WO2021181450A1 - Substrate treatment device, production method for semiconductor device, and program - Google Patents

Substrate treatment device, production method for semiconductor device, and program Download PDF

Info

Publication number
WO2021181450A1
WO2021181450A1 PCT/JP2020/009978 JP2020009978W WO2021181450A1 WO 2021181450 A1 WO2021181450 A1 WO 2021181450A1 JP 2020009978 W JP2020009978 W JP 2020009978W WO 2021181450 A1 WO2021181450 A1 WO 2021181450A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
plasma
substrate
processing chamber
film
Prior art date
Application number
PCT/JP2020/009978
Other languages
French (fr)
Japanese (ja)
Inventor
原 大介
橘 八幡
剛 竹田
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2020/009978 priority Critical patent/WO2021181450A1/en
Priority to TW110106849A priority patent/TWI785510B/en
Publication of WO2021181450A1 publication Critical patent/WO2021181450A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • This disclosure relates to a substrate processing apparatus, a manufacturing method and a program of a semiconductor apparatus.
  • raw material gas, reaction gas, etc. are activated by plasma and supplied to the substrate brought into the processing chamber of the substrate processing apparatus, and an insulating film, semiconductor film, conductor, etc. are supplied on the substrate.
  • Substrate treatment may be performed to form various films such as films or remove various films.
  • a buffer chamber for generating plasma is provided in the reaction tube.
  • An object of the present disclosure is to provide a technique capable of supplying a plasma active species gas formed with high efficiency to a substrate.
  • FIG. 3 is an enlarged cross-sectional view for explaining a buffer structure of a substrate processing apparatus preferably used in the embodiment of the present disclosure.
  • B It is a schematic diagram for demonstrating the buffer structure of the substrate processing apparatus preferably used in the embodiment of this disclosure.
  • the processing furnace 202 used for the substrate processing apparatus is a so-called vertical furnace capable of accommodating substrates in multiple stages in the vertical direction, and has a heater 207 as a heating apparatus (heating mechanism). ..
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate.
  • the heater 207 also functions as an activation mechanism (excitation portion) for activating (exciting) the gas with heat, as will be described later.
  • a reaction tube 203 is arranged concentrically with the heater 207.
  • the reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end open.
  • a manifold (inlet flange) 209 is arranged concentrically with the reaction tube 203.
  • the manifold 209 is made of a metal such as stainless steel (SUS), and is formed in a cylindrical shape with open upper and lower ends. The upper end of the manifold 209 is engaged with the lower end of the reaction tube 203 and is configured to support the reaction tube 203.
  • An O-ring 220a as a sealing member is provided between the manifold 209 and the reaction tube 203.
  • the processing vessel (reaction vessel) is mainly composed of the reaction tube 203 and the manifold 209.
  • a processing chamber 201 is formed in the hollow portion of the cylinder inside the processing container.
  • the processing chamber 201 is configured to accommodate a plurality of wafers 200 as substrates.
  • the processing container is not limited to the above configuration, and only the reaction tube 203 may be referred to as a processing container.
  • a nozzle 249a and a pipe 249b are provided in the processing chamber 201 so as to penetrate the side wall of the manifold 209.
  • Gas supply pipes 232a and 232b are connected to the nozzle 249a and the pipe 249b, respectively.
  • the processing chamber 201 is provided with one nozzle 249a, one pipe 249b, and two gas supply pipes 232a and 232b, and supplies a plurality of types of gas into the processing chamber 201. It is possible to do.
  • the gas supply pipes 232a and 232b are provided with mass flow controllers (MFCs) 241a and 241b which are flow rate controllers (flow control units) and valves 243a and 243b which are on-off valves, respectively, in order from the upstream side of the gas flow. ..
  • MFCs mass flow controllers
  • Gas supply pipes 232c and 232d for supplying the inert gas are connected to the downstream side of the gas supply pipes 232a and 232b with respect to the valves 243a and 243b, respectively.
  • the gas supply pipes 232c and 232d are provided with MFCs 241c and 241d and valves 243c and 243d, respectively, in this order from the upstream side of the gas flow.
  • the nozzle 249a rises in the space between the inner wall of the reaction tube 203 and the wafer 200 along the upper part from the lower part of the inner wall of the reaction tube 203 toward the upper side in the loading direction of the wafer 200. It is provided in. That is, the nozzle 249a is provided along the wafer arrangement area in the area horizontally surrounding the wafer arrangement area on the side of the wafer arrangement area (placement area) on which the wafer 200 is arranged (placed). .. That is, the nozzle 249a is provided on the side of the end portion (peripheral portion) of each wafer 200 carried into the processing chamber 201 in a direction perpendicular to the surface (flat surface) of the wafer 200.
  • a gas supply hole 250a for supplying gas is provided on the side surface of the nozzle 249a.
  • the gas supply hole 250a is opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200.
  • a plurality of gas supply holes 250a are provided from the lower part to the upper part of the reaction tube 203, each having the same opening area, and further provided with the same opening pitch.
  • a pipe 249b is connected to the tip of the gas supply pipe 232b.
  • the pipe 249b is connected in the buffer structure 237.
  • two buffer structures 237 are arranged so as to sandwich a straight line passing through the center of the reaction tube 203 (processing chamber 201) and the nozzle 249a in a plan view, or the center of the reaction tube 203 (processing chamber 201).
  • the buffer structure 237 is arranged symmetrically with respect to the line connecting the nozzle 249a and the exhaust pipe 231.
  • the buffer structure 237 is provided with a partition plate 237a, which is partitioned by a partition plate 237a into a gas introduction area 237b for introducing gas from the pipe 249b and a plasma area 237c for converting gas into plasma.
  • the plasma area 237c is also referred to as a buffer chamber 237c, which is a gas dispersion space.
  • the buffer chamber 237c is arranged on the nozzle 249a side, and the gas introduction area 237b is arranged on the exhaust pipe 231 side.
  • the buffer chamber 237c is formed in an annular space in a plan view between the inner wall of the reaction tube 203 and the wafer 200, and in a portion extending above the lower part of the inner wall of the reaction tube 203. It is provided along the loading direction of. That is, the buffer chamber 237c is formed by the buffer structure 237 along the wafer arrangement region in the region that horizontally surrounds the wafer arrangement region on the side of the wafer arrangement region.
  • the buffer structure 237 is made of an insulator which is a heat-resistant material such as quartz or SiC, and gas supply ports 302 and 304 for supplying gas are formed on the arcuate wall surface of the buffer structure 237. ing.
  • a plurality of gas supply ports 302 and 304 are provided in the horizontal direction of the plurality of wafers 200 loaded, and are opened so as to face the center of the reaction tube 203, and gas is supplied toward the wafer 200. It is possible.
