WO2021181781A1 - パッケージ型フローセンサ - Google Patents

パッケージ型フローセンサ Download PDF

Info

Publication number
WO2021181781A1
WO2021181781A1 PCT/JP2020/046685 JP2020046685W WO2021181781A1 WO 2021181781 A1 WO2021181781 A1 WO 2021181781A1 JP 2020046685 W JP2020046685 W JP 2020046685W WO 2021181781 A1 WO2021181781 A1 WO 2021181781A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow sensor
substrate
package
flow
communication hole
Prior art date
Application number
PCT/JP2020/046685
Other languages
English (en)
French (fr)
Inventor
隆 笠井
宏明 佐土原
克行 山本
健太 梶川
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to EP20924215.5A priority Critical patent/EP4102193A4/en
Priority to US17/905,667 priority patent/US20230110107A1/en
Priority to CN202080098272.3A priority patent/CN115280112A/zh
Publication of WO2021181781A1 publication Critical patent/WO2021181781A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0061Electrical connection means
    • G01L19/0084Electrical connection means to the outside of the housing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/6888Thermoelectric elements, e.g. thermocouples, thermopiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters

Definitions

  • the present invention relates to a packaged flow sensor.
  • a flow sensor that detects the flow rate, flow velocity, and flow direction of the fluid is used.
  • the flow sensor includes, for example, a heater on a thin film (membrane) and a sensor unit having a thermopile arranged so as to sandwich the heater.
  • a sensor unit having a thermopile arranged so as to sandwich the heater.
  • the disturbance is measured as the difference in thermoelectromotive force generated in the thermopile. Since the sensor unit uses a membrane, it can be said that it is a component that is easily damaged by physical contact or the like.
  • Patent Document 1 discloses a flow sensor formed integrally with a flow path through which a fluid passes.
  • Patent Document 2 discloses a flow sensor that is formed as a separate body from the flow path and has a sensor unit that detects the flow velocity exposed to the outside. The flow sensor disclosed in Patent Document 2 is provided in the flow path, and the flow rate is detected together with the cross-sectional area of the flow path.
  • a package-type flow sensor that protects the sensor unit by accommodating the flow sensor in the package can be considered.
  • the packaged flow sensor is used by being connected to an external board. Such a packaged flow sensor could not detect the flow of fluid in the thickness direction of the external substrate.
  • One aspect of the disclosed technology is to provide a packaged flow sensor capable of detecting fluid flow in the thickness direction of an external substrate.
  • This package type flow sensor includes a flow sensor chip having a sensor unit for detecting the flow of fluid, a flat plate-shaped substrate portion, a package forming a storage chamber for accommodating the flow sensor chip, and an outer surface of the substrate portion. It is provided with a connection terminal which is provided in the above and is connected to an external board. Then, in the present package type flow sensor, the substrate portion is provided with a first communication hole for communicating the inside and outside of the accommodation chamber, and the inside and outside of the accommodation chamber are placed at a position different from the substrate portion in the package. A second communication hole for communication is provided, and the flow sensor chip is arranged on the flow path of the fluid formed by the first communication hole and the second communication hole.
  • the sensor part of the flow sensor chip has delicate parts mounted on its surface to detect the flow velocity of the fluid, and is easily damaged by physical contact or the like. According to the disclosed technology, by accommodating the flow sensor chip in the package, the sensor portion of the flow sensor chip can be protected from physical contact or the like, so that the flow sensor can be easily handled. Further, since the package type flow sensor is not formed integrally with the flow path, it is easier to miniaturize than the flow sensor formed integrally with the flow path. Since the package itself is small, even when this package type flow sensor is incorporated in the flow path formed as a separate body and the flow rate is detected from the detected flow velocity, the degree of freedom of attachment to the flow path is improved and the flow rate is improved. Even if the structure includes the road, it is small.
  • the fluid introduced into the accommodation chamber passes over the sensor unit. Since the flow path guides the fluid to the sensor unit, even if the flow sensor chip is housed in the package, the decrease in the detection accuracy of the fluid is suppressed.
  • a connection terminal for connecting to an external board is provided on the outer surface of the board. Then, the first communication hole is provided in the substrate portion, and the second communication hole is provided at a position different from that of the substrate portion. That is, in this package type flow sensor, the first communication hole is provided on the surface connected to the external board, and the second communication hole is provided at a position not facing the external board. Therefore, in this package type flow sensor, the fluid introduced into the accommodating chamber from one of the first communication hole and the second communication hole is blocked by the external substrate from the other of the first communication hole and the second communication hole. Can be discharged without.
  • the sensor chip can detect the flow of fluid in the normal direction of the external substrate (thickness direction of the external substrate).
  • connection terminal is formed so as to surround the circumference of the first communication hole. Since the first communication hole is surrounded by the connection terminals, when the flow sensor package is mounted on the external board, it can be surrounded by solder or the like of the first communication hole. Therefore, if a through hole is provided at a position corresponding to the first communication hole on the external substrate, the fluid in the normal direction of the external substrate (thickness direction of the external substrate) can be efficiently introduced into the accommodation chamber.
  • the disclosed technology may have the following features.
  • the package type flow sensor is mounted on the external board, the external board is provided with a through hole at a position corresponding to a region surrounded by the connection terminal, and the fluid is supplied to the external board in the external board.
  • the package type flow sensor is guided to the storage chamber from the surface opposite to the surface on which the package type flow sensor is placed through the through hole and the first communication hole.
  • the disclosed technology may have the following features.
  • the packaged flow sensor is mounted on the same surface as the surface to which the electronic components are connected on the external substrate. By having such a feature, it is possible to suppress the turbulence of the fluid flow from the surface of the external substrate opposite to the surface on which the package type flow sensor is mounted. Therefore, the present package type flow sensor can improve the detection accuracy of the fluid flow from the surface of the external substrate opposite to the surface on which the package type flow sensor is mounted.
  • the disclosed technology may have the following features.
  • the package includes a case member that forms a hollow portion that opens to the outside by a top plate and a side wall that stands from the edge of the top plate, and the storage chamber is formed by closing the opening by the substrate portion.
  • the second communication hole is provided in the case member.
  • the second communication hole may be provided in the top plate or in the side wall. For example, if the second communication hole is provided on the side wall, the sensor package can be easily gripped when the flow sensor package is mounted on the external substrate.
  • the disclosed technology may have the following features.
  • the accommodation chamber may further accommodate a charge pump that boosts a voltage supplied from the outside and supplies it to the sensor chip, and an amplifier that amplifies the output of the sensor chip.
  • This package type flow sensor can detect the flow of fluid in the thickness direction of the external substrate.
  • FIG. 1 is an exploded perspective view of the sensor package according to the embodiment.
