resin) containing a plasticizer, in which the polyvinyl acetal resin containing the plasticizer and a polyolefin resin are kneaded. The bleed control agent is characterized by adding at least one flexible resin selected from the group consisting of synthetic rubbers, elastomers and copolymerized olefin resins.
 本発明によれば、中間膜シート等の可塑剤が多く含まれる素材を含む場合であっても、可塑剤等の組成物からのブリードを制御し、特にリサイクルにおける原料樹脂の利活用も可能となる樹脂組成物を得ることができる。 According to the present invention, even when a material containing a large amount of a plasticizer such as an interlayer film sheet is contained, bleeding from a composition such as a plasticizer can be controlled, and the raw material resin can be utilized especially in recycling. A resin composition can be obtained.
図1は、実施例1の樹脂組成物を用いて測定を行ったブリード評価用赤外分光スペクトルである。FIG. 1 is an infrared spectroscopic spectrum for bleed evaluation measured using the resin composition of Example 1. 図2は、実施例2の樹脂組成物を用いて測定を行ったブリード評価用赤外分光スペクトルである。FIG. 2 is an infrared spectroscopic spectrum for bleed evaluation measured using the resin composition of Example 2. 図3は、実施例3の樹脂組成物を用いて測定を行ったブリード評価用赤外分光スペクトルである。FIG. 3 is an infrared spectroscopic spectrum for bleed evaluation measured using the resin composition of Example 3. 図4は、実施例4の樹脂組成物を用いて測定を行ったブリード評価用赤外分光スペクトルである。FIG. 4 is an infrared spectroscopic spectrum for bleed evaluation measured using the resin composition of Example 4. 図5は、実施例5の樹脂組成物を用いて測定を行ったブリード評価用赤外分光スペクトルである。FIG. 5 is an infrared spectroscopic spectrum for bleed evaluation measured using the resin composition of Example 5. 図6は、参考例の樹脂組成物の赤外分光スペクトルであり、工程端材のPVB中間膜からなる試験片表面の赤外分光スペクトルおよびブリード評価の基準となる赤外分光スペクトルである。FIG. 6 is an infrared spectroscopic spectrum of the resin composition of the reference example, which is an infrared spectroscopic spectrum of the surface of the test piece made of the PVB interlayer film of the process scrap and an infrared spectroscopic spectrum which is a reference for bleed evaluation. 図7(A)は比較例1の、図7(B)は比較例2の樹脂組成物を用いて測定を行ったブリード評価用赤外分光スペクトルである。FIG. 7 (A) is an infrared spectroscopic spectrum for bleed evaluation measured using the resin composition of Comparative Example 1 and FIG. 7 (B) is a resin composition of Comparative Example 2. 図8(A)~(E)は、実施例6~10の樹脂組成物を用いて測定を行ったブリード評価用赤外分光スペクトルである。8 (A) to 8 (E) are infrared spectroscopic spectra for bleed evaluation measured using the resin compositions of Examples 6 to 10. 図9(A)は実施例11の、図9(B)は実施例12の樹脂組成物を用いて測定を行ったブリード評価用赤外分光スペクトルである。9 (A) is an infrared spectroscopic spectrum for bleed evaluation measured using the resin composition of Example 11 and FIG. 9 (B) is an infrared spectroscopic spectrum of Example 12. 図10(A)は比較例3の、図10(B)は比較例4の、図10(C)は実施例13の樹脂組成物を用いて測定を行ったガスクロマトグラフ質量分析測定結果である。FIG. 10A shows the results of gas chromatograph mass spectrometry using the resin composition of Comparative Example 3, FIG. 10B shows the results of Comparative Example 4, and FIG. 10C shows the results of mass spectrometric analysis using the resin composition of Example 13. ..
 以下、本発明の好適な実施の形態について詳細に説明する。本発明の樹脂組成物は、ポリオレフィン系樹脂と、可塑剤を含有するポリビニルアセタール樹脂(ポリビニルホルマール樹脂を除く)とを含み、さらに、柔軟性樹脂を含む。本発明は、PVB等のポリビニルアセタール樹脂製の中間膜シート等の可塑剤が多く含まれる素材は、リサイクルにおいてポリオレフィン系樹脂と混練する際に、前記柔軟性樹脂を添加することにより、得られた樹脂組成物のブリード制御が可能となり、含有される可塑剤のブリード抑制効果が得られることを見出したものである。 Hereinafter, preferred embodiments of the present invention will be described in detail. The resin composition of the present invention contains a polyolefin-based resin, a polyvinyl acetal resin containing a plasticizer (excluding polyvinyl formal resin), and further contains a flexible resin. The present invention was obtained by adding the flexible resin to a material containing a large amount of plasticizer such as an interlayer film sheet made of polyvinyl acetal resin such as PVB when kneading with a polyolefin resin in recycling. It has been found that the bleeding of the resin composition can be controlled and the bleeding suppressing effect of the contained plasticizer can be obtained.
 前記中間膜シートには、可塑剤として、PVB等のポリビニルアセタール樹脂との親和性が良いことから、分子中にエーテル結合を有するエステル化合物を含むものが多く使用されている。そのため、本発明においては、可塑剤は、分子中にエーテル結合を有するエステル化合物を含むものであることが好ましい。このエステル化合物は、エステルとしての環境負荷が低く、また、生産性が高く安価に提供可能であるので、中間膜等の材料に含まれることが多い。前記化合物は、導電性能、耐ブリード性にも優れている。具体的には、ジエチレングリコールジ-2-エチルヘキサノエート、トリエチレングリコールジ-n-ヘキサノエート、ジエチレングリコールジ-n-ヘキサノエート、トリエチレングリコールジ-2-エチルヘキサノエート、アジピン酸ビス(2-(2-ブトキシエトキシ)エチル)等が挙げられる。特に好ましいエステルとしては、トリエチレングリコールジ-2-エチルヘキサノエート、アジピン酸ビス(2-(2-ブトキシエトキシ)エチル)等が挙げられる。前記化合物としては、1種類を単独で配合してもよく、2種以上の前記化合物を併用してもよい。 As the plasticizer, the interlayer film sheet often contains an ester compound having an ether bond in the molecule because it has a good affinity with a polyvinyl acetal resin such as PVB. Therefore, in the present invention, the plasticizer preferably contains an ester compound having an ether bond in the molecule. This ester compound is often contained in a material such as an interlayer film because it has a low environmental load as an ester, is highly productive, and can be provided at low cost. The compound is also excellent in conductivity performance and bleed resistance. Specifically, diethylene glycol di-2-ethylhexanoate, triethylene glycol di-n-hexanoate, diethylene glycol di-n-hexanoate, triethylene glycol di-2-ethylhexanoate, bis adipate (2-( 2-Butoxyethoxy) ethyl) and the like can be mentioned. Particularly preferred esters include triethylene glycol di-2-ethylhexanoate, bis adipate (2- (2-butoxyethoxy) ethyl) and the like. As the compound, one kind may be blended alone, or two or more kinds of the said compound may be used in combination.
 前記柔軟性樹脂は、合成ゴム、エラストマーおよび共重合オレフィン樹脂からなる群から選ばれる少なくとも1種の樹脂である。前記合成ゴムは、エチレンプロピレンゴム(EPM)、エチレンプロピレンジエンゴム(EPDM)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、ニトリルゴム(NR)、ニトリルブタジエンゴム(NBR)、イソプレンゴム、およびこれらの混合物からなる群より選ばれる少なくとも1種であることが好ましい。前記エラストマーとしては、スチレンブタジエン/ブチレン/スチレン(SBBS)を好ましく使用することができる。また、共重合オレフィン樹脂としては、エチレン酢酸ビニル共重合体(EVA)を好ましく使用することができる。前記柔軟性樹脂としては、1種類を単独で配合してもよく、2種以上の前記柔軟性樹脂を併用してもよい。 The flexible resin is at least one resin selected from the group consisting of synthetic rubber, elastomer and copolymerized olefin resin. The synthetic rubber includes ethylene propylene rubber (EPM), ethylene propylene diene rubber (EPDM), butadiene rubber (BR), styrene butadiene rubber (SBR), nitrile rubber (NR), nitrile butadiene rubber (NBR), isoprene rubber, and It is preferably at least one selected from the group consisting of these mixtures. As the elastomer, styrene butadiene / butylene / styrene (SBBS) can be preferably used. Further, as the copolymerized olefin resin, ethylene vinyl acetate copolymer (EVA) can be preferably used. As the flexible resin, one type may be blended alone, or two or more types of the flexible resin may be used in combination.
