WO2021181598A1 - Radar device - Google Patents

Radar device Download PDF

Info

Publication number
WO2021181598A1
WO2021181598A1 PCT/JP2020/010760 JP2020010760W WO2021181598A1 WO 2021181598 A1 WO2021181598 A1 WO 2021181598A1 JP 2020010760 W JP2020010760 W JP 2020010760W WO 2021181598 A1 WO2021181598 A1 WO 2021181598A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
chirp
frequency
signals
beat
Prior art date
Application number
PCT/JP2020/010760
Other languages
French (fr)
Japanese (ja)
Inventor
隆文 永野
亘 辻田
広幸 蔦田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022507106A priority Critical patent/JP7270835B2/en
Priority to PCT/JP2020/010760 priority patent/WO2021181598A1/en
Publication of WO2021181598A1 publication Critical patent/WO2021181598A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal

Definitions

  • This disclosure relates to radar equipment.
  • the present disclosure relates to a radar device having a particularly high range resolution.
  • the target is detected with high distance resolution by transmitting the chirp signal, converting the received signal obtained by receiving the reflected wave at the target (target object) into a beat signal, and detecting the peak from the Fourier transform.
  • FMCW Frequency-Modulated Continuous Wave
  • the range resolution can be increased by widening the bandwidth of the chirp signal, but the wider the bandwidth, the more difficult it is to generate the chirp signal, and it becomes difficult to widen the bandwidth of the antenna, amplifier, and the like. Therefore, it is being studied to improve the long-distance resolution by using a plurality of adjacent frequency bands.
  • Non-Patent Document 1 discloses a method for fusing measurement data of two frequency bands.
  • the frequency step is performed by simultaneously measuring the reflected wave with a transmitter / receiver having a frequency band of 40 GHz and 60 GHz and a frequency band of 100 GHz and 150 GHz, zero padding to the Fourier transform of the measurement data, and inverse Fourier transform. If there is a frequency gap between the two frequency bands, the missing frequency points are linearly interpolated.
  • Non-Patent Document 1 When a moving target is detected by the technique of Non-Patent Document 1, phase continuity cannot be ensured between data in two frequency bands, distortion, splitting, etc. occur at the peak of the Fourier transform, and the distance is high resolution. May not be able to be measured.
  • the present disclosure provides a radar device that can measure a distance with high resolution without causing distortion, splitting, etc. at the peak of the Fourier transform even if the target is moving by using a plurality of adjacent frequency bands. With the goal.
  • the radar device is The first to M chirp signals of the first to M (M is an integer of 2 or more) transmission frequency bands having equal bandwidths and adjacent to each other and having continuous frequency changes are synchronized with each chirp cycle.
  • a signal generator that repeatedly generates signals and
  • a signal transmitting device that transmits a first to M transmission wave corresponding to the first to M chirp signals repeatedly generated by the signal generating device, and a signal transmitting device. Reception of the first to M corresponding to the first to M transmission frequency bands, respectively, of the reflected wave generated by the reflection of the first to M transmission waves transmitted by the signal transmission device at the target.
  • a signal receiver that receives in the frequency band and generates the first to M received signals, and From the first to M chirp signals generated by the signal generator and the first to M received signals generated by the signal receiving device, frequency components corresponding to the distance to the target are obtained.
  • a signal conversion device that generates the first to Mth beat signals to have, and A signal synthesizing unit that connects the first to M beat signals generated by the signal conversion device to each other at boundaries between the chirp periods to generate one composite signal for each chirp period. It is provided with a target detection unit that calculates the distance to the target and the speed of the target from a plurality of synthetic signals sequentially generated by the signal synthesis unit.
  • the radar device of the present disclosure it is possible to measure the distance with high resolution without causing distortion, splitting, etc. at the peak of the Fourier transform even if the target is moving.
  • FIG. 4A is an enlarged view of a part of FIG. 4A, and a code indicating a period is added to the transmission signal, the reception signal, and the frequency difference, and FIG.
  • FIG. 4B is the beat due to the frequency difference in FIG. 4A.
  • a figure showing one method of connecting signals by a comparative example is a figure showing a method of connecting beat signals by the frequency difference of (a) according to an embodiment.
  • (A) is a diagram in which a part of FIG. 4 (a) is enlarged and a code indicating a period is added to the transmission signal, the reception signal, and the frequency difference, and the portion of the reception signal that arrives with a delay.
  • (B) is a diagram showing a method of synthesizing a beat signal based on the frequency difference of (a). It is a figure which shows an example of the result of the Fourier transform for one composite signal.
  • FIG. 8 (A) is a diagram showing the results of Fourier transform on a plurality of composite signals, and (b) is an example of a change in peak phase in (a). It is a figure which shows an example of the result of the further Fourier transform with respect to the result of the Fourier transform shown in FIG. 8 (a). It is a flowchart which shows an example of the processing procedure after receiving the reflected wave of the radar apparatus of embodiment. It is a figure which shows the hardware configuration of the computer which realizes the function of the part other than the antenna of the radar apparatus of Embodiment 1. FIG.
  • FIG. 1 shows an outline of the radar device RD of the embodiment.
  • the illustrated radar device RD repeatedly generates and transmits chirp signals of the first to third ⁇ ( ⁇ is an integer of 2 or more) frequency bands having the same bandwidth and adjacent to each other in synchronization with each other, and at the target TG.
  • the reflected wave due to the reflection of the above is received to generate a received signal, and the distance to the target TG and the speed of the target TG are calculated based on the beat signal due to the frequency difference between the transmitted chirp signal (transmitted signal) and the received signal.
  • is an integer of 2 or more
  • the radar device RD shown in FIG. 1 includes a control device 100, a reference signal generator 102, a signal generation device 110, a signal transmission device 120, a signal reception device 130, a signal conversion device 140, and a signal processing device 150.
  • the signal transmission device 120 has first to third transmission units 121 to 123.
  • the signal receiving device 130 has first to third receiving units 131 to 133.
  • the signal conversion device 140 has first to third conversion units 141 to 143.
  • the first transmitting unit 121, the first receiving unit 131, and the first conversion unit 141 are provided so as to correspond to each other.
  • the second transmitting unit 122, the second receiving unit 132, and the second converting unit 142 are provided so as to correspond to each other.
  • the third transmitting unit 123, the third receiving unit 133, and the third conversion unit 143 are provided so as to correspond to each other.
  • FIG. 2 shows a specific configuration example of the radar device RD of FIG.
  • the radar device RD shown in FIG. 2 includes a control device 100, a reference signal generator 102 (omitted in FIG. 2), and a signal processing device 150, as well as a DDS 3, a high frequency signal generator 4, mixers 11 to 13, and amplifiers 21 to 21. 23, a transmission / reception switch 31 to 33, an antenna 41 to 43, an amplifier 51 to 53, a mixer 61 to 63, an amplifier 71 to 73, and an A / D converter 81 to 83 are provided.
  • DDS is an abbreviation for Direct Digital Synthesizer (Digital Direct Synthesizer).
  • the signal generator 110 is composed of the DDS 3, the high frequency signal generator 4, and the mixers 11 to 13.
  • the amplifier 21, the transmission / reception switch 31, and the antenna 41 constitute the first transmission unit 121.
  • the amplifier 22, the transmission / reception switch 32, and the antenna 42 constitute a second transmission unit 122.
  • the amplifier 23, the transmission / reception switch 33, and the antenna 43 constitute a third transmission unit 123.
  • the first receiving unit 131 is composed of the antenna 41, the transmission / reception switching device 31, and the amplifier 51.
  • the second receiving unit 132 is composed of the antenna 42, the transmission / reception switching device 32, and the amplifier 52.
  • the antenna 43, the transmission / reception switch 33, and the amplifier 53 constitute a third receiving unit 133.
  • the mixer 61, the amplifier 71, and the A / D converter 81 constitute the first conversion unit 141.
  • the mixer 62, the amplifier 72, and the A / D converter 82 constitute a second conversion unit 142.
  • the mixer 63, the amplifier 73, and the A / D converter 83 constitute a third conversion unit 143.
  • control device 100 controls the DDS3 of the signal generation device 110, it can be seen as forming a part of the signal generation device 110. Similarly, since the control device 100 controls the A / D converters 81 to 83 of the signal conversion device 140, it can be seen as forming a part of the signal conversion device 140.
  • the signal processing device 150 has a signal synthesis unit 151 and a target detection unit 152.
  • the control device 100, DDS3, high-frequency signal generator 4, A / D converters 81 to 83, and signal processing device 150 are connected to a common reference signal generator 102 (FIG. 1) and operate in synchronization with each other. It is assumed that each of the mixers 11 to 13 and 61 to 63 has a function of filtering signals other than the desired signal after mixing the signals.
  • the signal generation device 110 repeats the first to third chirp signals S1 to S3 and generates them in synchronization with each other.
  • Examples of chirp signals S 1 ⁇ S 3 is shown in Figure 4 (a).
  • Each chirp signals S 1 ⁇ S 3 as shown are up-chirp signal, the modulation width, i.e. bandwidth equal. This modulation width is represented by B.
  • the band from f 1 to f 1 + B is called the first frequency band and is represented by the code FC 1.
  • the band from f 2 to f 2 + B is referred to as a second frequency band and is represented by the code FC 2.
  • the band from f 3 to f 3 + B is called a third frequency band and is represented by the code FC 3.
  • the length of the period of the chirp signal S 1 ⁇ S 3 (chirp period) are equal to each other, as soon as one cycle is completed the next cycle begins.
  • i, i + 1, i + 2, ... are assigned as cycle numbers k.
  • a chirp signal S m emitted in a certain frequency band FC m (m is 1 or 2 in this case) in a certain period and a frequency band FC adjacent to the above frequency band FC m in the next cycle on the higher frequency side.
  • phase at the chirp termination of the chirp signal S m of the m, and the m + 1 of the chirp signal S m + 1 of the chirp at the beginning of the phase is equal.
  • phase (initial phase) ⁇ 1, k ⁇ ⁇ 3 , k at the beginning chirp of the chirp signals S 1 ⁇ S 3 of the M are identical to each other between mutually equal, and all chirp period.
  • Controller 100 a modulation width B, a length T of the period, the starting frequency f 1 ⁇ f 3 of the chirp signal S 1 ⁇ S 3, the first phase phi 1 the period of the chirp signal S 1 ⁇ S 3, Control is performed so that k to ⁇ 3 and k are values that satisfy the above conditions, respectively.
  • the modulation width B of the chirp signal S 1 ⁇ S 3 is assumed to be predetermined. In that case, the control device 100, the length T of the period, the starting frequency f 1 of the chirp signal S 1, the first phase phi 1 the period of the chirp signal S 1 ⁇ S 3, k ⁇ ⁇ 3, and k specify.
  • the DDS 3 generates a chirp signal S 0 based on a predetermined modulation width B, a period length T specified by the control device 100, a start frequency f 1 , and a phase ⁇ 1, k.
  • Chirp signal S 0 generated is an end frequency start frequency at f 1 -B is f 1, the length of the period T.
  • the high frequency signal generator 4 generates a predetermined high frequency signal HF of frequency B.
  • the chirp signal S 0 output from the DDS 3 is input to the mixer 11.
  • the DDS 3 and the high-frequency signal generator 4 cause the mixers 11 to 13 to generate chirp signals S 1 to S 3 in which the first phase of each cycle is a specified value ⁇ 1, k to ⁇ 3, k, respectively.
  • Chirp signal S 0 and high frequency signal HF are output.
  • the phase of the chirp signal S 0 and the high frequency signal HF so that the first phase of each period of the chirp signals S 1 to S 3 becomes the specified values ⁇ 1, k to ⁇ 3, k, respectively.
  • the phase of is controlled.
  • the chirp signal S 0 is supplied from the DDS 3 to the mixer 11, and the high frequency signal HF is supplied from the high frequency signal generator 4.
  • the mixer 11 In the mixer 11 therein, it generates a chirp signals S 1 the end frequency f 1 + B starting frequency at f 1, an end frequency starting frequency f 1 -2B and f 1 -B chirp signals S 1 'is It is, of which chirp signals S 1 'is removed by filtering the chirp signals S 1 is output.
  • the chirp signal S 1 is supplied to the amplifier 21 and the mixer 12.
  • the chirp signal S 1 is supplied from the mixer 11, the high-frequency signal HF is supplied from the high frequency signal generator 4.
  • an end frequency starting frequency f 1 + B chirp signal S 2 of f 1 + 2B, the end frequency start frequency at f 1 -B are generated and chirp signal S 2 'of the f 1 , of which the chirp signal S 2 'are removed by filtering the chirp signal S 2 is outputted.
  • the chirp signal S 2 is supplied to the amplifier 22 and the mixer 13.
  • the chirp signal S 2 is supplied from the mixer 12 to the mixer 13, and the high frequency signal HF is supplied from the high frequency signal generator 4.
  • a chirp signal S 3 end frequency of f 1 + 3B in the start frequency f 1 + 2B, end frequency start frequency at f 1 is and a chirp signal S 3 'of f 1 + B is generated, Among them chirp signal S 3 'is removed by filtering, the chirp signal S 3 is output.
  • the chirp signal S 3 is supplied to an amplifier 23.
  • the start frequency f 2 of the chirp signal S 2 is equal to the end frequency f 1 + B of the chirp signal S 1
  • starting frequency f 3 of the chirp signal S 3 is equal to the end frequency f 2 + B of the chirp signal S 2. Therefore, chirp signals S 1 ⁇ S 3 can be said to change in frequency is continuous with each other. Also, chirp signals S 1 ⁇ S 3 phase ⁇ 1, k ⁇ ⁇ 3, k are equal to each other at the start chirp of each cycle is the same in different circumferential periods.
  • Signal transmitter 120 transmits a chirp signal S 1 ⁇ S 3 generated by the signal generator 110 as a transmission wave.
  • Chirp signal S 1 ⁇ S 3 are amplified by the amplifiers 21 to 23 respectively, are supplied to the antenna 41 to 43 through the duplexer 31 to 33, from the antenna 41 to 43, the transmission wave corresponding to the chirp signal S 1 ⁇ S 3 Is sent.
  • the transmitted chirp signal is also called a transmission signal.
  • the signal receiving device 130 receives the reflected wave generated by reflecting the transmitted wave transmitted by the signal transmitting device 120 at the target TG and generates a received signal.
  • the received signal generated by receiving the reflected wave generated by reflecting the transmitted wave corresponding to the transmitted signal at the target TG is referred to as a received signal corresponding to the above-mentioned transmitted signal.
  • the receiving units 131 to 133 of the signal receiving device 130 are provided corresponding to the frequency bands FC 1 to FC 3, respectively.
  • the conversion units 141 to 143 of the signal conversion device 140 are provided corresponding to the frequency bands FC 1 to FC 3, respectively.
  • Reflected wave transmission wave transmitted from the antenna 41 to 43 in each frequency band are generated by reflection at the target TG is received by the antennas 41 to 43, the results generated received signal R 1 ⁇ R 3 are exchanged It passes through the switches 31 to 33 and is amplified by the amplifiers 51 to 53.
  • the amplified received signals R 1 ⁇ R 3 are, as the output of the signal receiver 130, supplied to the signal converter 140.
  • Signal converting apparatus 140 the received signal R 1 ⁇ R 3 outputted from the signal receiver 130, generates a beat signal Q 1 ⁇ Q 3 from the transmission signal S 1 ⁇ S 3 Metropolitan output from the signal generator 110 ..
  • the received signals R 1 ⁇ R 3 outputted from the signal receiver 130 is input to a mixer 61 to 63, is mixed with the transmission signal S 1 ⁇ S 3 corresponding.
  • the mixer 61 mixes the received signal R 1 and the transmitted signal S 1 and removes signals other than the desired signal by filtering to generate the beat signal Q 1 shown in FIG. 4 (b).
  • the mixer 62 mixes the received signal R 2 and the transmitted signal S 2 and removes signals other than the desired signal by filtering to generate the beat signal Q 2 shown in FIG. 4 (c).
  • the mixer 63 mixes the received signal R 3 and the transmitted signal S 3 and removes signals other than the desired signal by filtering to generate the beat signal Q 3 shown in FIG. 4 (d).
  • the figure shows the start and end of each of the beat signals Q 1 ⁇ Q 3 by an arrow.
  • the frequency of the beat signal Q 1 is equal to the difference between the frequencies of the transmission signal S 1 and the frequency of the reception signal R 1.
  • the frequency of the beat signal Q 2 is equal to the difference between the frequencies of the transmission signal S 2 and the frequency of the reception signal R 2.
  • the frequency of the beat signal Q 3 is equal to the difference between the frequencies of the transmission signal S 3 and the frequency of the reception signal R 3.
  • FIG. 4 (a) the difference between the frequency, the same reference numerals as the corresponding beat signals Q 1 ⁇ Q 3 is are given.
  • the mixers 61 to 63 have a function of removing signals other than the desired signal, but the first to third receiving units 131 to 133 are among the received signals in the corresponding conversion units 141 to 143, respectively. It is desirable to have a function of removing frequency components other than the frequency components necessary for producing the desired beat signals Q 1 ⁇ Q 3 in the mixer by filtering.
  • Beat signals Q 1 ⁇ Q 3 generated by the mixer 61 to 63 are amplified by the amplifiers 71 to 73, is converted into a digital signal by the A / D converters 81 to 83.
  • the digital signal is also represented by the same reference numerals as the beat signals Q 1 ⁇ Q 3 analog.
  • the beat signal Q 1 ⁇ Q 3 in which each generated from the transmission signal S 1 ⁇ S 3 of frequency band FC 1 ⁇ FC 3, respectively, the beat signal corresponding to the frequency band FC 1 ⁇ FC 3, or frequency It is said to be a beat signal of bands FC 1 to FC 3.
  • Signal combining unit 151 of the signal processing device 150, FIG. 4 a beat signal Q 1 ⁇ Q 3 (e) , (f), coupled as shown in (g), to generate a composite signal CS at every cycle.
