WO2021181486A1 - Air conditioning system, air conditioning control device, air conditioning method, and program - Google Patents

Air conditioning system, air conditioning control device, air conditioning method, and program Download PDF

Info

Publication number
WO2021181486A1
WO2021181486A1 PCT/JP2020/010111 JP2020010111W WO2021181486A1 WO 2021181486 A1 WO2021181486 A1 WO 2021181486A1 JP 2020010111 W JP2020010111 W JP 2020010111W WO 2021181486 A1 WO2021181486 A1 WO 2021181486A1
Authority
WO
WIPO (PCT)
Prior art keywords
airflow
temperature
air
air conditioning
temperature difference
Prior art date
Application number
PCT/JP2020/010111
Other languages
French (fr)
Japanese (ja)
Inventor
春実 加藤
怜司 森岡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/010111 priority Critical patent/WO2021181486A1/en
Priority to JP2022507021A priority patent/JP7414956B2/en
Publication of WO2021181486A1 publication Critical patent/WO2021181486A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • This disclosure relates to air conditioning systems, air conditioning controllers, air conditioning methods and programs.
  • Patent Document 1 describes an air conditioner that detects the temperature of the sucked air, detects the temperature of the floor surface with an infrared sensor, and controls the blown air flow based on the detection information.
  • the height at which the wall-mounted air conditioner is installed is usually about 2 m from the floor surface.
  • the temperature near the ceiling in a space with a ceiling height of 5 to 6 m is replaced by the suction temperature of the air conditioner. Then, it is considered that a large error occurs.
  • the purpose of this disclosure is to reduce the temperature difference between the top and bottom of a space with a high ceiling height.
  • the air conditioning system of the present disclosure includes a ceiling temperature measuring means for measuring the surface temperature of the ceiling in the indoor space to be air-conditioned, a floor temperature measuring means for measuring the surface temperature of the floor in the indoor space, and the like.
  • a ceiling temperature measuring means for measuring the surface temperature of the ceiling in the indoor space to be air-conditioned
  • a floor temperature measuring means for measuring the surface temperature of the floor in the indoor space
  • the first airflow is generated, and the temperature difference is the first threshold value.
  • an airflow generating means for generating a second airflow different from the first airflow when the temperature is larger.
  • the airflow generating means generates a first airflow when the temperature difference between the ceiling surface temperature and the floor surface temperature is smaller than the first threshold value, and when the temperature difference is larger than the first threshold value. , Generates a second airflow that is different from the first airflow. It can be said that the surface temperature of the ceiling is approximately equal to the temperature of the air near the ceiling, and the surface temperature of the floor is approximately equal to the temperature of the air near the floor. Therefore, even if it is difficult to measure the air temperature near the ceiling and floor in a space with a high ceiling height, the air in the indoor space is agitated by the second air flow when there is a temperature difference between the top and bottom in the space. Will be done. As a result, it is possible to reduce the temperature difference between the upper and lower parts generated in a space having a high ceiling height.
  • the figure for demonstrating the adjustment of the wind direction which concerns on Embodiment 1. Flow chart showing the heating process according to the first embodiment
  • FIG. 3 shows a refrigeration cycle according to the third embodiment.
  • FIG. 4 shows a refrigeration cycle according to the third embodiment.
  • FIG. 1 shows the configuration of the air conditioning system 1000 according to the present embodiment.
  • the air conditioning system 1000 is a system that harmonizes the air in the indoor space 1001 to be air-conditioned by a vapor compression type heat pump.
  • the indoor space 1001 is a specific room in a building represented by a house, an office, or a factory. However, the indoor space 1001 may be an underground space or a space inside a moving body represented by a vehicle or a ship. Further, a part of the indoor space 1001 may communicate with the outside air.
  • the indoor space 1001 is an atrium living room provided in a house, and a heating operation is performed in which a difference between the air temperature near the ceiling and the air temperature near the floor is likely to occur. ..
  • the air conditioning system 1000 generates an air flow that agitates the air in the indoor space 1001 when at least one of the warm air near the ceiling and the cold air near the floor surface of the indoor space 1001 stays, thereby causing a temperature difference between the upper and lower sides.
  • the airflow that agitates the air is indicated by a white arrow
  • the airflow that is generated for the purpose of normal air conditioning rather than agitation of the air is indicated by a hatched arrow.
  • the air conditioning system 1000 has an outdoor unit 110 and an indoor unit 120 connected by a refrigerant pipe 101, and a terminal 20 for a user to set a target temperature.
  • the refrigerant pipe 101 includes a copper pipe for circulating the refrigerant between the outdoor unit 110 and the indoor unit 120, and a protective member for preventing corrosion of the copper pipe and absorption and heat dissipation of the refrigerant.
  • the refrigerant is, for example, R410A or R32, which is an HFC (Hydro Fluoro Carbons) refrigerant.
  • the material of the refrigerant pipe and the type of the refrigerant are not limited to this, and are arbitrary.
  • the outdoor unit 110 is installed outside the house having the indoor space 1001 inside.
  • the outdoor unit 110 is installed on the outer wall surface or roof of the house.
  • the outdoor unit 110 includes a compressor 111 that compresses the refrigerant, an outdoor heat exchanger 112 that exchanges heat between the outside air and the refrigerant, an outdoor blower 113 that blows air to the outdoor heat exchanger 112, and a variable opening degree. It has an expansion valve 114 and.
  • the compressor 111, the outdoor heat exchanger 112, and the expansion valve 114 are connected by a refrigerant pipe 101.
  • the compressor 111 is, for example, a scroll compressor, a rotary compressor, or a device that compresses the refrigerant by another method.
  • the compressor 111 compresses the refrigerant vapor that has flowed from the outdoor heat exchanger 112 into the suction port via the refrigerant pipe 101, and discharges the high-temperature and high-pressure refrigerant vapor from the discharge port.
  • the refrigerant vapor discharged by the compressor 111 is sent to the indoor heat exchanger 131 of the indoor unit 120 via the refrigerant pipe 101.
  • the compressor 111 operates according to a control signal transmitted from the control unit 140 of the indoor unit 120, and the operating frequency of the compressor 111 is specified by this control signal.
  • the outdoor heat exchanger 112 is connected to the compressor 111 and the expansion valve 114 via the refrigerant pipe 101, and sends out the refrigerant flowing in from the expansion valve 114 to the compressor 111.
  • the outdoor heat exchanger 112 exchanges heat between the outside air and the refrigerant to evaporate the inflowing refrigerant and discharge the refrigerant vapor during the heating operation.
  • the outdoor heat exchanger 112 functions as an evaporator, so that the refrigerant absorbs heat.
  • the outdoor blower 113 includes a fan and an electric motor for rotating the fan, and is arranged in the vicinity of the outdoor heat exchanger 112.
  • the outdoor blower 113 rotates the fan according to the control signal transmitted from the control unit 140 to generate an air flow that flows in from the outside of the outdoor unit 110 and passes through the outdoor heat exchanger 112.
  • the air heat exchanged by the outdoor heat exchanger 112 is cooled and discharged to the outside of the outdoor unit 110.
  • the air volume of the outdoor blower 113 corresponds to the rotation speed of the fan and is specified by a control signal from the control unit 140.
  • the expansion valve 114 is a decompressor whose opening degree can be continuously changed by a built-in pulse motor.
  • the expansion valve 114 is connected to the outdoor heat exchanger 112 and the indoor heat exchanger 131 of the indoor unit 120 via the refrigerant pipe 101, and sends the refrigerant flowing from the indoor heat exchanger 131 to the outdoor heat exchanger 112.
  • the expansion valve 114 reduces the pressure applied to the inflowing refrigerant to expand the refrigerant, and discharges the refrigerant having a lower temperature and lower pressure than the inflowing refrigerant.
  • the temperature and pressure of the refrigerant discharged from the expansion valve 114 change according to the opening degree of the expansion valve 114.
  • the opening degree of the expansion valve 114 is specified by the number of pulses of the control signal transmitted from the control unit 140.
  • the indoor unit 120 is a wall-mounted room air conditioner that is installed on the wall of the indoor space 1001 and harmonizes the air of the indoor space 1001 by blowing warm air.
  • the indoor unit 120 acquires information indicating measurement results from the airflow generation unit 130 that generates the airflow supplied to the indoor space 1001, the control unit 140 that controls each component of the air conditioning system 1000, and the sensors 161 to 163.
  • the acquisition unit 150 the infrared sensor 161 that measures the surface temperature of the ceiling in the indoor space 1001, the temperature sensor 162 that measures the temperature of the air sucked in to generate the air flow, and the surface temperature of the floor in the indoor space 1001. It has an infrared sensor 163 for measurement and a notification unit 170 for notifying the user of various information.
  • the broken line connected to the control unit 140 and the broken line connected to the acquisition unit 150 indicate a signal line.
  • the airflow generation unit 130 includes an indoor heat exchanger 131 that exchanges heat between the air in the indoor space 1001 and the refrigerant, and an indoor blower 132 that blows the air heat exchanged by the indoor heat exchanger 131 into the indoor space 1001. It also has a wind direction adjusting unit 133 that adjusts the wind direction of the airflow supplied to the indoor space 1001 by the indoor blower 132.
  • the temperature difference between the ceiling surface temperature measured by the infrared sensor 161 as the ceiling temperature measuring means and the floor surface temperature measured by the infrared sensor 163 as the floor temperature measuring means in the air conditioning system 1000 Corresponds to an example of an airflow generating means that generates a first airflow when is smaller than the first threshold value and generates a second airflow different from the first airflow when the temperature difference is larger than the first threshold value.
  • the indoor heat exchanger 131 is connected to the compressor 111 and the expansion valve 114 of the outdoor unit 110 via the refrigerant pipe 101, and sends the refrigerant flowing from the compressor 111 to the expansion valve 114.
  • the indoor heat exchanger 131 exchanges heat between the air and the refrigerant in the indoor space 1001 to condense the inflowing refrigerant and discharge the liquefied refrigerant during the heating operation. Specifically, when the indoor heat exchanger 131 functions as a condenser, the refrigerant dissipates heat and the air in the indoor space 1001 is heated.
  • the indoor blower 132 has the same configuration as the outdoor blower 113, and is arranged in the vicinity of the indoor heat exchanger 131.
  • the fan of the indoor blower 132 is, for example, a cross flow fan or a propeller fan.
  • the indoor blower 132 which is a cross flow fan is exemplified.
  • the indoor blower 132 rotates the fan according to the control signal transmitted from the control unit 140 to generate an air flow that flows from the indoor space 1001 into the indoor unit 120 and passes through the indoor heat exchanger 131.
  • the air heat exchanged by the indoor heat exchanger 131 is heated and blown from the air outlet of the indoor unit 120 to the indoor space 1001.
  • the air volume of the indoor blower 132 corresponds to the rotation speed of the fan and is specified by a control signal from the control unit 140.
  • the indoor blower 132 corresponds to an example of blower means for generating the first airflow and the second airflow in the airflow generation unit 130 of the air conditioning system 1000.
  • the wind direction adjusting unit 133 includes one or a plurality of wind direction adjusting plates for adjusting the wind direction in the vertical direction, and a motor for changing the angle of the wind direction adjusting plates.
  • FIG. 2 flaps 1331, 1332, 1333, and 1334 attached to the air outlet 180 as a wind direction adjusting plate are illustrated. The angle of these wind direction adjusting plates is changed in conjunction with the control signal transmitted from the control unit 140, so that the wind direction adjusting unit 133 adjusts the wind direction of the airflow supplied to the indoor space 1001.
  • FIG. 3 schematically shows five-step angles of the flaps constituting the wind direction adjusting unit 133. As shown in FIG.
  • the wind direction adjusting unit 133 follows any one of five stages from the horizontal "vertical wind direction 1" to the vertically downward “vertical wind direction 5" according to the instruction from the control unit 140. Adjust the wind direction in one direction. For example, when the wind direction is increased by one step from the "vertical wind direction 3", the wind direction is adjusted to the "vertical wind direction 4".
  • the infrared sensors 161 and 163 include, for example, elements typified by a thermopile and a bolometer that detect infrared rays.
  • the infrared sensor 161 measures the surface temperature of the ceiling by detecting infrared rays incident from above.
  • the infrared sensor 163 measures the surface temperature of the floor by detecting infrared rays incident from below.
  • the incident direction of infrared rays detected by the infrared sensors 161 and 163 may be adjustable after the indoor unit 120 is installed.
  • the infrared sensors 161 and 163 transmit surface temperature information indicating the measured value of the surface temperature to the acquisition unit 150. Further, the infrared sensors 161 and 163 may be integrally formed.
  • FIG. 2 illustrates one sensor 160 that exhibits the functions of the infrared sensors 161 and 163.
  • the infrared sensor 161 corresponds to an example of a ceiling temperature measuring means for measuring the surface temperature of the ceiling in the indoor space to be air-conditioned
  • the infrared sensor 163 measures the surface temperature of the floor in the indoor space. It corresponds to an example of a temperature measuring means.
  • the air conditioning system 1000 may be configured by a ceiling temperature measuring unit and a floor temperature measuring unit that measure the surface temperature by a method different from that of the infrared sensors 161 and 163.
  • the temperature sensor 162 is arranged in the vicinity of the air suction port 181 of the indoor unit 120 as shown in FIG.
  • the sensor 162 measures the temperature of the air sucked into the indoor unit 120 as the temperature of the air in the indoor space 1001, and transmits the room temperature information indicating the measured value to the acquisition unit 150.
  • the temperature sensor 162 corresponds to an example of a room temperature measuring means for measuring the temperature of air in the indoor space 1001 in the air conditioning system 1000.
  • the acquisition unit 150 includes an interface circuit for acquiring information from each sensor.
  • the acquisition unit 150 acquires surface temperature information from the infrared sensors 161 and 163, acquires room temperature information from the temperature sensor 162, and acquires target temperature information indicating a target room temperature set by the user from the terminal 20.
  • FIG. 2 illustrates an infrared transmission / reception unit 151 for the acquisition unit 150 to communicate with the terminal 20. Then, the acquisition unit 150 transmits the acquired information to the control unit 140.
  • the acquisition unit 150 corresponds to an example of acquisition means for acquiring target temperature information indicating the target temperature of air in the indoor space 1001 in the air conditioning system 1000, and measures the surface temperature of the ceiling in the indoor space and the floor in the indoor space. It corresponds to an example of the acquisition means for acquiring the measured value of the surface temperature of.
  • the control unit 140 is a computer including a microprocessor, a RAM (Random Access Memory), and an EEPROM (Electrically Erasable Programmable Read-Only Memory).
  • the control unit 140 uses the operating frequency of the compressor 111, the air volume of the outdoor blower 113, the opening degree of the expansion valve 114, the air volume of the indoor blower 132, and the wind direction adjusting unit 133 based on the information received from the acquisition unit 150.
  • the specified wind direction is controlled as appropriate.
  • the control unit 140 controls each component of the air conditioning system 1000 to execute the heating operation of the air conditioning system 1000.
  • the control unit 140 causes the airflow generating means to generate the first airflow when the temperature difference between the measured value of the ceiling surface temperature and the measured value of the floor surface temperature is smaller than the threshold value, and when the temperature difference is larger than the threshold value.
  • a control means for causing the airflow generating means to generate a second airflow different from the first airflow corresponds to an example of a control means for causing the airflow generating means to generate a second airflow different from the first airflow.
  • the notification unit 170 outputs information to the user according to the instruction of the control unit 140.
  • the information output by the notification unit 170 may be the reproduction of an audio signal, the generation of a buzzer sound, the lighting of an LED (Light Emitting Diode), or the display of an image. There may be.
  • FIG. 2 shows that the notification unit 170, which is a speaker, is built in the indoor unit 120.
  • the terminal 20 is a remote control terminal for the user to operate the air conditioning system 1000.
  • the terminal 20 may be a smart phone or a wearable terminal.
  • the terminal 20 receives the setting of the target temperature input from the user, and transmits the target temperature information indicating the target temperature to the indoor unit 120 by infrared communication.
  • the refrigerant circuit includes a compressor 111 connected by a refrigerant pipe 101, an indoor heat exchanger 131, an expansion valve 114, and an outdoor heat exchanger 112.
  • the refrigerant circuit when the heating operation is executed circulates the refrigerant through the compressor 111, the indoor heat exchanger 131, the expansion valve 114, and the outdoor heat exchanger 112 in this order.
  • the heating process executed in the air conditioning system 1000 will be described with reference to FIG.
  • the heating process shown in FIG. 4 is started when a user inputs an instruction to start the heating process.
  • the temperature sensor 162 measures the suction temperature (step S1). Then, the room temperature information indicating the suction temperature is notified from the temperature sensor 162 to the control unit 140 via the acquisition unit 150.
  • the infrared sensors 161 and 163 measure the surface temperatures of the ceiling and floor, respectively (step S2). Then, the surface temperature information indicating the measured value of the surface temperature is notified from the infrared sensors 161 and 163 to the control unit 140 via the acquisition unit 150.
  • control unit 140 calculates the surface temperature difference by subtracting the floor surface temperature from the ceiling surface temperature measured in step S2 (step S3).
  • control unit 140 temporarily writes the calculation result to the RAM or EEPROM which is a storage device.
  • control unit 140 determines whether or not the suction temperature measured in step S1 is equal to or higher than the target temperature set by the user (step S4). From this, it is determined whether or not heating is necessary.
  • step S5 When it is determined that the suction temperature is not equal to or higher than the target temperature (step S4; No), the control unit 140 sets the operating state of the air conditioning system 1000 to the normal mode (step S5). In the normal mode of step S5, the control unit 140 controls the components of the air conditioning system 1000 in order to make the room temperature equal to the target temperature, and temperature control control for supplying the heated air conditioning air to the indoor space 1001 is executed. NS. After that, the control unit 140 waits for a certain period of time (step S6). During standby, the immediately preceding operating state is maintained and control by the control unit 140 continues. The fixed time is, for example, 10 seconds, 1 minute or 10 minutes.
  • step S4 when it is determined that the suction temperature is equal to or higher than the target temperature (step S4; Yes), the control unit 140 sets the operating state to the normal mode (step S7). However, in the normal mode of step S7, the temperature control is not executed. After that, the process by the air conditioning system 1000 shifts to step S6.
  • step S6 the temperature sensor 162 measures the suction temperature (step S8), and the measured value of the suction temperature is notified to the control unit 140.
  • step S9 the control unit 140 determines whether or not the previously set operating state is the normal mode (step S9). Specifically, the control unit 140 determines whether or not the current operating state is different from the operating state for reducing the upper and lower temperature difference in the indoor space 1001.
  • step S9 When it is determined that the previously set operating state is the normal mode (step S9: Yes), the infrared sensors 161 and 163 measure the surface temperatures of the ceiling and the floor, respectively (step S10), and the measured values of these surface temperatures. Is notified to the control unit 140.
  • the control unit 140 calculates the surface temperature difference from the surface temperature measured in step S10, and calculates the rate of change of the surface temperature difference, which is the amount of change from the previously calculated surface temperature difference (step S11). ). Specifically, the control unit 140 sets the surface temperature difference calculated this time as ⁇ T (n + 1), the previously calculated surface temperature difference as ⁇ T (n), the measurement time of the surface temperature this time as t (n + 1), and the previous time. The change in surface temperature difference per unit time according to the formula ( ⁇ T (n + 1) - ⁇ T (n)) / (t (n + 1) -t (n)), where t (n) is the measurement time of the surface temperature of Calculate the rate.
  • step S12 determines whether or not the rate of change calculated in step S11 is equal to or greater than a predetermined threshold value Th1 (step S12). Thereby, it is determined whether or not the temperature difference between the upper and lower parts in the indoor space 1001 is rapidly increasing.
  • the control unit 140 sets the operating state to the temperature difference reduction mode 1 (step S13). The details of this temperature difference reduction mode 1 will be described later.
  • step S12 determines whether or not the rate of change calculated in step S11 is equal to or higher than the predetermined threshold value Th2 (step S12; No). Step S14).
  • the threshold Th2 is smaller than the threshold Th1.
  • the control unit 140 sets the operating state to the temperature difference reduction mode 2 (step S15).
  • the temperature difference reduction mode 2 is a mode in which an air flow having a smaller vertical component is generated as compared with the temperature difference reduction mode 1 and the air in the indoor space 1001 is gently agitated.
  • the temperature difference reduction mode 2 may be a mode in which an air flow having a larger vertical component than the temperature difference reduction mode 1 is generated to efficiently agitate the air in the indoor space 1001. The details of the temperature difference reduction mode 2 will be described later.
  • step S14 when it is determined that the rate of change is not equal to or higher than the threshold Th2 (step S14; No), the control unit 140 determines whether or not the surface temperature difference calculated in step S11 is equal to or higher than the predetermined threshold Th3. (Step S16). As a result, it is determined whether or not there is a temperature difference to be reduced although the change over time of the temperature difference is small.
  • the control unit 140 sets the operating state to the temperature difference reduction mode 3 (step S17).
  • the temperature difference reduction mode 3 is a mode in which an air flow having a smaller vertical component is generated as compared with the temperature difference reduction mode 2 and the air in the indoor space 1001 is agitated more gently.
  • the temperature difference reduction mode 3 may be a mode in which an air flow having a larger vertical component than the temperature difference reduction mode 2 is generated to efficiently agitate the air in the indoor space 1001. The details of the temperature difference reduction mode 3 will be described later.