 前記柔軟性樹脂は、例えば、ポリオレフィン系樹脂60重量部、中間膜相当成分である可塑剤を含有するポリビニルアセタール樹脂20重量部に対して、2.5重量部程度の少量の添加であっても、可塑剤のブリード抑制効果が得られる。前記において、前記柔軟性樹脂の配合量は、5.0重量部~30重量部であると、ブリード抑制効果が大きく、好ましい。より好ましくは、10重量部~20重量部の範囲内である。 The flexible resin may be added in a small amount of about 2.5 parts by weight with respect to 60 parts by weight of the polyolefin resin and 20 parts by weight of the polyvinyl acetal resin containing the plasticizer corresponding to the interlayer film. , The bleeding suppressing effect of the plasticizer can be obtained. In the above, when the blending amount of the flexible resin is 5.0 parts by weight to 30 parts by weight, the bleeding suppressing effect is large, which is preferable. More preferably, it is in the range of 10 parts by weight to 20 parts by weight.
 前記ポリビニルアセタール樹脂は、ポリビニルアセトアセタールおよびポリビニルブチラールからなる群より選ばれる少なくとも1種であることが好ましい。前記ポリビニルアセタール樹脂の分子量は、1,000以上であることが好ましく、さらに好ましくは、10,000以上である。本発明によると、前記ポリビニルアセタール樹脂の分子量が1.0×10以上の範囲であってもよい。本発明においては、前記ポリオレフィン系樹脂の含有量と前記ポリビニルアセタール樹脂の含有量との重量比が、ポリオレフィン系樹脂:ポリビニルアセタール樹脂=99.9:0.1~0.1:99.9の範囲内にあり、ポリオレフィン系樹脂:ポリビニルアセタール樹脂=99.5:0.5~50:50の範囲内とすることが好ましく、より好ましくは99:1~75:25の範囲内である。 The polyvinyl acetal resin is preferably at least one selected from the group consisting of polyvinyl acetal acetal and polyvinyl butyral. The molecular weight of the polyvinyl acetal resin is preferably 1,000 or more, more preferably 10,000 or more. According to the present invention, the molecular weight of the polyvinyl acetal resin may be in the range of 1.0 × 10 5 or more. In the present invention, the weight ratio of the content of the polyolefin resin to the content of the polyvinyl acetal resin is such that the polyolefin resin: the polyvinyl acetal resin = 99.9: 0.1 to 0.1: 99.9. It is within the range, preferably in the range of polyolefin resin: polyvinyl acetal resin = 99.5: 0.5 to 50:50, and more preferably in the range of 99: 1 to 75:25.
 前記ポリオレフィン樹脂は、ポリプロピレン樹脂、ポリエチレン樹脂、および前記樹脂を主成分とする各種共重合体からなる群より選ばれる少なくとも1種であることが好ましい。前記ポリオレフィン樹脂は、ポリプロピレン樹脂およびポリエチレン樹脂からなる群より選ばれる少なくとも1種であることが特に好ましい。また、前記ポリオレフィン樹脂としては、1種類を単独で配合してもよく、2種以上のポリオレフィン樹脂を併用してもよい。 The polyolefin resin is preferably at least one selected from the group consisting of polypropylene resin, polyethylene resin, and various copolymers containing the resin as a main component. It is particularly preferable that the polyolefin resin is at least one selected from the group consisting of polypropylene resin and polyethylene resin. Further, as the polyolefin resin, one type may be blended alone, or two or more types of polyolefin resins may be used in combination.
 本発明の樹脂組成物は、その他、任意の成分として、無機フィラー、有機フィラー、顔料、染料、ラジカル開始剤、難燃剤、酸化防止剤、抗酸化剤、抗菌剤、制菌剤および殺菌剤等の一般的な添加剤等を、本発明における効果を損なわない範囲で含んでいてもよい。ラジカル開始剤としては、過酸化剤等を好適に用いることができる。抗酸化剤としては、カテキンなどのポリフェノール類を好適に用いることができる。 In addition, the resin composition of the present invention has optional components such as an inorganic filler, an organic filler, a pigment, a dye, a radical initiator, a flame retardant, an antioxidant, an antioxidant, an antibacterial agent, an antibacterial agent, and a bactericidal agent. The general additives and the like may be contained as long as the effects in the present invention are not impaired. As the radical initiator, a peroxide agent or the like can be preferably used. As the antioxidant, polyphenols such as catechin can be preferably used.
 本発明の樹脂組成物は、例えば、ニーダーに各材料を投入して混練した後、それらを押出成形機で製造することができる。前記柔軟性樹脂を第三成分として混練時に添加するだけで、得られる樹脂組成物のブリード特性を制御することができ、リサイクル後にブリードが起こりやすい原料樹脂材料についても、利活用が可能となる。なお、必要に応じて、得られた樹脂組成物をペレット化してもよいし、シート状、フィルム状に加工してもよい。特に、シート、フィルムは表面積が大きいことから、少量のブリードであっても手触りや性能等、製品全体に影響を及ぼし得る。そのため、当該技術の適応製品として好ましく用いることができる。 The resin composition of the present invention can be produced, for example, by putting each material into a kneader, kneading them, and then producing them with an extrusion molding machine. The bleeding characteristics of the obtained resin composition can be controlled only by adding the flexible resin as a third component at the time of kneading, and the raw material resin material in which bleeding is likely to occur after recycling can also be utilized. If necessary, the obtained resin composition may be pelletized, or may be processed into a sheet or a film. In particular, since sheets and films have a large surface area, even a small amount of bleeding can affect the entire product such as texture and performance. Therefore, it can be preferably used as an applicable product of the technique.
 以下、本発明を実施例および比較例によって詳細に説明するが、本発明はこれらの実施例に限定されない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[参考例]
 一般的な工程端材のPVB中間膜(可塑剤を含む)シートを試験片として用いて測定を行った結果を図6に示す。本工程端材は、分子量が約1.1×10のPVBを主成分とし、エステル系可塑剤を約25%(PVB:可塑剤=3:1)含むものであった。図6は、本試験片についてブリードを観察するため、株式会社パーキンエルマージャパン製Spectrum Oneを用いて、ダイヤモンド結晶によるATR測定により試験片シート表面を測定した赤外分光スペクトルである。図中、破線で示しているのが、装置に付属するユニバーサルATRの加圧ユニットにより、40%の力で加圧した際の本試験片表面の赤外分光スペクトルである。また、実線で示しているのは、上記測定の後、圧力を開放して試験片をダイヤモンド結晶から取外し、ダイヤモンド結晶を拭き取らずにそのまま測定した赤外分光スペクトルである。1700cm-1から1800cm-1の間に、ブリードに起因するピークが存在していることがわかる。
[Reference example]
FIG. 6 shows the results of measurement using a PVB interlayer film (containing a plasticizer) sheet of general process scraps as a test piece. This step ends material, molecular weight as a main component PVB of approximately 1.1 × 10 5, about 25% ester plasticizer were (PVB:: plasticizer = 3 1) shall include. FIG. 6 is an infrared spectroscopic spectrum obtained by measuring the surface of the test piece sheet by ATR measurement using a diamond crystal using Spectrum One manufactured by Perkin Elmer Japan Co., Ltd. in order to observe bleeding of the test piece. In the figure, the broken line shows the infrared spectroscopic spectrum of the surface of the test piece when pressurized with a force of 40% by the pressurizing unit of the universal ATR attached to the apparatus. Further, what is shown by a solid line is an infrared spectroscopic spectrum measured as it is without wiping the diamond crystal after removing the test piece from the diamond crystal by releasing the pressure after the above measurement. It can be seen that there is a peak due to bleeding between 1700 cm -1 and 1800 cm -1.
 以下、上記と同様、試験片をATRの加圧ユニットにより、一旦40%の力で加圧、開放後、同試験片をダイヤモンド結晶から取外し、ダイヤモンド結晶を拭き取らずにそのまま赤外分光スペクトル(以下、「ブリード評価用赤外分光スペクトル」という場合がある。)を測定して本参考例でのブリード量と比較することで、ブリード性能の評価を行った。 Hereinafter, in the same manner as described above, the test piece is once pressurized and opened by the ATR pressurizing unit with a force of 40%, then the test piece is removed from the diamond crystal, and the infrared spectroscopic spectrum is used as it is without wiping the diamond crystal. Hereinafter, the bleeding performance was evaluated by measuring the “infrared spectroscopic spectrum for bleeding evaluation”) and comparing it with the bleeding amount in this reference example.
