WO2021181934A1 - Shock absorption unit and rock fall prevention system - Google Patents

Shock absorption unit and rock fall prevention system Download PDF

Info

Publication number
WO2021181934A1
WO2021181934A1 PCT/JP2021/003080 JP2021003080W WO2021181934A1 WO 2021181934 A1 WO2021181934 A1 WO 2021181934A1 JP 2021003080 W JP2021003080 W JP 2021003080W WO 2021181934 A1 WO2021181934 A1 WO 2021181934A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
shock absorbing
fixing member
absorbing unit
shock
Prior art date
Application number
PCT/JP2021/003080
Other languages
French (fr)
Japanese (ja)
Inventor
博 竹▲崎▼
Original Assignee
株式会社トライテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トライテック filed Critical 株式会社トライテック
Publication of WO2021181934A1 publication Critical patent/WO2021181934A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F7/00Devices affording protection against snow, sand drifts, side-wind effects, snowslides, avalanches or falling rocks; Anti-dazzle arrangements ; Sight-screens for roads, e.g. to mask accident site
    • E01F7/04Devices affording protection against snowslides, avalanches or falling rocks, e.g. avalanche preventing structures, galleries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/23Dune restoration or creation; Cliff stabilisation

Definitions

  • the present invention relates to a shock absorbing unit for absorbing shocks and a rockfall prevention system installed on a mountain slope or the like using such a shock absorbing unit.
  • the fall guard fence disclosed in FIG. 1 of Japanese Patent No. 5978022 includes a strut arranged on a slope at a predetermined interval and a mountain side wire stretched between the upper end of the strut and the mountain side slope. It has a ring-type net, etc., which is stretched between the columns to catch falling rocks.
  • a part of the impact applied to the mountain side wire or the like due to the elongation of the mountain side wire is absorbed. It has become.
  • a part of the mountain side wire is wound once so as to overlap in the radial direction of the mountain side wire to form an annular portion, and a tightening member arranged in the overlapped portion is crimped to form an annular portion.
  • the part is fixed. Then, when an impact is applied, the size of the ring of the annular portion becomes smaller, so that a part of the impact when receiving the falling rock is absorbed by the frictional force acting between the mountain side wire and the tightening member. It has become so.
  • the conventional shock absorbing unit as disclosed in Japanese Patent No. 5978022 absorbs the shock applied to the wire by allowing the wire to stretch, and the magnitude of the shock given in the above configuration is large.
  • the wire can be stretched even when the size is small.
  • since the wire is easily stretched even with a small impact there is a problem that it is necessary to perform maintenance of the impact absorbing unit at relatively short intervals.
  • the present invention has been made in consideration of such a point, and is an impact absorbing unit capable of absorbing an impact by breaking a fixing member only when an impact larger than a predetermined threshold value is applied. And it is an object of the present invention to provide a rockfall prevention system using such a shock absorbing unit.
  • the shock absorbing unit of the present invention is a shock absorbing unit for absorbing a shock, and has a stretchable spring and a fixing member for fixing the spring, and is added to the shock absorbing unit. It is characterized in that the fixing member breaks when the magnitude of the impact is larger than a predetermined threshold value.
  • the fixing member breaks and the spring expands and contracts only when an impact larger than a predetermined threshold value is applied. Therefore, when the fixing member breaks, the impact is applied. It can be made to absorb.
  • the spring may be a push spring
  • the fixing member may fix the spring in a compressed state along the longitudinal direction
  • the spring may be a pull spring.
  • the fixing member is provided with a broken portion.
  • the fixing member may be fractured along the fractured portion.
  • the fixing member is arranged around the spring, and the fixing member is fixed inside the fixing member so as not to allow the spring to stretch when the fixing member breaks.
  • a portion and an open portion that allows the spring to stretch when the fixing member is broken may be formed.
  • the fixing member includes a first accommodating portion for accommodating a part of the spring inside, a second accommodating portion for accommodating a part of the spring inside, and the first accommodating portion. It has a maintenance portion for maintaining the second accommodating portion so as not to move relatively, and when the magnitude of the impact applied to the shock absorbing unit is larger than a predetermined threshold value, the maintenance portion is provided. The portion may be broken.
  • the fixing portion that does not allow the extension of the spring when the maintenance portion is broken and the maintenance portion are broken.
  • an open portion that allows the extension of the spring may be formed.
  • the maintenance portion of the fixing member includes a rod-shaped member arranged inside the spring, and the magnitude of the shock applied to the shock absorbing unit is equal to or less than a predetermined threshold value.
  • the rod-shaped member may be broken when the size is large.
  • the fixing member is arranged inside the spring, and the fixing member is fixed outside the fixing member so as not to allow the spring to stretch when the fixing member breaks.
  • a portion and an open portion that allows the spring to stretch when the fixing member is broken may be formed.
  • the shock absorbing unit of the present invention further includes a protective member arranged around the spring and a sealing member arranged at a position in contact with the protective member and liquid-tightly sealing the spring. good.
  • the rock fall prevention system of the present invention includes a plurality of columns arranged on a slope at predetermined intervals, a falling object receiving member stretched on each of the columns and receiving a falling object falling along the slope, and each of them. It has a wire body stretched between the support column and the slope on the mountain side, a shock absorbing unit connected to the wire body, a stretchable spring, and a fixing member for fixing the spring. It is characterized by including a shock absorbing unit in which the fixing member breaks when the magnitude of the shock applied to the shock absorbing unit is larger than a predetermined threshold value.
  • maintenance can be performed by using a shock absorbing unit that absorbs the shock by breaking the fixed part and expanding and contracting the spring only when an impact larger than a predetermined threshold is applied.
  • the time and effort can be reduced.
  • the impact unit a plurality of types having different thresholds of the magnitude of the impact at which the fixing member breaks when an impact is applied to the impact absorbing unit are lined up in series. May be used.
  • FIG. 1 It is a perspective view which shows the structure of the shock absorption unit by embodiment of this invention. It is a top view which shows the structure of the spring in the compressed state provided in the shock absorbing unit shown in FIG. It is sectional drawing which shows the structure of the fixing member provided in the shock absorbing unit shown in FIG. It is explanatory drawing for demonstrating the structure of the fixing member of the shock absorption unit shown in FIG. It is explanatory drawing for demonstrating the structure when the fixing member of the shock absorbing unit shown in FIG. 1 and the like breaks. It is explanatory drawing which shows the structure of another example of the shock absorption unit by this embodiment. It is explanatory drawing for demonstrating the structure of the fixing member of the shock absorbing unit shown in FIG.
  • FIG. 5 is a perspective view schematically showing a configuration of a rockfall prevention system using the shock absorbing unit shown in FIG. 1 and the like. It is a side view which shows schematic structure of the rockfall prevention system shown in FIG.
  • FIG. 1 is a configuration diagram showing a configuration of a shock absorbing unit according to the present embodiment
  • FIGS. 2 and 3 are a top view and a fixed view showing a configuration of a spring of the shock absorbing unit shown in FIG. 1, respectively.
  • It is sectional drawing which shows the structure of a member. 4 and 5 are explanatory views for explaining the configurations of the fixing member of the shock absorbing unit shown in FIG. 1 before and after the fracture, respectively.
  • 6 to 8 are explanatory views for explaining the configuration of another example of the shock absorbing unit according to the present embodiment, respectively.
  • FIG. 9 to 13 are a top view, a cross-sectional view, and an explanatory view for explaining the configuration of still another example of the shock absorbing unit according to the present embodiment, respectively.
  • 14 to 17 are a top view, a cross-sectional view, and an explanatory view for explaining the configuration of still another example of the shock absorbing unit according to the present embodiment, respectively.
  • FIG. 18 is a perspective view showing a configuration of a shock absorbing unit according to the prior art.
  • FIG. 19 is a perspective view schematically showing the configuration of the rockfall prevention system using the shock absorbing unit shown in FIG. 1 and the like
  • FIG. 20 schematically shows the configuration of the rockfall prevention system shown in FIG. It is a side view.
  • FIGS. 9 and 14 for the purpose of facilitating the understanding of the configuration, further examples of the shock absorbing unit are described by combining a cross-sectional view and a top view. .. Further, in FIG. 20, a falling object falling along the slope is indicated by reference numeral D.
  • the shock absorbing unit 10 of the present embodiment is arranged around the expandable spring 12 and the spring 12, and is fixed to fix the spring 12 so as not to expand and contract. It has a member 14. Then, when an impact larger than a predetermined threshold value is applied to the shock absorbing unit 10, the fixing member 14 breaks, so that the shock applied to the shock absorbing unit 10 is absorbed. Further, by allowing the spring 12 to expand and contract when the fixing member 14 breaks, the impact applied to the impact absorbing unit 10 is further absorbed.
  • the fixing member 14 is provided with a breaking portion 18 described later, and when the magnitude of the impact applied to the shock absorbing unit 10 is larger than a predetermined threshold value, the fixing member 14 is provided on the breaking portion 18. It is designed to break along (see FIG. 5).
  • the spring 12 is composed of a push spring having a substantially cylindrical shape, and the spring 12 can expand and contract along the longitudinal direction (that is, along the left-right direction in FIG. 2).
  • the push spring generally means that each coil portion is wound so that a gap exists between each coil forming the spring portion (that is, the spring portion can be compressed along the longitudinal direction).
  • It is a spring.
  • the spring 12 is fixed by the fixing member 14 in a state of being compressed along the longitudinal direction so that the coil portions are in close contact with each other.
  • hooks 13 having a substantially S shape are provided at both ends of the spring 12 as mounting members.
  • the spring 12 is formed so that the outer diameter becomes smaller in the vicinity of both ends of the spring 12, and one end of the substantially S-shaped hook 13 is installed so as to be located inside the spring 12. ing. Then, each hook 13 allows the shock absorbing unit 10 to be attached to the wire body 330 of the rockfall prevention system 300, which will be described later (see FIG. 20). Further, the spring 12 is formed of a hard steel wire, a piano wire, a stainless steel wire, or the like.
  • the fixing member 14 of the shock absorbing unit 10 is composed of a sleeve having a substantially cylindrical shape, and a fixing portion 15 and an open portion 16 are formed inside the fixing member 14, respectively. .. Specifically, the fixing portion 15 is provided on both end sides of the fixing member 14, and is configured so as not to allow the spring 12 to stretch when the fixing member 14 breaks along the breaking portion 18. .. More specifically, as shown in FIGS. 4 and 5, the fixed portion 15 has a shape along the contour of the spring 12, and the inner surface of the fixed portion 15 and the outer surface of the spring 12 are in contact with each other. Have been placed.
  • the open portion 16 is provided in the central portion of the fixing member 14, and is configured to allow the spring 12 to stretch when the fixing member 14 breaks along the breaking portion 18. More specifically, as shown in FIG. 4 and the like, the open portion 16 has a shape different from the contour of the spring 12, and opens with the spring 12 when the spring 12 is housed inside the fixing member 14. It is designed so that it does not come into contact with the portion 16.
  • the open portion 16 of the fixing member 14 is composed of a substantially cylindrical portion having an inner diameter larger than the outer diameter of the spring 12.
  • the fixing member 14 is provided with a breaking portion 18, and the fixing member 14 is adapted to break along the breaking portion 18. Specifically, when an impact in a direction away from each other is applied to each hook 13 provided at both ends of the spring 12, if the magnitude of the impact is larger than a predetermined threshold value, the fixing member 14 is subjected to. It breaks along the broken portion 18.
  • the fractured portion 18 is a groove having a substantially V-shaped cross section (wedge shape). Further, the fractured portion 18 is formed in a substantially central portion of the cylindrical open portion 16 over the entire circumference along the circumferential direction.
  • the fixing member 14 breaks along the broken portion 18 as shown in FIG. .. Due to the breakage of the fixing member 14, a part of the shock applied to the shock absorbing unit 10 is absorbed. Further, as described above, since the open portion 16 of the fixing member 14 is not in contact with the spring 12, the extension of the spring 12 is allowed when the fixing member 14 is broken. Further, when the extension of the spring 12 is allowed, the extension of the spring 12 further absorbs the impact applied to the impact absorbing unit 10. As described above, since the shock absorbing unit 10 absorbs the shock by breaking the fixing member 14 and expanding and contracting the spring 12, the shock absorbing unit 10 can absorb the shock more effectively as compared with the configuration of absorbing the shock by friction.
  • the fixing member 14 by changing the shape of the fractured portion 18 formed on the fixing member 14, it is possible to adjust the threshold value of the magnitude of the impact when the fixing member 14 is fractured. For example, if the depth of the groove of the fractured portion 18 is made shallower from the state shown in FIG. 4, the fixing member 14 is less likely to fracture along the fractured portion 18, so that the threshold value of the magnitude of the impact when the fixing member 14 is fractured. Can be increased. On the other hand, if the depth of the groove of the fractured portion 18 is deepened from the state shown in FIG. 4, the fixing member 14 is likely to be fractured along the fractured portion 18, so that the threshold value of the magnitude of the impact when the fixing member 14 is fractured Can be made smaller. This makes it possible to manufacture a shock absorbing unit 10 that absorbs shocks of various sizes.
  • the shape of the broken portion 18 is not limited to that shown in FIG. 4 and the like.
  • the above-mentioned groove having a substantially V-shaped cross section may be formed only in a part of the fixing member 14 in the circumferential direction.
  • the shape of the cross section of the broken portion provided on the fixing member 14 may be a substantially U-shaped shape, a concave shape, a recessed shape, or the like.
  • the fractured portion may have any shape as long as the portion of the fixing member 14 where the fractured portion 18 is formed has a lower strength than the other portions of the fixing member 14.
  • the breaking load of the fixing member 14 can be calculated by a known method. Therefore, the above-mentioned predetermined threshold value can be obtained by calculation, and thus the shock absorbing unit 10 having the desired predetermined threshold value can be easily designed. Further, even when the shape of the fractured portion 18 is complicated and the fractured load of the fixing member 14 cannot be easily calculated, the impact absorbing unit 10 having a desired threshold value is obtained by producing and evaluating a prototype. Can be produced.
  • the impact magnitude threshold may be adjusted by the method.
  • the threshold value of the magnitude of the impact when the fixing member 14 breaks may be adjusted by changing the material constituting the fixing member 14.
  • the threshold value of the magnitude of the impact when the fixing member 14 breaks can be adjusted even when the fixing member 14 is formed into substantially the same shape.
  • the material of the fixing member 14 carbon steel, stainless steel, aluminum alloy, copper, brass, titanium, plastic, or the like can be used.
  • the threshold value of the impact magnitude when the fixing member 14 made of carbon steel breaks is larger than the threshold value of the impact magnitude when the fixing member 14 made of plastic breaks. Become.
  • FIGS. 6 to 8 are explanatory views for explaining the configuration of another example of the shock absorbing unit of the present invention, respectively. As described above, also in FIGS. 6 to 8, a cross-sectional view is shown for the fixing member, and a top view is shown for the spring and the mounting member.
  • the shock absorbing unit 20 shown in FIGS. 6 to 8 has a stretchable spring 22 and a fixing member 24 which is arranged around the spring 22 and for fixing the spring 22 so as not to stretch. .. Further, when a shock larger than a predetermined threshold value is applied to the shock absorbing unit 20, a part of the fixing member 24 (specifically, the knock pin 28a described later) breaks, so that the shock absorbing unit 20 is added to the shock absorbing unit 20. It is designed to absorb the impact.
  • the spring 22 is composed of a push spring having a substantially cylindrical shape, and the spring 22 can expand and contract along the longitudinal direction (that is, along the left-right direction in FIG. 6).
  • the spring 22 is fixed by the fixing member 24 in a state of being compressed along the longitudinal direction so that the coil portions are in close contact with each other.
  • mounting members 23 are provided at both ends of the spring 22. Then, each mounting member 23 allows the shock absorbing unit 20 to be mounted on the wire body 330 of the rockfall prevention system 300, which will be described later (see FIG. 20).
  • the spring 22 is formed of a hard steel wire, a piano wire, a stainless steel wire, or the like.
  • the fixing member 24 of the shock absorbing unit 20 is composed of a combination of a plurality of members.
  • the fixing member 24 includes a pair of tubular members 24a and 24b (that is, a first accommodating portion and a second accommodating portion) and a sleeve 24c arranged around the tubular members 24a and 24b.
  • knock pins 28a, 28b that is, a maintenance portion.
  • the spring 22 is arranged inside the pair of tubular members 24a and 24b. In other words, a part of the spring 22 is housed inside one of the tubular members 24a, and a part of the spring 22 is also housed inside the other tubular member 24b. ing.
  • the tubular members 24a and 24b are provided with substantially circular openings 27a and 27b, respectively.
  • the sleeve 24c is also provided with two substantially circular openings 27c, respectively. Then, the tubular members 24a, 24b and the sleeve 24c are installed so that the openings 27a and 27b and the openings 27c face each other. After that, the substantially cylindrical knock pin 28a is inserted into the respective openings 27a and 27c, and the substantially cylindrical knock pin 28b is inserted into the respective openings 27b and 27c.
  • the knock pins 28a and 28b as such a maintenance portion, the tubular members 24a and 24b are maintained so as not to move relatively. In this way, the shock absorbing unit 20 can be assembled.
  • each of the tubular members 24a and 24b has a first outer diameter, and has a first portion on the side where the mounting member 23 is provided and a second outer diameter larger than the above first outer diameter. It is provided with a second portion having. Further, inside the first portions of the tubular members 24a and 24b, fixed portions 25a and 25b that do not allow the spring 22 to stretch when the knock pin 28a breaks are formed, respectively.
  • each of the fixed portions 25a and 25b has a shape along the contour of the spring 22, and the inner surface of each of the fixed portions 25a and 25b and the outer surface of the spring 22. Are placed in contact with each other. Therefore, even when the mounting members 23 of the shock absorbing unit 20 are pulled away from each other and the knock pin 28a breaks along the broken portion, the portion of the spring 22 that is in contact with the fixed portions 25a and 25b remains. It does not extend from the state shown in FIG. In this case, the broken portion is a portion near the portion of the knock pin 28a where the tubular member 24a and the sleeve 24c are in contact with each other.
  • open portions 26a and 26b that allow the spring 22 to stretch when the knock pin 28a breaks are formed, respectively. More specifically, as shown in FIG. 7 and the like, the open portions 26a and 26b have a shape different from the contour of the spring 22.
  • the open portions 26a and 26b of the tubular members 24a and 24b are composed of substantially cylindrical portions having an inner diameter larger than the outer diameter of the spring 22.
  • the knock pin 28a on the right side is 5 KN and the shear stress of the knock pin 28b on the left side is 20 KN are used. Therefore, when an impact larger than a predetermined threshold value is applied to the impact absorbing unit 20, the knock pin 28a is first broken to allow the spring 22 to stretch (see FIG. 8). By breaking the knock pin 28a in this way, a part of the shock applied to the shock absorbing unit 20 is absorbed. As described above, the knock pin 28a is designed to break from the vicinity of the portion where the tubular member 24a and the sleeve 24c are in contact with each other, and this portion is fixed in the shock absorbing unit 20 shown in FIG. 6 or the like. Corresponds to the broken portion of the member 24.
  • the spring 22 is allowed to stretch when the knock pin 28a is broken. Further, when the extension of the spring 22 is allowed, the extension of the spring 22 further absorbs the impact applied to the impact absorbing unit 10. As described above, since the shock absorbing unit 20 absorbs the shock by breaking the knock pin 28a and expanding and contracting the spring 22, the shock absorbing unit 20 can absorb the shock more effectively as compared with the configuration of absorbing the shock by friction. Further, if a further impact is applied to the shock absorbing unit 20 after the knock pin 28a is broken, the knock pin 28b is also broken.
  • the present invention is not limited to such a configuration.
  • Knock pins 28a and 28b having shear stresses different from those described above may be used, or knock pins 28a and 28b having substantially the same shear stress may be used.
  • the threshold value of the magnitude of the shock when the knock pins 28a and 28b of the shock absorbing unit 20 are broken is the threshold value. Can be adjusted. Specifically, by changing the material and diameter of the knock pins 28a and 28b, the threshold value of the impact magnitude when the knock pins 28a and 28b break can be adjusted.
  • the number of openings 27a and 27b provided in the tubular members 24a and 24b is not limited to one, and two or more openings 27a and 27b are provided in the tubular members 24a and 24b, respectively. You may be.
  • the sleeve 24c is formed with the same number of openings 27c as the total number of the openings 27a, 27b provided in the tubular members 24a, 24b.
  • the sleeve 24c is formed with the same number of openings 27c as the total number of openings 27a, 27b provided in the tubular members 24a, 24b.
  • knock pins are arranged so as to penetrate the openings 27a, 27b, and 27c, respectively.
  • FIGS. 9 to 13 are a top view, a cross-sectional view, and an explanatory view for explaining the configuration of still another example of the shock absorbing unit of the present invention, respectively.
  • FIGS. 10 and 11 are top views and cross-sectional views for explaining the configuration of still another example of the shock absorbing unit, respectively.
  • FIGS. 9, 12 and 13 are explanatory views depicting the shock absorbing unit by combining a cross-sectional view and a top view for the purpose of making the configuration easy to understand.
  • the shock absorbing unit 100 shown in FIGS. 9 to 13 has a stretchable spring 120 and a fixing member 130 arranged around the spring 120 so that the spring 120 does not stretch. .. Further, when an impact larger than a predetermined threshold value is applied to the shock absorbing unit 100, a part of the fixing member 130 (specifically, a rod-shaped member 152 described later) breaks, so that the shock absorbing unit 100 is added to the shock absorbing unit 100. It is designed to absorb the impact.
  • the spring 120 is composed of a push spring having a substantially cylindrical shape, and the spring 120 can expand and contract along the longitudinal direction (that is, along the left-right direction in FIG. 9).
  • the spring 120 is fixed by the fixing member 130 in a state of being compressed along the longitudinal direction so that the coil portions are in close contact with each other.
  • mounting portions 110a and 110b are provided at both ends of the spring 120, respectively.
  • the shock absorbing unit 100 is attached to the wire main body 330 of the rockfall prevention system 300, which will be described later, by the attachment portions 110a and 110b (see FIG. 20).
  • the spring 120 is made of a hard steel wire, a piano wire, a stainless steel wire, or the like.
  • the fixing member 130 of the shock absorbing unit 100 is composed of a combination of a plurality of members.
  • the fixing member 130 includes a pair of tubular members 130a and 130b (that is, a first accommodating portion and a second accommodating portion) and an inner housing 140a installed inside a substantially cylindrical spring 120. , 140b and a maintenance portion 150.
  • the spring 120 is arranged inside the pair of tubular members 130a and 130b. More specifically, a part of the spring 120 is housed inside one tubular member 130a, and the rest of the spring 120 is housed inside the other tubular member 130b.
  • tubular members 130a and 130b and the inner housings 140a and 140b are respectively configured to come into contact with each other at a substantially central portion in the length direction of the spring 120. Then, such a state is maintained by the maintenance portion 150.
  • FIGS. 9 to 12 a configuration in which the tubular members 130a and 130b are maintained so as not to move relatively by the maintenance portion 150 will be described with reference to FIGS. 9 to 12.
  • the configurations of the mounting portions 110a and 110b, the tubular members 130a and 130b, and the inner housings 140a and 140b are substantially the same. Therefore, in the following, the configuration of one member (the member on the left side in FIG. 9) may be described in detail, and the configuration of the other member (member on the right side in FIG. 9) may be omitted.
  • the mounting portion 110a has a mounting portion 111a to which the wire body 330 of the rockfall prevention system 300, which will be described later, is mounted, an intermediate portion 114a, and a screw portion 116a on which a mounting portion such as a male screw is formed.
  • the intermediate portion 114a is provided between the mounting portion 111a and the screw portion 116a, and is formed so as to have substantially the same outer diameter as the opening 132a (see FIG. 11) formed in the tubular member 130a.
  • the screw portion 116a is formed so as to have an outer diameter smaller than that of the intermediate portion 114a. Therefore, the screw portion 116a of the mounting portion 110a can be passed through the opening 132a of the tubular member 130a.
  • the washer 117a and the nut 118a having an outer diameter larger than the opening 132a of the tubular member 130a are attached to the screw portion 116a.
  • the mounting portion 110a can be fixed to the tubular member 130a (see FIG. 12).
  • An accommodating portion 142a is formed in the inner housing 140a arranged inside the spring 120. This makes it possible to prevent the mounting portion 110a and the inner housing 140a from interfering with each other when the mounting portion 110a, the tubular member 130a, and the inner housing 140a are assembled as shown in FIG. It has become.
  • the mounting portion 110a is formed with a counterbore hole 112a and a through hole 119a having a diameter smaller than that of the counterbore hole 112a, so that the rod-shaped member 152 of the maintenance portion 150 is installed inside the through hole 119a. It has become. Further, screw portions (not shown) for attaching the nut 154a are formed at both ends of the rod-shaped member 152, respectively. Further, as the nut 154a, a nut having an outer diameter larger than that of the through hole 119a is used.
  • the rod-shaped member 152 As the rod-shaped member 152, the value obtained by adding the depths (lengths) of the through holes 119a and 119b of the mounting portions 110a and 110b and the lengths of the tubular members 130a and 130b. Those with a larger length have come to be used. Therefore, the nuts 154a and 154b can be attached to both ends of the rod-shaped member 152 in a state where the rod-shaped member 152 is arranged inside the through holes 119a and 119b and the tubular members 130a and 130b. Further, this makes it possible to maintain that one tubular member 130a and the other tubular member 130b do not move relatively. As shown in FIG. 11 and the like, since the inner housing 140a is provided with a through hole 144a, it is possible to prevent the rod-shaped member 152 of the maintenance portion 150 from interfering with the inner housing 140a. ing.
  • a member other than each nut 154a may be used as a retaining member for preventing the rod-shaped member 152 from coming off from each through hole 119a.
  • a member other than each nut 154a may be used as a retaining member for preventing the rod-shaped member 152 from coming off from each through hole 119a.
  • a retaining member that is placed around the rod-shaped member 152 and then fixed to the rod-shaped member 152 by being crimped may be used.
  • the rod-shaped member 152 may be prevented from coming out of each through hole 119a by welding a retaining member having another configuration to the end portion of the rod-shaped member 152.
  • the fixed portions 134a and 134b and the open portions 136a and 136b are respectively. It is formed. Further, each of the fixed portions 134a and 134b does not allow the extension of the spring 120 when the rod-shaped member 152 of the maintenance portion 150 breaks. Specifically, as shown in FIG. 9 and the like, the inner peripheral surfaces of the fixed portions 134a and 134b each have a shape along the contour of the spring 120, and the inner surfaces of the fixed portions 134a and 134b and the spring. It is arranged so that the outer surfaces of 120 are in contact with each other.
  • each of the open portions 136a and 136b is configured so that the spring 120 does not come into contact with the spring 120 when the spring 120 is housed inside the tubular members 130a and 130b. Therefore, when the rod-shaped member 152 of the maintenance portion 150 is broken, the spring 120 is designed to allow the extension of the portion of the spring 120 facing each of the open portions 136a and 136b.
  • the open portions 136a and 136b of the tubular members 130a and 130b are composed of substantially cylindrical portions having an inner diameter larger than the outer diameter of the spring 120.
  • fixed portions 146a and 146b and open portions 148a and 148b are formed on the outside of the inner housings 140a and 140b located inside the substantially cylindrical spring 120, respectively. Further, the fixed portions 146a and 146b do not allow the spring 120 to stretch when the rod-shaped member 152 of the maintaining portion 150 breaks. Specifically, as shown in FIG. 9 and the like, the outer peripheral surfaces of the fixed portions 146a and 146b each have a shape along the contour of the spring 120, and the outer peripheral surfaces of the fixed portions 146a and 146b and the spring 120. It is arranged so that the inner peripheral surfaces of the springs are in contact with each other.
  • the open portions 148a and 148b are configured so as not to come into contact with the spring 120 when the inner housings 140a and 140b are housed inside the spring 120. For this reason, when the rod-shaped member 152 of the maintenance portion 150 breaks, the spring 120 allows the extension of the portion of the spring 120 facing each of the open portions 148a and 148b.
  • the open portions 148a and 148b of the inner housings 140a and 140b are composed of substantially cylindrical portions having an outer diameter smaller than the inner diameter of the spring 120.
  • the rod-shaped member 152 breaks when an impact larger than a predetermined threshold value is applied to the shock absorbing unit 100. Due to the breakage of the rod-shaped member 152, a part of the shock applied to the shock absorbing unit 100 is absorbed. Further, when the rod-shaped member 152 is broken, the force for maintaining the tubular members 130a and 130b so as not to move relatively does not work, so that the spring 120 is allowed to stretch. Further, when the extension of the spring 120 is allowed, the extension of the spring 120 further absorbs the impact applied to the shock absorbing unit 100 (see FIG. 13).
  • the shock absorbing unit 100 absorbs the shock by breaking the rod-shaped member 152 and expanding and contracting the spring 22, the shock absorbing unit 100 can absorb the shock more effectively as compared with the configuration in which the shock is absorbed by friction. Further, since the shock absorbing unit 100 can be used again only by replacing the broken rod-shaped member 152 with a new rod-shaped member 152, the convenience for the user can be improved.
  • the rod-shaped member 152 of the maintenance portion 150 shown in FIG. 9 or the like is a rod-shaped member having a predetermined diameter and has no broken portion, but is not limited to such an embodiment.
  • a broken portion may be formed in the rod-shaped member 152 by reducing the diameter of a part of the rod-shaped member 152 or by providing a recess or a notch. Further, the threshold value of the impact when the rod-shaped member 152 breaks may be adjusted by changing the diameter and the material of the rod-shaped member 152.
  • the configurations of the mounting portion 110a, each tubular member 130a and the inner housing 140a are substantially the same as the configurations of the mounting portion 110b, the tubular member 130b and the inner housing 140b.
  • the mounting portion 110b has a mounting portion 111b, a counterbore hole 112b, an intermediate portion 114b, a screw portion 116b, a washer 117b, a nut 118b, and a through hole 119b.
  • the tubular member 130b further has an opening 132b.
  • the inner housing 140b further has an accommodating portion 142b and a through hole 144b.
  • the installation of the inner housings 140a and 140b may be omitted.
  • the spring 120 includes the fixing portions 134a and 134b of the tubular members 130a and 130b and the fixing portions 146a and 146b of the inner housings 140a and 140b. It will be sandwiched between. In this case, it is possible to more reliably prevent the portions of the spring 120 that are in contact with the fixed portions 134a, 134b, 146a, and 146b from being deformed.
  • first tubular member and the second tubular member having substantially the same length are used, and the inner housings having substantially the same length are used.
  • the mode to be used has been described, the present invention is not limited to such a configuration.
  • a first tubular member and a second tubular member having different lengths, or each inner housing may be used.
  • FIGS. 14 to 17 are explanatory views, top views, and cross-sectional views for explaining the configuration of still another example of the shock absorbing unit of the present invention, respectively.
  • FIGS. 15 and 16 are top views and cross-sectional views for explaining the configuration of still another example of the shock absorbing unit, respectively.
  • 14 and 17, respectively are explanatory views depicting the shock absorbing unit by combining a cross-sectional view and a top view for the purpose of making the configuration easy to understand.
  • the shock absorbing unit 200 shown in FIGS. 14 to 17 has a stretchable spring 220 and a fixing member 230 for fixing the spring 220 so as not to stretch. More specifically, the spring 220 has a substantially cylindrical shape, and the fixing member 230 is arranged inside the spring 220. Further, when an impact larger than a predetermined threshold value is applied to the shock absorbing unit 200, the fixing member 230 (specifically, the broken portion 238) breaks to absorb the shock applied to the shock absorbing unit 200. It is designed to do.
  • the spring 220 is composed of a push spring, and the spring 220 can expand and contract along the longitudinal direction (that is, along the left-right direction in FIG. 14).
  • the spring 220 is fixed by the fixing member 230 in a state of being compressed along the longitudinal direction so that the coil portions are in close contact with each other.
  • the spring 220 is made of a hard steel wire, a piano wire, a stainless steel wire, or the like.
  • each mounting portion 210 allows the shock absorbing unit 200 to be mounted on the wire main body 330 of the rockfall prevention system 300, which will be described later.
  • each mounting portion 210 includes a substantially U-shaped mounting portion 212. Further, the mounting portion 212 is rotatable with respect to the fixing member 230 about an axis along the extending direction of the spring 220 (that is, the left-right direction in FIG. 14).
  • the mounting portion 212 is rotatable with respect to the fixing member 230 about an axis along a straight line connecting the ends of the substantially U-shaped mounting portion 212 (that is, an axis along the vertical direction in FIG. 14). It has become.
  • each fixed portion 234 is configured so as not to allow the spring 220 to stretch when the broken portion 238 is broken.
  • the outer peripheral surface of each fixed portion 234 has a shape along the contour of the inner peripheral surface of the spring 220, and the outer peripheral surface of each fixing member 230 and the inner peripheral surface of the spring 220 are mutually aligned. It is arranged so that it is in contact with each other.
  • the open portion 236 is configured so that the fixing member 230 does not come into contact with the spring 220 when the fixing member 230 is housed inside the spring 220. Therefore, the extension of the spring 220 is allowed when the broken portion 238 of the fixing member 230 is broken.
  • the open portion 236 of the fixing member 230 is composed of a substantially cylindrical portion having an outer diameter smaller than the size of the inner diameter of the spring 220.
  • the shock absorbing unit 200 when a shock larger than a predetermined threshold value is applied to the shock absorbing unit 200, the broken portion 238 of the fixing member 230 is broken and the spring 220 is allowed to stretch. (See Fig. 17). Due to such breakage of the fixing member 230, a part of the impact applied to the impact absorbing unit 200 is absorbed. Further, when the fixing member 230 is broken, the force for maintaining the state as shown in FIG. 14 does not work, so that the extension of the spring 220 is allowed. Further, when the extension of the spring 220 is allowed, the extension of the spring 220 further absorbs the impact applied to the impact absorbing unit 200. As described above, since the shock absorbing unit 200 absorbs the shock by breaking the fixing member 230 and expanding and contracting the spring 220, the shock absorbing unit 200 can absorb the shock more effectively as compared with the configuration in which the shock is absorbed by friction.
  • the broken portion 238 is the portion having the smallest diameter in the fixing member 230, and in the example shown in FIG. 15 and the like, the fractured portion 238 is formed at a substantially central portion in the extending direction of the fixing member 230.
  • the breaking load (tensile stress) of the broken portion 238 can be calculated by a known method based on the material of the fixing member 230, the size of the diameter of the broken portion 238, and the like. Further, by changing the material of the fixing member 230 and the size of the diameter of the broken portion 238, the threshold value of the magnitude of the impact when the broken portion 238 is broken can be adjusted.
  • the fractured portion 238 may be formed at a position other than substantially the center in the extending direction of the fixing member 230.
  • the shock absorbing unit 200 is arranged at a position where the protective member is arranged around the spring 220 and is in contact with the protective member, and seals the spring 220 in a liquid-tight manner. It includes members 262, 264, and 266.
  • the protective member is composed of a combination of the first tubular member 240 and the second tubular member 250.
  • the spring 220 is arranged inside the first tubular member 240 and the second tubular member 250. More specifically, a part of the spring 220 is housed inside the first tubular member 240, and the rest of the spring 220 is housed inside the second tubular member 250. There is.
  • an opening 242 is formed in the first tubular member 240, and one end portion (specifically, one attached portion 232) of the fixing member 230 is formed through the opening 242. It is exposed to the outside of the tubular member 240.
  • an opening 252 is formed in the second tubular member 250, and the other end portion (specifically, the other attached portion 232) of the fixing member 230 is formed through the opening 252. It is exposed to the outside of the tubular member 250. Then, the attachment portion 210 is attached to each attachment portion 232 of the fixing member 230 exposed to the outside.
  • a sealing member is attached, which is composed of recesses formed over the entire circumference of the first tubular member 240 along the circumferential direction. Part 248 is formed.
  • an extension portion 258 having an outer diameter larger than the outer diameter of the end portion of the first tubular member 240 is provided.
  • the extension portion 258 of the second tubular member 250 is a first cylinder when the first tubular member 240 and the second tubular member 250 are combined so as to be in the state shown in FIG.
  • the length is formed so as to cover the region of the shape member 240 including the sealing member mounting portion 248. Therefore, by attaching a sealing member 262 such as an O-ring to the sealing member mounting portion 248 of the first tubular member 240, the first tubular member 240 and the second tubular member 250 come into contact with each other. It is possible to prevent the spring 220 from getting wet due to liquid such as water entering from the portion (see FIG. 14).
  • a sealing member 262 such as an O-ring
  • sealing members 262 and 264 such as O-rings are installed in each sealing member mounting portion 233 formed of recesses formed over the entire circumference of the fixing member 230 in the circumferential direction. As shown in FIG. 14, a sealing member 264 is mounted between the sealing member mounting portion 233 provided at one end of the fixing member 230 and the first tubular member 240. ing. Further, a sealing member 266 is mounted between the other sealing member mounting portion 233 formed on the fixing member 230 and the second tubular member 250. Due to these sealing members 262 and 264, the spring 220 also gets wet when a liquid such as water enters through the opening 242 of the first tubular member 240 or the opening 252 of the second tubular member 250. Can be prevented.
  • each of the fixing portions 244 and 254 is configured so as not to allow the extension of the spring 220 when the broken portion 238 of the fixing member 230 is broken.
  • the inner peripheral surface of each of the fixed portions 244 and 254 has a shape along the contour of the spring 220, and the inner peripheral surface of each of the fixed portions 244 and 254 and the outer peripheral surface of the spring 220. They are arranged so that the surfaces are in contact with each other.
  • each of the open portions 246 and 256 is configured so as not to come into contact with the spring 220 when the spring 220 is housed inside the first tubular member 240 and the second tubular member 250. Therefore, the extension of the spring 220 is allowed when the broken portion 238 of the fixing member 230 is broken.
  • each of the open portions 246 and 256 of the first tubular member 240 and the second tubular member 250 is composed of a substantially cylindrical portion having an inner diameter larger than the outer diameter of the spring 220. ing.
  • grease injection ports for injecting grease may be formed in the first tubular member 240 and the second tubular member 250 of the shock absorbing unit 200 described above, respectively. Also in this case, by attaching a cap having a corresponding shape to each grease injection port, it is possible to prevent liquid such as water from infiltrating from the grease injection port.
  • the shock absorbing unit 50 of the prior art is shown in FIG.
  • a part of the wire main body 52 is wound in an annular shape so as to overlap in the radial direction, and the overlapped portion is crimped by the tightening member 54 to fix the annular portion. It has become so.
  • a part of the impact applied to the shock absorbing unit 50 is absorbed by the frictional force acting between the wire main bodies 52 and the frictional force acting between the wire main body 52 and the tightening member 54. .. That is, when the impact is absorbed, the size of the ring of the annular portion of the wire body 52 becomes smaller.
  • the shock absorbing units 10, 20, 100, and 200 break the fixing members 14, 24, 152, and 230 as described above. Then, the springs 12, 22, 120, and 220 are expanded and contracted to absorb the impact. Therefore, it is possible to obtain a higher impact absorption effect than the conventional technique of absorbing impact by friction. Further, even if an impact smaller than the above-mentioned predetermined threshold value is applied to the shock absorbing units 10, 20, 100, 200, the fixing members 14, 24, 152, and 230 are prevented from breaking.
  • the springs 12, 22, 120, 220 are limited to a configuration in which the springs 12, 22, 120, and 220 are fixed by the fixing members 14, 24, 152, and 230 in a compressed state. Will not be done.
  • the springs 12, 22, 120, 220 in a state where the coil portions are not compressed so that there is a gap between the coil portions may be fixed by the fixing members 14, 24, 152, 230.
  • a substantially cylindrical pull spring may be used instead of the push spring described above.
  • the pull spring tension coil spring
  • the pull spring is generally wound with the coil portions in close contact with each other so as not to form a gap between the coils forming the spring portion.
  • the rockfall prevention system 300 provided with the shock absorbing unit 10 as shown in FIGS. 19 and 20 will be described. .. Further, in FIG. 20, a falling object falling along a slope 400 such as a mountain is indicated by reference numeral D. Although the rockfall prevention system 300 including the shock absorbing unit 10 will be described below, the rockfall prevention system may be configured by using the shock absorbing units 20, 100, and 200 instead of the shock absorbing unit 10.
  • the rockfall prevention system 300 shown in FIGS. 19 and 20 When the rockfall prevention system 300 shown in FIGS. 19 and 20 is installed on a slope 400 such as a mountain, a falling object such as a stone that falls from the mountain side to the valley side along the slope 400 (see, for example, FIG. 20). It is used to receive (indicated by reference numeral D). Further, the rockfall prevention system 300 includes a support column 310, a falling object receiving member 320 stretched on each support column 310, a wire body 330 stretched between the support column 310 and the slope 400 on the mountain side, and a wire body 330. It has a shock absorbing unit 10 connected to.
  • the columns 310 are arranged on the slope 400 at predetermined intervals, and the falling object receiving member 320 stretched on each column 310 receives the falling object falling along the slope 400. It has become. Then, the impact when the falling object is received by the falling object receiving member 320 is absorbed by the shock absorbing unit 10 or the like.
  • the wire main body 330 is composed of a plurality of wire portions, and an annular member is provided at the end of each wire portion as a connecting member for connecting the wire portion and the shock absorbing unit 10. Then, the tip of each hook 13 of the shock absorbing unit 10 is inserted into the annular member of each wire portion, so that the wire main body 330 and the shock absorbing unit 10 are connected to each other.
  • Each wire portion of the wire body 330 and each hook 13 of the shock absorbing unit 10 may be connected by welding or the like.
  • a connecting member different from the annular member may be provided at the end of each wire portion of the wire main body 330.
  • the impact absorption threshold value is the first value. Only the fixing member 14 of the unit 10 breaks. On the other hand, when an impact larger than the sum of the first value and the second value is applied to each impact absorbing unit 10, the fixing members 14 of both impact absorbing units 10 are broken. Further, when an impact larger than the first value and smaller than the sum of the first value and the second value is applied to the shock absorbing unit 10, the fixing member of either one of the shock absorbing units 10 is applied. 14 will break.
  • the number of shock absorbing units 10 connected to one wire main body 330 composed of a plurality of wire portions is not limited to two. Only one shock absorbing unit 10 may be connected to one wire main body 330, or three or more shock absorbing units 10 may be connected to one wire main body 330. Further, a plurality of units having substantially the same threshold value of the magnitude of the impact at which the fixing member 14 breaks when an impact is applied to the impact absorbing unit 10 may be directly arranged.
  • each support column 310 is installed at a position substantially equal in height level when viewed from the slope 400 via each base member 312 fixed to the slope 400. Further, as shown in FIG. 20, each support column 310 and each base member 312 are connected by, for example, a hinge 314 that opens on both sides. Therefore, each support column 310 can be swung with respect to each base member 312 (that is, the slope 400) (see arrow A in FIG. 20). As a result, the stress acting on each column 310 when the falling object is received by the falling object receiving member 320 can be reduced.
  • the member connecting each support column 310 and each base member 312 is not limited to the hinge 314 described above, and other members may be used.
  • a wire mesh is used as a falling object receiving member 320 for receiving a falling object.
  • a falling object receiving member for example, a fence made of a metal rod, a plate, or the like, or a ring-shaped net may be used.
  • the wire is added to the wire.
  • a shock absorbing unit that absorbs the shock.
  • the wire is stretched even when the magnitude of the impact applied is small, and the wire is easily stretched even with a small impact, so there is a problem that it is necessary to perform maintenance of the wire at relatively short intervals. there were.
  • the shock absorbing unit 10 that absorbs the shock only when a shock larger than a predetermined threshold value is applied is used. This makes it possible to reduce the time and effort required for maintenance of the rockfall prevention system 300.
  • the wire main body 330 and the shock absorbing unit 10 of the rockfall prevention system 300 are installed in a substantially linearly extended state, adverse effects on the wire main body 330 are suppressed after the fixing member 14 of the shock absorbing unit 10 is broken. You can do it. That is, in the shock absorbing unit 50 of the prior art as shown in FIG. 18, the wire main body 52 is crimped by the tightening member 54 in a state of being wound once in an annular shape. Therefore, even after the shock absorbing unit 50 absorbs the shock (that is, after the annular portion is reduced), the wire main body 52 is in a state of being wound once in an annular shape.
  • the shock absorbing units 10, 20, 100, and 200 for absorbing shocks having the above configuration fix the expandable springs 12, 22, 120, 220 and the springs 12, 22, 120, 220. It has fixing members 14, 24, 130, 230 for the purpose. Then, the fixing members 14, 24, 130, and 230 are broken when the magnitude of the impact applied to the impact absorbing units 10, 20, 100, and 200 is larger than a predetermined threshold value. As described above, the fixing members 14, 24, 130 and 230 are broken and the springs 12, 22, 120 and 220 are expanded and contracted only when an impact larger than a predetermined threshold value is applied. Therefore, it is possible to absorb the impact when the fixing members 14, 24, 130, and 230 break.
  • the fixing members 14, 24, 130, and 230 are broken to absorb the impact, the impact can be absorbed more effectively as compared with the configuration in which the impact is absorbed by friction.
  • the springs 12, 22, 120, 220 are push springs or pull springs.
  • the fixing members 14, 24, 130, 230 have the springs 12, 22, 120, 220 compressed along the longitudinal direction. It is designed to be fixed.
  • the fixing members 14, 24, 152, and 230 are provided with broken portions 18, 238. Then, when the magnitude of the impact applied to the impact absorbing units 10, 20, 100, 200 is larger than a predetermined threshold value, the fixing members 14, 24, 152, 230 are fractured along the fractured portions 18, 238. It has become like. In this way, when the fractured portions 18, 238 are provided, it is possible to specify from which location the fixing members 14, 24, 152, and 230 are fractured, so that the shock absorbing units 10, 20, 100, and 200 can be specified. Convenience can be improved.
  • the fixing member 14 is arranged around the spring 12, and the fixing portion 15 and the open portion 16 are formed inside the fixing members 14 and 24. .. Further, the fixing portion 15 does not allow the extension of the spring 12 when the fixing member 14 is broken. Further, the open portion 16 allows the spring 12 to stretch when the fixing member 14 breaks.
  • the fixing members 24 and 130 have first accommodating portions 24a and 130a, second accommodating portions 24b and 130b, and a maintenance portion 150.
  • the first accommodating portions 24a and 130a accommodate a part of the springs 22 and 120 inside
  • the second accommodating portions 24b and 130b accommodate a part of the springs 22 and 120 inside. It is designed to be accommodated.
  • the maintenance portions 28a and 150 are designed to maintain the first accommodating portions 24a and 130a so that the second accommodating portions 24b and 130b do not move relatively. Then, when the magnitude of the impact applied to the impact absorbing units 20 and 100 is larger than a predetermined threshold value, the maintenance portions 28a and 150 are broken.
  • the fixing portions 25a, 25b, 134a, 134b and the open portions 26a, 26b, 136a, 136b And are formed respectively. Further, the fixed portions 25a, 25b, 134a and 134b do not allow the springs 22 and 120 to stretch when the maintenance portions 28a and 150 are broken. Further, the open portions 26a, 26b, 136a and 136b allow the springs 22 and 120 to stretch when the maintenance portions 28a and 150 are broken.
  • the maintenance portion 150 of the fixing member 130 includes a rod-shaped member 152 arranged inside the spring 120. Then, when the magnitude of the impact applied to the impact absorbing unit 100 is larger than a predetermined threshold value, the rod-shaped member 152 breaks, so that the impact is absorbed. Therefore, even if the rod-shaped member 152 breaks, the shock absorbing unit 100 can be used again simply by replacing the rod-shaped member 152 with a new rod-shaped member 152.
  • the fixing member 230 is arranged inside the spring 220. Further, on the outside of the fixing member 230, there are a fixed portion 234 that does not allow the spring 220 to stretch when the fixing member 230 breaks, and an open portion 236 that allows the spring 220 to stretch when the fixing member 230 breaks. It is formed.
  • the shock absorbing unit 200 includes a protective member (specifically, a first tubular member 240 and a second tubular member 250) arranged around the spring 220 and a sealing member 262, 264, 266. And further equipped. Further, each sealing member 262, 264, 266 is arranged at a position where it comes into contact with the protective member, and the spring 220 is liquid-tightly sealed. This makes it possible to prevent the spring 220 from getting wet or rusting, so that the shock absorbing unit 200 can be suitably used in water, for example.
  • the rockfall prevention system 300 having the above configuration includes a plurality of columns 310 arranged on the slope 400 at predetermined intervals, a falling object receiving member 320, a wire main body 330, and the above-mentioned impact absorption. It includes units 10, 20, 100, and 200. More specifically, the falling object receiving member 320 is stretched on each support column 310 to receive the falling object falling along the slope 400. Further, the wire main body 330 is stretched between each support column 310 and the slope 400 on the mountain side, and the shock absorbing units 10, 20, 100, and 200 are connected to the wire main body 330.
  • the shock absorbing units 10, 20, 100, 200 the magnitude of the impact that the fixing members 14, 24, 152, 230 break when the impact absorbing units 10, 20, 100, 200 are subjected to an impact.
  • a plurality of types having different thresholds are used so as to be arranged in series.
  • the rockfall prevention system 300 can appropriately absorb impacts of various sizes.
  • shock absorbing units 10, 20, 100, 200 and the rockfall prevention system 300 are not limited to the above-described aspects, and various changes can be made.
  • a push spring or a pull spring having a substantially cylindrical shape is used as the springs 12, 22, 120, and 220
  • the present invention is not limited to such a configuration.
  • a push spring or pull spring having a substantially conical shape or a push spring or pull spring having a substantially barrel shape may be used.
  • the shock absorbing unit of the present invention can be configured by using the fixing member having the corresponding shape.
  • the springs 12, 22, 120 and 220 are formed from a hard steel wire, a piano wire and a stainless steel wire has been described, the springs 12, 22, 120 and 220 may be formed from other materials. good. Further, the surfaces of the springs 12, 22, 120 and 220 may be plated.
  • the fixing members for fixing the springs 12, 22, 120 the fixing members 14, 24, 130, 230 shown in FIGS. 1, 6, 130, 230 have been described, but fixing members having other configurations are used. You may do so.
  • a member having an opening on the outer peripheral surface of a substantially cylindrical sleeve may be used, or a slit (notch) extending from the upper end to the lower end of the substantially cylindrical sleeve is formed. May be used. In this way, when the fixing member is provided with an opening or a slit, the states of the springs 12, 22, and 120 can be confirmed from the outside, so that the maintenance of the shock absorbing units 10, 20, and 100 can be easily performed. Will be able to.
  • fixing members 14, 24, 130, 230 having a configuration different from the examples shown in FIGS. 4, 6, 9, 14, 14 and the like may be used.
  • the regions of the fixed portions 15, 25a, 25b, 134a, 134b, and 234 may be reduced from the states shown in FIGS. 4, 6, 9, 14, and 14.
  • the regions of the open portions 16, 26a, 26b, 136a, 136b, and 236 may be enlarged. In this way, when the area of the open portion is increased, the amount of extension of the springs 12, 22, 120, and 220 increases when the fixing member breaks, so that the springs 12, 22, 120, and 220 absorb the springs 12, 22, 120, and 220. It is possible to increase the amount of impact energy that can be produced.
  • a mounting member having another shape is attached to the spring 12. It may be provided.
  • a spring and a mounting member are integrally molded by molding the end of a metal wire constituting the spring 12 into a substantially S-shape, a substantially U-shape, or a substantially V-shape. You may.
  • the mounting members provided at both ends of the spring 22 of the shock absorbing unit 20 the above-mentioned substantially S-shaped, substantially U-shaped or substantially V-shaped hooks may be used.
  • the present invention is not limited to such a configuration, and for example, near the end portion of the open portion 16. May be provided with a broken portion 18. In other words, if the broken portion 18 is provided at any portion of the open portion 16 of the fixing member 14, the shock absorbing unit 10 can exert the above-mentioned effect.
  • a knock pin having a substantially triangular prism shape may be inserted into the opening having a substantially triangular shape, or another polygonal opening may be provided and a knock pin having a corresponding shape may be inserted into the opening.
  • a broken portion may be formed on each of the knock pins 28a and 28b of the shock absorbing unit 20.
  • a groove having a substantially V-shaped cross section such as the fractured portion 18 of the shock absorbing unit 10 shown in FIG. 1 or the like, may be formed on the outer peripheral surfaces of the knock pins 28a and 28b having a substantially cylindrical shape.
  • the strut 310 to which the wire body 330 to which the shock absorbing units 10, 20, 100, and 200 are connected is connected to the shock absorbing units 10, 20, 100, and 200.
  • the support columns 310 to which the unwired wire main body 330 is attached may be arranged alternately.
  • the 310 may be arranged differently from the one described above.
  • the shock absorbing units 10, 20, 100, and 200 described above are not limited to the rockfall prevention system 300 described above.
  • the shock absorbing units 10, 20, 100, 200 described above can be used in various civil engineering structures and constructions.
  • the shock absorbing units 10 and 20 described above are used for seismic retrofitting of bridge superstructures to prevent the bridge from falling during a large-scale earthquake, and seismic retrofitting of bridge substructures to reinforce bridge piers by winding them with reinforced concrete.
  • 100, 200 may be used.
  • the seismic resistance of the upper part of the bridge and the lower part of the bridge can be improved.
  • the shock absorbing units 10, 20, 100, and 200 described above may be used as the energy absorbing device in the bridge collapse prevention system.
  • the shock absorbing units 10, 20, 100, and 200 described above may be used. More specifically, the shock absorbing units 10, 20, 100, and 200 may be used to prevent a large displacement of the girder in the direction of the bridge axis and a large displacement of the girder in the direction perpendicular to the bridge axis.
  • a certain girder and a girder located next to the girder may be connected via the shock absorbing units 10, 20, 100, 200. Further, by using the shock absorbing units 10, 20, 100, and 200 as the guardrail and the median strip, the shock when a vehicle or the like collides may be absorbed. Further, the shock absorbing units 10, 20, 100 and 200 can be used for various other purposes.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Vibration Dampers (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