  • the control unit 140 controls the notification unit 170 to change the operating state in order to reduce the temperature difference. May be notified to the user.
  • the user can recognize the operating state of the air conditioning system 1000.
  • the control unit 140 gives priority to the operation specified by the user without executing the temperature difference reduction mode. May be good.
  • step S16 When it is determined in step S16 that the surface temperature difference is not equal to or higher than the threshold value Th3 (step S16; No), the control unit 140 sets the operating state to the normal mode (step S18).
  • step S18 the presence or absence of temperature control may be determined by the same procedure as in steps S4, S5, and S7, based on the suction temperature measured in step S8.
  • the air conditioning system 1000 repeats the processes after step S8.
  • one of the normal mode and the temperature difference reduction modes 1 to 3 is periodically selected and executed based on the surface temperature difference and the rate of change.
  • step S9 determines whether or not the previous operating state is not the normal mode.
  • step S19 determines whether or not the control unit 140 determines whether or not the room temperature is lowered and the user's comfort is impaired during the execution of the temperature difference reduction mode.
  • the control unit 140 sets the operating state to the temperature control priority mode (step S20).
  • the temperature control priority mode is a mode for ensuring the comfort of the user by giving priority to reaching the target temperature at room temperature.
  • an air flow similar to that in the normal mode may be temporarily generated, or an air flow for reducing the temperature difference to some extent may be generated.
  • the air conditioning system 1000 repeats the processes after step S8.
  • FIG. 5 shows the execution conditions for each operation mode and the control target in association with each other.
  • the implementation conditions correspond to the success or failure of the conditions determined in steps S13, S15, S17, and S19 shown in FIG.
  • the control unit 140 When the operating state is set to the temperature difference reduction mode 1, the control unit 140 reduces the frequency of the compressor 111 by f1 from the value of the normal mode to suppress the heating capacity, and the air flow generated by the indoor unit 120. Lower the temperature of. The temperature difference caused by the execution of the heating operation is expanded or maintained when the heating capacity is maintained, and the control unit 140 suppresses the heating capacity to reduce the temperature difference. Further, the control unit 140 sets the lower limit of the tube temperature of the indoor heat exchanger 131 to a temperature lower than the lower limit in the normal mode.
  • a lower limit value is predetermined for the temperature of the pipe through which the refrigerant of the indoor heat exchanger 131 passes, and the control unit 140 usually has a range of the pipe temperature exceeding the lower limit value of the air conditioning system 1000. Controls the components.
  • the control unit 140 increases the rotation speed of the indoor fan constituting the indoor blower 132 by F1 from the value of the normal mode, and changes the wind direction by one step from the direction of the normal mode to the downward direction. As a result, a stronger air flow is generated in the downward direction than before the temperature difference reduction mode 1 is executed, and the air in the indoor space 1001 is agitated. If the wind direction is already vertically downward, it is not necessary to change the wind direction.
  • f1 and F1 are predetermined values.
  • FIG. 6 shows an example in which the implementation conditions of the temperature difference reduction mode 1 are satisfied with respect to the surface temperature.
  • the surface temperature difference has increased from 1.5 ° C. to 2.0 ° C. and further increased to 2.5 ° C., and the rate of change per unit time is 2.0 ° C./h. .. Since this rate of change is larger than 1.5 ° C./h, which is an example of the threshold value Th1, the temperature difference reduction mode 1 is executed.
  • the control unit 140 When the operating state is set to the temperature difference reduction mode 2, the control unit 140 reduces the frequency of the compressor 111 by f2 from the value in the normal mode, and increases the rotation speed of the indoor fan by F2 from the value in the normal mode. Then, the wind direction is changed by one step from the direction of the normal mode to the downward direction. As a result, as in the temperature difference reduction mode 1, it is expected that the air in the indoor space 1001 will be agitated by generating an air flow having a large vertical component, and the temperature difference will be reduced. However, since the temperature difference reduction mode 2 is executed when the temperature difference is slowly larger than that when the temperature difference reduction mode 1 is executed, the amount of change in the control target is smaller than the temperature difference reduction mode 1. .. Specifically, f2 is smaller than f1 and F2 is smaller than F1. f2 and F2 are predetermined values.
  • FIG. 7 shows an example in which the implementation conditions of the temperature difference reduction mode 2 are satisfied with respect to the surface temperature.
  • the surface temperature difference has increased from 1.5 ° C. to 1.7 ° C., further increased to 2.0 ° C., and the rate of change per unit time is 1.0 ° C./h. .. Since this rate of change is smaller than 1.5 ° C./h, which is an example of the threshold value Th1, and larger than 0.5 ° C./h, which is an example of the threshold value Th2, the temperature difference reduction mode 2 is executed.
  • the wind direction may be changed more than one step when the temperature difference reduction modes 1 and 2 are set. This creates an airflow with a larger component in the vertical direction. However, if the wind direction is significantly changed from the one set by the user, the comfort of the user may be impaired. Therefore, the change in the wind direction may be limited to one step.
  • the control unit 140 reduces the frequency of the compressor 111 by f3 from the value in the normal mode, and increases the rotation speed of the indoor fan by F3 from the value in the normal mode. Then, the wind direction is changed by one step from the direction of the normal mode to the downward direction.
  • the temperature difference reduction mode 3 is implemented when the rate of change of the temperature difference is small but the temperature difference itself is large.
  • the amount of change of the control target is made smaller than that in the temperature difference reduction mode 2.
  • f3 is smaller than f2 and F3 is smaller than F2.
  • f3 and F3 are predetermined values.
  • the control unit 140 increases the frequency of the compressor 111 by f4 from the value of the normal mode to increase the heating capacity. As a result, an air flow having a higher temperature than before the execution of the temperature control priority mode is generated, and it is possible to avoid a decrease in room temperature.
  • f4 is a predetermined value.
  • FIG. 8 shows an example in which the execution conditions of each mode are satisfied in relation to the surface temperature difference and the elapsed time.
  • the line L1 in FIG. 8 corresponds to the change in the surface temperature difference shown in FIG. 6, and the line L2 corresponds to the change in the surface temperature difference shown in FIG. 7. Further, the line L11 in FIG. 8 indicates when the rate of change is equal to the threshold value Th1, and the line L12 indicates when the rate of change is equal to the threshold value Th2.
  • the temperature difference reduction mode 1 is executed and in the region A2 sandwiched between the line L11 and the line L12.
  • the temperature difference reduction mode 2 is executed, and when the surface temperature difference changes in the hatched region A3 below the line L12, the temperature difference reduction mode 3 or The normal mode will be implemented.
  • the operation in the normal mode is executed, the airflow generation unit 130 generates the first airflow for heating, and the surface temperature difference.
  • the operation of the temperature difference reduction mode 3 is executed, and the airflow generation unit 130 generates a second airflow for agitating the air.
  • the air in the indoor space is agitated by the second air flow when there is a temperature difference between the top and bottom in the space. Will be done. As a result, it is possible to reduce the temperature difference between the upper and lower parts generated in a space having a high ceiling height.
  • the second airflow generated in the temperature difference reduction mode 3 is an airflow having a larger vertical component than the first airflow generated in the normal mode. Therefore, it is expected that the temperature difference between the upper and lower parts will be reduced more reliably.
  • the airflow generation unit 130 blows out the generated airflow from the outlet 180 to the indoor space 1001, and the direction in which the second airflow generated in the temperature difference reduction mode 3 is blown out from the outlet 180 is the normal mode.
  • the first airflow generated in the above direction is below the direction in which the first airflow is blown out from the outlet 180. That is, as shown in FIG. 5, in the temperature difference reduction mode, the wind direction was changed by one step downward. Thereby, the temperature difference can be reduced.
  • the direction of the second airflow may be higher than the direction of the first airflow as long as the vertical component is larger than the first airflow.
  • the airflow generation unit 130 has an indoor blower 132, and the air volume of the indoor blower 132 in the temperature difference reduction mode 3 is larger than the air volume of the indoor blower 132 in the normal mode. Thereby, the temperature difference can be reduced.
  • the air conditioning system 1000 includes a refrigerant circuit including a compressor 111 for compressing the refrigerant and an indoor heat exchanger 131 for exchanging heat between the refrigerant and the air in the indoor space, and in the temperature difference reduction mode 3
  • the rotation speed of the compressor 111 when the second air flow is generated is smaller than the rotation speed of the compressor 111 when the first air flow is generated in the normal mode.
  • the rotation speed of the compressor 111 was reduced in the temperature difference reduction mode. As a result, it is possible to suppress the heating capacity that causes a temperature difference and eliminate the temperature difference.
  • the temperature difference reduction modes 1 and 2 are executed, and the airflow generation unit 130 has a third airflow different from the first airflow in the normal mode.
  • the airflow generation unit 130 generates a third airflow when the rate of change is larger than the threshold Th2, and generates a second airflow when the rate of change is smaller than the threshold Th2 and the surface temperature difference is larger than the threshold Th3.
  • the third airflow is an airflow having a larger component in the vertical direction than the second airflow.
  • the operation of the temperature control priority mode is executed, and the airflow generation unit 130 generates a fourth airflow having a temperature different from that of the second airflow. .. Specifically, when the suction temperature is lower than the target temperature, the airflow generation unit 130 generates a fourth airflow having a temperature higher than that of the second airflow. As a result, it is possible to prevent the user's sensible temperature from being lowered while the air in the indoor space 1001 is being agitated, and the comfort being impaired.
  • the lower limit of the tube temperature of the indoor heat exchanger 131 set when the temperature difference reduction mode is executed is lower than the lower limit in the normal mode.
  • Embodiment 2 Subsequently, the second embodiment will be described focusing on the differences from the first embodiment described above. For the same or equivalent configuration as that of the first embodiment, the same reference numerals are used.
  • the present embodiment is different from the first embodiment in that the infrared sensor 161 is arranged outside the indoor unit 120.
  • the indoor unit 120, the terminal 20, the management device 300 of the HEMS (Home Energy Management System), and the indoor unit 120 in the indoor space 1001 are It has infrared sensors 161 installed at different positions.
  • the infrared sensor 161 transmits surface temperature information indicating a measured value of the surface temperature of the ceiling to the management device 300, and the management device 300 notifies the control unit 140 of this surface temperature information via the acquisition unit 150.
  • the control unit 140 can perform the same operation as in the first embodiment.
  • the terminal 20 sets the target temperature in the indoor unit 120 via the management device 300 without directly communicating with the indoor unit 120. Further, the indoor unit 120 is configured by omitting the notification unit 170. The control unit 140 notifies the terminal 20 of the content of the notification to the user via the management device 300.
  • the external device of the indoor unit 120 since the external device of the indoor unit 120 has a function of notifying the user, it becomes easy for the user to receive the notification and the configuration of the indoor unit 120 can be simplified. .. Further, since the infrared sensor 161 for measuring the surface temperature of the ceiling is installed outside the indoor unit 120, the position of the infrared sensor 161 can be determined regardless of the installation position of the indoor unit 120. As a result, the measurement accuracy of the surface temperature can be improved and the configuration of the indoor unit 120 can be simplified. Although the example in which the infrared sensor 161 is arranged outside the indoor unit 120 has been described, the present invention is not limited to this. One or more of the infrared sensors 161, 163 and the temperature sensor 162 may be arranged outside the indoor unit 120.
  • Embodiment 3 Subsequently, the third embodiment will be described focusing on the differences from the first embodiment described above. For the same or equivalent configuration as that of the first embodiment, the same reference numerals are used.
  • the present embodiment is different from the first embodiment in that the airflow generation unit 130 simultaneously generates two airflows.
  • FIG. 10 shows the configuration of the indoor unit 120 according to the present embodiment.
  • the airflow generator 130 includes two indoor heat exchangers 131 and 131a, indoor blowers 132 and 132a that blow air to each of the two indoor heat exchangers 131 and 131a, and an indoor blower. It has an air direction adjusting unit 133, 133a for adjusting the direction of the air flow generated by each of the 132 and 132a, and an expansion valve 134 connected to the two indoor heat exchangers 131 and 131a via the refrigerant pipe 101.
  • the indoor heat exchanger 131 condenses the refrigerant flowing in from the compressor 111 and sends it to the expansion valve 134.
  • the expansion valve 134 is a decompressor similar to the expansion valve 114.
  • the expansion valve 134 expands the refrigerant flowing in from the indoor heat exchanger 131 and discharges it to the indoor heat exchanger 131a.
  • the opening degree of the expansion valve 134 changes according to the control instruction transmitted from the control unit 140.
  • the indoor heat exchanger 131a condenses the refrigerant flowing in from the expansion valve 134 and sends it to the expansion valve 114 of the outdoor unit 110.
  • the control unit 140 controls the refrigerant temperature of the indoor heat exchanger 131 and the refrigerant temperature of the indoor heat exchanger 131a by controlling the opening degrees of the expansion valves 114 and 134, and makes the temperatures of the two airflows independent. decide.
  • the indoor blower 132a generates an air flow that passes through the indoor heat exchanger 131a.
  • the wind direction adjusting unit 133a adjusts the direction of the airflow passing through the indoor heat exchanger 131a.
  • the wind direction adjusting units 133 and 133a correspond to an example of two adjusting means for adjusting the direction of the airflow, and the indoor heat exchangers 131 and 131a are the first heat exchanger and the second heat exchanger constituting the airflow generating means. Corresponds to one example.
  • FIG. 11 shows an overview of the indoor unit 120 according to the present embodiment.
  • the wind direction adjusting unit 133 has flaps 1331, 1332 as wind direction adjusting plates
  • the wind direction adjusting unit 133a has flaps 1331a and 1332a as wind direction adjusting plates.
  • the angles of these wind direction adjusting plates are independently controlled by the control unit 140, and airflows that are blown out in different directions on the right side and the left side of the outlet 180 are generated.
  • the indoor unit 120 further has a storage unit 190.
  • the storage unit 190 is a non-volatile storage device, and stores the history of the end instruction of the air conditioning operation input by the user. Specifically, when the user inputs an end instruction, the control unit 140 adds a history indicating the input time to the storage unit 190, and then ends the operation.
  • the indoor unit 120 may store the history in a server on the external network instead of the storage unit 190 and refer to it as appropriate.
  • the storage unit 190 corresponds to an example of a storage means for storing stop time information indicating a time when the air conditioning operation is stopped.
  • This stirring mode is executed when the temperature difference between the ceiling and the floor is detected at a certain time before the time corresponding to the time when the air conditioning operation is finished in the past. For example, if the air conditioning operation ends at 21:00 in the past, it is executed at the timing of 20:50, which is 10 minutes before this 21:00. Then, the indoor unit 120 generates an upward airflow and a downward airflow as shown in FIG. Here, the airflow generation unit 130 makes the temperature of the upward airflow lower than the temperature of the downward airflow.
  • the upward airflow and the downward airflow correspond to an example of the upward airflow and the downward airflow generated as the second airflow by the airflow generating means. FIG.
  • FIG. 12 shows a state in which warm air is accumulated in the upper part of the indoor space 1001 in which the first floor and the second floor are partially separated after a while has passed since the air conditioning system 1000 started the heating operation. ..
  • the stirring mode When the stirring mode is executed, the airflow blown upward stirs the warm air, and the airflow blown downward stirs the air on the first floor. As a result, the temperature difference between the upper and lower parts of the indoor space 1001 is reduced.
  • FIGS. 13-16 Examples of the refrigeration cycle in the stirring mode are shown in FIGS. 13-16.
  • FIG. 13 shows a case where the opening degree of the expansion valve 134 is large in the heating operation
  • FIG. 14 shows a case where the opening degree of the expansion valve 134 is small in the heating operation.
  • FIGS. 13 and 14 the temperatures of the two indoor heat exchangers 131 and 131a are different, and the temperatures of the two airflows are different.
  • FIG. 15 shows a case where the opening degree of the expansion valve is large in the cooling operation
  • FIG. 16 shows a case where the opening degree of the expansion valve 134 is small in the cooling operation. It can be seen from FIGS.
  • the stirring mode that reduces the temperature difference between the first floor and the second floor by blowing out the upward airflow and the downward airflow is before the time when the user ends the operation of the air conditioning system 1000. Will be implemented. Thereby, for example, when the user on the first floor goes up to the second floor to go to bed, the temperature difference between the first floor and the second floor can be eliminated in advance.
  • the airflow in the upward direction and the airflow in the downward direction may be different in air flow in addition to the wind direction and temperature.
  • the air volume of the upward airflow may be made larger than the airflow of the downward airflow to more reliably agitate the air on the second floor including the ceiling.
  • the infrared sensors 161 and 163 may be used to detect a user in the indoor space 1001, and the temperature difference reduction mode may be operated only when the user is absent.
  • the value of the control target shown in FIG. 5 is defined by the amount of change from the reference value in the normal mode, but the present invention is not limited to this. Specifically, the value of the control target shown in FIG. 5 may be defined by the amount of change with respect to the current value. For example, when the execution of the temperature difference reduction mode 1 is determined again after the operating state changes from the normal mode to the temperature difference reduction mode 1, the control unit 140 sets the frequency of the compressor from the normal mode (2 ⁇ f1). ) May be reduced.
  • the value of the control target is reduced in the order of the temperature difference reduction modes 1, 2, and 3, but the value is not limited to this, and the value of the control target may be arbitrarily changed.
  • F1 may be smaller than F2 and F2 may be smaller than F3.
  • the management device 300 may be configured as an air conditioning control device that realizes the functions of the acquisition unit 150 and the control unit 140 and controls the indoor unit 120 having the airflow generation unit 130.
  • the ceiling and the floor are not limited to horizontal surfaces, and may be inclined surfaces or may have irregularities.
  • the ceiling may be a surface that receives heat from the accumulated warm air and radiates infrared rays
  • the floor may be a surface that gives heat to the retained cold air and radiates infrared rays.
  • the temperature difference reduction modes 1 and 2 may be integrated into one operating state, the execution of the temperature difference reduction modes 1 and 2 may be omitted, or the execution of the temperature control priority mode may be omitted. good. At least, if the operation of the temperature difference reduction mode 3 is executed when the surface temperature difference exceeds the threshold value, the upper and lower temperature difference in the indoor space 1001 can be eliminated. Further, in the first embodiment, an example in which the operation in the temperature difference reduction mode when the rate of change is large is carried out prophylactically before the temperature difference occurs is described, but the present invention is not limited to this.
  • air when a temperature difference occurs, air may be agitated to some extent when the rate of change is large, and an air flow having a larger vertical component may be generated after the rate of change becomes small and the temperature difference shifts to a stable state.
  • the airflow generation unit 130 when the temperature difference is larger than the threshold value Th3, the airflow generation unit 130 generates a second airflow having a relatively large vertical component in the temperature difference reduction mode 3 when the rate of change is smaller than the new threshold value Th4.
  • a fourth airflow having a relatively small vertical component may be generated.
  • the air conditioning system 1000 may shift to a new operation mode to generate an air flow having a larger vertical component when the rate of change is still large in the case of a temperature difference.
  • the airflow generation unit 130 when the temperature difference is larger than the threshold value Th3, the airflow generation unit 130 generates the second airflow in the temperature difference reduction mode 3 when the rate of change is smaller than the new threshold value Th4, and the rate of change is greater than the threshold value Th4.
  • a third airflow having a large vertical component may be generated.
  • the function of the air conditioning system 1000 can be realized by dedicated hardware or by a normal computer system.
  • a device that executes the above-described processing is configured by storing and distributing the program P1 executed by the control unit 140 in a non-temporary recording medium that can be read by a computer and installing the program P1 in the computer. can do.
  • a recording medium for example, a flexible disc, a CD-ROM (Compact Disc Read-Only Memory), a DVD (Digital Versatile Disc), and an MO (Magneto-Optical Disc) can be considered.
  • the program P1 may be stored in a disk device of a server device on a communication network represented by the Internet, superimposed on a carrier wave, and downloaded to a computer, for example.
  • the above process can also be achieved by starting and executing the program P1 while transferring it via the communication network.
  • processing can also be achieved by executing all or a part of the program P1 on the server device and executing the program while the computer sends and receives information on the processing via the communication network.
  • the means for realizing the functions of the air conditioning system 1000 is not limited to software, and a part or all of them may be realized by dedicated hardware including a circuit.
  • This disclosure is suitable for air conditioning in a space with a high ceiling height.