  • FIG. 2 is a view of the flow sensor chip as viewed from above.
  • FIG. 3 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 4 is a first diagram schematically showing a method of measuring the flow velocity by the flow sensor chip.
  • FIG. 5 is a second diagram schematically showing a method of measuring the flow velocity by the flow sensor chip.
  • FIG. 6 is a view of the substrate of the sensor package according to the embodiment as viewed from above.
  • FIG. 7 is a view of the substrate of the sensor package according to the embodiment as viewed from below.
  • FIG. 8 is a plan view of the sensor package according to the embodiment.
  • FIG. 1 is an exploded perspective view of the sensor package according to the embodiment.
  • FIG. 2 is a view of the flow sensor chip as viewed from above.
  • FIG. 3 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 4 is
  • FIG. 9 is a diagram schematically showing the flow of air introduced from the ventilation holes in the sensor package according to the embodiment.
  • FIG. 10 is a diagram illustrating a state in which the sensor package according to the embodiment is mounted on an external board.
  • FIG. 11 is a diagram illustrating a state in which a plurality of sensor packages according to the embodiment are arranged side by side on a substrate.
  • FIG. 12 is a diagram illustrating a configuration in which the sensor package according to the embodiment is used as a differential pressure sensor.
  • FIG. 13 is an exploded perspective view of the sensor package according to the first modification.
  • FIG. 14 is a diagram schematically showing the flow of air introduced from the ventilation holes in the sensor package according to the first modification.
  • FIG. 10 is a diagram illustrating a state in which the sensor package according to the embodiment is mounted on an external board.
  • FIG. 11 is a diagram illustrating a state in which a plurality of sensor packages according to the embodiment are arranged side by side on a substrate.
  • FIG. 12 is
  • FIG. 15 is a view of the sensor package 100 according to the second modification as viewed from the back surface side of the substrate.
  • FIG. 16 is a diagram schematically showing the flow of air introduced from the ventilation holes in the sensor package according to the first modification.
  • FIG. 17 is a diagram showing an example of the sensor package according to the third modification.
  • FIG. 18 is an exploded perspective view of the sensor package according to the fourth modification.
  • FIG. 19 is a diagram schematically showing the flow of air introduced from the ventilation holes in the sensor package according to the fourth modification.
  • FIG. 20 is a diagram showing an example of a configuration in which a flow sensor chip is placed on a side wall of a box-shaped substrate in a fourth modification.
  • FIG. 1 is an exploded perspective view of the sensor package according to the embodiment.
  • the sensor package 100 illustrated in FIG. 1 includes a substrate 1, a flow sensor chip 2, and a lid 3.
  • the substrate 1 side is the lower side and the lid 3 side is the upper side.
  • the direction along one side of the plate-shaped substrate 1 is also referred to as the X direction
  • the direction along the other side is also referred to as the Y direction
  • the vertical direction is also referred to as the Z direction.
  • the sensor package 100 is an example of a “packaged flow sensor”.
  • the flow sensor chip 2 is a sensor that measures the flow velocity of a fluid (for example, a gas).
  • FIG. 2 is a view of the flow sensor chip as viewed from above, and
  • FIG. 3 is a cross-sectional view taken along the line AA in FIG.
  • the flow sensor chip 2 includes a main body 21 and a membrane 22.
  • the main body 21 is formed in a hollow shape (mortar shape) having an open upper surface, and the material thereof is, for example, silicon.
  • the membrane 22 is a thin film, and as illustrated in FIG. 3, has a hollow structure at the opening of the main body 21.
  • the membrane 22 is provided with a heater 23 and thermopile 24, 24.
  • thermopile 241 The heater 23 and the thermopile 24, 24 are arranged side by side in a row along the Y direction.
  • the contacts at one ends of the thermopile 24, 24 are arranged at positions that overlap with the main body 21.
  • thermopile 241 one of the thermopile 24 and 24 is referred to as a thermopile 241 and the other is referred to as a thermopile 242.
  • the heater 23 is a heater that heats the membrane 22. Since the membrane 22 is a thin film, it has a small heat capacity and is efficiently heated by the heater 23.
  • the thermopile 24, 24 is a thermocouple that generates a thermoelectromotive force by receiving heat from the membrane 22. Since the contact point at one end of the thermopile 24, 24 is on the main body 21, the temperature difference between the membrane 22 and the main body 21 can be detected as a thermoelectromotive force. The thermopile 24, 24 generates a higher thermoelectromotive force at higher temperatures. Further, when all of the thermopile 24 and 24 have the same temperature, the thermoelectromotive forces generated by the thermopile 24 and 24 are equal.
  • the flow sensor chip 2 is, for example, a thermal flow sensor in which the membrane 22 is heated by the heater 23 and the flow rate is measured based on the difference in the thermoelectromotive force of the thermopile 24 and 24 caused by the difference in the heat distribution in the membrane 22.
  • the flow sensor chip 2 is manufactured by, for example, Micro Electrical Mechanical Systems (MEMS).
  • the membrane 22 of the flow sensor chip 2 is also provided with powered terminals 231 and 231 connected to both ends of the heater 23 to receive power supplied from the external power source 40 to the heater 23. Further, the membrane 22 is also provided with terminals 243 and 243 to be measured for measuring the difference V out of the thermoelectromotive force generated by each of the thermopile 24 and 24. The thermopile 24, 24 and the terminals 243, 243 to be measured are connected in series by the wiring 25.
  • the flow sensor chip 2 is, for example, a surface mount type flow sensor in which the heater 23 and the membrane 22 provided with the thermopile 24, 24 are exposed to the outside.
  • the membrane 22, the heater 23, and the thermopile 24, 24 are examples of the “sensor unit”.
  • FIG. 4 and 5 are diagrams schematically showing a method of measuring the flow velocity by the flow sensor chip.
  • FIG. 4 illustrates a state in which no wind is blowing around the flow sensor chip 2.
  • the temperature decreases as the position from the heater 23 increases, and the heat distribution in the membrane 22 becomes uniform around the heater 23 as illustrated by the heat distribution H1. .. Therefore, the thermopile 24 and 24 are all heated to the same temperature by the heater 23, and the thermoelectromotive force generated by the thermopile 24 and 24 is also the same.
  • FIG. 5 illustrates a state in which the wind is blowing around the flow sensor chip 2.
  • FIG. 5 illustrates a state in which the wind is blowing from the thermopile 241 toward the thermopile 242. Since the upstream side of the wind is cooled by the wind and the temperature drops, the heat distribution in the membrane 22 shifts to the downstream side of the heater 23 as illustrated by the heat distribution H2 (the downstream side is the upstream side). It gets hotter). Therefore, the thermopile 242 located on the downstream side of the heater 23 has a higher temperature than the thermopile 241 located on the upstream side of the heater 23. As a result, a thermoelectromotive force V 1 of the thermopile 241, a difference between the thermoelectromotive force V 2 of thermopile 242 occurs.
  • thermopile force of the thermopile 24 and 24 increases as the temperature rises, and the thermopile 24 located on the downstream side of the wind has a higher temperature than the thermopile 24 located on the upstream side of the wind. Therefore, the difference between the electromotive force V 2 of the electromotive force V 1 and thermopile 242 of the thermopile 241 (i.e., V 2 -V 1) by measuring the, along with the flow sensor chip 2 detects the direction of the wind, the wind strong Can be detected.