A shock absorption unit (10, 20, 100, 200) for absorbing shock has a compressible spring (12, 22, 120, 220) and a securing member (14, 24, 152, 230) for securing the spring. When the magnitude of the shock applied to the shock absorption unit (10, 20, 100, 200) is greater than a prescribed threshold value, the securing member (14, 24, 152, 230) fractures, whereby the shock applied to the shock absorption unit (10, 20, 100, 200) is absorbed.

Description

衝撃吸収ユニットおよび落石防止システムShock absorption unit and rockfall prevention system
 本発明は、衝撃を吸収するための衝撃吸収ユニット、およびこのような衝撃吸収ユニットを用いた山の斜面等に設置される落石防止システムに関する。 The present invention relates to a shock absorbing unit for absorbing shocks and a rockfall prevention system installed on a mountain slope or the like using such a shock absorbing unit.
 従来から、落石を捕捉するために山の斜面等に設置される落石防護柵において、落石防護柵により落石を受け止めた際の衝撃を衝撃吸収ユニットによって吸収することが行われている。より具体的には、このような衝撃吸収ユニットを用いた落石防護柵として、日本国特許第5978022号の図1等に開示されるものが知られている。 Conventionally, in a rockfall protection fence installed on a mountain slope or the like to catch a rockfall, the impact when the rockfall is received by the rockfall protection fence is absorbed by a shock absorbing unit. More specifically, as a rockfall protection fence using such a shock absorbing unit, the one disclosed in FIG. 1 of Japanese Patent No. 5978022 is known.
 日本国特許第5978022号の図1に開示される落下防護柵は、所定の間隔を空けて斜面に配置された支柱と、支柱の上端部と山側の斜面との間に張られた山側ワイヤと、支柱の間に張られた、落石を受け止めるためのリング式ネット等とを有している。また、リング式ネットにより落石が受け止められたときに山側ワイヤ等の変形(伸び)を許容することにより、この山側ワイヤの伸びによって当該山側ワイヤ等に加えられた衝撃の一部を吸収するようになっている。より詳細には、山側ワイヤの一部が当該山側ワイヤの径方向において重なるよう一巻きすることによって環状の部分を形成し、この重ねられた部分に配置された緊締部材をかしめることにより環状の部分を固定するようになっている。そして、衝撃が加えられたときに、環状の部分の環の大きさが小さくなることにより、落石を受け止めた際の衝撃の一部が山側ワイヤと緊締部材との間に働く摩擦力によって吸収されるようになっている。 The fall guard fence disclosed in FIG. 1 of Japanese Patent No. 5978022 includes a strut arranged on a slope at a predetermined interval and a mountain side wire stretched between the upper end of the strut and the mountain side slope. It has a ring-type net, etc., which is stretched between the columns to catch falling rocks. In addition, by allowing deformation (elongation) of the mountain side wire or the like when a rock fall is received by the ring type net, a part of the impact applied to the mountain side wire or the like due to the elongation of the mountain side wire is absorbed. It has become. More specifically, a part of the mountain side wire is wound once so as to overlap in the radial direction of the mountain side wire to form an annular portion, and a tightening member arranged in the overlapped portion is crimped to form an annular portion. The part is fixed. Then, when an impact is applied, the size of the ring of the annular portion becomes smaller, so that a part of the impact when receiving the falling rock is absorbed by the frictional force acting between the mountain side wire and the tightening member. It has become so.
 しかしながら、日本国特許第5978022号に開示されるような従来の衝撃吸収ユニットは、ワイヤの伸びを許容することによりワイヤに加えられる衝撃を吸収するものであり、上記の構成では与えられる衝撃の大きさが小さいときにもワイヤが伸びるようになっている。このように、小さい衝撃でもワイヤが伸びやすいため比較的短い間隔で衝撃吸収ユニットのメンテナンスを行う必要があるという問題がある。 However, the conventional shock absorbing unit as disclosed in Japanese Patent No. 5978022 absorbs the shock applied to the wire by allowing the wire to stretch, and the magnitude of the shock given in the above configuration is large. The wire can be stretched even when the size is small. As described above, since the wire is easily stretched even with a small impact, there is a problem that it is necessary to perform maintenance of the impact absorbing unit at relatively short intervals.
 本発明は、このような点を考慮してなされたものであり、所定の閾値よりも大きい衝撃が加えられたときにのみ固定部材が破断することにより衝撃を吸収することのできる衝撃吸収ユニット、およびこのような衝撃吸収ユニットを用いた落石防止システムを提供することを目的とする。 The present invention has been made in consideration of such a point, and is an impact absorbing unit capable of absorbing an impact by breaking a fixing member only when an impact larger than a predetermined threshold value is applied. And it is an object of the present invention to provide a rockfall prevention system using such a shock absorbing unit.
 本発明の衝撃吸収ユニットは、衝撃を吸収するための衝撃吸収ユニットであって、伸縮可能なバネと、前記バネを固定するための固定部材とを有しており、前記衝撃吸収ユニットに加えられた衝撃の大きさが所定の閾値よりも大きいときに前記固定部材が破断することを特徴とする。 The shock absorbing unit of the present invention is a shock absorbing unit for absorbing a shock, and has a stretchable spring and a fixing member for fixing the spring, and is added to the shock absorbing unit. It is characterized in that the fixing member breaks when the magnitude of the impact is larger than a predetermined threshold value.
 このような衝撃吸収ユニットによれば、所定の閾値よりも大きい衝撃が加えられたときにのみ固定部材が破断するとともにバネが伸縮するようになっているため、固定部材が破断する際に衝撃を吸収するようにすることができる。 According to such a shock absorbing unit, the fixing member breaks and the spring expands and contracts only when an impact larger than a predetermined threshold value is applied. Therefore, when the fixing member breaks, the impact is applied. It can be made to absorb.
 本発明の衝撃吸収ユニットにおいては、前記バネは押しバネであり、前記固定部材は、長手方向に沿って圧縮された状態の前記バネを固定するようになっていてもよい。 In the shock absorbing unit of the present invention, the spring may be a push spring, and the fixing member may fix the spring in a compressed state along the longitudinal direction.
 あるいは、前記バネは引きバネであってもよい。 Alternatively, the spring may be a pull spring.
 本発明の衝撃吸収ユニットにおいては、前記固定部材には破断部分が設けられており、
 前記衝撃吸収ユニットに加えられた衝撃の大きさが所定の閾値よりも大きいときに前記固定部材が前記破断部分に沿って破断するようになっていてもよい。
In the shock absorbing unit of the present invention, the fixing member is provided with a broken portion.
When the magnitude of the impact applied to the impact absorbing unit is larger than a predetermined threshold value, the fixing member may be fractured along the fractured portion.
 また、本発明の衝撃吸収ユニットにおいては、前記固定部材は、前記バネの周囲に配置されており、前記固定部材の内側には、前記固定部材が破断したときに前記バネの伸びを許容しない固定部分と、前記固定部材が破断したときに前記バネの伸びを許容する開放部分とが形成されていてもよい。 Further, in the shock absorbing unit of the present invention, the fixing member is arranged around the spring, and the fixing member is fixed inside the fixing member so as not to allow the spring to stretch when the fixing member breaks. A portion and an open portion that allows the spring to stretch when the fixing member is broken may be formed.
 また、前記固定部材は、前記バネの一部を内部に収容する第1の収容部分と、前記バネの一部を内部に収容するための第2の収容部分と、前記第1の収容部分と前記第2の収容部分とが相対的に移動しないよう維持するための維持部分とを有しており、前記衝撃吸収ユニットに加えられた衝撃の大きさが所定の閾値よりも大きいときに前記維持部分が破断するようになっていてもよい。 Further, the fixing member includes a first accommodating portion for accommodating a part of the spring inside, a second accommodating portion for accommodating a part of the spring inside, and the first accommodating portion. It has a maintenance portion for maintaining the second accommodating portion so as not to move relatively, and when the magnitude of the impact applied to the shock absorbing unit is larger than a predetermined threshold value, the maintenance portion is provided. The portion may be broken.
 この場合、前記固定部材の前記第1の収容部分および前記第2の収容部分の内側には、前記維持部分が破断したときに前記バネの伸びを許容しない固定部分と、前記維持部分が破断したときに前記バネの伸びを許容する開放部分とがそれぞれ形成されていてもよい。 In this case, inside the first accommodating portion and the second accommodating portion of the fixing member, the fixing portion that does not allow the extension of the spring when the maintenance portion is broken and the maintenance portion are broken. Occasionally, an open portion that allows the extension of the spring may be formed.
 本発明の衝撃吸収ユニットにおいては、前記固定部材の前記維持部分は、前記バネの内部に配置される棒状部材を含んでおり、前記衝撃吸収ユニットに加えられた衝撃の大きさが所定の閾値よりも大きいときに前記棒状部材が破断するようになっていてもよい。 In the shock absorbing unit of the present invention, the maintenance portion of the fixing member includes a rod-shaped member arranged inside the spring, and the magnitude of the shock applied to the shock absorbing unit is equal to or less than a predetermined threshold value. The rod-shaped member may be broken when the size is large.
 また、本発明の衝撃吸収ユニットにおいては、前記固定部材は、前記バネの内側に配置されており、前記固定部材の外側には、前記固定部材が破断したときに前記バネの伸びを許容しない固定部分と、前記固定部材が破断したときに前記バネの伸びを許容する開放部分とが形成されていてもよい。 Further, in the shock absorbing unit of the present invention, the fixing member is arranged inside the spring, and the fixing member is fixed outside the fixing member so as not to allow the spring to stretch when the fixing member breaks. A portion and an open portion that allows the spring to stretch when the fixing member is broken may be formed.
 本発明の衝撃吸収ユニットは、前記バネの周囲に配置される保護部材と、前記保護部材と接触する位置に配置され、前記バネを液密に封止する封止部材とを更に備えていてもよい。 Even if the shock absorbing unit of the present invention further includes a protective member arranged around the spring and a sealing member arranged at a position in contact with the protective member and liquid-tightly sealing the spring. good.
 本発明の落石防止システムは、所定の間隔を空けて斜面に配置される複数の支柱と、各前記支柱に張架され、前記斜面に沿って落ちる落下物を受け止める落下物受止部材と、各前記支柱と山側の前記斜面との間に張られたワイヤ本体と、前記ワイヤ本体に接続された衝撃吸収ユニットであって、伸縮可能なバネと、前記バネを固定するための固定部材とを有しており、前記衝撃吸収ユニットに加えられた衝撃の大きさが所定の閾値よりも大きいときに前記固定部材が破断する衝撃吸収ユニットと、を備えたことを特徴とする。 The rock fall prevention system of the present invention includes a plurality of columns arranged on a slope at predetermined intervals, a falling object receiving member stretched on each of the columns and receiving a falling object falling along the slope, and each of them. It has a wire body stretched between the support column and the slope on the mountain side, a shock absorbing unit connected to the wire body, a stretchable spring, and a fixing member for fixing the spring. It is characterized by including a shock absorbing unit in which the fixing member breaks when the magnitude of the shock applied to the shock absorbing unit is larger than a predetermined threshold value.
 このような落石防止システムによれば、所定の閾値よりも大きい衝撃が加えられたときにのみ固定部分が破断するとともにバネが伸縮することにより衝撃を吸収する衝撃吸収ユニットを用いることにより、メンテナンスの手間を軽減させることができる。 According to such a rockfall prevention system, maintenance can be performed by using a shock absorbing unit that absorbs the shock by breaking the fixed part and expanding and contracting the spring only when an impact larger than a predetermined threshold is applied. The time and effort can be reduced.
 本発明の落石防止システムにおいては、前記衝撃ユニットとして、当該衝撃吸収ユニットに衝撃が加えられたときに前記固定部材が破断する衝撃の大きさの閾値が互いに異なる複数の種類のものが直列に並ぶよう用いられてもよい。 In the rock fall prevention system of the present invention, as the impact unit, a plurality of types having different thresholds of the magnitude of the impact at which the fixing member breaks when an impact is applied to the impact absorbing unit are lined up in series. May be used.
本発明の実施の形態による衝撃吸収ユニットの構成を示す斜視図である。It is a perspective view which shows the structure of the shock absorption unit by embodiment of this invention. 図1に示す衝撃吸収ユニットに設けられた圧縮された状態のバネの構成を示す上面図である。It is a top view which shows the structure of the spring in the compressed state provided in the shock absorbing unit shown in FIG. 図1に示す衝撃吸収ユニットに設けられた固定部材の構成を示す断面図である。It is sectional drawing which shows the structure of the fixing member provided in the shock absorbing unit shown in FIG. 図1に示す衝撃吸収ユニットの固定部材の構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure of the fixing member of the shock absorption unit shown in FIG. 図1等に示す衝撃吸収ユニットの固定部材が破断したときの構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure when the fixing member of the shock absorbing unit shown in FIG. 1 and the like breaks. 本実施の形態による衝撃吸収ユニットの他の例の構成を示す説明図である。It is explanatory drawing which shows the structure of another example of the shock absorption unit by this embodiment. 図6に示す衝撃吸収ユニットの固定部材の構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure of the fixing member of the shock absorbing unit shown in FIG. 図6に示す衝撃吸収ユニットの固定部材が破断したときの構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure when the fixing member of the shock absorbing unit shown in FIG. 6 is broken. 本実施の形態による衝撃吸収ユニットの更に他の例の構成を示す説明図である。It is explanatory drawing which shows the structure of still another example of the shock absorption unit by this embodiment. 図9に示す衝撃吸収ユニットの取付部の構成を示す上面図である。It is a top view which shows the structure of the attachment part of the shock absorption unit shown in FIG. 図9等に示す衝撃吸収ユニットの固定部材および内側ハウジングの構成を示す断面図である。It is sectional drawing which shows the structure of the fixing member and the inner housing of the shock absorbing unit shown in FIG. 9 and the like. 図9等に示す衝撃吸収ユニットの取付部、固定部材および内側ハウジングが組み立てられたときの構成を示す説明図である。It is explanatory drawing which shows the structure when the attachment part, the fixing member and the inner housing of the shock absorbing unit shown in FIG. 9 and the like are assembled. 図9等に示す衝撃吸収ユニットの固定部材が破断したときの構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure when the fixing member of the shock absorbing unit shown in FIG. 9 and the like breaks. 本実施の形態による衝撃吸収ユニットの更に他の例の構成を示す説明図である。It is explanatory drawing which shows the structure of still another example of the shock absorption unit by this embodiment. 図14等に示す衝撃吸収ユニットの固定部材の構成を示す上面図である。It is a top view which shows the structure of the fixing member of the shock absorption unit shown in FIG. 14 and the like. 図14に示す衝撃吸収ユニットの保護部材の構成を示す断面図である。It is sectional drawing which shows the structure of the protection member of the shock absorption unit shown in FIG. 図14等に示す衝撃吸収ユニットの固定部材が破断したときの構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure when the fixing member of the shock absorbing unit shown in FIG. 14 and the like breaks. 従来技術による衝撃吸収ユニットの構成を示す斜視図である。It is a perspective view which shows the structure of the shock absorption unit by the prior art. 図1等に示す衝撃吸収ユニットを用いた落石防止システムの構成を概略的に示す斜視図である。FIG. 5 is a perspective view schematically showing a configuration of a rockfall prevention system using the shock absorbing unit shown in FIG. 1 and the like. 図19に示す落石防止システムの構成を概略的に示す側面図である。It is a side view which shows schematic structure of the rockfall prevention system shown in FIG.
 以下、図面を参照して本発明の実施の形態について説明する。図1乃至図20は、本実施の形態による衝撃吸収ユニットおよび落石防止システムを説明するための図である。このうち、図1は、本実施の形態による衝撃吸収ユニットの構成を示す構成図であり、図2および図3は、それぞれ、図1に示す衝撃吸収ユニットのバネの構成を示す上面図および固定部材の構成を示す断面図である。また、図4および図5は、それぞれ、図1に示す衝撃吸収ユニットの固定部材が破断する前および破断した後の構成を説明するための説明図である。また、図6乃至図8は、それぞれ、本実施の形態による衝撃吸収ユニットの他の例の構成を説明するための説明図である。また、図9乃至図13は、それぞれ、本実施の形態による衝撃吸収ユニットの更に他の例の構成を説明するための上面図、断面図および説明図である。また、図14乃至図17は、それぞれ、本実施の形態による衝撃吸収ユニットの更に他の例の構成を説明するための上面図、断面図および説明図である。また、図18は、従来技術による衝撃吸収ユニットの構成を示す斜視図である。また、図19は、図1等に示す衝撃吸収ユニットを用いた落石防止システムの構成を概略的に示す斜視図であり、図20は、図19に示す落石防止システムの構成を概略的に示す側面図である。なお、固定部材が破断してバネが伸びたときの構成を分かりやすくするため、図4乃至図8において、固定部材については断面図を記載する一方、バネおよび取付部材については上面図を記載している。また、詳細については後述するが、図9および図14等において、構成を理解しやすくすることを目的として、断面図や上面図を組み合わせることにより衝撃吸収ユニットの更に他の例を描写している。また、図20において、斜面に沿って落ちる落下物を参照符号Dで表示している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 20 are views for explaining a shock absorbing unit and a rockfall prevention system according to the present embodiment. Of these, FIG. 1 is a configuration diagram showing a configuration of a shock absorbing unit according to the present embodiment, and FIGS. 2 and 3 are a top view and a fixed view showing a configuration of a spring of the shock absorbing unit shown in FIG. 1, respectively. It is sectional drawing which shows the structure of a member. 4 and 5 are explanatory views for explaining the configurations of the fixing member of the shock absorbing unit shown in FIG. 1 before and after the fracture, respectively. 6 to 8 are explanatory views for explaining the configuration of another example of the shock absorbing unit according to the present embodiment, respectively. 9 to 13 are a top view, a cross-sectional view, and an explanatory view for explaining the configuration of still another example of the shock absorbing unit according to the present embodiment, respectively. 14 to 17 are a top view, a cross-sectional view, and an explanatory view for explaining the configuration of still another example of the shock absorbing unit according to the present embodiment, respectively. Further, FIG. 18 is a perspective view showing a configuration of a shock absorbing unit according to the prior art. Further, FIG. 19 is a perspective view schematically showing the configuration of the rockfall prevention system using the shock absorbing unit shown in FIG. 1 and the like, and FIG. 20 schematically shows the configuration of the rockfall prevention system shown in FIG. It is a side view. In order to make it easier to understand the configuration when the fixing member is broken and the spring is extended, a cross-sectional view is shown for the fixing member, and a top view is shown for the spring and the mounting member in FIGS. 4 to 8. ing. Further, although details will be described later, in FIGS. 9 and 14, for the purpose of facilitating the understanding of the configuration, further examples of the shock absorbing unit are described by combining a cross-sectional view and a top view. .. Further, in FIG. 20, a falling object falling along the slope is indicated by reference numeral D.
 図1乃至図5に示すように、本実施の形態の衝撃吸収ユニット10は、伸縮可能なバネ12と、バネ12の周囲に配置されており、当該バネ12が伸縮しないよう固定するための固定部材14とを有している。そして、衝撃吸収ユニット10に所定の閾値よりも大きい衝撃が加えられたときに固定部材14が破断することにより、衝撃吸収ユニット10に加えられた衝撃を吸収するようになっている。また、固定部材14が破断したときにバネ12の伸縮を許容することにより、衝撃吸収ユニット10に加えられた衝撃を更に吸収するようになっている。具体的には、固定部材14には後述する破断部分18が設けられており、衝撃吸収ユニット10に加えられた衝撃の大きさが所定の閾値よりも大きいときに固定部材14が破断部分18に沿って破断するようになっている(図5参照)。 As shown in FIGS. 1 to 5, the shock absorbing unit 10 of the present embodiment is arranged around the expandable spring 12 and the spring 12, and is fixed to fix the spring 12 so as not to expand and contract. It has a member 14. Then, when an impact larger than a predetermined threshold value is applied to the shock absorbing unit 10, the fixing member 14 breaks, so that the shock applied to the shock absorbing unit 10 is absorbed. Further, by allowing the spring 12 to expand and contract when the fixing member 14 breaks, the impact applied to the impact absorbing unit 10 is further absorbed. Specifically, the fixing member 14 is provided with a breaking portion 18 described later, and when the magnitude of the impact applied to the shock absorbing unit 10 is larger than a predetermined threshold value, the fixing member 14 is provided on the breaking portion 18. It is designed to break along (see FIG. 5).
 また、バネ12は略円筒形状の押しバネから構成されており、当該バネ12は長手方向に沿って(すなわち、図2における左右方向に沿って)伸縮することができるようになっている。ここで、押しバネとは、概してバネ部分を形成する各コイル間に隙間が存在した状態となるよう(すなわち、バネ部分を長手方向に沿って圧縮することができるよう)各コイル部分が巻かれたものである。図1等に示す例では、バネ12は、各コイル部分が密着するよう長手方向に沿って圧縮された状態で固定部材14により固定されている。また、バネ12の両端部にはそれぞれ取付部材として略S字形状のフック13が設けられている。具体的には、バネ12は、当該バネ12の両端近傍において外径が小さくなるよう形成されており、略S字状のフック13の一方の端部がバネ12の内部に位置するよう設置されている。そして、各フック13により、衝撃吸収ユニット10が後述する落石防止システム300のワイヤ本体330に取り付けられるようになっている(図20参照)。また、バネ12は、硬鋼線、ピアノ線やステンレス鋼線等から形成されている。 Further, the spring 12 is composed of a push spring having a substantially cylindrical shape, and the spring 12 can expand and contract along the longitudinal direction (that is, along the left-right direction in FIG. 2). Here, the push spring generally means that each coil portion is wound so that a gap exists between each coil forming the spring portion (that is, the spring portion can be compressed along the longitudinal direction). It is a spring. In the example shown in FIG. 1 and the like, the spring 12 is fixed by the fixing member 14 in a state of being compressed along the longitudinal direction so that the coil portions are in close contact with each other. Further, hooks 13 having a substantially S shape are provided at both ends of the spring 12 as mounting members. Specifically, the spring 12 is formed so that the outer diameter becomes smaller in the vicinity of both ends of the spring 12, and one end of the substantially S-shaped hook 13 is installed so as to be located inside the spring 12. ing. Then, each hook 13 allows the shock absorbing unit 10 to be attached to the wire body 330 of the rockfall prevention system 300, which will be described later (see FIG. 20). Further, the spring 12 is formed of a hard steel wire, a piano wire, a stainless steel wire, or the like.
 図3に示すように、衝撃吸収ユニット10の固定部材14は略円筒形状のスリーブから構成されており、当該固定部材の14の内側には、それぞれ固定部分15および開放部分16が形成されている。具体的には、固定部分15は、固定部材14の両端部側にそれぞれ設けられており、固定部材14が破断部分18に沿って破断したときにバネ12の伸びを許容しないよう構成されている。より詳細には、図4および図5に示すように、固定部分15はバネ12の輪郭に沿った形状を有しており、固定部分15の内面とバネ12の外面とが互いに接触した状態で配置されている。このため、衝撃吸収ユニット10の各フック13が互いに離れる方向にそれぞれ引っ張られて固定部材14が破断部分18に沿って破断した場合にも、バネ12における固定部分15と接触している箇所は図4に示す状態から伸びないようになっている。一方、開放部分16は、固定部材14の中央部に設けられており、固定部材14が破断部分18に沿って破断したときにバネ12の伸びを許容するよう構成されている。より詳細には、図4等に示すように、開放部分16はバネ12の輪郭とは異なる形状を有しており、バネ12が固定部材14の内部に収容されているときにバネ12と開放部分16とが接触しないようになっている。具体的には、固定部材14の開放部分16は、バネ12の外径の大きさよりも大きい内径を有する略円筒形状の部分から構成されている。 As shown in FIG. 3, the fixing member 14 of the shock absorbing unit 10 is composed of a sleeve having a substantially cylindrical shape, and a fixing portion 15 and an open portion 16 are formed inside the fixing member 14, respectively. .. Specifically, the fixing portion 15 is provided on both end sides of the fixing member 14, and is configured so as not to allow the spring 12 to stretch when the fixing member 14 breaks along the breaking portion 18. .. More specifically, as shown in FIGS. 4 and 5, the fixed portion 15 has a shape along the contour of the spring 12, and the inner surface of the fixed portion 15 and the outer surface of the spring 12 are in contact with each other. Have been placed. Therefore, even when the hooks 13 of the shock absorbing unit 10 are pulled away from each other and the fixing member 14 breaks along the broken portion 18, the portion of the spring 12 in contact with the fixed portion 15 is shown in FIG. It does not extend from the state shown in 4. On the other hand, the open portion 16 is provided in the central portion of the fixing member 14, and is configured to allow the spring 12 to stretch when the fixing member 14 breaks along the breaking portion 18. More specifically, as shown in FIG. 4 and the like, the open portion 16 has a shape different from the contour of the spring 12, and opens with the spring 12 when the spring 12 is housed inside the fixing member 14. It is designed so that it does not come into contact with the portion 16. Specifically, the open portion 16 of the fixing member 14 is composed of a substantially cylindrical portion having an inner diameter larger than the outer diameter of the spring 12.