Abstract

An air conditioning system (1000) comprises: a ceiling temperature measurement unit that measures the surface temperature of the ceiling in an indoor space (1001) to be air-conditioned; a floor temperature measurement unit that measures the surface temperature of the floor in the indoor space (1001); and an airflow generation unit (130) that generates a first airflow when the temperature difference between the surface temperature of the ceiling and the surface temperature of the floor is smaller than a first threshold, and generates a second airflow different from the first airflow when the temperature difference is larger than the first threshold.

Description

空調システム、空調制御装置、空調方法及びプログラムAir conditioning system, air conditioning controller, air conditioning method and program
 本開示は、空調システム、空調制御装置、空調方法及びプログラムに関する。 This disclosure relates to air conditioning systems, air conditioning controllers, air conditioning methods and programs.
 近年、住宅に代表される建物の断熱性能の向上に伴い、例えば吹き抜け及び高天井のような天井高の高い空間においてもある程度は快適な温熱環境を保つことが可能になった。しかしながら、そのような空間では、上下方向に空気が移動してしまう。例えば、冬期に吹き抜け空間の2階部分に位置する窓からの冷気が1階のフロアに下降する。また、空気調和機から供給された温風が吹き抜け空間内の人より高い位置に上昇する。その結果、空間内の上下で温度差が生じてしまう。そこで、上下の温度差を低減させる技術を利用することが考えられる(例えば、特許文献1を参照)。特許文献1には、吸込空気温度を検知し、床面の温度を赤外線センサーで検知して、検知情報に基づいて吹出空気流を制御する空気調和機について記載されている。 In recent years, with the improvement of the heat insulation performance of buildings such as houses, it has become possible to maintain a comfortable thermal environment to some extent even in spaces with high ceilings such as atriums and high ceilings. However, in such a space, air moves in the vertical direction. For example, in winter, cold air from a window located on the second floor of an atrium space descends to the first floor. In addition, the warm air supplied from the air conditioner rises to a higher position than the person in the atrium space. As a result, there is a temperature difference between the top and bottom of the space. Therefore, it is conceivable to use a technique for reducing the temperature difference between the upper and lower sides (see, for example, Patent Document 1). Patent Document 1 describes an air conditioner that detects the temperature of the sucked air, detects the temperature of the floor surface with an infrared sensor, and controls the blown air flow based on the detection information.
特開平3-260546号公報Japanese Unexamined Patent Publication No. 3-260546
 壁掛け型、床置き型その他の型を含む一般的な空気調和機を天井高の高い空間に設置する場合に、特許文献1と同様の方式では、上下の温度差を正確に検知することが困難になる。具体的には、壁掛け型の空気調和機が据え付けられる高さは通常、床面から約2mであり、例えば天井高が5~6mの空間における天井付近の温度を空気調和機の吸込み温度で代用すると、大きな誤差が生じると考えられる。また、壁掛け型の空気調和機よりも高い位置に窓があるケースが多く、その窓からの冷気が空気調和機の吸込み口に入ると、上下の温度差を実際より小さく見積もるおそれがある。したがって、一般的な空気調和機において、特許文献1と同様の方式では、天井高の高い空間に生じた上下の温度差を低減させることができないおそれがあった。 When a general air conditioner including a wall-mounted type, a floor-standing type, and other types is installed in a space with a high ceiling height, it is difficult to accurately detect the temperature difference between the upper and lower sides by the same method as in Patent Document 1. become. Specifically, the height at which the wall-mounted air conditioner is installed is usually about 2 m from the floor surface. For example, the temperature near the ceiling in a space with a ceiling height of 5 to 6 m is replaced by the suction temperature of the air conditioner. Then, it is considered that a large error occurs. In addition, there are many cases where the window is located higher than the wall-mounted air conditioner, and if the cold air from the window enters the suction port of the air conditioner, the temperature difference between the upper and lower parts may be estimated to be smaller than the actual value. Therefore, in a general air conditioner, there is a possibility that the same method as in Patent Document 1 cannot reduce the temperature difference between the upper and lower parts generated in a space having a high ceiling height.
 本開示は、天井高の高い空間に生じた上下の温度差を低減させることを目的とする。 The purpose of this disclosure is to reduce the temperature difference between the top and bottom of a space with a high ceiling height.
 上記目的を達成するため、本開示の空調システムは、空調対象である室内空間における天井の表面温度を測定する天井温度測定手段と、室内空間における床の表面温度を測定する床温度測定手段と、天井温度測定手段によって測定された天井の表面温度と床温度測定手段によって測定された床の表面温度との温度差が第1閾値より小さい場合に第1気流を生成し、温度差が第1閾値より大きい場合に、第1気流とは異なる第2気流を生成する気流生成手段と、を備える。 In order to achieve the above object, the air conditioning system of the present disclosure includes a ceiling temperature measuring means for measuring the surface temperature of the ceiling in the indoor space to be air-conditioned, a floor temperature measuring means for measuring the surface temperature of the floor in the indoor space, and the like. When the temperature difference between the ceiling surface temperature measured by the ceiling temperature measuring means and the floor surface temperature measured by the floor temperature measuring means is smaller than the first threshold value, the first airflow is generated, and the temperature difference is the first threshold value. It is provided with an airflow generating means for generating a second airflow different from the first airflow when the temperature is larger.
 本開示によれば、気流生成手段が、天井の表面温度と床の表面温度との温度差が第1閾値より小さい場合に、第1気流を生成し、温度差が第1閾値より大きい場合に、第1気流とは異なる第2気流を生成する。天井の表面温度は、概ね天井付近の空気の温度に等しく、床の表面温度は、概ね床付近の空気の温度に等しいといえる。このため、天井高の高い空間において天井及び床の付近の空気温度の測定が困難である場合であっても、当該空間において上下の温度差が生じたときには室内空間の空気が第2気流によって撹拌される。これにより、天井高の高い空間に生じた上下の温度差を低減させることができる。 According to the present disclosure, the airflow generating means generates a first airflow when the temperature difference between the ceiling surface temperature and the floor surface temperature is smaller than the first threshold value, and when the temperature difference is larger than the first threshold value. , Generates a second airflow that is different from the first airflow. It can be said that the surface temperature of the ceiling is approximately equal to the temperature of the air near the ceiling, and the surface temperature of the floor is approximately equal to the temperature of the air near the floor. Therefore, even if it is difficult to measure the air temperature near the ceiling and floor in a space with a high ceiling height, the air in the indoor space is agitated by the second air flow when there is a temperature difference between the top and bottom in the space. Will be done. As a result, it is possible to reduce the temperature difference between the upper and lower parts generated in a space having a high ceiling height.
実施の形態1に係る空調システムの構成を示す図The figure which shows the structure of the air-conditioning system which concerns on Embodiment 1. 実施の形態1に係る室内機の概観を示す図The figure which shows the overview of the indoor unit which concerns on Embodiment 1. 実施の形態1に係る風向の調整について説明するための図The figure for demonstrating the adjustment of the wind direction which concerns on Embodiment 1. 実施の形態1に係る暖房処理を示すフローチャートFlow chart showing the heating process according to the first embodiment 実施の形態1に係る運転モードについて説明するための図The figure for demonstrating the operation mode which concerns on Embodiment 1. 実施の形態1に係る表面温度の推移の例を示す第1の図The first figure which shows the example of the transition of the surface temperature which concerns on Embodiment 1. 実施の形態1に係る表面温度の推移の例を示す第2の図The second figure which shows the example of the transition of the surface temperature which concerns on Embodiment 1. 実施の形態1に係る表面温度の推移と運転モードとの関係を示す図The figure which shows the relationship between the transition of the surface temperature and the operation mode which concerns on Embodiment 1. 実施の形態2に係る空調システムの構成を示す図The figure which shows the structure of the air-conditioning system which concerns on Embodiment 2. 実施の形態3に係る空調システムの構成を示す図The figure which shows the structure of the air-conditioning system which concerns on Embodiment 3. 実施の形態3に係る室内機の概観を示す図The figure which shows the overview of the indoor unit which concerns on Embodiment 3. 実施の形態3において生成される気流を示す図The figure which shows the airflow generated in Embodiment 3. 実施の形態3に係る冷凍サイクルを示す第1の図The first figure which shows the refrigerating cycle which concerns on Embodiment 3. 実施の形態3に係る冷凍サイクルを示す第2の図The second figure which shows the refrigerating cycle which concerns on Embodiment 3. 実施の形態3に係る冷凍サイクルを示す第3の図FIG. 3 shows a refrigeration cycle according to the third embodiment. 実施の形態3に係る冷凍サイクルを示す第4の図FIG. 4 shows a refrigeration cycle according to the third embodiment.
 以下、実施の形態に係る空調システム1000について、図面を参照しつつ詳細に説明する。 Hereinafter, the air conditioning system 1000 according to the embodiment will be described in detail with reference to the drawings.
 実施の形態1.
 図1には、本実施の形態に係る空調システム1000の構成が示されている。空調システム1000は、蒸気圧縮式ヒートポンプにより空調対象である室内空間1001内の空気を調和するシステムである。室内空間1001は、住宅、オフィス、工場に代表される建物内の特定の部屋である。ただし、室内空間1001は、地下の空間、又は、車両及び船舶に代表される移動体の内部の空間であってもよい。また、室内空間1001は、その一部が外気と通じていてもよい。以下では、室内空間1001が住宅に設けられた吹き抜けのリビングルームであって、この天井付近の空気温度と床付近の空気温度とに差が生じやすい暖房運転が実施される例を中心に説明する。空調システム1000は、室内空間1001の天井付近の暖気と、床面付近の冷気と、の少なくとも一方が滞留したときに、室内空間1001内の空気を攪拌する気流を生成することにより上下の温度差を低減させる。図1においては、空気を撹拌する気流が白抜きの矢印で示され、空気の撹拌ではなく通常の空調を目的として生成される気流が、ハッチングが付された矢印で示されている。
Embodiment 1.
FIG. 1 shows the configuration of the air conditioning system 1000 according to the present embodiment. The air conditioning system 1000 is a system that harmonizes the air in the indoor space 1001 to be air-conditioned by a vapor compression type heat pump. The indoor space 1001 is a specific room in a building represented by a house, an office, or a factory. However, the indoor space 1001 may be an underground space or a space inside a moving body represented by a vehicle or a ship. Further, a part of the indoor space 1001 may communicate with the outside air. In the following, an example will be mainly described in which the indoor space 1001 is an atrium living room provided in a house, and a heating operation is performed in which a difference between the air temperature near the ceiling and the air temperature near the floor is likely to occur. .. The air conditioning system 1000 generates an air flow that agitates the air in the indoor space 1001 when at least one of the warm air near the ceiling and the cold air near the floor surface of the indoor space 1001 stays, thereby causing a temperature difference between the upper and lower sides. To reduce. In FIG. 1, the airflow that agitates the air is indicated by a white arrow, and the airflow that is generated for the purpose of normal air conditioning rather than agitation of the air is indicated by a hatched arrow.
 空調システム1000は、図1に示されるように、冷媒配管101で接続された室外機110及び室内機120と、ユーザが目標温度を設定するための端末20と、を有している。 As shown in FIG. 1, the air conditioning system 1000 has an outdoor unit 110 and an indoor unit 120 connected by a refrigerant pipe 101, and a terminal 20 for a user to set a target temperature.
 冷媒配管101は、室外機110と室内機120との間で冷媒を環流させるための銅管と、銅管の腐食及び冷媒の吸放熱を防止する保護部材と、を含む。冷媒は、例えば、HFC(Hydro Fluoro Carbons)冷媒であるR410A又はR32である。ただし、冷媒配管の材質及び冷媒の種類はこれに限られず、任意である。 The refrigerant pipe 101 includes a copper pipe for circulating the refrigerant between the outdoor unit 110 and the indoor unit 120, and a protective member for preventing corrosion of the copper pipe and absorption and heat dissipation of the refrigerant. The refrigerant is, for example, R410A or R32, which is an HFC (Hydro Fluoro Carbons) refrigerant. However, the material of the refrigerant pipe and the type of the refrigerant are not limited to this, and are arbitrary.
 室外機110は、室内空間1001を内部に有する住宅の室外に設置される。例えば、室外機110は、当該住宅の外壁面又は屋上に設置される。室外機110は、冷媒を圧縮する圧縮機111と、外気と冷媒との間で熱交換を行う室外熱交換器112と、室外熱交換器112に空気を送風する室外送風機113と、開度可変の膨張弁114と、を有している。圧縮機111、室外熱交換器112及び膨張弁114は、冷媒配管101で接続される。 The outdoor unit 110 is installed outside the house having the indoor space 1001 inside. For example, the outdoor unit 110 is installed on the outer wall surface or roof of the house. The outdoor unit 110 includes a compressor 111 that compresses the refrigerant, an outdoor heat exchanger 112 that exchanges heat between the outside air and the refrigerant, an outdoor blower 113 that blows air to the outdoor heat exchanger 112, and a variable opening degree. It has an expansion valve 114 and. The compressor 111, the outdoor heat exchanger 112, and the expansion valve 114 are connected by a refrigerant pipe 101.
 圧縮機111は、例えば、スクロール圧縮機、ロータリー圧縮機、その他の方式で冷媒を圧縮する装置である。圧縮機111は、室外熱交換器112から冷媒配管101を介して吸入口に流入した冷媒蒸気を圧縮して、高温高圧の冷媒蒸気を吐出口から吐出する。圧縮機111が吐出した冷媒蒸気は、冷媒配管101を介して室内機120の室内熱交換器131に送出される。圧縮機111は、室内機120の制御部140から送信される制御信号に従って稼働し、圧縮機111の動作周波数は、この制御信号により指定される。 The compressor 111 is, for example, a scroll compressor, a rotary compressor, or a device that compresses the refrigerant by another method. The compressor 111 compresses the refrigerant vapor that has flowed from the outdoor heat exchanger 112 into the suction port via the refrigerant pipe 101, and discharges the high-temperature and high-pressure refrigerant vapor from the discharge port. The refrigerant vapor discharged by the compressor 111 is sent to the indoor heat exchanger 131 of the indoor unit 120 via the refrigerant pipe 101. The compressor 111 operates according to a control signal transmitted from the control unit 140 of the indoor unit 120, and the operating frequency of the compressor 111 is specified by this control signal.
 室外熱交換器112は、圧縮機111及び膨張弁114に冷媒配管101を介して接続され、膨張弁114から流入した冷媒を圧縮機111に送出する。室外熱交換器112は、外気と冷媒との間で熱交換を行うことにより、暖房運転時には、流入した冷媒を蒸発させ、冷媒蒸気を吐出する。詳細には、室外熱交換器112が蒸発器として機能することにより冷媒が吸熱する。 The outdoor heat exchanger 112 is connected to the compressor 111 and the expansion valve 114 via the refrigerant pipe 101, and sends out the refrigerant flowing in from the expansion valve 114 to the compressor 111. The outdoor heat exchanger 112 exchanges heat between the outside air and the refrigerant to evaporate the inflowing refrigerant and discharge the refrigerant vapor during the heating operation. Specifically, the outdoor heat exchanger 112 functions as an evaporator, so that the refrigerant absorbs heat.
 室外送風機113は、ファンと当該ファンを回転させる電動モータとを含んで構成され、室外熱交換器112の近傍に配置される。室外送風機113は、制御部140から送信される制御信号に従ってファンを回転させることにより、室外機110の外部から流入して室外熱交換器112を通過する空気流を生成する。室外熱交換器112によって熱交換された空気は、冷却されて室外機110の外部に排出される。室外送風機113の風量は、ファンの回転数に対応し、制御部140からの制御信号により指定される。 The outdoor blower 113 includes a fan and an electric motor for rotating the fan, and is arranged in the vicinity of the outdoor heat exchanger 112. The outdoor blower 113 rotates the fan according to the control signal transmitted from the control unit 140 to generate an air flow that flows in from the outside of the outdoor unit 110 and passes through the outdoor heat exchanger 112. The air heat exchanged by the outdoor heat exchanger 112 is cooled and discharged to the outside of the outdoor unit 110. The air volume of the outdoor blower 113 corresponds to the rotation speed of the fan and is specified by a control signal from the control unit 140.
 膨張弁114は、内蔵のパルスモータにより開度を連続的に変更可能な減圧器である。膨張弁114は、室外熱交換器112及び室内機120の室内熱交換器131に冷媒配管101を介して接続され、室内熱交換器131から流入した冷媒を室外熱交換器112に送出する。膨張弁114は、流入した冷媒にかかる圧力を減圧して冷媒を膨張させ、流入した冷媒より低温低圧の冷媒を吐出する。膨張弁114から吐出される冷媒の温度及び圧力は、膨張弁114の開度に応じて変化する。膨張弁114の開度は、制御部140から送信される制御信号のパルス数により指定される。 The expansion valve 114 is a decompressor whose opening degree can be continuously changed by a built-in pulse motor. The expansion valve 114 is connected to the outdoor heat exchanger 112 and the indoor heat exchanger 131 of the indoor unit 120 via the refrigerant pipe 101, and sends the refrigerant flowing from the indoor heat exchanger 131 to the outdoor heat exchanger 112. The expansion valve 114 reduces the pressure applied to the inflowing refrigerant to expand the refrigerant, and discharges the refrigerant having a lower temperature and lower pressure than the inflowing refrigerant. The temperature and pressure of the refrigerant discharged from the expansion valve 114 change according to the opening degree of the expansion valve 114. The opening degree of the expansion valve 114 is specified by the number of pulses of the control signal transmitted from the control unit 140.
 室内機120は、室内空間1001の壁に設置されて、温風を吹き出すことにより室内空間1001の空気を調和する壁掛け型のルームエアコンディショナである。室内機120は、室内空間1001に供給される気流を生成する気流生成部130と、空調システム1000の各構成要素を制御する制御部140と、各センサ161~163から測定結果を示す情報を取得する取得部150と、室内空間1001における天井の表面温度を測定する赤外線センサ161と、気流を生成するために吸い込んだ空気の温度を測定する温度センサ162と、室内空間1001における床の表面温度を測定する赤外線センサ163と、ユーザに種々の情報を報知する報知部170と、を有している。なお、図1において、制御部140に接続される破線、及び取得部150に接続される破線は、信号線を示している。 The indoor unit 120 is a wall-mounted room air conditioner that is installed on the wall of the indoor space 1001 and harmonizes the air of the indoor space 1001 by blowing warm air. The indoor unit 120 acquires information indicating measurement results from the airflow generation unit 130 that generates the airflow supplied to the indoor space 1001, the control unit 140 that controls each component of the air conditioning system 1000, and the sensors 161 to 163. The acquisition unit 150, the infrared sensor 161 that measures the surface temperature of the ceiling in the indoor space 1001, the temperature sensor 162 that measures the temperature of the air sucked in to generate the air flow, and the surface temperature of the floor in the indoor space 1001. It has an infrared sensor 163 for measurement and a notification unit 170 for notifying the user of various information. In FIG. 1, the broken line connected to the control unit 140 and the broken line connected to the acquisition unit 150 indicate a signal line.
 気流生成部130は、室内空間1001の空気と冷媒との間で熱交換を行う室内熱交換器131と、室内熱交換器131により熱交換された空気を室内空間1001に送風する室内送風機132と、室内送風機132によって室内空間1001に供給される気流の風向を調整する風向調整部133と、を有している。気流生成部130は、空調システム1000において、天井温度測定手段としての赤外線センサ161によって測定された天井の表面温度と床温度測定手段としての赤外線センサ163によって測定された床の表面温度との温度差が第1閾値より小さい場合に第1気流を生成し、温度差が第1閾値より大きい場合に、第1気流とは異なる第2気流を生成する気流生成手段の一例に相当する。 The airflow generation unit 130 includes an indoor heat exchanger 131 that exchanges heat between the air in the indoor space 1001 and the refrigerant, and an indoor blower 132 that blows the air heat exchanged by the indoor heat exchanger 131 into the indoor space 1001. It also has a wind direction adjusting unit 133 that adjusts the wind direction of the airflow supplied to the indoor space 1001 by the indoor blower 132. In the airflow generation unit 130, the temperature difference between the ceiling surface temperature measured by the infrared sensor 161 as the ceiling temperature measuring means and the floor surface temperature measured by the infrared sensor 163 as the floor temperature measuring means in the air conditioning system 1000. Corresponds to an example of an airflow generating means that generates a first airflow when is smaller than the first threshold value and generates a second airflow different from the first airflow when the temperature difference is larger than the first threshold value.
 室内熱交換器131は、室外機110の圧縮機111及び膨張弁114に冷媒配管101を介して接続され、圧縮機111から流入した冷媒を膨張弁114に送出する。室内熱交換器131は、室内空間1001における空気と冷媒との間で熱交換を行うことにより、暖房運転時には、流入した冷媒を凝縮させ、液化した冷媒を吐出する。詳細には、室内熱交換器131が凝縮器として機能することにより冷媒が放熱し、室内空間1001の空気が加熱される。 The indoor heat exchanger 131 is connected to the compressor 111 and the expansion valve 114 of the outdoor unit 110 via the refrigerant pipe 101, and sends the refrigerant flowing from the compressor 111 to the expansion valve 114. The indoor heat exchanger 131 exchanges heat between the air and the refrigerant in the indoor space 1001 to condense the inflowing refrigerant and discharge the liquefied refrigerant during the heating operation. Specifically, when the indoor heat exchanger 131 functions as a condenser, the refrigerant dissipates heat and the air in the indoor space 1001 is heated.
 室内送風機132は、室外送風機113と同等の構成を有し、室内熱交換器131の近傍に配置される。ただし、室内送風機132のファンは、例えば、クロスフローファン又はプロペラファンである。図2に示される室内機120の概観においては、クロスフローファンである室内送風機132が例示されている。室内送風機132は、制御部140から送信される制御信号に従ってファンを回転させることにより、室内空間1001から室内機120の内部に流入して室内熱交換器131を通過する空気流を生成する。室内熱交換器131によって熱交換された空気は、加熱されて室内機120の吹出口から室内空間1001に送風される。室内送風機132の風量は、ファンの回転数に対応し、制御部140からの制御信号により指定される。室内送風機132は、空調システム1000の気流生成部130において、第1気流及び第2気流を生成するための送風手段の一例に相当する。 The indoor blower 132 has the same configuration as the outdoor blower 113, and is arranged in the vicinity of the indoor heat exchanger 131. However, the fan of the indoor blower 132 is, for example, a cross flow fan or a propeller fan. In the overview of the indoor unit 120 shown in FIG. 2, the indoor blower 132 which is a cross flow fan is exemplified. The indoor blower 132 rotates the fan according to the control signal transmitted from the control unit 140 to generate an air flow that flows from the indoor space 1001 into the indoor unit 120 and passes through the indoor heat exchanger 131. The air heat exchanged by the indoor heat exchanger 131 is heated and blown from the air outlet of the indoor unit 120 to the indoor space 1001. The air volume of the indoor blower 132 corresponds to the rotation speed of the fan and is specified by a control signal from the control unit 140. The indoor blower 132 corresponds to an example of blower means for generating the first airflow and the second airflow in the airflow generation unit 130 of the air conditioning system 1000.