  • Each composite signal CS is periodically (e.g., period i) the beat signal Q 1 generated using the transmission signals S 1 of the first frequency band FC 1, first in the next cycle (e.g., cycle i + 1) produced using a beat signal Q 2 to which has been generated using a second transmission signal S 2 of frequency bands FC 2, further next cycle (e.g., cycle i + 2) of the transmission signal S 3 of the third frequency band FC 3 It is obtained by connecting the beat signal Q 3 which is.
  • the target detection unit 152 Fourier transforms each composite signal generated by the signal synthesis unit 151, further arranges the Fourier transforms of a plurality of composite signals, Fourier transforms in the arranged direction, and detects the peak to detect the target TG. Calculate the distance to and the speed of the target TG.
  • FIG. 5A is an enlargement of a part of FIG. 4A, and a reference numeral representing a frequency band and a period is added to a transmission signal, a reception signal, and a frequency difference. That is, the transmission signal of cycle k of the frequency band FC m (k-th period) indicated by reference numeral S (m, k), the received signal having a period k of the frequency band FC m is represented by R (m, k) , The beat signal of the period k of the frequency band FC m is indicated by Q (m, k).
  • the instantaneous value s (m, k) of the transmission signal having a period k of the frequency band FC m is expressed by the following equation (2).
  • t is the time
  • is the amplitude of the transmitted signal
  • f m is the chirp start frequency of the mth frequency band
  • T is the length of the chirp cycle
  • B is the modulation width of the transmitted signal, that is, the bandwidth of each frequency band.
  • ⁇ m and k represent the initial phase of the chirp period k of the mth frequency band FC m.
  • the instantaneous value r (m, k) of the received signal obtained by receiving the reflected wave at the target TG is as follows. It is expressed by the equation (3) of.
  • is the amplitude of the received signal. Further, ⁇ is given by the following equation (4).
  • Equation (4) c is the speed of light. Further, v is the speed of the target TG, and the direction away from the radar device RD is the positive direction.
  • the m r (m r is any one of 1 to M) the received signal R (m r, k r) of a frequency band FC mr period k r with, the m s (the m s either from 1 M) phase difference between the transmission signal S (m s, k s) of the frequency band FC ms period k s, i.e. the beat signal Q (m r, k r, m s, k s) the instantaneous value of the phase of the following It is represented by the formula (6).
  • the instantaneous value of the phase of the beat signal Q (m, k) generated from (m, k) is expressed by the following equation (7).
  • a beat signal generated from a transmission signal S (m, k) and a reception signal R (m, k) having a period k of the mth frequency band The end of Q (m, k) and the start of the beat signal Q (m + 1, k) generated from the transmission signal S (m + 1, k) and the reception signal R (m + 1, k) with the period k of the first m + 1 frequency band.
  • the end of the beat signal Q (m, k) is at the end of the cycle k, and the start of the beat signal Q (m + 1, k) is at the start of the cycle k.
  • the phase difference between the two beat signals at the connecting portion is expressed by the following equation (8).
  • the phase difference represented by the equation (8) becomes 0, and the phase continuity between the beat signals can be ensured.
  • the phase difference represented by the equation (8) is not always 0 because the equation (8) includes the delay time ⁇ 0. That is, the continuity of the phase between the beat signals cannot be ensured.
  • the connection is performed as follows. That is, as shown in FIGS. 5A and 5C, the beat signal Q (m) generated from the transmission signal S (m, k) and the reception signal R (m, k) having the period k of the mth frequency band. , K) is connected to the end of the beat signal Q (m + 1, k + 1) generated from the transmission signal S (m + 1, k + 1) and the reception signal R (m + 1, k + 1) having a period k + 1 in the mth frequency band. ..
  • the end of the beat signal Q (m, k) is at the end of the cycle k, and the start of the beat signal Q (m + 1, k + 1) is at the start of the cycle k + 1.
  • the phase difference between the two beat signals at the connecting portion is 0 as represented by the following equation (9).
  • FIG. 6A is a diagram similar to that of FIG. 5A, but shows the portion of the received signal that arrives with a delay in the next chirp cycle.
  • the portion of the received signal that arrives late in the next chirp cycle means the portion of the received signal corresponding to the transmitted signal transmitted in a certain cycle that is received in the next cycle of the above cycle. do.
  • the delay time is Td
  • a part R (m, k) of the received signal R (m, k) corresponding to the transmitted signal S (m, k) transmitted in the period k ( m, k) d is received in the next cycle k + 1.
  • the reception signal R (m + 1, k + 1) having a period k + 1 of the frequency band FC m + 1 includes a part R (m) of the reception signal R (m, k) corresponding to the transmission signal S (m, k) transmitted in the period k.
  • K) It can also be said that d is included.
  • the received signal portion R (m, k) d is the reception processing by the receiver for the frequency band FC m + 1, in the conversion unit for frequency band FC m + 1, the frequency band FC m + 1 of the next period k + 1 of the transmitted signal It is mixed with S (m + 1, k + 1) to generate the start end portion of the beat signal Q (m + 1, k + 1) having the period k + 1.
  • such a starting end portion is indicated by the reference numeral Q (m, k) d, and the portion other than the starting end portion is indicated by the reference numeral Q (m + 1, k + 1) u.
  • the maximum value of the delay time Td becomes long, and the continuity of the phase between the beat signals in the delay portion (the portion of the period Td in FIG. 6A) is also important.
  • Phase ⁇ (m, k, m + 1, k + 1) (kT) at the start of the cycle of the beat signal Q (m, k) d generated from the transmission signal S (m + 1, k + 1) having the cycle k + 1 in the frequency band of the third m + 1. ) Is expressed by the following equation (10).
  • the phase difference given by Eq. (10) must be an integral multiple of 2 ⁇ between all frequency bands and all periods. There is. Therefore, the control device 100, as described above, the phase ⁇ 1, k ⁇ ⁇ 3, k the same in all cycles of the modulation width B, a length T of the period, the transmission signal S 1 ⁇ S 3
  • the value of equation (10), that is, the beat signal Control is performed so that the phase difference at the start of the cycle is an integral multiple of 2 ⁇ .
  • the continuity of the phase between the above two beat signals can be continuously ensured, and the peak of the Fourier transform can be obtained even for a long-distance moving target in which the delay time of the received signal becomes long.
  • High distance resolution can be achieved without causing distortion or splitting.
  • the portion of the received signal in the mth frequency band FC m that arrives with a delay in the next chapter cycle is the adjacent third m + 1 signal.
  • the frequency band FC m + 1 since it is necessary to convert the beat signal is received by the frequency band FC m + 1, of the signal converter 140, conversion unit corresponding to the frequency band FC m + 1, as shown in FIG. 6 (a), the frequency band FC m + 1 Not only that, it is necessary to configure it so that it can process a signal in the frequency range FE m + 1 from the lower end of the frequency band FC m + 1 to a frequency further lower by the frequency width Bd.
  • a conversion unit for generating a beat signal Q m + 1 receives a transmission signal S m + 1 of the frequency band FC m + 1, m points to the conversion unit 142 as long as 1 If m is 2, it means the conversion unit 143.
  • the receiving unit corresponding to the frequency band FC m + 1 has the frequency range FE m + 1 as the receiving frequency band, and is configured to be capable of receiving processing for the signal in the frequency range FE m + 1.
  • the above "receiving unit corresponding to the frequency band FC m + 1" is a receiving unit corresponding to the converter which corresponds to the frequency band FC m + 1, m points to the receiving unit 132 if 1, if m is 2 Refers to the receiving unit 133.
  • the receiving unit 131 corresponding to the frequency band FC1 suffices to set the frequency band FC1 itself as the receiving frequency band.
  • “Letting a certain frequency range or a certain frequency band as a reception frequency band” means that reception processing can be performed on a signal in the frequency range or the frequency band.
  • the frequency bands FC 1 to FC 3 may be referred to as a transmission frequency band.
  • the frequency width Bd is predetermined to be equal to or higher than the maximum beat frequency Qmax.
  • the maximum beat frequency Qmax is given by the following equation (11).
  • ⁇ max is the delay time corresponding to the maximum distance measurement distance.
  • the product of the length T of the sampling frequency f S and chirp period of the beat signal in the A / D converters 81 to 83 may be set to be an integer.
  • a / D converters 81 to 83 may be configured to perform sampling in such a condition is satisfied sampling frequency f S. Then, during the continuous period, the phase difference at the start of the period of the received signal in each frequency band obtained from the reflected wave at the target which is stationary or moving at a constant speed becomes constant.
  • the target detection unit 152 calculates the distance to the target TG and the speed of the target TG based on the plurality of synthetic signals CS generated as described above.
  • the first Fourier transform is performed on each of the combined signals CS to generate a power spectrum with respect to the distance.
  • An example of the result of the Fourier transform on one composite signal is shown in FIG.
  • the horizontal axis in FIG. 7, the distance to a corresponding frequency, the power can be specified distance from the frequency f p of the peak.
  • a result similar to that shown in FIG. 7 (Fourier transform result) is obtained for each composite signal.
  • the results of Fourier transform on a plurality of synthesized signals generated within a certain period are arranged on the time axis. Specifically, the result of each Fourier transform is arranged at a time point corresponding to the start of the beat signal located at the beginning of the corresponding composite signal. The result of such an arrangement is shown in FIG. 8 (a). When the target TG is moving, the phase of the peak in the result of the Fourier transform shown in FIG. 8 (a) changes as shown in FIG. 8 (b).
  • FIG. An example of the result of the second Fourier transform is shown in FIG. As shown in the figure, in the result of the second Fourier transform, a peak appears in the frequency bin with respect to the Doppler frequency. The speed of the target TG can be specified from this Doppler frequency.
  • FIG. 10 shows a processing procedure after receiving the reflected wave by the radar device RD shown in FIG.
  • a beat signal is generated.
  • the process of step ST1 is performed by the signal converter 140.
  • a composite signal is generated by connecting the beat signals.
  • the process of step ST2 is performed by the signal synthesis unit 151.
  • step ST3 each synthesized signal is Fourier transformed.
  • step ST4 the results are arranged in the above Fourier transform, and the Fourier transform is performed in the arranged direction.
  • step ST5 the peak is detected to obtain the distance and speed.
  • the processing of steps ST3 to ST5 is performed by the target detection unit 152.
  • the number M of the frequency band is 3, but M may be 2 or 4 or more. In short, M may be 2 or more.
  • the chirp signal is an up chirp signal, but the chirp signal may be a down chirp signal.
  • the above signal transmitter has a plurality of transmitters, and each transmitter is composed of an amplifier, a transmission / reception switch, and an antenna. If a set of amplifiers, a transmission / reception switch, and an antenna can cover a plurality of frequency bands as a whole, a signal transmission device may be configured by such a set of amplifiers, a transmission / reception switch, and an antenna.
  • the above signal receiving device has a plurality of receiving units, and each receiving unit is composed of an antenna, a transmission / reception switch, and an amplifier. If a set of antennas, a transmission / reception switch, and an amplifier can cover a plurality of frequency bands as a whole, such a set of antennas, a transmission / reception switch, and an amplifier may form a signal receiver.
  • the modulation width B of the charp signal is fixed.
  • the modulation width B may be specified by the control device 100.
  • a DDS3 capable of generating a chirp signal having a specified modulation width B may be used.
  • the radar device The first to M chirp signals of the first to M (M is an integer of 2 or more) transmission frequency bands having equal bandwidths and adjacent to each other and having continuous frequency changes are synchronized with each chirp cycle.
  • a signal generator (110) that is repeatedly generated in
  • a signal transmitter (120) that transmits a first to M transmission wave corresponding to the first to M chirp signals repeatedly generated by the signal generator (110), and a signal transmitter (120).
  • the reflected waves generated by the reflection of the first to M transmission waves transmitted by the signal transmission device (120) at the target are the first to first transmission waves corresponding to the first to M transmission frequency bands, respectively.
  • a signal receiving device (130) that receives in the reception frequency band of M and generates the first to M received signals, and The distance from the first to M chirp signals generated by the signal generator (110) and the first to M received signals generated by the signal receiving device (130) to the target.
  • a signal converter (140) that generates first to Mth beat signals having frequency components according to The signal synthesizer (151) that connects the first to M beat signals generated by the signal conversion device (140) to each other at the boundary between the chirp cycles to generate one composite signal for each chirp cycle.
  • a target detection unit (152) that calculates the distance to the target and the target speed from the plurality of synthetic signals sequentially generated by the signal synthesis unit (151) may be provided.
  • the frequency at the end of the chirp of the mth chirp signal and the frequency at the start of the chirp of the m + 1 chirp signal are equal.
  • phase at the end of the chirp of the mth chirp signal and the phase at the start of the chirp of the m + 1 chirp signal are continuous.
  • the signal synthesizing unit (151) determines the termination of the beat signal generated from the m (m is any of 1 to M-1 in this case) chirp signal of the first to M chirp signals. It is preferable that the beat signals are connected by connecting the beat signals generated from the m + 1th chirp signal.
  • the beat signals of the first to Mth frequency bands FC1 to FCM are connected in ascending order of the frequencies of the corresponding frequency bands.
  • the beat signals of the first to Mth frequency bands FC1 to FCM are connected in descending order of the frequencies of the corresponding frequency bands.
  • the nth (n is any of 2 to M) reception frequency bands of the first to M reception frequency bands are extended by the beat frequency corresponding to the maximum ranging distance with respect to the corresponding transmission frequency band. It is preferable to have a specified frequency range.
  • the above extension is an extension from the lower limit of the corresponding transmission frequency band to a frequency lower by the beat frequency corresponding to the maximum distance measurement distance, and the chirp signal is a down chirp signal. If so, the above extension is an extension from the upper limit of the corresponding transmission frequency band to a frequency higher by the beat frequency corresponding to the maximum distance measurement distance.
  • the signal conversion device (140) has first to M A / D conversion units that A / D convert the first to M beat signals, respectively, and the first to M A / Ds. in the conversion unit, the sampling frequency (f S) of the first to beat signal of the M and the chirp length of the period (T) and the product is an integer become as the a / D conversion of the first through M
  • the unit is configured so that the phase difference at the start of the cycle of the received signal in each frequency band obtained from the reflected wave at the target that is stationary or moving at a constant speed is constant between continuous cycles. It is preferable to do so.
  • a part or all of the part other than the antenna of the radar device may be composed of a processing circuit.
  • the functions of each part of the radar device may be realized by separate processing circuits, or the functions of a plurality of parts may be collectively realized by one processing circuit.
  • the processing circuit may be composed of hardware or software, that is, a programmed computer. Of the functions of each part of the radar device, some may be realized by hardware and the other part may be realized by software.
  • FIG. 11 shows the hardware configuration of the computer 90 that realizes a part or all the functions of the part other than the antenna of the radar device.
  • the computer 90 has a processor 91 and a memory 92.
  • the memory 92 stores a program for realizing the functions of each part other than the antenna of the radar device.
  • the processor 91 uses, for example, a CPU (Central Processing Unit), a microprocessor, a microcontroller, a DSP (Digital Signal Processor), or the like.
  • a CPU Central Processing Unit
  • a microprocessor a microcontroller
  • DSP Digital Signal Processor
  • the memory 92 includes, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Lead Only Memory), an EEPROM (Electrically Memory Memory, etc.) Alternatively, a photomagnetic disk or the like is used.
  • the processor 91 and the memory 92 may be realized by an LSI (Large Scale Integration) integrated with each other.
  • the processor 91 realizes the function of the radar device by executing the program stored in the memory 92.
  • the program may be provided over a network or may be recorded and provided on a recording medium, such as a non-temporary recording medium. That is, the program may be provided, for example, as a program product.
  • the computer of FIG. 11 includes a single processor, but may include two or more processors.
  • the phase continuity between the beat signals is ensured even for the moving target, and the peak of the Fourier transform is not distorted or split, and the distance resolution is high. Can be realized.
  • 3 DDS digital direct synthesis oscillator
  • 4 high frequency signal generator 11 to 13 mixer, 21 to 23 amplifier, 31 to 33 transmission / reception switch, 41 to 43 antenna, 51 to 53 amplifier, 61 to 63 mixer, 71 to 73 Amplifier, 81-83 A / D converter, 100 control device, 102 reference signal generator, 110 signal generator, 120 signal transmitter, 121-123 transmitter, 130 signal receiver, 131-133 receiver, 140 signal Conversion device, 141-143 conversion unit, 150 signal processing device, 151 signal synthesis unit, 152 target detection unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