  • a plurality of gas supply ports 302 and 304 are provided from the lower part to the upper part of the reaction tube 203 along the loading direction of the wafer 200, each having the same opening area, and further provided with the same opening pitch.
  • the gas introduction area 237b is provided so as to rise upward from the lower part of the inner wall of the reaction tube 203 toward the upper part in the loading direction of the wafer 200.
  • the partition plate 237a is provided with a gas supply hole 237d for supplying gas from the gas introduction area 237b to the plasma area 237c.
  • the reaction gas supplied to the gas introduction area 237b is dispersed in the buffer chamber 237c.
  • a plurality of gas supply holes 237d are provided from the lower part to the upper part of the reaction tube 203.
  • a nozzle for example, a perforated nozzle similar to the nozzle 249a may be provided in the buffer chamber 237c to supply the processing gas.
  • gas can be uniformly supplied to each wafer 200, and the uniformity of the film thickness of the film formed on each wafer 200 can be improved.
  • the direction of the residual gas flow is appropriately specified by the position of the exhaust port, and is not limited to the vertical direction.
  • a silane raw material gas containing silicon (Si) as a predetermined element is supplied into the processing chamber 201 via the MFC 241a, the valve 243a, and the nozzle 249a.
  • the raw material gas is a raw material in a gaseous state, for example, a gas obtained by vaporizing a raw material in a liquid state under normal temperature and pressure, a raw material in a gaseous state under normal temperature and pressure, and the like.
  • raw material when used in the present specification, it means “liquid raw material in a liquid state”, “raw material gas in a gaseous state”, or both of them. There is.
  • the silane raw material gas for example, a raw material gas containing Si and a halogen element, that is, a halosilane raw material gas can be used.
  • the halosilane raw material is a silane raw material having a halogen group.
  • the halogen element contains at least one selected from the group consisting of chlorine (Cl), fluorine (F), bromine (Br) and iodine (I). That is, the halosilane raw material contains at least one halogen group selected from the group consisting of a chloro group, a fluoro group, a bromo group and an iodine group.
  • the halosilane raw material can be said to be a kind of halide.
  • halosilane raw material gas for example, a raw material gas containing Si and Cl, that is, a chlorosilane raw material gas can be used.
  • chlorosilane raw material gas for example, dichlorosilane (SiH 2 Cl 2 , abbreviation: DCS) gas can be used.
  • a nitrogen (N) -containing gas as a reaction gas is MFC241b, a valve 243b, a pipe 249b, and a gas introduction area 237b. It is configured to be supplied into the buffer chamber 237c via.
  • N-containing gas for example, a hydrogen nitride-based gas can be used.
  • the hydrogen nitride-based gas can be said to be a substance composed of only two elements, N and H, and acts as a nitride gas, that is, an N source.
  • ammonia (NH 3 ) gas can be used as the hydrogen nitride-based gas.
  • nitrogen (N 2 ) gas is processed as an inert gas via MFC241c, 241d, valves 243c, 243d, gas supply pipes 232a, 232b, nozzle 249a, and pipe 249b, respectively. It is supplied into the room 201.
  • the gas supply pipe 232a, the MFC 241a, and the valve 243a form a raw material supply system as the first gas supply system.
  • the gas supply pipe 232b, the MFC 241b, and the valve 243b form a reactant supply system (reactant supply system) as the second gas supply system.
  • the gas supply pipes 232c, 232d, MFC241c, 241d, and valves 243c, 243d constitute an inert gas supply system.
  • the raw material supply system, the reactant supply system and the inert gas supply system are also collectively referred to simply as a gas supply system (gas supply unit).
  • a capacitively coupled plasma (Capacitively Coupled Plasma, abbreviated as CCP) is used as the plasma, and a buffer inside the reaction tube 203 (processing chamber 201), which is a vacuum partition made of quartz or the like when the reaction gas is supplied. Generated in structure 237.
  • CCP Capacitively Coupled Plasma
  • the external electrode 300 is made of a thin plate having a rectangular shape long in the arrangement direction of the wafer 200. As shown in FIGS. 1 and 3B, the external electrode 300 has a reference potential of 0 V and a first external electrode (Hot electrode) 300-1 to which the high frequency power supply 273 is connected via the matching unit 272. Second external electrodes (Ground electrodes) 300-2, which are grounded to the ground, are arranged at equal intervals. In the present disclosure, when it is not necessary to separately explain the description, the description will be described as the external electrode 300.
  • the external electrode 300 is provided between the reaction tube 203 and the heater 207 on the outside of the processing chamber 201 corresponding to the position where the buffer structure 237 is provided.
  • the buffer structure is provided with a plasma area (buffer chamber) 237c as an area for converting gas into plasma
  • the external electrode 300 is the outer wall of the reaction tube 203 corresponding to the position where the buffer chamber 237c is provided. It is arranged in a substantially arc shape along (outside of the processing chamber 201).
  • the external electrode 300 is fixedly arranged on the inner wall surface of a quartz cover formed in an arc shape having a central angle of 30 degrees or more and 240 degrees or less, for example.
  • the external electrode 300 is arranged on the outer periphery of the reaction tube 203 (outside the processing chamber 201) corresponding to the position where the buffer chamber (plasma area) 237c is provided. Further, the buffer structure 237 is provided with a gas supply unit (gas introduction area) 237b as an area for supplying gas to the buffer chamber 237c. The external electrode 300 is not arranged on the outer periphery of the reaction tube 203 (outside the processing chamber 201) corresponding to the position where the gas introduction area (gas supply unit) 237b is provided.
  • the plasma active species 306 is generated in the buffer chamber 237c by inputting a high frequency of, for example, a frequency of 13.56 MHz from the high frequency power supply 273 to the external electrode 300 via the matching unit 272.
  • the plasma generated in this way makes it possible to supply the plasma active species 306 for substrate treatment from the periphery of the wafer 200 to the surface of the wafer 200.
  • the plasma generation unit is mainly composed of the buffer structure 237, the external electrode 300, and the high frequency power supply 273.
  • the external electrode 300 can be made of a metal such as aluminum, copper, or stainless steel, but by using an oxidation-resistant material such as nickel, it is possible to process the substrate while suppressing deterioration of electrical conductivity.
  • an oxidation-resistant material such as nickel
  • an AlO film which is an oxide film having high heat resistance and corrosion resistance, is formed on the electrode surface. Due to the effect of this film formation, the progress of deterioration inside the electrode can be suppressed, so that the decrease in plasma generation efficiency due to the decrease in electrical conductivity can be suppressed.