[比較例1]
 図7(A)は、ポリオレフィン系樹脂として低密度ポリエチレン(LDPE、「ノバテックHD」LC525、日本ポリエチレン株式会社製)を用い、中間膜相当成分を混練してTダイ法によりシート成形して得た試験片について、参考例と同様に、ATRの加圧ユニットにより、一旦40%の力で加圧、開放後、同試験片をダイヤモンド結晶から取外し、ダイヤモンド結晶を拭き取らずにそのまま測定した赤外分光スペクトル(ブリード評価用赤外分光スペクトル)である。図中、破線で示しているのが、本試験片についてのブリード評価用赤外分光スペクトルである。また、実線で示しているのは、参考例についてのブリード評価用赤外分光スペクトルである。
[Comparative Example 1]
FIG. 7A is obtained by using low density polyethylene (LDPE, “Novatec HD” LC525, manufactured by Nippon Polyethylene Co., Ltd.) as the polyolefin resin, kneading the components corresponding to the interlayer film, and forming a sheet by the T-die method. Similar to the reference example, the test piece was once pressurized and opened with a force of 40% by the ATR pressurizing unit, then the test piece was removed from the diamond crystal, and the infrared measured as it was without wiping the diamond crystal. It is a spectroscopic spectrum (infrared spectroscopic spectrum for bleed evaluation). In the figure, the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece. Moreover, what is shown by a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
 中間膜相当成分としては、分子量が1.15×10のPVB(「エスレックB・K」BH-A、積水化学工業株式会社製)に、可塑剤としてトリエチレングリコールジ-2-エチルヘキサノエート(G-260、積水化学工業株式会社製)を、重量比でPVB:可塑剤=3:1で配合したものを用いた。前記ポリオレフィン樹脂60重量部に対し、前記中間膜相当成分20重量部を加えて混練し、Tダイ法によりシート成形して試験片を得た。 The intermediate layer corresponds components, the molecular weight of 1.15 × 10 5 PVB ( "S-LEC B · K" BH-A, manufactured by Sekisui Chemical Co., Ltd.) to, triethylene glycol di-2-Echiruhekisano as a plasticizer An ate (G-260, manufactured by Sekisui Chemical Co., Ltd.) blended in a weight ratio of PVB: plasticizer = 3: 1 was used. To 60 parts by weight of the polyolefin resin, 20 parts by weight of the intermediate film equivalent component was added and kneaded, and a sheet was formed by the T-die method to obtain a test piece.
 柔軟性樹脂成分を添加していない比較例1では、参考例と比べて、ブリード評価用赤外分光スペクトルにおいて、ブリードに起因するピークが大きくなっていることがわかる。このように、中間膜シート素材をポリオレフィン系樹脂にブレンドして成形を行うと、可塑剤がブリード(滲み出し)し、製品として用いることが困難となる状況が確認できた。 It can be seen that in Comparative Example 1 in which the flexible resin component was not added, the peak caused by bleeding was larger in the infrared spectroscopic spectrum for bleed evaluation than in Reference Example. In this way, it was confirmed that when the interlayer film sheet material was blended with the polyolefin resin and molded, the plasticizer bleeded (exuded), making it difficult to use as a product.
[実施例1]
 図1は、ポリオレフィン系樹脂として低密度ポリエチレン(LDPE、「ノバテックHD」LC525、日本ポリエチレン株式会社製)を用い、中間膜相当成分および柔軟性樹脂成分を混練してTダイ法によりシート成形して得た試験片について、参考例と同様に測定した赤外分光スペクトル(ブリード評価用赤外分光スペクトル)である。図中、破線で示しているのが、本試験片についてのブリード評価用赤外分光スペクトルである。また、実線で示しているのは、参考例についてのブリード評価用赤外分光スペクトルである。
[Example 1]
In FIG. 1, low-density polyethylene (LDPE, "Novatec HD" LC525, manufactured by Nippon Polyethylene Co., Ltd.) is used as a polyolefin resin, and an interlayer equivalent component and a flexible resin component are kneaded and sheet-formed by the T-die method. The obtained test piece is an infrared spectroscopic spectrum (infrared spectroscopic spectrum for bleed evaluation) measured in the same manner as in the reference example. In the figure, the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece. Moreover, what is shown by a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
 中間膜相当成分としては、比較例1と同様に、分子量が1.15×10のPVB(「エスレックB・K」BH-A、積水化学工業株式会社製)に、可塑剤としてトリエチレングリコールジ-2-エチルヘキサノエート(G-260、積水化学工業株式会社製)を、重量比でPVB:可塑剤=3:1で配合したものを用いた。前記ポリオレフィン樹脂60重量部に対し、前記中間膜相当成分20重量部、および、柔軟性樹脂成分としてブロック型のスチレンブタジエンゴムB-SBR(「Nipol」NS380S、日本ゼオン株式会社製)5重量部を加えて混練し、Tダイ法によりシート成形して試験片を得た。 The intermediate layer corresponds components, as in Comparative Example 1, the molecular weight of 1.15 × 10 5 PVB ( "S-LEC B · K" BH-A, manufactured by Sekisui Chemical Co., Ltd.) to, triethylene glycol as a plasticizer A mixture of di-2-ethylhexanoate (G-260, manufactured by Sekisui Chemical Co., Ltd.) in a weight ratio of PVB: plasticizer = 3: 1 was used. With respect to 60 parts by weight of the polyolefin resin, 20 parts by weight of the interlayer film equivalent component and 5 parts by weight of a block-type styrene-butadiene rubber B-SBR (“Nipol” NS380S, manufactured by Nippon Zeon Corporation) as a flexible resin component. In addition, the mixture was kneaded and sheet-molded by the T-die method to obtain a test piece.
 柔軟性樹脂成分としてブロック型のスチレンブタジエンゴムを5重量部添加した本実施例では、ブリード評価用赤外分光スペクトルにおいて、ブリードに起因するピークは参考例と同程度であり、ポリオレフィン樹脂のブレンドによる可塑剤のブリードは抑制されていることがわかる。 In this example in which 5 parts by weight of block-type styrene-butadiene rubber was added as a flexible resin component, the peak caused by bleeding was about the same as that in the reference example in the infrared spectroscopic spectrum for bleed evaluation, and it was based on the blend of polyolefin resin. It can be seen that the bleeding of the plasticizer is suppressed.
[実施例2]
 柔軟性樹脂成分としてブロック型のスチレンブタジエンゴムB-SBR(「Nipol」NS380S、日本ゼオン株式会社製)10重量部を加えた他は、実施例1と同様に試験片を作製した。ブリード評価用赤外分光スペクトルを測定した結果を図2に示す。図中、破線で示しているのが、本試験片についてのブリード評価用赤外分光スペクトルである。また、実線で示しているのは、参考例についてのブリード評価用赤外分光スペクトルである。
[Example 2]
A test piece was prepared in the same manner as in Example 1 except that 10 parts by weight of a block-type styrene-butadiene rubber B-SBR (“Nipol” NS380S, manufactured by Nippon Zeon Corporation) was added as a flexible resin component. The result of measuring the infrared spectroscopic spectrum for bleed evaluation is shown in FIG. In the figure, the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece. Moreover, what is shown by a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
 柔軟性樹脂成分としてブロック型のスチレンブタジエンゴムを10重量部添加した本実施例では、ブリード評価用赤外分光スペクトルにおいて、ブリードに起因するピークは見られるものの、参考例よりも小さいものであり、ポリオレフィン樹脂のブレンドによる可塑剤のブリードは抑制されていることがわかる。 In this example in which 10 parts by weight of block-type styrene-butadiene rubber was added as a flexible resin component, a peak due to bleeding was observed in the infrared spectroscopic spectrum for bleed evaluation, but it was smaller than that of the reference example. It can be seen that the bleeding of the plasticizer due to the blend of the polyolefin resin is suppressed.
[実施例3]
 柔軟性樹脂成分としてブロック型のスチレンブタジエンゴムB-SBR(「Nipol」NS380S、日本ゼオン株式会社製)15重量部を加えた他は、実施例1と同様に試験片を作製した。ブリード評価用赤外分光スペクトルを測定した結果を図3に示す。図中、破線で示しているのが、本試験片についてのブリード評価用赤外分光スペクトルである。また、実線で示しているのは、参考例についてのブリード評価用赤外分光スペクトルである。
[Example 3]
A test piece was prepared in the same manner as in Example 1 except that 15 parts by weight of a block-type styrene-butadiene rubber B-SBR (“Nipol” NS380S, manufactured by Nippon Zeon Corporation) was added as a flexible resin component. The result of measuring the infrared spectroscopic spectrum for bleed evaluation is shown in FIG. In the figure, the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece. Moreover, what is shown by a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
 柔軟性樹脂成分としてブロック型のスチレンブタジエンゴムを15重量部添加した本実施例では、ブリード評価用赤外分光スペクトルにおいて、ブリードに起因するピークは殆ど見られず、参考例を上回るブリード制御効果が得られており、ポリオレフィン樹脂のブレンドによっても可塑剤のブリードは抑制されていることがわかる。 In this example in which 15 parts by weight of block-type styrene-butadiene rubber was added as a flexible resin component, almost no peak due to bleeding was observed in the infrared spectroscopic spectrum for bleed evaluation, and the bleed control effect was higher than that of the reference example. It can be seen that the bleeding of the plasticizer is also suppressed by the blending of the polyolefin resin.