According to the present invention, first to Mth chirp signals having first to Mth (M is an integer greater than or equal to 2) transmission frequency bands having the same bandwidth and adjacent to each other are synchronized and repeatedly generated and transmitted for each chirp period. A reflected wave generated by reflecting a transmission wave at a target is received to generate first to Mth reception signals. First to Mth beat signals are generated from the first to Mth chirp signals and the first to Mth reception signals. One composite signal is generated by connecting the first to Mth beat signals to each other. The distance from a plurality of sequentially generated composite signals to a target and the speed of the target are calculated. Even when the target is moving, the distance can be measured with high resolution without causing distortion, splitting, or the like at the peak of the Fourier transform.

Description

レーダ装置Radar device
 本開示はレーダ装置に関する。本開示は特に高い距離分解能を持つレーダ装置に関する。 This disclosure relates to radar equipment. The present disclosure relates to a radar device having a particularly high range resolution.
 チャープ信号を送信し、目標(目標物体)での反射波を受信することで得られる受信信号をビート信号に変換し、そのフーリエ変換からピークを検出することにより、目標を高い距離分解能で検出するFMCW(Frequency-Modulated Continuous Wave)レーダが知られている。FMCWレーダではチャープ信号の帯域幅を広くすれば距離分解能を高くできるが、帯域幅が広いほど、チャープ信号の生成がより困難になり、アンテナ、増幅器等の広帯域化も困難になる。そこで、複数の隣接する周波数帯域を利用し、高距離分解能化を図ることが検討されている。 The target is detected with high distance resolution by transmitting the chirp signal, converting the received signal obtained by receiving the reflected wave at the target (target object) into a beat signal, and detecting the peak from the Fourier transform. FMCW (Frequency-Modulated Continuous Wave) radar is known. In the FMCW radar, the range resolution can be increased by widening the bandwidth of the chirp signal, but the wider the bandwidth, the more difficult it is to generate the chirp signal, and it becomes difficult to widen the bandwidth of the antenna, amplifier, and the like. Therefore, it is being studied to improve the long-distance resolution by using a plurality of adjacent frequency bands.
 例えば非特許文献1に2つの周波数帯域の計測データのフュージョン方法が開示されている。非特許文献1の技術では、帯域幅がそれぞれ40GHz及び60GHzの周波数帯域100GHz及び150GHzの送受信機で同時に反射波を計測し、計測データのフーリエ変換にゼロパディングして逆フーリエ変換することにより周波数ステップを揃え、2つの周波数帯域間に周波数ギャップがある場合には抜けている周波数点を線形補間する。 For example, Non-Patent Document 1 discloses a method for fusing measurement data of two frequency bands. In the technique of Non-Patent Document 1, the frequency step is performed by simultaneously measuring the reflected wave with a transmitter / receiver having a frequency band of 40 GHz and 60 GHz and a frequency band of 100 GHz and 150 GHz, zero padding to the Fourier transform of the measurement data, and inverse Fourier transform. If there is a frequency gap between the two frequency bands, the missing frequency points are linearly interpolated.
 非特許文献1の技術で移動している目標を検出すると、2つの周波数帯域のデータ間で位相の連続性を確保できず、フーリエ変換のピークに歪み、分裂等が発生し、高い分解能で距離を測定することができない場合がある。 When a moving target is detected by the technique of Non-Patent Document 1, phase continuity cannot be ensured between data in two frequency bands, distortion, splitting, etc. occur at the peak of the Fourier transform, and the distance is high resolution. May not be able to be measured.
 本開示は、複数の隣接する周波数帯域を利用し、目標が移動していてもフーリエ変換のピークに歪み、分裂等を発生させずに高い分解能で距離を測定することができるレーダ装置を得ることを目的とする。 The present disclosure provides a radar device that can measure a distance with high resolution without causing distortion, splitting, etc. at the peak of the Fourier transform even if the target is moving by using a plurality of adjacent frequency bands. With the goal.
 本開示に係るレーダ装置は、
 帯域幅が互いに等しく、互いに隣接する第1乃至第Mの(Mは2以上の整数)送信周波数帯域の、周波数の変化が互いに連続する第1乃至第Mのチャープ信号を同期してチャープ周期毎に繰り返し生成する信号生成装置と、
 前記信号生成装置で繰り返し生成される第1乃至第Mのチャープ信号に対応する第1乃至第Mの送信波を送信する信号送信装置と、
 前記信号送信装置で送信された第1乃至第Mの送信波が目標で反射することで発生する反射波を、それぞれ前記第1乃至第Mの送信周波数帯域に対応する第1乃至第Mの受信周波数帯域で受信して第1乃至第Mの受信信号を生成する信号受信装置と、
 前記信号生成装置で生成される前記第1乃至第Mのチャープ信号と、前記信号受信装置で生成される前記第1乃至第Mの受信信号とから、前記目標までの距離に応じた周波数成分を持つ第1乃至第Mのビート信号を生成する信号変換装置と、
 前記信号変換装置で生成される前記第1乃至第Mのビート信号を前記チャープ周期相互の境界で互いに連結して、前記チャープ周期毎に一つの合成信号を生成する信号合成部と、
 前記信号合成部で順次生成される複数の合成信号から目標までの距離と目標の速度とを算出する目標検出部と
 を備える。
The radar device according to the present disclosure is
The first to M chirp signals of the first to M (M is an integer of 2 or more) transmission frequency bands having equal bandwidths and adjacent to each other and having continuous frequency changes are synchronized with each chirp cycle. A signal generator that repeatedly generates signals and
A signal transmitting device that transmits a first to M transmission wave corresponding to the first to M chirp signals repeatedly generated by the signal generating device, and a signal transmitting device.
Reception of the first to M corresponding to the first to M transmission frequency bands, respectively, of the reflected wave generated by the reflection of the first to M transmission waves transmitted by the signal transmission device at the target. A signal receiver that receives in the frequency band and generates the first to M received signals, and
From the first to M chirp signals generated by the signal generator and the first to M received signals generated by the signal receiving device, frequency components corresponding to the distance to the target are obtained. A signal conversion device that generates the first to Mth beat signals to have, and
A signal synthesizing unit that connects the first to M beat signals generated by the signal conversion device to each other at boundaries between the chirp periods to generate one composite signal for each chirp period.
It is provided with a target detection unit that calculates the distance to the target and the speed of the target from a plurality of synthetic signals sequentially generated by the signal synthesis unit.
 本開示のレーダ装置によれば、目標が移動していてもフーリエ変換のピークに歪み、分裂等を発生させずに高い分解能で距離を測定することができる。 According to the radar device of the present disclosure, it is possible to measure the distance with high resolution without causing distortion, splitting, etc. at the peak of the Fourier transform even if the target is moving.
実施の形態のレーダ装置の概略を示すブロック図である。It is a block diagram which shows the outline of the radar apparatus of embodiment. 図1のレーダ装置の具体的な構成例を示すブロック図である。It is a block diagram which shows the specific configuration example of the radar apparatus of FIG. 図1の信号処理装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the signal processing apparatus of FIG. (a)は、実施の形態のレーダ装置の送信信号及び受信信号を示す波形図、(b)~(d)は、上記の送信信号及び受信信号から得られるビート信号を示す図、(e)~(g)は、上記のビート信号を連結することで得られる合成信号を示す図である。(A) is a waveform diagram showing a transmission signal and a reception signal of the radar device of the embodiment, (b) to (d) are diagrams showing a beat signal obtained from the above transmission signal and the reception signal, (e). ~ (G) is a figure which shows the composite signal obtained by connecting the said beat signals. (a)は、図4(a)の一部を拡大し、送信信号、受信信号及び周波数差に対して周期を表す符号を付した図、(b)は、(a)の周波数差によるビート信号の、比較例による連結の一方法を示す図、(c)は、(a)の周波数差によるビート信号の、実施の形態による連結の方法を示す図である。FIG. 4A is an enlarged view of a part of FIG. 4A, and a code indicating a period is added to the transmission signal, the reception signal, and the frequency difference, and FIG. 4B is the beat due to the frequency difference in FIG. 4A. A figure showing one method of connecting signals by a comparative example, (c) is a figure showing a method of connecting beat signals by the frequency difference of (a) according to an embodiment. (a)は、図4(a)の一部を拡大し、送信信号、受信信号及び周波数差に対して周期を表す符号を付した図であって、受信信号のうち、遅延して届く部分を区別して示す図、(b)は、(a)の周波数差によるビート信号の合成の方法を示す図である。(A) is a diagram in which a part of FIG. 4 (a) is enlarged and a code indicating a period is added to the transmission signal, the reception signal, and the frequency difference, and the portion of the reception signal that arrives with a delay. (B) is a diagram showing a method of synthesizing a beat signal based on the frequency difference of (a). 一つの合成信号に対するフーリエ変換の結果の一例を示す図である。It is a figure which shows an example of the result of the Fourier transform for one composite signal. (a)は、複数の合成信号に対するフーリエ変換の結果を示す図、(b)は(a)におけるピーク位相の変化の一例を示すである。(A) is a diagram showing the results of Fourier transform on a plurality of composite signals, and (b) is an example of a change in peak phase in (a). 図8(a)に示されるフーリエ変換の結果に対する更なるフーリエ変換の結果の一例を示す図である。It is a figure which shows an example of the result of the further Fourier transform with respect to the result of the Fourier transform shown in FIG. 8 (a). 実施の形態のレーダ装置の反射波を受信した後の処理の手順の例を示すフローチャートである。It is a flowchart which shows an example of the processing procedure after receiving the reflected wave of the radar apparatus of embodiment. 実施の形態1のレーダ装置のアンテナ以外の部分の機能を実現するコンピュータのハードウェア構成を示す図である。It is a figure which shows the hardware configuration of the computer which realizes the function of the part other than the antenna of the radar apparatus of Embodiment 1. FIG.
 図1は、実施の形態のレーダ装置RDの概要を示す。
 図示のレーダ装置RDは、互いに帯域幅が等しく、互いに隣接する第1乃至第Мの(Мは2以上の整数)周波数帯域のチャープ信号を互いに同期して繰り返し生成し、送信し、目標TGでの反射による反射波を受信して受信信号を生成し、送信したチャープ信号(送信信号)と受信信号との周波数差によるビート信号に基づいて目標TGまでの距離及び目標TGの速度を算出する。
 以下では、上記のМが3であり、チャープ信号がアップチャープ信号である場合について説明する。
FIG. 1 shows an outline of the radar device RD of the embodiment.
The illustrated radar device RD repeatedly generates and transmits chirp signals of the first to third М (М is an integer of 2 or more) frequency bands having the same bandwidth and adjacent to each other in synchronization with each other, and at the target TG. The reflected wave due to the reflection of the above is received to generate a received signal, and the distance to the target TG and the speed of the target TG are calculated based on the beat signal due to the frequency difference between the transmitted chirp signal (transmitted signal) and the received signal.
In the following, a case where the above М is 3 and the chirp signal is an up chirp signal will be described.
 図1に示されるレーダ装置RDは、制御装置100、基準信号発生器102、信号生成装置110、信号送信装置120、信号受信装置130、信号変換装置140、及び信号処理装置150を有する。
 信号送信装置120は、第1乃至第3の送信部121~123を有する。信号受信装置130は、第1乃至第3の受信部131~133を有する。信号変換装置140は、第1乃至第3の変換部141~143を有する。
 第1の送信部121と、第1の受信部131と、第1の変換部141とは互いに対応して設けられたものである。第2の送信部122と、第2の受信部132と、第2の変換部142とは互いに対応して設けられたものである。第3の送信部123と、第3の受信部133と、第3の変換部143とは互いに対応して設けられたものである。
The radar device RD shown in FIG. 1 includes a control device 100, a reference signal generator 102, a signal generation device 110, a signal transmission device 120, a signal reception device 130, a signal conversion device 140, and a signal processing device 150.
The signal transmission device 120 has first to third transmission units 121 to 123. The signal receiving device 130 has first to third receiving units 131 to 133. The signal conversion device 140 has first to third conversion units 141 to 143.
The first transmitting unit 121, the first receiving unit 131, and the first conversion unit 141 are provided so as to correspond to each other. The second transmitting unit 122, the second receiving unit 132, and the second converting unit 142 are provided so as to correspond to each other. The third transmitting unit 123, the third receiving unit 133, and the third conversion unit 143 are provided so as to correspond to each other.
 図2は、図1のレーダ装置RDの具体的な構成例を示す。
 図2に示されるレーダ装置RDは、制御装置100、基準信号発生器102(図2では省略)、及び信号処理装置150のほか、DDS3、高周波信号発生器4、ミキサ11~13、増幅器21~23、送受切替器31~33、アンテナ41~43、増幅器51~53、ミキサ61~63、増幅器71~73、及びA/D変換器81~83を備えている。
 DDSは、Direct Digital Synthesizer(デジタル直接合成発振器)の略である。
FIG. 2 shows a specific configuration example of the radar device RD of FIG.
The radar device RD shown in FIG. 2 includes a control device 100, a reference signal generator 102 (omitted in FIG. 2), and a signal processing device 150, as well as a DDS 3, a high frequency signal generator 4, mixers 11 to 13, and amplifiers 21 to 21. 23, a transmission / reception switch 31 to 33, an antenna 41 to 43, an amplifier 51 to 53, a mixer 61 to 63, an amplifier 71 to 73, and an A / D converter 81 to 83 are provided.
DDS is an abbreviation for Direct Digital Synthesizer (Digital Direct Synthesizer).
 DDS3と、高周波信号発生器4と、ミキサ11~13とで信号生成装置110が構成されている。 The signal generator 110 is composed of the DDS 3, the high frequency signal generator 4, and the mixers 11 to 13.
 増幅器21と、送受切替器31と、アンテナ41とで第1の送信部121が構成されている。増幅器22と、送受切替器32と、アンテナ42とで第2の送信部122が構成されている。増幅器23と、送受切替器33と、アンテナ43とで第3の送信部123が構成されている。 The amplifier 21, the transmission / reception switch 31, and the antenna 41 constitute the first transmission unit 121. The amplifier 22, the transmission / reception switch 32, and the antenna 42 constitute a second transmission unit 122. The amplifier 23, the transmission / reception switch 33, and the antenna 43 constitute a third transmission unit 123.
 アンテナ41と、送受切替器31と、増幅器51とで第1の受信部131が構成されている。アンテナ42と、送受切替器32と、増幅器52とで第2の受信部132が構成されている。アンテナ43と、送受切替器33と、増幅器53とで第3の受信部133が構成されている。 The first receiving unit 131 is composed of the antenna 41, the transmission / reception switching device 31, and the amplifier 51. The second receiving unit 132 is composed of the antenna 42, the transmission / reception switching device 32, and the amplifier 52. The antenna 43, the transmission / reception switch 33, and the amplifier 53 constitute a third receiving unit 133.
 ミキサ61と、増幅器71と、A/D変換器81とで第1の変換部141が構成されている。ミキサ62と、増幅器72と、A/D変換器82とで第2の変換部142が構成されている。ミキサ63と、増幅器73と、A/D変換器83とで第3の変換部143が構成されている。 The mixer 61, the amplifier 71, and the A / D converter 81 constitute the first conversion unit 141. The mixer 62, the amplifier 72, and the A / D converter 82 constitute a second conversion unit 142. The mixer 63, the amplifier 73, and the A / D converter 83 constitute a third conversion unit 143.
 なお、制御装置100は、信号生成装置110のDDS3を制御するものであるので、信号生成装置110の一部を成すと見ることもできる。
 同様に、制御装置100は、信号変換装置140のA/D変換器81~83を制御するものであるので、信号変換装置140の一部を成すと見ることもできる。
Since the control device 100 controls the DDS3 of the signal generation device 110, it can be seen as forming a part of the signal generation device 110.
Similarly, since the control device 100 controls the A / D converters 81 to 83 of the signal conversion device 140, it can be seen as forming a part of the signal conversion device 140.
 信号処理装置150は、図3に示すように、信号合成部151と目標検出部152とを有する。 As shown in FIG. 3, the signal processing device 150 has a signal synthesis unit 151 and a target detection unit 152.
 制御装置100、DDS3、高周波信号発生器4、A/D変換器81~83、及び信号処理装置150は、共通の基準信号発生器102(図1)に接続され、同期して動作する。
 ミキサ11~13、61~63の各々は信号の混合後に所望の信号以外の信号をフィルタリングにより除去する機能を持っているものとする。
The control device 100, DDS3, high-frequency signal generator 4, A / D converters 81 to 83, and signal processing device 150 are connected to a common reference signal generator 102 (FIG. 1) and operate in synchronization with each other.
It is assumed that each of the mixers 11 to 13 and 61 to 63 has a function of filtering signals other than the desired signal after mixing the signals.
 信号生成装置110は、第1乃至第3のチャープ信号S~Sを繰り返し、互いに同期して生成する。
 チャープ信号S~Sの例が図4(a)に示されている。
 図示のようにチャープ信号S~Sの各々はアップチャープ信号であり、変調幅、即ち帯域幅が互いに等しい。この変調幅をBで表す。チャープ信号S~Sのチャープ開始時の周波数(開始周波数)をそれぞれf~fで表す。
 fからf+Bまでの帯域を第1の周波数帯域と言い、符号FCで表す。fからf+Bまでの帯域を第2の周波数帯域と言い、符号FCで表す。fからf+Bまでの帯域を第3の周波数帯域と言い、符号FCで表す。
The signal generation device 110 repeats the first to third chirp signals S1 to S3 and generates them in synchronization with each other.
Examples of chirp signals S 1 ~ S 3 is shown in Figure 4 (a).
Each chirp signals S 1 ~ S 3 as shown are up-chirp signal, the modulation width, i.e. bandwidth equal. This modulation width is represented by B. Chirp signal S 1 ~ S 3 chirp starting frequency (start frequency) respectively represented by f 1 ~ f 3.
The band from f 1 to f 1 + B is called the first frequency band and is represented by the code FC 1. The band from f 2 to f 2 + B is referred to as a second frequency band and is represented by the code FC 2. The band from f 3 to f 3 + B is called a third frequency band and is represented by the code FC 3.