  • a plurality of external electrodes 300 are provided with notches (not shown) on the inner wall surface of a quartz cover 301 which is a curved electrode fixing jig. It is hooked on the protruding portion 310, slid and fixed, and unitized (hook type electrode unit) so as to be integrated with the quartz cover 301, and is installed on the outer periphery of the reaction tube 203.
  • the external electrode 300 and the quartz cover 301 which is an electrode fixing jig, are referred to as an electrode fixing unit. Quartz and nickel alloys are used as the materials for the quartz cover 301 and the external electrode 300, respectively.
  • the exclusive ratio of the quartz cover 301 should be an arc shape with a central angle of 30 degrees or more and 240 degrees or less, and an exhaust pipe which is an exhaust port to avoid generation of particles. It is desirable that the arrangement avoids 231 and the nozzle 249a. If the central angle is smaller than 30 degrees, the number of external electrodes 300 to be arranged is reduced, and the amount of plasma produced is reduced. If the central angle is larger than 240 degrees, the area covered by the quartz cover 301 on the side surface of the reaction tube 203 becomes too large, and the thermal energy from the heater 207 is cut off. In this embodiment, two quartz covers having a central angle of 110 degrees are arranged symmetrically.
  • the reaction pipe 203 is provided with an exhaust pipe 231 as an exhaust unit for exhausting the atmosphere in the processing chamber 201.
  • the exhaust pipe 231 is provided with a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (AutoPressure Controller) valve 244 as an exhaust valve (pressure adjusting unit).
  • a vacuum pump 246 as a vacuum exhaust device is connected.
  • the APC valve 244 can perform vacuum exhaust and vacuum exhaust stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 operating, and further, with the vacuum pump 246 operating, the APC valve 244 can perform vacuum exhaust and vacuum exhaust stop.
  • the valve is configured so that the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening degree based on the pressure information detected by the pressure sensor 245.
  • the exhaust system is mainly composed of an exhaust pipe 231, an APC valve 244, and a pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • the exhaust pipe 231 is not limited to the case where it is provided in the reaction pipe 203, and may be provided in the manifold 209 in the same manner as the nozzle 249a.
  • a seal cap 219 is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209.
  • the seal cap 219 is configured to come into contact with the lower end of the manifold 209 from below in the vertical direction.
  • the seal cap 219 is made of a metal such as SUS and is formed in a disk shape.
  • An O-ring 220b as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the seal cap 219.
  • a rotation mechanism 267 for rotating the boat 217 which will be described later, is installed.
  • the rotating shaft 255 of the rotating mechanism 267 penetrates the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be vertically lifted and lowered by a boat elevator 115 as a lifting mechanism vertically installed outside the reaction tube 203.
  • the boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by raising and lowering the seal cap 219.
  • the boat elevator 115 is configured as a transport device (convey mechanism) for transporting the boat 217, that is, the wafer 200, into and out of the processing chamber 201.
  • a shutter 219s is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209 while the seal cap 219 is lowered by the boat elevator 115.
  • the shutter 219s is made of a metal such as SUS and is formed in a disk shape.
  • An O-ring 220c as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the shutter 219s.
  • the opening / closing operation of the shutter 219s (elevating / lowering operation, rotating operation, etc.) is controlled by the shutter opening / closing mechanism 115s.
  • the boat 217 as a substrate support supports a plurality of wafers, for example, 25 to 200 wafers, in a horizontal position and vertically aligned with each other in a multi-stage manner. That is, they are arranged so as to be arranged at predetermined intervals.
  • the boat 217 is made of a heat resistant material such as quartz or SiC.
  • a heat insulating plate 218 made of a heat-resistant material such as quartz or SiC is supported in multiple stages.
  • a temperature sensor 263 as a temperature detector is installed inside the reaction tube 203.
  • the temperature in the processing chamber 201 is set to a desired temperature distribution.
  • the temperature sensor 263 is provided along the inner wall of the reaction tube 203 like the nozzle 249a.
  • the controller 121 which is a control unit (control device), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured so that data can be exchanged with the CPU 121a via the internal bus 121e.
  • An input / output device 122 configured as, for example, a touch panel is connected to the controller 121.
  • the storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program for controlling the operation of the substrate processing device, a process recipe in which the procedure and conditions of the film forming process described later are described, and the like are readablely stored.
  • the process recipes are combined so that the controller 121 can execute each procedure in various processes (deposition process) described later and obtain a predetermined result, and functions as a program.
  • process recipes, control programs, etc. are collectively referred to simply as programs.
  • a process recipe is also simply referred to as a recipe.
  • the RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily held.
  • the I / O port 121d includes the above-mentioned MFC 241a to 241d, valves 243a to 243d, pressure sensor 245, APC valve 244, vacuum pump 246, heater 207, temperature sensor 263, matching unit 272, high frequency power supply 273, rotation mechanism 267, and boat. It is connected to the elevator 115, the shutter opening / closing mechanism 115s, and the like.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c and read a recipe from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like.
  • the CPU 121a controls the rotation mechanism 267, adjusts the flow rate of various gases by the MFCs 241a to 241d, opens and closes the valves 243a to 243d, adjusts the high frequency power supply 273 based on the impedance monitoring, and APC so as to follow the contents of the read recipe.
  • the controller 121 installs the above-mentioned program stored in an external storage device (for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as MO, or a semiconductor memory such as a USB memory) 123 in a computer.
  • an external storage device for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as MO, or a semiconductor memory such as a USB memory
  • the storage device 121c and the external storage device 123 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium.
  • the term recording medium may include only the storage device 121c alone, it may include only the external storage device 123 alone, or it may include both of them.
  • the program may be provided to the computer by using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • the step of supplying the DCS gas as a source gas, and supplying the plasma-excited NH 3 gas was allowed as a reaction gas in a non-simultaneous, i.e. a predetermined number of times (at least once) without synchronizing by performing the wafer
  • a silicon nitride film SiN film
  • a predetermined film may be formed in advance on the wafer 200.
  • a predetermined pattern may be formed in advance on the wafer 200 or a predetermined film.
  • wafer When the word “wafer” is used in the present specification, it may mean the wafer itself or a laminate of a wafer and a predetermined layer or film formed on the surface thereof.
  • wafer surface When the term “wafer surface” is used in the present specification, it may mean the surface of the wafer itself or the surface of a predetermined layer or the like formed on the wafer.
  • a predetermined layer when it is described that "a predetermined layer is formed on a wafer”, it means that a predetermined layer is directly formed on the surface of the wafer itself, or a layer formed on the wafer or the like. It may mean forming a predetermined layer on top of it.
  • the use of the term “wafer” in the present specification is also synonymous with the use of the term “wafer”.