 上述したように、固定部材14には破断部分18が設けられており、当該固定部材14は破断部分18に沿って破断するようになっている。具体的には、バネ12の両端部に設けられた各フック13に対して互いに離れる向きの衝撃が加えられたときに、この衝撃の大きさが所定の閾値よりも大きいと、固定部材14が破断部分18に沿って破断する。図1等に示す例では、破断部分18は断面が略V字形状(楔形状)の溝である。また、破断部分18は、円筒形状の開放部分16の略中央部において、周方向に沿って全周にわたって形成されている。 As described above, the fixing member 14 is provided with a breaking portion 18, and the fixing member 14 is adapted to break along the breaking portion 18. Specifically, when an impact in a direction away from each other is applied to each hook 13 provided at both ends of the spring 12, if the magnitude of the impact is larger than a predetermined threshold value, the fixing member 14 is subjected to. It breaks along the broken portion 18. In the example shown in FIG. 1 and the like, the fractured portion 18 is a groove having a substantially V-shaped cross section (wedge shape). Further, the fractured portion 18 is formed in a substantially central portion of the cylindrical open portion 16 over the entire circumference along the circumferential direction.
 具体的には、図4に示す状態において衝撃吸収ユニット10の各フック13に所定の閾値よりも大きい衝撃が加えられると、図5に示すように固定部材14が破断部分18に沿って破断する。このような固定部材14の破断により、衝撃吸収ユニット10に与えられた衝撃の一部が吸収されるようになっている。また、上述したように、固定部材14の開放部分16はバネ12とは接触していないため、固定部材14が破断するとバネ12の伸びが許容されるようになる。また、バネ12の伸びが許容されると、当該バネ12が伸びることにより、衝撃吸収ユニット10に加えられた衝撃が更に吸収されるようになる。このように、衝撃吸収ユニット10は、固定部材14の破断およびバネ12の伸縮により衝撃を吸収するため、摩擦により衝撃を吸収する構成と比較してより効果的に衝撃を吸収することができる。 Specifically, when an impact larger than a predetermined threshold value is applied to each hook 13 of the shock absorbing unit 10 in the state shown in FIG. 4, the fixing member 14 breaks along the broken portion 18 as shown in FIG. .. Due to the breakage of the fixing member 14, a part of the shock applied to the shock absorbing unit 10 is absorbed. Further, as described above, since the open portion 16 of the fixing member 14 is not in contact with the spring 12, the extension of the spring 12 is allowed when the fixing member 14 is broken. Further, when the extension of the spring 12 is allowed, the extension of the spring 12 further absorbs the impact applied to the impact absorbing unit 10. As described above, since the shock absorbing unit 10 absorbs the shock by breaking the fixing member 14 and expanding and contracting the spring 12, the shock absorbing unit 10 can absorb the shock more effectively as compared with the configuration of absorbing the shock by friction.
 また、固定部材14に形成される破断部分18の形状を変更することにより、固定部材14が破断するときの衝撃の大きさの閾値を調整することができるようになっている。例えば、図4に示す状態から破断部分18の溝の深さを浅くすると、固定部材14が破断部分18に沿って破断しにくくなるため、固定部材14が破断するときの衝撃の大きさの閾値を大きくすることができる。一方、図4に示す状態から破断部分18の溝の深さを深くすると、固定部材14が破断部分18に沿って破断しやすくなるため、固定部材14が破断するときの衝撃の大きさの閾値を小さくすることができる。このことにより、様々な大きさの衝撃を吸収する衝撃吸収ユニット10を作製することができる。 Further, by changing the shape of the fractured portion 18 formed on the fixing member 14, it is possible to adjust the threshold value of the magnitude of the impact when the fixing member 14 is fractured. For example, if the depth of the groove of the fractured portion 18 is made shallower from the state shown in FIG. 4, the fixing member 14 is less likely to fracture along the fractured portion 18, so that the threshold value of the magnitude of the impact when the fixing member 14 is fractured. Can be increased. On the other hand, if the depth of the groove of the fractured portion 18 is deepened from the state shown in FIG. 4, the fixing member 14 is likely to be fractured along the fractured portion 18, so that the threshold value of the magnitude of the impact when the fixing member 14 is fractured Can be made smaller. This makes it possible to manufacture a shock absorbing unit 10 that absorbs shocks of various sizes.
 また、破断部分18の形状は、図4等に示すものに限定されることはない。上述した断面が略V字形状の溝が固定部材14の周方向の一部のみに形成されていてもよい。また、固定部材14に設けられる破断部分の断面の形状が、略U字形状、凹形状や窪み等の形状であってもよい。言い換えると、固定部材14において、破断部分18が形成される箇所が固定部材14における他の箇所よりも強度が低くなるような形状であれば、破断部分はどのような形状でもよい。 Further, the shape of the broken portion 18 is not limited to that shown in FIG. 4 and the like. The above-mentioned groove having a substantially V-shaped cross section may be formed only in a part of the fixing member 14 in the circumferential direction. Further, the shape of the cross section of the broken portion provided on the fixing member 14 may be a substantially U-shaped shape, a concave shape, a recessed shape, or the like. In other words, the fractured portion may have any shape as long as the portion of the fixing member 14 where the fractured portion 18 is formed has a lower strength than the other portions of the fixing member 14.
 なお、破断部分18が固定部材14の周方向全周にわたって形成された、断面が略V字形状のものである場合には、固定部材14の破断荷重は公知の方法により計算可能である。このため、上記の所定の閾値を計算により求めることができ、よって目的とする所定の閾値を有する衝撃吸収ユニット10を容易に設計することができる。また、破断部分18の形状が複雑であり、固定部材14の破断荷重が容易に計算できないような場合にも、試作品を作製して評価すること等により、所望の閾値を有する衝撃吸収ユニット10を作製することができる。 When the breaking portion 18 is formed over the entire circumference of the fixing member 14 in the circumferential direction and the cross section is substantially V-shaped, the breaking load of the fixing member 14 can be calculated by a known method. Therefore, the above-mentioned predetermined threshold value can be obtained by calculation, and thus the shock absorbing unit 10 having the desired predetermined threshold value can be easily designed. Further, even when the shape of the fractured portion 18 is complicated and the fractured load of the fixing member 14 cannot be easily calculated, the impact absorbing unit 10 having a desired threshold value is obtained by producing and evaluating a prototype. Can be produced.
 また、破断部分18の形状を変更することによって固定部材14が破断するときの衝撃の大きさの閾値を調整する代わりに、あるいは破断部分18の形状を変更することに加えて、以下のような方法により衝撃の大きさの閾値を調整してもよい。具体的には、固定部材14を構成する材料を変更することにより、固定部材14が破断するときの衝撃の大きさの閾値を調整するようにしてもよい。このように、材料が異なる場合には、固定部材14を略同一の形状に成形する場合でも、固定部材14が破断するときの衝撃の大きさの閾値を調整することができる。具体的には、固定部材14の材料として、炭素鋼、ステンレス鋼、アルミ合金、銅、真鍮、チタンやプラスチック等を用いることができる。例を挙げると、プラスチックから形成された固定部材14が破断するときの衝撃の大きさの閾値よりも、炭素鋼から形成された固定部材14が破断するときの衝撃の大きさの閾値のほうが大きくなる。 Further, instead of adjusting the threshold value of the magnitude of impact when the fixing member 14 breaks by changing the shape of the broken portion 18, or in addition to changing the shape of the broken portion 18, the following The impact magnitude threshold may be adjusted by the method. Specifically, the threshold value of the magnitude of the impact when the fixing member 14 breaks may be adjusted by changing the material constituting the fixing member 14. As described above, when the materials are different, the threshold value of the magnitude of the impact when the fixing member 14 breaks can be adjusted even when the fixing member 14 is formed into substantially the same shape. Specifically, as the material of the fixing member 14, carbon steel, stainless steel, aluminum alloy, copper, brass, titanium, plastic, or the like can be used. For example, the threshold value of the impact magnitude when the fixing member 14 made of carbon steel breaks is larger than the threshold value of the impact magnitude when the fixing member 14 made of plastic breaks. Become.
 また、本実施の衝撃吸収ユニット10の他の例として、図6乃至図8に示すものが用いられてもよい。図6乃至図8は、それぞれ、本発明の衝撃吸収ユニットの他の例の構成を説明するための説明図である。上述したように、図6乃至図8においても、固定部材については断面図を記載する一方、バネおよび取付部材については上面図を記載している。 Further, as another example of the shock absorbing unit 10 of the present embodiment, those shown in FIGS. 6 to 8 may be used. 6 to 8 are explanatory views for explaining the configuration of another example of the shock absorbing unit of the present invention, respectively. As described above, also in FIGS. 6 to 8, a cross-sectional view is shown for the fixing member, and a top view is shown for the spring and the mounting member.
 図6乃至図8に示す衝撃吸収ユニット20は、伸縮可能なバネ22と、バネ22の周囲に配置されており、当該バネ22が伸縮しないよう固定するための固定部材24とを有している。また、衝撃吸収ユニット20に所定の閾値よりも大きい衝撃が加えられたときに固定部材24の一部(具体的には、後述するノックピン28a)が破断することにより、衝撃吸収ユニット20に加えられた衝撃を吸収するようになっている。 The shock absorbing unit 20 shown in FIGS. 6 to 8 has a stretchable spring 22 and a fixing member 24 which is arranged around the spring 22 and for fixing the spring 22 so as not to stretch. .. Further, when a shock larger than a predetermined threshold value is applied to the shock absorbing unit 20, a part of the fixing member 24 (specifically, the knock pin 28a described later) breaks, so that the shock absorbing unit 20 is added to the shock absorbing unit 20. It is designed to absorb the impact.
 具体的には、バネ22は略円筒形状の押しバネから構成されており、当該バネ22は長手方向に沿って(すなわち、図6における左右方向に沿って)伸縮することができるようになっている。図6等に示す例では、バネ22は、各コイル部分が密着するよう長手方向に沿って圧縮された状態で固定部材24により固定されている。また、図6等に示すように、バネ22の両端部にはそれぞれ取付部材23が設けられている。そして、各取付部材23により、衝撃吸収ユニット20が後述する落石防止システム300のワイヤ本体330に取り付けられるようになっている(図20参照)。また、バネ22は、硬鋼線、ピアノ線やステンレス鋼線等から形成されている。 Specifically, the spring 22 is composed of a push spring having a substantially cylindrical shape, and the spring 22 can expand and contract along the longitudinal direction (that is, along the left-right direction in FIG. 6). There is. In the example shown in FIG. 6 and the like, the spring 22 is fixed by the fixing member 24 in a state of being compressed along the longitudinal direction so that the coil portions are in close contact with each other. Further, as shown in FIG. 6 and the like, mounting members 23 are provided at both ends of the spring 22. Then, each mounting member 23 allows the shock absorbing unit 20 to be mounted on the wire body 330 of the rockfall prevention system 300, which will be described later (see FIG. 20). Further, the spring 22 is formed of a hard steel wire, a piano wire, a stainless steel wire, or the like.
 図6等に示すように、衝撃吸収ユニット20の固定部材24は、複数の部材を組み合わせたものから構成されている。具体的には、固定部材24は、一対の筒状部材24a、24b(すなわち、第1の収容部分および第2の収容部分)と、当該筒状部材24a、24bの周囲に配置されるスリーブ24cと、ノックピン28a、28b(すなわち、維持部分)とを有している。また、バネ22は、一対の筒状部材24a、24bの内側に配置されるようになっている。言い換えると、一方の筒状部材24aの内部にはバネ22の一部が収容されるようになっており、他方の筒状部材24bの内部にもバネ22の一部が収容されるようになっている。 As shown in FIG. 6 and the like, the fixing member 24 of the shock absorbing unit 20 is composed of a combination of a plurality of members. Specifically, the fixing member 24 includes a pair of tubular members 24a and 24b (that is, a first accommodating portion and a second accommodating portion) and a sleeve 24c arranged around the tubular members 24a and 24b. And knock pins 28a, 28b (that is, a maintenance portion). Further, the spring 22 is arranged inside the pair of tubular members 24a and 24b. In other words, a part of the spring 22 is housed inside one of the tubular members 24a, and a part of the spring 22 is also housed inside the other tubular member 24b. ing.
 また、筒状部材24a、24bには、それぞれ、略円形形状の開口27a、27bが設けられている。また、スリーブ24cにも、2つの略円形形状の開口27cがそれぞれ設けられている。そして、各開口27a、27bと、各開口27cとが対向した状態となるよう各筒状部材24a、24bおよびスリーブ24cが設置される。その後、略円柱形状のノックピン28aが各開口27a、27cに挿入されるとともに、略円柱形状のノックピン28bが各開口27b、27cに挿入されるようになっている。このような維持部分としての各ノックピン28a、28bにより、各筒状部材24a、24bが相対的に移動しないよう維持されるようになっている。このようにして、衝撃吸収ユニット20が組み立てられるようになっている。 Further, the tubular members 24a and 24b are provided with substantially circular openings 27a and 27b, respectively. Further, the sleeve 24c is also provided with two substantially circular openings 27c, respectively. Then, the tubular members 24a, 24b and the sleeve 24c are installed so that the openings 27a and 27b and the openings 27c face each other. After that, the substantially cylindrical knock pin 28a is inserted into the respective openings 27a and 27c, and the substantially cylindrical knock pin 28b is inserted into the respective openings 27b and 27c. By the knock pins 28a and 28b as such a maintenance portion, the tubular members 24a and 24b are maintained so as not to move relatively. In this way, the shock absorbing unit 20 can be assembled.
 また、各筒状部材24a、24bは、第1の外径を有しており、取付部材23が設けられる側の第1部分と、上記の第1の外径よりも大きい第2の外径を有する第2部分とを備えている。また、各筒状部材24a、24bの第1部分の内側には、ノックピン28aが破断したときにバネ22の伸びを許容しない固定部分25a、25bがそれぞれ形成されている。 Further, each of the tubular members 24a and 24b has a first outer diameter, and has a first portion on the side where the mounting member 23 is provided and a second outer diameter larger than the above first outer diameter. It is provided with a second portion having. Further, inside the first portions of the tubular members 24a and 24b, fixed portions 25a and 25b that do not allow the spring 22 to stretch when the knock pin 28a breaks are formed, respectively.
 より詳細には、図6等に示すように、各固定部分25a、25bは、それぞれバネ22の輪郭に沿った形状を有しており、各固定部分25a、25bの内面とバネ22の外面とが互いに接触した状態で配置されている。このため、衝撃吸収ユニット20の各取付部材23が互いに離れる方向にそれぞれ引っ張られてノックピン28aが破断部分に沿って破断した場合にも、バネ22における固定部分25a、25bと接触している箇所は図6に示す状態から伸びないようになっている。この場合には、破断部分は、ノックピン28aにおける筒状部材24aとスリーブ24cとが接触している部分の近傍の箇所となる。一方、各筒状部材24a、24bの第2部分の内側には、ノックピン28aが破断したときにバネ22の伸びを許容する開放部分26a、26bがそれぞれ形成されている。より詳細には、図7等に示すように、開放部分26a、26bはバネ22の輪郭とは異なる形状を有している。そして、バネ22が各筒状部材24a、24bの内部に収容されているときに、バネ22と各開放部分26a、26bとが接触しないようになっている。具体的には、各筒状部材24a、24bの開放部分26a、26bは、バネ22の外径の大きさよりも大きい内径を有する略円筒形状の部分から構成されている。 More specifically, as shown in FIG. 6 and the like, each of the fixed portions 25a and 25b has a shape along the contour of the spring 22, and the inner surface of each of the fixed portions 25a and 25b and the outer surface of the spring 22. Are placed in contact with each other. Therefore, even when the mounting members 23 of the shock absorbing unit 20 are pulled away from each other and the knock pin 28a breaks along the broken portion, the portion of the spring 22 that is in contact with the fixed portions 25a and 25b remains. It does not extend from the state shown in FIG. In this case, the broken portion is a portion near the portion of the knock pin 28a where the tubular member 24a and the sleeve 24c are in contact with each other. On the other hand, inside the second portions of the tubular members 24a and 24b, open portions 26a and 26b that allow the spring 22 to stretch when the knock pin 28a breaks are formed, respectively. More specifically, as shown in FIG. 7 and the like, the open portions 26a and 26b have a shape different from the contour of the spring 22. When the spring 22 is housed inside the tubular members 24a and 24b, the spring 22 and the open portions 26a and 26b do not come into contact with each other. Specifically, the open portions 26a and 26b of the tubular members 24a and 24b are composed of substantially cylindrical portions having an inner diameter larger than the outer diameter of the spring 22.
 なお、図6等に示す例では、右側のノックピン28aのせん断応力が5KNであり、左側のノックピン28bのせん断応力が20KNのものが用いられている。このため、衝撃吸収ユニット20に所定の閾値よりも大きい衝撃が加えられたときに、まず、ノックピン28aが破断してバネ22の伸びが許容されるようになっている(図8参照)。このようなノックピン28aの破断により、衝撃吸収ユニット20に与えられた衝撃の一部が吸収されるようになっている。上述したように、ノックピン28aは、筒状部材24aとスリーブ24cとが接触している箇所の近傍から破断するようになっており、図6等に示す衝撃吸収ユニット20においては、この箇所が固定部材24の破断部分に相当する。 In the example shown in FIG. 6 and the like, the one in which the shear stress of the knock pin 28a on the right side is 5 KN and the shear stress of the knock pin 28b on the left side is 20 KN are used. Therefore, when an impact larger than a predetermined threshold value is applied to the impact absorbing unit 20, the knock pin 28a is first broken to allow the spring 22 to stretch (see FIG. 8). By breaking the knock pin 28a in this way, a part of the shock applied to the shock absorbing unit 20 is absorbed. As described above, the knock pin 28a is designed to break from the vicinity of the portion where the tubular member 24a and the sleeve 24c are in contact with each other, and this portion is fixed in the shock absorbing unit 20 shown in FIG. 6 or the like. Corresponds to the broken portion of the member 24.
 また、上述したように、各筒状部材24a、24bの開放部分26a、26bはバネ22とは接触していないため、ノックピン28aが破断するとバネ22の伸びが許容されるようになる。また、バネ22の伸びが許容されると、当該バネ22が伸びることにより、衝撃吸収ユニット10に加えられた衝撃が更に吸収されるようになる。このように、衝撃吸収ユニット20は、ノックピン28aの破断およびバネ22の伸縮により衝撃を吸収するため、摩擦により衝撃を吸収する構成と比較してより効果的に衝撃を吸収することができる。また、ノックピン28aが破断した後に衝撃吸収ユニット20に更なる衝撃が加えられると、ノックピン28bも破断するようになる。 Further, as described above, since the open portions 26a and 26b of the tubular members 24a and 24b are not in contact with the spring 22, the spring 22 is allowed to stretch when the knock pin 28a is broken. Further, when the extension of the spring 22 is allowed, the extension of the spring 22 further absorbs the impact applied to the impact absorbing unit 10. As described above, since the shock absorbing unit 20 absorbs the shock by breaking the knock pin 28a and expanding and contracting the spring 22, the shock absorbing unit 20 can absorb the shock more effectively as compared with the configuration of absorbing the shock by friction. Further, if a further impact is applied to the shock absorbing unit 20 after the knock pin 28a is broken, the knock pin 28b is also broken.
 また、右側のノックピン28aのせん断応力が5KNであり、左側のノックピン28bのせん断応力が20KNのものが用いられる例について説明したが、このような構成に限定されることはない。ノックピン28a、28bのせん断応力が上述したものとは異なる値のものが用いられてもよいし、せん断応力が略同一であるノックピン28a、28bがそれぞれ用いられてもよい。なお、略同一の形状の衝撃吸収ユニット20であっても、構成が異なる各ノックピン28a、28bを用いることにより、衝撃吸収ユニット20の各ノックピン28a、28bが破断するときの衝撃の大きさの閾値を調整することができる。具体的には、各ノックピン28a、28bの材質や、直径の大きさを変更することにより、各ノックピン28a、28bが破断するときの衝撃の大きさの閾値を調整することができる。 Further, although the example in which the shear stress of the knock pin 28a on the right side is 5 KN and the shear stress of the knock pin 28b on the left side is 20 KN is used, the present invention is not limited to such a configuration. Knock pins 28a and 28b having shear stresses different from those described above may be used, or knock pins 28a and 28b having substantially the same shear stress may be used. Even if the shock absorbing units 20 have substantially the same shape, by using the knock pins 28a and 28b having different configurations, the threshold value of the magnitude of the shock when the knock pins 28a and 28b of the shock absorbing unit 20 are broken is the threshold value. Can be adjusted. Specifically, by changing the material and diameter of the knock pins 28a and 28b, the threshold value of the impact magnitude when the knock pins 28a and 28b break can be adjusted.
 なお、各筒状部材24a、24bに設けられる開口27a、27bの数は1つのみに限定されることはなく、各筒状部材24a、24bにそれぞれ2つ以上の開口27a、27bが設けられていてもよい。この場合、スリーブ24cには、各筒状部材24a、24bに設けられた開口27a、27bの総数と同じ数の開口27cがスリーブ24cに形成されるようになる。言い換えると、スリーブ24cには、各筒状部材24a、24bに設けられた開口27a、27bの総数と同じ数の開口27cが形成されるようになる。また、各開口27a、27b、27cを貫通するようノックピンがそれぞれ配置されるようになる。 The number of openings 27a and 27b provided in the tubular members 24a and 24b is not limited to one, and two or more openings 27a and 27b are provided in the tubular members 24a and 24b, respectively. You may be. In this case, the sleeve 24c is formed with the same number of openings 27c as the total number of the openings 27a, 27b provided in the tubular members 24a, 24b. In other words, the sleeve 24c is formed with the same number of openings 27c as the total number of openings 27a, 27b provided in the tubular members 24a, 24b. In addition, knock pins are arranged so as to penetrate the openings 27a, 27b, and 27c, respectively.
 また、本実施の衝撃吸収ユニット10の更に他の例として、図9乃至図13に示すものが用いられてもよい。図9乃至図13は、それぞれ、本発明の衝撃吸収ユニットの更に他の例の構成を説明するための上面図、断面図および説明図である。ここで、図10および図11は、それぞれ、衝撃吸収ユニットの更に他の例の構成を説明するための上面図および断面図である。また、図9、図12および図13は、それぞれ、構成を理解しやすくすることを目的として、断面図や上面図を組み合わせて衝撃吸収ユニットを描写した説明図である。 Further, as still another example of the shock absorbing unit 10 of the present embodiment, those shown in FIGS. 9 to 13 may be used. 9 to 13 are a top view, a cross-sectional view, and an explanatory view for explaining the configuration of still another example of the shock absorbing unit of the present invention, respectively. Here, FIGS. 10 and 11 are top views and cross-sectional views for explaining the configuration of still another example of the shock absorbing unit, respectively. Further, FIGS. 9, 12 and 13 are explanatory views depicting the shock absorbing unit by combining a cross-sectional view and a top view for the purpose of making the configuration easy to understand.
 図9乃至図13に示す衝撃吸収ユニット100は、伸縮可能なバネ120と、バネ120の周囲に配置されており、当該バネ120が伸縮しないよう固定するための固定部材130とを有している。また、衝撃吸収ユニット100に所定の閾値よりも大きい衝撃が加えられたときに固定部材130の一部(具体的には、後述する棒状部材152)が破断することにより、衝撃吸収ユニット100に加えられた衝撃を吸収するようになっている。 The shock absorbing unit 100 shown in FIGS. 9 to 13 has a stretchable spring 120 and a fixing member 130 arranged around the spring 120 so that the spring 120 does not stretch. .. Further, when an impact larger than a predetermined threshold value is applied to the shock absorbing unit 100, a part of the fixing member 130 (specifically, a rod-shaped member 152 described later) breaks, so that the shock absorbing unit 100 is added to the shock absorbing unit 100. It is designed to absorb the impact.
 具体的には、バネ120は略円筒形状の押しバネから構成されており、当該バネ120は長手方向に沿って(すなわち、図9における左右方向に沿って)伸縮することができるようになっている。図9等に示す例では、バネ120は、各コイル部分が密着するよう長手方向に沿って圧縮された状態で固定部材130により固定されている。また、図9等に示すように、バネ120の両端部にはそれぞれ取付部110a、110bが設けられている。そして、各取付部110a、110bにより、衝撃吸収ユニット100が後述する落石防止システム300のワイヤ本体330に取り付けられるようになっている(図20参照)。また、バネ120は、硬鋼線、ピアノ線やステンレス鋼線等から形成されている。 Specifically, the spring 120 is composed of a push spring having a substantially cylindrical shape, and the spring 120 can expand and contract along the longitudinal direction (that is, along the left-right direction in FIG. 9). There is. In the example shown in FIG. 9 and the like, the spring 120 is fixed by the fixing member 130 in a state of being compressed along the longitudinal direction so that the coil portions are in close contact with each other. Further, as shown in FIG. 9 and the like, mounting portions 110a and 110b are provided at both ends of the spring 120, respectively. Then, the shock absorbing unit 100 is attached to the wire main body 330 of the rockfall prevention system 300, which will be described later, by the attachment portions 110a and 110b (see FIG. 20). The spring 120 is made of a hard steel wire, a piano wire, a stainless steel wire, or the like.