 チャープ信号S~Sの周期(チャープ周期)の長さは互いに等しく、一つの周期が終わると直ちに次の周期が始まる。図4(a)には周期の番号kとしてi、i+1、i+2、…が付されている。 The length of the period of the chirp signal S 1 ~ S 3 (chirp period) are equal to each other, as soon as one cycle is completed the next cycle begins. In FIG. 4A, i, i + 1, i + 2, ... Are assigned as cycle numbers k.
 ある周期に、ある周波数帯域FC(mはここでは1又は2)で発せられるチャープ信号Sと、次の周期に上記の周波数帯域FCに、より高い周波数の側で隣接する周波数帯域FCm+1で発せられるチャープ信号Sm+1とは周波数の変化が連続する。即ち、第mのチャープ信号Sのチャープ終了時の周波数f+Bと、第m+1のチャープ信号Sm+1のチャープ開始時の周波数fm+1とが等しい。即ち、
 fm+1=f+B
の関係がある。
A chirp signal S m emitted in a certain frequency band FC m (m is 1 or 2 in this case) in a certain period and a frequency band FC adjacent to the above frequency band FC m in the next cycle on the higher frequency side. The frequency changes continuously with the chirp signal S m + 1 emitted at m + 1. That is, the frequency f m + B at the chirp termination of the chirp signal S m of the m, and the frequency f m + 1 at the (m + 1) of the chirp signal S m + 1 of the chirp start are equal. That is,
f m + 1 = f m + B
There is a relationship.
 また、第mのチャープ信号Sのチャープ終了時の位相と、第m+1のチャープ信号Sm+1のチャープ開始時の位相とが等しい。 Further, the phase at the chirp termination of the chirp signal S m of the m, and the m + 1 of the chirp signal S m + 1 of the chirp at the beginning of the phase is equal.
 さらに第1乃至第3の周波数帯域FC~FCの各々の中心周波数h(mはここでは1、2又は3)とチャープ周期の長さTとの積が整数であり、第1乃至第Mのチャープ信号S~Sのチャープ開始時の位相(初期位相)φ1,k~φ3,kは、互いに等しく、かつすべてのチャープ周期間で互いに同一である。
 中心周波数hとチャープ開始時の周波数fとの間には、下記の式(1)の関係がある。
Further, the product of the center frequency h m (m is 1, 2 or 3 here) of each of the first to third frequency bands FC 1 to FC 3 and the length T of the chirp period is an integer, and the first to third frequencies are used. phase (initial phase) φ 1, k ~ φ 3 , k at the beginning chirp of the chirp signals S 1 ~ S 3 of the M are identical to each other between mutually equal, and all chirp period.
Between the center frequency h m and frequency f m at chirp start, a relationship of the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 制御装置100は、変調幅Bと、周期の長さTと、チャープ信号S~Sの開始周波数f~fと、チャープ信号S~Sの周期の最初の位相φ1,k~φ3,kとがそれぞれ上記の条件を満たす値となるように制御を行なう。 Controller 100, a modulation width B, a length T of the period, the starting frequency f 1 ~ f 3 of the chirp signal S 1 ~ S 3, the first phase phi 1 the period of the chirp signal S 1 ~ S 3, Control is performed so that k to φ3 and k are values that satisfy the above conditions, respectively.
 以下では、チャープ信号S~Sの変調幅Bは、予め定められているものとする。その場合、制御装置100は、周期の長さTと、チャープ信号Sの開始周波数fと、チャープ信号S~Sの周期の最初の位相φ1,k~φ3,kとを指定する。 In the following, the modulation width B of the chirp signal S 1 ~ S 3 is assumed to be predetermined. In that case, the control device 100, the length T of the period, the starting frequency f 1 of the chirp signal S 1, the first phase phi 1 the period of the chirp signal S 1 ~ S 3, k ~ φ 3, and k specify.
 DDS3は、予め定められた変調幅Bと、制御装置100により指定された周期の長さT、開始周波数f、及び位相φ1,kとに基づきチャープ信号Sを生成する。
 生成されるチャープ信号Sは、開始周波数がf-Bで終了周波数がfであり、周期の長さがTである。
The DDS 3 generates a chirp signal S 0 based on a predetermined modulation width B, a period length T specified by the control device 100, a start frequency f 1 , and a phase φ 1, k.
Chirp signal S 0 generated is an end frequency start frequency at f 1 -B is f 1, the length of the period T.
 高周波信号発生器4は、予め定められた周波数Bの高周波信号HFを発生する。 The high frequency signal generator 4 generates a predetermined high frequency signal HF of frequency B.
 DDS3から出力されたチャープ信号Sは、ミキサ11に入力される。
 ミキサ11~13は、チャープ信号Sと、高周波信号発生器4が発生した高周波信号HFとに基づき、チャープ信号S~Sを生成する。
The chirp signal S 0 output from the DDS 3 is input to the mixer 11.
Mixers 11-13 chirp signal S 0, based on the high-frequency signal HF high-frequency signal generator 4 occurs, generates a chirp signal S 1 ~ S 3.
 DDS3と高周波信号発生器4とは、各周期の最初の位相がそれぞれ指定された値φ1,k~φ3,kであるチャープ信号S~Sをミキサ11~13に生成させるような、チャープ信号S及び高周波信号HFを出力する。具体的には、チャープ信号S~Sの各周期の最初の位相がそれぞれ指定された値φ1,k~φ3,kとなるように、チャープ信号Sの位相と、高周波信号HFの位相とが、制御される。 The DDS 3 and the high-frequency signal generator 4 cause the mixers 11 to 13 to generate chirp signals S 1 to S 3 in which the first phase of each cycle is a specified value φ 1, k to φ 3, k, respectively. , Chirp signal S 0 and high frequency signal HF are output. Specifically, the phase of the chirp signal S 0 and the high frequency signal HF so that the first phase of each period of the chirp signals S 1 to S 3 becomes the specified values φ 1, k to φ 3, k, respectively. The phase of is controlled.
 ミキサ11には、DDS3からチャープ信号Sが供給され、高周波信号発生器4から高周波信号HFが供給される。
 ミキサ11ではその内部で、開始周波数がfで終了周波数がf+Bのチャープ信号Sと、開始周波数がf-2Bで終了周波数がf-Bのチャープ信号S’とが生成され、そのうちチャープ信号S’はフィルタリングにより除去され、チャープ信号Sが出力される。このチャープ信号Sは、増幅器21及びミキサ12に供給される。
The chirp signal S 0 is supplied from the DDS 3 to the mixer 11, and the high frequency signal HF is supplied from the high frequency signal generator 4.
In the mixer 11 therein, it generates a chirp signals S 1 the end frequency f 1 + B starting frequency at f 1, an end frequency starting frequency f 1 -2B and f 1 -B chirp signals S 1 'is It is, of which chirp signals S 1 'is removed by filtering the chirp signals S 1 is output. The chirp signal S 1 is supplied to the amplifier 21 and the mixer 12.
 ミキサ12には、ミキサ11からチャープ信号Sが供給され、高周波信号発生器4から高周波信号HFが供給される。
 ミキサ12ではその内部で、開始周波数がf+Bで終了周波数がf+2Bのチャープ信号Sと、開始周波数がf-Bで終了周波数がfのチャープ信号S’とが生成され、そのうちチャープ信号S’はフィルタリングにより除去され、チャープ信号Sが出力される。このチャープ信号Sは、増幅器22及びミキサ13に供給される。
To the mixer 12, the chirp signal S 1 is supplied from the mixer 11, the high-frequency signal HF is supplied from the high frequency signal generator 4.
In its interior the mixer 12, an end frequency starting frequency f 1 + B chirp signal S 2 of f 1 + 2B, the end frequency start frequency at f 1 -B are generated and chirp signal S 2 'of the f 1 , of which the chirp signal S 2 'are removed by filtering the chirp signal S 2 is outputted. The chirp signal S 2 is supplied to the amplifier 22 and the mixer 13.
 ミキサ13には、ミキサ12からチャープ信号Sが供給され、高周波信号発生器4から高周波信号HFが供給される。
 ミキサ13ではその内部で、開始周波数がf+2Bで終了周波数がf+3Bのチャープ信号Sと、開始周波数がfで終了周波数がf+Bのチャープ信号S’とが生成され、そのうちチャープ信号S’はフィルタリングにより除去され、チャープ信号Sが出力される。このチャープ信号Sは、増幅器23に供給される。
The chirp signal S 2 is supplied from the mixer 12 to the mixer 13, and the high frequency signal HF is supplied from the high frequency signal generator 4.
In the mixer 13 therein, a chirp signal S 3 end frequency of f 1 + 3B in the start frequency f 1 + 2B, end frequency start frequency at f 1 is and a chirp signal S 3 'of f 1 + B is generated, Among them chirp signal S 3 'is removed by filtering, the chirp signal S 3 is output. The chirp signal S 3 is supplied to an amplifier 23.
 以上より、チャープ信号Sの開始周波数fはチャープ信号Sの終了周波数f+Bに等しく、チャープ信号Sの開始周波数fはチャープ信号Sの終了周波数f+Bに等しい。
 従って、チャープ信号S~Sは、互いに周波数の変化が連続していると言える。
 また、チャープ信号S~Sは各周期のチャープ開始時の位相φ1,k~φ3,kが互いに等しく、異なる周期間で同じである。
Thus, the start frequency f 2 of the chirp signal S 2 is equal to the end frequency f 1 + B of the chirp signal S 1, starting frequency f 3 of the chirp signal S 3 is equal to the end frequency f 2 + B of the chirp signal S 2.
Therefore, chirp signals S 1 ~ S 3 can be said to change in frequency is continuous with each other.
Also, chirp signals S 1 ~ S 3 phase φ 1, k ~ φ 3, k are equal to each other at the start chirp of each cycle is the same in different circumferential periods.
 信号送信装置120は、信号生成装置110で生成されたチャープ信号S~Sを送信波として送信する。 Signal transmitter 120 transmits a chirp signal S 1 ~ S 3 generated by the signal generator 110 as a transmission wave.
 チャープ信号S~Sはそれぞれ増幅器21~23により増幅され、送受切替器31~33を通してアンテナ41~43に供給され、アンテナ41~43から、チャープ信号S~Sに対応する送信波が送信される。
 送信されるチャープ信号を送信信号とも言う。
Chirp signal S 1 ~ S 3 are amplified by the amplifiers 21 to 23 respectively, are supplied to the antenna 41 to 43 through the duplexer 31 to 33, from the antenna 41 to 43, the transmission wave corresponding to the chirp signal S 1 ~ S 3 Is sent.
The transmitted chirp signal is also called a transmission signal.
 信号受信装置130は、信号送信装置120により送信された送信波が目標TGで反射することで発生する反射波を受信して受信信号を生成する。送信信号に対応する送信波が目標TGで反射することで発生する反射波を受信することで生成される受信信号を、上記の送信信号に対応する受信信号と言う。 The signal receiving device 130 receives the reflected wave generated by reflecting the transmitted wave transmitted by the signal transmitting device 120 at the target TG and generates a received signal. The received signal generated by receiving the reflected wave generated by reflecting the transmitted wave corresponding to the transmitted signal at the target TG is referred to as a received signal corresponding to the above-mentioned transmitted signal.
 信号受信装置130の受信部131~133はそれぞれ周波数帯域FC~FCに対応して設けられたものである。同様に、信号変換装置140の変換部141~143はそれぞれ周波数帯域FC~FCに対応して設けられたものである。 The receiving units 131 to 133 of the signal receiving device 130 are provided corresponding to the frequency bands FC 1 to FC 3, respectively. Similarly, the conversion units 141 to 143 of the signal conversion device 140 are provided corresponding to the frequency bands FC 1 to FC 3, respectively.
 各周波数帯域でアンテナ41~43から送信された送信波が目標TGで反射することで発生する反射波は、アンテナ41~43で受信され、その結果生成された受信信号R~Rは送受切替器31~33を通り増幅器51~53で増幅される。
 増幅された受信信号R~Rは、信号受信装置130の出力として、信号変換装置140に供給される。
Reflected wave transmission wave transmitted from the antenna 41 to 43 in each frequency band are generated by reflection at the target TG is received by the antennas 41 to 43, the results generated received signal R 1 ~ R 3 are exchanged It passes through the switches 31 to 33 and is amplified by the amplifiers 51 to 53.
The amplified received signals R 1 ~ R 3 are, as the output of the signal receiver 130, supplied to the signal converter 140.
 信号変換装置140は、信号受信装置130から出力された受信信号R~Rと、信号生成装置110から出力された送信信号S~Sとからビート信号Q~Qを生成する。 Signal converting apparatus 140, the received signal R 1 ~ R 3 outputted from the signal receiver 130, generates a beat signal Q 1 ~ Q 3 from the transmission signal S 1 ~ S 3 Metropolitan output from the signal generator 110 ..
 具体的には、信号受信装置130から出力された受信信号R~Rはミキサ61~63へ入力され、対応する送信信号S~Sと混合される。
 ミキサ61が、受信信号Rと送信信号Sとを混合し、所望の信号以外の信号をフィルタリングにより除去することにより、図4(b)に示されるビート信号Qを生成する。
Specifically, the received signals R 1 ~ R 3 outputted from the signal receiver 130 is input to a mixer 61 to 63, is mixed with the transmission signal S 1 ~ S 3 corresponding.
The mixer 61 mixes the received signal R 1 and the transmitted signal S 1 and removes signals other than the desired signal by filtering to generate the beat signal Q 1 shown in FIG. 4 (b).
 ミキサ62が、受信信号Rと送信信号Sとを混合し、所望の信号以外の信号をフィルタリングにより除去することにより、図4(c)に示されるビート信号Qを生成する。
 ミキサ63が、受信信号Rと送信信号Sとを混合し、所望の信号以外の信号をフィルタリングにより除去することにより、図4(d)に示されるビート信号Qを生成する。
 図では、ビート信号Q~Qの各々の始端及び終端を矢印で示している。
The mixer 62 mixes the received signal R 2 and the transmitted signal S 2 and removes signals other than the desired signal by filtering to generate the beat signal Q 2 shown in FIG. 4 (c).
The mixer 63 mixes the received signal R 3 and the transmitted signal S 3 and removes signals other than the desired signal by filtering to generate the beat signal Q 3 shown in FIG. 4 (d).
The figure shows the start and end of each of the beat signals Q 1 ~ Q 3 by an arrow.
 ビート信号Qの周波数は、送信信号Sと受信信号Rの周波数との差に等しい。ビート信号Qの周波数は、送信信号Sと受信信号Rの周波数との差に等しい。ビート信号Qの周波数は、送信信号Sと受信信号Rの周波数との差に等しい。
 図4(a)には、上記の周波数の差に、対応するビート信号Q~Qと同じ符号が付してある。
The frequency of the beat signal Q 1 is equal to the difference between the frequencies of the transmission signal S 1 and the frequency of the reception signal R 1. The frequency of the beat signal Q 2 is equal to the difference between the frequencies of the transmission signal S 2 and the frequency of the reception signal R 2. The frequency of the beat signal Q 3 is equal to the difference between the frequencies of the transmission signal S 3 and the frequency of the reception signal R 3.
In FIG. 4 (a), the difference between the frequency, the same reference numerals as the corresponding beat signals Q 1 ~ Q 3 is are given.
 なお、ミキサ61~63には所望の信号以外の信号を除去する機能があるが、第1乃至第3の受信部131~133が、受信信号のうち、それぞれ対応する変換部141~143内のミキサで所望のビート信号Q~Qを生成するのに必要な周波数成分以外の周波数成分をフィルタリングにより除去する機能を有することが望ましい。 The mixers 61 to 63 have a function of removing signals other than the desired signal, but the first to third receiving units 131 to 133 are among the received signals in the corresponding conversion units 141 to 143, respectively. it is desirable to have a function of removing frequency components other than the frequency components necessary for producing the desired beat signals Q 1 ~ Q 3 in the mixer by filtering.
 ミキサ61~63で生成されたビート信号Q~Qは増幅器71~73で増幅され、A/D変換器81~83でデジタル信号に変換される。このデジタル信号も、アナログのビート信号Q~Qと同じ符号で表す。 Beat signals Q 1 ~ Q 3 generated by the mixer 61 to 63 are amplified by the amplifiers 71 to 73, is converted into a digital signal by the A / D converters 81 to 83. The digital signal is also represented by the same reference numerals as the beat signals Q 1 ~ Q 3 analog.
 ビート信号Q~Qはそれぞれ周波数帯域FC~FCの送信信号S~Sから生成されるものであるので、それぞれ、周波数帯域FC~FCに対応するビート信号、或いは周波数帯域FC~FCのビート信号と言われる Since the beat signal Q 1 ~ Q 3 in which each generated from the transmission signal S 1 ~ S 3 of frequency band FC 1 ~ FC 3, respectively, the beat signal corresponding to the frequency band FC 1 ~ FC 3, or frequency It is said to be a beat signal of bands FC 1 to FC 3.
 信号処理装置150の信号合成部151は、ビート信号Q~Qを図4(e)、(f)、(g)に示すように連結して、周期毎に合成信号CSを生成する。 Signal combining unit 151 of the signal processing device 150, FIG. 4 a beat signal Q 1 ~ Q 3 (e) , (f), coupled as shown in (g), to generate a composite signal CS at every cycle.
 各合成信号CSは、ある周期(例えば、周期i)の第1の周波数帯域FCの送信信号Sを用いて生成されたビート信号Qと、次の周期(例えば、周期i+1)の第2の周波数帯域FCの送信信号Sを用いて生成されたビート信号Qと、さらに次の周期(例えば、周期i+2)の第3の周波数帯域FCの送信信号Sを用いて生成されたビート信号Qとを連結することで得られる。 Each composite signal CS is periodically (e.g., period i) the beat signal Q 1 generated using the transmission signals S 1 of the first frequency band FC 1, first in the next cycle (e.g., cycle i + 1) produced using a beat signal Q 2 to which has been generated using a second transmission signal S 2 of frequency bands FC 2, further next cycle (e.g., cycle i + 2) of the transmission signal S 3 of the third frequency band FC 3 It is obtained by connecting the beat signal Q 3 which is.
 連結に当たっては、ビート信号Qの終端(周期終了時点の部分)と、ビート信号Qの始端(周期開始時点の部分)とを繋ぎ、ビート信号Qの終端と、ビート信号Qの始端とを繋ぐ。
 このような連結は、一つの周期と次の周期との境界点でビート信号を切替える処理であるとも言え、またそれぞれ周波数帯域のビート信号を、対応する周波数帯域の周波数の昇順に連結する処理であるともと言える。
Coupling when the terminating of the beat signal Q 1 (part of the period at the end), connecting the starting end of the beat signal Q 2 (part of the cycle starting point), and the end of the beat signal Q 2, the beginning of the beat signal Q 3 Connect with.
Such a connection can be said to be a process of switching the beat signal at the boundary point between one cycle and the next cycle, and is also a process of connecting the beat signals of each frequency band in ascending order of the frequencies of the corresponding frequency bands. It can be said that there is.
 目標検出部152は、信号合成部151で生成された各合成信号をフーリエ変換し、更に複数の合成信号のフーリエ変換を並べ、その並べた方向にフーリエ変換し、ピークを検出することにより目標TGまでの距離と目標TGの速度とを算出する。 The target detection unit 152 Fourier transforms each composite signal generated by the signal synthesis unit 151, further arranges the Fourier transforms of a plurality of composite signals, Fourier transforms in the arranged direction, and detects the peak to detect the target TG. Calculate the distance to and the speed of the target TG.
 以下、上記のレーダ装置RDにおいてビート信号の連結を適切に行うための条件について説明する。 Hereinafter, the conditions for properly connecting the beat signals in the above radar device RD will be described.
 図5(a)は、図4(a)の一部を拡大し、送信信号、受信信号及び周波数差に対して周波数帯域及び周期を表す符号を付したものである。即ち、周波数帯域FCの周期k(k番目の周期)の送信信号は符号S(m,k)で示され、周波数帯域FCの周期kの受信信号はR(m,k)で示され、周波数帯域FCの周期kのビート信号はQ(m,k)で示されている。 FIG. 5A is an enlargement of a part of FIG. 4A, and a reference numeral representing a frequency band and a period is added to a transmission signal, a reception signal, and a frequency difference. That is, the transmission signal of cycle k of the frequency band FC m (k-th period) indicated by reference numeral S (m, k), the received signal having a period k of the frequency band FC m is represented by R (m, k) , The beat signal of the period k of the frequency band FC m is indicated by Q (m, k).
 周波数帯域FCの周期kの送信信号の瞬時値s(m,k)は下記の式(2)で表される。 The instantaneous value s (m, k) of the transmission signal having a period k of the frequency band FC m is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)で、