  • Step S1 When a plurality of wafers 200 are loaded into the boat 217 (wafer charge), the shutter opening / closing mechanism 115s moves the shutter 219s to open the lower end opening of the manifold 209 (shutter open). After that, as shown in FIG. 1, the boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 and carried into the processing chamber 201 (boat load). In this state, the seal cap 219 is in a state of sealing the lower end of the manifold 209 via the O-ring 220b.
  • Vacuum exhaust (vacuum exhaust) is performed by the vacuum pump 246 so that the inside of the processing chamber 201, that is, the space where the wafer 200 exists, has a desired pressure (vacuum degree).
  • the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information.
  • the vacuum pump 246 is always kept in operation until at least the film forming step described later is completed.
  • the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to have a desired temperature.
  • the state of energization of the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution.
  • the heating in the processing chamber 201 by the heater 207 is continuously performed at least until the film forming step described later is completed.
  • the heater 207 becomes unnecessary, and the heater 207 does not have to be installed in the substrate processing apparatus.
  • the configuration of the substrate processing apparatus can be simplified.
  • the rotation mechanism 267 starts the rotation of the boat 217 and the wafer 200.
  • the rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is continuously performed at least until the film forming step is completed.
  • step S3 DCS gas is supplied to the wafer 200 in the processing chamber 201.
  • the valve 243a is opened to allow DCS gas to flow into the gas supply pipe 232a.
  • the flow rate of the DCS gas is adjusted by the MFC 241a, is supplied into the processing chamber 201 from the gas supply hole 250a via the nozzle 249a, and is exhausted from the exhaust pipe 231.
  • the flow rate of the N 2 gas is adjusted by the MFC 241c, is supplied into the processing chamber 201 together with the DCS gas, and is exhausted from the exhaust pipe 231.
  • the valve 243 d in order to suppress the penetration of the DCS gas into the pipe 249 b, by opening the valve 243 d, flow the N 2 gas to the gas supply pipe 232 d.
  • the N 2 gas is supplied into the processing chamber 201 via the gas supply pipe 232b and the pipe 249b, and is exhausted from the exhaust pipe 231.
  • the supply flow rate of the DCS gas controlled by the MFC 241a is, for example, a flow rate within the range of 1 sccm or more and 6000 sccm or less, preferably 3000 sccm or more and 5000 sccm or less.
  • the supply flow rate of the N 2 gas controlled by the MFC 241c and 241d shall be, for example, a flow rate within the range of 100 sccm or more and 10000 sccm or less, respectively.
  • the pressure in the processing chamber 201 is, for example, 1 Pa or more and 2666 Pa or less, preferably 665 Pa or more and 1333 Pa or less.
  • the time for exposing the wafer 200 to the DCS gas is, for example, about 20 seconds per cycle. The time for exposing the wafer 200 to the DCS gas varies depending on the film thickness.
  • the temperature of the heater 207 is such that the temperature of the wafer 200 is, for example, 0 ° C. or higher and 700 ° C. or lower, preferably room temperature (25 ° C.) or higher and 550 ° C. or lower, and more preferably 40 ° C. or higher and 500 ° C. or lower.
  • Set to temperature By setting the temperature of the wafer 200 to 700 ° C. or lower, further to 550 ° C. or lower, and further to 500 ° C. or lower as in the present embodiment, the amount of heat applied to the wafer 200 can be reduced, and the heat history received by the wafer 200 can be reduced. Can be well controlled.
  • a Si-containing layer is formed on the wafer 200 (the base film on the surface).
  • the Si-containing layer may contain Cl and H in addition to the Si layer.
  • the Si-containing layer is formed by physically adsorbing DCS on the outermost surface of the wafer 200, chemically adsorbing a substance obtained by partially decomposing DCS, or depositing Si by thermally decomposing DCS. Will be done. That is, the Si-containing layer may be an adsorption layer (physisorption layer or chemisorption layer) of a substance in which a part of DCS or DCS is decomposed, or may be a Si deposition layer (Si layer).
  • the valve 243a is closed to stop the supply of DCS gas into the processing chamber 201.
  • the APC valve 244 is left open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the DCS gas and the reaction sub-reaction after contributing to the formation of the unreacted or Si-containing layer remaining in the processing chamber 201. Products and the like are excluded from the processing chamber 201 (S4).
  • the valves 243c and 243d are kept open to maintain the supply of N 2 gas into the processing chamber 201.
  • the N 2 gas acts as a purge gas. Note that this step S4 may be omitted.
  • the inert gas in addition to the N 2 gas, a rare gas such as Ar gas, He gas, Ne gas, and Xe gas can be used.
  • reaction gas supply step S5, S6
  • supplying NH 3 gas is plasma-excited as the reaction gas to the wafer 200 in the process chamber 201 (S5).
  • the opening / closing control of the valves 243b to 243d is performed in the same procedure as the opening / closing control of the valves 243a, 243c, 243d in step S3.
  • the flow rate of the NH 3 gas is adjusted by the MFC 241b, and the NH 3 gas is supplied into the buffer chamber 237c via the pipe 249b.
  • high frequency power is supplied to the external electrode 300.
  • the NH 3 gas supplied into the buffer chamber 237c is excited to a plasma state (plasmaized and activated), supplied as an active species (NH 3 *) into the processing chamber 201, and exhausted from the exhaust pipe 231.
  • the supply flow rate of the NH 3 gas controlled by the MFC 241b is, for example, a flow rate within the range of 100 sccm or more and 10000 sccm or less, preferably 1000 sccm or more and 2000 sccm or less.
  • the high frequency power applied to the external electrode 300 is, for example, power within the range of 50 W or more and 600 W or less.
  • the pressure in the processing chamber 201 is, for example, a pressure in the range of 1 Pa or more and 500 Pa or less. By using the plasma, also the pressure in the processing chamber 201 as such a relatively low pressure zone, it is possible to activate the NH 3 gas.
  • NH 3 time for supplying the active species obtained by the gas to plasma excitation to the wafer 200 i.e., the gas supply time (irradiation time), for example more than 1 second, 180 seconds or less, preferably 1 second or more, The time is within the range of 60 seconds or less.
  • the gas supply time i.e., the gas supply time (irradiation time)
  • the time is within the range of 60 seconds or less.
  • Other processing conditions are the same as those in S3 described above.
  • Si-containing layer formed on the wafer 200 is plasma nitriding.
  • the energy of the plasma excited NH 3 gas, Si-Cl bond Si-containing layer has, Si-H bond is cleaved. Cl and H from which the bond with Si has been separated will be desorbed from the Si-containing layer.
  • Si in the Si-containing layer having an unbonded hand (dangling bond) due to desorption of Cl and the like is bonded to N contained in the NH 3 gas, and a Si—N bond is formed.
