WO2019198277A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2019198277A1
WO2019198277A1 PCT/JP2018/047210 JP2018047210W WO2019198277A1 WO 2019198277 A1 WO2019198277 A1 WO 2019198277A1 JP 2018047210 W JP2018047210 W JP 2018047210W WO 2019198277 A1 WO2019198277 A1 WO 2019198277A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
room
conditioning performance
air
performance
Prior art date
Application number
PCT/JP2018/047210
Other languages
French (fr)
Japanese (ja)
Inventor
敬介 内田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2020513066A priority Critical patent/JP7219266B2/en
Priority to CN201880092218.0A priority patent/CN112041619B/en
Publication of WO2019198277A1 publication Critical patent/WO2019198277A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/48Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits

Definitions

  • This disclosure relates to an air conditioning system including an air conditioner.
  • Some air conditioners can be controlled to start an air conditioning operation in advance so that the room reaches a set temperature at a desired time.
  • the time from the start of the air conditioning operation to reaching the set temperature often varies depending on the air conditioning performance of the room in which the air conditioner is installed. This is because the air conditioning performance of each room is affected by factors such as heat insulation, size, air tightness, and sunlight.
  • the air conditioner disclosed in Patent Document 1 is provided with selection means 13 that changes the operating conditions in accordance with the air conditioning load (airtight performance, heat insulation performance) of the house. Thereby, the operation state is switched according to the airtight performance and heat insulation performance of the house, and an attempt is made to perform the air conditioning operation comfortably and efficiently in a house with different air conditioning loads.
  • an object of one aspect of the present invention is to provide an air conditioning system that can perform more comfortable air conditioning control based on the air conditioning performance of a space in which an air conditioner is installed.
  • the air conditioning system includes a heat pump cycle and a control unit that controls the operation of the heat pump cycle.
  • the control unit changes the control content of the defrosting operation based on the air conditioning performance of the space where the air conditioning control is performed by the heat pump cycle.
  • An air conditioning system includes a heat pump cycle including a compressor, and a control unit that controls the operation of the heat pump cycle.
  • the control unit performs air conditioning control for causing the temperature in the space to reach a set temperature by a set time based on the air conditioning performance of the space in which air conditioning control is performed by the heat pump cycle.
  • the control unit starts the operation of the compressor at a rotational speed within a range where the energy consumption efficiency of the heat pump cycle is optimal.
  • more comfortable air conditioning control can be performed based on the air conditioning performance in the space where the air conditioner is installed.
  • the defrosting operation can be controlled according to the level of heat insulation performance in the space where the air conditioner is installed.
  • FIG. 1 schematically shows a configuration of an air conditioning system 1 according to the present embodiment.
  • the air conditioning system 1 includes an air conditioner 10 and a server 70 as main components.
  • the air conditioner 10 can be connected to the server 70 via the Internet or a router.
  • the air conditioning system 1 stores information related to the air conditioning performance of the room R (space) in which the air conditioner 10 is installed.
  • the information on the air conditioning performance is information serving as an index as to whether or not the space (specifically, the room or the room) in which the air conditioner 10 is installed is an environment that is easily air-conditioned.
  • the air conditioning performance of the room R depends on factors such as the heat insulating property, the area, the air tightness, and the sunlight of the room R. For example, if the thermal insulation of the room R is higher, the temperature of the room R can reach the set temperature in a short time, or the power consumption (necessary heat amount) of the air conditioner 10 during the air conditioning operation can be kept low. it can. Therefore, it is determined that the air conditioning performance of the room R is high. On the other hand, if the heat insulating property of the room R is lower, it is determined that the air conditioning performance of the room R is low.
  • the information regarding the air conditioning performance can be rephrased as the information regarding the heat insulation performance.
  • Information regarding the air conditioning performance of the room R (space) in which the air conditioner 10 is installed may be determined in advance based on various conditions such as the building where the room R exists and the location. Alternatively, for example, a result of evaluation using a method for measuring the air conditioning performance of the room R as described below may be used as information regarding the air conditioning performance.
  • control content of the defrost operation implemented during the heating operation of the air conditioner 10 is changed based on the information regarding the air conditioning performance of the room R.
  • control content of the defrosting operation means the way of the defrosting operation (specifically, the duration of the defrosting operation, the number of executions, etc.).
  • FIG. 2 and 3 show the overall configuration of the air conditioner 10 according to the present embodiment.
  • the flow of the refrigerant (heat medium) during the heating operation of the air conditioner 10 is indicated by a solid arrow
  • the flow of the refrigerant (heat medium) during the cooling operation of the air conditioner 10 is indicated by a broken arrow. Yes.
  • this air conditioner 10 can perform both heating operation and cooling operation, this invention is applicable also to the air conditioner (namely, heating machine) which performs only heating operation.
  • the air conditioner 10 is a separate type air conditioner, and mainly includes an indoor unit 20, an outdoor unit 50, and a remote controller 60.
  • the air conditioner 10 performs heating, cooling, dehumidification, and the like of the room R to be air-conditioned using a heat pump cycle (also referred to as a refrigeration cycle or a refrigerant cycle).
  • a heat pump cycle also referred to as a refrigeration cycle or a refrigerant cycle.
  • the outdoor unit 50 includes a compressor 52, an outdoor heat exchanger 54, a four-way valve 53, an expansion valve 55, and the like. A heat pump cycle is formed by these and the indoor heat exchanger 12 provided on the indoor unit 20 side.
  • the indoor heat exchanger 12 in the indoor unit 20 the compressor 52 in the outdoor unit 50, the outdoor heat exchanger 54, the four-way valve 53, the expansion valve 55, and the like are connected via refrigerant pipes 57 and 58. It is configured by being connected.
  • the outdoor unit 50, the indoor unit 20, and the refrigerant pipes 57 and 58 will be described in detail.
  • Outdoor unit The outdoor unit 50 mainly includes a casing 51, a compressor 52, a four-way valve 53, an outdoor heat exchanger 54, an expansion valve 55, an outdoor blower 56, a refrigerant pipe 57, a refrigerant pipe 58, and two-way. It consists of a valve 59 and a three-way valve 65.
  • the outdoor unit 50 is installed outdoors.
  • the casing 51 includes a compressor 52, a four-way valve 53, an outdoor heat exchanger 54, an expansion valve 55, an outdoor blower 56, a refrigerant pipe 57, a refrigerant pipe 58, a two-way valve 59, a three-way valve 65, an outside air temperature sensor ( And an outdoor heat exchanger temperature sensor 63 and the like are accommodated.
  • the compressor 52 has a discharge pipe 52a and a suction pipe 52b.
  • the discharge pipe 52a and the suction pipe 52b are connected to different connection ports of the four-way valve 53, respectively.
  • the compressor 52 sucks low-pressure refrigerant gas from the suction pipe 52b, compresses the refrigerant gas to generate high-pressure refrigerant gas, and then discharges the high-pressure refrigerant gas from the discharge pipe 52a.
  • the control format of the compressor 52 is not particularly limited, and may be a constant speed compressor or an inverter compressor.
  • the four-way valve 53 is connected to the discharge pipe 52a and the suction pipe 52b of the compressor 52, the outdoor heat exchanger 54, and the indoor heat exchanger 12 through a refrigerant pipe.
  • the four-way valve 53 switches the path of the heat pump cycle according to a control signal transmitted from the control unit 41 (see FIG. 2) of the air conditioner 10 during operation. That is, the four-way valve 53 switches the path between the cooling operation state and the heating operation state.
  • the four-way valve 53 connects the discharge pipe 52a of the compressor 52 to the indoor heat exchanger 12 and connects the suction pipe 52b of the compressor 52 to the outdoor heat exchanger 54. (See solid arrow in FIG. 3).
  • the four-way valve 53 connects the discharge pipe 52a of the compressor 52 to the outdoor heat exchanger 54 and connects the suction pipe 52b of the compressor 52 to the indoor heat exchanger 12 (FIG. 3). (See the dashed arrow).
  • the outdoor heat exchanger 54 has a large number of radiating fins (not shown) attached to a heat transfer tube (not shown) that is bent back and forth at both left and right ends.
  • the outdoor heat exchanger 54 functions as a condenser during the cooling operation, and functions as an evaporator during the heating operation.
  • the expansion valve 55 is an electronic expansion valve whose opening degree can be controlled via a stepping motor.
  • One of the expansion valves 55 is connected to the two-way valve 59 via the refrigerant pipe 57 and the other is connected to the outdoor heat exchanger 54. It is connected.
  • the stepping motor of the expansion valve 55 operates according to a control signal transmitted from the control unit 41 (see FIG. 2) of the air conditioner 10.
  • the expansion valve 55 is in a state in which the high-temperature and high-pressure liquid refrigerant flowing out from the condenser (the indoor heat exchanger 12 during heating and the outdoor heat exchanger 54 during cooling) is easily evaporated during operation. In addition to reducing the pressure, it plays a role of adjusting the amount of refrigerant supplied to the evaporator (the outdoor heat exchanger 54 during heating and the indoor heat exchanger 12 during cooling).
  • the outdoor blower 56 is mainly composed of a propeller fan and a motor.
  • the propeller fan is rotationally driven by a motor, and supplies outdoor outdoor air to the outdoor heat exchanger 54.
  • the motor operates in accordance with a control signal transmitted from a control unit (not shown) of the air conditioner 10.
  • the two-way valve 59 is disposed in the refrigerant pipe 57.
  • the two-way valve 59 is closed when the refrigerant pipe 57 is removed from the outdoor unit 50 to prevent the refrigerant from leaking from the outdoor unit 50 to the outside.
  • the three-way valve 65 is disposed in the refrigerant pipe 58.
  • the three-way valve 65 is closed when the refrigerant pipe 58 is removed from the outdoor unit 50 to prevent the refrigerant from leaking from the outdoor unit 50 to the outside. Further, when it is necessary to recover the refrigerant from the outdoor unit 50 or from the entire heat pump cycle including the indoor unit 20, the refrigerant is recovered through the three-way valve 65.
  • the outdoor heat exchanger temperature sensor 63 is disposed in the vicinity of the outdoor heat exchanger 54 and measures the temperature of the outdoor heat exchanger 54.
  • the outdoor heat exchanger temperature sensor 63 may be disposed in contact with the outdoor heat exchanger 54.
  • the indoor unit 20 is mainly comprised from the housing
  • the housing 11 houses an indoor heat exchanger 12, an indoor fan 13, an indoor heat exchanger temperature sensor 14, an indoor temperature sensor 15, a louver 19, a control unit 41 (see FIG. 2), and the like.
  • the indoor heat exchanger 12 is a combination of three heat exchangers like a roof covering the indoor blower 13. Each heat exchanger has a large number of radiating fins (not shown) attached to a heat transfer tube (not shown) bent back and forth at both left and right ends. These heat exchangers function as a condenser during heating operation and function as an evaporator during cooling operation.
  • an indoor heat exchanger temperature sensor 14 for measuring the temperature of the heat exchanger is disposed.
  • the indoor heat exchanger temperature sensor 14 may be arranged in contact with the indoor heat exchanger 12.
  • the indoor blower 13 is mainly composed of a cross flow fan and a motor.
  • the cross flow fan is rotationally driven by a motor, sucks indoor air into the housing 11 and supplies the air to the indoor heat exchanger 12, and sends out the air heat-exchanged by the indoor heat exchanger 12 into the room.
  • the indoor temperature sensor 15 measures the temperature of the room where the indoor unit 20 is installed.
  • the room temperature sensor 15 is disposed, for example, in the vicinity of a suction port provided in the housing 11 for sucking room air.
  • the louver 19 is formed of a plate member whose angle can be changed. By appropriately changing the angle of the plate member, the air direction of the air sent out by the indoor blower 13 is changed in the vertical direction.
  • the louver 19 also serves as a shutter for controlling on / off (opening / closing) of air blowing into the room.
  • the indoor unit 20 includes an indoor temperature sensor 15, a display unit 23, a communication interface 24, a control unit 41, and the like as configurations other than the above (see FIG. 2).
  • the indoor temperature sensor 15 is an indoor temperature detection means, and measures the temperature in the room R in which the indoor unit 20 is installed.
  • known detection means such as a thermistor can be used.
  • the display unit 23 includes a liquid crystal display panel and an LED light.
  • the display unit 23 displays the operation status and alarms of the air conditioner 10 based on the signal from the control unit 41.
  • the communication interface 24 is realized by an antenna or a connector.
  • the communication interface 24 exchanges data with other devices by wired communication or wireless communication. Specifically, the communication interface 24 receives an infrared signal transmitted when the remote controller 60 is operated.
  • the communication interface 24 receives various signals, various data, various commands and the like transmitted from the server 70.
  • the communication interface 24 can also transmit information on the air conditioner 10 side to the server 70.
  • the control unit 41 is connected to each component in the air conditioner 10 and controls them.
  • the control part 41 is arrange
  • a memory 42, a timer 43, and the like are provided in the control unit 41.
  • the control unit 41 is connected to each component of the heat pump cycle via a signal line. And the control part in an electrical equipment unit controls a heat pump cycle based on a user's instruction
  • the memory 42 includes ROM (read only memory) and RAM (Random access memory).
  • the memory 42 stores an operation program and setting data of the air conditioner 10 and temporarily stores a calculation result by the control unit 41.
  • the timer 43 measures the time of processing performed in the control unit 41 and the operation time of each component in the air conditioner 10 as necessary.
  • the remote controller 60 functions as an operation unit for the user to operate the air conditioner 10. For example, the user can select the operation mode, the set temperature, and the like of the air conditioner 10 by operating the remote controller 60.
  • the refrigerant piping 57 is thinner than the refrigerant piping 58, and the liquid refrigerant flows during operation.
  • the refrigerant pipe 58 is thicker than the refrigerant pipe 57, and a gas refrigerant flows during operation.
  • the compressor 52 of the outdoor unit 50, the four-way valve 53, the outdoor heat exchanger 54 and the expansion valve 55, and the indoor heat exchanger 12 of the indoor unit 20 are sequentially connected by refrigerant pipes 57 and 58, and a heat pump cycle (refrigeration). Cycle).
  • the four-way valve 53 is in the state shown by the solid line in FIG. 3, that is, the discharge pipe 52 a of the compressor 52 is connected to the indoor heat exchanger 12 and the suction pipe of the compressor 52. 52b is connected to the outdoor heat exchanger 54. At this time, the two-way valve 59 and the three-way valve 65 are open.
  • the compressor 52 is started in this state, the gas refrigerant is sucked into the compressor 52 and compressed, and then supplied to the indoor heat exchanger 12 via the four-way valve 53 and the three-way valve 65, The indoor air is heated and condensed to become a liquid refrigerant.
  • the liquid refrigerant is sent to the expansion valve 55 via the two-way valve 59 and is decompressed to be in a gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant is sent to the outdoor heat exchanger 54 and evaporated in the outdoor heat exchanger 54 to become a gas refrigerant.
  • the gas refrigerant is sucked into the compressor 52 again via the four-way valve 53.
  • the four-way valve 53 is in the state indicated by the broken line in FIG. 3, that is, the discharge pipe 52a of the compressor 52 is connected to the outdoor heat exchanger 54, and the suction pipe of the compressor 52 52b is connected to the indoor heat exchanger 12.
  • the two-way valve 59 and the three-way valve 65 are open.
  • the compressor 52 is started, the gas refrigerant is sucked into the compressor 52 and compressed, and then sent to the outdoor heat exchanger 54 via the four-way valve 53 for outdoor heat exchange. Cooled in the vessel 54 to become a liquid refrigerant.
  • this liquid refrigerant is sent to the expansion valve 55, where it is depressurized and enters a gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant is supplied to the indoor heat exchanger 12 via the two-way valve 59, cools the indoor air and evaporates to become a gas refrigerant.
  • the gas refrigerant is sucked into the compressor 52 again via the three-way valve 65 and the four-way valve 53.
  • the control unit 41 determines whether or not frost has formed on the outdoor heat exchanger 54 based on the temperature measured by the outdoor heat exchanger temperature sensor 63 or the like.
  • the control unit 41 switches the four-way valve 53 so that the refrigeration cycle is the same as the above-described cooling operation, and defrosts by circulating the refrigerant with the indoor fan stopped ( Reverse defrost).
  • the control part 41 determines whether the frost of the outdoor side heat exchanger 54 was removed appropriately based on the temperature which the outdoor side heat exchanger temperature sensor 63 measured.
  • the control content of a defrost operation is changed. Specifically, the duration and number of times of defrosting operation are changed.
  • the method of the defrosting operation is not limited to the above-described reverse defrosting.
  • the server 70 includes a CPU (Central Processing Unit) 71, a memory 72, a display 73, an operation unit 74, and a communication interface 75 as main components.
  • CPU Central Processing Unit
  • the CPU (control unit) 71 controls each unit of the server 70 by executing a program stored in the memory 72.
  • the CPU 71 executes programs stored in the memory 72 and executes various processes described later by referring to various data.
  • an air conditioning performance evaluation unit 76 is provided inside the CPU 71.
  • the air conditioning performance evaluation unit 76 measures an environmental change in the room R (for example, a temperature change in the room R), and based on the result. Evaluate the air conditioning performance of room R.
  • the CPU 71 of the server 70 receives the operating condition of the air conditioner 10 and the indoor temperature sensor from the communication interface 24 of the air conditioner 10 so that the air conditioner performance evaluation unit 76 can evaluate the air conditioner performance of the room R. Information on 15 measurement data and the like is periodically transmitted.
  • the memory 72 is realized by various RAMs (Random Access Memory), various ROMs (Read-Only Memory), and the like.
  • the memory 72 includes a program executed by the CPU 71, data generated by execution of the program by the CPU 71, input data, and various databases used for operation control of the air conditioner 10 according to the present embodiment.
  • the memory 72 stores the air conditioning performance information (such as the air conditioning performance identification table 81 shown in FIG. 5) of the room R created by the air conditioning performance evaluation unit 76.
  • these pieces of information are stored in the memory 72 in the server 70, but these pieces of information may be stored in other devices accessible by the server 70.
  • the display 73 displays text and images based on signals from the CPU 71.
  • the operation unit 74 receives a command from a service administrator and inputs the command to the CPU 71.
  • the communication interface 75 transmits data from the CPU 71 to other devices such as the air conditioner 10 via the Internet, a carrier network, a router, or the like. Conversely, the communication interface 75 receives data from other devices such as the air conditioner 10 via the Internet, a carrier network, a router, etc., and passes it to the CPU 71.
  • FIG. 5 shows an air conditioning performance identification table 81 stored in the memory 72 in the server 70.
  • the air conditioning performance identification table 81 the identification ID of each room and the air conditioning performance of the room are stored in association with each other. Such a table is effective when there are a plurality of air conditioners that can communicate with the server 70.
  • the room identification ID is assigned to each room in which each air conditioner is installed.
  • a room R ⁇ b> 2 whose air conditioning performance is “medium” is a space having a standard (average) thermal insulation performance in the current evaluation standard of the thermal insulation performance of a house.
  • the room R1 in which the air conditioning performance corresponds to “high” is a space in which the heat insulation performance is approximately 20% or more superior to the room R2 in which the air conditioning performance corresponds to “medium”.
  • the room R3 in which the air conditioning performance is “low” is a space in which the heat insulation performance is inferior by about 20% or more compared to the room R2 in which the air conditioning performance is “medium”.
  • FIG. 6 shows a control content identification table 82 for the defrosting operation stored in the memory 72 in the server 70.
  • the control content of the defrosting operation (specifically, the upper limit value of the duration of the defrosting operation and ON / OFF of the setting of the refrosting operation) corresponds to the air conditioning performance of the room. It is remembered.
  • the upper limit value of the duration of the defrosting operation when the defrosting operation is performed in a room where the air conditioning performance is “low” is set as T2.
  • This upper limit value T2 is shorter than the upper limit value T1 in the room where the air conditioning performance corresponds to “medium” and “high”. This is because in a room with inferior air conditioning performance, the degree of decrease in the room temperature during the defrosting operation is greater than in a room with excellent air conditioning performance.
  • the upper limit value of the duration of the defrosting operation is shortened from a preset upper limit value (for example, T1). By doing, the fall degree of the room temperature during the defrosting operation in the room R can be reduced.
  • “setting of re-defrosting operation” in the control content identification table 82 shown in FIG. 6 is a setting for forcibly performing the defrosting operation again after a predetermined time has elapsed since the completion of the defrosting operation. is there. Such setting is preferably executed when the defrosting is insufficient in the first defrosting operation. Therefore, in the control content identification table 82 shown in FIG. 6, “re-defrosting operation setting” is ON when the air conditioning performance with a relatively short upper limit of the defrosting operation duration is “low”. . On the other hand, when the air conditioning performance having a relatively long upper limit of the defrosting operation is “medium” and “high”, “setting of re-defrosting operation” is OFF.
  • the duration of the defrosting operation is set shorter than that of a room having a standard air conditioning performance, and The number of defrosting operations has been increased compared to standard rooms with air conditioning performance.
  • FIG. 7 shows a processing flow when changing the control content of the defrosting operation of the air conditioner 10 based on the air conditioning performance of the room R. This process is executed when the air conditioner 10 starts the heating operation of the room R, for example. Below, the flow of the change process of the control content of the defrost operation in the air conditioner 10 is demonstrated, referring FIG.
  • step S11 when an operation start command is transmitted to the air conditioner 10 by the user operating the remote controller 60 or the like, the control unit 41 determines whether or not the command is a command to perform a heating operation. Judgment is made (step S11). If the command is a command other than the heating operation (for example, cooling operation) (NO in step S11), the process ends.
  • the control unit 41 notifies the server 70 that there is a command for starting the heating operation.
  • the CPU 71 of the server 70 refers to the air conditioning performance identification table 81 in the memory 72, and acquires information on the air conditioning performance associated with the identification ID of the room in which the air conditioner 10 is installed (step S12). . For example, when the identification ID of the room in which the air conditioner 10 is installed is “R3”, the air conditioning performance “low” is acquired.
  • the CPU 71 of the server 70 refers to the control content identification table 82 in the memory 72 and acquires information regarding the control content of the defrosting operation corresponding to the acquired air conditioning performance of the room R. (Step S13).
  • the server 70 transmits information regarding the acquired control content of the defrosting operation to the air conditioner 10 via the communication interface 75 (step S14).
  • Information transmitted to the air conditioner 10 is transmitted to the control unit 41 via the communication interface 24.
  • the control part 41 changes the information regarding the control content of the defrost operation stored in the memory 42 according to the information transmitted from the server 70 (step S15).
  • step S16 And the air conditioner 10 starts the heating operation (step S16). And the control part 41 removes the removal changed by step S15, for example, when the measurement temperature of the outdoor heat exchanger temperature sensor 63 falls below predetermined temperature, and satisfy
  • the defrosting operation is executed according to the control content of the frost operation.
  • the air conditioning performance of the room R is evaluated from the temperature change in the room R when the air conditioner 10 is performing the defrosting operation.
  • Defrosting operation is performed during heating operation.
  • the refrigerant in the heat pump cycle is circulated in the same direction as during the cooling operation. Since the heating operation is not performed during the defrosting operation, the temperature in the room R tends to decrease. The tendency of this temperature to decrease varies depending on the level of thermal insulation performance in the room.
  • FIG. 8 shows an example of a change in room temperature when the defrosting operation is performed in each room (R1, R2, R3) having different air conditioning performance.
  • the temperature change in the room after the air conditioner 10 starts the defrosting operation depends on the heat insulation and airtightness of each room. As a result, different air conditioning performance is shown for each room.
  • the amount of indoor temperature decrease after the start of the defrosting operation is smaller in the order of room R1 ⁇ room R2 ⁇ room R3. Therefore, the air conditioning performance is evaluated to be higher in the order of room R1> room R2> room R3. Therefore, for example, the room R1 is determined to have the air conditioning performance “high”, the room R2 is determined to have the air conditioning performance “medium”, and the room R3 is determined to have the air conditioning performance “low”.
  • the room R1 is determined to have the air conditioning performance “high”
  • the room R2 is determined to be “medium”
  • the room R3 is determined to have the air conditioning performance “low”.
  • the air conditioning performance of all of the rooms R1, R2, and R3 may be “high”, “medium”, or “low”. That is, various combinations of the air conditioning performances of the rooms R1, R2, and R3 can be considered.
  • the air conditioning performance identification table 81 (see FIG. 5) as described above is created.
  • the degree of indoor temperature change after the air conditioner 10 starts the defrosting operation may be influenced by the outdoor environment such as the outside air temperature and the weather at that time. Therefore, the amount of temperature decrease in the room after the start of the defrosting operation may be measured every time the defrosting operation is performed. And the measurement result for every defrost operation may be accumulate
  • the same air conditioning performance identification table 81 can be used for a plurality of air conditioners that can be connected to the server 70.
  • the air conditioning performance identification table 81 may be updated sequentially with reference to the performance measurement results of each room obtained from a plurality of air conditioners connectable to the server 70.
  • the defrosting operation when the defrosting operation is performed in a room where the air conditioning performance is “low”, the duration of the defrosting operation is made shorter than that of a standard room with the air conditioning performance and the number of times the defrosting operation is performed.
  • the air-conditioning performance is higher than that of a standard room.
  • the air conditioning system 1 according to the present embodiment, more comfortable air conditioning control can be performed based on the air conditioning performance in the room R in which the air conditioner 10 is installed.
  • the air conditioning performance evaluation unit 76 (see FIG. 4) provided in the server 70 measures the air conditioning performance of the room R when it is detected that there is no person in the room R, and the air conditioning performance of the room R is measured. Create information about.
  • the performance of the room R is measured by measuring a change in the temperature in the room R after the air conditioner 10 stops the heating operation in a state where there is no person in the room R.
  • the temperature in the room R is measured by an indoor temperature sensor 15 provided in the air conditioner 10.
  • outside temperature data may be acquired as an index for determining the outdoor environment when measuring the performance of the room R.
  • the outside temperature data can be acquired from an outside temperature sensor (not shown) provided in the outdoor unit 50 of the air conditioner 10.
  • the human sensor 22 detects whether or not there is a person in the room R in which the air conditioner 10 is installed based on a signal from the control unit 41 and transmits the detection result to the control unit 41.
  • the control unit 41 creates data regarding whether or not there is a person in the room R based on the detection result transmitted from the human sensor 22, and the data is transmitted to the server 70 via the communication interface 24. Send to.
  • FIG. 10 shows a process flow until the measurement of the air conditioning performance of the room R in which the air conditioner 10 is installed is started based on a command from the server 70.
  • the CPU 71 in the server 70 determines whether or not to measure the air conditioning performance for the room R in which the air conditioner 10 is installed, according to the flowchart shown in FIG.
  • the process shown in FIG. 10 is performed at the timing when the air conditioner 10 in the room R stops the heating operation.
  • the air conditioner 10 stops the heating operation by operating the remote controller 60 or the like, information indicating that the heating operation has been stopped from the control unit 41 of the air conditioner 10 to the server 70 via the communication interface 24. Sent.
  • the CPU71 in the server 70 will start the process shown in FIG. 10, if the information to the effect that the heating operation was stopped is transmitted from the air conditioner 10.
  • the CPU 71 determines whether or not the heating operation has been continuously performed for a predetermined time (for example, 1 hour or more) (step S21).
  • a predetermined time for example, 1 hour or more
  • the process ends without measuring the air conditioning performance. This is because if the duration of the immediately preceding heating operation is short, the room R may not reach the set temperature, and the air conditioning performance may not be accurately determined.
  • step S21 if the duration of the immediately preceding heating operation is a predetermined time or longer (YES in step S21), it is determined whether or not there is a person in the room R (step S22). This determination is performed based on data transmitted from the air conditioner 10 (data regarding whether or not there is a person in the room R).
  • step S22 if it is determined that there is a person in the room R (YES in step S22), the process ends without measuring the air conditioning performance. This is because if there is a person in the room R, the air conditioning performance of the room R may not be accurately determined.
  • step S22 when it is determined that there is no person in the room R (NO in step S22), the CPU 71 starts measuring the air conditioning performance (step S23).
  • FIG. 11 shows an example of a change in room temperature when the air conditioning performance is measured in each room (R1, R2, R3) having different air conditioning performance.
  • the temperature change in the room after the air conditioner 10 stops the heating operation depends on the heat insulation and airtightness of each room. As a result, different air conditioning performance is shown for each room.
  • the amount of temperature drop in the room after stopping the heating operation is smaller in the order of room R1 ⁇ room R2 ⁇ room R3. Therefore, the air conditioning performance is evaluated to be higher in the order of room R1> room R2> room R3. Therefore, for example, the room R1 is determined to have the air conditioning performance “high”, the room R2 is determined to have the air conditioning performance “medium”, and the room R3 is determined to have the air conditioning performance “low”.
  • the room R1 is determined to have the air conditioning performance “high”
  • the room R2 is determined to be “medium”
  • the room R3 is determined to have the air conditioning performance “low”.
  • the air conditioning performance of all of the rooms R1, R2, and R3 may be “high”, “medium”, or “low”. That is, various combinations of the air conditioning performances of the rooms R1, R2, and R3 can be considered.
  • an air conditioning performance identification table 81 (see FIG. 5) is created in the same manner as in the first embodiment.
  • the air conditioning performance measurement may not be performed.
  • FIG. 5 shows an air conditioning performance identification table 81 stored in the memory 72 in the server 70.
  • the air conditioning performance identification table 81 the identification ID of each room and the air conditioning performance of the room are stored in association with each other. Such a table is effective when there are a plurality of air conditioners that can communicate with the server 70.
  • the room identification ID is assigned to each room in which each air conditioner is installed.
  • FIG. 12 shows a control content identification table 83 for the defrosting operation stored in the memory 72 in the server 70.
  • the control content of the defrosting operation (specifically, the rise value of the room temperature immediately before the defrosting operation, the upper limit value of the duration of the defrosting operation, ON / OFF of the setting of the refrosting operation) And the room temperature increase value immediately before the re-defrosting operation) are stored in association with the air conditioning performance of the room.
  • the “upper limit value of the duration of the defrosting operation” and the “upper limit value of the duration of the defrosting operation” in the control content identification table 83 are the same as those of the control content identification table 82 described in the first embodiment. .
  • the “room temperature increase value immediately before the defrosting operation” in the control content identification table 83 indicates an increase value of the temperature in the room R immediately before the air conditioner 10 starts the defrosting operation with respect to the set temperature. This value is for keeping the temperature in the room R to be higher than the preset temperature to some extent in anticipation that the temperature of the room R can be lowered by temporarily stopping the heating operation during the defrosting operation. Used for control.
  • the control unit 41 refers to this item of the control content identification table 82, and the temperature of the room R measured by the room temperature sensor 15 in accordance with the air conditioning performance of the room R is higher than the set temperature of the current heating operation. Decide whether to give instructions to start defrosting operation when it rises.
  • the “room temperature rise value immediately before the defrosting operation” is set to t1 or more in the room where the air conditioning performance is “high”. Further, the “room temperature rise value immediately before the defrosting operation” is set to t2 or more in the room where the air conditioning performance is “medium”. Further, the “room temperature rise value immediately before the defrosting operation” is set to t3 or more in the room where the air conditioning performance is “low”.
  • t1 ⁇ t2 ⁇ t3.
  • t1 + 1 ° C.
  • t2 + 2 ° C.
  • t3 + 3 ° C.
  • the “room temperature increase value immediately before the re-defrosting operation” in the control content identification table 83 indicates an increase value with respect to the set temperature of the temperature in the room R immediately before the air conditioner 10 starts the re-defrosting operation. Is. This numerical value is used only when “setting of defrosting operation” is ON.
  • the air conditioning performance of the room R is evaluated based on the temperature change in the room during the defrosting operation described in the first embodiment, and the above method is used. You may change the control content of a defrost operation.
  • a method for evaluating the air conditioning performance of the room R methods other than the methods described in the above-described embodiments may be employed.
  • the performance is measured when there is no person in the room R where the air conditioner 10 is installed, and the air conditioning performance of the room R is evaluated. For this reason, it is possible to suppress an error caused by the number of people existing in the room R from being included in the created air conditioning performance information. Therefore, the air conditioning system 1 according to the present embodiment can acquire more accurate information on the air conditioning performance. And by controlling the air conditioning operation based on this information, a more comfortable air conditioning operation can be performed as a result.
  • control content identification table 83 is used to control the defrosting operation. Therefore, in a room with poor air conditioning performance, it is possible to more appropriately suppress the temperature drop in the room R during the defrosting operation.
  • the air conditioning system 1 includes an air conditioner 10 and a server 70 as main components.
  • the overall configuration of the air conditioner 10 is as shown in FIGS. 2 and 3.
  • the configuration of the server 70 is as shown in FIG.
  • the air conditioner 10 includes a compressor 52. Moreover, the control part 41 in the air conditioner 10 starts a heat pump cycle and starts heating operation so that the temperature in the room R may reach the set temperature by the set time. At this time, the control unit 41 performs air conditioning control based on the air conditioning performance of the room R in which the air conditioner 10 is installed. Specifically, when the air conditioning performance of the room R is higher than a predetermined air conditioning performance standard (for example, standard space air conditioning performance), the control unit 41 operates the compressor 52 at the rated operation speed. Let it begin.
  • a predetermined air conditioning performance standard for example, standard space air conditioning performance
  • the rotational speed of the rated operation is an example of the rotational speed within a range where the energy consumption efficiency of the heat pump cycle represented by COP (coefficient of performance) or the like is optimal.
  • the rotational speed of rated operation can be paraphrased as “the optimal rotational speed in terms of power consumption”.
  • start operation of the compressor at the rated operation speed means that the compressor is once rotated at a higher speed to circulate the refrigerant in the heat pump cycle, and then rated. It also includes operations that reduce the rotational speed of the operation. The speed of rated operation is determined by the capacity and specifications of each compressor.
  • FIG. 13 shows the relationship between the operating state of the compressor 52 and the temperature change in the room R when the air conditioner 10 performs control such that the temperature in the room R reaches the set temperature by the set time. It is a graph which shows.
  • FIG. 13 the change in room temperature when the compressor 52 is operated in normal operation is indicated by A, and the change in room temperature when the compressor 52 is operated in rated operation is indicated by B.
  • C represents the change in room temperature when the compressor 52 is operated at the rated operation speed at the beginning of operation and then changed to the normal operation speed.
  • FIG. 13 shows an example in which the temperature in the room R reaches the set temperature at the set time 0 when the compressor 52 is started in the normal operation state at the time t1 before the set time.
  • the control unit 41 starts the operation of the compressor 52 at the rated operation speed.
  • the temperature rise in the room R is slower than when the compressor 52 is operated in normal operation.
  • the control unit 41 starts the operation of the compressor 52 at time t2 before time t1.
  • the temperature in the room R can be made to reach the set temperature at the set time 0 while the compressor 52 is continuously operated at the rated operation speed.
  • the time 0 is 7 o'clock, for example, the time t1 may be 6 o'clock and the time t2 may be 5 o'clock.
  • the control unit 41 determines that the temperature in the room R does not reach the set temperature by the set time 0.
  • the rotational speed of the compressor 52 may be increased from the rotational speed of the rated operation and changed to the operation at the normal rotational speed (see C in FIG. 13).
  • the compressor 52 is started in a normal operation at the time t1, and the temperature in the room R reaches the set temperature at a time earlier than the set time 0 (FIG. 13).
  • the power consumption of the air conditioner 10 can be kept low.
  • the energy consumption efficiency of the heat pump cycle is reduced by setting the rotation speed of the compressor 52 at the start of operation to the rotation speed of the rated operation. Can be improved.
  • the control content of the defrosting operation based on the air conditioning performance of the room R is not changed, and only the control of the rotation speed of the compressor during the heating operation is performed as described above. You may go on.
  • FIG. 14 shows an internal configuration of an air conditioner (air conditioning system) 110 according to the present embodiment.
  • the air conditioner 110 is a separate type air conditioner, and mainly includes an indoor unit 120, an outdoor unit 50, and a remote controller 60.
  • the indoor unit 120 is installed inside the room R. Inside the indoor unit 120, an indoor side heat exchanger 12, an indoor blower 13, an indoor side heat exchanger temperature sensor 14, an indoor temperature sensor 15, a display unit 23, a communication interface 124, a control unit 141, and the like are provided. Yes.
  • the same configuration as that described in the first embodiment can be applied to the indoor heat exchanger 12, the indoor blower 13, the indoor heat exchanger temperature sensor 14, the indoor temperature sensor 15, and the display unit 23.
  • the control unit 141 is connected to each component in the air conditioner 110 and controls them.
  • a memory 142 In the control unit 141, a memory 142, a timer 43, and the like are provided.
  • the timer 43 can be applied with the same configuration as that described in the first embodiment.
  • the control unit 141 is provided with an air conditioning performance evaluation unit 176.
  • the air conditioning performance evaluation unit 176 measures an environmental change in the room R (for example, a temperature change in the room R), and based on the result. Evaluate the air conditioning performance of room R.
  • the air conditioning performance evaluation unit 176 plays the same role as the air conditioning performance evaluation unit 76 of the server 70 described in the first embodiment.
  • the memory 142 includes ROM (read only memory) and RAM (Random access memory).
  • the memory 142 stores an operation program and setting data of the air conditioner 110 and temporarily stores a calculation result by the control unit 141.
  • the memory 142 stores the air conditioning performance information (such as the air conditioning performance identification table 81 shown in FIG. 5) of the room R created by the air conditioning performance evaluation unit 176. That is, the memory 142 plays the same role as the memory 72 of the server 70 described in the first embodiment.
  • the communication interface 124 is realized by an antenna or a connector.
  • the communication interface 124 exchanges data with the remote controller 60 by infrared communication.
  • the air conditioner 110 is not connected to the Internet. Therefore, the communication interface 124 exchanges data only with the remote controller 60.
  • the air conditioner 110 can perform more comfortable air conditioning control based on the air conditioning performance in the room R in which the air conditioner 110 is installed.
  • An air conditioning system includes a heat pump cycle and a control unit that controls the operation of the heat pump cycle.
  • the control unit changes the control content of the defrosting operation based on the air conditioning performance (for example, heat insulation performance) of a space in which air conditioning control is performed by the heat pump cycle.
  • a heat pump cycle includes a compressor that compresses a heat medium, an indoor heat exchanger that functions as an evaporator during cooling operation and an evaporator during cooling operation, an expansion valve that decompresses the heat medium, and heating. It includes an outdoor heat exchanger that functions as an evaporator during operation and also functions as a condenser during cooling operation.
  • the control unit when the air conditioning performance of the space is lower than a predetermined air conditioning performance standard, the control unit shortens the upper limit value of the duration of the defrosting operation. Also good. For example, when the air conditioning performance of the space is lower than the standard air conditioning performance, the control unit shortens the upper limit value of the duration of the defrosting operation from a preset upper limit value. Thereby, in the space where air conditioning performance is inferior, the defrosting operation can be completed in a shorter time, and the temperature drop in the space during the defrosting operation can be suppressed.
  • the control unit may increase the number of defrosting operations when the air conditioning performance of the space is lower than a predetermined air conditioning performance standard.
  • the defrosting operation is completed in a shorter time, while the number of times of performing the defrosting operation is removed in the space having the standard air conditioning performance.
  • You may increase rather than the frequency
  • control unit may determine an increase value of the temperature in the space immediately before performing the defrosting operation based on the air conditioning performance of the space. .
  • control unit may evaluate the air conditioning performance of the space from a temperature change in the space during the defrosting operation.
  • the heat pump cycle may include a compressor.
  • the said control part performs the air-conditioning control which makes the temperature in the said space reach setting temperature by setting time, and when the air-conditioning performance of the said space is higher than a predetermined air-conditioning performance standard, the said control part May start the operation of the compressor at a rotational speed within a range where the energy consumption efficiency of the heat pump cycle is optimal.
  • an air conditioning system includes a heat pump cycle including a compressor, and a control unit that controls the operation of the heat pump cycle.
  • the control unit performs air conditioning control for causing the temperature in the space to reach a set temperature by a set time based on the air conditioning performance of the space in which air conditioning control is performed by the heat pump cycle.
  • the control unit starts the operation of the compressor at a rotational speed within a range where the energy consumption efficiency of the heat pump cycle is optimal.
  • the rotation speed within the range where the energy consumption efficiency of the heat pump cycle is optimal can be determined based on the energy consumption efficiency of the heat pump cycle represented by COP (coefficient of performance), for example.
  • COP coefficient of performance
  • the rotation speed of the compressor when the control unit determines that the temperature in the space does not reach the set temperature by the set time, the rotation speed of the compressor is set to the heat pump. You may make it raise from the rotation speed in the range from which the energy consumption efficiency of a cycle becomes the optimal.
  • to increase the rotational speed of the compressor above the rotational speed within the range where the energy consumption efficiency of the heat pump cycle is optimal for example, changing the operating state of the compressor from the rated operation to the normal operation. means.
  • the air conditioning system according to each aspect of the present invention may further include a server capable of information communication with the control unit.
  • Air conditioning system 10 Air conditioner 20: Indoor unit 41: Control unit 50 (of air conditioner): Outdoor unit 52: Compressor 70: Server 71: CPU (control unit) 76: Air-conditioning performance evaluation unit 110: Air conditioner (air conditioning system) R: Room