 tは時刻、
 αは送信信号の振幅、
 fは第mの周波数帯域FCのチャープ開始周波数、
 Tはチャープ周期の長さ、
 Bは送信信号の変調幅、すなわち各周波数帯域の帯域幅、
 Φm,kは第mの周波数帯域FCのチャープ周期kの初期位相を表す。
In equation (2)
t is the time,
α is the amplitude of the transmitted signal,
f m is the chirp start frequency of the mth frequency band FC m,
T is the length of the chirp cycle,
B is the modulation width of the transmitted signal, that is, the bandwidth of each frequency band.
Φ m and k represent the initial phase of the chirp period k of the mth frequency band FC m.
 目標TGがレーダ装置RDの視線方向に速度vで等速運動をしているものとすると、目標TGでの反射波を受信することで得られる受信信号の瞬時値r(m,k)は下記の式(3)で表される。 Assuming that the target TG is moving at a constant velocity v in the line-of-sight direction of the radar device RD, the instantaneous value r (m, k) of the received signal obtained by receiving the reflected wave at the target TG is as follows. It is expressed by the equation (3) of.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)で、βは受信信号の振幅である。
 また、δは下記の式(4)で与えられる。
In equation (3), β is the amplitude of the received signal.
Further, δ is given by the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)で、cは光速である。
 また、vは目標TGの速度であり、レーダ装置RDから離れる方向を正の方向とする。
In equation (4), c is the speed of light.
Further, v is the speed of the target TG, and the direction away from the radar device RD is the positive direction.
 式(3)で、τは時刻t=0での受信信号の遅延時間であり、下記の式(5)で表される。 In the formula (3), τ 0 is the delay time of the received signal at time t = 0, and is represented by the following formula (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(5)で、xは時刻t=0での目標TGの位置、即ちレーダ装置RDからの距離を表す。 In equation (5), x 0 represents the position of the target TG at time t = 0, that is, the distance from the radar device RD.
 本実施の形態での複数の周波数帯域のビート信号の処理方法を説明する前に、一般的には複数の周波数帯域で同時に受信された受信信号を用いて生成されたビート信号間には位相の連続性が確保できないことを説明する。 Before explaining the method of processing beat signals in a plurality of frequency bands in the present embodiment, generally, there is a phase between beat signals generated by using received signals received simultaneously in a plurality of frequency bands. Explain that continuity cannot be ensured.
 第m(mは1からMのいずれか)の周波数帯域FCmrの周期kの受信信号R(m,k)と、第m(mは1からMのいずれか)の周波数帯域FCmsの周期kの送信信号S(m,k)との位相差、すなわちビート信号Q(m,k,m,k)の位相の瞬時値を下記の式(6)で表す。 The m r (m r is any one of 1 to M) the received signal R (m r, k r) of a frequency band FC mr period k r with, the m s (the m s either from 1 M) phase difference between the transmission signal S (m s, k s) of the frequency band FC ms period k s, i.e. the beat signal Q (m r, k r, m s, k s) the instantaneous value of the phase of the following It is represented by the formula (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(6)で、m=m=mで、k=k=kの場合の値、即ち、第mの周波数帯域の周期kの送信信号S(m,k)及び受信信号R(m,k)から生成されたビート信号Q(m,k)の位相の瞬時値は下記の式(7)で表される。 In equation (6), the value when mr = m s = m and kr = k s = k, that is, the transmission signal S (m, k) and the reception signal R having a period k of the mth frequency band. The instantaneous value of the phase of the beat signal Q (m, k) generated from (m, k) is expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 比較例として、図5(a)及び(b)に示すように、第mの周波数帯域の周期kの送信信号S(m,k)及び受信信号R(m,k)から生成されたビート信号Q(m,k)の終端と、第m+1の周波数帯域の周期kの送信信号S(m+1,k)及び受信信号R(m+1,k)から生成されたビート信号Q(m+1,k)の始端とを繋ぐことを考える。
 ビート信号Q(m,k)の終端は、周期kの終了時点にあり、ビート信号Q(m+1,k)の始端は、周期kの開始時点にある。
 連結部分での二つのビート信号の位相差は下記の式(8)で表される。
As a comparative example, as shown in FIGS. 5A and 5B, a beat signal generated from a transmission signal S (m, k) and a reception signal R (m, k) having a period k of the mth frequency band. The end of Q (m, k) and the start of the beat signal Q (m + 1, k) generated from the transmission signal S (m + 1, k) and the reception signal R (m + 1, k) with the period k of the first m + 1 frequency band. Think about connecting with.
The end of the beat signal Q (m, k) is at the end of the cycle k, and the start of the beat signal Q (m + 1, k) is at the start of the cycle k.
The phase difference between the two beat signals at the connecting portion is expressed by the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 目標TGが静止している場合はδ=1となるため、式(8)で表される位相差は0となりビート信号間の位相の連続性を確保できる。
 目標TGが移動している場合は式(8)は遅延時間τを含んでいるため、式(8)で表される位相差は0となるとは限らない。すなわちビート信号間の位相の連続性を確保できない。
Since δ = 1 when the target TG is stationary, the phase difference represented by the equation (8) becomes 0, and the phase continuity between the beat signals can be ensured.
When the target TG is moving, the phase difference represented by the equation (8) is not always 0 because the equation (8) includes the delay time τ 0. That is, the continuity of the phase between the beat signals cannot be ensured.
 一方、本実施の形態では以下のように連結を行なう。即ち、図5(a)及び(c)に示すように、第mの周波数帯域の周期kの送信信号S(m,k)及び受信信号R(m,k)から生成されビート信号Q(m,k)の終端と、第mの周波数帯域の周期k+1の送信信号S(m+1,k+1)及び受信信号R(m+1,k+1)から生成されたビート信号Q(m+1,k+1)の始端とを繋ぐ。 On the other hand, in this embodiment, the connection is performed as follows. That is, as shown in FIGS. 5A and 5C, the beat signal Q (m) generated from the transmission signal S (m, k) and the reception signal R (m, k) having the period k of the mth frequency band. , K) is connected to the end of the beat signal Q (m + 1, k + 1) generated from the transmission signal S (m + 1, k + 1) and the reception signal R (m + 1, k + 1) having a period k + 1 in the mth frequency band. ..
 ビート信号Q(m,k)の終端は、周期kの終了時点にあり、ビート信号Q(m+1,k+1)の始端は、周期k+1の開始時点にある。
 連結部分での2つのビート信号間の位相差は下記の式(9)で表されるように0となる。
The end of the beat signal Q (m, k) is at the end of the cycle k, and the start of the beat signal Q (m + 1, k + 1) is at the start of the cycle k + 1.
The phase difference between the two beat signals at the connecting portion is 0 as represented by the following equation (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 このように、2つのビート信号間の位相差が0となるので、目標TGが移動していても、ビート信号間の位相の連続性を確保できる。その結果、合成信号に対するフーリエ変換のピークに歪み、分裂等を発生させずに高い距離分解能を実現できる。 In this way, since the phase difference between the two beat signals becomes 0, the phase continuity between the beat signals can be ensured even if the target TG is moving. As a result, high distance resolution can be realized without causing distortion, splitting, or the like at the peak of the Fourier transform for the synthesized signal.
 続いて、受信信号の中で次のチャープ周期に遅延して届く部分について、図6(a)を参照して説明する。遅延して届く受信信号とは、遅延して届く反射波に対応する受信信号を意味する。
 図6(a)は、図5(a)と同様の図であるが、受信信号のうち、次のチャープ周期に遅延して届く部分を区別して示す。
 「受信信号のうち、次のチャープ周期に遅延して届く部分」とは、ある周期に送信された送信信号に対応する受信信号のうち、上記の周期の次の周期に受信される部分を意味する。
Subsequently, a portion of the received signal that arrives with a delay in the next chirp cycle will be described with reference to FIG. 6A. The received signal that arrives with a delay means a received signal corresponding to the reflected wave that arrives with a delay.
FIG. 6A is a diagram similar to that of FIG. 5A, but shows the portion of the received signal that arrives with a delay in the next chirp cycle.
"The portion of the received signal that arrives late in the next chirp cycle" means the portion of the received signal corresponding to the transmitted signal transmitted in a certain cycle that is received in the next cycle of the above cycle. do.
 例えば、図6(a)に示されるように、遅延時間がTdであり、周期kに送信された送信信号S(m,k)に対応する受信信号R(m,k)の一部R(m,k)dが次の周期k+1に受信される。周波数帯域FCm+1の周期k+1の受信信号R(m+1,k+1)には、周期kに送信された送信信号S(m,k)に対応する受信信号R(m,k)の一部R(m,k)dが含まれると言うこともできる。 For example, as shown in FIG. 6A, the delay time is Td, and a part R (m, k) of the received signal R (m, k) corresponding to the transmitted signal S (m, k) transmitted in the period k ( m, k) d is received in the next cycle k + 1. The reception signal R (m + 1, k + 1) having a period k + 1 of the frequency band FC m + 1 includes a part R (m) of the reception signal R (m, k) corresponding to the transmission signal S (m, k) transmitted in the period k. , K) It can also be said that d is included.
 この受信信号部分R(m,k)dは、周波数帯域FCm+1のための受信部で受信処理され、周波数帯域FCm+1のための変換部において、周波数帯域FCm+1の次の周期k+1の送信信号S(m+1,k+1)と混合されて当該周期k+1のビート信号Q(m+1,k+1)の始端部分が生成される。上記の「周波数帯域FCm+1のための受信部」とは、m=1であれば、受信部132を指し、m=2であれば受信部133を指し、「周波数帯域FCm+1のための変換部」とは、m=1であれば、変換部142を指し、m=2であれば変換部143を指す。
 図6(b)にはそのような始端部分が符号Q(m,k)dで示され、始端部分以外の部分が符号Q(m+1,k+1)uで示される。
The received signal portion R (m, k) d is the reception processing by the receiver for the frequency band FC m + 1, in the conversion unit for frequency band FC m + 1, the frequency band FC m + 1 of the next period k + 1 of the transmitted signal It is mixed with S (m + 1, k + 1) to generate the start end portion of the beat signal Q (m + 1, k + 1) having the period k + 1. The above-mentioned " receiver for frequency band FC m + 1 " refers to receiver 132 if m = 1 and receiver 133 if m = 2, and "conversion for frequency band FC m + 1". When m = 1, the “unit” refers to the conversion unit 142, and when m = 2, it refers to the conversion unit 143.
In FIG. 6B, such a starting end portion is indicated by the reference numeral Q (m, k) d, and the portion other than the starting end portion is indicated by the reference numeral Q (m + 1, k + 1) u.
 最大測距距離が長いレーダの場合は遅延時間Tdの最大値が長くなり、遅延部分(図6(a)で期間Tdの部分)でのビート信号間の位相の連続性も重要となる。 In the case of a radar with a long maximum ranging distance, the maximum value of the delay time Td becomes long, and the continuity of the phase between the beat signals in the delay portion (the portion of the period Td in FIG. 6A) is also important.
 第mの周波数帯域の周期kの送信信号S(m,k)及び受信信号R(m,k)から生成されたビート信号Q(m,k)uの周期終了時点の位相Δθ(m,k,m,k)(kT)と、送信信号S(m,k)に対応する受信信号R(m,k)であって、周期k+1中に受信された受信信号R(m,k)dと、第m+1の周波数帯域の周期k+1の送信信号S(m+1,k+1)とから生成されたビート信号Q(m,k)dの周期開始時点の位相Δθ(m,k,m+1,k+1)(kT)との差は下記の式(10)で表される。 The phase Δθ (m, k ) at the end of the cycle of the beat signal Q (m, k) u generated from the transmission signal S (m, k) and the reception signal R (m, k) having the period k of the third frequency band. , M, k) (kT) and the received signal R (m, k) corresponding to the transmitted signal S (m, k), and the received signal R (m, k) d received during the period k + 1. , Phase Δθ (m, k, m + 1, k + 1) (kT) at the start of the cycle of the beat signal Q (m, k) d generated from the transmission signal S (m + 1, k + 1) having the cycle k + 1 in the frequency band of the third m + 1. ) Is expressed by the following equation (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 式(10)中のf+B/2は、周波数帯域FCの中心周波数hに等しい。
 上記の2つのビート信号間の位相の連続性を確保するには、式(10)で与えられる位相差が2πの整数倍である必要がある。
F m + B / 2 in the equation (10) is equal to the center frequency h m of the frequency band FC m.
In order to ensure the continuity of the phase between the above two beat signals, the phase difference given by the equation (10) needs to be an integral multiple of 2π.
 式(10)で与えられる位相差が2πの整数倍であるためには、中心周波数h(=f+B/2)とチャープ周期の長さTとの積が整数であり、送信信号Sの周期kのチャープ開始時の位相φm,kと、送信信号Sm+1の周期k+1のチャープ開始時の位相φm+1,k+1とが互いに等しければ良い。 For the phase difference given by equation (10) is an integral multiple of 2π, the product of the center frequency h m (= f m + B / 2) and the chirp period length T is an integer, the transmission signal S It is sufficient that the phases φ m, k at the start of the chirp of the period k of m and the phases φ m + 1, k + 1 at the start of the chirp of the period k + 1 of the transmission signal S m + 1 are equal to each other.
 上記のビート信号間の位相の連続性を持続的に確保するには、全ての周波数帯域間で、かつ全ての周期間で、式(10)で与えられる位相差が2πの整数倍である必要がある。
 そこで、制御装置100は、上記のように、位相φ1,k~φ3,kをすべての周期で同一とし、変調幅Bと、周期の長さTと、送信信号S~Sの開始周波数f~fと、送信信号S~Sの各周期の最初の位相φ1,k~φ3,kとを指定することで、式(10)の値、即ちビート信号の周期開始時の位相差が2πの整数倍となるように、制御を行なう。
In order to continuously ensure the continuity of the phase between the beat signals, the phase difference given by Eq. (10) must be an integral multiple of 2π between all frequency bands and all periods. There is.
Therefore, the control device 100, as described above, the phase φ 1, k ~ φ 3, k the same in all cycles of the modulation width B, a length T of the period, the transmission signal S 1 ~ S 3 By specifying the start frequencies f 1 to f 3 and the first phases φ 1, k to φ 3, k of each period of the transmission signals S 1 to S 3 , the value of equation (10), that is, the beat signal Control is performed so that the phase difference at the start of the cycle is an integral multiple of 2π.
 そのように制御を行なうことで、上記の2つのビート信号間の位相の連続性を持続的に確保でき、受信信号の遅延時間が長くなる遠距離の移動目標に対しても、フーリエ変換のピークに歪み、分裂等を発生させずに高い距離分解能を実現できる。 By performing such control, the continuity of the phase between the above two beat signals can be continuously ensured, and the peak of the Fourier transform can be obtained even for a long-distance moving target in which the delay time of the received signal becomes long. High distance resolution can be achieved without causing distortion or splitting.
 また、図6(a)及び(b)を参照して説明したように、第mの周波数帯域FCの受信信号のうちで次のチャープ周期に遅延して届く部分を、隣接する第m+1の周波数帯域FCm+1で受信してビート信号に変換する必要があるので、信号変換装置140のうち、周波数帯域FCm+1に対応する変換部は、図6(a)に示すように、周波数帯域FCm+1のみならず、周波数帯域FCm+1の下端からさらに周波数幅Bdだけ低い周波数までの周波数範囲FEm+1の信号を処理可能であるように構成する必要がある。上記の「周波数帯域FCm+1に対応する変換部」は、周波数帯域FCm+1の送信信号Sm+1を受けてビート信号Qm+1を生成する変換部であり、mが1であれば変換部142を指し、mが2であれば変換部143を指す。 Further, as described with reference to FIGS. 6 (a) and 6 (b), the portion of the received signal in the mth frequency band FC m that arrives with a delay in the next chapter cycle is the adjacent third m + 1 signal. since it is necessary to convert the beat signal is received by the frequency band FC m + 1, of the signal converter 140, conversion unit corresponding to the frequency band FC m + 1, as shown in FIG. 6 (a), the frequency band FC m + 1 Not only that, it is necessary to configure it so that it can process a signal in the frequency range FE m + 1 from the lower end of the frequency band FC m + 1 to a frequency further lower by the frequency width Bd. "Converting unit corresponding to the frequency band FC m + 1" above, a conversion unit for generating a beat signal Q m + 1 receives a transmission signal S m + 1 of the frequency band FC m + 1, m points to the conversion unit 142 as long as 1 If m is 2, it means the conversion unit 143.
 さらに、信号受信装置130のうち、周波数帯域FCm+1に対応する受信部は、周波数範囲FEm+1を受信周波数帯域とし、該周波数範囲FEm+1の信号に対する受信処理が可能であるように構成しておく必要がある。上記の「周波数帯域FCm+1に対応する受信部」は、周波数帯域FCm+1に対応する変換部に対応する受信部であり、mが1であれば受信部132を指し、mが2であれば受信部133を指す。
 なお、周波数帯域FC1に対応する受信部131は、周波数帯域FC1自体を受信周波数帯域とすれば足りる。
 ある周波数範囲、或いはある周波数帯域を「受信周波数帯域とする」とは、当該周波数範囲或いは周波数帯域内の信号に対して受信処理が可能であることを意味する。
 受信周波数帯域との区別のため、周波数帯域FC~FCを送信周波数帯域と言うことがある。
Further, in the signal receiving device 130, the receiving unit corresponding to the frequency band FC m + 1 has the frequency range FE m + 1 as the receiving frequency band, and is configured to be capable of receiving processing for the signal in the frequency range FE m + 1. There is a need. The above "receiving unit corresponding to the frequency band FC m + 1" is a receiving unit corresponding to the converter which corresponds to the frequency band FC m + 1, m points to the receiving unit 132 if 1, if m is 2 Refers to the receiving unit 133.
The receiving unit 131 corresponding to the frequency band FC1 suffices to set the frequency band FC1 itself as the receiving frequency band.
“Letting a certain frequency range or a certain frequency band as a reception frequency band” means that reception processing can be performed on a signal in the frequency range or the frequency band.
In order to distinguish it from the reception frequency band, the frequency bands FC 1 to FC 3 may be referred to as a transmission frequency band.
 上記の周波数幅Bdは、最大ビート周波数Qmax以上となるように予め定められている。
 最大ビート周波数Qmaxは、下記の式(11)で与えられる。
The frequency width Bd is predetermined to be equal to or higher than the maximum beat frequency Qmax.
The maximum beat frequency Qmax is given by the following equation (11).
Figure JPOXMLDOC01-appb-M000011
 式(11)で、τmaxは、最大測距距離に相当する遅延時間である。
Figure JPOXMLDOC01-appb-M000011
In equation (11), τ max is the delay time corresponding to the maximum distance measurement distance.