  • V 2- V 1 When V 2- V 1 is positive, the temperature of the thermopile 242 is higher than that of the thermopile 241. Therefore, the flow sensor chip 2 indicates that the wind is blowing in the direction from the thermopile 241 to the thermopile 242. Can be detected. Further, when V 2- V 1 is negative, the temperature of the thermopile 241 is higher than that of the thermopile 242, so that the flow sensor chip 2 is blowing in the direction from the thermopile 242 to the thermopile 241. Can be detected. Further, when V 2- V 1 is 0 (zero), since all the thermopile 24 and 24 have the same temperature, the flow sensor chip 2 is not blowing (or is blowing wind). Is less than the lower limit of the detection range).
  • the flow sensor chip 2 can detect the strong wind as the value of V 2 -V 1 is large is blowing.
  • the flow sensor chip 2 is an example of a “sensor chip”.
  • the temperature detecting element for detecting the heat of the heater 23 is the thermopile 24, but the temperature detecting element may be a sensor chip which is a resistance temperature detector such as a diode, a thermistor, or platinum.
  • the lid 3 is a lid that covers the flow sensor chip 2 from above.
  • the lid 3 illustrated in FIG. 1 is formed in a hollow rectangular parallelepiped shape by a top plate 31 and a side wall 32 erected from the edge of the top plate 31. It can also be said that the lid 3 is formed in a box shape that opens toward the substrate 1.
  • the lid 3 can accommodate the flow sensor chip 2 in the hollow region.
  • the top plate 31 of the lid 3 is provided with a ventilation hole 33 that penetrates the top plate 31 in the thickness direction.
  • the ventilation hole 33 is an example of the “second communication hole”.
  • the lid 3 illustrated in FIG. 1 is formed in a hollow rectangular parallelepiped shape with an open bottom surface, but the shape of the lid 3 is not limited to a rectangular parallelepiped, and is a polygonal pillar such as a cylindrical shape or a pentagonal prism. May be good.
  • the shape of the lid 3 may have a hollow region inside which the flow sensor chip 2 can be accommodated.
  • the material of the lid 3 is not particularly limited, but any material may be used as long as it has rigidity that can protect the housed flow sensor chip 2 from an external impact or the like and can form a flow path in the package. It may be metal, plastic, ceramic, silicon, or the like. If the material of the lid 3 has conductivity such as metal, there is an advantage that resistance to electromagnetic noise can be obtained.
  • the lid 3 is an example of a "case member".
  • the substrate 1 is a flat plate-shaped substrate on which the flow sensor chip 2 is placed on one surface (the surface facing the opening of the lid 3).
  • the substrate 1 may have, for example, a connection terminal for connecting the flow sensor chip 2 and the external substrate.
  • the substrate 1 may be a printed circuit board or a ceramic substrate. Further, the substrate 1 may be a rigid substrate or a flexible substrate. In FIG. 1, the substrate 1 is formed in the shape of a quadrangular plate, but the shape of the substrate 1 is not limited to such a shape.
  • the substrate 1 may be formed in another shape such as a circular shape, a triangular shape, or a pentagonal shape.
  • the substrate 1 is preferably formed in a shape capable of covering the entire opening of the lid 3.
  • the substrate 1 is provided with a ventilation hole 13 that penetrates the substrate 1 in the thickness direction. When the substrate 1 closes the opening of the lid 3, a storage chamber for accommodating the flow sensor chip 2 is formed.
  • the ventilation hole 13 is an example of the “first communication hole”.
  • FIG. 6 is a view of the substrate of the sensor package according to the embodiment as viewed from above
  • FIG. 7 is a view of the substrate of the sensor package according to the embodiment as viewed from below.
  • the flow sensor chip 2 mounted on the upper surface 11 of the substrate 1 is also shown.
  • the substrate 1 is electrically connected to the power supply terminals 112 and 112 electrically connected to the power supply terminals 231 and 231 of the flow sensor chip 2 and the measurement terminals 243 and 243 of the flow sensor chip 2 on the upper surface 11.
  • the measurement terminals 113 and 113 are provided.
  • the power supply terminals 231 and 231 of the flow sensor chip 2 and the power supply terminals 112 and 112, and the measurement terminals 243 and 243 and the measurement terminals 113 and 113 are connected by wire bonding using, for example, a metal wire W1.
  • the metal wire W1 is formed of, for example, gold.
  • the substrate 1 has lands 122, 122, 122, 123 electrically connected to the feeding terminals 112, 112 and the measuring terminals 113, 113 provided on the upper surface 11 on the back surface 12.
  • the land 123 is arranged so as to surround the periphery of the ventilation hole 13 on the back surface 12 of the substrate 1.
  • the substrate 1 is an example of a “board portion”.
  • the lid 3 and the substrate 1 are examples of a “package”.
  • the back surface 12 of the substrate 1 is an example of the “outer surface of the substrate portion”.
  • Lands 122, 122, 122, 123 are examples of "connection terminals”.
  • FIG. 8 is a plan view of the sensor package according to the embodiment.
  • FIG. 9 is a diagram schematically showing the flow of air introduced from the ventilation holes in the sensor package according to the embodiment.
  • FIG. 9 is a cross-sectional view taken along the line BB of FIG.
  • the ventilation hole 13 is a hole that penetrates the substrate 1 in the thickness direction.
  • Vents 33 are provided on the upper surface of the lid 3.
  • the ventilation hole 33 is a hole that penetrates the upper surface of the lid 3 in the thickness direction.
  • the ventilation holes 13 and 33 can also be said to be through holes that communicate the outside with the storage chamber 101 that houses the flow sensor chip 2 of the sensor package 100.
  • the flow sensor chip 2 is housed in the lid 3 so as to be located between the ventilation holes 13 and the ventilation holes 33 in a plan view of the sensor package 100 as viewed from above.
  • the ventilation holes 13, the thermopile 241 and the thermopile 242, and the ventilation holes 33 are arranged in this order in a row along the Y direction.
  • the air introduced into the lid 3 from the ventilation hole 13 is on the two thermopile 24, 24, as illustrated in FIG. Is discharged from the vent 33 to the outside of the lid 3. That is, the ventilation holes 13 provided on the substrate 1, the ventilation holes 33 provided on the upper surface of the lid 3, and the accommodation chamber 101 can form a flow path for passing wind on the two thermopile 24, 24.
  • the flow sensor chip 2 can be arranged on the flow path formed by the ventilation holes 13, the ventilation holes 33, and the accommodation chamber 101.
  • the wind direction in one direction is illustrated by an arrow for convenience, but in reality, the flow of the fluid from the ventilation hole 13 to the ventilation hole 33 and the flow of the fluid from the ventilation hole 33 to the ventilation hole 13 Both directions can be detected.
  • the flow sensor chip 2 can detect the wind direction by distinguishing the positive and negative of the potential of the electromotive force difference between the thermopile 24 and 24.
  • FIG. 10 is a diagram illustrating a state in which the sensor package according to the embodiment is mounted on an external board.
  • the sensor package 100 is provided on the surface 201 on which the electronic components of the substrate 200 are mounted.
  • the substrate 200 is provided with a through hole 206 penetrating in the thickness direction of the substrate 200 at a position corresponding to the frame defined by the land 123 of the sensor package 100.
  • a land 204 is provided on the surface 201 of the substrate 200 so as to surround the periphery of the through hole 206.
  • a land 203 is provided at a position corresponding to the land 123 of the sensor package 100.
  • the substrate 200 is an example of an “external substrate”.
  • the land 122 of the sensor package 100 and the land 203 of the board 200 are connected by the solder 205. Further, the land 123 of the sensor package 100 and the land 204 of the substrate 200 are connected by the solder 205. Since the land 123 is formed in a frame shape surrounding the ventilation hole 13 and the land 204 is formed in a frame shape surrounding the through hole 206, the solder 205 connecting the land 123 and the land 204 is also in a frame shape. Formed in. Therefore, when the sensor package 100 mounted on the substrate 200 is viewed from the back surface 202 side of the substrate 200, the inside of the through hole 206 of the substrate 200, the inside of the frame defined by the solder 205, and the inside of the frame defined by the land 123 are inside.
  • the ventilation holes 13 can be seen.