 風向調整部133は、風向を上下方向に調整する一又は複数の風向調整板と、風向調整板の角度を変更するモータと、を含む。図2においては、風向調整板として吹出口180に取り付けられたフラップ1331,1332,1333,1334が例示されている。これらの風向調整板の角度が、制御部140から送信される制御信号に従って連動して変更されることにより、風向調整部133は、室内空間1001に供給する気流の風向を調整する。図3には、風向調整部133を構成するフラップの5段階の角度が模式的に示されている。図3に示されるように、風向調整部133は、制御部140からの指示に従って、水平方向である「上下風向1」から鉛直下方である「上下風向5」までの5段階のうちいずれか1つの方向に風向を調整する。例えば、「上下風向3」から1段階上がると、風向が「上下風向4」に調整される。 The wind direction adjusting unit 133 includes one or a plurality of wind direction adjusting plates for adjusting the wind direction in the vertical direction, and a motor for changing the angle of the wind direction adjusting plates. In FIG. 2, flaps 1331, 1332, 1333, and 1334 attached to the air outlet 180 as a wind direction adjusting plate are illustrated. The angle of these wind direction adjusting plates is changed in conjunction with the control signal transmitted from the control unit 140, so that the wind direction adjusting unit 133 adjusts the wind direction of the airflow supplied to the indoor space 1001. FIG. 3 schematically shows five-step angles of the flaps constituting the wind direction adjusting unit 133. As shown in FIG. 3, the wind direction adjusting unit 133 follows any one of five stages from the horizontal "vertical wind direction 1" to the vertically downward "vertical wind direction 5" according to the instruction from the control unit 140. Adjust the wind direction in one direction. For example, when the wind direction is increased by one step from the "vertical wind direction 3", the wind direction is adjusted to the "vertical wind direction 4".
 図1に戻り、赤外線センサ161,163は、例えば、赤外線を検出するサーモパイル及びボロメータに代表される素子を含む。赤外線センサ161は、上方向から入射する赤外線を検出することにより、天井の表面温度を測定する。赤外線センサ163は、下方向から入射する赤外線を検出することにより、床の表面温度を測定する。赤外線センサ161,163が検出する赤外線の入射方向は、室内機120の設置後に調整可能としてもよい。赤外線センサ161,163は、表面温度の測定値を示す表面温度情報を取得部150へ送信する。また、赤外線センサ161,163は一体的に形成されてもよい。例えば、単一のセンサの姿勢を定期的に変更して、当該センサによって検出される赤外線の入射方向を上方向と下方向に交互に切り替えることで、当該センサが赤外線センサ161,163双方の機能を発揮してもよい。図2には、赤外線センサ161,163の機能を発揮する1つのセンサ160が例示されている。空調システム1000において、赤外線センサ161は、空調対象である室内空間における天井の表面温度を測定する天井温度測定手段の一例に相当し、赤外線センサ163は、室内空間における床の表面温度を測定する床温度測定手段の一例に相当する。なお、赤外線センサ161,163とは異なる方式で表面温度を測定する天井温度測定部及び床温度測定部により空調システム1000を構成してもよい。 Returning to FIG. 1, the infrared sensors 161 and 163 include, for example, elements typified by a thermopile and a bolometer that detect infrared rays. The infrared sensor 161 measures the surface temperature of the ceiling by detecting infrared rays incident from above. The infrared sensor 163 measures the surface temperature of the floor by detecting infrared rays incident from below. The incident direction of infrared rays detected by the infrared sensors 161 and 163 may be adjustable after the indoor unit 120 is installed. The infrared sensors 161 and 163 transmit surface temperature information indicating the measured value of the surface temperature to the acquisition unit 150. Further, the infrared sensors 161 and 163 may be integrally formed. For example, by periodically changing the posture of a single sensor and alternately switching the incident direction of infrared rays detected by the sensor between upward and downward directions, the sensor functions as both infrared sensors 161 and 163. May be demonstrated. FIG. 2 illustrates one sensor 160 that exhibits the functions of the infrared sensors 161 and 163. In the air conditioning system 1000, the infrared sensor 161 corresponds to an example of a ceiling temperature measuring means for measuring the surface temperature of the ceiling in the indoor space to be air-conditioned, and the infrared sensor 163 measures the surface temperature of the floor in the indoor space. It corresponds to an example of a temperature measuring means. The air conditioning system 1000 may be configured by a ceiling temperature measuring unit and a floor temperature measuring unit that measure the surface temperature by a method different from that of the infrared sensors 161 and 163.
 温度センサ162は、図2に示されるように室内機120の空気の吸込口181の近傍に配置される。センサ162は、室内機120に吸い込まれた空気の温度を、室内空間1001における空気の温度として測定し、測定値を示す室温情報を取得部150へ送信する。温度センサ162は、空調システム1000において、室内空間1001における空気の温度を測定する室温測定手段の一例に相当する。 The temperature sensor 162 is arranged in the vicinity of the air suction port 181 of the indoor unit 120 as shown in FIG. The sensor 162 measures the temperature of the air sucked into the indoor unit 120 as the temperature of the air in the indoor space 1001, and transmits the room temperature information indicating the measured value to the acquisition unit 150. The temperature sensor 162 corresponds to an example of a room temperature measuring means for measuring the temperature of air in the indoor space 1001 in the air conditioning system 1000.
 取得部150は、各センサから情報を取得するためのインタフェース回路を含む。取得部150は、赤外線センサ161,163から表面温度情報を取得し、温度センサ162から室温情報を取得し、ユーザによって設定された室温の目標温度を示す目標温度情報を端末20から取得する。図2には、取得部150が端末20と通信するための赤外線送受信部151が例示されている。そして、取得部150は、取得した情報を制御部140に送信する。取得部150は、空調システム1000において、室内空間1001における空気の目標温度を示す目標温度情報を取得する取得手段の一例に相当し、室内空間における天井の表面温度の測定値と、室内空間における床の表面温度の測定値と、を取得する取得手段の一例に相当する。 The acquisition unit 150 includes an interface circuit for acquiring information from each sensor. The acquisition unit 150 acquires surface temperature information from the infrared sensors 161 and 163, acquires room temperature information from the temperature sensor 162, and acquires target temperature information indicating a target room temperature set by the user from the terminal 20. FIG. 2 illustrates an infrared transmission / reception unit 151 for the acquisition unit 150 to communicate with the terminal 20. Then, the acquisition unit 150 transmits the acquired information to the control unit 140. The acquisition unit 150 corresponds to an example of acquisition means for acquiring target temperature information indicating the target temperature of air in the indoor space 1001 in the air conditioning system 1000, and measures the surface temperature of the ceiling in the indoor space and the floor in the indoor space. It corresponds to an example of the acquisition means for acquiring the measured value of the surface temperature of.
 制御部140は、マイクロプロセッサ、RAM(Random Access Memory)及びEEPROM(Electrically Erasable Programmable Read-Only Memory)を含むコンピュータである。制御部140を構成するマイクロプロセッサが、EEPROMに記憶されるプログラムP1を実行することにより、制御部140は、種々の機能を発揮する。すなわち、制御部140は、取得部150から受信した情報に基づいて、圧縮機111の動作周波数、室外送風機113の風量、膨張弁114の開度、室内送風機132の風量、及び風向調整部133により規定される風向を適宜制御する。制御部140が空調システム1000の各構成要素を制御することにより、空調システム1000の暖房運転が実行される。制御部140は、天井の表面温度の測定値と床の表面温度の測定値との温度差が閾値より小さい場合に、気流生成手段に第1気流を生成させ、温度差が閾値より大きい場合に、第1気流とは異なる第2気流を気流生成手段に生成させる制御手段の一例に相当する。 The control unit 140 is a computer including a microprocessor, a RAM (Random Access Memory), and an EEPROM (Electrically Erasable Programmable Read-Only Memory). When the microprocessor constituting the control unit 140 executes the program P1 stored in the EEPROM, the control unit 140 exerts various functions. That is, the control unit 140 uses the operating frequency of the compressor 111, the air volume of the outdoor blower 113, the opening degree of the expansion valve 114, the air volume of the indoor blower 132, and the wind direction adjusting unit 133 based on the information received from the acquisition unit 150. The specified wind direction is controlled as appropriate. The control unit 140 controls each component of the air conditioning system 1000 to execute the heating operation of the air conditioning system 1000. The control unit 140 causes the airflow generating means to generate the first airflow when the temperature difference between the measured value of the ceiling surface temperature and the measured value of the floor surface temperature is smaller than the threshold value, and when the temperature difference is larger than the threshold value. , Corresponds to an example of a control means for causing the airflow generating means to generate a second airflow different from the first airflow.
 報知部170は、制御部140の指示に従って、ユーザに情報を出力する。報知部170による情報の出力は、音声信号の再生であってもよいし、ブザー音の発生であってもよいし、LED(Light Emitting Diode)の点灯であってもよいし、映像の表示であってもよい。図2には、スピーカである報知部170が室内機120に内蔵されることが示されている。 The notification unit 170 outputs information to the user according to the instruction of the control unit 140. The information output by the notification unit 170 may be the reproduction of an audio signal, the generation of a buzzer sound, the lighting of an LED (Light Emitting Diode), or the display of an image. There may be. FIG. 2 shows that the notification unit 170, which is a speaker, is built in the indoor unit 120.
 端末20は、ユーザが空調システム1000を操作するための遠隔操作端末である。端末20は、スマートホン又はウェアラブル端末であってもよい。端末20は、ユーザから入力された目標温度の設定を受け付けて、この目標温度を示す目標温度情報を赤外線通信により室内機120に送信する。 The terminal 20 is a remote control terminal for the user to operate the air conditioning system 1000. The terminal 20 may be a smart phone or a wearable terminal. The terminal 20 receives the setting of the target temperature input from the user, and transmits the target temperature information indicating the target temperature to the indoor unit 120 by infrared communication.
 以上の構成を有する空調システム1000において、冷媒回路は、冷媒配管101で接続された圧縮機111、室内熱交換器131、膨張弁114、及び室外熱交換器112を有する。暖房運転が実行される際の冷媒回路は、圧縮機111、室内熱交換器131、膨張弁114、及び室外熱交換器112をこの順に通して冷媒を循環させる。 In the air conditioning system 1000 having the above configuration, the refrigerant circuit includes a compressor 111 connected by a refrigerant pipe 101, an indoor heat exchanger 131, an expansion valve 114, and an outdoor heat exchanger 112. The refrigerant circuit when the heating operation is executed circulates the refrigerant through the compressor 111, the indoor heat exchanger 131, the expansion valve 114, and the outdoor heat exchanger 112 in this order.
 続いて、空調システム1000において実行される暖房処理について、図4を用いて説明する。図4に示される暖房処理は、暖房処理の開始指示がユーザによって入力されることで開始する。 Subsequently, the heating process executed in the air conditioning system 1000 will be described with reference to FIG. The heating process shown in FIG. 4 is started when a user inputs an instruction to start the heating process.
 暖房処理では、温度センサ162が吸込温度を測定する(ステップS1)。そして、この吸込温度を示す室温情報が温度センサ162から取得部150を介して制御部140に通知される。 In the heating process, the temperature sensor 162 measures the suction temperature (step S1). Then, the room temperature information indicating the suction temperature is notified from the temperature sensor 162 to the control unit 140 via the acquisition unit 150.
 次に、赤外線センサ161,163がそれぞれ、天井と床の表面温度を測定する(ステップS2)。そして、表面温度の測定値を示す表面温度情報が赤外線センサ161,163から取得部150を介して制御部140に通知される。 Next, the infrared sensors 161 and 163 measure the surface temperatures of the ceiling and floor, respectively (step S2). Then, the surface temperature information indicating the measured value of the surface temperature is notified from the infrared sensors 161 and 163 to the control unit 140 via the acquisition unit 150.
 次に、制御部140が、ステップS2において測定された天井の表面温度から床の表面温度を減じることで、表面温度差を算出する(ステップS3)。制御部140は、表面温度差を算出すると、算出結果を一時的に記憶装置であるRAM又はEEPROMに書き込む。 Next, the control unit 140 calculates the surface temperature difference by subtracting the floor surface temperature from the ceiling surface temperature measured in step S2 (step S3). When the control unit 140 calculates the surface temperature difference, the control unit 140 temporarily writes the calculation result to the RAM or EEPROM which is a storage device.
 次に、制御部140は、ステップS1で測定された吸込温度が、ユーザによって設定された目標温度以上であるか否かを判定する(ステップS4)。これにより、暖房する必要の有無が判断される。 Next, the control unit 140 determines whether or not the suction temperature measured in step S1 is equal to or higher than the target temperature set by the user (step S4). From this, it is determined whether or not heating is necessary.
 吸込温度が目標温度以上ではないと判定した場合(ステップS4;No)、制御部140は、空調システム1000の稼働状態を通常モードに設定する(ステップS5)。ステップS5の通常モードでは、制御部140が、室温を目標温度に等しくするために空調システム1000の構成要素を制御して、加熱された空調空気を室内空間1001に供給する温調制御が実行される。その後、制御部140は、一定時間だけ待機する(ステップS6)。待機中には、直前の稼働状態が維持されて制御部140による制御が継続する。一定時間は、例えば10秒間、1分間又は10分間である。 When it is determined that the suction temperature is not equal to or higher than the target temperature (step S4; No), the control unit 140 sets the operating state of the air conditioning system 1000 to the normal mode (step S5). In the normal mode of step S5, the control unit 140 controls the components of the air conditioning system 1000 in order to make the room temperature equal to the target temperature, and temperature control control for supplying the heated air conditioning air to the indoor space 1001 is executed. NS. After that, the control unit 140 waits for a certain period of time (step S6). During standby, the immediately preceding operating state is maintained and control by the control unit 140 continues. The fixed time is, for example, 10 seconds, 1 minute or 10 minutes.
 一方、吸込温度が目標温度以上であると判定した場合(ステップS4;Yes)、制御部140は、稼働状態を通常モードに設定する(ステップS7)。ただし、ステップS7の通常モードでは、温調制御が実行されることがない。その後、空調システム1000による処理は、ステップS6に移行する。 On the other hand, when it is determined that the suction temperature is equal to or higher than the target temperature (step S4; Yes), the control unit 140 sets the operating state to the normal mode (step S7). However, in the normal mode of step S7, the temperature control is not executed. After that, the process by the air conditioning system 1000 shifts to step S6.
 ステップS6に続いて、温度センサ162が吸込温度を測定し(ステップS8)、吸込温度の測定値が制御部140に通知される。次に、制御部140は、前回設定した稼働状態が通常モードであるか否かを判定する(ステップS9)。具体的には、制御部140は、現在の稼働状態が、室内空間1001における上下の温度差を低減するための稼働状態と異なるか否かを判定する。 Following step S6, the temperature sensor 162 measures the suction temperature (step S8), and the measured value of the suction temperature is notified to the control unit 140. Next, the control unit 140 determines whether or not the previously set operating state is the normal mode (step S9). Specifically, the control unit 140 determines whether or not the current operating state is different from the operating state for reducing the upper and lower temperature difference in the indoor space 1001.
 前回設定した稼働状態が通常モードであると判定された場合(ステップS9:Yes)、赤外線センサ161,163はそれぞれ、天井と床の表面温度を測定し(ステップS10)、これら表面温度の測定値が制御部140に通知される。 When it is determined that the previously set operating state is the normal mode (step S9: Yes), the infrared sensors 161 and 163 measure the surface temperatures of the ceiling and the floor, respectively (step S10), and the measured values of these surface temperatures. Is notified to the control unit 140.
 次に、制御部140は、ステップS10で測定された表面温度から表面温度差を算出し、この表面温度差について前回算出された表面温度差からの変化量である変化率を算出する(ステップS11)。具体的には、制御部140は、今回算出された表面温度差をΔT(n+1)、前回算出された表面温度差をΔT(n)、今回の表面温度の測定時刻をt(n+1)、前回の表面温度の測定時刻をt(n)として、(ΔT(n+1)-ΔT(n))/(t(n+1)-t(n))という演算式に従って、表面温度差の単位時間あたりの変化率を算出する。 Next, the control unit 140 calculates the surface temperature difference from the surface temperature measured in step S10, and calculates the rate of change of the surface temperature difference, which is the amount of change from the previously calculated surface temperature difference (step S11). ). Specifically, the control unit 140 sets the surface temperature difference calculated this time as ΔT (n + 1), the previously calculated surface temperature difference as ΔT (n), the measurement time of the surface temperature this time as t (n + 1), and the previous time. The change in surface temperature difference per unit time according to the formula (ΔT (n + 1) -ΔT (n)) / (t (n + 1) -t (n)), where t (n) is the measurement time of the surface temperature of Calculate the rate.
 次に、制御部140は、ステップS11で算出した変化率が予め定められた閾値Th1以上であるか否かを判定する(ステップS12)。これにより、室内空間1001における上下の温度差が急激に上昇しているか否かが判断される。変化率が閾値Th1以上であると判定した場合(ステップS12;Yes)、制御部140は、稼働状態を温度差低減モード1に設定する(ステップS13)。この温度差低減モード1の詳細については後述する。 Next, the control unit 140 determines whether or not the rate of change calculated in step S11 is equal to or greater than a predetermined threshold value Th1 (step S12). Thereby, it is determined whether or not the temperature difference between the upper and lower parts in the indoor space 1001 is rapidly increasing. When it is determined that the rate of change is equal to or greater than the threshold value Th1 (step S12; Yes), the control unit 140 sets the operating state to the temperature difference reduction mode 1 (step S13). The details of this temperature difference reduction mode 1 will be described later.
 一方、変化率が閾値Th1以上ではないと判定した場合(ステップS12;No)、制御部140は、ステップS11で算出した変化率が予め定められた閾値Th2以上であるか否かを判定する(ステップS14)。ここで、閾値Th2は、閾値Th1より小さい。これにより、ステップS13の温度差低減モード1の実行によりある程度は温度差の拡大が抑制されたものの引き続き温度差が上昇しているか否かが判断される。変化率が閾値Th2以上であると判定した場合(ステップS14;Yes)、制御部140は、稼働状態を温度差低減モード2に設定する(ステップS15)。温度差低減モード2は、温度差低減モード1と比較して、鉛直方向の成分が小さい気流を生成して、ゆるやかに室内空間1001内の空気を攪拌するモードである。ただし、温度差低減モード2は、温度差低減モード1よりも鉛直方向の成分が大きい気流を生成して、効率的に室内空間1001内の空気を撹拌するモードであってもよい。温度差低減モード2の詳細については後述する。 On the other hand, when it is determined that the rate of change is not equal to or higher than the threshold value Th1 (step S12; No), the control unit 140 determines whether or not the rate of change calculated in step S11 is equal to or higher than the predetermined threshold value Th2 (step S12; No). Step S14). Here, the threshold Th2 is smaller than the threshold Th1. As a result, it is determined whether or not the temperature difference continues to rise although the expansion of the temperature difference is suppressed to some extent by the execution of the temperature difference reduction mode 1 in step S13. When it is determined that the rate of change is equal to or higher than the threshold value Th2 (step S14; Yes), the control unit 140 sets the operating state to the temperature difference reduction mode 2 (step S15). The temperature difference reduction mode 2 is a mode in which an air flow having a smaller vertical component is generated as compared with the temperature difference reduction mode 1 and the air in the indoor space 1001 is gently agitated. However, the temperature difference reduction mode 2 may be a mode in which an air flow having a larger vertical component than the temperature difference reduction mode 1 is generated to efficiently agitate the air in the indoor space 1001. The details of the temperature difference reduction mode 2 will be described later.
 一方、変化率が閾値Th2以上ではないと判定した場合(ステップS14;No)、制御部140は、ステップS11で算出した表面温度差が予め定められた閾値Th3以上であるか否かを判定する(ステップS16)。これにより、温度差の時間的な変化が小さいものの低減すべき温度差が生じているか否かが判断される。表面温度差が閾値Th3以上であると判定した場合(ステップS16;Yes)、制御部140は、稼働状態を温度差低減モード3に設定する(ステップS17)。温度差低減モード3は、温度差低減モード2と比較して、鉛直方向の成分が小さい気流を生成して、更にゆるやかに室内空間1001内の空気を攪拌するモードである。ただし、温度差低減モード3は、温度差低減モード2よりも鉛直方向の成分が大きい気流を生成して、効率的に室内空間1001内の空気を撹拌するモードであってもよい。温度差低減モード3の詳細については後述する。 On the other hand, when it is determined that the rate of change is not equal to or higher than the threshold Th2 (step S14; No), the control unit 140 determines whether or not the surface temperature difference calculated in step S11 is equal to or higher than the predetermined threshold Th3. (Step S16). As a result, it is determined whether or not there is a temperature difference to be reduced although the change over time of the temperature difference is small. When it is determined that the surface temperature difference is the threshold value Th3 or more (step S16; Yes), the control unit 140 sets the operating state to the temperature difference reduction mode 3 (step S17). The temperature difference reduction mode 3 is a mode in which an air flow having a smaller vertical component is generated as compared with the temperature difference reduction mode 2 and the air in the indoor space 1001 is agitated more gently. However, the temperature difference reduction mode 3 may be a mode in which an air flow having a larger vertical component than the temperature difference reduction mode 2 is generated to efficiently agitate the air in the indoor space 1001. The details of the temperature difference reduction mode 3 will be described later.
 ステップS13,S15,S17において通常モードから温度差低減モードに稼働状態を変更する際には、制御部140は、報知部170を制御して、温度差を低減するために稼働状態を変更する旨をユーザに報知させてもよい。これにより、ユーザは、空調システム1000の稼働状態を認識することができる。ここで、ユーザが稼働状態の変更を望まずに、暖房運転を維持する操作をした場合には、制御部140は、温度差低減モードを実行することなくユーザによって指定された運転を優先してもよい。 When changing the operating state from the normal mode to the temperature difference reduction mode in steps S13, S15, and S17, the control unit 140 controls the notification unit 170 to change the operating state in order to reduce the temperature difference. May be notified to the user. As a result, the user can recognize the operating state of the air conditioning system 1000. Here, when the user does not want to change the operating state and performs an operation to maintain the heating operation, the control unit 140 gives priority to the operation specified by the user without executing the temperature difference reduction mode. May be good.
 ステップS16にて、表面温度差が閾値Th3以上ではないと判定した場合(ステップS16;No)、制御部140は、稼働状態を通常モードに設定する(ステップS18)。このステップS18では、ステップS8で測定された吸込温度に基づいて、ステップS4,S5,S7と同様の手順により温調制御の有無を決定してもよい。 When it is determined in step S16 that the surface temperature difference is not equal to or higher than the threshold value Th3 (step S16; No), the control unit 140 sets the operating state to the normal mode (step S18). In this step S18, the presence or absence of temperature control may be determined by the same procedure as in steps S4, S5, and S7, based on the suction temperature measured in step S8.