 更に、A/D変換器81~83におけるビート信号のサンプリング周波数fとチャープ周期の長さTとの積が整数となるようにしても良い。言い換えれば、A/D変換器81~83はそのような条件を満たすサンプリング周波数fでサンプリングを行なうように構成されていても良い。そうすれば、連続する周期間において、静止し、もしくは一定速度で移動している目標での反射波から得られる各周波数帯域の受信信号の周期開始時点の位相差が一定となる。 Furthermore, the product of the length T of the sampling frequency f S and chirp period of the beat signal in the A / D converters 81 to 83 may be set to be an integer. In other words, A / D converters 81 to 83 may be configured to perform sampling in such a condition is satisfied sampling frequency f S. Then, during the continuous period, the phase difference at the start of the period of the received signal in each frequency band obtained from the reflected wave at the target which is stationary or moving at a constant speed becomes constant.
 以下では、上記のようにして生成された、複数の合成信号CSに基づいて、目標検出部152が目標TGまでの距離と目標TGの速度とを算出する方法について説明する。 Hereinafter, a method in which the target detection unit 152 calculates the distance to the target TG and the speed of the target TG based on the plurality of synthetic signals CS generated as described above will be described.
 まず、合成信号CSの各々に対し1回目のフーリエ変換を行って距離に対するパワースペクトルを生成する。一つの合成信号に対するフーリエ変換の結果の一例が図7に示されている。
 図7で横軸は、距離に対応する周波数であり、パワーがピークとなる周波数fから距離が特定できる。
 図7に示されるのと同様の結果(フーリエ変換の結果)は、合成信号毎に得られる。
First, the first Fourier transform is performed on each of the combined signals CS to generate a power spectrum with respect to the distance. An example of the result of the Fourier transform on one composite signal is shown in FIG.
The horizontal axis in FIG. 7, the distance to a corresponding frequency, the power can be specified distance from the frequency f p of the peak.
A result similar to that shown in FIG. 7 (Fourier transform result) is obtained for each composite signal.
 一定の期間内に生成された複数の合成信号に対するフーリエ変換の結果DS(i)、DS(i+1)、DS(i+3)、…を、時間軸上に並べる。具体的には、各フーリエ変換の結果を、対応する合成信号の先頭に位置するビート信号の始端に相当する時点に配置する。そのような配置の結果を図8(a)に示す。
 目標TGが移動している場合には、図8(a)に示されるフーリエ変換の結果におけるピークの位相が、図8(b)に示すように変化する。
The results of Fourier transform on a plurality of synthesized signals generated within a certain period, DS (i), DS (i + 1), DS (i + 3), ... Are arranged on the time axis. Specifically, the result of each Fourier transform is arranged at a time point corresponding to the start of the beat signal located at the beginning of the corresponding composite signal. The result of such an arrangement is shown in FIG. 8 (a).
When the target TG is moving, the phase of the peak in the result of the Fourier transform shown in FIG. 8 (a) changes as shown in FIG. 8 (b).
 次に、図8(a)に示される周波数スペクトルDS(i)、DS(i+1)、…の周波数ビン(BIN)毎に、フーリエ変換を行なう。 Next, Fourier transform is performed for each frequency bin (BIN) of the frequency spectra DS (i), DS (i + 1), ... Shown in FIG. 8 (a).
 2回目のフーリエ変換の結果の一例が図9に示されている。
 図示のように、2回目のフーリエ変換の結果においては、ドップラー周波数に対する周波数ビンにピークが出現する。このドップラー周波数から目標TGの速度を特定することができる。
An example of the result of the second Fourier transform is shown in FIG.
As shown in the figure, in the result of the second Fourier transform, a peak appears in the frequency bin with respect to the Doppler frequency. The speed of the target TG can be specified from this Doppler frequency.
 図1に示されるレーダ装置RDで反射波を受信した後の処理の手順を図10に示す。
 ステップST1では、ビート信号を生成する。ステップST1の処理は、信号変換装置140で行われる。
 ステップST2では、ビート信号を連結することで合成信号を生成する。ステップST2の処理は、信号合成部151で行われる。
FIG. 10 shows a processing procedure after receiving the reflected wave by the radar device RD shown in FIG.
In step ST1, a beat signal is generated. The process of step ST1 is performed by the signal converter 140.
In step ST2, a composite signal is generated by connecting the beat signals. The process of step ST2 is performed by the signal synthesis unit 151.
 ステップST3では、各合成信号をフーリエ変換する。
 ステップST4では、上記フーリエ変換に結果を並べ、並べた方向にフーリエ変換を行なう。
 ステップST5では、ピークを検出して、距離及び速度を求める。
 ステップST3~ST5の処理は、目標検出部152で行われる。
In step ST3, each synthesized signal is Fourier transformed.
In step ST4, the results are arranged in the above Fourier transform, and the Fourier transform is performed in the arranged direction.
In step ST5, the peak is detected to obtain the distance and speed.
The processing of steps ST3 to ST5 is performed by the target detection unit 152.
 上記の実施の形態には、種々の変形を加えることができる。
 例えば、上記の実施の形態では、周波数帯域の数Mが3であるが、Mは2であっても良く4以上であっても良い。要するにMは2以上であれば良い。
 また、上記の構成では、チャープ信号がアップチャープ信号であるが、チャープ信号はダウンチャープ信号であっても良い。
Various modifications can be added to the above embodiments.
For example, in the above embodiment, the number M of the frequency band is 3, but M may be 2 or 4 or more. In short, M may be 2 or more.
Further, in the above configuration, the chirp signal is an up chirp signal, but the chirp signal may be a down chirp signal.
 また、上記の信号送信装置は、複数の送信部を有し、各送信部が増幅器、送受切替器、及びアンテナで構成されている。一組の増幅器、送受切替器、及びアンテナで複数の周波数帯域全体に対応できれば、そのような一組の増幅器、送受切替器、及びアンテナで信号送信装置を構成しても良い。 Further, the above signal transmitter has a plurality of transmitters, and each transmitter is composed of an amplifier, a transmission / reception switch, and an antenna. If a set of amplifiers, a transmission / reception switch, and an antenna can cover a plurality of frequency bands as a whole, a signal transmission device may be configured by such a set of amplifiers, a transmission / reception switch, and an antenna.
 また、上記の信号受信装置は、複数の受信部を有し、各受信部がアンテナ、送受切替器及び増幅器で構成されている。一組のアンテナ、送受切替器、及び増幅器で複数の周波数帯域全体に対応できれば、そのような一組のアンテナ、送受切替器、及び増幅器で信号受信装置を構成しても良い。 Further, the above signal receiving device has a plurality of receiving units, and each receiving unit is composed of an antenna, a transmission / reception switch, and an amplifier. If a set of antennas, a transmission / reception switch, and an amplifier can cover a plurality of frequency bands as a whole, such a set of antennas, a transmission / reception switch, and an amplifier may form a signal receiver.
 また、上記の実施の形態では、チャープ信号の変調幅Bが固定されている。変調幅Bを制御装置100により指定可能としても良い。その場合、DDS3として、指定された変調幅Bのチャープ信号を発生することが可能のものを用いれば良い。 Further, in the above embodiment, the modulation width B of the charp signal is fixed. The modulation width B may be specified by the control device 100. In that case, a DDS3 capable of generating a chirp signal having a specified modulation width B may be used.
 要するには、レーダ装置は、
 帯域幅が互いに等しく、互いに隣接する第1乃至第Mの(Mは2以上の整数)送信周波数帯域の、周波数の変化が互いに連続する第1乃至第Mのチャープ信号を同期してチャープ周期毎に繰り返し生成する信号生成装置(110)と、
 上記信号生成装置(110)で繰り返し生成される第1乃至第Mのチャープ信号に対応する第1乃至第Mの送信波を送信する信号送信装置(120)と、
 上記信号送信装置(120)で送信された第1乃至第Mの送信波が目標で反射することで発生する反射波を、それぞれ上記第1乃至第Mの送信周波数帯域に対応する第1乃至第Mの受信周波数帯域で受信して第1乃至第Mの受信信号を生成する信号受信装置(130)と、
 上記信号生成装置(110)で生成される上記第1乃至第Mのチャープ信号と、上記信号受信装置(130)で生成される上記第1乃至第Mの受信信号とから、上記目標までの距離に応じた周波数成分を持つ第1乃至第Mのビート信号を生成する信号変換装置(140)と、
 上記信号変換装置(140)で生成される上記第1乃至第Mのビート信号を上記チャープ周期相互の境界で互いに連結して、上記チャープ周期毎に一つの合成信号を生成する信号合成部(151)と、
 上記信号合成部(151)で順次生成される複数の合成信号から目標までの距離と目標の速度とを算出する目標検出部(152)と
 を備えれば良い。
In short, the radar device
The first to M chirp signals of the first to M (M is an integer of 2 or more) transmission frequency bands having equal bandwidths and adjacent to each other and having continuous frequency changes are synchronized with each chirp cycle. A signal generator (110) that is repeatedly generated in
A signal transmitter (120) that transmits a first to M transmission wave corresponding to the first to M chirp signals repeatedly generated by the signal generator (110), and a signal transmitter (120).
The reflected waves generated by the reflection of the first to M transmission waves transmitted by the signal transmission device (120) at the target are the first to first transmission waves corresponding to the first to M transmission frequency bands, respectively. A signal receiving device (130) that receives in the reception frequency band of M and generates the first to M received signals, and
The distance from the first to M chirp signals generated by the signal generator (110) and the first to M received signals generated by the signal receiving device (130) to the target. A signal converter (140) that generates first to Mth beat signals having frequency components according to
The signal synthesizer (151) that connects the first to M beat signals generated by the signal conversion device (140) to each other at the boundary between the chirp cycles to generate one composite signal for each chirp cycle. )When,
A target detection unit (152) that calculates the distance to the target and the target speed from the plurality of synthetic signals sequentially generated by the signal synthesis unit (151) may be provided.
 第mのチャープ信号のチャープ終了時の周波数と、第m+1のチャープ信号のチャープ開始時の周波数とが等しいのが好適である。 It is preferable that the frequency at the end of the chirp of the mth chirp signal and the frequency at the start of the chirp of the m + 1 chirp signal are equal.
 第mのチャープ信号のチャープ終了時の位相と、第m+1のチャープ信号のチャープ開始時の位相とが連続しているのが好適である。 It is preferable that the phase at the end of the chirp of the mth chirp signal and the phase at the start of the chirp of the m + 1 chirp signal are continuous.
 上記信号合成部(151)は、上記第1乃至第Mのチャープ信号のうちの第m(mはここでは1からM-1のいずれか)のチャープ信号から生成されるビート信号の終端と、第m+1のチャープ信号から生成されるビート信号とを繋ぐことで上記ビート信号の連結を行なうものであるのが好適である。 The signal synthesizing unit (151) determines the termination of the beat signal generated from the m (m is any of 1 to M-1 in this case) chirp signal of the first to M chirp signals. It is preferable that the beat signals are connected by connecting the beat signals generated from the m + 1th chirp signal.
 チャープ信号がアップチャープ信号である場合、第1から第Mの周波数帯域FC~FCのビート信号は対応する周波数帯域の周波数の昇順に連結されるのが好適である。
 チャープ信号がダウンチャープ信号である場合、第1から第Mの周波数帯域FC~FCのビート信号は対応する周波数帯域の周波数の降順に連結されるのが好適である。
When the chirp signal is an up chirp signal, it is preferable that the beat signals of the first to Mth frequency bands FC1 to FCM are connected in ascending order of the frequencies of the corresponding frequency bands.
When the chirp signal is a down chirp signal, it is preferable that the beat signals of the first to Mth frequency bands FC1 to FCM are connected in descending order of the frequencies of the corresponding frequency bands.
 第1乃至第Mの周波数帯域の各々の中心周波数(h=f+B/2)とチャープ周期の長さ(T)との積が整数であり、第1乃至第Mのチャープ信号のチャープ開始時の位相(φm,k)は、互いに等しく、かつ相前後するチャープ周期(k)間で互いに同一であるのが好適である。 Is the product is an integer with a center frequency of each frequency band of the first to M (h m = f m + B / 2) and the chirp period length (T), the chirp of the first to the chirp signal of the M It is preferable that the starting phases (φ m, k ) are equal to each other and are the same to each other between the chirp periods (k) before and after the phase.
 上記第1乃至第Mの受信周波数帯域のうちの第n(nは2からMのいずれか)の受信周波数帯域は、対応する送信周波数帯域に対し、最大測距距離に対応するビート周波数だけ拡張された周波数範囲を有するのが好適である。 The nth (n is any of 2 to M) reception frequency bands of the first to M reception frequency bands are extended by the beat frequency corresponding to the maximum ranging distance with respect to the corresponding transmission frequency band. It is preferable to have a specified frequency range.
 チャープ信号が、アップチャープ信号であれば、上記の拡張は、対応する送信周波数帯域の下限から、最大測距距離に対応するビート周波数だけ低い周波数までの拡張であり、チャープ信号が、ダウンチャープ信号であれば、上記の拡張は、対応する送信周波数帯域の上限から、最大測距距離に対応するビート周波数だけ高い周波数までの拡張である。 If the chirp signal is an up chirp signal, the above extension is an extension from the lower limit of the corresponding transmission frequency band to a frequency lower by the beat frequency corresponding to the maximum distance measurement distance, and the chirp signal is a down chirp signal. If so, the above extension is an extension from the upper limit of the corresponding transmission frequency band to a frequency higher by the beat frequency corresponding to the maximum distance measurement distance.
 上記信号変換装置(140)は、それぞれ上記第1乃至第Mのビート信号をA/D変換する第1乃至第MのA/D変換部を有し、上記第1乃至第MのA/D変換部における、上記第1乃至第Mのビート信号のサンプリング周波数(f)と上記チャープ周期の長さ(T)との積が整数となるように上記第1乃至第MのA/D変換部が構成され、それにより、連続する周期間で、静止し、もしくは一定速度で移動している目標での反射波から得られる各周波数帯域の受信信号の周期開始時点の位相差が一定となるようにするのが好適である。 The signal conversion device (140) has first to M A / D conversion units that A / D convert the first to M beat signals, respectively, and the first to M A / Ds. in the conversion unit, the sampling frequency (f S) of the first to beat signal of the M and the chirp length of the period (T) and the product is an integer become as the a / D conversion of the first through M The unit is configured so that the phase difference at the start of the cycle of the received signal in each frequency band obtained from the reflected wave at the target that is stationary or moving at a constant speed is constant between continuous cycles. It is preferable to do so.
 上記のレーダ装置のアンテナ以外の部分の一部又は全部は処理回路で構成し得る。
 例えば、レーダ装置の各部分の機能をそれぞれ別個の処理回路で実現しても良いし、複数の部分の機能を纏めて1つの処理回路で実現しても良い。
 処理回路はハードウェアで構成されていても良く、ソフトウェアで、即ちプログラムされたコンピュータで構成されていても良い。
 レーダ装置の各部分の機能のうち、一部をハードウェアで実現し、他の一部をソフトウェアで実現するようにしても良い。
A part or all of the part other than the antenna of the radar device may be composed of a processing circuit.
For example, the functions of each part of the radar device may be realized by separate processing circuits, or the functions of a plurality of parts may be collectively realized by one processing circuit.
The processing circuit may be composed of hardware or software, that is, a programmed computer.
Of the functions of each part of the radar device, some may be realized by hardware and the other part may be realized by software.
 図11は、レーダ装置のアンテナ以外の部分の一部又は全ての機能を実現するコンピュータ90のハードウェア構成を示す。
 図示の例ではコンピュータ90は、プロセッサ91及びメモリ92を有する。
 メモリ92には、レーダ装置のアンテナ以外の部分の、各部の機能を実現するためのプログラムが記憶されている。
FIG. 11 shows the hardware configuration of the computer 90 that realizes a part or all the functions of the part other than the antenna of the radar device.
In the illustrated example, the computer 90 has a processor 91 and a memory 92.
The memory 92 stores a program for realizing the functions of each part other than the antenna of the radar device.
 プロセッサ91は、例えば、CPU(Central Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)等を用いたものである。 The processor 91 uses, for example, a CPU (Central Processing Unit), a microprocessor, a microcontroller, a DSP (Digital Signal Processor), or the like.
 メモリ92は、例えばRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)若しくはEEPROM(Electrically Erasable Programmable Read Only Memory)等の半導体メモリ、磁気ディスク、光ディスク、又は光磁気ディスク等を用いたものである。 The memory 92 includes, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Lead Only Memory), an EEPROM (Electrically Memory Memory, etc.) Alternatively, a photomagnetic disk or the like is used.
 プロセッサ91及びメモリ92は、互いに一体化されたLSI(Large Scale Integration)で実現されていても良い。 The processor 91 and the memory 92 may be realized by an LSI (Large Scale Integration) integrated with each other.
 プロセッサ91は、メモリ92に記憶されているプログラムを実行することにより、レーダ装置の機能を実現する。
 プログラムは、ネットワークを通じて提供されてもよく、また、記録媒体、例えば非一時的な記録媒体に記録されて提供されてもよい。即ち、プログラムは、例えば、プログラムプロダクトとして提供されてもよい。
The processor 91 realizes the function of the radar device by executing the program stored in the memory 92.
The program may be provided over a network or may be recorded and provided on a recording medium, such as a non-temporary recording medium. That is, the program may be provided, for example, as a program product.
 図11のコンピュータは単一のプロセッサを含むが、2以上のプロセッサを含んでいても良い。 The computer of FIG. 11 includes a single processor, but may include two or more processors.
 以上のように、実施の形態のレーダ装置によれば、移動目標に対してもビート信号間の位相の連続性を確保し、フーリエ変換のピークに歪み、分裂等を発生させずに高い距離分解能を実現できる。 As described above, according to the radar device of the embodiment, the phase continuity between the beat signals is ensured even for the moving target, and the peak of the Fourier transform is not distorted or split, and the distance resolution is high. Can be realized.
  3 DDS(デジタル直接合成発振器)、 4 高周波信号発生器、 11~13 ミキサ、 21~23 増幅器、 31~33 送受切替器、 41~43 アンテナ、 51~53 増幅器、 61~63 ミキサ、 71~73 増幅器、 81~83 A/D変換器、 100 制御装置、 102 基準信号発生器、 110 信号生成装置、 120 信号送信装置、 121~123 送信部、 130 信号受信装置、 131~133 受信部、 140 信号変換装置、 141~143 変換部、 150 信号処理装置、 151 信号合成部、 152 目標検出部。 3 DDS (digital direct synthesis oscillator), 4 high frequency signal generator, 11 to 13 mixer, 21 to 23 amplifier, 31 to 33 transmission / reception switch, 41 to 43 antenna, 51 to 53 amplifier, 61 to 63 mixer, 71 to 73 Amplifier, 81-83 A / D converter, 100 control device, 102 reference signal generator, 110 signal generator, 120 signal transmitter, 121-123 transmitter, 130 signal receiver, 131-133 receiver, 140 signal Conversion device, 141-143 conversion unit, 150 signal processing device, 151 signal synthesis unit, 152 target detection unit.