  • the inside and the outside of the lid 3 communicate with each other by the through holes 206 of the substrate 200, the inside of the frame defined by the solder 205, and the inside of the frame defined by the land 123, and the ventilation holes 13. ..
  • the sensor package 100 is introduced into the accommodation chamber 101 through, for example, the through hole 206 and the ventilation hole 13, and the flow of the fluid discharged from the accommodation chamber 101 through the ventilation hole 33 is sent to the flow sensor chip 2. It can be detected. Further, for example, the sensor package 100 is introduced into the accommodation chamber 101 from the ventilation hole 33, and the flow sensor chip 2 detects the flow of the fluid discharged from the accommodation chamber 101 through the through hole 206 and the ventilation hole 13 from the accommodation chamber 101. Can be made to. That is, the sensor package 100 can detect the flow of fluid in the thickness direction of the substrate 200 (the normal direction of the surface 201 of the substrate 200).
  • a plurality of sensor packages 100 may be arranged side by side on the substrate 200, for example.
  • FIG. 11 is a diagram illustrating a state in which a plurality of sensor packages according to the embodiment are arranged side by side on a substrate.
  • a plurality of sensor packages 100 are arranged side by side on the surface 201 of the substrate 200.
  • the sensor packages 100 may be arranged in a plurality of rows.
  • the sensor package 100 can also be used as a differential pressure sensor.
  • FIG. 12 is a diagram illustrating a configuration in which the sensor package according to the embodiment is used as a differential pressure sensor.
  • FIG. 12 illustrates a configuration in which the sensor package 100 detects the difference in air pressure (differential pressure) between the room P1 and the room P2.
  • Room P1 and room P2 are separated by a substrate 200.
  • the sensor package 100 can detect the differential pressure between the room P1 and the room P2 by detecting the wind direction and the wind speed flowing between the room P1 and the room P2.
  • the sensor package 100 accommodates the flow sensor chip 2 mounted on the substrate 1 in the accommodation chamber 101. As a result, the flow sensor chip 2 is protected from external physical contact and the like by the lid 3 and the substrate 1. Therefore, the sensor package 100 can be handled more easily than the flow sensor in which the membrane 22 is exposed to the outside. Further, since the sensor package 100 can protect the flow sensor chip 2 from physical contact from the outside by the lid 3 and the substrate 1, the sensor package 100 can be used in various places.
  • the sensor package 100 according to the embodiment is not formed integrally with the flow path through which the fluid passes, it is easier to miniaturize than the flow sensor formed integrally with the flow path.
  • a flow path suitable for measuring the flow velocity and the flow direction of the fluid can be formed. ..
  • the substrate 1 is provided with the ventilation holes 13, and the lid 3 is provided with the ventilation holes 33. Therefore, the sensor package 100 can detect the wind from the substrate 1 toward the top plate 31 and the wind from the top plate 31 toward the substrate 1. That is, the sensor package 100 can detect the flow of fluid in the thickness direction of the substrate 200.
  • FIG. 13 is an exploded perspective view of the sensor package according to the first modification.
  • one of the side walls 32 of the lid 3a is the side wall 32a provided with the ventilation holes 33a.
  • FIG. 14 is a diagram schematically showing the flow of air introduced from the ventilation holes in the sensor package according to the first modification.
  • the sensor package 100a according to the first modification is provided with a ventilation hole 33a on the side wall 32a of the lid 3. Even with such a sensor package 100a, the flow of wind from the back surface 12 of the substrate 1 toward the lid 3 can be detected.
  • the sensor package 100a can detect the flow of the fluid in the thickness direction of the substrate 200.
  • FIG. 15 is a view of the sensor package 100 according to the second modification as viewed from the back surface side of the substrate.
  • a land 123a formed in a substantially U shape is provided on the back surface 12 of the substrate 1.
  • FIG. 16 is a diagram schematically showing the flow of air introduced from the ventilation holes in the sensor package according to the first modification.
  • the land 123a can guide the wind flowing parallel to the surface 201 of the substrate 200 to the ventilation holes 13. Therefore, the sensor package 100b can detect the wind flowing parallel to the surface 201 of the substrate 200 with high sensitivity.
  • the land 123a is intended to physically and electrically connect the sensor package 100b and the substrate 200 by soldering 205, but the land 123a having no electrical connection function is provided mainly for the purpose of forming a flow path by soldering. May be done.
  • FIG. 17 is a diagram showing an example of the sensor package according to the third modification.
  • the electronic component 4 is mounted on the substrate 1 in addition to the flow sensor chip 2.
  • the electronic component 4 may be any electronic component.
  • the electronic component 4 may be, for example, a charge pump that boosts a voltage supplied from the outside and supplies it to the flow sensor chip 2, or may be an amplifier that amplifies the output of the flow sensor chip 2.
  • the flow sensor chip 2 and the electronic component 4 may be connected by a wire or may be connected by wiring on the substrate 1.
  • the lid 3 is formed in a box shape and the substrate 1 is formed in a plate shape.
  • the lid 3 may be formed in a plate shape and the substrate 1 may be formed in a box shape.
  • FIG. 18 is an exploded perspective view of the sensor package according to the fourth modification.
  • FIG. 19 is a diagram schematically showing the flow of air introduced from the ventilation holes in the sensor package according to the fourth modification.
  • the lid 3b is formed in a plate shape.
  • the substrate 1a is formed in a hollow rectangular parallelepiped shape by a flat bottom plate 15 and a plate-shaped side wall 14 erected from the edge of the bottom plate 15.
  • the substrate 1a is formed in a box shape that opens toward the lid 3a.
  • the substrate 1a can accommodate the flow sensor chip 2 in the hollow region.
  • the bottom plate 15 of the substrate 1a is provided with a ventilation hole 13 that penetrates the bottom plate 15 in the thickness direction.
  • the accommodation chamber 101 for accommodating the flow sensor chip 2 can also be formed by such a substrate 1a and a lid 3b.
  • the sensor package 100d according to the fourth modification can also detect the wind from the substrate 1a toward the lid 3b and the wind from the lid 3b toward the substrate 1a.
  • the bottom plate 15 is an example of a “board portion”.
  • FIG. 20 is a diagram showing an example of a configuration in which a flow sensor chip is placed on a side wall of a box-shaped substrate in a fourth modification. As illustrated in FIG. 20, the place where the flow sensor chip 2 is placed may be the side wall 14 as long as it is on the flow path formed by the ventilation holes 13, the ventilation holes 33, and the accommodation chamber 101.
  • a flow sensor chip (2) having a sensor unit that detects the flow of fluid
  • a package (3, 1) including a flat plate-shaped substrate portion (1, 15) and forming a storage chamber (101) for accommodating the flow sensor chip (2).
  • a connection terminal (123) provided on the outer surface of the board portion (1, 15) and connected to the external board (200) is provided.
  • the substrate portions (1, 15) are provided with a first communication hole (13) for communicating the inside and outside of the storage chamber (101).
  • a second communication hole (33) for communicating the inside and outside of the storage chamber (101) is provided at a position different from the substrate portion (1, 15) in the package.
  • the flow sensor chip (2) is arranged on the flow path of the fluid formed by the first communication hole (13) and the second communication hole (33).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本パッケージ型フローセンサは、流体の流れを検知するセンサ部を有するフローセンサチップと、平板状の基板部を含み、前記フローセンサチップを収容する収容室を形成するパッケージと、前記基板部の外面に設けられ、外部基板と接続される接続端子と、を備える。そして、本パッケージ型フローセンサでは、前記基板部には、前記収容室の内外を連通させる第1連通孔が設けられ、前記パッケージにおいて前記基板部とは異なる位置には、前記収容室の内外を連通させる第2連通孔が設けられ、前記フローセンサチップは、前記第1連通孔と前記第2連通孔とが形成する前記流体の流路上に配置される。