 ステップS13,S15,S17,S18に続いて、空調システム1000は、ステップS8以降の処理を繰り返す。これにより、表面温度差及び変化率に基づいて、通常モード及び温度差低減モード1~3のいずれかの運転が定期的に選択されて実行される。 Following steps S13, S15, S17, and S18, the air conditioning system 1000 repeats the processes after step S8. As a result, one of the normal mode and the temperature difference reduction modes 1 to 3 is periodically selected and executed based on the surface temperature difference and the rate of change.
 ステップS9にて、前回の稼働状態が通常モードでないと判定した場合(ステップS9;No)、制御部140は、ステップS8で測定された吸込温度が前回の測定値未満であるか否かを判定する(ステップS19)。具体的には、制御部140は、温度差低減モードの実行中において、室温が低下してユーザの快適性が損なわれているか否かを判断する。吸込温度が前回の測定値未満ではないと判定された場合(ステップS19;No)、空調システム1000による処理は、ステップS10に移行する。 When it is determined in step S9 that the previous operating state is not the normal mode (step S9; No), the control unit 140 determines whether or not the suction temperature measured in step S8 is less than the previous measured value. (Step S19). Specifically, the control unit 140 determines whether or not the room temperature is lowered and the user's comfort is impaired during the execution of the temperature difference reduction mode. When it is determined that the suction temperature is not less than the previous measured value (step S19; No), the process by the air conditioning system 1000 shifts to step S10.
 一方、吸込温度が前回の測定値未満であると判定した場合(ステップS19;Yes)、制御部140は、稼働状態を温調優先モードに設定する(ステップS20)。温調優先モードは、室温を目標温度に到達させることを優先して、ユーザの快適性を確保するモードである。温調優先モードでは、温度差を低減するための気流に代えて一時的に通常モードと同様の気流を生成してもよいし、温度差をある程度低減する気流を生成してもよい。その後、空調システム1000は、ステップS8以降の処理を繰り返す。 On the other hand, when it is determined that the suction temperature is lower than the previous measured value (step S19; Yes), the control unit 140 sets the operating state to the temperature control priority mode (step S20). The temperature control priority mode is a mode for ensuring the comfort of the user by giving priority to reaching the target temperature at room temperature. In the temperature control priority mode, instead of the air flow for reducing the temperature difference, an air flow similar to that in the normal mode may be temporarily generated, or an air flow for reducing the temperature difference to some extent may be generated. After that, the air conditioning system 1000 repeats the processes after step S8.
 続いて、温度差低減モード1~3及び温調優先モードについて、図5~8を用いて説明する。図5には、それぞれの運転モードについての実施条件と制御対象とが関連付けて示されている。実施条件は、図4に示されるステップS13,S15,S17,S19において判定される条件の成否に対応している。 Subsequently, the temperature difference reduction modes 1 to 3 and the temperature control priority mode will be described with reference to FIGS. 5 to 8. FIG. 5 shows the execution conditions for each operation mode and the control target in association with each other. The implementation conditions correspond to the success or failure of the conditions determined in steps S13, S15, S17, and S19 shown in FIG.
 稼働状態が温度差低減モード1に設定される際に、制御部140は、圧縮機111の周波数を通常モードの値よりf1だけ減少させて、暖房能力を抑制し、室内機120が生成する気流の温度を低下させる。暖房運転の実行により生じた温度差は、暖房能力が維持されたときには、拡大又は維持されてしまうところ、制御部140は、暖房能力を抑制して温度差の低減を図る。また、制御部140は、室内熱交換器131の管温度の下限値を通常モードにおける下限値より低い温度に設定する。具体的には、室内熱交換器131の冷媒が通過する管の温度については、下限値が予め規定されており、制御部140は通常、管温度が当該下限値を上回る範囲で空調システム1000の構成要素を制御している。これに対して、温度差低減モードでは、この下限値をより低い温度にセットすることで、暖房能力を抑制することが可能になる。また、制御部140は、室内送風機132を構成する室内ファンの回転数を通常モードの値よりF1だけ増加させるとともに、風向を通常モードの方向から下方向に1段階変更する。これにより、温度差低減モード1の実行前よりも下方向に強い気流が生成され、室内空間1001内の空気が撹拌される。なお、風向が既に鉛直下方である場合には、風向を変更しなくともよい。f1及びF1は予め定められた値である。 When the operating state is set to the temperature difference reduction mode 1, the control unit 140 reduces the frequency of the compressor 111 by f1 from the value of the normal mode to suppress the heating capacity, and the air flow generated by the indoor unit 120. Lower the temperature of. The temperature difference caused by the execution of the heating operation is expanded or maintained when the heating capacity is maintained, and the control unit 140 suppresses the heating capacity to reduce the temperature difference. Further, the control unit 140 sets the lower limit of the tube temperature of the indoor heat exchanger 131 to a temperature lower than the lower limit in the normal mode. Specifically, a lower limit value is predetermined for the temperature of the pipe through which the refrigerant of the indoor heat exchanger 131 passes, and the control unit 140 usually has a range of the pipe temperature exceeding the lower limit value of the air conditioning system 1000. Controls the components. On the other hand, in the temperature difference reduction mode, the heating capacity can be suppressed by setting this lower limit value to a lower temperature. Further, the control unit 140 increases the rotation speed of the indoor fan constituting the indoor blower 132 by F1 from the value of the normal mode, and changes the wind direction by one step from the direction of the normal mode to the downward direction. As a result, a stronger air flow is generated in the downward direction than before the temperature difference reduction mode 1 is executed, and the air in the indoor space 1001 is agitated. If the wind direction is already vertically downward, it is not necessary to change the wind direction. f1 and F1 are predetermined values.
 図6には、表面温度に関し、温度差低減モード1の実施条件が成立する例が示されている。図6の例では、表面温度差が1.5℃から2.0℃になり、さらに2.5℃に上昇しており、単位時間あたりの変化率が2.0℃/hとなっている。この変化率が、閾値Th1の一例である1.5℃/hより大きいため、温度差低減モード1が実行される。 FIG. 6 shows an example in which the implementation conditions of the temperature difference reduction mode 1 are satisfied with respect to the surface temperature. In the example of FIG. 6, the surface temperature difference has increased from 1.5 ° C. to 2.0 ° C. and further increased to 2.5 ° C., and the rate of change per unit time is 2.0 ° C./h. .. Since this rate of change is larger than 1.5 ° C./h, which is an example of the threshold value Th1, the temperature difference reduction mode 1 is executed.
 稼働状態が温度差低減モード2に設定される際に、制御部140は、圧縮機111の周波数を通常モードの値よりf2だけ減少させ、室内ファンの回転数を通常モードの値よりF2だけ増加させ、風向を通常モードの方向から下方向に1段階変更する。これにより、温度差低減モード1と同様に、鉛直成分の大きい気流が生成されることで室内空間1001内の空気が撹拌され、温度差が低減することが期待される。ただし、温度差低減モード2は、温度差低減モード1が実行されるときよりも温度差が緩慢に大きくなっているときに実行されるため、制御対象の変更量は温度差低減モード1より小さい。具体的には、f2はf1より小さく、F2はF1より小さい。f2及びF2は、予め定められた値である。 When the operating state is set to the temperature difference reduction mode 2, the control unit 140 reduces the frequency of the compressor 111 by f2 from the value in the normal mode, and increases the rotation speed of the indoor fan by F2 from the value in the normal mode. Then, the wind direction is changed by one step from the direction of the normal mode to the downward direction. As a result, as in the temperature difference reduction mode 1, it is expected that the air in the indoor space 1001 will be agitated by generating an air flow having a large vertical component, and the temperature difference will be reduced. However, since the temperature difference reduction mode 2 is executed when the temperature difference is slowly larger than that when the temperature difference reduction mode 1 is executed, the amount of change in the control target is smaller than the temperature difference reduction mode 1. .. Specifically, f2 is smaller than f1 and F2 is smaller than F1. f2 and F2 are predetermined values.
 図7には、表面温度に関し、温度差低減モード2の実施条件が成立する例が示されている。図7の例では、表面温度差が1.5℃から1.7℃になり、さらに2.0℃に上昇しており、単位時間あたりの変化率が1.0℃/hとなっている。この変化率が、閾値Th1の一例である1.5℃/hより小さく、閾値Th2の一例である0.5℃/hより大きいため、温度差低減モード2が実行される。 FIG. 7 shows an example in which the implementation conditions of the temperature difference reduction mode 2 are satisfied with respect to the surface temperature. In the example of FIG. 7, the surface temperature difference has increased from 1.5 ° C. to 1.7 ° C., further increased to 2.0 ° C., and the rate of change per unit time is 1.0 ° C./h. .. Since this rate of change is smaller than 1.5 ° C./h, which is an example of the threshold value Th1, and larger than 0.5 ° C./h, which is an example of the threshold value Th2, the temperature difference reduction mode 2 is executed.
 なお、温度差低減モード1,2が設定されるときに、風向を1段階より大きく変更してもよい。これにより、より鉛直方向の成分が大きい気流が生成される。ただし、ユーザが設定した風向から大きく変更されると、ユーザの快適性が損なわれる可能性があるため、風向の変化は1段階に留めてもよい。 Note that the wind direction may be changed more than one step when the temperature difference reduction modes 1 and 2 are set. This creates an airflow with a larger component in the vertical direction. However, if the wind direction is significantly changed from the one set by the user, the comfort of the user may be impaired. Therefore, the change in the wind direction may be limited to one step.
 稼働状態が温度差低減モード3に設定される際に、制御部140は、圧縮機111の周波数を通常モードの値よりf3だけ減少させ、室内ファンの回転数を通常モードの値よりF3だけ増加させ、風向を通常モードの方向から下方向に1段階変更する。これにより、温度差低減モード1,2と同様に、鉛直成分の大きい気流が生成されることで温度差が低減することが期待される。ただし、温度差低減モード3は、温度差の変化率は小さいものの、温度差自体は大きい場合に実施される。この場合は、温度差の生じた状態で室内空間1001内の環境が安定していることが想定されるため、制御対象の変更量を温度差低減モード2よりさらに小さくする。具体的には、f3はf2より小さく、F3はF2より小さい。f3及びF3は、予め定められた値である。 When the operating state is set to the temperature difference reduction mode 3, the control unit 140 reduces the frequency of the compressor 111 by f3 from the value in the normal mode, and increases the rotation speed of the indoor fan by F3 from the value in the normal mode. Then, the wind direction is changed by one step from the direction of the normal mode to the downward direction. As a result, as in the temperature difference reduction modes 1 and 2, it is expected that the temperature difference will be reduced by generating an air flow having a large vertical component. However, the temperature difference reduction mode 3 is implemented when the rate of change of the temperature difference is small but the temperature difference itself is large. In this case, since it is assumed that the environment in the indoor space 1001 is stable in a state where the temperature difference occurs, the amount of change of the control target is made smaller than that in the temperature difference reduction mode 2. Specifically, f3 is smaller than f2 and F3 is smaller than F2. f3 and F3 are predetermined values.
 稼働状態が温調優先モードに設定される際に、制御部140は、圧縮機111の周波数を通常モードの値よりf4だけ増加させて暖房能力を増加させる。これにより、温調優先モードの実行前より温度が高くなった気流が生成され、室温の低下を回避することができる。f4は、予め定められた値である。 When the operating state is set to the temperature control priority mode, the control unit 140 increases the frequency of the compressor 111 by f4 from the value of the normal mode to increase the heating capacity. As a result, an air flow having a higher temperature than before the execution of the temperature control priority mode is generated, and it is possible to avoid a decrease in room temperature. f4 is a predetermined value.
 図8は、表面温度差と経過時間との関係において、各モードの実施条件が成立する例を示している。図8中の線L1は、図6に示される表面温度差の変化に対応し、線L2は、図7に示される表面温度差の変化に対応している。また、図8中の線L11は、変化率が閾値Th1に等しいときを示し、線L12は、変化率が閾値Th2に等しいときを示す。図8において、線L11より上側のハッチングが付された領域A1内で表面温度差が変化する場合には、温度差低減モード1が実施され、線L11と線L12に挟まれた領域A2内で表面温度差が変化する場合には、温度差低減モード2が実施され、線L12より下側のハッチングが付された領域A3内で表面温度差が変化する場合には、温度差低減モード3又は通常モードが実施されることとなる。 FIG. 8 shows an example in which the execution conditions of each mode are satisfied in relation to the surface temperature difference and the elapsed time. The line L1 in FIG. 8 corresponds to the change in the surface temperature difference shown in FIG. 6, and the line L2 corresponds to the change in the surface temperature difference shown in FIG. 7. Further, the line L11 in FIG. 8 indicates when the rate of change is equal to the threshold value Th1, and the line L12 indicates when the rate of change is equal to the threshold value Th2. In FIG. 8, when the surface temperature difference changes in the hatched region A1 above the line L11, the temperature difference reduction mode 1 is executed and in the region A2 sandwiched between the line L11 and the line L12. When the surface temperature difference changes, the temperature difference reduction mode 2 is executed, and when the surface temperature difference changes in the hatched region A3 below the line L12, the temperature difference reduction mode 3 or The normal mode will be implemented.
 以上、説明したように、表面温度差が第1閾値としての閾値Th3より小さい場合に、通常モードの運転が実行されて気流生成部130は暖房のための第1気流を生成し、表面温度差が閾値Th3より大きい場合に、温度差低減モード3の運転が実行されて気流生成部130は空気を撹拌するための第2気流を生成する。天井の表面温度は、概ね天井付近の空気の温度に等しく、床の表面温度は、概ね床付近の空気の温度に等しいといえる。このため、天井高の高い空間において天井及び床の付近の空気温度の測定が困難である場合であっても、当該空間において上下の温度差が生じたときには室内空間の空気が第2気流によって撹拌される。これにより、天井高の高い空間に生じた上下の温度差を低減させることができる。 As described above, when the surface temperature difference is smaller than the threshold value Th3 as the first threshold value, the operation in the normal mode is executed, the airflow generation unit 130 generates the first airflow for heating, and the surface temperature difference. When is larger than the threshold value Th3, the operation of the temperature difference reduction mode 3 is executed, and the airflow generation unit 130 generates a second airflow for agitating the air. It can be said that the surface temperature of the ceiling is approximately equal to the temperature of the air near the ceiling, and the surface temperature of the floor is approximately equal to the temperature of the air near the floor. Therefore, even if it is difficult to measure the air temperature near the ceiling and floor in a space with a high ceiling height, the air in the indoor space is agitated by the second air flow when there is a temperature difference between the top and bottom in the space. Will be done. As a result, it is possible to reduce the temperature difference between the upper and lower parts generated in a space having a high ceiling height.
 また、温度差低減モード3において生成される第2気流は、通常モードにおいて生成される第1気流より鉛直方向の成分が大きい気流である。このため、より確実に上下の温度差を低減させることが期待される。 Further, the second airflow generated in the temperature difference reduction mode 3 is an airflow having a larger vertical component than the first airflow generated in the normal mode. Therefore, it is expected that the temperature difference between the upper and lower parts will be reduced more reliably.
 具体的には、気流生成部130は、生成した気流を吹出口180から室内空間1001に吹き出し、温度差低減モード3において生成される第2気流が吹出口180から吹き出される方向は、通常モードにおいて生成される第1気流が吹出口180から吹き出される方向より下の方向である。すなわち、図5に示されたように、温度差低減モードにおいては風向が下方向に1段階変更された。これにより、温度差を低減させることができる。なお、第2気流の方向は、鉛直成分が第1気流より大きければ、第1気流の方向より上の方向であってもよい。 Specifically, the airflow generation unit 130 blows out the generated airflow from the outlet 180 to the indoor space 1001, and the direction in which the second airflow generated in the temperature difference reduction mode 3 is blown out from the outlet 180 is the normal mode. The first airflow generated in the above direction is below the direction in which the first airflow is blown out from the outlet 180. That is, as shown in FIG. 5, in the temperature difference reduction mode, the wind direction was changed by one step downward. Thereby, the temperature difference can be reduced. The direction of the second airflow may be higher than the direction of the first airflow as long as the vertical component is larger than the first airflow.
 また、気流生成部130は、室内送風機132を有し、温度差低減モード3における室内送風機132の風量は、通常モードにおける室内送風機132の風量より大きい。これにより、温度差を低減させることができる。 Further, the airflow generation unit 130 has an indoor blower 132, and the air volume of the indoor blower 132 in the temperature difference reduction mode 3 is larger than the air volume of the indoor blower 132 in the normal mode. Thereby, the temperature difference can be reduced.
 また、空調システム1000は、冷媒を圧縮する圧縮機111と、冷媒と室内空間における空気との間で熱交換を行う室内熱交換器131と、を有する冷媒回路を備え、温度差低減モード3における第2気流が生成されるときの圧縮機111の回転数は、通常モードにおける第1気流が生成されるときの圧縮機111の回転数より小さい。具体的には、図5に示されたように、温度差低減モードにおいては圧縮機111の回転数を減少させた。これにより、温度差を生じさせてしまう暖房能力を抑制して、温度差の解消を図ることができる。 Further, the air conditioning system 1000 includes a refrigerant circuit including a compressor 111 for compressing the refrigerant and an indoor heat exchanger 131 for exchanging heat between the refrigerant and the air in the indoor space, and in the temperature difference reduction mode 3 The rotation speed of the compressor 111 when the second air flow is generated is smaller than the rotation speed of the compressor 111 when the first air flow is generated in the normal mode. Specifically, as shown in FIG. 5, the rotation speed of the compressor 111 was reduced in the temperature difference reduction mode. As a result, it is possible to suppress the heating capacity that causes a temperature difference and eliminate the temperature difference.
 また、表面温度差の変化率が第2閾値としての閾値Th2より大きい場合に、温度差低減モード1,2が実行され、気流生成部130は、通常モードにおける第1気流とは異なる第3気流を生成した。具体的には、気流生成部130は、変化率が閾値Th2より大きい場合に第3気流を生成し、変化率が閾値Th2より小さく、表面温度差が閾値Th3より大きい場合に第2気流を生成し、第3気流は、第2気流より鉛直方向の成分が大きい気流である。これにより、温度差が大きくなる前において、温度差の変化率が大きいときには、第3気流を生成することにより温度差の発生を予防することができる。 Further, when the rate of change of the surface temperature difference is larger than the threshold value Th2 as the second threshold value, the temperature difference reduction modes 1 and 2 are executed, and the airflow generation unit 130 has a third airflow different from the first airflow in the normal mode. Was generated. Specifically, the airflow generation unit 130 generates a third airflow when the rate of change is larger than the threshold Th2, and generates a second airflow when the rate of change is smaller than the threshold Th2 and the surface temperature difference is larger than the threshold Th3. However, the third airflow is an airflow having a larger component in the vertical direction than the second airflow. As a result, when the rate of change of the temperature difference is large before the temperature difference becomes large, it is possible to prevent the occurrence of the temperature difference by generating the third air flow.
 また、温度差低減モードの実行中において、吸込温度が目標温度と異なるときには、温調優先モードの運転が実行され、気流生成部130は、第2気流とは温度が異なる第4気流を生成する。具体的には、吸込温度が目標温度より低いときに、気流生成部130は、第2気流より温度が高い第4気流を生成した。これにより、室内空間1001の空気を撹拌している最中にユーザの体感温度が下がってしまい、快適性が損なわれることを回避することができる。 Further, during the execution of the temperature difference reduction mode, when the suction temperature is different from the target temperature, the operation of the temperature control priority mode is executed, and the airflow generation unit 130 generates a fourth airflow having a temperature different from that of the second airflow. .. Specifically, when the suction temperature is lower than the target temperature, the airflow generation unit 130 generates a fourth airflow having a temperature higher than that of the second airflow. As a result, it is possible to prevent the user's sensible temperature from being lowered while the air in the indoor space 1001 is being agitated, and the comfort being impaired.
 また、温度差低減モードが実行される際に設定される室内熱交換器131の管温度の下限値は、通常モードにおける下限値より低い。これにより、熱交換器を通過して気流の温度を上昇させる暖房能力を抑制して、温度差の低減をより確実に図ることができる。 Further, the lower limit of the tube temperature of the indoor heat exchanger 131 set when the temperature difference reduction mode is executed is lower than the lower limit in the normal mode. As a result, the heating capacity for raising the temperature of the airflow passing through the heat exchanger can be suppressed, and the temperature difference can be reduced more reliably.
 実施の形態2.
 続いて、実施の形態2について、上述の実施の形態1との相違点を中心に説明する。なお、上記実施の形態1と同一又は同等の構成については、同等の符号を用いる。本実施の形態は、赤外線センサ161が室内機120の外部に配置される点で、実施の形態1とは異なる。
Embodiment 2.
Subsequently, the second embodiment will be described focusing on the differences from the first embodiment described above. For the same or equivalent configuration as that of the first embodiment, the same reference numerals are used. The present embodiment is different from the first embodiment in that the infrared sensor 161 is arranged outside the indoor unit 120.
 本実施の形態に係る空調システム1000は、図9に示されるように、室内機120と、端末20と、HEMS(Home Energy Management System)の管理装置300と、室内空間1001において室内機120とは異なる位置に設置された赤外線センサ161と、を有する。 In the air conditioner system 1000 according to the present embodiment, as shown in FIG. 9, the indoor unit 120, the terminal 20, the management device 300 of the HEMS (Home Energy Management System), and the indoor unit 120 in the indoor space 1001 are It has infrared sensors 161 installed at different positions.
 赤外線センサ161は、天井の表面温度の測定値を示す表面温度情報を管理装置300に送信し、管理装置300は、この表面温度情報を、取得部150を介して制御部140に通知する。これにより、制御部140は、実施の形態1と同様の運転を実行することができる。 The infrared sensor 161 transmits surface temperature information indicating a measured value of the surface temperature of the ceiling to the management device 300, and the management device 300 notifies the control unit 140 of this surface temperature information via the acquisition unit 150. As a result, the control unit 140 can perform the same operation as in the first embodiment.