Claims (9)

  1.  帯域幅が互いに等しく、互いに隣接する第1乃至第Mの(Mは2以上の整数)送信周波数帯域の、周波数の変化が互いに連続する第1乃至第Mのチャープ信号を同期してチャープ周期毎に繰り返し生成する信号生成装置と、
     前記信号生成装置で繰り返し生成される第1乃至第Mのチャープ信号に対応する第1乃至第Mの送信波を送信する信号送信装置と、
     前記信号送信装置で送信された第1乃至第Mの送信波が目標で反射することで発生する反射波を、それぞれ前記第1乃至第Mの送信周波数帯域に対応する第1乃至第Mの受信周波数帯域で受信して第1乃至第Mの受信信号を生成する信号受信装置と、
     前記信号生成装置で生成される前記第1乃至第Mのチャープ信号と、前記信号受信装置で生成される前記第1乃至第Mの受信信号とから、前記目標までの距離に応じた周波数成分を持つ第1乃至第Mのビート信号を生成する信号変換装置と、
     前記信号変換装置で生成される前記第1乃至第Mのビート信号を前記チャープ周期相互の境界で互いに連結して、前記チャープ周期毎に一つの合成信号を生成する信号合成部と、
     前記信号合成部で順次生成される複数の合成信号から目標までの距離と目標の速度とを算出する目標検出部と
     を備えるレーダ装置。
    The first to M chirp signals of the first to M (M is an integer of 2 or more) transmission frequency bands having equal bandwidths and adjacent to each other and having continuous frequency changes are synchronized with each chirp cycle. A signal generator that repeatedly generates signals and
    A signal transmitting device that transmits a first to M transmission wave corresponding to the first to M chirp signals repeatedly generated by the signal generating device, and a signal transmitting device.
    Reception of the first to M corresponding to the first to M transmission frequency bands, respectively, of the reflected wave generated by the reflection of the first to M transmission waves transmitted by the signal transmission device at the target. A signal receiver that receives in the frequency band and generates the first to M received signals, and
    From the first to M chirp signals generated by the signal generator and the first to M received signals generated by the signal receiving device, frequency components corresponding to the distance to the target are obtained. A signal conversion device that generates the first to Mth beat signals to have, and
    A signal synthesizing unit that connects the first to Mth beat signals generated by the signal conversion device to each other at boundaries between the chirp periods to generate one composite signal for each chirp period.
    A radar device including a target detection unit that calculates a distance to a target and a target speed from a plurality of synthetic signals sequentially generated by the signal synthesis unit.
  2.  前記信号合成部は、前記第1乃至第Mのチャープ信号のうちの第m(mはここでは1からM-1のいずれか)のチャープ信号から生成されるビート信号の終端と、第m+1のチャープ信号から生成されるビート信号とを繋ぐことで前記ビート信号の連結を行なう請求項1に記載のレーダ装置。 The signal synthesizing unit includes the termination of the beat signal generated from the m (m is any of 1 to M-1 in this case) chirp signal of the first to M chirp signals, and the m + 1 th chirp signal. The radar device according to claim 1, wherein the beat signals are connected by connecting the beat signals generated from the chirp signals.
  3.  前記第mのチャープ信号のチャープ終了時の周波数と、前記第m+1のチャープ信号のチャープ開始時の周波数とが等しい請求項2に記載のレーダ装置。 The radar device according to claim 2, wherein the frequency at the end of the chirp of the mth chirp signal and the frequency at the start of the chirp of the m + 1 chirp signal are equal to each other.
  4.  前記第mのチャープ信号のチャープ終了時の位相と、前記第m+1のチャープ信号のチャープ開始時の位相とが連続している周波数とが等しい請求項2又は3に記載のレーダ装置。 The radar device according to claim 2 or 3, wherein the phase at the end of the chirp of the mth chirp signal and the frequency at which the phase at the start of the chirp of the m + 1 chirp signal are continuous are equal.
  5.  前記チャープ信号がアップチャープ信号である請求項2から4のいずれか1項に記載のレーダ装置。 The radar device according to any one of claims 2 to 4, wherein the chirp signal is an up chirp signal.
  6.  前記チャープ信号がダウンチャープ信号である請求項2から4のいずれか1項に記載のレーダ装置。 The radar device according to any one of claims 2 to 4, wherein the chirp signal is a down chirp signal.
  7.  前記第1乃至第Mの周波数帯域の各々の中心周波数と前記チャープ周期の長さとの積が整数であり、
     前記第1乃至第Mのチャープ信号のチャープ開始時の位相は、互いに等しく、かつ相前後するチャープ周期間で互いに同一である
     請求項1から6のいずれか1項に記載のレーダ装置。
    The product of the center frequency of each of the first to M frequency bands and the length of the chirp period is an integer.
    The radar device according to any one of claims 1 to 6, wherein the phases of the first to M chirp signals at the start of chirp are equal to each other and are the same to each other between the chirp periods before and after the phase.
  8.  前記第1乃至第Mの受信周波数帯域のうちの第n(nは2からMのいずれか)の受信周波数帯域は、対応する送信周波数帯域に対し、最大測距距離に対応するビート周波数だけ拡張された周波数範囲を有する請求項1から7のいずれか1項に記載のレーダ装置。 The nth (n is any of 2 to M) reception frequency bands of the first to M reception frequency bands are extended by the beat frequency corresponding to the maximum ranging distance with respect to the corresponding transmission frequency band. The radar device according to any one of claims 1 to 7, which has a specified frequency range.
  9.  前記信号変換装置は、
     それぞれ前記第1乃至第Mのビート信号をA/D変換する第1乃至第MのA/D変換部を有し、
     前記第1乃至第MのA/D変換部における、前記第1乃至第Mのビート信号のサンプリング周波数と前記チャープ周期の長さとの積が整数となるように前記第1乃至第MのA/D変換部が構成されている
     請求項1から8のいずれか1項に記載のレーダ装置。
    The signal conversion device is
    Each has a first to Mth A / D conversion unit that A / D converts the first to Mth beat signals.
    The first to M A / D in the first to M A / D converters so that the product of the sampling frequency of the first to M beat signals and the length of the chirp period is an integer. The radar device according to any one of claims 1 to 8, wherein the D conversion unit is configured.
PCT/JP2020/010760 2020-03-12 2020-03-12 Radar device WO2021181598A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022507106A JP7270835B2 (en) 2020-03-12 2020-03-12 radar equipment
PCT/JP2020/010760 WO2021181598A1 (en) 2020-03-12 2020-03-12 Radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/010760 WO2021181598A1 (en) 2020-03-12 2020-03-12 Radar device