Description

パッケージ型フローセンサ
 本発明は、パッケージ型フローセンサに関する。
 流体の流量や流速、および流れる方向を検知するフローセンサが利用されている。フローセンサは、例えば、薄膜(メンブレン)上にヒーターと、ヒーターを挟むように配置したサーモパイルを有するセンサ部を備える。このようなセンサ部を備えるフローセンサでは、ヒーターが薄膜を加熱することで生じる熱分布が流体の流れによって乱されると、当該乱れをサーモパイルで生じる熱起電力の差として測定する。センサ部はメンブレンを利用していることから、物理的接触等によって破損しやすい部品であるといえる。
 例えば、特許文献1では、流体を通過させる流路と一体として形成されたフローセンサが開示されている。特許文献2では、流路とは別体として形成され、流速を検知するセンサ部を外部に露出させたフローセンサが開示されている。特許文献2に開示されるフローセンサは流路に備え付けられ、流路の断面積と合わせて流量が検知される。
特許第5652315号公報 特許第6435389号公報
 特許文献1に開示されるフローセンサは流路と一体として形成されるため、小型化することが困難であり、また、製造コストも高くなる。特許文献2に開示されるフローセンサは流路と別体として形成されるため、小型化が容易である。しかしながら、特許文献2に開示されるフローセンサは、外部に露出するセンサ部が物理的接触等によって破損しやすく、取り扱いが難しい。
 そこで、フローセンサをパッケージ内に収容することで、センサ部を保護するパッケージ型フローセンサが考えられる。パッケージ型フローセンサは、外部基板と接続されて使用される。このようなパッケージ型フローセンサは、外部基板の厚さ方向の流体の流れを検知することはできなかった。
 開示の技術の1つの側面は、外部基板の厚さ方向の流体の流れを検知できるパッケージ型フローセンサを提供することを目的とする。
 開示の技術の1つの側面は、次のようなパッケージ型フローセンサによって例示される。本パッケージ型フローセンサは、流体の流れを検知するセンサ部を有するフローセンサチップと、平板状の基板部を含み、前記フローセンサチップを収容する収容室を形成するパッケージと、前記基板部の外面に設けられ、外部基板と接続される接続端子と、を備える。そして、本パッケージ型フローセンサでは、前記基板部には、前記収容室の内外を連通させる第1連通孔が設けられ、前記パッケージにおいて前記基板部とは異なる位置には、前記収容室の内外を連通させる第2連通孔が設けられ、前記フローセンサチップは、前記第1連通孔と前記第2連通孔とが形成する前記流体の流路上に配置される。
 フローセンサチップのセンサ部は、流体の流速を検知するための繊細な部品をその表面に実装しており、物理的接触等によって破損しやすい。開示の技術は、パッケージ内にフローセンサチップを収容することで、物理的接触等からフローセンサチップのセンサ部を保護することができるため、フローセンサの取り扱いが容易になる。また、本パッケージ型フローセンサは流路と一体に形成されないため、流路と一体に形成されるフローセンサよりも小型化が容易である。パッケージ自体が小型であるため、別体として形成される流路に本パッケージ型フローセンサを組み込んで、検知した流速から流量を検知する場合でも、流路への取り付け自由度が向上するとともに、流路まで含めた構造であったとしても小型である。
 第1連通孔、第2連通孔及び収容室とが、フローセンサチップに流体を案内する流路を形成するため、収容室内に導入された流体はセンサ部上を通過することになる。流路が流体をセンサ部に案内することにより、パッケージにフローセンサチップを収容しても、流体の検知精度の低下が抑制される。
 本パッケージ型フローセンサでは、基板部の外面には外部基板と接続される接続端子が設けられる。そして、第1連通孔が基板部に設けられ、第2連通孔が基板部とは異なる位置に設けられる。すなわち、本パッケージ型フローセンサでは、外部基板と接続される側の面に第1連通孔が設けられ、外部基板と面しない位置に第2連通孔が設けられる。そのため、本パッケージ型フローセンサは、第1連通孔及び第2連通孔の一方から収容室に導入された流体を、第1連通孔及び第2連通孔の他方から、外部基板に阻害されることなく排出させることができる。このような構成を採用する本フローセンサパッケージは、外部基板の法線方向(外部基板の厚み方向)の流体の流れをセンサチップに検知させることができる。
 開示の技術は、次の特徴を有してもよい。前記接続端子は、前記第1連通孔の周囲を囲むように形成される。第1連通孔が接続端子で囲まれることで、本フローセンサパッケージを外部基板に実装する際は、第1連通孔のハンダ等で囲むことが可能となる。そのため、外部基板において第1連通孔と対応する位置に貫通孔を設けておけば、外部基板の法線方向(外部基板の厚み方向)の流体を効率よく収容室内に導入させることができる。
 開示の技術は、次の特徴を有してもよい。前記パッケージ型フローセンサは、前記外部基板上に載置され、前記外部基板には、前記接続端子に囲まれた領域に対応する位置に貫通孔が設けられ、前記流体は、前記外部基板において前記パッケージ型フローセンサが載置された面とは反対側の面から、前記貫通孔および前記第1連通孔を介して、前記収容室に案内される。
 開示の技術は、次の特徴を有してもよい。前記パッケージ型フローセンサは、前記外部基板において、電子部品が接続される面と同一の面に載置される。このような特徴を有することで、外部基板のパッケージ型フローセンサを実装する面とは反対側の面からの流体の流れが乱れることが抑制される。そのため、本パッケージ型フローセンサは、外部基板のパッケージ型フローセンサを実装する面とは反対側の面からの流体の流れの検知精度を高めることができる。
 開示の技術は、次の特徴を有してもよい。前記パッケージは、天板と前記天板の縁から立設する側壁とによって外部に開口する中空部を形成するケース部材を含み、前記基板部によって前記開口が閉塞されることで前記収容室が形成され、前記第2連通孔は、前記ケース部材に設けられる。ここで、開示の技術において、第2連通孔は天板に設けられてもよいし、側壁に設けられてもよい。例えば、第2連通孔が側壁に設けられると、フローセンサパッケージを外部基板に実装する際に、センサパッケージの把持が容易になる。
 開示の技術は、次の特徴を有してもよい。前記収容室には、外部から供給された電圧を昇圧して前記センサチップに供給するチャージポンプや前記センサチップの出力を増幅する増幅器がさらに収容されてもよい。このような特徴を有することで、センサチップとチャージポンプや増幅器との間の配線に混入するノイズが抑制される。ひいては、パッケージ型フローセンサの性能を向上させることができる。
 本パッケージ型フローセンサは、外部基板の厚さ方向の流体の流れを検知することができる。
図1は、実施形態に係るセンサパッケージの分解斜視図である。 図2は、フローセンサチップを上面から見た図である。 図3は、図2におけるA-A線断面図である。 図4は、フローセンサチップによる流速の測定方法を模式的に示す第1の図である。 図5は、フローセンサチップによる流速の測定方法を模式的に示す第2の図である。 図6は実施形態に係るセンサパッケージの基板を上方から見た図である。 図7は実施形態に係るセンサパッケージの基板を下方から見た図である。 図8は、実施形態に係るセンサパッケージを平面視した図である。 図9は、実施形態に係るセンサパッケージにおける、通気孔から導入された空気の流れを模式的に示す図である。 図10は、実施形態に係るセンサパッケージを外部基板に実装した状態を例示する図である。 図11は、実施形態に係るセンサパッケージを基板に複数並べて配置した状態を例示する図である。 図12は、実施形態に係るセンサパッケージを差圧センサとして利用する構成を例示する図である。 図13は、第1変形例に係るセンサパッケージの分解斜視図である。 図14は、第1変形例に係るセンサパッケージにおける、通気孔から導入された空気の流れを模式的に示す図である。 図15は、第2変形例に係るセンサパッケージ100を基板の裏面側から見た図である。 図16は、第1変形例に係るセンサパッケージにおける、通気孔から導入された空気の流れを模式的に示す図である。 図17は、第3変形例に係るセンサパッケージの一例を示す図である。 図18は、第4変形例に係るセンサパッケージの分解斜視図である。 図19は、第4変形例に係るセンサパッケージにおける、通気孔から導入された空気の流れを模式的に示す図である。 図20は、第4変形例において、箱状に形成された基板の側壁にフローセンサチップを載置した構成の一例を示す図である。
 以下、図面を参照して、一実施形態に係るセンサパッケージについて説明する。図1は、実施形態に係るセンサパッケージの分解斜視図である。図1に例示されるセンサパッケージ100は、基板1、フローセンサチップ2およびリッド3を備える。以下、本明細書において、基板1側を下、リッド3側を上とする。本明細書において、板状に形成される基板1の一方の辺に沿った方向をX方向、他方の辺に沿った方向をY方向、上下方向をZ方向とも称する。センサパッケージ100は、「パッケージ型フローセンサ」の一例である。
 (フローセンサチップ2)
 フローセンサチップ2は、流体(例えば、気体)の流速を測定するセンサである。図2は、フローセンサチップを上面から見た図であり、図3は図2におけるA-A線断面図である。フローセンサチップ2は、本体部21およびメンブレン22を備える。本体部21は、上面が開口した中空形状(すり鉢形状)に形成されており、その素材は、例えばシリコンである。メンブレン22は、薄膜であり、図3に例示されるように、本体部21が有する開口において中空状の構造となっている。メンブレン22には、ヒーター23およびサーモパイル24、24が設けられる。ヒーター23およびサーモパイル24、24は、Y方向に沿って一列に並んで配置される。サーモパイル24、24の一端の接点は、本体部21と重なる位置に配置される。サーモパイル24、24のそれぞれを区別するときは、サーモパイル24、24の一方をサーモパイル241と称し、他方をサーモパイル242と称する。