[実施例4]
 柔軟性樹脂成分としてランダム型のスチレンブタジエンゴムR-SBR(「Nipol」1502、日本ゼオン株式会社製)20重量部を加えた他は、実施例1と同様に試験片を作製した。ブリード評価用赤外分光スペクトルを測定した結果を図4に示す。図中、破線で示しているのが、本試験片についてのブリード評価用赤外分光スペクトルである。また、実線で示しているのは、参考例についてのブリード評価用赤外分光スペクトルである。
[Example 4]
A test piece was prepared in the same manner as in Example 1 except that 20 parts by weight of a random type styrene-butadiene rubber R-SBR (“Nipol” 1502, manufactured by Nippon Zeon Corporation) was added as a flexible resin component. The result of measuring the infrared spectroscopic spectrum for bleed evaluation is shown in FIG. In the figure, the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece. Moreover, what is shown by a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
 柔軟性樹脂成分としてランダム型のスチレンブタジエンゴムを20重量部添加した本実施例では、ブリード評価用赤外分光スペクトルにおいて、ブリードに起因するピークは殆ど見られず、参考例を上回るブリード制御効果が得られており、ポリオレフィン樹脂のブレンドによっても可塑剤のブリードは抑制されていることがわかる。 In this example in which 20 parts by weight of random type styrene-butadiene rubber was added as a flexible resin component, almost no peak due to bleeding was observed in the infrared spectroscopic spectrum for bleed evaluation, and the bleed control effect was higher than that of the reference example. It can be seen that the bleeding of the plasticizer is also suppressed by the blending of the polyolefin resin.
[実施例5]
 柔軟性樹脂成分として共重合オレフィン樹脂であるエチレン酢酸ビニル共重合体EVA(「ウルトラセン」射出用グレード633、東ソー株式会社製)20重量部を加えた他は、実施例1と同様に試験片を作製した。ブリード評価用赤外分光スペクトルを測定した結果を図5に示す。図中、破線で示しているのが、本試験片についてのブリード評価用赤外分光スペクトルである。また、実線で示しているのは、参考例についてのブリード評価用赤外分光スペクトルである。
[Example 5]
Test piece as in Example 1 except that 20 parts by weight of ethylene vinyl acetate copolymer EVA (“Ultrasen” injection grade 633, manufactured by Tosoh Corporation), which is a copolymerized olefin resin, was added as a flexible resin component. Was produced. The result of measuring the infrared spectroscopic spectrum for bleed evaluation is shown in FIG. In the figure, the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece. Moreover, what is shown by a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
 柔軟性樹脂成分としてエチレン酢酸ビニル共重合体を20重量部添加した本実施例では、ブリード評価用赤外分光スペクトルにおいて、ブリードに起因するピークは殆ど見られず、参考例を上回るブリード制御効果が得られており、ポリオレフィン樹脂のブレンドによっても可塑剤のブリードは抑制されていることがわかる。 In this example in which 20 parts by weight of an ethylene-vinyl acetate copolymer was added as a flexible resin component, almost no peak due to bleeding was observed in the infrared spectroscopic spectrum for bleed evaluation, and the bleed control effect was higher than that of the reference example. It can be seen that the bleeding of the plasticizer is also suppressed by the blending of the polyolefin resin.
[比較例2]
 図7(B)は、ポリオレフィン系樹脂として低密度ポリエチレン(LDPE、「ノバテックHD」LC525、日本ポリエチレン株式会社製)を用い、中間膜相当成分を混練して射出成形して得た試験片について、参考例と同様に測定した赤外分光スペクトル(ブリード評価用赤外分光スペクトル)である。図中、破線で示しているのが、本試験片についてのブリード評価用赤外分光スペクトルである。また、実線で示しているのは、参考例についてのブリード評価用赤外分光スペクトルである。
[Comparative Example 2]
FIG. 7B shows a test piece obtained by kneading a component corresponding to an interlayer film using low-density polyethylene (LDPE, “Novatec HD” LC525, manufactured by Nippon Polyethylene Co., Ltd.) as a polyolefin resin and injection molding. It is an infrared spectroscopic spectrum (infrared spectroscopic spectrum for bleed evaluation) measured in the same manner as the reference example. In the figure, the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece. Moreover, what is shown by a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
 中間膜相当成分としては、参考例の工程端材(分子量が約1.1×10のPVBを主成分とし、エステル系可塑剤を約25%(PVB:可塑剤=3:1)含むもの)を用いた。前記ポリオレフィン樹脂60重量部に対し、前記中間膜相当成分20重量部を加えて混練し、Tダイ法によりシート成形して試験片を得た。 The intermediate layer corresponds components, a main component PVB of Example process scraps (molecular weight of about 1.1 × 10 5, the ester plasticizer about 25% (PVB: plasticizer = 3: 1) containing those ) Was used. To 60 parts by weight of the polyolefin resin, 20 parts by weight of the intermediate film equivalent component was added and kneaded, and a sheet was formed by the T-die method to obtain a test piece.
 柔軟性樹脂成分を添加していない比較例2では、参考例と比べて、ブリード評価用赤外分光スペクトルにおいてブリードに起因するピークが大きくなっていることがわかる。このように、中間膜シート素材をポリオレフィン系樹脂にブレンドして成形を行うと、可塑剤がブリード(滲み出し)し、製品として用いることが困難となる状況が確認できた。 It can be seen that in Comparative Example 2 in which the flexible resin component was not added, the peak caused by bleeding was larger in the infrared spectroscopic spectrum for bleed evaluation than in Reference Example. In this way, it was confirmed that when the interlayer film sheet material was blended with the polyolefin resin and molded, the plasticizer bleeded (exuded), making it difficult to use as a product.
[実施例6]
 図8(A)は、ポリオレフィン系樹脂として低密度ポリエチレン(LDPE、「ノバテックHD」LC525、日本ポリエチレン株式会社製)を用い、中間膜相当成分および柔軟性樹脂成分を混練してTダイ法によりシート成形して得た試験片について、参考例と同様に測定した赤外分光スペクトル(ブリード評価用赤外分光スペクトル)である。図中、破線で示しているのが、本試験片についてのブリード評価用赤外分光スペクトルである。また、実線で示しているのは、参考例についてのブリード評価用赤外分光スペクトルである。
[Example 6]
In FIG. 8 (A), low-density polyethylene (LDPE, “Novatec HD” LC525, manufactured by Nippon Polyethylene Co., Ltd.) is used as the polyolefin resin, and the interlayer film equivalent component and the flexible resin component are kneaded and sheeted by the T-die method. It is an infrared spectroscopic spectrum (infrared spectroscopic spectrum for bleed evaluation) measured in the same manner as a reference example about the test piece obtained by molding. In the figure, the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece. Moreover, what is shown by a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
 中間膜相当成分としては、比較例2と同様に、参考例の工程端材(分子量が約1.1×10のPVBを主成分とし、エステル系可塑剤を約25%(PVB:可塑剤=3:1)含むもの)を用いた。前記ポリオレフィン樹脂60重量部に対し、前記中間膜相当成分20重量部、および、柔軟性樹脂成分としてブロック型のスチレンブタジエンゴムB-SBR(「Nipol」NS380S、日本ゼオン株式会社製)2.5重量部を加えて混練し、Tダイ法によりシート成形して試験片を得た。 The intermediate layer corresponds components, as in Comparative Example 2, Step mill ends (molecular weight of the reference example is composed mainly of PVB about 1.1 × 10 5, about 25% of the ester-based plasticizer (PVB: plasticizer = 3: 1) Including) was used. With respect to 60 parts by weight of the polyolefin resin, 20 parts by weight of the interlayer film equivalent component and 2.5 parts by weight of block-type styrene-butadiene rubber B-SBR (“Nipol” NS380S, manufactured by Nippon Zeon Corporation) as a flexible resin component. Parts were added and kneaded, and a sheet was formed by the T-die method to obtain a test piece.