 また、端末20は、室内機120と直接通信することなく、管理装置300を介して室内機120に目標温度を設定する。また、室内機120は、報知部170を省いて構成される。制御部140は、管理装置300を介して端末20にユーザへの報知内容を通知する。 Further, the terminal 20 sets the target temperature in the indoor unit 120 via the management device 300 without directly communicating with the indoor unit 120. Further, the indoor unit 120 is configured by omitting the notification unit 170. The control unit 140 notifies the terminal 20 of the content of the notification to the user via the management device 300.
 以上、説明したように、室内機120の外部の機器がユーザへの報知機能を担うことにより、ユーザにとっては報知を受け取ることが容易になるとともに、室内機120の構成を簡素にすることができる。また、天井の表面温度を測定する赤外線センサ161が室内機120の外部に設置されるため、室内機120の設置位置に関わりなく、赤外線センサ161の位置を決定することができる。これにより、表面温度の測定精度を向上させるとともに、室内機120の構成を簡素にすることができる。なお、赤外線センサ161が室内機120の外部に配置される例について説明したが、これには限定されない。赤外線センサ161,163及び温度センサ162のうちのいずれか1つ又は複数のセンサが、室内機120の外部に配置されてもよい。 As described above, since the external device of the indoor unit 120 has a function of notifying the user, it becomes easy for the user to receive the notification and the configuration of the indoor unit 120 can be simplified. .. Further, since the infrared sensor 161 for measuring the surface temperature of the ceiling is installed outside the indoor unit 120, the position of the infrared sensor 161 can be determined regardless of the installation position of the indoor unit 120. As a result, the measurement accuracy of the surface temperature can be improved and the configuration of the indoor unit 120 can be simplified. Although the example in which the infrared sensor 161 is arranged outside the indoor unit 120 has been described, the present invention is not limited to this. One or more of the infrared sensors 161, 163 and the temperature sensor 162 may be arranged outside the indoor unit 120.
 実施の形態3.
 続いて、実施の形態3について、上述の実施の形態1との相違点を中心に説明する。なお、上記実施の形態1と同一又は同等の構成については、同等の符号を用いる。本実施の形態は、気流生成部130が同時に2つの気流を生成する点で、実施の形態1とは異なる。
Embodiment 3.
Subsequently, the third embodiment will be described focusing on the differences from the first embodiment described above. For the same or equivalent configuration as that of the first embodiment, the same reference numerals are used. The present embodiment is different from the first embodiment in that the airflow generation unit 130 simultaneously generates two airflows.
 図10には、本実施の形態に係る室内機120の構成が示されている。図10に示されるように、気流生成部130は、2つの室内熱交換器131,131aと、これら2つの室内熱交換器131,131aそれぞれに空気を送風する室内送風機132,132aと、室内送風機132,132aそれぞれによって生成された気流の方向を調整する風向調整部133,133aと、2つの室内熱交換器131,131aと冷媒配管101を介して接続される膨張弁134と、を有する。 FIG. 10 shows the configuration of the indoor unit 120 according to the present embodiment. As shown in FIG. 10, the airflow generator 130 includes two indoor heat exchangers 131 and 131a, indoor blowers 132 and 132a that blow air to each of the two indoor heat exchangers 131 and 131a, and an indoor blower. It has an air direction adjusting unit 133, 133a for adjusting the direction of the air flow generated by each of the 132 and 132a, and an expansion valve 134 connected to the two indoor heat exchangers 131 and 131a via the refrigerant pipe 101.
 室内熱交換器131は、圧縮機111から流入した冷媒を凝縮させて膨張弁134に送出する。膨張弁134は、膨張弁114と同様の減圧器である。膨張弁134は、室内熱交換器131から流入した冷媒を膨張させて室内熱交換器131aに吐出する。膨張弁134の開度は、制御部140から送信される制御指示によって変化する。室内熱交換器131aは、膨張弁134から流入した冷媒を凝縮させて室外機110の膨張弁114に送出する。制御部140は、膨張弁114,134の開度を制御することにより、室内熱交換器131の冷媒温度、及び室内熱交換器131aの冷媒温度を制御して、2つの気流の温度を独立に決定する。室内送風機132aは、室内熱交換器131aを通過する気流を生成する。風向調整部133aは、室内熱交換器131aを通過した気流の方向を調整する。風向調整部133,133aは、気流の方向を調整する2つの調整手段の一例に相当し、室内熱交換器131,131aは、気流生成手段を構成する第1熱交換器及び第2熱交換器の一例に相当する。 The indoor heat exchanger 131 condenses the refrigerant flowing in from the compressor 111 and sends it to the expansion valve 134. The expansion valve 134 is a decompressor similar to the expansion valve 114. The expansion valve 134 expands the refrigerant flowing in from the indoor heat exchanger 131 and discharges it to the indoor heat exchanger 131a. The opening degree of the expansion valve 134 changes according to the control instruction transmitted from the control unit 140. The indoor heat exchanger 131a condenses the refrigerant flowing in from the expansion valve 134 and sends it to the expansion valve 114 of the outdoor unit 110. The control unit 140 controls the refrigerant temperature of the indoor heat exchanger 131 and the refrigerant temperature of the indoor heat exchanger 131a by controlling the opening degrees of the expansion valves 114 and 134, and makes the temperatures of the two airflows independent. decide. The indoor blower 132a generates an air flow that passes through the indoor heat exchanger 131a. The wind direction adjusting unit 133a adjusts the direction of the airflow passing through the indoor heat exchanger 131a. The wind direction adjusting units 133 and 133a correspond to an example of two adjusting means for adjusting the direction of the airflow, and the indoor heat exchangers 131 and 131a are the first heat exchanger and the second heat exchanger constituting the airflow generating means. Corresponds to one example.
 図11には、本実施の形態に係る室内機120の概観が示されている。図11に示されるように、風向調整部133は、風向調整板としてのフラップ1331,1332を有し、風向調整部133aは、風向調整板としてのフラップ1331a,1332aを有する。これらの風向調整板の角度が制御部140によって独立に制御され、吹出口180の右側と左側とで異なる方向に吹き出される気流が生じる。 FIG. 11 shows an overview of the indoor unit 120 according to the present embodiment. As shown in FIG. 11, the wind direction adjusting unit 133 has flaps 1331, 1332 as wind direction adjusting plates, and the wind direction adjusting unit 133a has flaps 1331a and 1332a as wind direction adjusting plates. The angles of these wind direction adjusting plates are independently controlled by the control unit 140, and airflows that are blown out in different directions on the right side and the left side of the outlet 180 are generated.
 図10に戻り、室内機120は、記憶部190をさらに有する。記憶部190は、不揮発性の記憶装置であって、ユーザによって入力された空調運転の終了指示の履歴を記憶する。詳細には、ユーザが終了指示を入力すると、制御部140は、記憶部190に入力時刻を示す履歴を追加してから、運転を終了する。なお、室内機120は、記憶部190に代えて、外部のネットワーク上のサーバに履歴を格納し、適宜参照してもよい。記憶部190は、空調運転を停止した時刻を示す停止時刻情報を記憶する記憶手段の一例に相当する。 Returning to FIG. 10, the indoor unit 120 further has a storage unit 190. The storage unit 190 is a non-volatile storage device, and stores the history of the end instruction of the air conditioning operation input by the user. Specifically, when the user inputs an end instruction, the control unit 140 adds a history indicating the input time to the storage unit 190, and then ends the operation. The indoor unit 120 may store the history in a server on the external network instead of the storage unit 190 and refer to it as appropriate. The storage unit 190 corresponds to an example of a storage means for storing stop time information indicating a time when the air conditioning operation is stopped.
 続いて、空調システム1000によって実行される撹拌モードの運転について説明する。この撹拌モードは、過去において空調運転が終了した時刻に対応する時刻より前の一定時間になったタイミングで天井と床の温度差が検知されると実行される。例えば、過去において空調運転が21時に終了した場合には、この21時より10分間だけ前の20時50分になったタイミングで実行される。そして、室内機120は、図12に示されるように、上方向の気流と下方向の気流とを生成する。ここで、気流生成部130は、上方向の気流の温度を、下方向の気流の温度より低くする。上方向の気流及び下方向の気流は、気流生成手段によって第2気流として生成される上方向気流及び下方向気流の一例に相当する。図12は、空調システム1000が暖房運転を開始してからしばらく時間が経過し、1階と2階が部分的に区切られている室内空間1001の上部に暖気が溜まっている様子を表している。撹拌モードが実行されると、上方向に吹き出す気流が暖気を撹拌し、下方向に吹き出す気流が1階の空気を撹拌する。これにより、室内空間1001における上下の温度差が低減する。 Next, the operation of the stirring mode executed by the air conditioning system 1000 will be described. This stirring mode is executed when the temperature difference between the ceiling and the floor is detected at a certain time before the time corresponding to the time when the air conditioning operation is finished in the past. For example, if the air conditioning operation ends at 21:00 in the past, it is executed at the timing of 20:50, which is 10 minutes before this 21:00. Then, the indoor unit 120 generates an upward airflow and a downward airflow as shown in FIG. Here, the airflow generation unit 130 makes the temperature of the upward airflow lower than the temperature of the downward airflow. The upward airflow and the downward airflow correspond to an example of the upward airflow and the downward airflow generated as the second airflow by the airflow generating means. FIG. 12 shows a state in which warm air is accumulated in the upper part of the indoor space 1001 in which the first floor and the second floor are partially separated after a while has passed since the air conditioning system 1000 started the heating operation. .. When the stirring mode is executed, the airflow blown upward stirs the warm air, and the airflow blown downward stirs the air on the first floor. As a result, the temperature difference between the upper and lower parts of the indoor space 1001 is reduced.
 撹拌モードにおける冷凍サイクルの例が、図13~16に示されている。図13は、暖房運転において膨張弁134の開度が大きい場合を示し、図14は、暖房運転において膨張弁134の開度が小さい場合を示す。図13,14からわかるように、2つの室内熱交換器131,131aの温度が異なり、2つの気流の温度が異なる。同様に、図15は、冷房運転において膨張弁の開度が大きい場合を示し、図16は、冷房運転において膨張弁134の開度が小さい場合を示す。図15,16からも、2つの室内熱交換器131,131aの温度が異なり、2つの気流の温度が異なることがわかる。なお、冷房運転においては、冷媒回路において冷媒が流れる方向が、暖房運転とは逆の方向になる。 Examples of the refrigeration cycle in the stirring mode are shown in FIGS. 13-16. FIG. 13 shows a case where the opening degree of the expansion valve 134 is large in the heating operation, and FIG. 14 shows a case where the opening degree of the expansion valve 134 is small in the heating operation. As can be seen from FIGS. 13 and 14, the temperatures of the two indoor heat exchangers 131 and 131a are different, and the temperatures of the two airflows are different. Similarly, FIG. 15 shows a case where the opening degree of the expansion valve is large in the cooling operation, and FIG. 16 shows a case where the opening degree of the expansion valve 134 is small in the cooling operation. It can be seen from FIGS. 15 and 16 that the temperatures of the two indoor heat exchangers 131 and 131a are different and the temperatures of the two airflows are different. In the cooling operation, the direction in which the refrigerant flows in the refrigerant circuit is opposite to that in the heating operation.
 以上、説明したように、上方向の気流と下方向の気流とを吹き出すことで1階と2階の温度差を低減させる撹拌モードが、ユーザが空調システム1000の運転を終了させる時刻より前に実施される。これにより、例えば、1階に居たユーザが就寝のために2階へ上がる際に、予め1階と2階の温度差を解消することができる。 As described above, the stirring mode that reduces the temperature difference between the first floor and the second floor by blowing out the upward airflow and the downward airflow is before the time when the user ends the operation of the air conditioning system 1000. Will be implemented. Thereby, for example, when the user on the first floor goes up to the second floor to go to bed, the temperature difference between the first floor and the second floor can be eliminated in advance.
 ここで、上方向の気流の温度を、下方向の気流の温度より低くすることで、温度差をより効率的に低減することができる。なお、上方向の気流と下方向の気流とは、風向及び温度に加えて、風量が異なる気流であってもよい。例えば、上方向の気流の風量を、下方向の気流の風量より大きくして、天井を含む2階部分の空気をより確実に攪拌してもよい。 Here, by making the temperature of the upward airflow lower than the temperature of the downward airflow, the temperature difference can be reduced more efficiently. The airflow in the upward direction and the airflow in the downward direction may be different in air flow in addition to the wind direction and temperature. For example, the air volume of the upward airflow may be made larger than the airflow of the downward airflow to more reliably agitate the air on the second floor including the ceiling.
 以上、実施の形態について説明したが、本開示は上記実施の形態によって限定されるものではない。 Although the embodiments have been described above, the present disclosure is not limited to the above embodiments.
 例えば、赤外線センサ161,163を利用して室内空間1001に在室するユーザを検出し、ユーザが不在のときに限って温度差低減モードの運転を実施してもよい。また、上記実施の形態1では、図5に示される制御対象の値を、通常モードにおける基準値からの変化量により規定していたが、これには限定されない。具体的には、図5に示される制御対象の値を、現在値を基準としたときの変化量により規定してもよい。例えば、通常モードから温度差低減モード1に稼働状態が変化した後に、温度差低減モード1の実行が再度決定された場合に、制御部140は、圧縮機の周波数を通常モードより(2×f1)だけ減少させてもよい。これにより、温度差に関する状況が変化しない場合において、室内空間1001の空気を攪拌する気流を徐々に強くして、温度差をより確実に解消することができる。また、図5の例では、温度差低減モード1,2,3の順に制御対象の値を小さくしたが、これには限定されず、制御対象の値を任意に変更してもよい。例えば、F1がF2より小さく、F2がF3より小さいものとしてもよい。 For example, the infrared sensors 161 and 163 may be used to detect a user in the indoor space 1001, and the temperature difference reduction mode may be operated only when the user is absent. Further, in the first embodiment, the value of the control target shown in FIG. 5 is defined by the amount of change from the reference value in the normal mode, but the present invention is not limited to this. Specifically, the value of the control target shown in FIG. 5 may be defined by the amount of change with respect to the current value. For example, when the execution of the temperature difference reduction mode 1 is determined again after the operating state changes from the normal mode to the temperature difference reduction mode 1, the control unit 140 sets the frequency of the compressor from the normal mode (2 × f1). ) May be reduced. As a result, when the situation regarding the temperature difference does not change, the air flow that agitates the air in the indoor space 1001 is gradually strengthened, and the temperature difference can be more reliably eliminated. Further, in the example of FIG. 5, the value of the control target is reduced in the order of the temperature difference reduction modes 1, 2, and 3, but the value is not limited to this, and the value of the control target may be arbitrarily changed. For example, F1 may be smaller than F2 and F2 may be smaller than F3.
 また、実施の形態2に係る管理装置300が、取得部150及び制御部140の機能を実現し、気流生成部130を有する室内機120を制御する空調制御装置として構成されてもよい。また、天井及び床は、水平な面に限定されず、傾斜した面であってもよいし、凹凸を有してもよい。天井は、滞留した暖気からの熱を受けて赤外線を放射する面であればよく、床は、滞留した冷気へ熱を与えて赤外線を放射する面であればよい。 Further, the management device 300 according to the second embodiment may be configured as an air conditioning control device that realizes the functions of the acquisition unit 150 and the control unit 140 and controls the indoor unit 120 having the airflow generation unit 130. Further, the ceiling and the floor are not limited to horizontal surfaces, and may be inclined surfaces or may have irregularities. The ceiling may be a surface that receives heat from the accumulated warm air and radiates infrared rays, and the floor may be a surface that gives heat to the retained cold air and radiates infrared rays.
 また、温度差低減モード1,2を統合して1つの稼働状態としてもよいし、温度差低減モード1,2の実行を省略してもよいし、温調優先モードの実行を省略してもよい。少なくとも、表面温度差が閾値を超えたときに温度差低減モード3の運転が実行されれば、室内空間1001における上下の温度差を解消することができる。また、上記実施の形態1では、変化率が大きいときの温度差低減モードの運転を、温度差が生じる前に予防的に実施する例について説明したが、これには限定されない。例えば、温度差が生じた場合において、変化率が大きいときにはある程度空気を攪拌し、変化率が小さくなって温度差が安定状態に移行してから鉛直成分がより大きい気流を生成してもよい。詳細には、気流生成部130は、温度差が閾値Th3より大きい場合において、変化率が新たな閾値Th4より小さいときに温度差低減モード3の鉛直成分が比較的大きい第2気流を生成し、変化率が閾値Th4より大きいときに鉛直成分が比較的小さい第4気流を生成してもよい。さらに別の例として、空調システム1000は、温度差が生じた場合において、変化率がなお大きいときには、新たな運転モードに移行して、より鉛直方向の成分が大きい気流を生成してもよい。詳細には、気流生成部130は、温度差が閾値Th3より大きい場合において、変化率が新たな閾値Th4より小さいときに温度差低減モード3の第2気流を生成し、変化率が閾値Th4より大きいときに鉛直方向の成分が大きい第3気流を生成してもよい。 Further, the temperature difference reduction modes 1 and 2 may be integrated into one operating state, the execution of the temperature difference reduction modes 1 and 2 may be omitted, or the execution of the temperature control priority mode may be omitted. good. At least, if the operation of the temperature difference reduction mode 3 is executed when the surface temperature difference exceeds the threshold value, the upper and lower temperature difference in the indoor space 1001 can be eliminated. Further, in the first embodiment, an example in which the operation in the temperature difference reduction mode when the rate of change is large is carried out prophylactically before the temperature difference occurs is described, but the present invention is not limited to this. For example, when a temperature difference occurs, air may be agitated to some extent when the rate of change is large, and an air flow having a larger vertical component may be generated after the rate of change becomes small and the temperature difference shifts to a stable state. Specifically, when the temperature difference is larger than the threshold value Th3, the airflow generation unit 130 generates a second airflow having a relatively large vertical component in the temperature difference reduction mode 3 when the rate of change is smaller than the new threshold value Th4. When the rate of change is larger than the threshold value Th4, a fourth airflow having a relatively small vertical component may be generated. As yet another example, the air conditioning system 1000 may shift to a new operation mode to generate an air flow having a larger vertical component when the rate of change is still large in the case of a temperature difference. Specifically, when the temperature difference is larger than the threshold value Th3, the airflow generation unit 130 generates the second airflow in the temperature difference reduction mode 3 when the rate of change is smaller than the new threshold value Th4, and the rate of change is greater than the threshold value Th4. When it is large, a third airflow having a large vertical component may be generated.
 また、空調システム1000の機能は、専用のハードウェアによっても、また、通常のコンピュータシステムによっても実現することができる。 Further, the function of the air conditioning system 1000 can be realized by dedicated hardware or by a normal computer system.
 例えば、制御部140によって実行されるプログラムP1を、コンピュータ読み取り可能な非一時的な記録媒体に格納して配布し、そのプログラムP1をコンピュータにインストールすることにより、上述の処理を実行する装置を構成することができる。このような記録媒体としては、例えばフレキシブルディスク、CD-ROM(Compact Disc Read-Only Memory)、DVD(Digital Versatile Disc)、MO(Magneto-Optical Disc)が考えられる。 For example, a device that executes the above-described processing is configured by storing and distributing the program P1 executed by the control unit 140 in a non-temporary recording medium that can be read by a computer and installing the program P1 in the computer. can do. As such a recording medium, for example, a flexible disc, a CD-ROM (Compact Disc Read-Only Memory), a DVD (Digital Versatile Disc), and an MO (Magneto-Optical Disc) can be considered.
 また、プログラムP1をインターネットに代表される通信ネットワーク上のサーバ装置が有するディスク装置に格納しておき、例えば、搬送波に重畳させて、コンピュータにダウンロードするようにしてもよい。 Alternatively, the program P1 may be stored in a disk device of a server device on a communication network represented by the Internet, superimposed on a carrier wave, and downloaded to a computer, for example.
 また、通信ネットワークを介してプログラムP1を転送しながら起動実行することによっても、上述の処理を達成することができる。 The above process can also be achieved by starting and executing the program P1 while transferring it via the communication network.
 さらに、プログラムP1の全部又は一部をサーバ装置上で実行させ、その処理に関する情報をコンピュータが通信ネットワークを介して送受信しながらプログラムを実行することによっても、上述の処理を達成することができる。 Further, the above-mentioned processing can also be achieved by executing all or a part of the program P1 on the server device and executing the program while the computer sends and receives information on the processing via the communication network.
 なお、上述の機能を、OS(Operating System)が分担して実現する場合又はOSとアプリケーションとの協働により実現する場合には、OS以外の部分のみを媒体に格納して配布してもよく、また、コンピュータにダウンロードしてもよい。 When the above-mentioned functions are shared by the OS (Operating System) or realized by collaboration between the OS and the application, only the parts other than the OS may be stored in the medium and distributed. , You may also download it to your computer.
 また、空調システム1000の機能を実現する手段は、ソフトウェアに限られず、その一部又は全部を、回路を含む専用のハードウェアによって実現してもよい。 Further, the means for realizing the functions of the air conditioning system 1000 is not limited to software, and a part or all of them may be realized by dedicated hardware including a circuit.
 本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この開示を説明するためのものであり、本開示の範囲を限定するものではない。すなわち、本開示の範囲は、実施の形態ではなく、請求の範囲によって示される。そして請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、この開示の範囲内とみなされる。 The present disclosure allows for various embodiments and modifications without departing from the broad spirit and scope of the present disclosure. Moreover, the above-described embodiment is for explaining this disclosure, and does not limit the scope of the present disclosure. That is, the scope of the present disclosure is indicated not by the embodiment but by the claims. And various modifications made within the scope of the claims and within the equivalent meaning of disclosure are considered to be within the scope of this disclosure.
 本開示は、天井高の高い空間における空調に適している。 This disclosure is suitable for air conditioning in a space with a high ceiling height.
 1000 空調システム、 101 冷媒配管、 110 室外機、 111 圧縮機、 112 室外熱交換器、 113 室外送風機、 114 膨張弁、 120 室内機、 130 気流生成部、 131,131a 室内熱交換器、 132,132a 室内送風機、 133,133a 風向調整部、 134 膨張弁、 140 制御部、 150 取得部、 151 赤外線送受信部、 161,163 赤外線センサ、 162 温度センサ、 170 報知部、 180 吹出口、 181 吸込口、 190 記憶部、 300 管理装置、 20 端末、 1331~1334,1331a,1332a フラップ、 A1~A3 領域、 L1,L2,L11,L12 線、 P1 プログラム。 1000 air conditioning system, 101 refrigerant piping, 110 outdoor unit, 111 compressor, 112 outdoor heat exchanger, 113 outdoor blower, 114 expansion valve, 120 indoor unit, 130 airflow generator, 131, 131a indoor heat exchanger, 132, 132a Indoor blower, 133, 133a Wind direction adjustment unit, 134 expansion valve, 140 control unit, 150 acquisition unit, 151 infrared transmitter / receiver, 161,163 infrared sensor, 162 temperature sensor, 170 notification unit, 180 outlet, 181 suction port, 190 Storage unit, 300 management device, 20 terminals, 1331-1334, 1331a, 1332a flap, A1 to A3 area, L1, L2, L11, L12 line, P1 program.