 ヒーター23は、メンブレン22を加熱する加熱器である。メンブレン22は薄膜であるため熱容量が小さく、ヒーター23によって効率的に加熱される。サーモパイル24、24はメンブレン22からの熱を受けることで熱起電力を発生させる熱電対である。サーモパイル24、24の一端の接点が本体部21の上にあるため、メンブレン22と本体部21との温度差が熱起電力として検出できる。サーモパイル24、24は、高い温度になるほど高い熱起電力を生じる。また、サーモパイル24、24のいずれもが同じ温度の場合、サーモパイル24、24が発生させる熱起電力は等しくなる。フローセンサチップ2は、例えば、ヒーター23によってメンブレン22を加熱し、メンブレン22における熱分布の差によって生じるサーモパイル24、24の熱起電力の差を基に流量を測定する熱式フローセンサである。フローセンサチップ2は、例えば、Micro Electro Mechanical Systems(MEMS)によって製造される。
 フローセンサチップ2のメンブレン22には、ヒーター23の両端に接続され、外部電源40からヒーター23への給電を受ける被給電端子231、231も設けられる。また、メンブレン22には、サーモパイル24、24のそれぞれが発生させる熱起電力の差Voutを測定するための被測定端子243、243も設けられる。サーモパイル24、24および被測定端子243、243は、配線25によって直列に接続される。フローセンサチップ2は、例えば、ヒーター23およびサーモパイル24、24が設けられたメンブレン22が外部に露出する表面実装型のフローセンサである。メンブレン22、ヒーター23およびサーモパイル24、24は、「センサ部」の一例である。
 図4および図5は、フローセンサチップによる流速の測定方法を模式的に示す図である。図4は、フローセンサチップ2の周囲において風が吹いていない状態を例示する。フローセンサチップ2の周囲で風が吹いていない場合、ヒーター23からの位置が離れるにしたがって温度が下がり、熱分布H1によって例示するように、メンブレン22における熱分布はヒーター23を中心として均等になる。そのため、サーモパイル24、24はいずれもヒーター23によって同じ温度に加熱され、サーモパイル24、24で生じる熱起電力も等しくなる。
 図5は、フローセンサチップ2の周囲において風が吹いている状態を例示する。サーモパイル24、24のうち一方をサーモパイル241、他方をサーモパイル242とすると、図5では、サーモパイル241からサーモパイル242の方向に向けて風が吹いている状態が例示される。風の上流側は風によって冷やされて温度が下がるため、熱分布H2によって例示するように、メンブレン22における熱分布は、ヒーター23の上流側よりも下流側にずれる(下流側の方が上流側より高温になる)。そのため、ヒーター23よりも下流側に位置するサーモパイル242の方が、ヒーター23よりも上流側に位置するサーモパイル241よりも高温となる。その結果、サーモパイル241の熱起電力Vと、サーモパイル242の熱起電力Vとの間に差が生じる。
 上記の通り、サーモパイル24、24は、高温になるほど熱起電力が高くなり、風の下流側に位置するサーモパイル24の方が、風の上流側に位置するサーモパイル24よりも高温となる。そのため、サーモパイル241の起電力Vとサーモパイル242の起電力Vの差(すなわち、V-V)を測定することで、フローセンサチップ2は風の向きを検知するとともに、風の強さを検知することができる。
 V-Vが正である場合には、サーモパイル242の方がサーモパイル241よりも高温となっているため、フローセンサチップ2はサーモパイル241からサーモパイル242に向かう方向に風が吹いていることを検知できる。また、V-Vが負である場合には、サーモパイル241の方がサーモパイル242よりも高温となっているため、フローセンサチップ2はサーモパイル242からサーモパイル241に向かう方向に風が吹いていることを検知できる。さらに、V-Vが0(ゼロ)である場合には、いずれのサーモパイル24、24も同じ温度となっているため、フローセンサチップ2は風が吹いていない(または、吹いている風が検知範囲の下限未満)であることを検知できる。また、フローセンサチップ2は、V-Vの値が大きいほど強い風が吹いていると検知できる。フローセンサチップ2は、「センサチップ」の一例である。ここではヒーター23の熱を検出する温度検知素子をサーモパイル24としたが、温度検知素子がダイオード、サーミスタ、白金等の測温抵抗体であるセンサチップであってもよい。
 (リッド3)
 リッド3は、フローセンサチップ2を上方から覆う蓋である。図1に例示されるリッド3は、天板31及び天板31の縁から立設される側壁32によって中空の直方体状に形成される。リッド3は、基板1に向けて開口する箱状に形成されるということもできる。リッド3は、中空となっている領域にフローセンサチップ2を収容可能である。リッド3の天板31には、天板31を厚さ方向に貫通する通気孔33が設けられる。通気孔33は、「第2連通孔」の一例である。
 図1に例示されるリッド3は底面が開口した中空の直方体状に形成されているが、リッド3の形状が直方体に限定されるわけではなく、円柱形状や五角柱等の多角柱であってもよい。リッド3の形状は、その内部にフローセンサチップ2を収容可能な中空の領域を有すればよい。リッド3の素材には特に限定はないが、収容したフローセンサチップ2を外部からの衝撃等から保護可能な剛性を有し、かつパッケージ内の流路を形成できる素材であればよい。金属、プラスチック、セラミックやシリコンなどでもよい。リッド3の素材が金属など導電性を有していれば、電磁ノイズに対する耐性が得られるなどの利点もある。リッド3は、「ケース部材」の一例である。
 (基板1)
 基板1は、一方の面(リッド3の開口に対向する面)にフローセンサチップ2が載置される平板状の基板である。基板1は、例えば、フローセンサチップ2と外部基板とを接続する接続端子を有してもよい。基板1は、プリント基板であってもセラミック基板であってもよい。また、基板1はリジッドな基板であってもフレキシブルな基板であってもよい。図1において、基板1は四角形の板状に形成されているが、基板1の形状がこのような形状に限定されるわけではない。基板1は、円形状や三角形状、五角形状等の他の形状に形成されてもよい。基板1は、リッド3の開口全体を覆うことが可能な形状に形成されることが好ましい。基板1には、基板1を厚さ方向に貫通する通気孔13が設けられる。リッド3の開口を基板1が閉塞することで、フローセンサチップ2を収容する収容室が形成される。通気孔13は、「第1連通孔」の一例である。
 図6は実施形態に係るセンサパッケージの基板を上方から見た図であり、図7は実施形態に係るセンサパッケージの基板を下方から見た図である。図6では、基板1の上面11に載置されるフローセンサチップ2も図示されている。基板1は、上面11において、フローセンサチップ2の被給電端子231、231と電気的に接続される給電端子112、112と、フローセンサチップ2の被測定端子243、243と電気的に接続される測定端子113、113を備える。フローセンサチップ2の被給電端子231、231と給電端子112、112、および、被測定端子243、243と測定端子113、113とは、例えば、金属ワイヤーW1を用いたワイヤーボンディングによって接続される。金属ワイヤーW1は、例えば、金によって形成される。また、基板1は、裏面12において、上面11に設けられた給電端子112、112や測定端子113、113と電気的に接続されたランド122、122、122、123を有する。ランド123は、基板1の裏面12において通気孔13の周囲を囲むように配置される。基板1は、「基板部」の一例である。リッド3と基板1とは、「パッケージ」の一例である。基板1の裏面12は、「基板部の外面」の一例である。ランド122、122、122、123は、「接続端子」の一例である。
 (風の流れ)
 図8は、実施形態に係るセンサパッケージを平面視した図である。図9は、実施形態に係るセンサパッケージにおける、通気孔から導入された空気の流れを模式的に示す図である。図9は、図8のB-B線における断面図となっている。図8では、リッド3内に収容されているフローセンサチップ2、フローセンサチップ2の上面に設けられたサーモパイル24、24および基板1に設けられた通気孔13を点線で図示している。通気孔13は、基板1を厚さ方向に貫通する孔である。リッド3の上面には、通気孔33が設けられる。通気孔33は、リッド3の上面を厚さ方向に貫通する孔である。通気孔13及び通気孔33は、センサパッケージ100のフローセンサチップ2を収容する収容室101と外部とを連通する貫通穴ということもできる。図8を参照すると理解できるように、センサパッケージ100を上方から見た平面視において、フローセンサチップ2は、通気孔13と通気孔33との間に位置するようにリッド3に収容される。その結果、通気孔13、サーモパイル241、サーモパイル242、通気孔33は、Y方向に沿って一列にこの順に並べられる。
 このように通気孔13、通気孔33およびサーモパイル24、24が並べられると、図9に例示されるように、通気孔13からリッド3内に導入された空気は、2つのサーモパイル24、24上を通過して、通気孔33からリッド3外に排出される。すなわち、基板1に設けられた通気孔13、リッド3の上面に設けられた通気孔33及び収容室101で、2つのサーモパイル24、24上に風を通過させる流路を形成することができる。換言すれば、フローセンサチップ2は、通気孔13、通気孔33及び収容室101によって形成される流路上に配置されるということもできる。なお、通気孔33からリッド3内に空気が導入されると、2つのサーモパイル24、24上を通過して、通気孔13からリッド3外に排出される。なお、図9では便宜的に一方向の風向を矢印で例示してあるが、実際には通気孔13から通気孔33への流体の流れおよび通気孔33から通気孔13への流体の流れの両方向を検知できる。前述の通り、フローセンサチップ2はサーモパイル24、24の起電力差の電位の正負によって風向を区別して検知できる。
 (実装例)
 図10は、実施形態に係るセンサパッケージを外部基板に実装した状態を例示する図である。図10では、センサパッケージ100は、基板200の電子部品が実装される表面201に設けられる。基板200は、センサパッケージ100のランド123によって規定される枠に対応する位置に、基板200の厚み方向に貫通する貫通孔206が設けられる。また、基板200の表面201には、貫通孔206の周囲を囲むようにランド204が設けられる。また、基板200の表面201には、センサパッケージ100のランド123に対応する位置に、ランド203が設けられる。基板200は、「外部基板」の一例である。