Abstract

Provided is an air conditioning system with which air conditioning can be controlled to be more pleasant on the basis of the air conditioning performance in the space where an air conditioner is installed. This air conditioning system (1) is provided with: a heat pump cycle (refrigeration cycle); and a control unit that controls the operation of the heat pump cycle. The control unit changes the control of a defrosting operation on the basis the air conditioning performance (for example, heat insulation performance) in the space (room R) for which air conditioning control is being performed by the heat pump cycle.

Description

空気調和システムAir conditioning system
 本開示は、空気調和機などを含む空気調和システムに関する。 This disclosure relates to an air conditioning system including an air conditioner.
 空気調和機には、所望とする時刻に室内が設定温度に到達するように、前もって空調運転を開始するように制御できるものがある。しかし、空調運転が開始されてから設定温度に到達するまでの時間は、空気調和機が設置されている部屋の空調性能によって種々に異なる場合が多い。これは、各部屋の空調性能が、断熱性、広さ、気密性、日当たりなどの各要素によって左右されるためである。 Some air conditioners can be controlled to start an air conditioning operation in advance so that the room reaches a set temperature at a desired time. However, the time from the start of the air conditioning operation to reaching the set temperature often varies depending on the air conditioning performance of the room in which the air conditioner is installed. This is because the air conditioning performance of each room is affected by factors such as heat insulation, size, air tightness, and sunlight.
 そこで、特許文献1に開示されている空気調和装置は、住宅の空調負荷(気密性能、断熱性能)に応じて運転条件を変化させる選択手段13を設けている。これにより、住宅の気密性能や断熱性能に応じて運転状態の切り換えを行い、空調負荷の異なる住宅において快適かつ効率的に空調運転を行うことを試みている。 Therefore, the air conditioner disclosed in Patent Document 1 is provided with selection means 13 that changes the operating conditions in accordance with the air conditioning load (airtight performance, heat insulation performance) of the house. Thereby, the operation state is switched according to the airtight performance and heat insulation performance of the house, and an attempt is made to perform the air conditioning operation comfortably and efficiently in a house with different air conditioning loads.
特開2001-343145号公報JP 2001-343145 A
 しかしながら、部屋の空調性能に応じた空調運転の制御の仕方には、改善の余地が残されている。例えば、断熱性能の比較的低い室内において、在室者がより快適に感じる空調運転を行うことが求められている。 However, there is still room for improvement in the method of controlling the air conditioning operation according to the air conditioning performance of the room. For example, in a room with relatively low heat insulation performance, it is required to perform an air conditioning operation that makes the occupants feel more comfortable.
 そこで、本発明の一局面では、空気調和機が設置されている空間の空調性能に基づいてより快適な空調制御を行うことのできる空気調和システムを提供することを目的とする。 Therefore, an object of one aspect of the present invention is to provide an air conditioning system that can perform more comfortable air conditioning control based on the air conditioning performance of a space in which an air conditioner is installed.
 本発明の一局面にかかる空気調和システムは、ヒートポンプサイクルと、前記ヒートポンプサイクルの動作を制御する制御部とを備えている。この空気調和システムにおいて、前記制御部は、前記ヒートポンプサイクルによって空調制御が行われる空間の空調性能に基づいて、除霜運転の制御内容を変更する。 The air conditioning system according to one aspect of the present invention includes a heat pump cycle and a control unit that controls the operation of the heat pump cycle. In this air conditioning system, the control unit changes the control content of the defrosting operation based on the air conditioning performance of the space where the air conditioning control is performed by the heat pump cycle.
 本発明の別の一局面にかかる空気調和システムは、圧縮機を含むヒートポンプサイクルと、前記ヒートポンプサイクルの動作を制御する制御部とを備えている。この空気調和システムにおいて、前記制御部は、前記ヒートポンプサイクルによって空調制御が行われる空間の空調性能に基づいて、設定時刻までに前記空間内の温度を設定温度に到達させる空調制御を行うものであり、前記空間の空調性能が所定の空調性能基準よりも高い場合に、前記制御部は、前記ヒートポンプサイクルのエネルギー消費効率が最適となる範囲内の回転数で前記圧縮機の運転を開始させる。 An air conditioning system according to another aspect of the present invention includes a heat pump cycle including a compressor, and a control unit that controls the operation of the heat pump cycle. In this air conditioning system, the control unit performs air conditioning control for causing the temperature in the space to reach a set temperature by a set time based on the air conditioning performance of the space in which air conditioning control is performed by the heat pump cycle. When the air conditioning performance of the space is higher than a predetermined air conditioning performance standard, the control unit starts the operation of the compressor at a rotational speed within a range where the energy consumption efficiency of the heat pump cycle is optimal.
 上記の本発明の各局面にかかる空気調和システムによれば、空気調和機が設置されている空間内の空調性能に基づいてより快適な空調制御を行うことができる。例えば、一局面にかかる空気調和システムによれば、空気調和機が設置されている空間内の断熱性能の高低に応じて除霜運転を制御することができる。 According to the air conditioning system according to each aspect of the present invention described above, more comfortable air conditioning control can be performed based on the air conditioning performance in the space where the air conditioner is installed. For example, according to the air conditioning system according to one aspect, the defrosting operation can be controlled according to the level of heat insulation performance in the space where the air conditioner is installed.
第1の実施形態にかかる空気調和システムの全体構成と動作概要を示すイメージ図である。It is an image figure which shows the whole structure and operation | movement outline | summary of the air conditioning system concerning 1st Embodiment. 第1の実施形態にかかる空気調和システムを構成する空気調和機の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the air conditioner which comprises the air conditioning system concerning 1st Embodiment. 図2に示す空気調和機におけるヒートポンプサイクルの構成を示す模式図である。It is a schematic diagram which shows the structure of the heat pump cycle in the air conditioner shown in FIG. 第1の実施形態にかかる空気調和システムを構成するサーバの内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the server which comprises the air conditioning system concerning 1st Embodiment. 図4に示すサーバ内に格納されている空調性能識別テーブルの一例を示す模式図である。It is a schematic diagram which shows an example of the air-conditioning performance identification table stored in the server shown in FIG. 図4に示すサーバ内に格納されている除霜運転の制御内容識別テーブルの一例を示す模式図である。It is a schematic diagram which shows an example of the control content identification table of the defrost operation stored in the server shown in FIG. 第1の実施形態にかかる空気調和システムにおいて除霜運転の制御内容を変更するときの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process when changing the control content of a defrost operation in the air conditioning system concerning 1st Embodiment. 空調性能の異なる各部屋(R1,R2,R3)で除霜運転を行ったときの室温TRの変化の例を示すイメージ図である。It is an image figure which shows the example of the change of room temperature TR when performing a defrost operation in each room (R1, R2, R3) from which air conditioning performance differs. 第2の実施形態にかかる空気調和システムにおいて空調性能の評価を行う際の動作概要を示すイメージ図である。It is an image figure which shows the operation | movement outline | summary at the time of evaluating an air-conditioning performance in the air conditioning system concerning 2nd Embodiment. 第2の実施形態にかかる空気調和システムで行われる空調性能測定を開始するための処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process for starting the air-conditioning performance measurement performed with the air conditioning system concerning 2nd Embodiment. 空調性能の異なる各部屋(R1,R2,R3)で空調性能測定を行ったときの室温TRの変化の例を示すイメージ図である。It is an image figure which shows the example of the change of room temperature TR when air-conditioning performance measurement is performed in each room (R1, R2, R3) from which air-conditioning performance differs. 図4に示すサーバ内に格納されている除霜運転の制御内容識別テーブルの一例を示す模式図である。It is a schematic diagram which shows an example of the control content identification table of the defrost operation stored in the server shown in FIG. 第4の実施形態にかかる空気調和システムで行われる暖房運転開始時の圧縮機の回転数制御と室温の経時変化との関係を示すグラフである。It is a graph which shows the relationship between the rotation speed control of the compressor at the time of the heating operation start performed with the air conditioning system concerning 4th Embodiment, and a time-dependent change of room temperature. 第4の実施形態にかかる空気調和機の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the air conditioner concerning 4th Embodiment.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 〔第1の実施の形態〕
 <空気調和システム1の全体構成と動作概要>
 まず、本実施形態にかかる空気調和システム1の全体構成について説明する。図1には、本実施形態にかかる空気調和システム1の構成を概略的に示す。空気調和システム1は、主な構成要素として、空気調和機10と、サーバ70とを含む。空気調和機10は、インターネットやルータなどを介してサーバ70に接続可能となっている。
[First Embodiment]
<Overall configuration and operation of air conditioning system 1>
First, the whole structure of the air conditioning system 1 concerning this embodiment is demonstrated. FIG. 1 schematically shows a configuration of an air conditioning system 1 according to the present embodiment. The air conditioning system 1 includes an air conditioner 10 and a server 70 as main components. The air conditioner 10 can be connected to the server 70 via the Internet or a router.
 次に、図1を参照して、本実施形態にかかる空気調和システム1の動作概要について説明する。本実施形態にかかる空気調和システム1には、空気調和機10が設置されている部屋R(空間)の空調性能に関する情報が格納されている。 Next, with reference to FIG. 1, the operation | movement outline | summary of the air conditioning system 1 concerning this embodiment is demonstrated. The air conditioning system 1 according to the present embodiment stores information related to the air conditioning performance of the room R (space) in which the air conditioner 10 is installed.
 ここで、空調性能に関する情報とは、空気調和機10が設置されている空間(具体的には、部屋、室内)が空調されやすい環境であるか否かの指標となる情報である。部屋Rの空調性能は、部屋Rの断熱性、広さ、気密性、日当たりなどの各要素によって左右される。例えば、部屋Rの断熱性がより高ければ、部屋Rの温度を短時間で設定温度に到達させたり、空調運転時の空気調和機10の消費電力(必要な熱量)を低く抑えたりすることができる。そのため、部屋Rの空調性能は高いと判断される。一方、部屋Rの断熱性がより低ければ、部屋Rの空調性能は低いと判断される。空調性能に関する情報は、断熱性能に関する情報と言い換えることもできる。 Here, the information on the air conditioning performance is information serving as an index as to whether or not the space (specifically, the room or the room) in which the air conditioner 10 is installed is an environment that is easily air-conditioned. The air conditioning performance of the room R depends on factors such as the heat insulating property, the area, the air tightness, and the sunlight of the room R. For example, if the thermal insulation of the room R is higher, the temperature of the room R can reach the set temperature in a short time, or the power consumption (necessary heat amount) of the air conditioner 10 during the air conditioning operation can be kept low. it can. Therefore, it is determined that the air conditioning performance of the room R is high. On the other hand, if the heat insulating property of the room R is lower, it is determined that the air conditioning performance of the room R is low. The information regarding the air conditioning performance can be rephrased as the information regarding the heat insulation performance.
 空気調和機10が設置されている部屋R(空間)の空調性能に関する情報は、部屋Rが存在する建物および立地などの各種条件に基づいて、予め決められていてもよい。またあるいは、例えば、後述するような部屋Rの空調性能の測定方法を用いて評価した結果を、空調性能に関する情報として利用してもよい。 Information regarding the air conditioning performance of the room R (space) in which the air conditioner 10 is installed may be determined in advance based on various conditions such as the building where the room R exists and the location. Alternatively, for example, a result of evaluation using a method for measuring the air conditioning performance of the room R as described below may be used as information regarding the air conditioning performance.
 そして、本実施形態にかかる空気調和システム1では、部屋Rの空調性能に関する情報に基づいて、空気調和機10の暖房運転中に実施される除霜運転の制御内容を変更する。ここで、除霜運転の制御内容とは、除霜運転の仕方(具体的には、除霜運転の継続時間、実施回数など)を意味する。以下、空気調和システム1の具体的な構成について詳述する。 And in the air conditioning system 1 concerning this embodiment, the control content of the defrost operation implemented during the heating operation of the air conditioner 10 is changed based on the information regarding the air conditioning performance of the room R. Here, the control content of the defrosting operation means the way of the defrosting operation (specifically, the duration of the defrosting operation, the number of executions, etc.). Hereinafter, a specific configuration of the air conditioning system 1 will be described in detail.
 <空気調和機10の構成>
 以下、図2および図3を参照して、空気調和システム1を構成する空気調和機10の構成について説明する。図2および図3には、本実施形態にかかる空気調和機10の全体構成を示す。図3では、空気調和機10の暖房運転時の冷媒(熱媒体)の流れを実線の矢印で示し、空気調和機10の冷房運転時の冷媒(熱媒体)の流れを破線の矢印で示している。なお、本空気調和機10は、暖房運転と冷房運転の両方を行うことが可能であるが、暖房運転のみを行う空気調和機(すなわち、暖房機)にも本発明を適用することができる。
<Configuration of air conditioner 10>
Hereinafter, with reference to FIG. 2 and FIG. 3, the structure of the air conditioner 10 which comprises the air conditioning system 1 is demonstrated. 2 and 3 show the overall configuration of the air conditioner 10 according to the present embodiment. In FIG. 3, the flow of the refrigerant (heat medium) during the heating operation of the air conditioner 10 is indicated by a solid arrow, and the flow of the refrigerant (heat medium) during the cooling operation of the air conditioner 10 is indicated by a broken arrow. Yes. In addition, although this air conditioner 10 can perform both heating operation and cooling operation, this invention is applicable also to the air conditioner (namely, heating machine) which performs only heating operation.
 空気調和機10は、セパレート式の空気調和機であって、主として、室内機20と、室外機50と、リモートコントローラ60とから構成されている。空気調和機10は、ヒートポンプサイクル(冷凍サイクル、または冷媒サイクルとも呼ばれる)を用いて空調対象となる部屋Rの暖房、冷房、および除湿などを行う。 The air conditioner 10 is a separate type air conditioner, and mainly includes an indoor unit 20, an outdoor unit 50, and a remote controller 60. The air conditioner 10 performs heating, cooling, dehumidification, and the like of the room R to be air-conditioned using a heat pump cycle (also referred to as a refrigeration cycle or a refrigerant cycle).
 室外機50には、圧縮機52、室外側熱交換器54、四方弁53、および膨張弁55などが備えられている。これらと室内機20側に備えられた室内側熱交換器12とによってヒートポンプサイクルが形成される。 The outdoor unit 50 includes a compressor 52, an outdoor heat exchanger 54, a four-way valve 53, an expansion valve 55, and the like. A heat pump cycle is formed by these and the indoor heat exchanger 12 provided on the indoor unit 20 side.
 ヒートポンプサイクルは、室内機20内の室内側熱交換器12と、室外機50内の圧縮機52、室外側熱交換器54、四方弁53、および膨張弁55などが冷媒配管57および58を介して接続されることによって構成されている。以下、室外機50、室内機20、冷媒配管57および58について詳述する。 In the heat pump cycle, the indoor heat exchanger 12 in the indoor unit 20, the compressor 52 in the outdoor unit 50, the outdoor heat exchanger 54, the four-way valve 53, the expansion valve 55, and the like are connected via refrigerant pipes 57 and 58. It is configured by being connected. Hereinafter, the outdoor unit 50, the indoor unit 20, and the refrigerant pipes 57 and 58 will be described in detail.
 (1)室外機
 室外機50は、主に、筐体51、圧縮機52、四方弁53、室外側熱交換器54、膨張弁55、室外送風機56、冷媒配管57、冷媒配管58、二方弁59、および三方弁65から構成されている。なお、この室外機50は、屋外に設置されている。
(1) Outdoor unit The outdoor unit 50 mainly includes a casing 51, a compressor 52, a four-way valve 53, an outdoor heat exchanger 54, an expansion valve 55, an outdoor blower 56, a refrigerant pipe 57, a refrigerant pipe 58, and two-way. It consists of a valve 59 and a three-way valve 65. The outdoor unit 50 is installed outdoors.
 筐体51には、圧縮機52、四方弁53、室外側熱交換器54、膨張弁55、室外送風機56、冷媒配管57、冷媒配管58、二方弁59、三方弁65、外気温度センサ(図示せず)、および室外側熱交換器温度センサ63等が収納されている。 The casing 51 includes a compressor 52, a four-way valve 53, an outdoor heat exchanger 54, an expansion valve 55, an outdoor blower 56, a refrigerant pipe 57, a refrigerant pipe 58, a two-way valve 59, a three-way valve 65, an outside air temperature sensor ( And an outdoor heat exchanger temperature sensor 63 and the like are accommodated.
 圧縮機52は、吐出管52aおよび吸入管52bを有している。吐出管52aおよび吸入管52bは、それぞれ、四方弁53の異なる接続口に接続されている。圧縮機52は、運転時、吸入管52bから低圧の冷媒ガスを吸入し、その冷媒ガスを圧縮して高圧の冷媒ガスを生成した後、その高圧の冷媒ガスを吐出管52aから吐出する。なお、本実施の形態において、この圧縮機52の制御形式は、特に限定されず、定速式の圧縮機であってもよいし、インバータ式の圧縮機であってもよい。 The compressor 52 has a discharge pipe 52a and a suction pipe 52b. The discharge pipe 52a and the suction pipe 52b are connected to different connection ports of the four-way valve 53, respectively. During operation, the compressor 52 sucks low-pressure refrigerant gas from the suction pipe 52b, compresses the refrigerant gas to generate high-pressure refrigerant gas, and then discharges the high-pressure refrigerant gas from the discharge pipe 52a. In the present embodiment, the control format of the compressor 52 is not particularly limited, and may be a constant speed compressor or an inverter compressor.
 四方弁53は、冷媒配管を介して圧縮機52の吐出管52aおよび吸入管52b、室外側熱交換器54ならびに室内側熱交換器12に接続されている。四方弁53は、運転時、空気調和機10の制御部41(図2参照)から送信される制御信号に従って、ヒートポンプサイクルの経路を切り換える。すなわち、四方弁53は、冷房運転状態と暖房運転状態との間で経路の切り換えを行う。 The four-way valve 53 is connected to the discharge pipe 52a and the suction pipe 52b of the compressor 52, the outdoor heat exchanger 54, and the indoor heat exchanger 12 through a refrigerant pipe. The four-way valve 53 switches the path of the heat pump cycle according to a control signal transmitted from the control unit 41 (see FIG. 2) of the air conditioner 10 during operation. That is, the four-way valve 53 switches the path between the cooling operation state and the heating operation state.
 具体的には、暖房運転状態では、四方弁53は、圧縮機52の吐出管52aを室内側熱交換器12に連結させると共に圧縮機52の吸入管52bを室外側熱交換器54に連結させる(図3の実線矢印参照)。一方、冷房運転状態では、四方弁53は、圧縮機52の吐出管52aを室外側熱交換器54に連結させると共に圧縮機52の吸入管52bを室内側熱交換器12に連結させる(図3の破線矢印参照)。 Specifically, in the heating operation state, the four-way valve 53 connects the discharge pipe 52a of the compressor 52 to the indoor heat exchanger 12 and connects the suction pipe 52b of the compressor 52 to the outdoor heat exchanger 54. (See solid arrow in FIG. 3). On the other hand, in the cooling operation state, the four-way valve 53 connects the discharge pipe 52a of the compressor 52 to the outdoor heat exchanger 54 and connects the suction pipe 52b of the compressor 52 to the indoor heat exchanger 12 (FIG. 3). (See the dashed arrow).
 室外側熱交換器54は、左右両端で複数回折り返された伝熱管(図示せず)に多数の放熱フィン(図示せず)が取り付けられたものである。室外側熱交換器54は、冷房運転時には凝縮器として機能し、暖房運転時には蒸発器として機能する。なお、熱交換器としてパラレルフロー型熱交換器やサーペン型熱交換器を用いてもよい。 The outdoor heat exchanger 54 has a large number of radiating fins (not shown) attached to a heat transfer tube (not shown) that is bent back and forth at both left and right ends. The outdoor heat exchanger 54 functions as a condenser during the cooling operation, and functions as an evaporator during the heating operation. In addition, you may use a parallel flow type heat exchanger and a serpent type heat exchanger as a heat exchanger.