 柔軟性樹脂成分としてブロック型のスチレンブタジエンゴムを2.5重量部添加した本実施例では、ブリード評価用赤外分光スペクトルにおいて、ブリードに起因するピークは参考例と比べて大きくなっているものの、柔軟性樹脂成分を添加していない比較例2と比べるとピークは小さくなっていることがわかる。このように、ブロック型のスチレンブタジエンゴムを2.5重量部しか添加していない場合であっても、ポリオレフィン樹脂のブレンドによる可塑剤のブリードは抑制されていることがわかる。 In this example in which 2.5 parts by weight of block-type styrene-butadiene rubber was added as a flexible resin component, the peak caused by bleeding was larger in the infrared spectroscopic spectrum for bleeding evaluation than in the reference example. It can be seen that the peak is smaller than that of Comparative Example 2 in which the flexible resin component is not added. As described above, it can be seen that the bleeding of the plasticizer due to the blend of the polyolefin resin is suppressed even when only 2.5 parts by weight of the block-type styrene-butadiene rubber is added.
[実施例7]
 柔軟性樹脂成分としてブロック型のスチレンブタジエンゴムB-SBR(「Nipol」NS380S、日本ゼオン株式会社製)5重量部を加えた他は、実施例6と同様に試験片を作製した。ブリード評価用赤外分光スペクトルを測定した結果を図8(B)に示す。図中、破線で示しているのが、本試験片についてのブリード評価用赤外分光スペクトルである。また、実線で示しているのは、参考例についてのブリード評価用赤外分光スペクトルである。
[Example 7]
A test piece was prepared in the same manner as in Example 6 except that 5 parts by weight of a block-type styrene-butadiene rubber B-SBR (“Nipol” NS380S, manufactured by Nippon Zeon Corporation) was added as a flexible resin component. The result of measuring the infrared spectroscopic spectrum for bleed evaluation is shown in FIG. 8 (B). In the figure, the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece. Moreover, what is shown by a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
 柔軟性樹脂成分としてブロック型のスチレンブタジエンゴムを5重量部添加した本実施例では、ブリード評価用赤外分光スペクトルにおいて、ブリードに起因するピークは見られるものの、参考例よりも小さいものであり、ポリオレフィン樹脂のブレンドによる可塑剤のブリードは抑制されていることがわかる。 In this example in which 5 parts by weight of block-type styrene-butadiene rubber was added as a flexible resin component, a peak due to bleeding was observed in the infrared spectroscopic spectrum for bleed evaluation, but it was smaller than that of the reference example. It can be seen that the bleeding of the plasticizer due to the blend of the polyolefin resin is suppressed.
[実施例8]
 柔軟性樹脂成分としてブロック型のスチレンブタジエンゴムB-SBR(「Nipol」NS380S、日本ゼオン株式会社製)10重量部を加えた他は、実施例6と同様に試験片を作製した。ブリード評価用赤外分光スペクトルを測定した結果を図8(C)に示す。図中、破線で示しているのが、本試験片についてのブリード評価用赤外分光スペクトルである。また、実線で示しているのは、参考例についてのブリード評価用赤外分光スペクトルである。
[Example 8]
A test piece was prepared in the same manner as in Example 6 except that 10 parts by weight of a block-type styrene-butadiene rubber B-SBR (“Nipol” NS380S, manufactured by Nippon Zeon Corporation) was added as a flexible resin component. The results of measuring the infrared spectroscopic spectrum for bleed evaluation are shown in FIG. 8 (C). In the figure, the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece. Moreover, what is shown by a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
 柔軟性樹脂成分としてブロック型のスチレンブタジエンゴムを10重量部添加した本実施例では、ブリード評価用赤外分光スペクトルにおいて、ブリードに起因するピークは見られるものの、参考例よりも小さいものであり、ポリオレフィン樹脂のブレンドによる可塑剤のブリードは抑制されていることがわかる。 In this example in which 10 parts by weight of block-type styrene-butadiene rubber was added as a flexible resin component, a peak due to bleeding was observed in the infrared spectroscopic spectrum for bleed evaluation, but it was smaller than that of the reference example. It can be seen that the bleeding of the plasticizer due to the blend of the polyolefin resin is suppressed.
[実施例9]
 柔軟性樹脂成分としてブロック型のスチレンブタジエンゴムB-SBR(「Nipol」NS380S、日本ゼオン株式会社製)15重量部を加えた他は、実施例6と同様に試験片を作製した。ブリード評価用赤外分光スペクトルを測定した結果を図8(D)に示す。図中、破線で示しているのが、本試験片についてのブリード評価用赤外分光スペクトルである。また、実線で示しているのは、参考例についてのブリード評価用赤外分光スペクトルである。
[Example 9]
A test piece was prepared in the same manner as in Example 6 except that 15 parts by weight of a block-type styrene-butadiene rubber B-SBR (“Nipol” NS380S, manufactured by Nippon Zeon Corporation) was added as a flexible resin component. The results of measuring the infrared spectroscopic spectrum for bleed evaluation are shown in FIG. 8 (D). In the figure, the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece. Moreover, what is shown by a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
 柔軟性樹脂成分としてブロック型のスチレンブタジエンゴムを15重量部添加した本実施例では、ブリード評価用赤外分光スペクトルにおいて、ブリードに起因するピークは殆ど見られず、参考例を上回るブリード制御効果が得られており、ポリオレフィン樹脂のブレンドによっても可塑剤のブリードは抑制されていることがわかる。 In this example in which 15 parts by weight of block-type styrene-butadiene rubber was added as a flexible resin component, almost no peak due to bleeding was observed in the infrared spectroscopic spectrum for bleed evaluation, and the bleed control effect was higher than that of the reference example. It can be seen that the bleeding of the plasticizer is also suppressed by the blending of the polyolefin resin.
[実施例10]
 柔軟性樹脂成分としてブロック型のスチレンブタジエンゴムB-SBR(「Nipol」NS380S、日本ゼオン株式会社製)20重量部を加えた他は、実施例6と同様に試験片を作製した。ブリード評価用赤外分光スペクトルを測定した結果を図8(E)に示す。図中、破線で示しているのが、本試験片についてのブリード評価用赤外分光スペクトルである。また、実線で示しているのは、参考例についてのブリード評価用赤外分光スペクトルである。
[Example 10]
A test piece was prepared in the same manner as in Example 6 except that 20 parts by weight of a block-type styrene-butadiene rubber B-SBR (“Nipol” NS380S, manufactured by Nippon Zeon Corporation) was added as a flexible resin component. The result of measuring the infrared spectroscopic spectrum for bleed evaluation is shown in FIG. 8 (E). In the figure, the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece. Moreover, what is shown by a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
 柔軟性樹脂成分としてブロック型のスチレンブタジエンゴムを20重量部添加した本実施例では、ブリード評価用赤外分光スペクトルにおいて、ブリードに起因するピークは殆ど見られず、参考例を上回るブリード制御効果が得られており、ポリオレフィン樹脂のブレンドによっても可塑剤のブリードは抑制されていることがわかる。 In this example in which 20 parts by weight of block-type styrene-butadiene rubber was added as a flexible resin component, almost no peak due to bleeding was observed in the infrared spectroscopic spectrum for bleed evaluation, and the bleed control effect was higher than that of the reference example. It can be seen that the bleeding of the plasticizer is also suppressed by the blending of the polyolefin resin.
[実施例11]
 柔軟性樹脂成分として高ジエンタイプのエチレンプロピレンジエンゴム(EPDM、「ESPRENE505」、住友化学株式会社製)20重量部を加えた他は、実施例6と同様に試験片を作製した。ブリード評価用赤外分光スペクトルを測定した結果を図9(A)に示す。図中、破線で示しているのが、本試験片についてのブリード評価用赤外分光スペクトルである。また、実線で示しているのは、参考例についてのブリード評価用赤外分光スペクトルである。
[Example 11]
A test piece was prepared in the same manner as in Example 6 except that 20 parts by weight of a high diene type ethylene propylene diene rubber (EPDM, "ESPRENE505", manufactured by Sumitomo Chemical Co., Ltd.) was added as a flexible resin component. The result of measuring the infrared spectroscopic spectrum for bleed evaluation is shown in FIG. 9 (A). In the figure, the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece. Moreover, what is shown by a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
 柔軟性樹脂成分としてエチレンプロピレンジエンゴムを20重量部添加した本実施例では、ブリード評価用赤外分光スペクトルにおいて、ブリードに起因するピークは参考例と比べて大きくなっているものの、柔軟性樹脂成分を添加していない比較例2と比べるとピークは小さくなっていることがわかる。このように、エチレンプロピレンジエンゴムを20重量部添加した場合であっても、ポリオレフィン樹脂のブレンドによる可塑剤のブリードは抑制されていることがわかる。 In this example in which 20 parts by weight of ethylene propylene diene rubber was added as a flexible resin component, the peak caused by bleeding was larger than that in the reference example in the infrared spectroscopic spectrum for bleed evaluation, but the flexible resin component. It can be seen that the peak is smaller than that of Comparative Example 2 in which is not added. As described above, it can be seen that even when 20 parts by weight of ethylene propylene diene rubber is added, the bleeding of the plasticizer due to the blend of the polyolefin resin is suppressed.