 本実装例では、センサパッケージ100のランド122と基板200ランド203とがハンダ205によって接続される。また、センサパッケージ100のランド123と基板200のランド204とがハンダ205によって接続される。ランド123が通気孔13の周囲を囲む枠状に形成され、ランド204が貫通孔206の周囲を囲む枠状に形成されることからら、ランド123とランド204とを接続するハンダ205も枠状に形成される。そのため、基板200に載置されたセンサパッケージ100を基板200の裏面202側から見ると、基板200の貫通孔206、ハンダ205によって規定される枠内、および、ランド123によって規定される枠内を介して、通気孔13を見ることができる。換言すれば、基板200の貫通孔206、ハンダ205によって規定される枠内、および、ランド123によって規定される枠内、通気孔13によって、リッド3の内部と外部とが連通するということができる。
 このような実装例では、センサパッケージ100は、例えば、貫通孔206及び通気孔13から収容室101に導入し、通気孔33を経て収容室101から排出される流体の流れをフローセンサチップ2に検知させることができる。また、センサパッケージ100は、例えば、通気孔33から収容室101に導入し、収容室101から貫通孔206及び通気孔13を経て収容室101から排出される流体の流れをフローセンサチップ2に検知させることができる。すなわち、センサパッケージ100は、基板200の厚み方向(基板200の表面201の法線方向)の流体の流れを検知することができる。
 センサパッケージ100は、例えば、基板200に複数並べて配置してもよい。図11は、実施形態に係るセンサパッケージを基板に複数並べて配置した状態を例示する図である。図11では、基板200の表面201に複数のセンサパッケージ100が一列に並んで配置される。このようにセンサパッケージ100を複数並べて基板200に配置することで、流体の流速の分布を検知することができる。なお、図11では、複数のセンサパッケージ100を一列に並べたが、センサパッケージ100は複数列に並べてもよい。
 (差圧センサとしての利用)
 センサパッケージ100は、差圧センサとして利用することもできる。図12は、実施形態に係るセンサパッケージを差圧センサとして利用する構成を例示する図である。図12では、部屋P1と部屋P2の気圧の差(差圧)をセンサパッケージ100で検知する構成を例示する。部屋P1と部屋P2は、基板200によって区切られている。例えば、部屋P1の気圧が部屋P2よりも低くなると、通気孔13、収容室101及び通気孔33を介して、部屋P2から部屋P1にむけた風が流れるようになる。部屋P1と部屋P2の気圧の差の大きさに応じて風向及び風速が変化する。そのため、センサパッケージ100は、部屋P1と部屋P2の間で流れる風向及び風速を検知することで、部屋P1と部屋P2の差圧を検知することが可能となる。
 <実施形態の作用効果>
 実施形態に係るセンサパッケージ100は、基板1に載置したフローセンサチップ2を収容室101に収容する。その結果、フローセンサチップ2は、リッド3と基板1とによって、外部からの物理的接触等から保護される。そのため、センサパッケージ100は、メンブレン22が外部に露出するフローセンサよりも容易に取り扱うことができる。また、センサパッケージ100は、リッド3及び基板1とによって外部からの物理的接触からフローセンサチップ2を保護できるため、センサパッケージ100を様々な場所で使用することができる。
 実施形態に係るセンサパッケージ100は、流体を通過させる流路と一体として形成されないため、流路と一体として形成されるフローセンサよりも小型化が容易である。
 実施形態に係るセンサパッケージ100は、通気孔13、通気孔33とサーモパイル24、24とをY方向に沿って一列に並べることで、流体の流速や流れる方向の測定に好適な流路を形成できる。
 実施形態に係るセンサパッケージ100は、基板1に通気孔13が設けられリッド3に通気孔33が設けられる。そのため、センサパッケージ100は、基板1から天板31に向かう風や天板31から基板1に向かう風を検知することができる。すなわち、センサパッケージ100は、基板200の厚さ方向の流体の流れを検知することができる。
 <第1変形例>
 実施形態では、リッド3の天板31に通気孔33が設けられる。しかしながら、通気孔33が設けられる位置は、リッド3の天板31に限定されない。図13は、第1変形例に係るセンサパッケージの分解斜視図である。第1変形例に係るセンサパッケージ100aでは、リッド3aが有する側壁32のうちのひとつが、通気孔33aが設けられた側壁32aとなる。
 図14は、第1変形例に係るセンサパッケージにおける、通気孔から導入された空気の流れを模式的に示す図である。第1変形例に係るセンサパッケージ100aは、リッド3の側壁32aに通気孔33aが設けられる。このようなセンサパッケージ100aによっても、基板1の裏面12からリッド3に向かう風の流れを検知することができる。例えば、図10に例示する構成において、センサパッケージ100に代えてセンサパッケージ100aを採用することで、センサパッケージ100aは、基板200の厚さ方向の流体の流れを検知することができる。
 <第2変形例>
 実施形態に係るセンサパッケージ100では、基板1の裏面12において、通気孔13の周囲を囲むようにランド123が設けられる。しかしながら、通気孔13の周囲の少なくとも一部はランドによって囲まれなくともよい。図15は、第2変形例に係るセンサパッケージ100を基板の裏面側から見た図である。第2変形例に係るセンサパッケージ100bでは、略コの字型に形成されたランド123aが基板1の裏面12に設けられる。
 図16は、第1変形例に係るセンサパッケージにおける、通気孔から導入された空気の流れを模式的に示す図である。センサパッケージ100bでは、基板200の表面201と平行に流れる風をランド123aが通気孔13に誘導することができる。そのため、センサパッケージ100bは、基板200の表面201と平行に流れる風を高感度で検知することができる。なお、ランド123aはセンサパッケージ100bと基板200をハンダ205によって物理的、電気的接続を図るものであるが、ハンダによる流路形成を主目的として、電気的接続の機能を有しないランド123aが設けられてもよい。
 <第3変形例>
 センサパッケージにおいて、基板1には、フローセンサチップ2に加えて他の電子部品がさらに実装されてもよい。図17は、第3変形例に係るセンサパッケージの一例を示す図である。第3変形例に係るセンサパッケージ100cは、フローセンサチップ2に加えて電子部品4も基板1上に実装される。電子部品4は、任意の電子部品であってよい。電子部品4は、例えば、外部から供給された電圧を昇圧してフローセンサチップ2に供給するチャージポンプであってもよいし、フローセンサチップ2の出力を増幅する増幅器であってもよい。フローセンサチップ2と電子部品4とは、ワイヤで接続してもよいし、基板1上の配線によって接続してもよい。電子部品4を収容室101内で基板1上に実装することで、フローセンサチップ2と電子部品4との間の配線に混入するノイズが抑制される。ひいては、センサパッケージ100cの性能を向上させることができる。
 <第4変形例>
 実施形態及び第1変形例から第3変形例では、リッド3が箱状に形成され、基板1が板状に形成される。しかしながら、リッド3が板状に形成され、基板1が箱状に形成されてもよい。図18は、第4変形例に係るセンサパッケージの分解斜視図である。また、図19は、第4変形例に係るセンサパッケージにおける、通気孔から導入された空気の流れを模式的に示す図である。第4変形例に係るセンサパッケージ100dでは、リッド3bは板状に形成される。また、基板1aは、平板状の底板15及び底板15の縁から立設される板状の側壁14によって中空の直方体状に形成される。基板1aは、リッド3aに向けて開口する箱状に形成されるということもできる。基板1aは、中空となっている領域にフローセンサチップ2を収容可能である。基板1aの底板15には、底板15を厚さ方向に貫通する通気孔13が設けられる。このような基板1a及びリッド3bによっても、フローセンサチップ2を収容する収容室101を形成することができる。第4変形例に係るセンサパッケージ100dも、実施形態に係るセンサパッケージ100のように、基板1aからリッド3bに向かう風やリッド3bから基板1aに向かう風を検知することができる。底板15は、「基板部」の一例である。
 箱状に形成される基板1aでは、底板15以外にも側壁14にも電子部品を実装することが可能である。そのため、第4変形例では、フローセンサチップ2を基板1aの側壁14に載置することも可能である。図20は、第4変形例において、箱状に形成された基板の側壁にフローセンサチップを載置した構成の一例を示す図である。図20に例示されるように、通気孔13、通気孔33及び収容室101が形成する流路上であれば、フローセンサチップ2を載置する場所は側壁14であってもよい。
 本実施の形態は、以下の態様(付記と呼ぶ)を含む。
 <付記1>
 流体の流れを検知するセンサ部を有するフローセンサチップ(2)と、
 平板状の基板部(1、15)を含み、前記フローセンサチップ(2)を収容する収容室(101)を形成するパッケージ(3、1)と、
 前記基板部(1、15)の外面に設けられ、外部基板(200)と接続される接続端子(123)と、を備え、
 前記基板部(1、15)には、前記収容室(101)の内外を連通させる第1連通孔(13)が設けられ、
 前記パッケージにおいて前記基板部(1、15)とは異なる位置には、前記収容室(101)の内外を連通させる第2連通孔(33)が設けられ、
 前記フローセンサチップ(2)は、前記第1連通孔(13)と前記第2連通孔(33)とが形成する前記流体の流路上に配置される、
 パッケージ型フローセンサ(100)。
 以上で開示した実施形態や変形例はそれぞれ組み合わせることができる。
 100、100a、100b、100c、100d・・・センサパッケージ
 1、1a、200・・・基板
 11、201・・・表面
 112・・・給電端子
 113・・・測定端子
 12、12a、202・・・裏面
 122、123、123a、203、204・・・ランド
 2・・・フローセンサチップ
 21・・・本体部
 22・・・メンブレン
 23・・・ヒーター
 231・・・被給電端子
 24、241、242・・・サーモパイル
 243・・・被測定端子
 3、3a、3b・・・リッド
 13、33、33a・・・通気孔
 205・・・ハンダ
 W1・・・金属ワイヤー