 膨張弁55は、ステッピングモータを介して開度制御が可能な電子膨張弁であって、一方が冷媒配管57を介して二方弁59に接続されると共に、他方が室外側熱交換器54に接続されている。膨張弁55のステッピングモータは、空気調和機10の制御部41(図2参照)から送信される制御信号に従って動作する。膨張弁55は、運転時において、凝縮器(暖房時は室内側熱交換器12であり、冷房時は室外側熱交換器54である)から流出する高温高圧の液冷媒を蒸発しやすい状態に減圧すると共に、蒸発器(暖房時は室外側熱交換器54であり、冷房時は室内側熱交換器12である)への冷媒供給量を調節する役目を担っている。 The expansion valve 55 is an electronic expansion valve whose opening degree can be controlled via a stepping motor. One of the expansion valves 55 is connected to the two-way valve 59 via the refrigerant pipe 57 and the other is connected to the outdoor heat exchanger 54. It is connected. The stepping motor of the expansion valve 55 operates according to a control signal transmitted from the control unit 41 (see FIG. 2) of the air conditioner 10. The expansion valve 55 is in a state in which the high-temperature and high-pressure liquid refrigerant flowing out from the condenser (the indoor heat exchanger 12 during heating and the outdoor heat exchanger 54 during cooling) is easily evaporated during operation. In addition to reducing the pressure, it plays a role of adjusting the amount of refrigerant supplied to the evaporator (the outdoor heat exchanger 54 during heating and the indoor heat exchanger 12 during cooling).
 室外送風機56は、主に、プロペラファンおよびモータから構成されている。プロペラファンは、モータによって回転駆動され、屋外の外気を室外側熱交換器54に供給する。モータは、空気調和機10の制御部(図示せず)から送信される制御信号に従って動作する。 The outdoor blower 56 is mainly composed of a propeller fan and a motor. The propeller fan is rotationally driven by a motor, and supplies outdoor outdoor air to the outdoor heat exchanger 54. The motor operates in accordance with a control signal transmitted from a control unit (not shown) of the air conditioner 10.
 二方弁59は、冷媒配管57に配設されている。なお、二方弁59は、室外機50から冷媒配管57が取り外されるときに閉じられ、冷媒が室外機50から外部に漏れることを防ぐ。 The two-way valve 59 is disposed in the refrigerant pipe 57. The two-way valve 59 is closed when the refrigerant pipe 57 is removed from the outdoor unit 50 to prevent the refrigerant from leaking from the outdoor unit 50 to the outside.
 三方弁65は、冷媒配管58に配設されている。なお、三方弁65は、室外機50から冷媒配管58が取り外されるときに閉じられ、冷媒が室外機50から外部に漏れることを防ぐ。また、室外機50から、あるいは室内機20を含めたヒートポンプサイクル全体から、冷媒を回収する必要があるときは、三方弁65を通じて冷媒の回収が行われる。 The three-way valve 65 is disposed in the refrigerant pipe 58. The three-way valve 65 is closed when the refrigerant pipe 58 is removed from the outdoor unit 50 to prevent the refrigerant from leaking from the outdoor unit 50 to the outside. Further, when it is necessary to recover the refrigerant from the outdoor unit 50 or from the entire heat pump cycle including the indoor unit 20, the refrigerant is recovered through the three-way valve 65.
 室外側熱交換器温度センサ63は、室外側熱交換器54の近傍に配置され、室外側熱交換器54の温度を測定する。なお、室外側熱交換器温度センサ63は、室外側熱交換器54と接触して配置されていてもよい。 The outdoor heat exchanger temperature sensor 63 is disposed in the vicinity of the outdoor heat exchanger 54 and measures the temperature of the outdoor heat exchanger 54. The outdoor heat exchanger temperature sensor 63 may be disposed in contact with the outdoor heat exchanger 54.
 (2)室内機
 室内機20は、主に、筐体11、室内側熱交換器12、および室内送風機13から構成されている。
(2) Indoor unit The indoor unit 20 is mainly comprised from the housing | casing 11, the indoor side heat exchanger 12, and the indoor air blower 13. As shown in FIG.
 筐体11には、室内側熱交換器12、室内送風機13、室内側熱交換器温度センサ14、室内温度センサ15、ルーバ19、および制御部41(図2参照)等が収納されている。 The housing 11 houses an indoor heat exchanger 12, an indoor fan 13, an indoor heat exchanger temperature sensor 14, an indoor temperature sensor 15, a louver 19, a control unit 41 (see FIG. 2), and the like.
 室内側熱交換器12は、図3に示すように、3個の熱交換器を、室内送風機13を覆う屋根のように組み合わせたものである。なお、各熱交換器は、左右両端で複数回折り返された伝熱管(図示せず)に多数の放熱フィン(図示せず)が取り付けられたものである。これらの熱交換器は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。室内側熱交換器12の近傍には、当該熱交換器の温度を測定する室内側熱交換器温度センサ14が配置される。なお、室内側熱交換器温度センサ14は、室内側熱交換器12と接触して配置されていてもよい。 As shown in FIG. 3, the indoor heat exchanger 12 is a combination of three heat exchangers like a roof covering the indoor blower 13. Each heat exchanger has a large number of radiating fins (not shown) attached to a heat transfer tube (not shown) bent back and forth at both left and right ends. These heat exchangers function as a condenser during heating operation and function as an evaporator during cooling operation. In the vicinity of the indoor heat exchanger 12, an indoor heat exchanger temperature sensor 14 for measuring the temperature of the heat exchanger is disposed. The indoor heat exchanger temperature sensor 14 may be arranged in contact with the indoor heat exchanger 12.
 室内送風機13は、主に、クロスフローファンおよびモータから構成されている。クロスフローファンは、モータによって回転駆動され、室内の空気を筐体11に吸い込んで室内側熱交換器12に供給すると共に、室内側熱交換器12で熱交換された空気を室内に送出する。 The indoor blower 13 is mainly composed of a cross flow fan and a motor. The cross flow fan is rotationally driven by a motor, sucks indoor air into the housing 11 and supplies the air to the indoor heat exchanger 12, and sends out the air heat-exchanged by the indoor heat exchanger 12 into the room.
 室内温度センサ15は、室内機20が設置されている室内の温度を測定する。室内温度センサ15は、例えば、室内空気を吸い込むために筐体11に設けられた吸込み口付近に配置されている。 The indoor temperature sensor 15 measures the temperature of the room where the indoor unit 20 is installed. The room temperature sensor 15 is disposed, for example, in the vicinity of a suction port provided in the housing 11 for sucking room air.
 ルーバ19は、角度を変更することのできる板状部材で形成されている。この板状部材の角度を適宜変更することで、室内送風機13により送出される空気の風向を上下方向に変更する。また、本実施形態では、ルーバ19は、室内への空気の吹き出しのオンオフ(開閉)を制御するシャッタの役割も果たす。 The louver 19 is formed of a plate member whose angle can be changed. By appropriately changing the angle of the plate member, the air direction of the air sent out by the indoor blower 13 is changed in the vertical direction. In the present embodiment, the louver 19 also serves as a shutter for controlling on / off (opening / closing) of air blowing into the room.
 また、室内機20内には、上記以外の構成として、室内温度センサ15、表示部23、通信インターフェイス24、制御部41などが備えられている(図2参照)。 In addition, the indoor unit 20 includes an indoor temperature sensor 15, a display unit 23, a communication interface 24, a control unit 41, and the like as configurations other than the above (see FIG. 2).
 室内温度センサ15は、室内温度検出手段であって、室内機20が設置されている部屋R内の温度を測定する。室内温度センサ15としては、サーミスタなどの既知の検出手段を使用することができる。 The indoor temperature sensor 15 is an indoor temperature detection means, and measures the temperature in the room R in which the indoor unit 20 is installed. As the indoor temperature sensor 15, known detection means such as a thermistor can be used.
 表示部23は、液晶表示パネルおよびLEDライトなどを含む。表示部23は制御部41からの信号に基づいて空気調和機10の動作状況や警報等を表示する。 The display unit 23 includes a liquid crystal display panel and an LED light. The display unit 23 displays the operation status and alarms of the air conditioner 10 based on the signal from the control unit 41.
 通信インターフェイス24は、アンテナやコネクタによって実現される。通信インターフェイス24は、有線通信あるいは無線通信によって他の装置との間でデータをやり取りする。具体的には、通信インターフェイス24は、リモートコントローラ60を操作した際に送信される赤外線の信号を受信する。 The communication interface 24 is realized by an antenna or a connector. The communication interface 24 exchanges data with other devices by wired communication or wireless communication. Specifically, the communication interface 24 receives an infrared signal transmitted when the remote controller 60 is operated.
 また、通信インターフェイス24は、サーバ70から送信される各種信号、各種データ、および各種指令などを受信する。また、通信インターフェイス24は、サーバ70に対して、空気調和機10側の情報を送信することもできる。 Further, the communication interface 24 receives various signals, various data, various commands and the like transmitted from the server 70. The communication interface 24 can also transmit information on the air conditioner 10 side to the server 70.
 制御部41は、空気調和機10内の各構成部品と接続され、これらの制御を行う。制御部41は、例えば、室内機20内の側端部に配置された電装品ユニット内に配置される。制御部41内には、メモリ42、およびタイマ43などが備えられている。 The control unit 41 is connected to each component in the air conditioner 10 and controls them. The control part 41 is arrange | positioned in the electrical component unit arrange | positioned at the side edge part in the indoor unit 20, for example. In the control unit 41, a memory 42, a timer 43, and the like are provided.
 制御部41は、信号線を介して、ヒートポンプサイクルの各構成部材と接続されている。そして、電装ユニット内の制御部は、ユーザの指示、および室内や戸外の温度を検出する温度計等の各種のセンサの検出信号に基づいて、ヒートポンプサイクルを制御し、冷房運転および暖房運転を行う。 The control unit 41 is connected to each component of the heat pump cycle via a signal line. And the control part in an electrical equipment unit controls a heat pump cycle based on a user's instruction | indication and the detection signal of various sensors, such as a thermometer which detects the temperature of indoors or outdoors, and performs air_conditionaing | cooling operation and heating operation. .
 メモリ42は、ROM(read only memory)及びRAM(Random Access Memory)を含む。メモリ42は、空気調和機10の動作プログラムや設定データを記憶するとともに制御部41による演算結果を一時記憶する。タイマ43は、必要に応じて、制御部41内で行われる処理の時間、空気調和機10内の各構成部材の動作時間などを計測する。 The memory 42 includes ROM (read only memory) and RAM (Random access memory). The memory 42 stores an operation program and setting data of the air conditioner 10 and temporarily stores a calculation result by the control unit 41. The timer 43 measures the time of processing performed in the control unit 41 and the operation time of each component in the air conditioner 10 as necessary.
 リモートコントローラ60は、ユーザが空気調和機10を操作するための操作部として機能する。ユーザは、例えば、リモートコントローラ60を操作して、空気調和機10の運転モード、設定温度などを選択することができる。 The remote controller 60 functions as an operation unit for the user to operate the air conditioner 10. For example, the user can select the operation mode, the set temperature, and the like of the air conditioner 10 by operating the remote controller 60.
 (3)冷媒配管
 冷媒配管57は、冷媒配管58よりも細い管であって、運転時に液冷媒が流れる。冷媒配管58は、冷媒配管57よりも太い管であって、運転時にガス冷媒が流れる。
(3) Refrigerant piping The refrigerant piping 57 is thinner than the refrigerant piping 58, and the liquid refrigerant flows during operation. The refrigerant pipe 58 is thicker than the refrigerant pipe 57, and a gas refrigerant flows during operation.
 室外機50の圧縮機52、四方弁53、室外側熱交換器54および膨張弁55、ならびに室内機20の室内側熱交換器12は、冷媒配管57,58によって順次接続され、ヒートポンプサイクル(冷凍サイクル)を構成している。 The compressor 52 of the outdoor unit 50, the four-way valve 53, the outdoor heat exchanger 54 and the expansion valve 55, and the indoor heat exchanger 12 of the indoor unit 20 are sequentially connected by refrigerant pipes 57 and 58, and a heat pump cycle (refrigeration). Cycle).
 <空気調和機の基本的な動作>
 以下、本実施の形態にかかる空気調和機10の暖房運転、および冷房運転について詳述する。
<Basic operation of the air conditioner>
Hereinafter, the heating operation and the cooling operation of the air conditioner 10 according to the present embodiment will be described in detail.
 (1)暖房運転
 暖房運転では、四方弁53が図3の実線で示される状態、すなわち、圧縮機52の吐出管52aが室内側熱交換器12に接続され、かつ、圧縮機52の吸入管52bが室外側熱交換器54に接続された状態となる。また、このとき、二方弁59および三方弁65は開状態とされている。この状態で、圧縮機52が起動されると、ガス冷媒が、圧縮機52に吸入され、圧縮された後、四方弁53および三方弁65を経由して室内側熱交換器12に供給され、室内空気を加熱すると共に凝縮されて液冷媒となる。その後、この液冷媒は、二方弁59を経由して膨張弁55に送られ、減圧されて気液二相状態となる。気液二相状態の冷媒は、室外側熱交換器54に送られて、室外側熱交換器54において蒸発させられてガス冷媒となる。最後に、そのガス冷媒は、四方弁53を経由して、再び、圧縮機52に吸入される。
(1) Heating operation In the heating operation, the four-way valve 53 is in the state shown by the solid line in FIG. 3, that is, the discharge pipe 52 a of the compressor 52 is connected to the indoor heat exchanger 12 and the suction pipe of the compressor 52. 52b is connected to the outdoor heat exchanger 54. At this time, the two-way valve 59 and the three-way valve 65 are open. When the compressor 52 is started in this state, the gas refrigerant is sucked into the compressor 52 and compressed, and then supplied to the indoor heat exchanger 12 via the four-way valve 53 and the three-way valve 65, The indoor air is heated and condensed to become a liquid refrigerant. Thereafter, the liquid refrigerant is sent to the expansion valve 55 via the two-way valve 59 and is decompressed to be in a gas-liquid two-phase state. The gas-liquid two-phase refrigerant is sent to the outdoor heat exchanger 54 and evaporated in the outdoor heat exchanger 54 to become a gas refrigerant. Finally, the gas refrigerant is sucked into the compressor 52 again via the four-way valve 53.
 (2)冷房運転
 冷房運転では、四方弁53が図3の破線で示される状態、すなわち、圧縮機52の吐出管52aが室外側熱交換器54に接続され、かつ、圧縮機52の吸入管52bが室内側熱交換器12に接続された状態となる。また、このとき、二方弁59および三方弁65は開状態とされている。この状態で、圧縮機52が起動されると、ガス冷媒が、圧縮機52に吸入され、圧縮された後、四方弁53を経由して室外側熱交換器54に送られ、室外側熱交換器54において冷却され、液冷媒となる。その後、この液冷媒は、膨張弁55に送られ、減圧されて気液二相状態となる。気液二相状態の冷媒は、二方弁59を経由して室内側熱交換器12に供給され、室内空気を冷却するとともに蒸発されてガス冷媒となる。最後に、そのガス冷媒は、三方弁65および四方弁53を経由して、再び、圧縮機52に吸入される。
(2) Cooling operation In the cooling operation, the four-way valve 53 is in the state indicated by the broken line in FIG. 3, that is, the discharge pipe 52a of the compressor 52 is connected to the outdoor heat exchanger 54, and the suction pipe of the compressor 52 52b is connected to the indoor heat exchanger 12. At this time, the two-way valve 59 and the three-way valve 65 are open. In this state, when the compressor 52 is started, the gas refrigerant is sucked into the compressor 52 and compressed, and then sent to the outdoor heat exchanger 54 via the four-way valve 53 for outdoor heat exchange. Cooled in the vessel 54 to become a liquid refrigerant. Thereafter, this liquid refrigerant is sent to the expansion valve 55, where it is depressurized and enters a gas-liquid two-phase state. The gas-liquid two-phase refrigerant is supplied to the indoor heat exchanger 12 via the two-way valve 59, cools the indoor air and evaporates to become a gas refrigerant. Finally, the gas refrigerant is sucked into the compressor 52 again via the three-way valve 65 and the four-way valve 53.
 (3)除霜運転
 暖房運転時には、室外側熱交換器54に霜が付き熱交換能力が落ちる場合がある。そこで、制御部41(図2参照)は、室外側熱交換器温度センサ63の測定温度などに基づいて、室外側熱交換器54に霜が付いたか否かを判定する。制御部41は、霜が付いたと判断した場合に、四方弁53を切り換えて冷凍サイクルを上述の冷房運転と同じサイクルとし、室内ファンを停止させた状態で冷媒を循環させることによって除霜する(リバース除霜)。また、制御部41は、室外側熱交換器温度センサ63が測定した温度に基づいて、適切に室外側熱交換器54の霜が除かれたか否かを判定する。なお、本実施形態にかかる空気調和機10では、サーバ70から取得した部屋Rの空調性能に関する情報に基づいて、除霜運転の制御内容を変更する。具体的には、除霜運転の継続時間および回数などを変更する。除霜運転の方法は、上述のリバース除霜に限定はされない。
(3) Defrosting operation During heating operation, the outdoor heat exchanger 54 may be frosted and the heat exchange capability may be reduced. Therefore, the control unit 41 (see FIG. 2) determines whether or not frost has formed on the outdoor heat exchanger 54 based on the temperature measured by the outdoor heat exchanger temperature sensor 63 or the like. When the control unit 41 determines that frost is formed, the control unit 41 switches the four-way valve 53 so that the refrigeration cycle is the same as the above-described cooling operation, and defrosts by circulating the refrigerant with the indoor fan stopped ( Reverse defrost). Moreover, the control part 41 determines whether the frost of the outdoor side heat exchanger 54 was removed appropriately based on the temperature which the outdoor side heat exchanger temperature sensor 63 measured. In addition, in the air conditioner 10 concerning this embodiment, based on the information regarding the air conditioning performance of the room R acquired from the server 70, the control content of a defrost operation is changed. Specifically, the duration and number of times of defrosting operation are changed. The method of the defrosting operation is not limited to the above-described reverse defrosting.
 <サーバ70の構成>
 続いて、図4を参照して、空気調和システム1を構成するサーバ70の構成について説明する。サーバ70は、主たる構成要素として、CPU(Central Processing Unit)71と、メモリ72と、ディスプレイ73と、操作部74と、通信インターフェイス75とを含む。
<Configuration of Server 70>
Then, with reference to FIG. 4, the structure of the server 70 which comprises the air conditioning system 1 is demonstrated. The server 70 includes a CPU (Central Processing Unit) 71, a memory 72, a display 73, an operation unit 74, and a communication interface 75 as main components.
 CPU(制御部)71は、メモリ72に記憶されているプログラムを実行することによって、サーバ70の各部を制御する。たとえば、CPU71は、メモリ72に格納されているプログラムを実行し、各種のデータを参照することによって、後述する各種の処理を実行する。 The CPU (control unit) 71 controls each unit of the server 70 by executing a program stored in the memory 72. For example, the CPU 71 executes programs stored in the memory 72 and executes various processes described later by referring to various data.
 また、CPU71の内部には、空調性能評価部76が設けられている。空調性能評価部76は、空気調和機10の運転状態が所定の条件を満たしたときに、部屋R内の環境の変化(例えば、部屋R内の温度変化)を測定し、その結果に基づいて部屋Rの空調性能を評価する。なお、サーバ70のCPU71には、空調性能評価部76が部屋Rの空調性能を評価することができるように、空気調和機10の通信インターフェイス24から、空気調和機10の運転状態、室内温度センサ15の測定データなどに関する情報が定期的に送信される。 In addition, an air conditioning performance evaluation unit 76 is provided inside the CPU 71. When the operation state of the air conditioner 10 satisfies a predetermined condition, the air conditioning performance evaluation unit 76 measures an environmental change in the room R (for example, a temperature change in the room R), and based on the result. Evaluate the air conditioning performance of room R. It should be noted that the CPU 71 of the server 70 receives the operating condition of the air conditioner 10 and the indoor temperature sensor from the communication interface 24 of the air conditioner 10 so that the air conditioner performance evaluation unit 76 can evaluate the air conditioner performance of the room R. Information on 15 measurement data and the like is periodically transmitted.
 メモリ72は、各種のRAM(Random Access Memory)、各種のROM(Read-Only Memory)などによって実現される。メモリ72は、CPU71によって実行されるプログラムや、CPU71によるプログラムの実行により生成されたデータ、入力されたデータ、および、本実施形態にかかる空気調和機10の運転制御に利用される各種データベースなどを記憶する。例えば、メモリ72は、空調性能評価部76が作成した部屋Rの空調性能情報(図5に示す空調性能識別テーブル81など)などを格納する。なお、本実施の形態においては、これらの情報がサーバ70内のメモリ72に格納されているが、これらの情報はサーバ70がアクセス可能な他の装置に格納されていてもよい。 The memory 72 is realized by various RAMs (Random Access Memory), various ROMs (Read-Only Memory), and the like. The memory 72 includes a program executed by the CPU 71, data generated by execution of the program by the CPU 71, input data, and various databases used for operation control of the air conditioner 10 according to the present embodiment. Remember. For example, the memory 72 stores the air conditioning performance information (such as the air conditioning performance identification table 81 shown in FIG. 5) of the room R created by the air conditioning performance evaluation unit 76. In the present embodiment, these pieces of information are stored in the memory 72 in the server 70, but these pieces of information may be stored in other devices accessible by the server 70.
 また、ディスプレイ73は、CPU71からの信号に基づいて、テキストや画像を表示する。操作部74は、サービスの管理者などの命令を受け付けて、当該命令をCPU71に入力する。 The display 73 displays text and images based on signals from the CPU 71. The operation unit 74 receives a command from a service administrator and inputs the command to the CPU 71.
 通信インターフェイス75は、CPU71からのデータを、インターネット、キャリア網、ルータなどを介して、空気調和機10などの他の装置に送信する。逆に、通信インターフェイス75は、インターネット、キャリア網、ルータなどを介して空気調和機10などの他の装置からのデータを受信して、CPU71に受け渡す。 The communication interface 75 transmits data from the CPU 71 to other devices such as the air conditioner 10 via the Internet, a carrier network, a router, or the like. Conversely, the communication interface 75 receives data from other devices such as the air conditioner 10 via the Internet, a carrier network, a router, etc., and passes it to the CPU 71.