 図9等に示すように、衝撃吸収ユニット100の固定部材130は、複数の部材を組み合わせたものから構成されている。具体的には、固定部材130は、一対の筒状部材130a、130b(すなわち、第1の収容部分および第2の収容部分)と、略円筒形状のバネ120の内部に設置される内側ハウジング140a、140bと、維持部分150とを有している。また、バネ120は、一対の筒状部材130a、130bの内側に配置されるようになっている。より詳細には、バネ120の一部が一方の筒状部材130aの内部に収容されるとともに、バネ120の残りの部分が他方の筒状部材130bの内部に収容されるようになっている。本実施の形態においては、各筒状部材130a、130bおよび各内側ハウジング140a、140bは、それぞれ、バネ120の長さ方向における略中央箇所で互いに接触するよう構成されている。そして、維持部分150により、このような状態が維持されるようになっている。 As shown in FIG. 9 and the like, the fixing member 130 of the shock absorbing unit 100 is composed of a combination of a plurality of members. Specifically, the fixing member 130 includes a pair of tubular members 130a and 130b (that is, a first accommodating portion and a second accommodating portion) and an inner housing 140a installed inside a substantially cylindrical spring 120. , 140b and a maintenance portion 150. Further, the spring 120 is arranged inside the pair of tubular members 130a and 130b. More specifically, a part of the spring 120 is housed inside one tubular member 130a, and the rest of the spring 120 is housed inside the other tubular member 130b. In the present embodiment, the tubular members 130a and 130b and the inner housings 140a and 140b are respectively configured to come into contact with each other at a substantially central portion in the length direction of the spring 120. Then, such a state is maintained by the maintenance portion 150.
 次に、維持部分150により、各筒状部材130a、130bが相対的に移動しないよう維持される構成について、図9乃至図12を参照して説明する。なお、各取付部110a、110b、各筒状部材130a、130bおよび各内側ハウジング140a、140bの構成は略同一である。このため、以下においては、一方の部材(図9における左側の部材)の構成について詳細に説明し、他方の部材(図9における右側の部材)の構成については説明を省略する場合がある。 Next, a configuration in which the tubular members 130a and 130b are maintained so as not to move relatively by the maintenance portion 150 will be described with reference to FIGS. 9 to 12. The configurations of the mounting portions 110a and 110b, the tubular members 130a and 130b, and the inner housings 140a and 140b are substantially the same. Therefore, in the following, the configuration of one member (the member on the left side in FIG. 9) may be described in detail, and the configuration of the other member (member on the right side in FIG. 9) may be omitted.
 取付部110aは、後述する落石防止システム300のワイヤ本体330が取り付けられる取付部分111aと、中間部分114aと、雄ネジ等の取付部が形成されたネジ部分116aとを有している。また、中間部分114aは、取付部分111aとネジ部分116aとの間に設けられており、筒状部材130aに形成された開口132a(図11参照)と略同一の外径となるよう形成されている。また、ネジ部分116aは、中間部分114aよりも小さい外径となるよう形成されている。このため、筒状部材130aの開口132aに取付部110aのネジ部分116aを通すことができるようになっている。この状態において、ネジ部分116aに対して筒状部材130aの開口132aよりも大きい外径を有するワッシャ117aとナット118aとを取り付ける。このことにより、取付部110aを筒状部材130aに対して固定することができる(図12参照)。なお、バネ120の内側に配置される内側ハウジング140aには、収容部142aが形成されている。このことにより、図12に示すように取付部110a、筒状部材130aおよび内側ハウジング140aが組み立てられたときに、取付部110aと内側ハウジング140aとが干渉してしまうことを防止することができるようになっている。 The mounting portion 110a has a mounting portion 111a to which the wire body 330 of the rockfall prevention system 300, which will be described later, is mounted, an intermediate portion 114a, and a screw portion 116a on which a mounting portion such as a male screw is formed. Further, the intermediate portion 114a is provided between the mounting portion 111a and the screw portion 116a, and is formed so as to have substantially the same outer diameter as the opening 132a (see FIG. 11) formed in the tubular member 130a. There is. Further, the screw portion 116a is formed so as to have an outer diameter smaller than that of the intermediate portion 114a. Therefore, the screw portion 116a of the mounting portion 110a can be passed through the opening 132a of the tubular member 130a. In this state, the washer 117a and the nut 118a having an outer diameter larger than the opening 132a of the tubular member 130a are attached to the screw portion 116a. As a result, the mounting portion 110a can be fixed to the tubular member 130a (see FIG. 12). An accommodating portion 142a is formed in the inner housing 140a arranged inside the spring 120. This makes it possible to prevent the mounting portion 110a and the inner housing 140a from interfering with each other when the mounting portion 110a, the tubular member 130a, and the inner housing 140a are assembled as shown in FIG. It has become.
 また、取付部110aには、ザグリ穴112aと、ザグリ穴112aよりも小さい直径の貫通穴119aとが形成されており、貫通穴119aの内部には維持部分150の棒状部材152が設置されるようになっている。また、棒状部材152の両端部には、それぞれナット154aを取り付けるためのネジ部分(図示せず)が形成されている。また、ナット154aとして、貫通穴119aよりも外径が大きいものが用いられるようになっている。このため、棒状部材152をザグリ穴112aおよび貫通穴119aの内部に配置した後、棒状部材152のネジ部分にナット154aを取り付けることにより、貫通穴119aから棒状部材152およびナット154aが抜けてしまうことを防止することができる。 Further, the mounting portion 110a is formed with a counterbore hole 112a and a through hole 119a having a diameter smaller than that of the counterbore hole 112a, so that the rod-shaped member 152 of the maintenance portion 150 is installed inside the through hole 119a. It has become. Further, screw portions (not shown) for attaching the nut 154a are formed at both ends of the rod-shaped member 152, respectively. Further, as the nut 154a, a nut having an outer diameter larger than that of the through hole 119a is used. Therefore, after arranging the rod-shaped member 152 inside the counterbore hole 112a and the through hole 119a, by attaching the nut 154a to the screw portion of the rod-shaped member 152, the rod-shaped member 152 and the nut 154a are pulled out from the through hole 119a. Can be prevented.
 また、図9に示すように、棒状部材152として、各取付部110a、110bの貫通穴119a、119bの深さ(長さ)と、各筒状部材130a、130bの長さとを足し合わせた値より大きい長さを有するものが用いられるようになっている。このため、棒状部材152を、各貫通穴119a、119bおよび各筒状部材130a、130bの内部に配置した状態において、棒状部材152の両端部に各ナット154a、154bを取り付けることができる。また、このことにより、一方の筒状部材130aと、他方の筒状部材130bとが相対的に移動しないよう維持することができるようになる。なお、図11等に示すように、内側ハウジング140aには貫通穴144aが設けられているため、維持部分150の棒状部材152と内側ハウジング140aとが干渉してしまうことが防止されるようになっている。 Further, as shown in FIG. 9, as the rod-shaped member 152, the value obtained by adding the depths (lengths) of the through holes 119a and 119b of the mounting portions 110a and 110b and the lengths of the tubular members 130a and 130b. Those with a larger length have come to be used. Therefore, the nuts 154a and 154b can be attached to both ends of the rod-shaped member 152 in a state where the rod-shaped member 152 is arranged inside the through holes 119a and 119b and the tubular members 130a and 130b. Further, this makes it possible to maintain that one tubular member 130a and the other tubular member 130b do not move relatively. As shown in FIG. 11 and the like, since the inner housing 140a is provided with a through hole 144a, it is possible to prevent the rod-shaped member 152 of the maintenance portion 150 from interfering with the inner housing 140a. ing.
 また、各貫通穴119aから棒状部材152が抜けてしまうことを防止するための抜け止め部材として、各ナット154a以外のものが用いられるようになっていてもよい。例えば、棒状部材152の周囲に配置された後、かしめられることによって棒状部材152に対して固定されるような抜け止め部材が用いられてもよい。あるいは、棒状部材152の端部に他の構成の抜け止め部材を溶接すること等により、棒状部材152が各貫通穴119aから抜けないようにしてもよい。 Further, as a retaining member for preventing the rod-shaped member 152 from coming off from each through hole 119a, a member other than each nut 154a may be used. For example, a retaining member that is placed around the rod-shaped member 152 and then fixed to the rod-shaped member 152 by being crimped may be used. Alternatively, the rod-shaped member 152 may be prevented from coming out of each through hole 119a by welding a retaining member having another configuration to the end portion of the rod-shaped member 152.
 また、バネ120の周囲に配置される、第1の収容部分および第2の収容部分としての筒状部材130a、130bの内側には、固定部分134a、134bと、開放部分136a、136bとがそれぞれ形成されている。また、各固定部分134a、134bは、維持部分150の棒状部材152が破断したときにバネ120の伸びを許容しないようになっている。具体的には、図9等に示すように、各固定部分134a、134bの内周面は、それぞれバネ120の輪郭に沿った形状を有しており、各固定部分134a、134bの内面とバネ120の外面とが互いに接触した状態となるよう配置されている。一方、各開放部分136a、136bは、バネ120が各筒状部材130a、130bの内部に収容されているときに、バネ120とが接触しない構成されている。このため、維持部分150の棒状部材152が破断したときに、バネ120における各開放部分136a、136bに対向する箇所の伸びを許容するようになっている。具体的には、各筒状部材130a、130bの開放部分136a、136bは、バネ120の外径の大きさよりも大きい内径を有する略円筒形状の部分から構成されている。 Further, inside the tubular members 130a and 130b as the first accommodating portion and the second accommodating portion arranged around the spring 120, the fixed portions 134a and 134b and the open portions 136a and 136b are respectively. It is formed. Further, each of the fixed portions 134a and 134b does not allow the extension of the spring 120 when the rod-shaped member 152 of the maintenance portion 150 breaks. Specifically, as shown in FIG. 9 and the like, the inner peripheral surfaces of the fixed portions 134a and 134b each have a shape along the contour of the spring 120, and the inner surfaces of the fixed portions 134a and 134b and the spring. It is arranged so that the outer surfaces of 120 are in contact with each other. On the other hand, each of the open portions 136a and 136b is configured so that the spring 120 does not come into contact with the spring 120 when the spring 120 is housed inside the tubular members 130a and 130b. Therefore, when the rod-shaped member 152 of the maintenance portion 150 is broken, the spring 120 is designed to allow the extension of the portion of the spring 120 facing each of the open portions 136a and 136b. Specifically, the open portions 136a and 136b of the tubular members 130a and 130b are composed of substantially cylindrical portions having an inner diameter larger than the outer diameter of the spring 120.
 また、略円筒形状のバネ120の内側に位置される各内側ハウジング140a、140bの外側には、固定部分146a、146bと、開放部分148a、148bとがそれぞれ形成されている。また、固定部分146a、146bは、維持部分150の棒状部材152が破断したときにバネ120の伸びを許容しないようになっている。具体的には、図9等に示すように、各固定部分146a、146bの外周面はそれぞれバネ120の輪郭に沿った形状を有しており、各固定部分146a、146bの外周面とバネ120の内周面とが互いに接触した状態となるよう配置されている。一方、各開放部分148a、148bは、各内側ハウジング140a、140bがバネ120の内部に収容されているときに、バネ120と接触しないよう構成されている。このため、維持部分150の棒状部材152が破断したときに、バネ120における各開放部分148a、148bに対向する箇所の伸びを許容するようになっている。具体的には、各内側ハウジング140a、140bの開放部分148a、148bは、バネ120の内径の大きさよりも小さい外径を有する略円筒形状の部分から構成されている。 Further, fixed portions 146a and 146b and open portions 148a and 148b are formed on the outside of the inner housings 140a and 140b located inside the substantially cylindrical spring 120, respectively. Further, the fixed portions 146a and 146b do not allow the spring 120 to stretch when the rod-shaped member 152 of the maintaining portion 150 breaks. Specifically, as shown in FIG. 9 and the like, the outer peripheral surfaces of the fixed portions 146a and 146b each have a shape along the contour of the spring 120, and the outer peripheral surfaces of the fixed portions 146a and 146b and the spring 120. It is arranged so that the inner peripheral surfaces of the springs are in contact with each other. On the other hand, the open portions 148a and 148b are configured so as not to come into contact with the spring 120 when the inner housings 140a and 140b are housed inside the spring 120. For this reason, when the rod-shaped member 152 of the maintenance portion 150 breaks, the spring 120 allows the extension of the portion of the spring 120 facing each of the open portions 148a and 148b. Specifically, the open portions 148a and 148b of the inner housings 140a and 140b are composed of substantially cylindrical portions having an outer diameter smaller than the inner diameter of the spring 120.
 上述したように、衝撃吸収ユニット100は、当該衝撃吸収ユニット100に所定の閾値よりも大きい衝撃が加えられたときに、棒状部材152が破断するようになっている。このような棒状部材152の破断により、衝撃吸収ユニット100に与えられた衝撃の一部が吸収されるようになっている。また、棒状部材152が破断すると、各筒状部材130a、130bが相対的に移動しないよう維持するための力が働かなくなるため、バネ120の伸びが許容されるようになる。また、バネ120の伸びが許容されると、当該バネ120が伸びることにより、衝撃吸収ユニット100に加えられた衝撃が更に吸収されるようになる(図13参照)。このように、衝撃吸収ユニット100は、棒状部材152の破断およびバネ22の伸縮により衝撃を吸収するため、摩擦により衝撃を吸収する構成と比較してより効果的に衝撃を吸収することができる。また、破断した棒状部材152を新しい棒状部材152に取り替えるだけで衝撃吸収ユニット100を再度使用することができるようになるため、利用者にとっての利便性を向上させることができる。 As described above, in the shock absorbing unit 100, the rod-shaped member 152 breaks when an impact larger than a predetermined threshold value is applied to the shock absorbing unit 100. Due to the breakage of the rod-shaped member 152, a part of the shock applied to the shock absorbing unit 100 is absorbed. Further, when the rod-shaped member 152 is broken, the force for maintaining the tubular members 130a and 130b so as not to move relatively does not work, so that the spring 120 is allowed to stretch. Further, when the extension of the spring 120 is allowed, the extension of the spring 120 further absorbs the impact applied to the shock absorbing unit 100 (see FIG. 13). As described above, since the shock absorbing unit 100 absorbs the shock by breaking the rod-shaped member 152 and expanding and contracting the spring 22, the shock absorbing unit 100 can absorb the shock more effectively as compared with the configuration in which the shock is absorbed by friction. Further, since the shock absorbing unit 100 can be used again only by replacing the broken rod-shaped member 152 with a new rod-shaped member 152, the convenience for the user can be improved.
 なお、図9等に示す維持部分150の棒状部材152は、所定の直径を備えた棒状のものであり破断部分は形成されていないが、このような態様に限定されることはない。棒状部材152の一部の直径を細くしたり、凹部や切り欠きを設けたりすることにより、棒状部材152に破断部分を形成するようにしてもよい。また、棒状部材152の直径や材質を変更することにより、棒状部材152が破断するときの衝撃の閾値を調整するようにしてもよい。 The rod-shaped member 152 of the maintenance portion 150 shown in FIG. 9 or the like is a rod-shaped member having a predetermined diameter and has no broken portion, but is not limited to such an embodiment. A broken portion may be formed in the rod-shaped member 152 by reducing the diameter of a part of the rod-shaped member 152 or by providing a recess or a notch. Further, the threshold value of the impact when the rod-shaped member 152 breaks may be adjusted by changing the diameter and the material of the rod-shaped member 152.
 なお、上述したように、取付部110a、各筒状部材130aおよび内側ハウジング140aの構成と、取付部110b、筒状部材130bおよび内側ハウジング140bの構成は略同一である。言い換えると、取付部110bは、取付部分111bと、ザグリ穴112bと、中間部分114bと、ネジ部分116bと、ワッシャ117bと、ナット118bと、貫通穴119bとを有している。また、筒状部材130bは、開口132bを更に有している。また、内側ハウジング140bは、収容部142bと、貫通穴144bとを更に有している。 As described above, the configurations of the mounting portion 110a, each tubular member 130a and the inner housing 140a are substantially the same as the configurations of the mounting portion 110b, the tubular member 130b and the inner housing 140b. In other words, the mounting portion 110b has a mounting portion 111b, a counterbore hole 112b, an intermediate portion 114b, a screw portion 116b, a washer 117b, a nut 118b, and a through hole 119b. Further, the tubular member 130b further has an opening 132b. Further, the inner housing 140b further has an accommodating portion 142b and a through hole 144b.
 また、各内側ハウジング140a、140bの設置が省略されていてもよい。なお、各内側ハウジング140a、140bを追加的に設置した場合には、バネ120が、各筒状部材130a、130bの固定部分134a、134bと、各内側ハウジング140a、140bの固定部分146a、146bとの間に挟まれるようになる。この場合には、バネ120における各固定部分134a、134b、146a、146bと接触している箇所が変形してしまうことをより確実に防止することができる。 Further, the installation of the inner housings 140a and 140b may be omitted. When the inner housings 140a and 140b are additionally installed, the spring 120 includes the fixing portions 134a and 134b of the tubular members 130a and 130b and the fixing portions 146a and 146b of the inner housings 140a and 140b. It will be sandwiched between. In this case, it is possible to more reliably prevent the portions of the spring 120 that are in contact with the fixed portions 134a, 134b, 146a, and 146b from being deformed.
 また、図9等に示す例では、第1の筒状部材および第2の筒状部材として略同一の長さを有するものを用いる態様や、各内側ハウジングとして略同一の長さを有するものを用いる態様について説明したが、このような構成に限定されることはない。例えば、それぞれ異なる長さを有する第1の筒状部材および第2の筒状部材や、各内側ハウジングを用いるようにしてもよい。 Further, in the example shown in FIG. 9 and the like, the first tubular member and the second tubular member having substantially the same length are used, and the inner housings having substantially the same length are used. Although the mode to be used has been described, the present invention is not limited to such a configuration. For example, a first tubular member and a second tubular member having different lengths, or each inner housing may be used.
 また、本実施の衝撃吸収ユニット10の他の例として、図14乃至図17に示すものが用いられてもよい。図14乃至図17は、それぞれ、本発明の衝撃吸収ユニットの更に他の例の構成を説明するための説明図、上面図および断面図である。ここで、図15および図16は、それぞれ、衝撃吸収ユニットの更に他の例の構成を説明するための上面図および断面図である。また、図14および図17は、それぞれ、構成を理解しやすくすることを目的として断面図や上面図を組み合わせて衝撃吸収ユニットを描写した説明図である。 Further, as another example of the shock absorbing unit 10 of the present embodiment, those shown in FIGS. 14 to 17 may be used. 14 to 17 are explanatory views, top views, and cross-sectional views for explaining the configuration of still another example of the shock absorbing unit of the present invention, respectively. Here, FIGS. 15 and 16 are top views and cross-sectional views for explaining the configuration of still another example of the shock absorbing unit, respectively. 14 and 17, respectively, are explanatory views depicting the shock absorbing unit by combining a cross-sectional view and a top view for the purpose of making the configuration easy to understand.
 図14乃至図17に示す衝撃吸収ユニット200は、伸縮可能なバネ220と、バネ220が伸縮しないよう固定するための固定部材230とを有している。より具体的には、バネ220は略円筒形状のものであり、固定部材230は当該バネ220の内側に配置されるようになっている。また、衝撃吸収ユニット200に所定の閾値よりも大きい衝撃が加えられたときに固定部材230(具体的には、破断部分238)が破断することにより、衝撃吸収ユニット200に加えられた衝撃を吸収するようになっている。 The shock absorbing unit 200 shown in FIGS. 14 to 17 has a stretchable spring 220 and a fixing member 230 for fixing the spring 220 so as not to stretch. More specifically, the spring 220 has a substantially cylindrical shape, and the fixing member 230 is arranged inside the spring 220. Further, when an impact larger than a predetermined threshold value is applied to the shock absorbing unit 200, the fixing member 230 (specifically, the broken portion 238) breaks to absorb the shock applied to the shock absorbing unit 200. It is designed to do.
 具体的には、バネ220は押しバネから構成されており、当該バネ220は長手方向に沿って(すなわち、図14における左右方向に沿って)伸縮することができるようになっている。図14等に示す例では、バネ220は、各コイル部分が密着するよう長手方向に沿って圧縮された状態で固定部材230により固定されている。また、バネ220は、硬鋼線、ピアノ線やステンレス鋼線等から形成されている。 Specifically, the spring 220 is composed of a push spring, and the spring 220 can expand and contract along the longitudinal direction (that is, along the left-right direction in FIG. 14). In the example shown in FIG. 14 and the like, the spring 220 is fixed by the fixing member 230 in a state of being compressed along the longitudinal direction so that the coil portions are in close contact with each other. The spring 220 is made of a hard steel wire, a piano wire, a stainless steel wire, or the like.
 また、図15等に示すように、固定部材230の両端部にはそれぞれ雌ねじ等の被取付部232が形成されており、これらの被取付部232に取付部210がそれぞれ取り付けられるようになっている。また、各取付部210により、衝撃吸収ユニット200が後述する落石防止システム300のワイヤ本体330に取り付けられるようになっている。なお、図14等に示す例では、各取付部210は、略U字形状の取付部分212を備えている。また、取付部分212は、バネ220の延びる方向(すなわち、図14における左右方向)に沿った軸を中心として固定部材230に対して回転可能となっている。また、取付部分212は、略U字形状の取付部分212の端部同士を結ぶ直線に沿った軸(すなわち、図14における上下方向に沿った軸)を中心として固定部材230に対して回転可能となっている。 Further, as shown in FIG. 15 and the like, attachment portions 232 such as female threads are formed at both ends of the fixing member 230, and attachment portions 210 are attached to these attachment portions 232, respectively. There is. Further, each mounting portion 210 allows the shock absorbing unit 200 to be mounted on the wire main body 330 of the rockfall prevention system 300, which will be described later. In the example shown in FIG. 14 and the like, each mounting portion 210 includes a substantially U-shaped mounting portion 212. Further, the mounting portion 212 is rotatable with respect to the fixing member 230 about an axis along the extending direction of the spring 220 (that is, the left-right direction in FIG. 14). Further, the mounting portion 212 is rotatable with respect to the fixing member 230 about an axis along a straight line connecting the ends of the substantially U-shaped mounting portion 212 (that is, an axis along the vertical direction in FIG. 14). It has become.
 また、固定部材230には、封止部材取付部233と、固定部分234と、開放部分236と、破断部分238とがそれぞれ形成されている。後述するように、各封止部材取付部233には、Oリング等の封止部材264、266が取り付けられるようになっている。また、各固定部分234は、破断部分238が破断したときにバネ220の伸びを許容しないよう構成されている。具体的には、各固定部分234の外周面は、それぞれバネ220の内周面の輪郭に沿った形状を有しており、各固定部材230の外周面とバネ220の内周面とが互いに接触した状態となるよう配置されている。一方、開放部分236は、各固定部材230がバネ220の内部に収容されているときに、バネ220とが接触しないよう構成されている。このため、固定部材230の破断部分238が破断したときにバネ220の伸びが許容されるようになっている。具体的には、固定部材230の開放部分236は、バネ220の内径の大きさよりも小さい外径を有する略円柱形状の部分から構成されている。 Further, the fixing member 230 is formed with a sealing member mounting portion 233, a fixing portion 234, an open portion 236, and a broken portion 238, respectively. As will be described later, sealing members 264 and 266 such as O-rings are attached to each sealing member mounting portion 233. Further, each fixed portion 234 is configured so as not to allow the spring 220 to stretch when the broken portion 238 is broken. Specifically, the outer peripheral surface of each fixed portion 234 has a shape along the contour of the inner peripheral surface of the spring 220, and the outer peripheral surface of each fixing member 230 and the inner peripheral surface of the spring 220 are mutually aligned. It is arranged so that it is in contact with each other. On the other hand, the open portion 236 is configured so that the fixing member 230 does not come into contact with the spring 220 when the fixing member 230 is housed inside the spring 220. Therefore, the extension of the spring 220 is allowed when the broken portion 238 of the fixing member 230 is broken. Specifically, the open portion 236 of the fixing member 230 is composed of a substantially cylindrical portion having an outer diameter smaller than the size of the inner diameter of the spring 220.
 また、衝撃吸収ユニット200においては、当該衝撃吸収ユニット200に所定の閾値よりも大きい衝撃が加えられたときに、固定部材230の破断部分238が破断してバネ220の伸びが許容されるようになっている(図17参照)。このような固定部材230の破断により、衝撃吸収ユニット200に与えられた衝撃の一部が吸収されるようになっている。また、固定部材230が破断すると、図14に示すような状態を維持するための力が働かなくなるため、バネ220の伸びが許容されるようになる。また、バネ220の伸びが許容されると、当該バネ220が伸びることにより、衝撃吸収ユニット200に加えられた衝撃が更に吸収されるようになる。このように、衝撃吸収ユニット200は、固定部材230の破断およびバネ220の伸縮により衝撃を吸収するため、摩擦により衝撃を吸収する構成と比較してより効果的に衝撃を吸収することができる。 Further, in the shock absorbing unit 200, when a shock larger than a predetermined threshold value is applied to the shock absorbing unit 200, the broken portion 238 of the fixing member 230 is broken and the spring 220 is allowed to stretch. (See Fig. 17). Due to such breakage of the fixing member 230, a part of the impact applied to the impact absorbing unit 200 is absorbed. Further, when the fixing member 230 is broken, the force for maintaining the state as shown in FIG. 14 does not work, so that the extension of the spring 220 is allowed. Further, when the extension of the spring 220 is allowed, the extension of the spring 220 further absorbs the impact applied to the impact absorbing unit 200. As described above, since the shock absorbing unit 200 absorbs the shock by breaking the fixing member 230 and expanding and contracting the spring 220, the shock absorbing unit 200 can absorb the shock more effectively as compared with the configuration in which the shock is absorbed by friction.