  • the Rukoto As this reaction proceeds, the Si-containing layer is changed (modified) into a layer containing Si and N, that is, a silicon nitride layer (SiN layer).
  • step S6 After the Si-containing layer is changed into SiN layer, closing the valve 243b, to stop the supply of the NH 3 gas. Further, the supply of high frequency power to the external electrode 300 is stopped. Then, the NH 3 gas and the reaction by-product remaining in the treatment chamber 201 are removed from the treatment chamber 201 by the same treatment procedure and treatment conditions as in step S4 (S6). Note that this step S6 may be omitted.
  • nitride that is, the N-containing gas to be plasma-excited
  • diimide (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas and the like may be used.
  • step S4 in addition to the N 2 gas, for example, various rare gases exemplified in step S4 can be used.
  • a SiN film having a predetermined composition and a predetermined film thickness can be formed on the wafer 200.
  • the above cycle is preferably repeated a plurality of times. That is, the thickness of the SiN layer formed per cycle is made smaller than the desired film thickness, and the film thickness of the SiN film formed by laminating the SiN layers becomes the desired film thickness. It is preferable to repeat the cycle multiple times.
  • the external electrode is provided at a position where the plasma generation unit is formed and is provided at a position other than the gas supply unit that supplies gas to the plasma generation unit, thereby preventing plasma formation in the gas supply unit. be able to.
  • a buffer chamber is provided along the inner wall of the reaction tube, and an external electrode for forming plasma is provided on the outer periphery of the reaction tube corresponding to the position where the buffer chamber is provided, and is supplied into the buffer chamber by this external electrode.
  • a plurality of processing gas supply ports for supplying activated processing gas to the substrate are provided in the horizontal direction of the substrate toward the center of the substrate, so that the gas is turned into plasma toward the center of the substrate. Supply can be increased.
  • a partition plate is provided in the buffer structure forming the buffer chamber, and the processing gas introduction area and the plasma area are separated by partitioning the processing gas introduction area and the plasma area as the buffer chamber by the partition plate. Can be separated.
  • the partition plate is provided with a gas supply hole for supplying gas from the processing gas introduction area to the plasma area, so that the processing gas is gas to the plasma area in a state where the processing gas introduction area and the plasma area are separated. Can be supplied.
  • the partition plate is provided with a plurality of holes for supplying the processing gas to the plasma area, the processing gas is supplied from the lower part of the processing gas introduction area, and the processing gas is supplied to the plasma area from the plurality of holes. Thereby, the gas concentration in the buffer chamber can be made uniform.
  • Plasma can be formed in the plasma area by providing an external electrode on the outer circumference of the reaction tube corresponding to the position where the plasma area is provided.
  • the buffer structure is provided in a portion extending from the upper part to the lower part of the inner wall on the processing chamber side along the loading direction of the substrate, and a gas supply port for supplying plasmaized gas is provided in the processing chamber.
  • the gas concentration in the processing chamber can be made uniform.
  • a buffer chamber is provided across the raw material gas supply nozzle, and plasma is provided by providing an external electrode that forms plasma on the outer circumference of the reaction tube corresponding to the position where each buffer chamber is provided.
  • the area can be expanded.
  • the reaction gas is supplied after the raw material is supplied.
  • the present disclosure is not limited to such an embodiment, and the supply order of the raw material and the reaction gas may be reversed. That is, the raw material may be supplied after the reaction gas is supplied. By changing the supply order, it is possible to change the film quality and composition ratio of the formed film.
  • SiN film an example of forming a SiN film on the wafer 200 has been described.
  • the present disclosure is not limited to such an embodiment, and a silicon oxide film (SiO film), a silicon acid carbide film (SiOC film), a silicon acid carbonic nitride film (SiOCN film), and a silicon acid nitride film (SiON) are placed on the wafer 200.
  • SiO film silicon oxide film
  • SiOC film silicon acid carbide film
  • SiOCN film silicon acid carbonic nitride film
  • SiON silicon acid nitride film
  • Si-based nitride such as a silicon carbonitride film (SiCN film), a silicon boron nitride film (SiBN film), or a silicon boron nitride film (SiBCN film) It is also suitably applicable when forming a film.
  • the reaction gas the other O-containing gas, C 3 and C-containing gas, such as H 6, and N-containing gas such as NH 3, it can be used B-containing gas such as BCl 3.
  • titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), aluminum (Al), molybdenum (Mo), tungsten (W) are provided on the wafer 200. It is also suitably applicable to the case of forming an oxide film or a nitride film containing a metal element such as, that is, a metal-based oxide film or a metal-based nitride film.
  • a TiO film, a TiN film, a TiOC film, a TiOCN film, a TiON film, a TiBN film, a TiBCN film, a ZrO film, a ZrN film, a ZrOC film, a ZrOCN film, and Z rON film ZrBN film, ZrBCN film, HfO film, HfN film, HfOC film, HfOCN film, HfON film, HfBN film, HfBCN film, TaO film, TaOC film, TaOCN film, TaON film, TaBN film, TaBCN film, Nbo film.
  • tetrakis (dimethylamino) titanium (Ti [N (CH 3 ) 2 ] 4 abbreviation: TDMAT) gas, tetrakis (ethylmethylamino) hafnium (Hf [N (C 2 H 5)) ) (CH 3 )] 4
  • abbreviation: TEMAH gas tetrakis (ethylmethylamino) zirconium (Zr [N (C 2 H 5 ) (CH 3 )] 4
  • abbreviation: TEMAZ) gas trimethylaluminum (Al (CH)) 3 ) 3
  • TMA titanium tetrachloride
  • HfCl 4 hafnium tetrachloride
  • the present disclosure can be suitably applied when forming a metalloid-based film containing a metalloid element or a metal-based film containing a metal element.
  • the treatment procedure and treatment conditions for these film formation treatments can be the same treatment procedures and treatment conditions as those for the film formation treatments shown in the above-described embodiments and modifications. In these cases as well, the same effects as those of the above-described embodiments and modifications can be obtained.
  • the recipes used for the film forming process are individually prepared according to the processing content and stored in the storage device 121c via a telecommunication line or an external storage device 123. Then, when starting various processes, it is preferable that the CPU 121a appropriately selects an appropriate recipe from a plurality of recipes stored in the storage device 121c according to the processing content. This makes it possible to form thin films of various film types, composition ratios, film qualities, and film thicknesses with a single substrate processing device in a versatile and reproducible manner. In addition, the burden on the operator can be reduced, and various processes can be started quickly while avoiding operation mistakes.
  • the above recipe is not limited to the case of newly creating, for example, it may be prepared by changing an existing recipe already installed in the board processing apparatus.