 <部屋の空調性能に基づく除霜運転の制御方法>
 続いて、部屋Rの空調性能に基づいて、空気調和機10の除霜運転の制御内容を変更する方法について、図1、および図5から図7を参照しながら説明する。
<Control method of defrosting operation based on air conditioning performance of room>
Next, a method for changing the control content of the defrosting operation of the air conditioner 10 based on the air conditioning performance of the room R will be described with reference to FIGS. 1 and 5 to 7.
 図5には、サーバ70内のメモリ72に格納されている空調性能識別テーブル81を示す。空調性能識別テーブル81には、各部屋の識別IDと部屋の空調性能とが対応付けて記憶されている。サーバ70と情報通信可能な空気調和機が複数台存在する場合に、このようなテーブルは有効である。部屋の識別IDは、各空気調和機が設置されている部屋単位で割り振られている。 FIG. 5 shows an air conditioning performance identification table 81 stored in the memory 72 in the server 70. In the air conditioning performance identification table 81, the identification ID of each room and the air conditioning performance of the room are stored in association with each other. Such a table is effective when there are a plurality of air conditioners that can communicate with the server 70. The room identification ID is assigned to each room in which each air conditioner is installed.
 例えば、図5において、空調性能が「中」に該当する部屋R2は、現在の住宅の断熱性能の評価基準において、標準的(平均的)な断熱性能を有している空間である。また、空調性能が「高」に該当する部屋R1は、空調性能が「中」に該当する部屋R2と比較して断熱性能が約20%以上優れた空間である。また、空調性能が「低」に該当する部屋R3は、空調性能が「中」に該当する部屋R2と比較して断熱性能が約20%以上劣る空間である。 For example, in FIG. 5, a room R <b> 2 whose air conditioning performance is “medium” is a space having a standard (average) thermal insulation performance in the current evaluation standard of the thermal insulation performance of a house. Further, the room R1 in which the air conditioning performance corresponds to “high” is a space in which the heat insulation performance is approximately 20% or more superior to the room R2 in which the air conditioning performance corresponds to “medium”. In addition, the room R3 in which the air conditioning performance is “low” is a space in which the heat insulation performance is inferior by about 20% or more compared to the room R2 in which the air conditioning performance is “medium”.
 図6には、サーバ70内のメモリ72に格納されている除霜運転の制御内容識別テーブル82を示す。制御内容識別テーブル82には、除霜運転の制御内容(具体的には、除霜運転の継続時間の上限値、および再除霜運転の設定のON/OFF)が、部屋の空調性能と対応付けて記憶されている。 FIG. 6 shows a control content identification table 82 for the defrosting operation stored in the memory 72 in the server 70. In the control content identification table 82, the control content of the defrosting operation (specifically, the upper limit value of the duration of the defrosting operation and ON / OFF of the setting of the refrosting operation) corresponds to the air conditioning performance of the room. It is remembered.
 図6に示す制御内容識別テーブル82では、空調性能が「低」に該当する部屋において除霜運転を行う場合の除霜運転の継続時間の上限値をT2と設定している。この上限値T2は、空調性能が「中」および「高」に該当する部屋における上限値T1と比較して短い時間となっている。これは、空調性能が劣る部屋では、除霜運転中の室内温度の低下の程度が、空調性能が優れた部屋と比較して大きくなるためである。このように、部屋Rの空調性能が標準的な部屋R2の空調性能よりも低い場合に、除霜運転の継続時間の上限値を、予め設定されている上限値(例えば、T1)よりも短縮させることで、部屋Rにおける除霜運転中の室内温度の低下の程度を小さくすることができる。 In the control content identification table 82 shown in FIG. 6, the upper limit value of the duration of the defrosting operation when the defrosting operation is performed in a room where the air conditioning performance is “low” is set as T2. This upper limit value T2 is shorter than the upper limit value T1 in the room where the air conditioning performance corresponds to “medium” and “high”. This is because in a room with inferior air conditioning performance, the degree of decrease in the room temperature during the defrosting operation is greater than in a room with excellent air conditioning performance. Thus, when the air conditioning performance of the room R is lower than the air conditioning performance of the standard room R2, the upper limit value of the duration of the defrosting operation is shortened from a preset upper limit value (for example, T1). By doing, the fall degree of the room temperature during the defrosting operation in the room R can be reduced.
 また、図6に示す制御内容識別テーブル82における「再除霜運転の設定」とは、除霜運転が終了してから所定時間経過した後に、再び除霜運転を強制的に実施するという設定である。このような設定は、1回目の除霜運転では、除霜が不十分な場合に実行されることが好ましい。したがって、図6に示す制御内容識別テーブル82では、除霜運転の継続時間の上限値が比較的短い空調性能が「低」の場合に、「再除霜運転の設定」がONとなっている。一方、除霜運転の継続時間の上限値が比較的長い空調性能が「中」および「高」の場合には、「再除霜運転の設定」はOFFとなっている。 Further, “setting of re-defrosting operation” in the control content identification table 82 shown in FIG. 6 is a setting for forcibly performing the defrosting operation again after a predetermined time has elapsed since the completion of the defrosting operation. is there. Such setting is preferably executed when the defrosting is insufficient in the first defrosting operation. Therefore, in the control content identification table 82 shown in FIG. 6, “re-defrosting operation setting” is ON when the air conditioning performance with a relatively short upper limit of the defrosting operation duration is “low”. . On the other hand, when the air conditioning performance having a relatively long upper limit of the defrosting operation is “medium” and “high”, “setting of re-defrosting operation” is OFF.
 このように、本実施形態では、空調性能が「低」に該当する部屋において除霜運転を行う場合には、除霜運転の継続時間を、空調性能が標準的な部屋よりも短くし、かつ、除霜運転の実施回数を、空調性能が標準的な部屋よりも増やしている。 As described above, in the present embodiment, when the defrosting operation is performed in a room where the air conditioning performance is “low”, the duration of the defrosting operation is set shorter than that of a room having a standard air conditioning performance, and The number of defrosting operations has been increased compared to standard rooms with air conditioning performance.
 図7には、部屋Rの空調性能に基づいて、空気調和機10の除霜運転の制御内容を変更するときの処理の流れを示す。この処理は、例えば、空気調和機10が部屋Rの暖房運転を開始するときに実行される。以下に、図7を参照しながら、空気調和機10における除霜運転の制御内容の変更処理の流れを説明する。 FIG. 7 shows a processing flow when changing the control content of the defrosting operation of the air conditioner 10 based on the air conditioning performance of the room R. This process is executed when the air conditioner 10 starts the heating operation of the room R, for example. Below, the flow of the change process of the control content of the defrost operation in the air conditioner 10 is demonstrated, referring FIG.
 まず、ユーザがリモートコントローラ60を操作するなどして空気調和機10に対して運転開始の指令が送信されると、制御部41は、その指令が暖房運転を行うという指令であるか否かを判断する(ステップS11)。当該指令が暖房運転以外(例えば、冷房運転など)の指令の場合には(ステップS11でNO)、処理を終了する。 First, when an operation start command is transmitted to the air conditioner 10 by the user operating the remote controller 60 or the like, the control unit 41 determines whether or not the command is a command to perform a heating operation. Judgment is made (step S11). If the command is a command other than the heating operation (for example, cooling operation) (NO in step S11), the process ends.
 一方、当該指令が暖房運転の指令の場合には(ステップS11でYES)、制御部41は、サーバ70に対して暖房運転開始の指令があった旨を通知する。サーバ70のCPU71は、メモリ72内の空調性能識別テーブル81を参照して、空気調和機10が設置されている部屋の識別IDに対応付けられている空調性能の情報を取得する(ステップS12)。例えば、空気調和機10が設置されている部屋の識別IDが「R3」の場合には、空調性能「低」を取得する。 On the other hand, when the command is a command for heating operation (YES in step S11), the control unit 41 notifies the server 70 that there is a command for starting the heating operation. The CPU 71 of the server 70 refers to the air conditioning performance identification table 81 in the memory 72, and acquires information on the air conditioning performance associated with the identification ID of the room in which the air conditioner 10 is installed (step S12). . For example, when the identification ID of the room in which the air conditioner 10 is installed is “R3”, the air conditioning performance “low” is acquired.
 次に、サーバ70のCPU71は、メモリ72内の制御内容識別テーブル82を参照して、取得した部屋Rの空調性能に対応する除霜運転の制御内容に関する情報を取得する。(ステップS13)。 Next, the CPU 71 of the server 70 refers to the control content identification table 82 in the memory 72 and acquires information regarding the control content of the defrosting operation corresponding to the acquired air conditioning performance of the room R. (Step S13).
 その後、サーバ70は、通信インターフェイス75を介して、取得した除霜運転の制御内容に関する情報を空気調和機10へ送信する(ステップS14)。空気調和機10へ送信された情報は、通信インターフェイス24を介して、制御部41へ送信される。制御部41は、サーバ70から送信された情報にしたがって、メモリ42内に格納されている除霜運転の制御内容に関する情報を変更する(ステップS15)。 Thereafter, the server 70 transmits information regarding the acquired control content of the defrosting operation to the air conditioner 10 via the communication interface 75 (step S14). Information transmitted to the air conditioner 10 is transmitted to the control unit 41 via the communication interface 24. The control part 41 changes the information regarding the control content of the defrost operation stored in the memory 42 according to the information transmitted from the server 70 (step S15).
 そして、空気調和機10は、暖房運転を開始する(ステップS16)。そして、制御部41は、例えば、室外側熱交換器温度センサ63の測定温度が所定温度以下に低下するなどして、除霜運転開始の条件を満たした場合に、ステップS15で変更された除霜運転の制御内容にしたがって、除霜運転を実行する。 And the air conditioner 10 starts the heating operation (step S16). And the control part 41 removes the removal changed by step S15, for example, when the measurement temperature of the outdoor heat exchanger temperature sensor 63 falls below predetermined temperature, and satisfy | fills the conditions of defrost operation start. The defrosting operation is executed according to the control content of the frost operation.
 <部屋Rの空調性能の評価方法について>
 次に、部屋Rの空調性能を評価する方法について、以下に説明する。本実施形態にかかる空気調和システム1では、空気調和機10が除霜運転を行っているときの部屋R内の温度変化から部屋Rの空調性能を評価する。
<About the evaluation method of the air conditioning performance of the room R>
Next, a method for evaluating the air conditioning performance of the room R will be described below. In the air conditioning system 1 according to the present embodiment, the air conditioning performance of the room R is evaluated from the temperature change in the room R when the air conditioner 10 is performing the defrosting operation.
 除霜運転は、暖房運転中に実施される。上述したように、除霜運転時には、ヒートポンプサイクル内の冷媒を冷房運転時と同じ方向に循環させる。除霜運転中は暖房運転が行われないため、部屋R内の温度は低下する傾向にある。この温度の低下傾向は、部屋の断熱性能の高低に応じて異なる。図8には、空調性能の異なる各部屋(R1,R2,R3)で除霜運転を行ったときの室温の変化の例を示す。 Defrosting operation is performed during heating operation. As described above, during the defrosting operation, the refrigerant in the heat pump cycle is circulated in the same direction as during the cooling operation. Since the heating operation is not performed during the defrosting operation, the temperature in the room R tends to decrease. The tendency of this temperature to decrease varies depending on the level of thermal insulation performance in the room. FIG. 8 shows an example of a change in room temperature when the defrosting operation is performed in each room (R1, R2, R3) having different air conditioning performance.
 図8に示すように、空気調和機10が除霜運転を開始した後の室内の温度変化は、各部屋の断熱性、気密性などによって左右される。その結果、部屋ごとに異なる空調性能を示す。図8に示す例では、除霜運転開始後の室内の温度低下量が、部屋R1<部屋R2<部屋R3の順で小さい。そのため、空調性能は、部屋R1>部屋R2>部屋R3の順で高いと評価される。したがって、例えば、部屋R1は空調性能「高」と判定され、部屋R2は空調性能「中」と判定され、部屋R3は空調性能「低」と判定される。 As shown in FIG. 8, the temperature change in the room after the air conditioner 10 starts the defrosting operation depends on the heat insulation and airtightness of each room. As a result, different air conditioning performance is shown for each room. In the example illustrated in FIG. 8, the amount of indoor temperature decrease after the start of the defrosting operation is smaller in the order of room R1 <room R2 <room R3. Therefore, the air conditioning performance is evaluated to be higher in the order of room R1> room R2> room R3. Therefore, for example, the room R1 is determined to have the air conditioning performance “high”, the room R2 is determined to have the air conditioning performance “medium”, and the room R3 is determined to have the air conditioning performance “low”.
 なお、本実施の形態では、部屋R1は空調性能「高」と判定され、部屋R2は空調性能「中」と判定され、部屋R3は空調性能「低」と判定される例を示しているが、部屋R1、R2、R3の全ての空調性能が「高」となる場合、あるいは「中」となる場合、あるいは「低」となる場合もあり得る。すなわち、部屋R1、R2、R3の各空調性能は、いろいろな組み合わせが考えられる。 In this embodiment, the room R1 is determined to have the air conditioning performance “high”, the room R2 is determined to be “medium”, and the room R3 is determined to have the air conditioning performance “low”. The air conditioning performance of all of the rooms R1, R2, and R3 may be “high”, “medium”, or “low”. That is, various combinations of the air conditioning performances of the rooms R1, R2, and R3 can be considered.
 このような評価基準に基づいて、例えば、上述したような空調性能識別テーブル81(図5参照)が作成される。なお、空気調和機10が除霜運転を開始した後の室内の温度変化の程度は、そのときの外気温度、天候など屋外の環境によって左右される可能性がある。そのため、除霜運転開始後の室内の温度低下量は、除霜運転を実施する毎に測定されてもよい。そして、除霜運転毎の測定結果をサーバ70内のメモリ72に蓄積し、蓄積したデータの平均値から空調性能識別テーブル81を作成してもよい。 Based on such evaluation criteria, for example, the air conditioning performance identification table 81 (see FIG. 5) as described above is created. Note that the degree of indoor temperature change after the air conditioner 10 starts the defrosting operation may be influenced by the outdoor environment such as the outside air temperature and the weather at that time. Therefore, the amount of temperature decrease in the room after the start of the defrosting operation may be measured every time the defrosting operation is performed. And the measurement result for every defrost operation may be accumulate | stored in the memory 72 in the server 70, and the air-conditioning performance identification table 81 may be produced from the average value of the accumulated data.
 また、空調性能識別テーブル81は、サーバ70と接続可能な複数の空気調和機について、同じものを用いることもできる。この場合、空調性能識別テーブル81は、サーバ70と接続可能な複数の空気調和機から得られる各部屋の性能測定の結果を参照して、逐次更新してもよい。 Also, the same air conditioning performance identification table 81 can be used for a plurality of air conditioners that can be connected to the server 70. In this case, the air conditioning performance identification table 81 may be updated sequentially with reference to the performance measurement results of each room obtained from a plurality of air conditioners connectable to the server 70.
 (第1の実施形態のまとめ)
 以上のように、本実施形態においては、空気調和機10が設置されている部屋Rの空調性能に関する情報に基づいて、除霜運転の制御内容(具体的には、除霜運転の継続時間、実施回数など)を変更している。
(Summary of the first embodiment)
As mentioned above, in this embodiment, based on the information regarding the air conditioning performance of the room R in which the air conditioner 10 is installed, the control content of the defrosting operation (specifically, the duration of the defrosting operation, The number of implementations has been changed.
 例えば、空調性能が「低」に該当する部屋において除霜運転を行う場合には、除霜運転の継続時間を、空調性能が標準的な部屋よりも短くし、かつ、除霜運転の実施回数を、空調性能が標準的な部屋よりも増やしている。これにより、空調性能が「低」に該当する部屋における除霜運転時の室温の低下を抑制することができるとともに、室外側熱交換器54の除霜も適切に行うことができる。すなわち、除霜中に下がった室温を暖房運転で暖めなおし、再び除霜運転を行うことで、室温の変化を少なくすることができる。 For example, when the defrosting operation is performed in a room where the air conditioning performance is “low”, the duration of the defrosting operation is made shorter than that of a standard room with the air conditioning performance and the number of times the defrosting operation is performed. The air-conditioning performance is higher than that of a standard room. Thereby, while the fall of the room temperature at the time of the defrost operation in the room where air-conditioning performance corresponds to "low" can be suppressed, the defrost of the outdoor heat exchanger 54 can also be performed appropriately. That is, it is possible to reduce the change in the room temperature by reheating the room temperature that has decreased during the defrosting by the heating operation and performing the defrosting operation again.
 したがって、本実施形態にかかる空気調和システム1によれば、空気調和機10が設置されている部屋R内の空調性能に基づいてより快適な空調制御を行うことができる。 Therefore, according to the air conditioning system 1 according to the present embodiment, more comfortable air conditioning control can be performed based on the air conditioning performance in the room R in which the air conditioner 10 is installed.
 〔第2の実施の形態〕
 続いて、本発明の第2の実施形態について以下に説明する。第2の実施形態では、部屋Rの空調性能の評価方法が第1の実施形態とは異なっている。また、第2の実施形態では、除霜運転の制御方法が第1の実施形態とは異なっている。そこで、以下では、第1の実施形態とは異なる点を中心に説明する。
[Second Embodiment]
Subsequently, a second embodiment of the present invention will be described below. In the second embodiment, the method for evaluating the air conditioning performance of the room R is different from that of the first embodiment. Moreover, in 2nd Embodiment, the control method of a defrost operation differs from 1st Embodiment. Therefore, the following description will focus on points that are different from the first embodiment.
 <部屋Rの空調性能の評価方法について>
 図9には、本実施形態にかかる空気調和システム1において部屋Rの空調性能の測定を行うときの動作概要を示す。
<About the evaluation method of the air conditioning performance of the room R>
In FIG. 9, the operation | movement outline | summary when measuring the air-conditioning performance of the room R in the air conditioning system 1 concerning this embodiment is shown.
 本実施形態にかかる空気調和システム1では、空気調和機10に備えられた人感センサ22を利用して、部屋R内に人がいるか否かを定期的に検知する。そして、サーバ70内に備えられた空調性能評価部76(図4参照)は、部屋R内に人がいないと検知されたときに、部屋Rの空調性能の測定を行い、部屋Rの空調性能に関する情報を作成する。 In the air conditioning system 1 according to the present embodiment, whether or not there is a person in the room R is periodically detected by using the human sensor 22 provided in the air conditioner 10. The air conditioning performance evaluation unit 76 (see FIG. 4) provided in the server 70 measures the air conditioning performance of the room R when it is detected that there is no person in the room R, and the air conditioning performance of the room R is measured. Create information about.
 本実施形態では、部屋Rの性能の測定は、部屋R内に人がいない状態で、空気調和機10が暖房運転を停止した後の部屋R内の温度の変化を測定することによって行われる。部屋R内の温度は、空気調和機10に備えられた室内温度センサ15によって測定される。 In this embodiment, the performance of the room R is measured by measuring a change in the temperature in the room R after the air conditioner 10 stops the heating operation in a state where there is no person in the room R. The temperature in the room R is measured by an indoor temperature sensor 15 provided in the air conditioner 10.
 なお、部屋Rの性能は、空気調和機10が設置されている場所の屋外の環境にも左右され得る。そのため、部屋Rの性能測定時の屋外の環境を判断するための指標として、外気温度のデータを取得してもよい。外気温度のデータは、空気調和機10の室外機50に備えられた外気温度センサ(図示せず)から取得することができる。 It should be noted that the performance of the room R can be influenced by the outdoor environment where the air conditioner 10 is installed. Therefore, outside temperature data may be acquired as an index for determining the outdoor environment when measuring the performance of the room R. The outside temperature data can be acquired from an outside temperature sensor (not shown) provided in the outdoor unit 50 of the air conditioner 10.