[実施例12]
 柔軟性樹脂成分として共重合オレフィン樹脂であるエチレン酢酸ビニル共重合体EVA(「ウルトラセン」射出用グレード633、東ソー株式会社製)20重量部を加えた他は、実施例6と同様に試験片を作製した。ブリード評価用赤外分光スペクトルを測定した結果を図9(B)に示す。図中、破線で示しているのが、本試験片についてのブリード評価用赤外分光スペクトルである。また、実線で示しているのは、参考例についてのブリード評価用赤外分光スペクトルである。
[Example 12]
Test piece as in Example 6 except that 20 parts by weight of ethylene vinyl acetate copolymer EVA (“Ultrasen” injection grade 633, manufactured by Tosoh Corporation), which is a copolymerized olefin resin, was added as a flexible resin component. Was produced. The result of measuring the infrared spectroscopic spectrum for bleed evaluation is shown in FIG. 9 (B). In the figure, the broken line shows the infrared spectroscopic spectrum for bleed evaluation of this test piece. Moreover, what is shown by a solid line is an infrared spectroscopic spectrum for bleed evaluation for a reference example.
 柔軟性樹脂成分としてエチレン酢酸ビニル共重合体を20重量部添加した本実施例では、ブリード評価用赤外分光スペクトルにおいて、ブリードに起因するピークは殆ど見られず、参考例を上回るブリード制御効果が得られており、ポリオレフィン樹脂のブレンドによっても可塑剤のブリードは抑制されていることがわかる。 In this example in which 20 parts by weight of an ethylene-vinyl acetate copolymer was added as a flexible resin component, almost no peak due to bleeding was observed in the infrared spectroscopic spectrum for bleed evaluation, and the bleed control effect was higher than that of the reference example. It can be seen that the bleeding of the plasticizer is also suppressed by the blending of the polyolefin resin.
(試験片の作製方法)
 上記において用いた、測定用の試験片の作製方法は以下のとおりである。なお、各試験片において配合されていない材料がある場合には、適宜、その工程を省略して、以下の作製方法を適用した。
(Method of preparing test piece)
The method for preparing the test piece for measurement used in the above is as follows. When there was a material that was not blended in each test piece, the step was appropriately omitted and the following production method was applied.
 はじめに、各材料の下準備として、各材料を二軸押出機のホッパーに投入可能な形状(例えば、数ミリ角の粉粒体)に加工した。 First, as a preparation for each material, each material was processed into a shape that can be put into the hopper of a twin-screw extruder (for example, a powder or granular material of several millimeters square).
 次に、各材料を二軸押出機のホッパーに投入する前に、あらかじめ各材料を混ぜ合わせた。 Next, each material was mixed in advance before being put into the hopper of the twin-screw extruder.
 次に、ダイスとしてT型ダイス(Tダイ)を装備した二軸の押出機を用いて、上記のように加工した各材料を混練した。二軸押出機としては、株式会社テクノベル製の「KZW15-45HG」(Φ=15、L/D=45)を用いた。装置の運転条件として、スクリュー回転数を250rpm、及びフィーダー吐出量を毎分15gとした。二軸押出機は、第1~第6の6つのシリンダを有するが、各シリンダの設定温度については、第1シリンダ~第6シリンダ及びTダイを160℃とした。二軸押出機で各材料を加熱且つ混合し、二軸押出機のTダイから樹脂混合物を押し出した。押し出された混合物は、シートであり、直ちに25℃に設定した回転式冷却ロールで冷却固化させた後、紙管に巻き取り、試験片を得た。 Next, each material processed as described above was kneaded using a twin-screw extruder equipped with a T-type die (T die) as a die. As the twin-screw extruder, "KZW15-45HG" (Φ = 15, L / D = 45) manufactured by Technobel Co., Ltd. was used. The operating conditions of the device were a screw rotation speed of 250 rpm and a feeder discharge rate of 15 g / min. The twin-screw extruder has six cylinders of the first to sixth cylinders, and the set temperature of each cylinder is set to 160 ° C. for the first cylinder to the sixth cylinder and the T die. Each material was heated and mixed with a twin-screw extruder, and the resin mixture was extruded from the T-die of the twin-screw extruder. The extruded mixture was a sheet, which was immediately cooled and solidified with a rotary cooling roll set at 25 ° C., and then wound around a paper tube to obtain a test piece.
[比較例3]
 図10(A)は、ポリオレフィン系樹脂として低密度ポリエチレン(LDPE、「ノバテックHD」LC525、日本ポリエチレン株式会社製)を用い、中間膜相当成分を混練して加熱プレス法によりシート成形して得た試験片について、表面成分を抽出して、抽出成分をガスクロマトグラフ質量分析法によって測定を行った結果である。
[Comparative Example 3]
FIG. 10A is obtained by using low density polyethylene (LDPE, “Novatec HD” LC525, manufactured by Nippon Polyethylene Co., Ltd.) as the polyolefin resin, kneading the components corresponding to the interlayer film, and forming a sheet by a heat pressing method. This is the result of extracting the surface component of the test piece and measuring the extracted component by the gas chromatograph mass spectrometry method.
 中間膜相当成分としては、分子量が1.15×10のPVB(「エスレックB・K」BH-A、積水化学工業株式会社製)に、可塑剤としてトリエチレングリコールジ-2-エチルヘキサノエート(G-260、積水化学工業株式会社製)を、重量比でPVB:可塑剤=2:1で配合したものを用いた。前記ポリオレフィン樹脂60重量部に対し、前記中間膜相当成分20重量部を加えてバッチ式混練を行い、加熱プレス法によりシート成形して試験片を得た。 The intermediate layer corresponds components, the molecular weight of 1.15 × 10 5 PVB ( "S-LEC B · K" BH-A, manufactured by Sekisui Chemical Co., Ltd.) to, triethylene glycol di-2-Echiruhekisano as a plasticizer An ate (G-260, manufactured by Sekisui Chemical Co., Ltd.) blended in a weight ratio of PVB: plasticizer = 2: 1 was used. To 60 parts by weight of the polyolefin resin, 20 parts by weight of the interlayer film equivalent component was added and kneaded in a batch manner, and a sheet was formed by a heat pressing method to obtain a test piece.
 柔軟性樹脂成分を添加していない比較例3では、可塑剤成分に起因するリテンションタイム(15.15min)のピーク面積値が6,651,785となり、比較例1と同様、ブリードに起因するピークが大きくなっていることがわかる。このように、中間膜シート素材をポリオレフィン系樹脂にブレンドして成形を行うと、可塑剤がブリード(滲み出し)し、製品として用いることが困難となる状況が確認できた。 In Comparative Example 3 in which the flexible resin component was not added, the peak area value of the retention time (15.15 min) due to the plasticizer component was 6,651,785, and the peak due to bleeding was the same as in Comparative Example 1. It can be seen that is increasing. In this way, it was confirmed that when the interlayer film sheet material was blended with the polyolefin resin and molded, the plasticizer bleeded (exuded), making it difficult to use as a product.
[比較例4]
 図10(B)は、ポリオレフィン系樹脂として低密度ポリエチレン(LDPE、「ノバテックHD」LC525、日本ポリエチレン株式会社製)を用い、中間膜相当成分を混練して加熱プレス法によりシート成形して得た試験片について、表面成分を抽出して、抽出成分をガスクロマトグラフ質量分析法によって測定を行った結果である。
[Comparative Example 4]
FIG. 10B is obtained by using low density polyethylene (LDPE, “Novatec HD” LC525, manufactured by Nippon Polyethylene Co., Ltd.) as the polyolefin resin, kneading the components corresponding to the interlayer film, and forming a sheet by a heat pressing method. This is the result of extracting the surface component of the test piece and measuring the extracted component by the gas chromatograph mass spectrometry method.
 中間膜相当成分としては、分子量が1.15×10のPVB(「エスレックB・K」BH-A、積水化学工業株式会社製)に、可塑剤としてアジピン酸ビス(2-(2-ブトキシエトキシ)エチル)(BXA-N、大八化学工業株式会社製)を、重量比でPVB:可塑剤=2:1で配合したものを用いた。前記ポリオレフィン樹脂60重量部に対し、前記中間膜相当成分20重量部を加えてバッチ式混練を行い、加熱プレス法によりシート成形して試験片を得た。 Intermediate film as the corresponding components, a molecular weight of 1.15 × 10 5 of PVB ( "S-LEC B · K" BH-A, manufactured by Sekisui Chemical Co., Ltd.) to, adipic acid bis (2- (2-butoxy as a plasticizer An ethoxy) ethyl) (BXA-N, manufactured by Daihachi Chemical Industry Co., Ltd.) was blended in a weight ratio of PVB: plasticizer = 2: 1. To 60 parts by weight of the polyolefin resin, 20 parts by weight of the interlayer film equivalent component was added and kneaded in a batch manner, and a sheet was formed by a heat pressing method to obtain a test piece.