  • the changed recipe may be installed on the substrate processing apparatus via a telecommunication line or a recording medium on which the recipe is recorded.
  • the input / output device 122 included in the existing board processing device may be operated to directly change the existing recipe already installed in the board processing device.

Abstract

Provided is a technology comprising: a treatment chamber in which a substrate is treated; a substrate support tool that supports a plurality of substrates at multiple levels in the vertical direction; and a plasma generation unit having a buffer structure that is provided inside the treatment chamber and that turns a gas into a plasma, and an external electrode that generates plasma and that is provided on the outside of the treatment chamber at a position corresponding to the position to which the buffer structure is provided.

Description

基板処理装置、半導体装置の製造方法及びプログラムSubstrate processing equipment, semiconductor equipment manufacturing methods and programs
 本開示は、基板処理装置、半導体装置の製造方法及びプログラムに関する。 This disclosure relates to a substrate processing apparatus, a manufacturing method and a program of a semiconductor apparatus.
 半導体装置の製造工程の1つに、基板処理装置の処理室内に搬入した基板に対して、原料ガスや反応ガスなどをプラズマにより活性化させて供給し、基板上に絶縁膜や半導体膜、導体膜等の各種膜を形成したり、各種膜を除去したりする基板処理が行われることがある。例えば、特許文献1では、反応管内にプラズマを生成するバッファ室を設けている。 In one of the manufacturing processes of semiconductor devices, raw material gas, reaction gas, etc. are activated by plasma and supplied to the substrate brought into the processing chamber of the substrate processing apparatus, and an insulating film, semiconductor film, conductor, etc. are supplied on the substrate. Substrate treatment may be performed to form various films such as films or remove various films. For example, in Patent Document 1, a buffer chamber for generating plasma is provided in the reaction tube.
特開2016-106415号公報Japanese Unexamined Patent Publication No. 2016-106415
 本開示の目的は、基板に対して高効率で形成されたプラズマ活性種ガスを供給することが可能な技術を提供することにある。 An object of the present disclosure is to provide a technique capable of supplying a plasma active species gas formed with high efficiency to a substrate.
 本開示の一態様によれば、
 基板を処理する処理室と、
 複数の前記基板を垂直方向に多段に保持する基板支持部と、
 前記処理室内に設けられ、ガスをプラズマ化するバッファ構造と、該バッファ構造が設けられている位置に対応する前記処理室の外側に設けられるプラズマを生成する外部電極と、を有するプラズマ生成部と、
 を備える技術が提供される。
According to one aspect of the present disclosure
A processing room for processing the substrate and
A board support portion that holds a plurality of the boards in multiple stages in the vertical direction,
A plasma generating unit having a buffer structure provided in the processing chamber for converting gas into plasma, and an external electrode for generating plasma provided outside the processing chamber corresponding to the position where the buffer structure is provided. ,
Technology is provided.
 本開示によれば、基板に対して高効率で形成されたプラズマ活性種ガスを供給することが可能な技術を提供することが可能となる。 According to the present disclosure, it is possible to provide a technique capable of supplying a plasma active species gas formed to a substrate with high efficiency.
本開示の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。It is a schematic block diagram of the vertical processing furnace of the substrate processing apparatus preferably used in embodiment of this disclosure, and is the figure which shows the processing furnace part in the vertical sectional view. 本開示の実施形態で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を図1のA-A線断面図で示す図である。It is a schematic block diagram of the vertical processing furnace of the substrate processing apparatus preferably used in the embodiment of this disclosure, and is the figure which shows the processing furnace part in the cross-sectional view taken along line AA of FIG. (a)本開示の実施形態で好適に用いられる基板処理装置のバッファ構造を説明するための横断面拡大図である。(b)本開示の実施形態で好適に用いられる基板処理装置のバッファ構造を説明するための模式図である。(A) FIG. 3 is an enlarged cross-sectional view for explaining a buffer structure of a substrate processing apparatus preferably used in the embodiment of the present disclosure. (B) It is a schematic diagram for demonstrating the buffer structure of the substrate processing apparatus preferably used in the embodiment of this disclosure. 本開示の実施形態で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。It is a schematic block diagram of the controller of the substrate processing apparatus preferably used in the embodiment of this disclosure, and is the figure which shows the control system of the controller by the block diagram. 本開示の実施形態に係る基板処理工程のフローチャートである。It is a flowchart of the substrate processing process which concerns on embodiment of this disclosure.
 <本開示の実施形態>
 以下、本開示の一実施形態について図1から図5を参照しながら説明する。
<Embodiment of the present disclosure>
Hereinafter, one embodiment of the present disclosure will be described with reference to FIGS. 1 to 5.
 (1)基板処理装置の構成(加熱装置)
 図1に示すように、基板処理装置に使用される処理炉202は基板を垂直方向多段に収容することが可能な、いわゆる縦型炉であり、加熱装置(加熱機構)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。ヒータ207は、後述するようにガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
(1) Configuration of substrate processing device (heating device)
As shown in FIG. 1, the processing furnace 202 used for the substrate processing apparatus is a so-called vertical furnace capable of accommodating substrates in multiple stages in the vertical direction, and has a heater 207 as a heating apparatus (heating mechanism). .. The heater 207 has a cylindrical shape and is vertically installed by being supported by a heater base (not shown) as a holding plate. The heater 207 also functions as an activation mechanism (excitation portion) for activating (exciting) the gas with heat, as will be described later.
 (処理室)
 ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料で構成され、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えばステンレス(SUS)等の金属で構成され、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、反応管203は垂直に据え付けられた状態となる。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成されている。処理容器の内側である筒中空部には処理室201が形成されている。処理室201は、複数枚の基板としてのウエハ200を収容可能に構成されている。なお、処理容器は上記の構成に限らず、反応管203のみを処理容器と称する場合もある。
(Processing room)
Inside the heater 207, a reaction tube 203 is arranged concentrically with the heater 207. The reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with the upper end closed and the lower end open. Below the reaction tube 203, a manifold (inlet flange) 209 is arranged concentrically with the reaction tube 203. The manifold 209 is made of a metal such as stainless steel (SUS), and is formed in a cylindrical shape with open upper and lower ends. The upper end of the manifold 209 is engaged with the lower end of the reaction tube 203 and is configured to support the reaction tube 203. An O-ring 220a as a sealing member is provided between the manifold 209 and the reaction tube 203. When the manifold 209 is supported by the heater base, the reaction tube 203 is in a vertically installed state. The processing vessel (reaction vessel) is mainly composed of the reaction tube 203 and the manifold 209. A processing chamber 201 is formed in the hollow portion of the cylinder inside the processing container. The processing chamber 201 is configured to accommodate a plurality of wafers 200 as substrates. The processing container is not limited to the above configuration, and only the reaction tube 203 may be referred to as a processing container.