 人感センサ22は、制御部41からの信号に基づいて、空気調和機10が設置されている部屋R内に人が存在するか否かを検知し、検知結果を制御部41へ送信する。本実施形態においては、制御部41は、人感センサ22から送信される検知結果に基づいて部屋R内に人がいるか否かに関するデータを作成し、通信インターフェイス24を介して当該データをサーバ70に送信する。 The human sensor 22 detects whether or not there is a person in the room R in which the air conditioner 10 is installed based on a signal from the control unit 41 and transmits the detection result to the control unit 41. In the present embodiment, the control unit 41 creates data regarding whether or not there is a person in the room R based on the detection result transmitted from the human sensor 22, and the data is transmitted to the server 70 via the communication interface 24. Send to.
 <部屋Rの空調性能の測定および評価方法について>
 次に、部屋Rの空調性能を測定するときの処理の流れを説明する。図10には、サーバ70からの指令に基づいて、空気調和機10が設置されている部屋Rの空調性能測定を開始するまでの処理の流れを示す。
<Measurement and evaluation method of air conditioning performance in room R>
Next, the flow of processing when measuring the air conditioning performance of the room R will be described. FIG. 10 shows a process flow until the measurement of the air conditioning performance of the room R in which the air conditioner 10 is installed is started based on a command from the server 70.
 本実施形態では、サーバ70内のCPU71が、図10に示すフローチャートに沿って、空気調和機10が設置されている部屋Rについて空調性能の測定を行うか否かを決定する。図10に示す処理は、部屋R内の空気調和機10が暖房運転を停止したタイミングで実行される。ユーザがリモートコントローラ60を操作するなどして空気調和機10が暖房運転を停止すると、空気調和機10の制御部41から通信インターフェイス24を介して、サーバ70へ暖房運転を停止した旨の情報が送信される。 In this embodiment, the CPU 71 in the server 70 determines whether or not to measure the air conditioning performance for the room R in which the air conditioner 10 is installed, according to the flowchart shown in FIG. The process shown in FIG. 10 is performed at the timing when the air conditioner 10 in the room R stops the heating operation. When the air conditioner 10 stops the heating operation by operating the remote controller 60 or the like, information indicating that the heating operation has been stopped from the control unit 41 of the air conditioner 10 to the server 70 via the communication interface 24. Sent.
 サーバ70内のCPU71は、空気調和機10から暖房運転を停止した旨の情報が送信されると、図10に示す処理をスタートする。まず、CPU71は、空気調和機10が暖房運転を停止する直前に、暖房運転を所定時間以上(例えば、1時間以上)継続して行っていたか否かを判定する(ステップS21)。ここで、直前の暖房運転の継続時間が所定時間未満の場合には(ステップS21でNO)、空調性能の測定を行うことなく、処理を終了する。これは、直前の暖房運転の継続時間が短いと、部屋R内が設定温度に達していない可能性があり、空調性能を正確に判定できないおそれがあるためである。 CPU71 in the server 70 will start the process shown in FIG. 10, if the information to the effect that the heating operation was stopped is transmitted from the air conditioner 10. First, immediately before the air conditioner 10 stops the heating operation, the CPU 71 determines whether or not the heating operation has been continuously performed for a predetermined time (for example, 1 hour or more) (step S21). Here, when the duration time of the immediately preceding heating operation is less than the predetermined time (NO in step S21), the process ends without measuring the air conditioning performance. This is because if the duration of the immediately preceding heating operation is short, the room R may not reach the set temperature, and the air conditioning performance may not be accurately determined.
 一方、直前の暖房運転の継続時間が所定時間以上である場合には(ステップS21でYES)、部屋R内に人が存在するか否かを判定する(ステップS22)。この判定は、空気調和機10から送信されるデータ(部屋R内に人がいるか否かに関するデータ)に基づいて行われる。 On the other hand, if the duration of the immediately preceding heating operation is a predetermined time or longer (YES in step S21), it is determined whether or not there is a person in the room R (step S22). This determination is performed based on data transmitted from the air conditioner 10 (data regarding whether or not there is a person in the room R).
 ここで、部屋R内に人が存在すると判定された場合には(ステップS22でYES)、空調性能の測定を行うことなく、処理を終了する。これは、部屋R内に人が存在していると、部屋Rの空調性能を正確に判定できないおそれがあるためである。 Here, if it is determined that there is a person in the room R (YES in step S22), the process ends without measuring the air conditioning performance. This is because if there is a person in the room R, the air conditioning performance of the room R may not be accurately determined.
 一方、部屋R内に人が存在しないと判定された場合には(ステップS22でNO)、CPU71は、空調性能の測定を開始する(ステップS23)。 On the other hand, when it is determined that there is no person in the room R (NO in step S22), the CPU 71 starts measuring the air conditioning performance (step S23).
 部屋Rの空調性能測定が開始されると、制御部41は、部屋R内の温度変化の測定を開始する。すなわち、室内温度センサ15の経時変化を測定する。図11には、空調性能の異なる各部屋(R1,R2,R3)で空調性能の測定を行ったときの室温の変化の例を示す。 When the air conditioning performance measurement of the room R is started, the control unit 41 starts measuring the temperature change in the room R. That is, the change with time of the indoor temperature sensor 15 is measured. FIG. 11 shows an example of a change in room temperature when the air conditioning performance is measured in each room (R1, R2, R3) having different air conditioning performance.
 図11に示すように、空気調和機10が暖房運転を停止した後の室内の温度変化は、各部屋の断熱性、気密性などによって左右される。その結果、部屋ごとに異なる空調性能を示す。図11に示す例では、暖房運転停止後の室内の温度低下量が、部屋R1<部屋R2<部屋R3の順で小さい。そのため、空調性能は、部屋R1>部屋R2>部屋R3の順で高いと評価される。したがって、例えば、部屋R1は空調性能「高」と判定され、部屋R2は空調性能「中」と判定され、部屋R3は空調性能「低」と判定される。 As shown in FIG. 11, the temperature change in the room after the air conditioner 10 stops the heating operation depends on the heat insulation and airtightness of each room. As a result, different air conditioning performance is shown for each room. In the example shown in FIG. 11, the amount of temperature drop in the room after stopping the heating operation is smaller in the order of room R1 <room R2 <room R3. Therefore, the air conditioning performance is evaluated to be higher in the order of room R1> room R2> room R3. Therefore, for example, the room R1 is determined to have the air conditioning performance “high”, the room R2 is determined to have the air conditioning performance “medium”, and the room R3 is determined to have the air conditioning performance “low”.
 なお、本実施の形態では、部屋R1は空調性能「高」と判定され、部屋R2は空調性能「中」と判定され、部屋R3は空調性能「低」と判定される例を示しているが、部屋R1、R2、R3の全ての空調性能が「高」となる場合、あるいは「中」となる場合、あるいは「低」となる場合もあり得る。すなわち、部屋R1、R2、R3の各空調性能は、いろいろな組み合わせが考えられる。 In this embodiment, the room R1 is determined to have the air conditioning performance “high”, the room R2 is determined to be “medium”, and the room R3 is determined to have the air conditioning performance “low”. The air conditioning performance of all of the rooms R1, R2, and R3 may be “high”, “medium”, or “low”. That is, various combinations of the air conditioning performances of the rooms R1, R2, and R3 can be considered.
 このような評価基準に基づいて、第1の実施形態と同様に、空調性能識別テーブル81(図5参照)が作成される。 Based on such evaluation criteria, an air conditioning performance identification table 81 (see FIG. 5) is created in the same manner as in the first embodiment.
 なお、直前の暖房運転の継続時間が所定時間以上である場合に空調性能の測定を行う場合に代えて、室内温度が設定温度になっている状態で暖房運転が停止された場合は、空調性能の測定を行い、室内温度が設定温度でない状態で暖房運転が停止された場合は、空調性能測定を行わないようにしてもよい。 Instead of measuring the air conditioning performance when the duration of the immediately preceding heating operation is a predetermined time or more, if the heating operation is stopped while the room temperature is at the set temperature, the air conditioning performance When the heating operation is stopped in a state where the room temperature is not the set temperature, the air conditioning performance measurement may not be performed.
 <部屋の空調性能に基づく除霜運転の制御方法>
 続いて、部屋Rの空調性能に基づいて、空気調和機10の除霜運転の制御内容を変更する方法について、図5および図12を参照しながら説明する。
<Control method of defrosting operation based on air conditioning performance of room>
Next, a method for changing the control content of the defrosting operation of the air conditioner 10 based on the air conditioning performance of the room R will be described with reference to FIGS. 5 and 12.
 図5には、サーバ70内のメモリ72に格納されている空調性能識別テーブル81を示す。空調性能識別テーブル81には、各部屋の識別IDと部屋の空調性能とが対応付けて記憶されている。サーバ70と情報通信可能な空気調和機が複数台存在する場合に、このようなテーブルは有効である。部屋の識別IDは、各空気調和機が設置されている部屋単位で割り振られている。 FIG. 5 shows an air conditioning performance identification table 81 stored in the memory 72 in the server 70. In the air conditioning performance identification table 81, the identification ID of each room and the air conditioning performance of the room are stored in association with each other. Such a table is effective when there are a plurality of air conditioners that can communicate with the server 70. The room identification ID is assigned to each room in which each air conditioner is installed.
 図12には、サーバ70内のメモリ72に格納されている除霜運転の制御内容識別テーブル83を示す。制御内容識別テーブル83には、除霜運転の制御内容(具体的には、除霜運転直前の室温の上昇値、除霜運転の継続時間の上限値、再除霜運転の設定のON/OFF、および再除霜運転直前の室温の上昇値)が、部屋の空調性能と対応付けて記憶されている。 FIG. 12 shows a control content identification table 83 for the defrosting operation stored in the memory 72 in the server 70. In the control content identification table 83, the control content of the defrosting operation (specifically, the rise value of the room temperature immediately before the defrosting operation, the upper limit value of the duration of the defrosting operation, ON / OFF of the setting of the refrosting operation) And the room temperature increase value immediately before the re-defrosting operation) are stored in association with the air conditioning performance of the room.
 制御内容識別テーブル83における「除霜運転の継続時間の上限値」および「除霜運転の継続時間の上限値」については、第1の実施形態で説明した制御内容識別テーブル82と同じものである。 The “upper limit value of the duration of the defrosting operation” and the “upper limit value of the duration of the defrosting operation” in the control content identification table 83 are the same as those of the control content identification table 82 described in the first embodiment. .
 制御内容識別テーブル83における「除霜運転直前の室温の上昇値」とは、空気調和機10が除霜運転を開始する直前の部屋R内の温度の設定温度に対する上昇値を示すものである。この数値は、除霜運転中は、暖房運転が一旦停止されることで部屋Rの温度が低下し得ることを見越して、部屋R内の温度を予め設定温度よりもある程度高くしておくための制御に用いられる。制御部41は、制御内容識別テーブル82のこの項目を参照して、部屋Rの空調性能に応じて、室内温度センサ15によって測定された部屋Rの温度が、現在の暖房運転の設定温度よりも何度上昇した場合に、除霜運転開始の指示を出すかを決める。 The “room temperature increase value immediately before the defrosting operation” in the control content identification table 83 indicates an increase value of the temperature in the room R immediately before the air conditioner 10 starts the defrosting operation with respect to the set temperature. This value is for keeping the temperature in the room R to be higher than the preset temperature to some extent in anticipation that the temperature of the room R can be lowered by temporarily stopping the heating operation during the defrosting operation. Used for control. The control unit 41 refers to this item of the control content identification table 82, and the temperature of the room R measured by the room temperature sensor 15 in accordance with the air conditioning performance of the room R is higher than the set temperature of the current heating operation. Decide whether to give instructions to start defrosting operation when it rises.
 制御内容識別テーブル83では、空調性能が「高」に該当する部屋において「除霜運転直前の室温の上昇値」をt1以上と設定している。また、空調性能が「中」に該当する部屋において「除霜運転直前の室温の上昇値」をt2以上と設定している。また、空調性能が「低」に該当する部屋において「除霜運転直前の室温の上昇値」をt3以上と設定している。 In the control content identification table 83, the “room temperature rise value immediately before the defrosting operation” is set to t1 or more in the room where the air conditioning performance is “high”. Further, the “room temperature rise value immediately before the defrosting operation” is set to t2 or more in the room where the air conditioning performance is “medium”. Further, the “room temperature rise value immediately before the defrosting operation” is set to t3 or more in the room where the air conditioning performance is “low”.
 ここで、t1<t2<t3となっている。具体的には、t1=+1℃と設定し、t2=+2℃と設定し、t3=+3℃と設定することができる。これは、空調性能が劣る(「低」の)部屋では、除霜運転中の室内温度の低下の程度が、空調性能が優れた部屋(「高」)と比較して大きくなるためである。除霜運転直前の室温の上昇値をこのように設定することで、空調性能が劣る部屋であっても、除霜運転中の室内温度の低下の程度を小さくすることができる。 Here, t1 <t2 <t3. Specifically, t1 = + 1 ° C., t2 = + 2 ° C., and t3 = + 3 ° C. can be set. This is because, in a room with inferior air conditioning performance ("low"), the degree of decrease in the room temperature during the defrosting operation is greater than in a room with excellent air conditioning performance ("high"). By setting the room temperature increase immediately before the defrosting operation in this way, the degree of the decrease in the room temperature during the defrosting operation can be reduced even in a room with poor air conditioning performance.
 また、制御内容識別テーブル83における「再除霜運転直前の室温の上昇値」とは、空気調和機10が再除霜運転を開始する直前の部屋R内の温度の設定温度に対する上昇値を示すものである。この数値は、「再除霜運転の設定」がONとなっている場合にのみ用いられる。 Further, the “room temperature increase value immediately before the re-defrosting operation” in the control content identification table 83 indicates an increase value with respect to the set temperature of the temperature in the room R immediately before the air conditioner 10 starts the re-defrosting operation. Is. This numerical value is used only when “setting of defrosting operation” is ON.
 第1の実施形態で説明した除霜運転の制御では、「再除霜運転の設定」がONとなっている場合には、除霜運転が終了してから所定時間経過した後に、再び除霜運転を強制的に実施する。これに対して、本実施形態における除霜運転の制御では、「再除霜運転の設定」がONとなっている場合には、最初の除霜運転が終了して暖房運転が再開された後に、部屋R内の温度が設定温度に対してα(例えば、+2℃)以上上昇したら、再除霜運転を開始する。これにより、除霜運転を終了した後の暖房運転が不十分であり、部屋R内の温度が設定温度よりも低下したままの状態で、再度除霜運転が実施されることを抑えることができる。 In the control of the defrosting operation described in the first embodiment, when “re-defrosting operation setting” is ON, the defrosting is performed again after a predetermined time has elapsed since the defrosting operation was completed. Force the operation. On the other hand, in the control of the defrosting operation in the present embodiment, when “setting of re-defrosting operation” is ON, after the first defrosting operation is finished and the heating operation is restarted. When the temperature in the room R rises by α (for example, + 2 ° C.) or more with respect to the set temperature, the re-defrosting operation is started. Thereby, heating operation after finishing defrosting operation is inadequate, and it can control that defrosting operation is carried out again in the state where temperature in room R has fallen below preset temperature. .
 なお、別の実施態様にかかる空気調和システム1では、第1の実施形態で説明した除霜運転中の室内の温度変化に基づいて、部屋Rの空調性能を評価し、かつ、上述の方法で除霜運転の制御内容を変更してもよい。部屋Rの空調性能の評価方法については、上述の各実施形態で説明した方法以外の方法を採用することもできる。 In the air conditioning system 1 according to another embodiment, the air conditioning performance of the room R is evaluated based on the temperature change in the room during the defrosting operation described in the first embodiment, and the above method is used. You may change the control content of a defrost operation. As a method for evaluating the air conditioning performance of the room R, methods other than the methods described in the above-described embodiments may be employed.
 (第2の実施形態のまとめ)
 以上のように、本実施形態においては、空気調和機10が設置されている部屋R内に人がいないときに性能を測定し、部屋Rの空調性能に関する評価を行う。そのため、作成される空調性能に関する情報に、部屋R内に存在する人の数などに起因した誤差が含まれることを抑えることができる。したがって、本実施形態にかかる空気調和システム1は、より正確な空調性能に関する情報を取得することができる。そして、この情報に基づいて空調運転の制御を行うことで、結果としてより快適な空調運転を行うことができる。
(Summary of the second embodiment)
As described above, in the present embodiment, the performance is measured when there is no person in the room R where the air conditioner 10 is installed, and the air conditioning performance of the room R is evaluated. For this reason, it is possible to suppress an error caused by the number of people existing in the room R from being included in the created air conditioning performance information. Therefore, the air conditioning system 1 according to the present embodiment can acquire more accurate information on the air conditioning performance. And by controlling the air conditioning operation based on this information, a more comfortable air conditioning operation can be performed as a result.
 また、本実施形態にかかる空気調和システム1では、制御内容識別テーブル83を用いて除霜運転の制御を行っている。そのため、空調性能が劣る部屋において、除霜運転時の部屋R内の温度低下をより適切に抑えることができる。 Further, in the air conditioning system 1 according to the present embodiment, the control content identification table 83 is used to control the defrosting operation. Therefore, in a room with poor air conditioning performance, it is possible to more appropriately suppress the temperature drop in the room R during the defrosting operation.
 〔第3の実施の形態〕
 続いて、本発明の第3の実施形態について以下に説明する。本実施形態にかかる空気調和システム1では、部屋Rの空調性能に基づいて、除霜運転の制御内容を変更することに加えて、暖房運転時の圧縮機の回転数の制御も行う。部屋Rの空調性能に基づいて、除霜運転の制御内容を変更する方法については、上述の第1または第2の実施形態で説明した方法と同じ方法が適用できるため、詳しい説明は省略する。
[Third Embodiment]
Subsequently, a third embodiment of the present invention will be described below. In the air conditioning system 1 according to the present embodiment, in addition to changing the control content of the defrosting operation based on the air conditioning performance of the room R, the rotation speed of the compressor during the heating operation is also controlled. About the method of changing the control content of a defrost operation based on the air-conditioning performance of the room R, since the same method as the method demonstrated by the above-mentioned 1st or 2nd embodiment is applicable, detailed description is abbreviate | omitted.
 本実施形態にかかる空気調和システム1は、主な構成要素として、空気調和機10と、サーバ70とを含む。空気調和機10の全体構成については、図2および図3に示すとおりである。サーバ70の構成については、図4に示すとおりである。 The air conditioning system 1 according to the present embodiment includes an air conditioner 10 and a server 70 as main components. The overall configuration of the air conditioner 10 is as shown in FIGS. 2 and 3. The configuration of the server 70 is as shown in FIG.
 本実施形態にかかる空気調和システム1において、空気調和機10は圧縮機52を備えている。また、空気調和機10内の制御部41は、設定時刻までに部屋R内の温度を設定温度に到達させるように、ヒートポンプサイクルを起動させて暖房運転を開始する。このとき制御部41は、空気調和機10が設置されている部屋Rの空調性能に基づいて空調制御を行う。具体的には、部屋Rの空調性能が所定の空調性能基準(例えば、標準的な空間の空調性能)よりも高い場合に、制御部41は、定格運転の回転数で圧縮機52の運転を開始させる。 In the air conditioning system 1 according to the present embodiment, the air conditioner 10 includes a compressor 52. Moreover, the control part 41 in the air conditioner 10 starts a heat pump cycle and starts heating operation so that the temperature in the room R may reach the set temperature by the set time. At this time, the control unit 41 performs air conditioning control based on the air conditioning performance of the room R in which the air conditioner 10 is installed. Specifically, when the air conditioning performance of the room R is higher than a predetermined air conditioning performance standard (for example, standard space air conditioning performance), the control unit 41 operates the compressor 52 at the rated operation speed. Let it begin.