 柔軟性樹脂成分を添加していない比較例4では、可塑剤成分に起因するリテンションタイム(16.71min)のピーク面積値が4,520,398となり、比較例1と同様、ブリードに起因するピークが大きくなっていることがわかる。このように、中間膜シート素材をポリオレフィン系樹脂にブレンドして成形を行うと、可塑剤がブリード(滲み出し)し、製品として用いることが困難となる状況が確認できた。 In Comparative Example 4 in which the flexible resin component was not added, the peak area value of the retention time (16.71 min) due to the plasticizer component was 4,520,398, and the peak due to bleeding was the same as in Comparative Example 1. It can be seen that is increasing. In this way, it was confirmed that when the interlayer film sheet material was blended with the polyolefin resin and molded, the plasticizer bleeded (exuded), making it difficult to use as a product.
[実施例13]
 図10(C)は、ポリオレフィン系樹脂として低密度ポリエチレン(LDPE、「ノバテックHD」LC525、日本ポリエチレン株式会社製)を用い、中間膜相当成分および柔軟性樹脂成分を混練して加熱プレス法によりシート成形して得た試験片について、表面成分を抽出して、抽出成分をガスクロマトグラフ質量分析法によって測定を行った結果である。
[Example 13]
FIG. 10C shows a sheet using low-density polyethylene (LDPE, “Novatec HD” LC525, manufactured by Japan Polyethylene Corporation) as a polyolefin resin, kneading an interlayer film-equivalent component and a flexible resin component, and using a heat pressing method. This is the result of extracting the surface component of the test piece obtained by molding and measuring the extracted component by the gas chromatograph mass spectrometry method.
 中間膜相当成分としては、分子量が1.15×10のPVB(「エスレックB・K」BH-A、積水化学工業株式会社製)に、可塑剤としてアジピン酸ビス(2-(2-ブトキシエトキシ)エチル)(BXA-N、大八化学工業株式会社製)を、重量比でPVB:可塑剤=2:1で配合したものを用いた。前記ポリオレフィン樹脂60重量部に対し、前記中間膜相当成分20重量部、および、柔軟性樹脂成分として共重合オレフィン樹脂であるエチレン酢酸ビニル共重合体EVA(「ウルトラセン」射出用グレード633、東ソー株式会社製)10重量部を加えてバッチ式混練を行い、加熱プレス法によりシート成形して試験片を得た。 Intermediate film as the corresponding components, a molecular weight of 1.15 × 10 5 of PVB ( "S-LEC B · K" BH-A, manufactured by Sekisui Chemical Co., Ltd.) to, adipic acid bis (2- (2-butoxy as a plasticizer An ethoxy) ethyl) (BXA-N, manufactured by Daihachi Chemical Industry Co., Ltd.) was blended in a weight ratio of PVB: plasticizer = 2: 1. With respect to 60 parts by weight of the polyolefin resin, 20 parts by weight of the interlayer film equivalent component and ethylene vinyl acetate copolymer EVA (“Ultrasen” grade 633 for injection, which is a copolymerized olefin resin as a flexible resin component, Toso Co., Ltd.) (Manufactured by the company) 10 parts by weight was added, batch kneading was performed, and a sheet was formed by a heating press method to obtain a test piece.
 柔軟性樹脂成分としてエチレン酢酸ビニル共重合体を10重量部添加した本実施例では、可塑剤成分に起因するリテンションタイム(16.71min)のピーク面積値が1,361,081となり、比較例4と比べて、可塑剤ブリード量が約30%まで抑制されていることがわかる。 In this example in which 10 parts by weight of an ethylene-vinyl acetate copolymer was added as a flexible resin component, the peak area value of the retention time (16.71 min) due to the plasticizer component was 1,361,081 and Comparative Example 4 It can be seen that the amount of plasticizer bleed is suppressed to about 30%.
 比較例3、4および実施例13において用いた、測定用の試験片の作製方法は以下のとおりである。
(バッチ式混練)
 140℃に設定したバッチ式ニーダー(10S100、株式会社東洋精機製作所製)に各材料を投入し、回転数を12.5rpmで10分間混練し、混練サンプルを得た。
The method for producing the test piece for measurement used in Comparative Examples 3 and 4 and Example 13 is as follows.
(Batch type kneading)
Each material was put into a batch type kneader (10S100, manufactured by Toyo Seiki Seisakusho Co., Ltd.) set at 140 ° C. and kneaded at a rotation speed of 12.5 rpm for 10 minutes to obtain a kneaded sample.
(加熱プレス法)
 上記で得られた混練サンプルを約2.5g秤取し、10cm×10cm×0.3mmのスペーサー内に静置後、140℃に設定した卓上プレス機(小型プレスG-12型、テクノサプライ株式会社製)にて加熱プレスした後、水道水を内部通水した金属製の板に直ちに挟み込み冷却してシート状試験片を得た。得られたシート状試験片の厚みは概ね0.3mmであった。
(Heat press method)
Approximately 2.5 g of the kneaded sample obtained above was weighed, allowed to stand in a spacer of 10 cm × 10 cm × 0.3 mm, and then set at 140 ° C. on a tabletop press (small press G-12 type, techno supply stock). After heat-pressing with (manufactured by the company), tap water was immediately sandwiched between internally passed metal plates and cooled to obtain a sheet-shaped test piece. The thickness of the obtained sheet-shaped test piece was approximately 0.3 mm.
(ガスクロマトグラフ質量分析)
 ガスクロマトグラフ質量分析装置(GCMS QP-2010Ultra、株式会社島津製作所製)を用い、以下の方法、条件でシート状試験片の表面ブリード量を測定した。
(Gas chromatograph mass spectrometry)
Using a gas chromatograph mass spectrometer (GCMS QP-2010 Ultra, manufactured by Shimadzu Corporation), the amount of surface bleeding of the sheet-shaped test piece was measured by the following method and conditions.
<表面成分(ブリード物)の抽出方法>
 前記シート状試験片から、10mm×30mmの短冊状試料を切り出した。前記短冊状試料を、室温で、バイアル瓶中にてエチルアルコール1mLに浸漬し、1分間振とうした。その後、前記短冊状試料をバイアル瓶から取り出し、残ったエチルアルコール溶液をガスクロマトグラフ質量分析の試料とした。
<Extraction method of surface components (bleeds)>
A strip-shaped sample having a size of 10 mm × 30 mm was cut out from the sheet-shaped test piece. The strip-shaped sample was immersed in 1 mL of ethyl alcohol in a vial at room temperature and shaken for 1 minute. Then, the strip-shaped sample was taken out from the vial, and the remaining ethyl alcohol solution was used as a sample for gas chromatograph mass spectrometry.
<ガスクロマトグラフ条件>
 カラム:内壁に5%フェニルメチルポリシロキサンからなる液相を膜厚0.25μmでコーティングした長さ30m、内径0.25mmのキャピラリーカラム
 温度条件:40℃で2分間保持後、300℃まで20℃/分で昇温し、300℃で5分間保持
 キャリアガス:Heガス、ガス線速度 40cm/秒
<Gas chromatograph conditions>
Column: A capillary column having a length of 30 m and an inner diameter of 0.25 mm coated with a liquid phase composed of 5% phenylmethylpolysiloxane on the inner wall with a thickness of 0.25 μm. Heat up in minutes and hold at 300 ° C for 5 minutes Carrier gas: He gas, gas ray velocity 40 cm / sec
<質量分析条件>
 装置:四重極型質量分析計
 イオン化法:EI(イオン化電圧 70eV)
  スキャン質量:m/z 33~500
<Mass spectrometry conditions>
Equipment: Quadrupole mass spectrometer Ionization method: EI (ionization voltage 70eV)
Scan mass: m / z 33-500
 以上、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。 As described above, the above-described embodiment is merely an example for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and the above-described embodiment can be appropriately modified and implemented within a range that does not deviate from the gist thereof.
 本発明によれば、市場に出回っている、液体可塑剤が含有された合わせガラス中間膜シート用ポリビニルアセタールの利活用を図ることができる。本発明により、取扱性の困難さ、性状面での課題からリサイクルすることが難しく、これまで廃棄せざるを得なかった使用済のガラス中間膜等の材料を、有価物として利活用することができるようになり、環境への負荷を低減させる効果を有するのみならず、産業利用上の面においても大きく貢献すると考えられる。 According to the present invention, it is possible to utilize the polyvinyl acetal for a laminated glass interlayer film sheet containing a liquid plasticizer, which is on the market. According to the present invention, it is possible to utilize materials such as used glass interlayer films, which have had to be discarded until now, as valuable resources because it is difficult to recycle due to difficulty in handling and problems in terms of properties. Not only will it have the effect of reducing the burden on the environment, but it will also contribute significantly to industrial use.