Publications (1)

Publication Number Publication Date
WO2021181598A1 true WO2021181598A1 (en) 2021-09-16

Family

ID=77670605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010760 WO2021181598A1 (en) 2020-03-12 2020-03-12 Radar device

Country Status (2)

Country Link
JP (1) JP7270835B2 (en)
WO (1) WO2021181598A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115508789A (en) * 2022-08-17 2022-12-23 山东省科学院自动化研究所 Self-adaptive signal interference resisting method and system for automobile radar

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032234A1 (en) * 2005-09-14 2007-03-22 Murata Manufacturing Co., Ltd. Radar device
JP2008256562A (en) * 2007-04-05 2008-10-23 Mitsubishi Electric Corp Radar system
WO2015136823A1 (en) * 2014-03-11 2015-09-17 日本電気株式会社 Target extraction system, target extraction method, and information processing device and control method and control program for same
JP2017003553A (en) * 2014-09-19 2017-01-05 ザ・ボーイング・カンパニーThe Boeing Company Phase calibration of stepwise chirp signal for synthetic aperture radar
WO2018180584A1 (en) * 2017-03-30 2018-10-04 日立オートモティブシステムズ株式会社 Radar device
JP2018179914A (en) * 2017-04-20 2018-11-15 株式会社デンソーテン Radar device and target detection method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3055049B1 (en) 2016-08-11 2018-07-27 Thales MULTI-RESOLUTION FMCW RADAR DETECTION METHOD AND RADAR USING SUCH A METHOD
JP7174558B2 (en) 2018-08-01 2022-11-17 日本無線株式会社 FMCW radar target detection device and FMCW radar target detection program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032234A1 (en) * 2005-09-14 2007-03-22 Murata Manufacturing Co., Ltd. Radar device
JP2008256562A (en) * 2007-04-05 2008-10-23 Mitsubishi Electric Corp Radar system
WO2015136823A1 (en) * 2014-03-11 2015-09-17 日本電気株式会社 Target extraction system, target extraction method, and information processing device and control method and control program for same
JP2017003553A (en) * 2014-09-19 2017-01-05 ザ・ボーイング・カンパニーThe Boeing Company Phase calibration of stepwise chirp signal for synthetic aperture radar
WO2018180584A1 (en) * 2017-03-30 2018-10-04 日立オートモティブシステムズ株式会社 Radar device
JP2018179914A (en) * 2017-04-20 2018-11-15 株式会社デンソーテン Radar device and target detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115508789A (en) * 2022-08-17 2022-12-23 山东省科学院自动化研究所 Self-adaptive signal interference resisting method and system for automobile radar
CN115508789B (en) * 2022-08-17 2024-05-31 山东省科学院自动化研究所 Self-adaptive anti-signal mutual interference method and system for automobile radar

Also Published As

Publication number Publication date
JP7270835B2 (en) 2023-05-10
JPWO2021181598A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JP6818541B2 (en) Radar device and positioning method
JP3525426B2 (en) Radar equipment
US6121917A (en) FM-CW radar
US8232914B2 (en) Radar apparatus
JP4986454B2 (en) Radar equipment
JP3575694B2 (en) Scanning FMCW radar
JPH11311668A (en) Fm-cw radar device
JP6019795B2 (en) Radar apparatus, target data acquisition method, and target tracking system
EP1635192B1 (en) Radar apparatus with DC offset correction
WO2021181598A1 (en) Radar device
JP7262399B2 (en) Method and apparatus for compensating phase noise
JP2011013056A (en) Radar device
WO2018154747A1 (en) Frequency calculation device and radar apparatus
JP2018119858A (en) Fmcw system radar
JP6771699B2 (en) Radar device
JP2000206227A (en) Ecm radar apparatus
JP3366615B2 (en) Pulse radar equipment
KR102235571B1 (en) Range Resolution enhancement method using low cost multi radar
JP7324859B2 (en) processing equipment
JP3988520B2 (en) Holographic radar
JP3500629B2 (en) DBF radar device
JP3720280B2 (en) FM-CW radar apparatus and interference wave elimination method in the apparatus
JP6615405B2 (en) Radar equipment
JP2003215232A (en) Polarized wave radar and its pulse transmission/ reception method
JP2005241264A (en) Radar apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507106

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923753

Country of ref document: EP

Kind code of ref document: A1