 ここで、定格運転の回転数とは、COP(成績係数)などで表されるヒートポンプサイクルのエネルギー消費効率が最適となる範囲内の回転数の一例である。また、定格運転の回転数は、「消費電力上最適な回転数」と言い換えることができる。また、ここで、「定格運転の回転数で圧縮機の運転を開始させる」とは、ヒートポンプサイクル内の冷媒を循環させるために、一旦、より高い回転数で圧縮機を回転させた後に、定格運転の回転数に低下させるような運転も含む。定格運転の回転数は、各圧縮機の能力、仕様などによって決まる。 Here, the rotational speed of the rated operation is an example of the rotational speed within a range where the energy consumption efficiency of the heat pump cycle represented by COP (coefficient of performance) or the like is optimal. Moreover, the rotational speed of rated operation can be paraphrased as “the optimal rotational speed in terms of power consumption”. In addition, here, “start operation of the compressor at the rated operation speed” means that the compressor is once rotated at a higher speed to circulate the refrigerant in the heat pump cycle, and then rated. It also includes operations that reduce the rotational speed of the operation. The speed of rated operation is determined by the capacity and specifications of each compressor.
 <部屋の空調性能に基づく圧縮機の制御方法>
 続いて、部屋Rの空調性能に基づいて、空気調和機10の圧縮機52の回転数を変更する方法について、図13を参照しながら説明する。図13は、空気調和機10において、設定時刻までに部屋R内の温度を設定温度に到達させるような制御を行う場合に、圧縮機52の運転状態と、部屋R内の温度変化との関係を示すグラフである。
<Compressor control method based on room air conditioning performance>
Next, a method for changing the rotational speed of the compressor 52 of the air conditioner 10 based on the air conditioning performance of the room R will be described with reference to FIG. FIG. 13 shows the relationship between the operating state of the compressor 52 and the temperature change in the room R when the air conditioner 10 performs control such that the temperature in the room R reaches the set temperature by the set time. It is a graph which shows.
 図13では、通常運転で圧縮機52を稼働させた場合の室温変化をAで示し、定格運転で圧縮機52を稼働させた場合の室温変化をBで示す。また、図13には、運転開始当初は定格運転の回転数で圧縮機52を稼働させた後に、通常運転の回転数に変更した場合の室温変化をCで示す。 In FIG. 13, the change in room temperature when the compressor 52 is operated in normal operation is indicated by A, and the change in room temperature when the compressor 52 is operated in rated operation is indicated by B. In FIG. 13, C represents the change in room temperature when the compressor 52 is operated at the rated operation speed at the beginning of operation and then changed to the normal operation speed.
 図13では、設定時刻よりも前の時刻t1の時点で圧縮機52を通常運転の状態で起動させた時に、設定時刻0において部屋R内の温度が設定温度に到達する例を示す。 FIG. 13 shows an example in which the temperature in the room R reaches the set temperature at the set time 0 when the compressor 52 is started in the normal operation state at the time t1 before the set time.
 本実施形態にかかる空気調和システム1では、制御部41は、定格運転の回転数で圧縮機52の運転を開始させる。この場合、図13においてBおよびCに示すように、部屋R内の温度上昇は、圧縮機52を通常運転で動作させた場合よりも遅くなる。 In the air conditioning system 1 according to the present embodiment, the control unit 41 starts the operation of the compressor 52 at the rated operation speed. In this case, as indicated by B and C in FIG. 13, the temperature rise in the room R is slower than when the compressor 52 is operated in normal operation.
 本実施形態にかかる空気調和システム1では、制御部41は、時刻t1よりも前の時刻t2において圧縮機52の運転を開始させる。これにより、圧縮機52を定格運転の回転数で稼働させ続けた状態で、設定時刻0の時点で部屋R内の温度を設定温度に到達させることができる。ここで、時刻0を7時とすると、例えば、時刻t1は6時であり、時刻t2は5時となり得る。 In the air conditioning system 1 according to the present embodiment, the control unit 41 starts the operation of the compressor 52 at time t2 before time t1. Thereby, the temperature in the room R can be made to reach the set temperature at the set time 0 while the compressor 52 is continuously operated at the rated operation speed. Here, if the time 0 is 7 o'clock, for example, the time t1 may be 6 o'clock and the time t2 may be 5 o'clock.
 また、別の方法として、時刻t1の時点で圧縮機52を定格運転の回転数で起動させた後、制御部41が、設定時刻0までに部屋R内の温度が設定温度に到達しないと判断したときに、圧縮機52の回転数を定格運転の回転数よりも上昇させ、通常運転の回転数での運転に変更させてもよい(図13のC参照)。このような運転を行うことで、時刻t1の時点で圧縮機52を通常運転で起動させて、設定時刻0よりも早い時点で部屋R内の温度が設定温度に到達するような制御(図13のD参照)と比較して、空気調和機10の消費電力を低く抑えることができる。 Alternatively, after starting the compressor 52 at the rated operation speed at the time t1, the control unit 41 determines that the temperature in the room R does not reach the set temperature by the set time 0. In this case, the rotational speed of the compressor 52 may be increased from the rotational speed of the rated operation and changed to the operation at the normal rotational speed (see C in FIG. 13). By performing such an operation, the compressor 52 is started in a normal operation at the time t1, and the temperature in the room R reaches the set temperature at a time earlier than the set time 0 (FIG. 13). Compared with D), the power consumption of the air conditioner 10 can be kept low.
 以上のように、本実施形態にかかる空気調和システム1によれば、運転開始時の圧縮機52の回転数を定格運転の回転数に抑えた状態とすることで、ヒートポンプサイクルのエネルギー消費効率を向上させることができる。 As described above, according to the air conditioning system 1 according to the present embodiment, the energy consumption efficiency of the heat pump cycle is reduced by setting the rotation speed of the compressor 52 at the start of operation to the rotation speed of the rated operation. Can be improved.
 なお、本発明の別の態様にかかる空気調和システムでは、部屋Rの空調性能に基づく除霜運転の制御内容の変更は行わず、暖房運転時の圧縮機の回転数の制御のみを上述の方法で行ってもよい。 In the air conditioning system according to another aspect of the present invention, the control content of the defrosting operation based on the air conditioning performance of the room R is not changed, and only the control of the rotation speed of the compressor during the heating operation is performed as described above. You may go on.
 〔第4の実施の形態〕
 続いて、本発明の第4の実施形態について以下に説明する。上述の各実施形態では、サーバ70と、空気調和機10とを含む空気調和システム1で、本発明の一態様を実現する例について説明した。しかし、空気調和機10単体で本発明の一態様にかかる空気調和システムを実現することもできる。そこで、本実施形態では、空気調和機10単体で実現される空気調和システムについて説明する。
[Fourth Embodiment]
Subsequently, a fourth embodiment of the present invention will be described below. In each above-mentioned embodiment, the example which realizes one mode of the present invention with air conditioning system 1 containing server 70 and air conditioner 10 was explained. However, the air conditioner according to one aspect of the present invention can be realized by using the air conditioner 10 alone. Therefore, in the present embodiment, an air conditioning system realized by the air conditioner 10 alone will be described.
 図14には、本実施形態にかかる空気調和機(空気調和システム)110の内部構成を示す。空気調和機110は、セパレート式の空気調和機であって、主として、室内機120と、室外機50と、リモートコントローラ60とから構成されている。 FIG. 14 shows an internal configuration of an air conditioner (air conditioning system) 110 according to the present embodiment. The air conditioner 110 is a separate type air conditioner, and mainly includes an indoor unit 120, an outdoor unit 50, and a remote controller 60.
 室外機50およびリモートコントローラ60については、第1の実施形態において説明した構成と同様の構成を適用できる。 About the outdoor unit 50 and the remote controller 60, the structure similar to the structure demonstrated in 1st Embodiment is applicable.
 室内機120は、部屋Rの内部に設置されている。室内機120の内部には、室内側熱交換器12、室内送風機13、室内側熱交換器温度センサ14、室内温度センサ15、表示部23、通信インターフェイス124、および制御部141などが備えられている。 The indoor unit 120 is installed inside the room R. Inside the indoor unit 120, an indoor side heat exchanger 12, an indoor blower 13, an indoor side heat exchanger temperature sensor 14, an indoor temperature sensor 15, a display unit 23, a communication interface 124, a control unit 141, and the like are provided. Yes.
 室内側熱交換器12、室内送風機13、室内側熱交換器温度センサ14、室内温度センサ15、および表示部23については、第1の実施形態において説明した構成と同様の構成を適用できる。 The same configuration as that described in the first embodiment can be applied to the indoor heat exchanger 12, the indoor blower 13, the indoor heat exchanger temperature sensor 14, the indoor temperature sensor 15, and the display unit 23.
 制御部141は、空気調和機110内の各構成部品と接続され、これらの制御を行う。制御部141内には、メモリ142、およびタイマ43などが備えられている。タイマ43は、第1の第1の実施形態において説明した構成と同様の構成を適用できる。 The control unit 141 is connected to each component in the air conditioner 110 and controls them. In the control unit 141, a memory 142, a timer 43, and the like are provided. The timer 43 can be applied with the same configuration as that described in the first embodiment.
 また、制御部141には、空調性能評価部176が設けられている。空調性能評価部176は、空気調和機110の運転状態が所定の条件を満たしたときに、部屋R内の環境の変化(例えば、部屋R内の温度変化)を測定し、その結果に基づいて部屋Rの空調性能を評価する。すなわち、空調性能評価部176は、第1の実施形態で説明したサーバ70の空調性能評価部76と同様の役割を果たす。 The control unit 141 is provided with an air conditioning performance evaluation unit 176. When the operation state of the air conditioner 110 satisfies a predetermined condition, the air conditioning performance evaluation unit 176 measures an environmental change in the room R (for example, a temperature change in the room R), and based on the result. Evaluate the air conditioning performance of room R. In other words, the air conditioning performance evaluation unit 176 plays the same role as the air conditioning performance evaluation unit 76 of the server 70 described in the first embodiment.
 メモリ142は、ROM(read only memory)及びRAM(Random Access Memory)を含む。メモリ142は、空気調和機110の動作プログラムや設定データを記憶するとともに制御部141による演算結果を一時記憶する。なお、本実施形態では、メモリ142には、空調性能評価部176が作成した部屋Rの空調性能情報(図5に示す空調性能識別テーブル81など)などが格納されている。つまり、メモリ142は、第1の実施形態で説明したサーバ70のメモリ72と同様の役割を果たす。 The memory 142 includes ROM (read only memory) and RAM (Random access memory). The memory 142 stores an operation program and setting data of the air conditioner 110 and temporarily stores a calculation result by the control unit 141. In the present embodiment, the memory 142 stores the air conditioning performance information (such as the air conditioning performance identification table 81 shown in FIG. 5) of the room R created by the air conditioning performance evaluation unit 176. That is, the memory 142 plays the same role as the memory 72 of the server 70 described in the first embodiment.
 通信インターフェイス124は、アンテナやコネクタによって実現される。通信インターフェイス124は、赤外線通信によって、リモートコントローラ60との間でデータをやり取りする。なお、本実施形態では、空気調和機110は、インターネット接続されていない。そのため、通信インターフェイス124は、リモートコントローラ60との間でのみデータをやり取りする。 The communication interface 124 is realized by an antenna or a connector. The communication interface 124 exchanges data with the remote controller 60 by infrared communication. In the present embodiment, the air conditioner 110 is not connected to the Internet. Therefore, the communication interface 124 exchanges data only with the remote controller 60.
 以上の構成により、空気調和機110によれば、空気調和機110が設置されている部屋R内の空調性能に基づいてより快適な空調制御を行うことができる。 With the above configuration, the air conditioner 110 can perform more comfortable air conditioning control based on the air conditioning performance in the room R in which the air conditioner 110 is installed.
 〔まとめ〕
 本発明の一局面にかかる空気調和システムは、ヒートポンプサイクルと、前記ヒートポンプサイクルの動作を制御する制御部とを備えている。この空気調和システムにおいて、前記制御部は、前記ヒートポンプサイクルによって空調制御が行われる空間の空調性能(例えば、断熱性能)に基づいて、除霜運転の制御内容を変更する。例えば、ヒートポンプサイクルは、熱媒体を圧縮する圧縮機と、暖房運転時には凝縮器として機能するとともに、冷房運転時には蒸発器として機能する室内側熱交換器と、熱媒体を減圧する膨張弁と、暖房運転時には蒸発器として機能するとともに、冷房運転時には凝縮器として機能する室外側熱交換器とを含む。
[Summary]
An air conditioning system according to one aspect of the present invention includes a heat pump cycle and a control unit that controls the operation of the heat pump cycle. In this air conditioning system, the control unit changes the control content of the defrosting operation based on the air conditioning performance (for example, heat insulation performance) of a space in which air conditioning control is performed by the heat pump cycle. For example, a heat pump cycle includes a compressor that compresses a heat medium, an indoor heat exchanger that functions as an evaporator during cooling operation and an evaporator during cooling operation, an expansion valve that decompresses the heat medium, and heating. It includes an outdoor heat exchanger that functions as an evaporator during operation and also functions as a condenser during cooling operation.
 上記の本発明の一局面にかかる空気調和システムにおいて、前記制御部は、前記空間の空調性能が所定の空調性能基準よりも低い場合に、前記除霜運転の継続時間の上限値を短縮させてもよい。例えば、前記制御部は、前記空間の空調性能が標準的な空間の空調性能よりも低い場合に、前記除霜運転の継続時間の上限値を、予め設定されている上限値よりも短縮させる。これにより、空調性能が劣る空間において、除霜運転をより短時間で終了させることができ、除霜運転中の空間内の温度低下を抑えることができる。 In the air conditioning system according to one aspect of the present invention, when the air conditioning performance of the space is lower than a predetermined air conditioning performance standard, the control unit shortens the upper limit value of the duration of the defrosting operation. Also good. For example, when the air conditioning performance of the space is lower than the standard air conditioning performance, the control unit shortens the upper limit value of the duration of the defrosting operation from a preset upper limit value. Thereby, in the space where air conditioning performance is inferior, the defrosting operation can be completed in a shorter time, and the temperature drop in the space during the defrosting operation can be suppressed.
 また、上記構成の空気調和システムにおいて、前記制御部は、前記空間の空調性能が所定の空調性能基準よりも低い場合に、前記除霜運転の回数を増やしてもよい。すなわち、空間の空調性能が標準的な空間の空調性能よりも低い場合には、除霜運転をより短時間で終了させる一方、除霜運転の実施回数を標準的な空調性を有する空間における除霜運転の実施回数よりも増やしてもよい。これにより、空調性能が劣る空間において、室外側熱交換器の除霜が不十分と可能性を低減させることができる。 In the air conditioning system configured as described above, the control unit may increase the number of defrosting operations when the air conditioning performance of the space is lower than a predetermined air conditioning performance standard. In other words, if the air conditioning performance of the space is lower than the air conditioning performance of the standard space, the defrosting operation is completed in a shorter time, while the number of times of performing the defrosting operation is removed in the space having the standard air conditioning performance. You may increase rather than the frequency | count of implementation of a frost driving | operation. Thereby, in the space where air-conditioning performance is inferior, the possibility that the defrosting of the outdoor heat exchanger is insufficient can be reduced.
 上記の本発明の一局面にかかる空気調和システムにおいて、前記制御部は、前記空間の空調性能に基づいて、前記除霜運転を行う直前の前記空間内の温度の上昇値を決定してもよい。 In the air conditioning system according to one aspect of the present invention described above, the control unit may determine an increase value of the temperature in the space immediately before performing the defrosting operation based on the air conditioning performance of the space. .
 上記の本発明の一局面にかかる空気調和システムにおいて、前記制御部は、前記除霜運転時の前記空間内の温度変化から前記空間の空調性能を評価してもよい。 In the air conditioning system according to one aspect of the present invention, the control unit may evaluate the air conditioning performance of the space from a temperature change in the space during the defrosting operation.
 上記の本発明の一局面にかかる空気調和システムにおいて、前記ヒートポンプサイクルは、圧縮機を備えていてもよい。そして、前記制御部は、設定時刻までに前記空間内の温度を設定温度に到達させる空調制御を行うものであり、前記空間の空調性能が所定の空調性能基準よりも高い場合に、前記制御部は、前記ヒートポンプサイクルのエネルギー消費効率が最適となる範囲内の回転数で前記圧縮機の運転を開始させてもよい。 In the air conditioning system according to one aspect of the present invention described above, the heat pump cycle may include a compressor. And the said control part performs the air-conditioning control which makes the temperature in the said space reach setting temperature by setting time, and when the air-conditioning performance of the said space is higher than a predetermined air-conditioning performance standard, the said control part May start the operation of the compressor at a rotational speed within a range where the energy consumption efficiency of the heat pump cycle is optimal.
 また、本発明の別の一局面にかかる空気調和システムは、圧縮機を含むヒートポンプサイクルと、前記ヒートポンプサイクルの動作を制御する制御部とを備えている。この空気調和システムにおいて、前記制御部は、前記ヒートポンプサイクルによって空調制御が行われる空間の空調性能に基づいて、設定時刻までに前記空間内の温度を設定温度に到達させる空調制御を行うものであり、前記空間の空調性能が所定の空調性能基準よりも高い場合に、前記制御部は、前記ヒートポンプサイクルのエネルギー消費効率が最適となる範囲内の回転数で前記圧縮機の運転を開始させる。 Further, an air conditioning system according to another aspect of the present invention includes a heat pump cycle including a compressor, and a control unit that controls the operation of the heat pump cycle. In this air conditioning system, the control unit performs air conditioning control for causing the temperature in the space to reach a set temperature by a set time based on the air conditioning performance of the space in which air conditioning control is performed by the heat pump cycle. When the air conditioning performance of the space is higher than a predetermined air conditioning performance standard, the control unit starts the operation of the compressor at a rotational speed within a range where the energy consumption efficiency of the heat pump cycle is optimal.
 なお、ヒートポンプサイクルのエネルギー消費効率が最適となる範囲内の回転数とは、例えば、COP(成績係数)などで表されるヒートポンプサイクルのエネルギー消費効率に基づいて決定することができる。このような回転数としては、例えば、圧縮機が定格運転を行っているときの回転数が挙げられる。 It should be noted that the rotation speed within the range where the energy consumption efficiency of the heat pump cycle is optimal can be determined based on the energy consumption efficiency of the heat pump cycle represented by COP (coefficient of performance), for example. As such a rotational speed, for example, the rotational speed when the compressor is performing a rated operation can be cited.
 上記の本発明の各局面にかかる空気調和システムにおいて、前記制御部は、前記設定時刻までに前記空間内の温度が設定温度に到達しないと判断したときに、前記圧縮機の回転数を前記ヒートポンプサイクルのエネルギー消費効率が最適となる範囲内の回転数よりも上昇させてもよい。ここで、圧縮機の回転数を前記ヒートポンプサイクルのエネルギー消費効率が最適となる範囲内の回転数よりも上昇させるとは、例えば、圧縮機の運転状態を定格運転から通常運転に変更することを意味する。 In the air conditioning system according to each aspect of the present invention, when the control unit determines that the temperature in the space does not reach the set temperature by the set time, the rotation speed of the compressor is set to the heat pump. You may make it raise from the rotation speed in the range from which the energy consumption efficiency of a cycle becomes the optimal. Here, to increase the rotational speed of the compressor above the rotational speed within the range where the energy consumption efficiency of the heat pump cycle is optimal, for example, changing the operating state of the compressor from the rated operation to the normal operation. means.
 上記の本発明の各局面にかかる空気調和システムは、前記制御部と情報通信可能なサーバをさらに備えていてもよい。 The air conditioning system according to each aspect of the present invention may further include a server capable of information communication with the control unit.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。また、本明細書で説明した異なる実施形態の構成を互いに組み合わせて得られる構成についても、本発明の範疇に含まれる。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims. Further, configurations obtained by combining the configurations of the different embodiments described in this specification with each other are also included in the scope of the present invention.
1  :空気調和システム
10 :空気調和機
20 :室内機
41 :(空気調和機の)制御部
50 :室外機
52 :圧縮機
70 :サーバ
71 :CPU(制御部)
76 :空調性能評価部
110:空気調和機(空気調和システム)
R  :部屋
1: Air conditioning system 10: Air conditioner 20: Indoor unit 41: Control unit 50 (of air conditioner): Outdoor unit 52: Compressor 70: Server 71: CPU (control unit)
76: Air-conditioning performance evaluation unit 110: Air conditioner (air conditioning system)
R: Room