 なお、破断部分238は、固定部材230における直径の最も小さい箇所であり、図15等に示す例では、固定部材230の延びる方向における略中央箇所に破断部分238が形成されている。また、破断部分238の破断荷重(引張り応力)は、固定部材230の材質や破断部分238の直径の大きさ等に基づいて公知の方法により計算可能となっている。また、固定部材230の材質や、破断部分238の直径の大きさを変更することにより、破断部分238が破断するときの衝撃の大きさの閾値を調整することができる。また、固定部材230の延びる方向における略中央以外の箇所に破断部分238が形成されていてもよい。 The broken portion 238 is the portion having the smallest diameter in the fixing member 230, and in the example shown in FIG. 15 and the like, the fractured portion 238 is formed at a substantially central portion in the extending direction of the fixing member 230. Further, the breaking load (tensile stress) of the broken portion 238 can be calculated by a known method based on the material of the fixing member 230, the size of the diameter of the broken portion 238, and the like. Further, by changing the material of the fixing member 230 and the size of the diameter of the broken portion 238, the threshold value of the magnitude of the impact when the broken portion 238 is broken can be adjusted. Further, the fractured portion 238 may be formed at a position other than substantially the center in the extending direction of the fixing member 230.
 図14および図16等に示すように、衝撃吸収ユニット200は、バネ220の周囲に配置される保護部材と、保護部材と接触する位置に配置され、バネ220を液密に封止する封止部材262、264、266とを備えている。具体的には、保護部材は、第1の筒状部材240と、第2の筒状部材250とを組み合わせたものから構成されている。また、バネ220は、第1の筒状部材240および第2の筒状部材250の内部に配置されるようになっている。より詳細には、バネ220の一部が第1の筒状部材240の内部に収容されるとともに、バネ220の残りの部分が第2の筒状部材250の内部に収容されるようになっている。 As shown in FIGS. 14 and 16, the shock absorbing unit 200 is arranged at a position where the protective member is arranged around the spring 220 and is in contact with the protective member, and seals the spring 220 in a liquid-tight manner. It includes members 262, 264, and 266. Specifically, the protective member is composed of a combination of the first tubular member 240 and the second tubular member 250. Further, the spring 220 is arranged inside the first tubular member 240 and the second tubular member 250. More specifically, a part of the spring 220 is housed inside the first tubular member 240, and the rest of the spring 220 is housed inside the second tubular member 250. There is.
 また、第1の筒状部材240には開口242が形成されており、固定部材230の一方の端部(具体的には、一方の被取付部232)はこの開口242を介して第1の筒状部材240の外側に露出するようになっている。また、第2の筒状部材250には開口252が形成されており、固定部材230の他方の端部(具体的には、他方の被取付部232)はこの開口252を介して第2の筒状部材250の外側に露出するようになっている。そして、外部に露出している、固定部材230の各被取付部232に対して取付部210がそれぞれ取り付けられるようになっている。 Further, an opening 242 is formed in the first tubular member 240, and one end portion (specifically, one attached portion 232) of the fixing member 230 is formed through the opening 242. It is exposed to the outside of the tubular member 240. Further, an opening 252 is formed in the second tubular member 250, and the other end portion (specifically, the other attached portion 232) of the fixing member 230 is formed through the opening 252. It is exposed to the outside of the tubular member 250. Then, the attachment portion 210 is attached to each attachment portion 232 of the fixing member 230 exposed to the outside.
 また、第1の筒状部材240における開口242とは反対側の端部近傍には、当該第1の筒状部材240の周方向に沿って全周にわたって形成された凹部からなる封止部材取付部248が形成されている。また、第2の筒状部材250における開口252とは反対側の端部近傍には、第1の筒状部材240の端部の外径よりも大きい外径を有する延伸部258が設けられている。また、第2の筒状部材250の延伸部258は、第1の筒状部材240と第2の筒状部材250が図16に示すよう状態となるよう組合せられたときに、第1の筒状部材240における封止部材取付部248を含む領域を覆うような長さに形成されている。このため、第1の筒状部材240の封止部材取付部248に、Oリング等の封止部材262を取り付けることにより、第1の筒状部材240と第2の筒状部材250との接触部分から水等の液体が入ってしまいバネ220が濡れてしまうことを防止することができる(図14参照)。 Further, in the vicinity of the end of the first tubular member 240 on the side opposite to the opening 242, a sealing member is attached, which is composed of recesses formed over the entire circumference of the first tubular member 240 along the circumferential direction. Part 248 is formed. Further, in the vicinity of the end portion of the second tubular member 250 opposite to the opening 252, an extension portion 258 having an outer diameter larger than the outer diameter of the end portion of the first tubular member 240 is provided. There is. Further, the extension portion 258 of the second tubular member 250 is a first cylinder when the first tubular member 240 and the second tubular member 250 are combined so as to be in the state shown in FIG. The length is formed so as to cover the region of the shape member 240 including the sealing member mounting portion 248. Therefore, by attaching a sealing member 262 such as an O-ring to the sealing member mounting portion 248 of the first tubular member 240, the first tubular member 240 and the second tubular member 250 come into contact with each other. It is possible to prevent the spring 220 from getting wet due to liquid such as water entering from the portion (see FIG. 14).
 また、固定部材230の周方向に沿って全周にわたって形成された凹部からなる各封止部材取付部233には、Oリング等の封止部材262、264が設置されるようになっている。図14に示すように、固定部材230の一方の端部に設けられた封止部材取付部233と、第1の筒状部材240との間には、封止部材264が取り付けられるようになっている。また、固定部材230に形成された他方の封止部材取付部233と、第2の筒状部材250との間には、封止部材266が取り付けられるようになっている。これらの封止部材262、264により、第1の筒状部材240の開口242や第2の筒状部材250の開口252から水等の液体が入ってきた場合にも、バネ220が濡れてしまうことを防止することができる。 Further, sealing members 262 and 264 such as O-rings are installed in each sealing member mounting portion 233 formed of recesses formed over the entire circumference of the fixing member 230 in the circumferential direction. As shown in FIG. 14, a sealing member 264 is mounted between the sealing member mounting portion 233 provided at one end of the fixing member 230 and the first tubular member 240. ing. Further, a sealing member 266 is mounted between the other sealing member mounting portion 233 formed on the fixing member 230 and the second tubular member 250. Due to these sealing members 262 and 264, the spring 220 also gets wet when a liquid such as water enters through the opening 242 of the first tubular member 240 or the opening 252 of the second tubular member 250. Can be prevented.
 また、第1の筒状部材240の内側および第2の筒状部材250の内側には、それぞれ、固定部分244、254と、開放部分246、256が形成されている。具体的には、各固定部分244、254は、固定部材230の破断部分238が破断したときにバネ220の伸びを許容しないよう構成されている。図14等に示すように、各固定部分244、254の内周面は、それぞれバネ220の輪郭に沿った形状を有しており、各固定部分244、254の内周面とバネ220の外周面とが互いに接触した状態となるよう配置されている。一方、各開放部分246、256は、バネ220が第1の筒状部材240および第2の筒状部材250の内部に収容されているときに、バネ220と接触しないよう構成されている。このため、固定部材230の破断部分238が破断したときにバネ220の伸びが許容されるようになっている。具体的には、第1の筒状部材240および第2の筒状部材250の各開放部分246、256は、バネ220の外径の大きさよりも大きい内径を有する略円筒形状の部分から構成されている。 Further, fixed portions 244 and 254 and open portions 246 and 256 are formed inside the first tubular member 240 and inside the second tubular member 250, respectively. Specifically, each of the fixing portions 244 and 254 is configured so as not to allow the extension of the spring 220 when the broken portion 238 of the fixing member 230 is broken. As shown in FIG. 14 and the like, the inner peripheral surface of each of the fixed portions 244 and 254 has a shape along the contour of the spring 220, and the inner peripheral surface of each of the fixed portions 244 and 254 and the outer peripheral surface of the spring 220. They are arranged so that the surfaces are in contact with each other. On the other hand, each of the open portions 246 and 256 is configured so as not to come into contact with the spring 220 when the spring 220 is housed inside the first tubular member 240 and the second tubular member 250. Therefore, the extension of the spring 220 is allowed when the broken portion 238 of the fixing member 230 is broken. Specifically, each of the open portions 246 and 256 of the first tubular member 240 and the second tubular member 250 is composed of a substantially cylindrical portion having an inner diameter larger than the outer diameter of the spring 220. ing.
 なお、上述した衝撃吸収ユニット200の第1の筒状部材240および第2の筒状部材250に、それぞれグリスを注入するためのグリス注入口を形成するようにしてもよい。この場合にも、対応する形状のキャップを各グリス注入口に取り付けることにより、当該グリス注入口から水等の液体が浸入してしまうことを防止することができる。 Note that grease injection ports for injecting grease may be formed in the first tubular member 240 and the second tubular member 250 of the shock absorbing unit 200 described above, respectively. Also in this case, by attaching a cap having a corresponding shape to each grease injection port, it is possible to prevent liquid such as water from infiltrating from the grease injection port.
 ここで、従来技術の衝撃吸収ユニット50を図18に示す。従来技術の衝撃吸収ユニット50においては、ワイヤ本体52の一部が径方向において重なるよう環状に一巻きされており、この重ねられた部分が緊締部材54によりかしめられることによって環状の部分が固定されるようになっている。また、衝撃吸収ユニット50に加えられた衝撃の一部は、ワイヤ本体52同士の間に働く摩擦力およびワイヤ本体52と緊締部材54との間に働く摩擦力より吸収されるようになっている。すなわち、衝撃が吸収される際に、ワイヤ本体52における環状の部分の輪の大きさが小さくなるようになっている。これに対し、本実施の形態による衝撃吸収ユニット10、20、100、200は、上述したように固定部材14、24、152、230を破断させるようになっている。そして、バネ12、22、120、220を伸縮させることにより衝撃を吸収するようになっている。このため、摩擦により衝撃を吸収する従来技術よりも高い衝撃吸収効果を奏することができる。また、上述した所定の閾値よりも小さい衝撃が衝撃吸収ユニット10、20、100、200に加えられても、固定部材14、24、152、230が破断しないようになっている。このため、小さい衝撃でもワイヤが伸びやすい従来技術のものと比較して衝撃吸収ユニット10、20、100、200のメンテナンスや交換を行う間隔を長くすることができ、衝撃吸収ユニット10、20、100、200の利便性を向上させることができる。また、破断した固定部材14、24、152、230が飛散してしまうことを防止することができる。 Here, the shock absorbing unit 50 of the prior art is shown in FIG. In the shock absorbing unit 50 of the prior art, a part of the wire main body 52 is wound in an annular shape so as to overlap in the radial direction, and the overlapped portion is crimped by the tightening member 54 to fix the annular portion. It has become so. Further, a part of the impact applied to the shock absorbing unit 50 is absorbed by the frictional force acting between the wire main bodies 52 and the frictional force acting between the wire main body 52 and the tightening member 54. .. That is, when the impact is absorbed, the size of the ring of the annular portion of the wire body 52 becomes smaller. On the other hand, the shock absorbing units 10, 20, 100, and 200 according to the present embodiment break the fixing members 14, 24, 152, and 230 as described above. Then, the springs 12, 22, 120, and 220 are expanded and contracted to absorb the impact. Therefore, it is possible to obtain a higher impact absorption effect than the conventional technique of absorbing impact by friction. Further, even if an impact smaller than the above-mentioned predetermined threshold value is applied to the shock absorbing units 10, 20, 100, 200, the fixing members 14, 24, 152, and 230 are prevented from breaking. For this reason, it is possible to lengthen the interval for maintenance and replacement of the shock absorbing units 10, 20, 100, and 200 as compared with the conventional technology in which the wire is easily stretched even with a small impact, and the shock absorbing units 10, 20, 100 can be extended. , 200 conveniences can be improved. In addition, it is possible to prevent the broken fixing members 14, 24, 152, and 230 from being scattered.
 なお、バネ12、22、120、220として上述した押しバネを使用する場合に、当該バネ12、22、120、220を圧縮した状態で固定部材14、24、152、230により固定する構成に限定されることはない。各コイル部分の間に隙間が存在するような、コイル部分が圧縮されていない状態のバネ12、22、120、220を固定部材14、24、152、230により固定するようにしてもよい。あるいは、バネ12、22、120、220として、上述した押しバネの代わりに、略円筒形状の引きバネ(引張コイルバネ)を用いるようにしてもよい。ここで、引きバネ(引張コイルバネ)とは、概してバネ部分を形成する各コイル間に隙間が生じないよう各コイル部分が予め密着した状態で巻かれたものである。 When the push spring described above is used as the springs 12, 22, 120, 220, the springs 12, 22, 120, 220 are limited to a configuration in which the springs 12, 22, 120, and 220 are fixed by the fixing members 14, 24, 152, and 230 in a compressed state. Will not be done. The springs 12, 22, 120, 220 in a state where the coil portions are not compressed so that there is a gap between the coil portions may be fixed by the fixing members 14, 24, 152, 230. Alternatively, as the springs 12, 22, 120, and 220, a substantially cylindrical pull spring (tension coil spring) may be used instead of the push spring described above. Here, the pull spring (tension coil spring) is generally wound with the coil portions in close contact with each other so as not to form a gap between the coils forming the spring portion.
 次に、本実施の衝撃吸収ユニット10、20、100、200を用いた落石防止システムの一例として、図19および図20に示すような、衝撃吸収ユニット10を備えた落石防止システム300について説明する。また、図20において、山等の斜面400に沿って落ちる落下物を参照符号Dで表示している。なお、以下では、衝撃吸収ユニット10を含む落石防止システム300について説明するが、衝撃吸収ユニット10の代わりに衝撃吸収ユニット20、100、200を用いて落石防止システムを構成するようにしてもよい。 Next, as an example of the rockfall prevention system using the shock absorbing units 10, 20, 100, 200 of the present implementation, the rockfall prevention system 300 provided with the shock absorbing unit 10 as shown in FIGS. 19 and 20 will be described. .. Further, in FIG. 20, a falling object falling along a slope 400 such as a mountain is indicated by reference numeral D. Although the rockfall prevention system 300 including the shock absorbing unit 10 will be described below, the rockfall prevention system may be configured by using the shock absorbing units 20, 100, and 200 instead of the shock absorbing unit 10.
 図19および図20に示す落石防止システム300は、山等の斜面400に設置することにより、当該斜面400に沿って山側から谷側に向かって落ちる石等の落下物(例えば、図20において参照符号Dにより示すもの)を受け止めるために用いられるものである。また、落石防止システム300は、支柱310と、各支柱310に張架された落下物受止部材320と、支柱310と山側の斜面400との間に張られたワイヤ本体330と、ワイヤ本体330に接続された衝撃吸収ユニット10とを有している。具体的には、支柱310は所定の間隔を空けて斜面400に配置されており、各支柱310に張架された落下物受止部材320は、斜面400に沿って落ちる落下物を受け止めるようになっている。そして、落下物受止部材320により落下物が受け止められたときの衝撃が衝撃吸収ユニット10等により吸収されるようになっている。 When the rockfall prevention system 300 shown in FIGS. 19 and 20 is installed on a slope 400 such as a mountain, a falling object such as a stone that falls from the mountain side to the valley side along the slope 400 (see, for example, FIG. 20). It is used to receive (indicated by reference numeral D). Further, the rockfall prevention system 300 includes a support column 310, a falling object receiving member 320 stretched on each support column 310, a wire body 330 stretched between the support column 310 and the slope 400 on the mountain side, and a wire body 330. It has a shock absorbing unit 10 connected to. Specifically, the columns 310 are arranged on the slope 400 at predetermined intervals, and the falling object receiving member 320 stretched on each column 310 receives the falling object falling along the slope 400. It has become. Then, the impact when the falling object is received by the falling object receiving member 320 is absorbed by the shock absorbing unit 10 or the like.
 また、ワイヤ本体330は複数のワイヤ部分から構成されており、各ワイヤ部分の端部には、当該ワイヤ部分と衝撃吸収ユニット10とを接続する接続部材として環状部材が設けられている。そして、各ワイヤ部分の環状部材に衝撃吸収ユニット10の各フック13の先端が挿入されることにより、ワイヤ本体330と衝撃吸収ユニット10とが接続されるようになっている。なお、ワイヤ本体330の各ワイヤ部分と、衝撃吸収ユニット10の各フック13とを溶接等により接続するようにしてもよい。また、ワイヤ本体330の各ワイヤ部分の端部に、環状部材とは異なる接続部材を設けるようにしてもよい。なお、衝撃吸収ユニット20、100、200を用いて落石防止システム300を構成する場合には、別途適切な接続部材がワイヤ本体330の各ワイヤ部分に設けられるようになる。 Further, the wire main body 330 is composed of a plurality of wire portions, and an annular member is provided at the end of each wire portion as a connecting member for connecting the wire portion and the shock absorbing unit 10. Then, the tip of each hook 13 of the shock absorbing unit 10 is inserted into the annular member of each wire portion, so that the wire main body 330 and the shock absorbing unit 10 are connected to each other. Each wire portion of the wire body 330 and each hook 13 of the shock absorbing unit 10 may be connected by welding or the like. Further, a connecting member different from the annular member may be provided at the end of each wire portion of the wire main body 330. When the rockfall prevention system 300 is configured by using the shock absorbing units 20, 100, and 200, an appropriate connecting member is separately provided for each wire portion of the wire main body 330.
 また、図19等に示す落石防止システム300では、複数のワイヤ部分からなる1つのワイヤ本体330に複数(具体的には、2つ)の衝撃吸収ユニット10が直列に並ぶよう接続されている。本実施の形態においては、衝撃吸収ユニット10に衝撃が加えられたときに固定部材14が破断する衝撃の大きさの閾値が互いに異なるものが用いられるようになっている。このような構成によれば、落石防止システム300において様々な大きさの衝撃を適切に吸収することができるようになる。一例として、上記の衝撃の大きさの閾値が第1の値である固定部材14を備えた各衝撃吸収ユニット10と、衝撃の大きさの閾値が第1の値よりも大きい第2の値である固定部材14を備えた衝撃吸収ユニット10とが設けられているケースを考える。この場合には、第1の値よりも大きいが第2の値よりも小さい衝撃が各衝撃吸収ユニット10に加えられたときには、衝撃の大きさの閾値が第1の値である一方の衝撃吸収ユニット10の固定部材14のみが破断するようになる。一方、第1の値と第2の値とを合計した値より大きい衝撃が各衝撃吸収ユニット10に加えられたときには、両方の衝撃吸収ユニット10の固定部材14がそれぞれ破断するようになる。また、第1の値よりも大きく、第1の値と第2の値とを合計した値よりも小さい衝撃が衝撃吸収ユニット10に加えられたときには、どちらか一方の衝撃吸収ユニット10の固定部材14が破断するようになる。 Further, in the rockfall prevention system 300 shown in FIG. 19 and the like, a plurality of (specifically, two) shock absorbing units 10 are connected in series to one wire main body 330 composed of a plurality of wire portions. In the present embodiment, the ones having different threshold values of the magnitude of the impact at which the fixing member 14 breaks when an impact is applied to the impact absorbing unit 10 are used. According to such a configuration, the rockfall prevention system 300 can appropriately absorb impacts of various sizes. As an example, each impact absorbing unit 10 provided with the fixing member 14 having the above-mentioned impact magnitude threshold value of the first value, and a second value having the impact magnitude threshold value larger than the first value. Consider a case in which a shock absorbing unit 10 provided with a certain fixing member 14 is provided. In this case, when an impact larger than the first value but smaller than the second value is applied to each impact absorption unit 10, the impact absorption threshold value is the first value. Only the fixing member 14 of the unit 10 breaks. On the other hand, when an impact larger than the sum of the first value and the second value is applied to each impact absorbing unit 10, the fixing members 14 of both impact absorbing units 10 are broken. Further, when an impact larger than the first value and smaller than the sum of the first value and the second value is applied to the shock absorbing unit 10, the fixing member of either one of the shock absorbing units 10 is applied. 14 will break.
 なお、複数のワイヤ部分からなる1つのワイヤ本体330に接続される衝撃吸収ユニット10に数は2つに限定されることはない。1つのワイヤ本体330に1つの衝撃吸収ユニット10のみが接続されていてもよく、1つのワイヤ本体330に3つ以上の衝撃吸収ユニット10が接続されていてもよい。また、衝撃吸収ユニット10に衝撃が加えられたときに固定部材14が破断する衝撃の大きさの閾値が略同一である複数のものが直接に並ぶよう用いられてもよい。 The number of shock absorbing units 10 connected to one wire main body 330 composed of a plurality of wire portions is not limited to two. Only one shock absorbing unit 10 may be connected to one wire main body 330, or three or more shock absorbing units 10 may be connected to one wire main body 330. Further, a plurality of units having substantially the same threshold value of the magnitude of the impact at which the fixing member 14 breaks when an impact is applied to the impact absorbing unit 10 may be directly arranged.
 また、各支柱310は、斜面400に固定された各ベース部材312を介して斜面400から見て高さレベルの略等しい箇所に設置されている。また、図20に示すように、各支柱310と各ベース部材312とは、例えば両側開きのヒンジ314により接続されている。このため、各支柱310を各ベース部材312(すなわち、斜面400)に対して揺動させることができるようになっている(図20の矢印A参照)。このことにより、落下物受止部材320により落下物が受け止められたときに各支柱310に作用する応力を軽減することができるようになっている。なお、各支柱310と各ベース部材312とを接続する部材は上述したヒンジ314に限定されることはく、他の部材が用いられるようになっていてもよい。 Further, each support column 310 is installed at a position substantially equal in height level when viewed from the slope 400 via each base member 312 fixed to the slope 400. Further, as shown in FIG. 20, each support column 310 and each base member 312 are connected by, for example, a hinge 314 that opens on both sides. Therefore, each support column 310 can be swung with respect to each base member 312 (that is, the slope 400) (see arrow A in FIG. 20). As a result, the stress acting on each column 310 when the falling object is received by the falling object receiving member 320 can be reduced. The member connecting each support column 310 and each base member 312 is not limited to the hinge 314 described above, and other members may be used.
 また、図19および図20に示す落石防止システム300においては、落下物を受け止める落下物受止部材320として金網が用いられるようになっている。なお、落下物受止部材として、例えば、金属の棒およびプレート等から構成される柵や、リング状のネットが用いられるようになっていてもよい。 Further, in the rockfall prevention system 300 shown in FIGS. 19 and 20, a wire mesh is used as a falling object receiving member 320 for receiving a falling object. As the falling object receiving member, for example, a fence made of a metal rod, a plate, or the like, or a ring-shaped net may be used.
 ここで、従来の落石防止システムとして、落下物受止部材に接続された、図18に示すようなワイヤの伸びを許容することによって落下物受止部材により落下物を受け止めたときにワイヤに加えられる衝撃を吸収する衝撃吸収ユニットを用いるものが知られている。しかしながら、上記の構成では与えられる衝撃の大きさが小さいときにもワイヤが伸びるようになっており、小さい衝撃でもワイヤが伸びやすいため比較的短い間隔でワイヤのメンテナンスを行う必要があるという問題があった。これに対し、本実施の形態による落石防止システム300によれば、所定の閾値よりも大きい衝撃が加えられたときにのみ衝撃を吸収する衝撃吸収ユニット10が用いられるようになっている。このことにより、落石防止システム300のメンテナンスの手間を軽減させることができるようになる。 Here, as a conventional rock fall prevention system, by allowing the wire connected to the falling object receiving member to stretch as shown in FIG. 18, when the falling object is received by the falling object receiving member, the wire is added to the wire. It is known to use a shock absorbing unit that absorbs the shock. However, in the above configuration, the wire is stretched even when the magnitude of the impact applied is small, and the wire is easily stretched even with a small impact, so there is a problem that it is necessary to perform maintenance of the wire at relatively short intervals. there were. On the other hand, according to the rockfall prevention system 300 according to the present embodiment, the shock absorbing unit 10 that absorbs the shock only when a shock larger than a predetermined threshold value is applied is used. This makes it possible to reduce the time and effort required for maintenance of the rockfall prevention system 300.