Claims (15)

  1.  空調対象である室内空間における天井の表面温度を測定する天井温度測定手段と、
     前記室内空間における床の表面温度を測定する床温度測定手段と、
     前記天井温度測定手段によって測定された前記天井の表面温度と前記床温度測定手段によって測定された前記床の表面温度との温度差が第1閾値より小さい場合に第1気流を生成し、前記温度差が前記第1閾値より大きい場合に、前記第1気流とは異なる第2気流を生成する気流生成手段と、
     を備える空調システム。
    Ceiling temperature measuring means for measuring the surface temperature of the ceiling in the indoor space to be air-conditioned,
    A floor temperature measuring means for measuring the surface temperature of the floor in the indoor space,
    When the temperature difference between the surface temperature of the ceiling measured by the ceiling temperature measuring means and the surface temperature of the floor measured by the floor temperature measuring means is smaller than the first threshold value, a first air flow is generated to generate the temperature. An airflow generating means that generates a second airflow different from the first airflow when the difference is larger than the first threshold value.
    Air conditioning system with.
  2.  前記第2気流は、前記第1気流より鉛直方向の成分が大きい気流である、
     請求項1に記載の空調システム。
    The second airflow is an airflow having a larger vertical component than the first airflow.
    The air conditioning system according to claim 1.
  3.  前記気流生成手段は、生成した前記第1気流及び前記第2気流を吹出口から前記室内空間に吹き出し、
     前記第2気流が前記吹出口から吹き出される方向は、前記第1気流が前記吹出口から吹き出される方向より上又は下の方向である、
     請求項1又は2に記載の空調システム。
    The airflow generating means blows the generated first airflow and the second airflow from the air outlet into the indoor space.
    The direction in which the second airflow is blown out from the outlet is a direction above or below the direction in which the first airflow is blown out from the outlet.
    The air conditioning system according to claim 1 or 2.
  4.  前記気流生成手段は、前記第1気流及び前記第2気流を生成するための送風手段を有し、
     前記第2気流が生成されるときの前記送風手段の風量は、前記第1気流が生成されるときの前記送風手段の風量より大きい、
     請求項1から3のいずれか一項に記載の空調システム。
    The airflow generating means has a blowing means for generating the first airflow and the second airflow.
    The air volume of the blower means when the second airflow is generated is larger than the air volume of the blower means when the first airflow is generated.
    The air conditioning system according to any one of claims 1 to 3.
  5.  冷媒を圧縮する圧縮機と、前記冷媒と前記室内空間における空気との間で熱交換を行う熱交換器と、を有する冷媒回路、をさらに備え、
     前記第1気流及び前記第2気流は、前記熱交換器を通過して前記冷媒との間で熱交換が行われた気流であって、
     前記第2気流が生成されるときの前記圧縮機の回転数は、前記第1気流が生成されるときの前記圧縮機の回転数より小さい、
     請求項1から4のいずれか一項に記載の空調システム。
    A refrigerant circuit having a compressor for compressing the refrigerant and a heat exchanger for exchanging heat between the refrigerant and the air in the indoor space is further provided.
    The first airflow and the second airflow are airflows that have passed through the heat exchanger and exchanged heat with the refrigerant.
    The rotation speed of the compressor when the second airflow is generated is smaller than the rotation speed of the compressor when the first airflow is generated.
    The air conditioning system according to any one of claims 1 to 4.
  6.  前記第1気流及び前記第2気流は、冷媒と前記室内空間における空気との間で熱交換を行う熱交換器を通過することで温度が上昇した気流であって、
     前記第2気流が生成される際の前記熱交換器の管温度の下限値は、前記第1気流が生成される際の前記熱交換器の管温度の下限値より小さい、
     請求項1から4のいずれか一項に記載の空調システム。
    The first airflow and the second airflow are airflows whose temperature has risen by passing through a heat exchanger that exchanges heat between the refrigerant and the air in the indoor space.
    The lower limit of the tube temperature of the heat exchanger when the second air flow is generated is smaller than the lower limit of the tube temperature of the heat exchanger when the first air flow is generated.
    The air conditioning system according to any one of claims 1 to 4.
  7.  前記気流生成手段は、前記温度差の変化率が第2閾値より大きい場合に、前記第1気流とは異なる第3気流を生成する、
     請求項1から6のいずれか一項に記載の空調システム。
    The airflow generating means generates a third airflow different from the first airflow when the rate of change of the temperature difference is larger than the second threshold value.
    The air conditioning system according to any one of claims 1 to 6.
  8.  前記気流生成手段は、
     前記変化率が前記第2閾値より大きい場合に、前記第3気流を生成し、
     前記変化率が前記第2閾値より小さく、前記温度差が前記第1閾値より大きい場合に、前記第2気流を生成し、
     前記第3気流は、前記第2気流より鉛直方向の成分が大きい気流である、
     請求項7に記載の空調システム。
    The airflow generating means is
    When the rate of change is greater than the second threshold, the third airflow is generated.
    When the rate of change is smaller than the second threshold value and the temperature difference is larger than the first threshold value, the second air flow is generated.
    The third airflow is an airflow having a larger vertical component than the second airflow.
    The air conditioning system according to claim 7.
  9.  前記気流生成手段は、前記温度差が前記第1閾値より大きい場合において、前記変化率が前記第2閾値より小さいときに前記第2気流を生成し、前記変化率が前記第2閾値より大きいときに前記第3気流を生成し、
     前記第2気流は、前記第3気流より鉛直方向の成分が大きい気流である、
     請求項7に記載の空調システム。
    When the temperature difference is larger than the first threshold value, the airflow generating means generates the second airflow when the rate of change is smaller than the second threshold value, and when the rate of change is larger than the second threshold value. Generates the third airflow in
    The second airflow is an airflow having a larger vertical component than the third airflow.
    The air conditioning system according to claim 7.
  10.  前記室内空間における空気の目標温度を示す目標温度情報を取得する取得手段と、
     前記室内空間における空気の温度を測定する室温測定手段と、をさらに備え、
     前記気流生成手段は、前記温度差が前記第1閾値より大きい場合において、前記第2気流を生成し、前記室温測定手段によって測定された空気の温度が前記目標温度と異なるときには、前記第2気流とは温度が異なる第4気流を生成する、
     請求項1から9のいずれか一項に記載の空調システム。
    An acquisition means for acquiring target temperature information indicating a target temperature of air in the indoor space, and
    A room temperature measuring means for measuring the temperature of air in the indoor space is further provided.
    The airflow generating means generates the second airflow when the temperature difference is larger than the first threshold value, and when the temperature of the air measured by the room temperature measuring means is different from the target temperature, the second airflow is generated. Generates a fourth airflow with a different temperature than
    The air conditioning system according to any one of claims 1 to 9.
  11.  空調運転を停止した時刻を示す停止時刻情報を記憶する記憶手段、をさらに備え、
     前記気流生成手段は、
     気流の方向を調整する2つの調整手段を有し、
     前記停止時刻情報により示される空調運転を停止した過去の時刻に対応する時刻より前において、前記温度差が前記第1閾値より大きい場合に、前記2つの調整手段により、上方向に吹き出す上方向気流と、下方向に吹き出す下方向気流と、を前記第2気流として生成する、
     請求項1から10のいずれか一項に記載の空調システム。
    Further equipped with a storage means for storing stop time information indicating the time when the air conditioning operation was stopped,
    The airflow generating means is
    It has two adjusting means to adjust the direction of the air flow,
    When the temperature difference is larger than the first threshold value before the time corresponding to the past time when the air conditioning operation is stopped indicated by the stop time information, the upward airflow blown upward by the two adjusting means. And the downward airflow that blows out downward are generated as the second airflow.
    The air conditioning system according to any one of claims 1 to 10.
  12.  前記気流生成手段は、
     第1熱交換器及び第2熱交換器を有し、
     前記第1熱交換器を通過することで温度が変化した前記上方向気流と、前記第2熱交換器を通過することで温度が変化した前記下方向気流と、を生成し、
     前記上方向気流の温度は、前記下方向気流の温度より低い、
     請求項11に記載の空調システム。
    The airflow generating means is
    It has a first heat exchanger and a second heat exchanger,
    The upward airflow whose temperature has changed by passing through the first heat exchanger and the downward airflow whose temperature has changed by passing through the second heat exchanger are generated.
    The temperature of the upward airflow is lower than the temperature of the downward airflow.
    The air conditioning system according to claim 11.
  13.  空調対象である室内空間における気流を生成する気流生成手段を制御する空調制御装置であって、
     前記室内空間における天井の表面温度の測定値と、前記室内空間における床の表面温度の測定値と、を取得する取得手段と、
     前記天井の表面温度の測定値と前記床の表面温度の測定値との温度差が閾値より小さい場合に、前記気流生成手段に第1気流を生成させ、前記温度差が前記閾値より大きい場合に、前記第1気流とは異なる第2気流を前記気流生成手段に生成させる制御手段と、
     を備える空調制御装置。
    An air conditioning control device that controls an airflow generating means that generates an airflow in an indoor space that is an object of air conditioning.
    An acquisition means for acquiring the measured value of the surface temperature of the ceiling in the indoor space and the measured value of the surface temperature of the floor in the indoor space.
    When the temperature difference between the measured value of the surface temperature of the ceiling and the measured value of the surface temperature of the floor is smaller than the threshold value, the airflow generating means is made to generate the first airflow, and the temperature difference is larger than the threshold value. , A control means for causing the airflow generating means to generate a second airflow different from the first airflow,
    Air conditioning controller equipped with.
  14.  室内空間における天井の表面温度と前記室内空間における床の表面温度との温度差が閾値より大きい場合に、前記温度差が前記閾値より小さい場合の第1気流とは異なる第2気流を生成すること、
     を含む空調方法。
    When the temperature difference between the surface temperature of the ceiling in the indoor space and the surface temperature of the floor in the indoor space is larger than the threshold value, a second air flow different from the first air flow when the temperature difference is smaller than the threshold value is generated. ,
    Air conditioning methods including.
  15.  室内空間における気流を生成する気流生成手段を制御するコンピュータに、
     前記室内空間における天井の表面温度と前記室内空間における床の表面温度との温度差が閾値より大きい場合に、前記温度差が前記閾値より小さい場合の第1気流とは異なる第2気流を前記気流生成手段に生成させること、
     を実行させるためのプログラム。
    To a computer that controls the airflow generation means that generates the airflow in the indoor space
    When the temperature difference between the surface temperature of the ceiling in the indoor space and the surface temperature of the floor in the indoor space is larger than the threshold value, the airflow is a second airflow different from the first airflow when the temperature difference is smaller than the threshold value. Let the generation means generate,
    A program to execute.
PCT/JP2020/010111 2020-03-09 2020-03-09 Air conditioning system, air conditioning control device, air conditioning method, and program WO2021181486A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/010111 WO2021181486A1 (en) 2020-03-09 2020-03-09 Air conditioning system, air conditioning control device, air conditioning method, and program
JP2022507021A JP7414956B2 (en) 2020-03-09 2020-03-09 Air conditioning system, air conditioning control device, air conditioning method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/010111 WO2021181486A1 (en) 2020-03-09 2020-03-09 Air conditioning system, air conditioning control device, air conditioning method, and program