Claims (9)

  1.  ヒートポンプサイクルと、
     前記ヒートポンプサイクルの動作を制御する制御部と
    を備えている空気調和システムであって、
     前記制御部は、前記ヒートポンプサイクルによって空調制御が行われる空間の空調性能に基づいて、除霜運転の制御内容を変更する
    空気調和システム。
    Heat pump cycle,
    An air conditioning system comprising a controller for controlling the operation of the heat pump cycle,
    The said control part is an air conditioning system which changes the control content of a defrost operation based on the air-conditioning performance of the space where air-conditioning control is performed by the said heat pump cycle.
  2.  前記制御部は、前記空間の空調性能が所定の空調性能基準よりも低い場合に、前記除霜運転の継続時間の上限値を短縮させる、
    請求項1に記載の空気調和システム。
    When the air conditioning performance of the space is lower than a predetermined air conditioning performance standard, the control unit shortens the upper limit value of the duration of the defrosting operation.
    The air conditioning system according to claim 1.
  3.  前記制御部は、前記空間の空調性能が所定の空調性能基準よりも低い場合に、前記除霜運転の回数を増やす、
    請求項2に記載の空気調和システム。
    The control unit increases the number of times of the defrosting operation when the air conditioning performance of the space is lower than a predetermined air conditioning performance standard.
    The air conditioning system according to claim 2.
  4.  前記制御部は、前記空間の空調性能に基づいて、前記除霜運転を行う直前の前記空間内の温度の上昇値を決定する、
    請求項1から3の何れか1項に記載の空気調和システム。
    The control unit determines an increase value of the temperature in the space immediately before performing the defrosting operation based on the air conditioning performance of the space.
    The air conditioning system according to any one of claims 1 to 3.
  5.  前記制御部は、前記除霜運転時の前記空間内の温度変化から前記空間の空調性能を評価する、
    請求項1から4の何れか1項に記載の空気調和システム。
    The control unit evaluates the air conditioning performance of the space from a temperature change in the space during the defrosting operation.
    The air conditioning system according to any one of claims 1 to 4.
  6.  前記ヒートポンプサイクルは、圧縮機を備えており、
     前記制御部は、設定時刻までに前記空間内の温度を設定温度に到達させる空調制御を行うものであり、
     前記空間の空調性能が所定の空調性能基準よりも高い場合に、前記制御部は、前記ヒートポンプサイクルのエネルギー消費効率が最適となる範囲内の回転数で前記圧縮機の運転を開始させる、
    請求項1から5の何れか1項に記載の空気調和システム。
    The heat pump cycle includes a compressor,
    The control unit performs air-conditioning control for causing the temperature in the space to reach a set temperature by a set time,
    When the air conditioning performance of the space is higher than a predetermined air conditioning performance standard, the control unit starts the operation of the compressor at a rotation speed within a range where the energy consumption efficiency of the heat pump cycle is optimal.
    The air conditioning system according to any one of claims 1 to 5.
  7.  圧縮機を含むヒートポンプサイクルと、
     前記ヒートポンプサイクルの動作を制御する制御部と
    を備えている空気調和システムであって、
     前記制御部は、前記ヒートポンプサイクルによって空調制御が行われる空間の空調性能に基づいて、設定時刻までに前記空間内の温度を設定温度に到達させる空調制御を行うものであり、
     前記空間の空調性能が所定の空調性能基準よりも高い場合に、前記制御部は、前記ヒートポンプサイクルのエネルギー消費効率が最適となる範囲内の回転数で前記圧縮機の運転を開始させる、
    空気調和システム。
    A heat pump cycle including a compressor;
    An air conditioning system comprising a controller for controlling the operation of the heat pump cycle,
    The control unit performs air conditioning control for causing the temperature in the space to reach the set temperature by a set time based on the air conditioning performance of the space in which the air conditioning control is performed by the heat pump cycle.
    When the air conditioning performance of the space is higher than a predetermined air conditioning performance standard, the control unit starts the operation of the compressor at a rotation speed within a range where the energy consumption efficiency of the heat pump cycle is optimal.
    Air conditioning system.
  8.  前記制御部は、前記設定時刻までに前記空間内の温度が設定温度に到達しないと判断したときに、前記圧縮機の回転数を前記ヒートポンプサイクルのエネルギー消費効率が最適となる範囲内の回転数よりも上昇させる、
    請求項6または7に記載の空気調和システム。
    When the controller determines that the temperature in the space does not reach the set temperature by the set time, the controller sets the number of revolutions within a range where the energy consumption efficiency of the heat pump cycle is optimal. Than to raise,
    The air conditioning system according to claim 6 or 7.
  9.  前記制御部と情報通信可能なサーバをさらに備えている、
    請求項1から8の何れか1項に記載の空気調和システム。
     