 また、落石防止システム300のワイヤ本体330および衝撃吸収ユニット10が略直線状に延びた状態で設置されるため、衝撃吸収ユニット10の固定部材14が破断した後にワイヤ本体330への悪影響を抑制することができるようになっている。すなわち、図18に示すような従来技術の衝撃吸収ユニット50においては、ワイヤ本体52は環状に一巻きされた状態で緊締部材54によりかしめられている。このため、衝撃吸収ユニット50が衝撃を吸収した後(すなわち、環状の部分が縮小した後)にもワイヤ本体52は環状に一巻きされた状態となる。この状態において衝撃吸収ユニット50に更に衝撃が加えられた場合には、ワイヤ本体52と緊締部材54とが接触している箇所に大きな負荷がかかり、当該箇所からワイヤ本体52が破断してしまう可能性がある。これに対し、本実施の形態においては、ワイヤ本体330および衝撃吸収ユニット10が略直線状に延びた状態で設置されるようになっているため、上述した問題が発生してしまうことを防止することができる。また、衝撃吸収ユニット10の固定部材14が破断した後にワイヤ本体330が捩れてしまうことを防止することができる。 Further, since the wire main body 330 and the shock absorbing unit 10 of the rockfall prevention system 300 are installed in a substantially linearly extended state, adverse effects on the wire main body 330 are suppressed after the fixing member 14 of the shock absorbing unit 10 is broken. You can do it. That is, in the shock absorbing unit 50 of the prior art as shown in FIG. 18, the wire main body 52 is crimped by the tightening member 54 in a state of being wound once in an annular shape. Therefore, even after the shock absorbing unit 50 absorbs the shock (that is, after the annular portion is reduced), the wire main body 52 is in a state of being wound once in an annular shape. If a further impact is applied to the shock absorbing unit 50 in this state, a large load is applied to the portion where the wire body 52 and the tightening member 54 are in contact with each other, and the wire body 52 may break from the location. There is sex. On the other hand, in the present embodiment, since the wire body 330 and the shock absorbing unit 10 are installed in a state of extending substantially linearly, it is possible to prevent the above-mentioned problems from occurring. be able to. Further, it is possible to prevent the wire body 330 from being twisted after the fixing member 14 of the shock absorbing unit 10 is broken.
 以上のような構成からなる、衝撃を吸収するための衝撃吸収ユニット10、20、100、200は、伸縮可能なバネ12、22、120、220と、バネ12、22、120、220を固定するための固定部材14、24、130、230とを有している。そして、衝撃吸収ユニット10、20、100、200に加えられた衝撃の大きさが所定の閾値よりも大きいときに固定部材14、24、130、230が破断するようになっている。このように、所定の閾値よりも大きい衝撃が加えられたときにのみ固定部材14、24、130、230が破断するとともにバネ12、22、120、220が伸縮するようになっている。このため、固定部材14、24、130、230が破断する際に衝撃を吸収するようにすることができる。また、固定部材14、24、130、230が破断することにより衝撃を吸収するようになっているため、摩擦により衝撃を吸収する構成と比較してより効果的に衝撃を吸収することができる。また、衝撃吸収ユニット10、20、100、200においては、バネ12、22、120、220は押しバネまたは引きバネである。また、バネ12、22、120、220として押しバネが用いられる場合には、固定部材14、24、130、230は、長手方向に沿って圧縮された状態のバネ12、22、120、220を固定するようになっている。 The shock absorbing units 10, 20, 100, and 200 for absorbing shocks having the above configuration fix the expandable springs 12, 22, 120, 220 and the springs 12, 22, 120, 220. It has fixing members 14, 24, 130, 230 for the purpose. Then, the fixing members 14, 24, 130, and 230 are broken when the magnitude of the impact applied to the impact absorbing units 10, 20, 100, and 200 is larger than a predetermined threshold value. As described above, the fixing members 14, 24, 130 and 230 are broken and the springs 12, 22, 120 and 220 are expanded and contracted only when an impact larger than a predetermined threshold value is applied. Therefore, it is possible to absorb the impact when the fixing members 14, 24, 130, and 230 break. Further, since the fixing members 14, 24, 130, and 230 are broken to absorb the impact, the impact can be absorbed more effectively as compared with the configuration in which the impact is absorbed by friction. Further, in the shock absorbing units 10, 20, 100, 200, the springs 12, 22, 120, 220 are push springs or pull springs. When a push spring is used as the springs 12, 22, 120, 220, the fixing members 14, 24, 130, 230 have the springs 12, 22, 120, 220 compressed along the longitudinal direction. It is designed to be fixed.
 また、上述した衝撃吸収ユニット10、20、100、200においては、固定部材14、24、152、230には破断部分18、238が設けられている。そして、衝撃吸収ユニット10、20、100、200に加えられた衝撃の大きさが所定の閾値よりも大きいときに、固定部材14、24、152、230が破断部分18、238に沿って破断するようになっている。このように、破断部分18、238を設ける場合には、固定部材14、24、152、230がどの箇所から破断するかを指定することができるため、衝撃吸収ユニット10、20、100、200の利便性を向上させることができる。 Further, in the shock absorbing units 10, 20, 100, and 200 described above, the fixing members 14, 24, 152, and 230 are provided with broken portions 18, 238. Then, when the magnitude of the impact applied to the impact absorbing units 10, 20, 100, 200 is larger than a predetermined threshold value, the fixing members 14, 24, 152, 230 are fractured along the fractured portions 18, 238. It has become like. In this way, when the fractured portions 18, 238 are provided, it is possible to specify from which location the fixing members 14, 24, 152, and 230 are fractured, so that the shock absorbing units 10, 20, 100, and 200 can be specified. Convenience can be improved.
 また、上述した衝撃吸収ユニット10においては、固定部材14はバネ12の周囲に配置されており、当該固定部材14、24の内側には、固定部分15と、開放部分16とが形成されている。また、固定部分15は、固定部材14が破断したときにバネ12の伸びを許容しないようになっている。また、開放部分16は、固定部材14が破断したときにバネ12の伸びを許容するようになっている。 Further, in the shock absorbing unit 10 described above, the fixing member 14 is arranged around the spring 12, and the fixing portion 15 and the open portion 16 are formed inside the fixing members 14 and 24. .. Further, the fixing portion 15 does not allow the extension of the spring 12 when the fixing member 14 is broken. Further, the open portion 16 allows the spring 12 to stretch when the fixing member 14 breaks.
 また、上述した衝撃吸収ユニット20、100においては、固定部材24、130は、第1の収容部分24a、130aと、第2の収容部分24b、130bと、維持部分150とを有している。また、第1の収容部分24a、130aは、バネ22、120の一部を内部に収容するようになっており、第2の収容部分24b、130bは、バネ22、120の一部を内部に収容するようになっている。また、維持部分28a、150は、第1の収容部分24a、130aと第2の収容部分24b、130bとが相対的に移動しないよう維持するようになっている。そして、衝撃吸収ユニット20、100に加えられた衝撃の大きさが所定の閾値よりも大きいときに維持部分28a、150が破断するようになっている。また、固定部材24、130の第1の収容部分24a、130aおよび第2の収容部分24b、130bの内側には、固定部分25a、25b、134a、134bと、開放部分26a、26b、136a、136bとがそれぞれ形成されている。また、固定部分25a、25b、134a、134bは、維持部分28a、150が破断したときにバネ22、120の伸びを許容しないようになっている。また、開放部分26a、26b、136a、136bは、維持部分28a、150が破断したときにバネ22、120の伸びを許容するようになっている。 Further, in the shock absorbing units 20 and 100 described above, the fixing members 24 and 130 have first accommodating portions 24a and 130a, second accommodating portions 24b and 130b, and a maintenance portion 150. Further, the first accommodating portions 24a and 130a accommodate a part of the springs 22 and 120 inside, and the second accommodating portions 24b and 130b accommodate a part of the springs 22 and 120 inside. It is designed to be accommodated. Further, the maintenance portions 28a and 150 are designed to maintain the first accommodating portions 24a and 130a so that the second accommodating portions 24b and 130b do not move relatively. Then, when the magnitude of the impact applied to the impact absorbing units 20 and 100 is larger than a predetermined threshold value, the maintenance portions 28a and 150 are broken. Further, inside the first accommodating portions 24a, 130a and the second accommodating portions 24b, 130b of the fixing members 24, 130, the fixing portions 25a, 25b, 134a, 134b and the open portions 26a, 26b, 136a, 136b And are formed respectively. Further, the fixed portions 25a, 25b, 134a and 134b do not allow the springs 22 and 120 to stretch when the maintenance portions 28a and 150 are broken. Further, the open portions 26a, 26b, 136a and 136b allow the springs 22 and 120 to stretch when the maintenance portions 28a and 150 are broken.
 また、上述した衝撃吸収ユニット100においては、固定部材130の維持部分150は、バネ120の内部に配置される棒状部材152を含んでいる。そして、衝撃吸収ユニット100に加えられた衝撃の大きさが所定の閾値よりも大きいときに棒状部材152が破断することにより、衝撃が吸収されるようになっている。このため、棒状部材152が破断しても、この棒状部材152と新しい棒状部材152を取り換えるだけで、衝撃吸収ユニット100を再度使用することができる。 Further, in the shock absorbing unit 100 described above, the maintenance portion 150 of the fixing member 130 includes a rod-shaped member 152 arranged inside the spring 120. Then, when the magnitude of the impact applied to the impact absorbing unit 100 is larger than a predetermined threshold value, the rod-shaped member 152 breaks, so that the impact is absorbed. Therefore, even if the rod-shaped member 152 breaks, the shock absorbing unit 100 can be used again simply by replacing the rod-shaped member 152 with a new rod-shaped member 152.
 また、上述した衝撃吸収ユニット200においては、固定部材230は、バネ220の内側に配置されている。また、固定部材230の外側には、固定部材230が破断したときにバネ220の伸びを許容しない固定部分234と、固定部材230が破断したときにバネ220の伸びを許容する開放部分236とが形成されている。また、衝撃吸収ユニット200は、バネ220の周囲に配置される保護部材(具体的には、第1の筒状部材240および第2の筒状部材250)と、封止部材262、264、266とを更に備えている。また、各封止部材262、264、266は、保護部材と接触する位置に配置され、バネ220を液密に封止するようになっている。このことにより、バネ220が濡れたり、錆びてしまうことを防止することができるため、衝撃吸収ユニット200を例えば水中で好適に使用することができるようになる。 Further, in the shock absorbing unit 200 described above, the fixing member 230 is arranged inside the spring 220. Further, on the outside of the fixing member 230, there are a fixed portion 234 that does not allow the spring 220 to stretch when the fixing member 230 breaks, and an open portion 236 that allows the spring 220 to stretch when the fixing member 230 breaks. It is formed. Further, the shock absorbing unit 200 includes a protective member (specifically, a first tubular member 240 and a second tubular member 250) arranged around the spring 220 and a sealing member 262, 264, 266. And further equipped. Further, each sealing member 262, 264, 266 is arranged at a position where it comes into contact with the protective member, and the spring 220 is liquid-tightly sealed. This makes it possible to prevent the spring 220 from getting wet or rusting, so that the shock absorbing unit 200 can be suitably used in water, for example.
 また、以上のような構成からなる落石防止システム300は、所定の間隔を空けて斜面400に配置される複数の支柱310と、落下物受止部材320と、ワイヤ本体330と、上述した衝撃吸収ユニット10、20、100、200とを備えている。より具体的には、落下物受止部材320は、各支柱310に張架され、斜面400に沿って落ちる落下物を受け止めるようになっている。また、ワイヤ本体330は、各支柱310と山側の斜面400との間に張られており、衝撃吸収ユニット10、20、100、200は、ワイヤ本体330に接続されている。そして、落下物受止部材320により落下物が受け止められたときの衝撃の大きさが所定の閾値よりも大きいときに衝撃吸収ユニット10、20、100、200の固定部材14、24、152、230が破断する。このため、摩擦により衝撃を吸収する従来の構成と比較してより効果的に衝撃を吸収することができる。また、谷側ワイヤ(すなわち、谷側に配置される衝撃吸収ユニット10、20およびワイヤ本体330)の設置を省略することができるとともに、落石防止システム300のメンテナンスの手間を軽減させることができる。また、衝撃吸収ユニット10、20、100、200として、当該衝撃吸収ユニット10、20、100、200に衝撃が加えられたときに固定部材14、24、152、230が破断する衝撃の大きさの閾値が互いに異なる複数の種類のものが直列に並ぶよう用いられるようになっている。このことにより、落石防止システム300において様々な大きさの衝撃を適切に吸収することができるようになる。 Further, the rockfall prevention system 300 having the above configuration includes a plurality of columns 310 arranged on the slope 400 at predetermined intervals, a falling object receiving member 320, a wire main body 330, and the above-mentioned impact absorption. It includes units 10, 20, 100, and 200. More specifically, the falling object receiving member 320 is stretched on each support column 310 to receive the falling object falling along the slope 400. Further, the wire main body 330 is stretched between each support column 310 and the slope 400 on the mountain side, and the shock absorbing units 10, 20, 100, and 200 are connected to the wire main body 330. Then, when the magnitude of the impact when the falling object is received by the falling object receiving member 320 is larger than a predetermined threshold value, the fixing members 14, 24, 152, 230 of the impact absorbing units 10, 20, 100, 200 Breaks. Therefore, the impact can be absorbed more effectively as compared with the conventional configuration in which the impact is absorbed by friction. Further, the installation of the valley side wire (that is, the shock absorbing units 10 and 20 arranged on the valley side and the wire main body 330) can be omitted, and the time and effort for maintenance of the rockfall prevention system 300 can be reduced. Further, as the shock absorbing units 10, 20, 100, 200, the magnitude of the impact that the fixing members 14, 24, 152, 230 break when the impact absorbing units 10, 20, 100, 200 are subjected to an impact. A plurality of types having different thresholds are used so as to be arranged in series. As a result, the rockfall prevention system 300 can appropriately absorb impacts of various sizes.
 なお、本実施の形態による衝撃吸収ユニット10、20、100、200や落石防止システム300は、上述したような態様に限定されることはなく、様々な変更を加えることができる。 The shock absorbing units 10, 20, 100, 200 and the rockfall prevention system 300 according to the present embodiment are not limited to the above-described aspects, and various changes can be made.
 例えば、バネ12、22、120、220として、略円筒形状の押しバネまたは引きバネを用いる例について説明したが、このような構成に限定されることはない。略円錐形状の押しバネまたは引きバネや、略樽型形状の押しバネまたは引きバネを使用するようにしてもよい。この場合にも、対応する形状の固定部材を用いることにより、本発明の衝撃吸収ユニットを構成することができる。 For example, an example in which a push spring or a pull spring having a substantially cylindrical shape is used as the springs 12, 22, 120, and 220 has been described, but the present invention is not limited to such a configuration. A push spring or pull spring having a substantially conical shape or a push spring or pull spring having a substantially barrel shape may be used. Also in this case, the shock absorbing unit of the present invention can be configured by using the fixing member having the corresponding shape.
 また、バネ12、22、120、220を、硬鋼線、ピアノ線やステンレス鋼線から形成する例について説明したが、他の材料からバネ12、22、120、220を形成するようにしてもよい。また、バネ12、22、120、220の表面にメッキ処理が施されていてもよい。 Further, although an example in which the springs 12, 22, 120 and 220 are formed from a hard steel wire, a piano wire and a stainless steel wire has been described, the springs 12, 22, 120 and 220 may be formed from other materials. good. Further, the surfaces of the springs 12, 22, 120 and 220 may be plated.
 また、バネ12、22、120を固定するための固定部材として、図1、図6、図9等に示す固定部材14、24、130、230について説明したが、他の構成の固定部材を用いるようにしてもよい。固定部材として、略円筒形状のスリーブの外周面に開口が設けられたものが用いられてもよいし、略円筒形状のスリーブの上端部から下端部まで延びるスリット(切り欠き)が形成されたものが用いられてもよい。このように、固定部材に開口やスリットを設けた場合には、バネ12、22、120の状態を外部から確認することができるため、衝撃吸収ユニット10、20、100のメンテナンスを容易に行うことができるようになる。 Further, as the fixing members for fixing the springs 12, 22, 120, the fixing members 14, 24, 130, 230 shown in FIGS. 1, 6, 130, 230 have been described, but fixing members having other configurations are used. You may do so. As the fixing member, a member having an opening on the outer peripheral surface of a substantially cylindrical sleeve may be used, or a slit (notch) extending from the upper end to the lower end of the substantially cylindrical sleeve is formed. May be used. In this way, when the fixing member is provided with an opening or a slit, the states of the springs 12, 22, and 120 can be confirmed from the outside, so that the maintenance of the shock absorbing units 10, 20, and 100 can be easily performed. Will be able to.
 また、図4、図6、図9、図14等に示す例とは異なる構成の固定部材14、24、130、230を用いるようにしてもよい。例えば、図4、図6、図9、図14等に示す状態から、各固定部分15、25a、25b、134a、134b、234の領域を小さくするようにしてもよい。一方、各開放部分16、26a、26b、136a、136b、236の領域を大きくしてもよい。このように、開放部分の領域を大きくした場合には、固定部材が破断したときにバネ12、22、120、220の伸びる量が大きくなるため、バネ12、22、120、220によって吸収することのできる衝撃のエネルギー量を増加させることができる。 Further, fixing members 14, 24, 130, 230 having a configuration different from the examples shown in FIGS. 4, 6, 9, 14, 14 and the like may be used. For example, the regions of the fixed portions 15, 25a, 25b, 134a, 134b, and 234 may be reduced from the states shown in FIGS. 4, 6, 9, 14, and 14. On the other hand, the regions of the open portions 16, 26a, 26b, 136a, 136b, and 236 may be enlarged. In this way, when the area of the open portion is increased, the amount of extension of the springs 12, 22, 120, and 220 increases when the fixing member breaks, so that the springs 12, 22, 120, and 220 absorb the springs 12, 22, 120, and 220. It is possible to increase the amount of impact energy that can be produced.
 また、衝撃吸収ユニット10のバネ12の両端部に設けられた取付部材として、バネ12とフック13とが別個の部材から構成される例について説明したが、他の形状の取付部材がバネ12に設けられてれていてもよい。例えば、バネ12を構成する金属線の端部を、略S字形状、略U字形状や略V字形状に成形することにより、バネと取付部材とが一体的に成型されたものが用いられてもよい。また、衝撃吸収ユニット20のバネ22の両端部に設けられる取付部材として、上述した略S字形状、略U字形状や略V字形状のフックが用いられてもよい。 Further, as an example in which the spring 12 and the hook 13 are made of separate members as mounting members provided at both ends of the spring 12 of the shock absorbing unit 10, a mounting member having another shape is attached to the spring 12. It may be provided. For example, a spring and a mounting member are integrally molded by molding the end of a metal wire constituting the spring 12 into a substantially S-shape, a substantially U-shape, or a substantially V-shape. You may. Further, as the mounting members provided at both ends of the spring 22 of the shock absorbing unit 20, the above-mentioned substantially S-shaped, substantially U-shaped or substantially V-shaped hooks may be used.
 また、衝撃吸収ユニット10の固定部材14の開放部分16における略中央部に破断部分18を設ける例について説明したが、このような構成に限定されることはなく、例えば開放部分16の端部近傍に破断部分18が設けられていてもよい。言い換えると、固定部材14の開放部分16におけるいずれかの箇所に破断部分18が設けられていれば、衝撃吸収ユニット10は上述した効果を奏することができる。 Further, an example in which the fractured portion 18 is provided at the substantially central portion of the open portion 16 of the fixing member 14 of the shock absorbing unit 10 has been described, but the present invention is not limited to such a configuration, and for example, near the end portion of the open portion 16. May be provided with a broken portion 18. In other words, if the broken portion 18 is provided at any portion of the open portion 16 of the fixing member 14, the shock absorbing unit 10 can exert the above-mentioned effect.
 また、衝撃吸収ユニット20の固定部材24として、略円形形状の開口27a、27b27cに、略円柱形状のノックピン28a、28bを挿入する例について説明したが、このような例に限定されることはない。略三角形形状の開口に略三角柱形状のノックピンを挿入するようにしてもよいし、他の多角形形状の開口を設け、対応する形状のノックピンを当該開口に挿入するようにしてもよい。 Further, an example in which the substantially cylindrical knock pins 28a and 28b are inserted into the substantially circular openings 27a and 27b27c as the fixing member 24 of the shock absorbing unit 20 has been described, but the present invention is not limited to such an example. .. A knock pin having a substantially triangular prism shape may be inserted into the opening having a substantially triangular shape, or another polygonal opening may be provided and a knock pin having a corresponding shape may be inserted into the opening.
 また、衝撃吸収ユニット20の各ノックピン28a、28bに、破断部分を形成するようにしてもよい。例えば、図1等に示す衝撃吸収ユニット10の破断部分18のような、断面が略V字形状の溝を略円筒形状のノックピン28a、28bの外周面に形成するようにしてもよい。 Further, a broken portion may be formed on each of the knock pins 28a and 28b of the shock absorbing unit 20. For example, a groove having a substantially V-shaped cross section, such as the fractured portion 18 of the shock absorbing unit 10 shown in FIG. 1 or the like, may be formed on the outer peripheral surfaces of the knock pins 28a and 28b having a substantially cylindrical shape.
 また、必ずしも全ての支柱310に衝撃吸収ユニット10、20、100、200を取り付ける必要はない。落石防止システムの強度が担保される場合には、衝撃吸収ユニット10、20、100、200が接続されたワイヤ本体330が取り付けられた支柱310と、衝撃吸収ユニット10、20、100、200が接続されていないワイヤ本体330が取り付けられた支柱310とを交互に並べるようにしてもよい。あるいは、衝撃吸収ユニット10、20、100、200が接続されたワイヤ本体330が取り付けられた支柱310と、衝撃吸収ユニット10、20、100、200が接続されていないワイヤ本体330が取り付けられた支柱310とが上述したものとは異なる並びかたをしていてもよい。 Also, it is not always necessary to attach the shock absorbing units 10, 20, 100, 200 to all the columns 310. When the strength of the rockfall prevention system is guaranteed, the strut 310 to which the wire body 330 to which the shock absorbing units 10, 20, 100, and 200 are connected is connected to the shock absorbing units 10, 20, 100, and 200. The support columns 310 to which the unwired wire main body 330 is attached may be arranged alternately. Alternatively, a strut 310 to which the wire body 330 to which the shock absorbing units 10, 20, 100, and 200 are connected is attached, and a strut to which the wire body 330 to which the shock absorbing units 10, 20, 100, and 200 are not connected are attached. The 310 may be arranged differently from the one described above.
 なお、上述した衝撃吸収ユニット10、20、100、200の用途は、上述した落石防止システム300に限定されることはない。例えば、上述した衝撃吸収ユニット10、20、100、200は、様々な土木構造物や建設物で使用することができる。具体的には、大規模地震時に橋の落下を防止するための橋梁上部工耐震補強工事や、橋脚を鉄筋コンクリートにて巻き立て補強する橋梁下部工耐震補強工事等に上述した衝撃吸収ユニット10、20、100、200を用いてもよい。この場合には、橋梁上部および橋梁下部の耐震性を向上させることができる。また、落橋防止システムにおけるエネルギー吸収装置として、上述した衝撃吸収ユニット10、20、100、200が用いられてもよい。より詳細には、地震等により大きな地震力が橋に加えられたときに、橋台等の、橋の下部構造に対する桁の移動を制限するとともに、橋に加えられた衝撃を吸収するために用いられる部材として上述した衝撃吸収ユニット10、20、100、200が用いられてもよい。より具体的には、衝撃吸収ユニット10、20、100、200により、橋軸方向への桁の大きな変位や、橋軸に直角する方向への桁の大きな変位を防止するようにしてもよい。また、複数の桁を含む構造の橋において、ある桁と、この桁の隣に位置する桁とを、上記の衝撃吸収ユニット10、20、100、200を介して接続するようにしてもよい。また、ガードレールや中央分離帯として衝撃吸収ユニット10、20、100、200を用いることにより、車両等が衝突した際の衝撃を吸収するようにしてもよい。また、衝撃吸収ユニット10、20、100、200は他の様々な用途に使用することができる。 The applications of the shock absorbing units 10, 20, 100, and 200 described above are not limited to the rockfall prevention system 300 described above. For example, the shock absorbing units 10, 20, 100, 200 described above can be used in various civil engineering structures and constructions. Specifically, the shock absorbing units 10 and 20 described above are used for seismic retrofitting of bridge superstructures to prevent the bridge from falling during a large-scale earthquake, and seismic retrofitting of bridge substructures to reinforce bridge piers by winding them with reinforced concrete. , 100, 200 may be used. In this case, the seismic resistance of the upper part of the bridge and the lower part of the bridge can be improved. Further, the shock absorbing units 10, 20, 100, and 200 described above may be used as the energy absorbing device in the bridge collapse prevention system. More specifically, it is used to limit the movement of girders with respect to the substructure of the bridge, such as abutments, and to absorb the impact applied to the bridge when a large seismic force is applied to the bridge due to an earthquake or the like. As the member, the shock absorbing units 10, 20, 100, and 200 described above may be used. More specifically, the shock absorbing units 10, 20, 100, and 200 may be used to prevent a large displacement of the girder in the direction of the bridge axis and a large displacement of the girder in the direction perpendicular to the bridge axis. Further, in a bridge having a structure including a plurality of girders, a certain girder and a girder located next to the girder may be connected via the shock absorbing units 10, 20, 100, 200. Further, by using the shock absorbing units 10, 20, 100, and 200 as the guardrail and the median strip, the shock when a vehicle or the like collides may be absorbed. Further, the shock absorbing units 10, 20, 100 and 200 can be used for various other purposes.