Claims (9)

  1.  流体の流れを検知するセンサ部を有するフローセンサチップと、
     平板状の基板部を含み、前記フローセンサチップを収容する収容室を形成するパッケージと、
     前記基板部の外面に設けられ、外部基板と接続される接続端子と、を備え、
     前記基板部には、前記収容室の内外を連通させる第1連通孔が設けられ、
     前記パッケージにおいて前記基板部とは異なる位置には、前記収容室の内外を連通させる第2連通孔が設けられ、
     前記フローセンサチップは、前記第1連通孔と前記第2連通孔とが形成する前記流体の流路上に配置される、
     パッケージ型フローセンサ。
  2.  前記接続端子は、前記第1連通孔の周囲を囲むように形成される、
     請求項1に記載のパッケージ型フローセンサ。
  3.  前記パッケージ型フローセンサは、前記外部基板上に載置され、
     前記外部基板には、前記接続端子に囲まれた領域に対応する位置に貫通孔が設けられ、
     前記流体は、前記外部基板において前記パッケージ型フローセンサが載置された面とは反対側の面から、前記貫通孔および前記第1連通孔を介して、前記収容室に案内されることを特徴とする、
     請求項2に記載のパッケージ型フローセンサ。
  4.  前記パッケージ型フローセンサは、前記外部基板において、電子部品が接続される面と同一の面に載置される、
     請求項3に記載のパッケージ型フローセンサ。
  5.  前記パッケージは、天板と前記天板の縁から立設する側壁とによって外部に開口する中空部を形成するケース部材を含み、
     前記基板部によって前記開口が閉塞されることで前記収容室が形成され、
     前記第2連通孔は、前記ケース部材に設けられる、
     請求項1から4のいずれか一項に記載のパッケージ型フローセンサ。
  6.  前記第2連通孔は、前記天板に形成される、
     請求項5に記載のパッケージ型フローセンサ。
  7.  前記第2連通孔は、前記側壁に形成される、
     請求項5に記載のパッケージ型フローセンサ。
  8.  前記収容室には、外部から供給された電圧を昇圧して前記フローセンサチップに供給するチャージポンプがさらに収容される、
     請求項1から7のいずれか一項に記載のパッケージ型フローセンサ。
  9.  前記収容室には、前記フローセンサチップの出力を増幅する増幅器がさらに収容される、
     請求項1から8のいずれか一項に記載のパッケージ型フローセンサ。
PCT/JP2020/046685 2020-03-10 2020-12-15 パッケージ型フローセンサ WO2021181781A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20924215.5A EP4102193A4 (en) 2020-03-10 2020-12-15 BOX TYPE FLOW METER
US17/905,667 US20230110107A1 (en) 2020-03-10 2020-12-15 Package-type flow sensor
CN202080098272.3A CN115280112A (zh) 2020-03-10 2020-12-15 封装型流量传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020040837A JP2021143855A (ja) 2020-03-10 2020-03-10 パッケージ型フローセンサ
JP2020-040837 2020-03-10

Publications (1)

Publication Number Publication Date
WO2021181781A1 true WO2021181781A1 (ja) 2021-09-16

Family

ID=77671524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046685 WO2021181781A1 (ja) 2020-03-10 2020-12-15 パッケージ型フローセンサ

Country Status (5)

Country Link
US (1) US20230110107A1 (ja)
EP (1) EP4102193A4 (ja)
JP (1) JP2021143855A (ja)
CN (1) CN115280112A (ja)
WO (1) WO2021181781A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0135389B2 (ja) 1980-12-05 1989-07-25 Omron Tateisi Electronics Co
WO2010102403A1 (en) * 2009-03-10 2010-09-16 Microbridge Technologies Inc. Flow sensing device and packaging thereof
EP2693172A1 (en) * 2013-04-10 2014-02-05 Sensirion AG Flow sensor
JP5652315B2 (ja) 2011-04-28 2015-01-14 オムロン株式会社 流量測定装置
WO2019120990A1 (en) * 2017-12-22 2019-06-27 Tdk Electronics Ag Sensor component and mobile communication device including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2533037B1 (en) * 2011-06-08 2019-05-29 Alpha M.O.S. Chemoresistor type gas sensor having a multi-storey architecture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0135389B2 (ja) 1980-12-05 1989-07-25 Omron Tateisi Electronics Co
WO2010102403A1 (en) * 2009-03-10 2010-09-16 Microbridge Technologies Inc. Flow sensing device and packaging thereof
JP5652315B2 (ja) 2011-04-28 2015-01-14 オムロン株式会社 流量測定装置
EP2693172A1 (en) * 2013-04-10 2014-02-05 Sensirion AG Flow sensor
WO2019120990A1 (en) * 2017-12-22 2019-06-27 Tdk Electronics Ag Sensor component and mobile communication device including the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4102193A4

Also Published As

Publication number Publication date
EP4102193A1 (en) 2022-12-14
JP2021143855A (ja) 2021-09-24
US20230110107A1 (en) 2023-04-13
CN115280112A (zh) 2022-11-01
EP4102193A4 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
JP5279667B2 (ja) 熱式空気流量センサ
US7891238B2 (en) Thermal anemometer flow sensor apparatus with a seal with conductive interconnect
EP2912426B1 (en) Combined pressure and humidity sensor
CN101852667B (zh) 流通压力传感器设备
US10129676B2 (en) MEMS microphone, apparatus comprising a MEMS microphone and method for fabricating a MEMS microphone
JP4979788B2 (ja) 流量センサーおよび流量検出装置
US8813556B2 (en) Intake temperature sensor
US8869623B2 (en) Pressure sensor mounting structure
KR20080087119A (ko) 압력 센서 패키지와, 그 제조 방법, 및 유체 압력 결정방법
CN112113910A (zh) 光声气体传感器和压力传感器
JP5971221B2 (ja) 空気流量測定装置
US9400197B2 (en) Fluid flow sensor
WO2021181781A1 (ja) パッケージ型フローセンサ
JP7064460B2 (ja) パッケージ型フローセンサ
US6945107B2 (en) Flow rate detection device and method for manufacturing the same
WO2021181782A1 (ja) パッケージ型フローセンサ
JP2002318147A (ja) 空気流量測定装置
CN218320777U (zh) 一种封装结构和电子设备
WO2020179249A1 (ja) 流量測定装置
CN109073582A (zh) 湿度测量装置
JP2018105748A (ja) 圧力センサ
CN115790752A (zh) 一种防水、防油的集成热式气体流量传感器及其制备方法
JP2023038631A (ja) 耐塵埃/耐ノイズ構造を有するセンサ
JP2023095442A (ja) 環境センサ
JP2020134364A (ja) 圧力センサ、圧力センサ駆動方法および圧力センサ運搬方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020924215

Country of ref document: EP

Effective date: 20220906

NENP Non-entry into the national phase

Ref country code: DE