Publications (1)

Publication Number Publication Date
WO2021181486A1 true WO2021181486A1 (en) 2021-09-16

Family

ID=77670507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010111 WO2021181486A1 (en) 2020-03-09 2020-03-09 Air conditioning system, air conditioning control device, air conditioning method, and program

Country Status (2)

Country Link
JP (1) JP7414956B2 (en)
WO (1) WO2021181486A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114811718A (en) * 2022-04-27 2022-07-29 青岛海尔空调电子有限公司 Method, device, equipment and storage medium for temperature regulation system control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536223U (en) * 1991-10-14 1993-05-18 日本サーモスタツト株式会社 Exhaust fan with indoor air circulation mechanism
JP2002277162A (en) * 2001-03-22 2002-09-25 Osaka Gas Co Ltd Bathroom dryer
JP2007322062A (en) * 2006-05-31 2007-12-13 Daikin Ind Ltd Air conditioner
JP2011112259A (en) * 2009-11-25 2011-06-09 Daikin Industries Ltd Air conditioning control system
KR20150105839A (en) * 2014-03-10 2015-09-18 엘지전자 주식회사 Air-conditioner and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5289392B2 (en) 2010-07-16 2013-09-11 三菱電機株式会社 Air conditioner
WO2016051570A1 (en) 2014-10-02 2016-04-07 三菱電機株式会社 Air purifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536223U (en) * 1991-10-14 1993-05-18 日本サーモスタツト株式会社 Exhaust fan with indoor air circulation mechanism
JP2002277162A (en) * 2001-03-22 2002-09-25 Osaka Gas Co Ltd Bathroom dryer
JP2007322062A (en) * 2006-05-31 2007-12-13 Daikin Ind Ltd Air conditioner
JP2011112259A (en) * 2009-11-25 2011-06-09 Daikin Industries Ltd Air conditioning control system
KR20150105839A (en) * 2014-03-10 2015-09-18 엘지전자 주식회사 Air-conditioner and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114811718A (en) * 2022-04-27 2022-07-29 青岛海尔空调电子有限公司 Method, device, equipment and storage medium for temperature regulation system control
CN114811718B (en) * 2022-04-27 2024-02-23 青岛海尔空调电子有限公司 Method, apparatus, device and storage medium for temperature regulation system control

Also Published As

Publication number Publication date
JP7414956B2 (en) 2024-01-16
JPWO2021181486A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JP6642379B2 (en) air conditioner
JP5858062B2 (en) Air conditioning system
JP6125039B2 (en) Air conditioning controller
JP6250076B2 (en) Air conditioning control device, air conditioning control system, air conditioning control method, and program
US10520213B2 (en) Air conditioner units and methods of operation
JP2019007710A (en) Air conditioner
JP7403669B2 (en) Ventilation alarm device and ventilation alarm program
WO2019146377A1 (en) Air conditioning apparatus
WO2021181486A1 (en) Air conditioning system, air conditioning control device, air conditioning method, and program
JP6760314B2 (en) Air conditioner
JP7420562B2 (en) Air conditioners and servers
CN109642747B (en) Air conditioning apparatus
JP6685418B2 (en) Air conditioning system, air conditioning controller, air conditioning method and program
CN112856728B (en) Air conditioner
JP2007192450A (en) Air conditioner
JP6562139B2 (en) Refrigeration equipment
JP2019138521A (en) Air conditioning device
JP7212283B2 (en) air conditioner
WO2022024261A1 (en) Air conditioning device
JP2019109025A (en) Air conditioner
US20240060674A1 (en) Air conditioner and control method for air conditioner
US20230243540A1 (en) Air-conditioning system
WO2019198277A1 (en) Air conditioning system
WO2020110842A1 (en) Air conditioner, and server
JP2022172985A (en) Indoor unit for air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507021

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924354

Country of ref document: EP

Kind code of ref document: A1