Claims (6)

  1. ポリオレフィン系樹脂と、可塑剤を含有するポリビニルアセタール樹脂(ポリビニルホルマール樹脂を除く)とを含み、
    さらに、合成ゴム、エラストマーおよび共重合オレフィン樹脂からなる群から選ばれる少なくとも1種の柔軟性樹脂を含み、
    前記ポリオレフィン系樹脂の含有量と前記ポリビニルアセタール樹脂の含有量との重量比が、ポリオレフィン系樹脂:ポリビニルアセタール樹脂=99.9:0.1~0.1:99.9の範囲内にあることを特徴とする樹脂組成物。
    Contains a polyolefin resin and a polyvinyl acetal resin (excluding polyvinyl formal resin) containing a plasticizer.
    Further, it contains at least one flexible resin selected from the group consisting of synthetic rubbers, elastomers and copolymerized olefin resins.
    The weight ratio of the content of the polyolefin resin to the content of the polyvinyl acetal resin is in the range of polyolefin resin: polyvinyl acetal resin = 99.9: 0.1 to 0.1: 99.9. A resin composition characterized by.
  2. 前記可塑剤は、分子中にエーテル結合を有するエステル化合物を含む、請求項1記載の樹脂組成物。 The resin composition according to claim 1, wherein the plasticizer contains an ester compound having an ether bond in the molecule.
  3. 前記柔軟性樹脂は、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、ブタジエンゴム、スチレンブタジエンゴム、ニトリルゴム、ニトリルブタジエンゴム、イソプレンゴム、スチレンブタジエン/ブチレン/スチレンエラストマー、エチレン酢酸ビニル共重合体およびこれらの混合物からなる群より選ばれる少なくとも1種である請求項1または2記載の樹脂組成物。 The flexible resin includes ethylene propylene rubber, ethylene propylene diene rubber, butadiene rubber, styrene butadiene rubber, nitrile rubber, nitrile butadiene rubber, isoprene rubber, styrene butadiene / butylene / styrene elastomer, ethylene vinyl acetate copolymer and a mixture thereof. The resin composition according to claim 1 or 2, which is at least one selected from the group consisting of.
  4. 前記ポリビニルアセタール樹脂は、ポリビニルアセトアセタールおよびポリビニルブチラールからなる群より選ばれる少なくとも1種である
    請求項1から3のいずれか一項に記載の樹脂組成物。
    The resin composition according to any one of claims 1 to 3, wherein the polyvinyl acetal resin is at least one selected from the group consisting of polyvinyl acetal acetal and polyvinyl butyral.
  5. 前記ポリオレフィン系樹脂は、ポリプロピレン樹脂およびポリエチレン樹脂からなる群より選ばれる少なくとも1種である
    請求項1から4のいずれか一項に記載の樹脂組成物。
    The resin composition according to any one of claims 1 to 4, wherein the polyolefin-based resin is at least one selected from the group consisting of polypropylene resin and polyethylene resin.
  6. 可塑剤を含有するポリビニルアセタール樹脂(ポリビニルホルマール樹脂を除く)のリサイクル方法であって、
    前記可塑剤を含有するポリビニルアセタール樹脂とポリオレフィン系樹脂とを混練する際に、ブリード制御剤として、合成ゴム、エラストマーおよび共重合オレフィン樹脂からなる群から選ばれる少なくとも1種の柔軟性樹脂を添加することを特徴とするポリビニルアセタール樹脂のリサイクル方法。
    A method for recycling polyvinyl acetal resin (excluding polyvinyl formal resin) containing a plasticizer.
    When the polyvinyl acetal resin containing the plasticizer and the polyolefin resin are kneaded, at least one flexible resin selected from the group consisting of synthetic rubber, elastomer and copolymerized olefin resin is added as a bleed control agent. A method for recycling a polyvinyl acetal resin.
PCT/JP2021/005046 2020-03-10 2021-02-10 Resin composition and method for recycling poly(vinyl acetal) resin WO2021181999A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022505855A JPWO2021181999A1 (en) 2020-03-10 2021-02-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-040743 2020-03-10
JP2020040743 2020-03-10

Publications (1)

Publication Number Publication Date
WO2021181999A1 true WO2021181999A1 (en) 2021-09-16

Family

ID=77672229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005046 WO2021181999A1 (en) 2020-03-10 2021-02-10 Resin composition and method for recycling poly(vinyl acetal) resin

Country Status (2)

Country Link
JP (1) JPWO2021181999A1 (en)
WO (1) WO2021181999A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026501A1 (en) * 2010-08-27 2012-03-01 株式会社クラレ Thermoplastic polymer composition and molded article
JP2013141794A (en) * 2012-01-11 2013-07-22 Kuraray Co Ltd Method of manufacturing adhesion body
WO2017200053A1 (en) * 2016-05-18 2017-11-23 株式会社クラレ Laminated glass interlayer and laminated glass
WO2017200052A1 (en) * 2016-05-18 2017-11-23 株式会社クラレ Resin composition, film, and interlayer for laminated glass
WO2019065920A1 (en) * 2017-09-29 2019-04-04 積水化学工業株式会社 Solar cell system
WO2019098187A1 (en) * 2017-11-14 2019-05-23 株式会社ガラステクノシナジー Resin composition
CN109880196A (en) * 2019-04-01 2019-06-14 华东理工大学 A kind of acrylonitrile rubber composite and its foamed material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026501A1 (en) * 2010-08-27 2012-03-01 株式会社クラレ Thermoplastic polymer composition and molded article
JP2013141794A (en) * 2012-01-11 2013-07-22 Kuraray Co Ltd Method of manufacturing adhesion body
WO2017200053A1 (en) * 2016-05-18 2017-11-23 株式会社クラレ Laminated glass interlayer and laminated glass
WO2017200052A1 (en) * 2016-05-18 2017-11-23 株式会社クラレ Resin composition, film, and interlayer for laminated glass
WO2019065920A1 (en) * 2017-09-29 2019-04-04 積水化学工業株式会社 Solar cell system
WO2019098187A1 (en) * 2017-11-14 2019-05-23 株式会社ガラステクノシナジー Resin composition
CN109880196A (en) * 2019-04-01 2019-06-14 华东理工大学 A kind of acrylonitrile rubber composite and its foamed material

Also Published As

Publication number Publication date
JPWO2021181999A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US4472328A (en) Process for producing porous film or sheet
JP6031648B2 (en) Polyvinyl butyral resin composition and molded product
KR100899112B1 (en) Incombustible composition for aluminun composite panel
JP6911511B2 (en) Adhesive and laminate made of this
CN101293977A (en) Non-halide thin film for rubber belt and preparation
CN106318252A (en) Coextruded coating-type protection adhesive tape and preparation method thereof
CN109693418A (en) A kind of bubble chamber film that mechanical property is good
WO2021181999A1 (en) Resin composition and method for recycling poly(vinyl acetal) resin
CN109153905B (en) Adhesive, adhesive resin composition, and laminate comprising same
JP2018145407A (en) Resin composition and laminate comprising the same
JP4368413B2 (en) Method for producing low-permeability rubber laminate using multilayer film of low-permeability resin
CN106633537A (en) PVC/NBR (Polyvinyl Chloride/Nitrile Butadiene Rubber) thermoplastic elastomer material with low TVOC (Total Volatile Organic Compound) volatile amount and preparation method thereof
CN107075316A (en) Cladding pressure-sensitive adhesive sheet
JP6870404B2 (en) Resin composition and laminate made of this
EP2537890B1 (en) Manufacturing method for resin composition containing fine paper powder
EP2537891B1 (en) Manufacturing method for resin composition containing fine paper powder
WO2004072158A1 (en) Polymer composite material and process for producing the same
WO2009142329A1 (en) Resin composition, method for producing retardation film, and retardation film
EP3533578A1 (en) Cleaning agent and method for cleaning resin processing machine
JP7429900B2 (en) resin composition
WO2019098187A1 (en) Resin composition
JP6248794B2 (en) Heat dissipative adhesive resin composition and heat dissipative adhesive sheet formed by molding the same
KR20070045782A (en) Innerliner rubber composition for pneumatic tire and preparation method thereof
JP2021154494A (en) Multilayer aroma retaining film
KR101845825B1 (en) Crosslinking accelerator agent and composite of rubber for shortened crosslinking time using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505855

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768027

Country of ref document: EP

Kind code of ref document: A1