 処理室201内には、ノズル249a、配管249bが、マニホールド209の側壁を貫通するように設けられている。ノズル249a、配管249bには、ガス供給管232a,232bが、それぞれ接続されている。このように、処理室201には1本のノズル249aと、1本の配管249bと、2本のガス供給管232a,232bとが設けられており、処理室201内へ複数種類のガスを供給することが可能となっている。 A nozzle 249a and a pipe 249b are provided in the processing chamber 201 so as to penetrate the side wall of the manifold 209. Gas supply pipes 232a and 232b are connected to the nozzle 249a and the pipe 249b, respectively. As described above, the processing chamber 201 is provided with one nozzle 249a, one pipe 249b, and two gas supply pipes 232a and 232b, and supplies a plurality of types of gas into the processing chamber 201. It is possible to do.
 ガス供給管232a,232bには、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a,241bおよび開閉弁であるバルブ243a,243bがそれぞれ設けられている。ガス供給管232a,232bのバルブ243a,243bよりも下流側には、不活性ガスを供給するガス供給管232c,232dがそれぞれ接続されている。ガス供給管232c,232dには、ガス流の上流側から順に、MFC241c,241dおよびバルブ243c,243dがそれぞれ設けられている。 The gas supply pipes 232a and 232b are provided with mass flow controllers (MFCs) 241a and 241b which are flow rate controllers (flow control units) and valves 243a and 243b which are on-off valves, respectively, in order from the upstream side of the gas flow. .. Gas supply pipes 232c and 232d for supplying the inert gas are connected to the downstream side of the gas supply pipes 232a and 232b with respect to the valves 243a and 243b, respectively. The gas supply pipes 232c and 232d are provided with MFCs 241c and 241d and valves 243c and 243d, respectively, in this order from the upstream side of the gas flow.
 ノズル249aは、図2に示すように、反応管203の内壁とウエハ200との間における空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように設けられている。すなわち、ノズル249aは、ウエハ200が配列(載置)されるウエハ配列領域(載置領域)の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うように設けられている。すなわち、ノズル249aは、処理室201内へ搬入された各ウエハ200の端部(周縁部)の側方にウエハ200の表面(平坦面)と垂直となる方向に設けられている。ノズル249aの側面には、ガスを供給するガス供給孔250aが設けられている。ガス供給孔250aは、反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250aは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。 As shown in FIG. 2, the nozzle 249a rises in the space between the inner wall of the reaction tube 203 and the wafer 200 along the upper part from the lower part of the inner wall of the reaction tube 203 toward the upper side in the loading direction of the wafer 200. It is provided in. That is, the nozzle 249a is provided along the wafer arrangement area in the area horizontally surrounding the wafer arrangement area on the side of the wafer arrangement area (placement area) on which the wafer 200 is arranged (placed). .. That is, the nozzle 249a is provided on the side of the end portion (peripheral portion) of each wafer 200 carried into the processing chamber 201 in a direction perpendicular to the surface (flat surface) of the wafer 200. A gas supply hole 250a for supplying gas is provided on the side surface of the nozzle 249a. The gas supply hole 250a is opened so as to face the center of the reaction tube 203, and gas can be supplied toward the wafer 200. A plurality of gas supply holes 250a are provided from the lower part to the upper part of the reaction tube 203, each having the same opening area, and further provided with the same opening pitch.
 ガス供給管232bの先端部には、配管249bが接続されている。配管249bは、バッファ構造237内に接続されている。本実施形態においては、平面視で2つのバッファ構造237が、反応管203(処理室201)の中心とノズル249aとを通る直線を挟んで配置、または、反応管203(処理室201)の中心と排気管(排気部)231とを通る直線を挟んで配置され、2つのバッファ構造237をノズル249aと排気管231を結ぶ線に対して対称に配置している。バッファ構造237には仕切り板237aが設けられ、仕切り板237aにより配管249bからガスを導入するガス導入エリア237bとガスをプラズマ化するプラズマエリア237cに仕切られている。プラズマエリア237cはガス分散空間であるバッファ室237cともいう。バッファ室237cはノズル249a側に配置され、ガス導入エリア237bは排気管231側に配置されている。 A pipe 249b is connected to the tip of the gas supply pipe 232b. The pipe 249b is connected in the buffer structure 237. In the present embodiment, two buffer structures 237 are arranged so as to sandwich a straight line passing through the center of the reaction tube 203 (processing chamber 201) and the nozzle 249a in a plan view, or the center of the reaction tube 203 (processing chamber 201). The buffer structure 237 is arranged symmetrically with respect to the line connecting the nozzle 249a and the exhaust pipe 231. The buffer structure 237 is provided with a partition plate 237a, which is partitioned by a partition plate 237a into a gas introduction area 237b for introducing gas from the pipe 249b and a plasma area 237c for converting gas into plasma. The plasma area 237c is also referred to as a buffer chamber 237c, which is a gas dispersion space. The buffer chamber 237c is arranged on the nozzle 249a side, and the gas introduction area 237b is arranged on the exhaust pipe 231 side.
 バッファ室237cは、図2に示すように、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、また、反応管203の内壁の下部より上部にわたる部分に、ウエハ200の積載方向に沿って設けられている。すなわち、バッファ室237cは、ウエハ配列領域の側方のウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにバッファ構造237によって形成されている。バッファ構造237は、石英またはSiC等の耐熱性材料である絶縁物によって構成されており、バッファ構造237の円弧状に形成された壁面には、ガスを供給するガス供給口302,304が形成されている。ガス供給口302,304は、積載されている複数枚のウエハ200の水平方向に複数設けられており、反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給口302,304は、反応管203の下部から上部にわたってウエハ200の積載方向に沿って複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。 As shown in FIG. 2, the buffer chamber 237c is formed in an annular space in a plan view between the inner wall of the reaction tube 203 and the wafer 200, and in a portion extending above the lower part of the inner wall of the reaction tube 203. It is provided along the loading direction of. That is, the buffer chamber 237c is formed by the buffer structure 237 along the wafer arrangement region in the region that horizontally surrounds the wafer arrangement region on the side of the wafer arrangement region. The buffer structure 237 is made of an insulator which is a heat-resistant material such as quartz or SiC, and gas supply ports 302 and 304 for supplying gas are formed on the arcuate wall surface of the buffer structure 237. ing. A plurality of gas supply ports 302 and 304 are provided in the horizontal direction of the plurality of wafers 200 loaded, and are opened so as to face the center of the reaction tube 203, and gas is supplied toward the wafer 200. It is possible. A plurality of gas supply ports 302 and 304 are provided from the lower part to the upper part of the reaction tube 203 along the loading direction of the wafer 200, each having the same opening area, and further provided with the same opening pitch.