Claims (12)

  1.  衝撃を吸収するための衝撃吸収ユニットであって、
     伸縮可能なバネと、前記バネを固定するための固定部材とを有しており、
     前記衝撃吸収ユニットに加えられた衝撃の大きさが所定の閾値よりも大きいときに前記固定部材が破断する、衝撃吸収ユニット。
    A shock absorbing unit for absorbing shock
    It has a stretchable spring and a fixing member for fixing the spring.
    A shock absorbing unit in which the fixing member breaks when the magnitude of the shock applied to the shock absorbing unit is larger than a predetermined threshold value.
  2.  前記バネは押しバネであり、
     前記固定部材は、長手方向に沿って圧縮された状態の前記バネを固定する、請求項1記載の衝撃吸収ユニット。
    The spring is a push spring and
    The shock absorbing unit according to claim 1, wherein the fixing member fixes the spring in a compressed state along the longitudinal direction.
  3.  前記バネは引きバネである、請求項1記載の衝撃吸収ユニット。 The shock absorbing unit according to claim 1, wherein the spring is a pulling spring.
  4.  前記固定部材には破断部分が設けられており、
     前記衝撃吸収ユニットに加えられた衝撃の大きさが所定の閾値よりも大きいときに前記固定部材が前記破断部分に沿って破断する、請求項1乃至3のいずれか一項に記載の衝撃吸収ユニット。
    The fixing member is provided with a broken portion, and the fixing member is provided with a broken portion.
    The shock absorbing unit according to any one of claims 1 to 3, wherein the fixing member breaks along the broken portion when the magnitude of the shock applied to the shock absorbing unit is larger than a predetermined threshold value. ..
  5.  前記固定部材は、前記バネの周囲に配置されており、
     前記固定部材の内側には、前記固定部材が破断したときに前記バネの伸びを許容しない固定部分と、前記固定部材が破断したときに前記バネの伸びを許容する開放部分とが形成されている、請求項1乃至4のいずれか一項に記載の衝撃吸収ユニット。
    The fixing member is arranged around the spring and
    Inside the fixing member, a fixing portion that does not allow the spring to stretch when the fixing member breaks and an open portion that allows the spring to stretch when the fixing member breaks are formed. , The shock absorbing unit according to any one of claims 1 to 4.
  6.  前記固定部材は、前記バネの一部を内部に収容する第1の収容部分と、前記バネの一部を内部に収容するための第2の収容部分と、前記第1の収容部分と前記第2の収容部分とが相対的に移動しないよう維持するための維持部分とを有しており、
     前記衝撃吸収ユニットに加えられた衝撃の大きさが所定の閾値よりも大きいときに前記維持部分が破断する、請求項1乃至4のいずれか一項に記載の衝撃吸収ユニット。
    The fixing member includes a first accommodating portion for accommodating a part of the spring inside, a second accommodating portion for accommodating a part of the spring inside, the first accommodating portion, and the first accommodating member. It has a maintenance part for maintaining the accommodation part of 2 so that it does not move relatively.
    The shock absorbing unit according to any one of claims 1 to 4, wherein the maintenance portion breaks when the magnitude of the shock applied to the shock absorbing unit is larger than a predetermined threshold value.
  7.  前記固定部材の前記第1の収容部分および前記第2の収容部分の内側には、前記維持部分が破断したときに前記バネの伸びを許容しない固定部分と、前記維持部分が破断したときに前記バネの伸びを許容する開放部分とがそれぞれ形成されている、請求項6記載の衝撃吸収ユニット。 Inside the first accommodating portion and the second accommodating portion of the fixing member, a fixing portion that does not allow the extension of the spring when the maintenance portion is broken and the fixing portion that does not allow the extension of the spring when the maintenance portion is broken are described. The shock absorbing unit according to claim 6, wherein each of the open portions that allow the extension of the spring is formed.
  8.  前記固定部材の前記維持部分は、前記バネの内部に配置される棒状部材を含んでおり、
     前記衝撃吸収ユニットに加えられた衝撃の大きさが所定の閾値よりも大きいときに前記棒状部材が破断する、請求項6または7記載の衝撃吸収ユニット。
    The maintenance portion of the fixing member includes a rod-shaped member arranged inside the spring.
    The shock absorbing unit according to claim 6 or 7, wherein the rod-shaped member breaks when the magnitude of the shock applied to the shock absorbing unit is larger than a predetermined threshold value.
  9.  前記固定部材は、前記バネの内側に配置されており、
     前記固定部材の外側には、前記固定部材が破断したときに前記バネの伸びを許容しない固定部分と、前記固定部材が破断したときに前記バネの伸びを許容する開放部分とが形成されている、請求項1乃至4のいずれか一項に記載の衝撃吸収ユニット。
    The fixing member is arranged inside the spring, and the fixing member is arranged inside the spring.
    On the outside of the fixing member, a fixing portion that does not allow the spring to stretch when the fixing member breaks and an open portion that allows the spring to stretch when the fixing member breaks are formed. , The shock absorbing unit according to any one of claims 1 to 4.
  10.  前記バネの周囲に配置される保護部材と、
     前記保護部材と接触する位置に配置され、前記バネを液密に封止する封止部材とを更に備えた、請求項9記載の衝撃吸収ユニット。
    A protective member arranged around the spring and
    The shock absorbing unit according to claim 9, further comprising a sealing member arranged at a position in contact with the protective member and liquid-tightly sealing the spring.
  11.  所定の間隔を空けて斜面に配置される複数の支柱と、
     各前記支柱に張架され、前記斜面に沿って落ちる落下物を受け止める落下物受止部材と、
     各前記支柱と山側の前記斜面との間に張られたワイヤ本体と、
     前記ワイヤ本体に接続された衝撃吸収ユニットであって、伸縮可能なバネと、前記バネを固定するための固定部材とを有しており、前記衝撃吸収ユニットに加えられた衝撃の大きさが所定の閾値よりも大きいときに前記固定部材が破断する衝撃吸収ユニットと、
     を備えた、落石防止システム。
    With multiple stanchions arranged on the slope at regular intervals,
    A falling object receiving member that is stretched on each of the columns and receives a falling object that falls along the slope.
    A wire body stretched between each of the columns and the slope on the mountain side,
    A shock absorbing unit connected to the wire body, which has a stretchable spring and a fixing member for fixing the spring, and the magnitude of the shock applied to the shock absorbing unit is predetermined. A shock absorbing unit in which the fixing member breaks when it is larger than the threshold value of
    A rockfall prevention system equipped with.
  12.  前記衝撃ユニットとして、当該衝撃吸収ユニットに衝撃が加えられたときに前記固定部材が破断する衝撃の大きさの閾値が互いに異なる複数の種類のものが直列に並ぶよう用いられる、請求項11記載の落石防止システム。 11. The impact unit according to claim 11, wherein a plurality of types having different threshold values of the magnitude of the impact at which the fixing member breaks when an impact is applied to the impact absorbing unit are arranged in series. Rockfall prevention system.
PCT/JP2021/003080 2020-03-12 2021-01-28 Shock absorption unit and rock fall prevention system WO2021181934A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020043385A JP7356145B2 (en) 2020-03-12 2020-03-12 Shock absorption unit and rockfall prevention system
JP2020-043385 2020-03-12