    A server capable of information communication with the control unit;
    The air conditioning system according to any one of claims 1 to 8.
PCT/JP2018/047210 2018-04-11 2018-12-21 Air conditioning system WO2019198277A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020513066A JP7219266B2 (en) 2018-04-11 2018-12-21 air conditioning system
CN201880092218.0A CN112041619B (en) 2018-04-11 2018-12-21 Air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018075987 2018-04-11
JP2018-075987 2018-04-11

Publications (1)

Publication Number Publication Date
WO2019198277A1 true WO2019198277A1 (en) 2019-10-17

Family

ID=68162897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047210 WO2019198277A1 (en) 2018-04-11 2018-12-21 Air conditioning system

Country Status (3)

Country Link
JP (1) JP7219266B2 (en)
CN (1) CN112041619B (en)
WO (1) WO2019198277A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728226U (en) * 1980-07-25 1982-02-15
JPH05106945A (en) * 1991-10-17 1993-04-27 Hitachi Air Conditioning & Refrig Co Ltd Method of controlling defrosting for heat pump in air-conditioning machine
JP2014149105A (en) * 2013-01-31 2014-08-21 Hitachi Appliances Inc Air conditioner
WO2015173868A1 (en) * 2014-05-12 2015-11-19 三菱電機株式会社 Air-conditioning device
JP2017083143A (en) * 2015-10-30 2017-05-18 ダイキン工業株式会社 Air conditioner
JP2018066502A (en) * 2016-10-19 2018-04-26 株式会社富士通ゼネラル Air conditioner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145455A (en) * 1983-02-07 1984-08-20 ダイキン工業株式会社 Defroster
JPH037841A (en) * 1989-06-02 1991-01-16 Matsushita Refrig Co Ltd Multi-room heating device
KR100389159B1 (en) * 2000-08-08 2003-06-25 캐리어 주식회사 Defrost Drive Complete Sensing Unit in Heat Pump
JP4973339B2 (en) 2007-06-29 2012-07-11 パナソニック株式会社 Operation control method of air conditioner
JP2010096474A (en) 2008-10-20 2010-04-30 Daikin Ind Ltd Air-conditioning control device and air conditioning system
JP5210364B2 (en) * 2010-09-09 2013-06-12 パナソニック株式会社 Air conditioner
JP5805833B1 (en) * 2014-07-28 2015-11-10 木村工機株式会社 Heat pump air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728226U (en) * 1980-07-25 1982-02-15
JPH05106945A (en) * 1991-10-17 1993-04-27 Hitachi Air Conditioning & Refrig Co Ltd Method of controlling defrosting for heat pump in air-conditioning machine
JP2014149105A (en) * 2013-01-31 2014-08-21 Hitachi Appliances Inc Air conditioner
WO2015173868A1 (en) * 2014-05-12 2015-11-19 三菱電機株式会社 Air-conditioning device
JP2017083143A (en) * 2015-10-30 2017-05-18 ダイキン工業株式会社 Air conditioner
JP2018066502A (en) * 2016-10-19 2018-04-26 株式会社富士通ゼネラル Air conditioner

Also Published As

Publication number Publication date
CN112041619B (en) 2022-08-23
CN112041619A (en) 2020-12-04
JPWO2019198277A1 (en) 2021-04-15
JP7219266B2 (en) 2023-02-07

Similar Documents

Publication Publication Date Title
JP6642379B2 (en) air conditioner
JP6328049B2 (en) Air conditioner
EP2148147B1 (en) Method of controlling air conditioner
JP6270996B2 (en) Air conditioner
JP6250076B2 (en) Air conditioning control device, air conditioning control system, air conditioning control method, and program
KR20100059522A (en) A control method of an air conditioner
JP2006145204A (en) Air conditioner
JP2008309383A (en) Electricity/gas-type mixed air conditioning control system
JP3816782B2 (en) Air conditioner
JPH11287538A (en) Air-conditioner
JP6653588B2 (en) Air conditioners and air conditioners
JP6785867B2 (en) Air conditioning system
CN113324316A (en) Air conditioning system
JP5900463B2 (en) Air conditioning system
JP7420562B2 (en) Air conditioners and servers
JPWO2020035913A1 (en) Air conditioner, control device, air conditioning method and program
JP6612652B2 (en) Air conditioner
JP6730536B1 (en) Air conditioner, operation control method and program
US7513125B2 (en) Method for controlling air conditioner
WO2019198277A1 (en) Air conditioning system
KR101153421B1 (en) Condensation volume control method for air conditioner
WO2021181486A1 (en) Air conditioning system, air conditioning control device, air conditioning method, and program
JP6562139B2 (en) Refrigeration equipment
JP7016601B2 (en) Air conditioners, controls, air conditioners and programs
WO2020003529A1 (en) Air conditioning system, air conditioning method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513066

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914185

Country of ref document: EP

Kind code of ref document: A1