Publications (1)

Publication Number Publication Date
WO2021181934A1 true WO2021181934A1 (en) 2021-09-16

Family

ID=77671411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003080 WO2021181934A1 (en) 2020-03-12 2021-01-28 Shock absorption unit and rock fall prevention system

Country Status (2)

Country Link
JP (1) JP7356145B2 (en)
WO (1) WO2021181934A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001679A (en) * 2008-06-20 2010-01-07 Purotekku Engineering:Kk Guard fence
JP2015183456A (en) * 2014-03-25 2015-10-22 Jfe建材株式会社 rockfall prevention device
JP2020020253A (en) * 2018-07-19 2020-02-06 株式会社トライテック Shock absorbing wire and rock fall prevention system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001679A (en) * 2008-06-20 2010-01-07 Purotekku Engineering:Kk Guard fence
JP2015183456A (en) * 2014-03-25 2015-10-22 Jfe建材株式会社 rockfall prevention device
JP2020020253A (en) * 2018-07-19 2020-02-06 株式会社トライテック Shock absorbing wire and rock fall prevention system

Also Published As

Publication number Publication date
JP7356145B2 (en) 2023-10-04
JP2021143530A (en) 2021-09-24

Similar Documents

Publication Publication Date Title
JP5778791B2 (en) Anchoring element
JP6573630B2 (en) Piston-based self-centering brace device
JP2007009460A (en) Rc structure and plastic hinge section thereof
JP6644975B2 (en) Protective fence
JP5597317B1 (en) Seismic reinforcement structure for bridge piers
KR101600719B1 (en) Jig for pre-fabricating the reinforcement
KR100944363B1 (en) Iron frame brace having bucking protection part
JP2012177255A (en) Bridge fall prevention structure and bridge fall prevention apparatus
JP5282557B2 (en) How to repair protective fences and existing protective fences
WO2021181934A1 (en) Shock absorption unit and rock fall prevention system
KR100407513B1 (en) Apparatus for preveting separating super structure from continous steel box bridge and construction work method there of
KR101705885B1 (en) Constructing method and shock absorbing apparatus for rockfall preventing net
KR100912584B1 (en) Method for preventing lateral buckling of prestressed concrete beam in prestressing and apparatus thereof
JP7103820B2 (en) Function-separated shock absorber
JP7141588B2 (en) Bridge fall prevention device
JP5467067B2 (en) Support fence structure of avalanche, rockfall, etc.
JP7165555B2 (en) Function-separated shock absorber
JP6359136B2 (en) Movement restriction device
JP6181393B2 (en) Movement restriction device
CN113430922B (en) Concrete-filled steel tube pier with corrugated sleeve and resettable double-column pier and construction method thereof
JP6410553B2 (en) Installation structure of guard fence for bridge, base member for guard fence for bridge, installation method of guard fence for bridge
JP7126978B2 (en) Shock-absorbing wire and anti-fall system
JP2017166268A (en) Bridge falling prevention structure
JP4950259B2 (en) Construction method of the falling bridge prevention device
JP2009030351A (en) Root wrapping type column base structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767338

Country of ref document: EP

Kind code of ref document: A1