 ガス導入エリア237bは、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向上方に向かって立ち上がるように設けられている。仕切り板237aには、ガス導入エリア237bからプラズマエリア237cへガスを供給するガス供給孔237dが設けられている。これにより、ガス導入エリア237bに供給された反応ガスがバッファ室237c内で分散される。ガス供給孔237dは、ガス供給孔250aと同様に、反応管203の下部から上部にわたって複数設けられている。なお、配管249bおよびガス導入エリア237bに代えて、ノズル、例えばノズル249aと同様な多孔ノズルをバッファ室237c内に設け処理ガスを供給するようにしてもよい。 The gas introduction area 237b is provided so as to rise upward from the lower part of the inner wall of the reaction tube 203 toward the upper part in the loading direction of the wafer 200. The partition plate 237a is provided with a gas supply hole 237d for supplying gas from the gas introduction area 237b to the plasma area 237c. As a result, the reaction gas supplied to the gas introduction area 237b is dispersed in the buffer chamber 237c. Similar to the gas supply holes 250a, a plurality of gas supply holes 237d are provided from the lower part to the upper part of the reaction tube 203. Instead of the pipe 249b and the gas introduction area 237b, a nozzle, for example, a perforated nozzle similar to the nozzle 249a may be provided in the buffer chamber 237c to supply the processing gas.
 このように、本実施形態では、反応管203の側壁の内壁と、反応管203内に配列された複数枚のウエハ200の端部で定義される平面視において円環状の縦長の空間内、すなわち、円筒状の空間内に配置したノズル249aおよびバッファ室237cを経由してガスを搬送している。そして、ノズル249aおよびバッファ室237cにそれぞれ開口されたガス供給孔250a、ガス供給口302,304から、ウエハ200の近傍で初めて反応管203内にガスを噴出させている。そして、反応管203内におけるガスの主たる流れを、ウエハ200の表面と平行な方向、すなわち、水平方向としている。このような構成とすることで、各ウエハ200に均一にガスを供給でき、各ウエハ200に形成される膜の膜厚の均一性を向上させることが可能となる。ウエハ200の表面上を流れたガス、すなわち、反応後の残ガスは、排気口、すなわち、後述する排気管231の方向に向かって流れる。但し、この残ガスの流れの方向は、排気口の位置によって適宜特定され、垂直方向に限ったものではない。 As described above, in the present embodiment, in the plan view defined by the inner wall of the side wall of the reaction tube 203 and the end portions of the plurality of wafers 200 arranged in the reaction tube 203, that is, in the annular vertically long space, that is, Gas is conveyed via the nozzle 249a and the buffer chamber 237c arranged in the cylindrical space. Then, gas is ejected into the reaction tube 203 for the first time in the vicinity of the wafer 200 from the gas supply holes 250a and the gas supply ports 302 and 304 opened in the nozzle 249a and the buffer chamber 237c, respectively. The main flow of gas in the reaction tube 203 is in the direction parallel to the surface of the wafer 200, that is, in the horizontal direction. With such a configuration, gas can be uniformly supplied to each wafer 200, and the uniformity of the film thickness of the film formed on each wafer 200 can be improved. The gas that has flowed on the surface of the wafer 200, that is, the residual gas after the reaction, flows toward the exhaust port, that is, the exhaust pipe 231 described later. However, the direction of the residual gas flow is appropriately specified by the position of the exhaust port, and is not limited to the vertical direction.
 ガス供給管232aからは、所定元素を含む原料として、例えば、所定元素としてのシリコン(Si)を含むシラン原料ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。 From the gas supply pipe 232a, as a raw material containing a predetermined element, for example, a silane raw material gas containing silicon (Si) as a predetermined element is supplied into the processing chamber 201 via the MFC 241a, the valve 243a, and the nozzle 249a.
 原料ガスとは、気体状態の原料、例えば、常温常圧下で液体状態である原料を気化することで得られるガスや、常温常圧下で気体状態である原料等のことである。本明細書において「原料」という言葉を用いた場合は、「液体状態である液体原料」を意味する場合、「気体状態である原料ガス」を意味する場合、または、それらの両方を意味する場合がある。 The raw material gas is a raw material in a gaseous state, for example, a gas obtained by vaporizing a raw material in a liquid state under normal temperature and pressure, a raw material in a gaseous state under normal temperature and pressure, and the like. When the term "raw material" is used in the present specification, it means "liquid raw material in a liquid state", "raw material gas in a gaseous state", or both of them. There is.
 シラン原料ガスとしては、例えば、Siおよびハロゲン元素を含む原料ガス、すなわち、ハロシラン原料ガスを用いることができる。ハロシラン原料とは、ハロゲン基を有するシラン原料のことである。ハロゲン元素は、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)からなる群より選択される少なくとも1つを含む。すなわち、ハロシラン原料は、クロロ基、フルオロ基、ブロモ基、ヨード基からなる群より選択される少なくとも1つのハロゲン基を含む。ハロシラン原料は、ハロゲン化物の一種ともいえる。 As the silane raw material gas, for example, a raw material gas containing Si and a halogen element, that is, a halosilane raw material gas can be used. The halosilane raw material is a silane raw material having a halogen group. The halogen element contains at least one selected from the group consisting of chlorine (Cl), fluorine (F), bromine (Br) and iodine (I). That is, the halosilane raw material contains at least one halogen group selected from the group consisting of a chloro group, a fluoro group, a bromo group and an iodine group. The halosilane raw material can be said to be a kind of halide.
 ハロシラン原料ガスとしては、例えば、SiおよびClを含む原料ガス、すなわち、クロロシラン原料ガスを用いることができる。クロロシラン原料ガスとしては、例えば、ジクロロシラン(SiHCl、略称:DCS)ガスを用いることができる。 As the halosilane raw material gas, for example, a raw material gas containing Si and Cl, that is, a chlorosilane raw material gas can be used. As the chlorosilane raw material gas, for example, dichlorosilane (SiH 2 Cl 2 , abbreviation: DCS) gas can be used.
 ガス供給管232bからは、上述の所定元素とは異なる元素を含むリアクタント(反応体)として、例えば、反応ガスとしての窒素(N)含有ガスが、MFC241b、バルブ243b、配管249b、ガス導入エリア237bを介してバッファ室237c内へ供給されるように構成されている。N含有ガスとしては、例えば、窒化水素系ガスを用いることができる。窒化水素系ガスは、NおよびHの2元素のみで構成される物質ともいえ、窒化ガス、すなわち、Nソースとして作用する。窒化水素系ガスとしては、例えば、アンモニア(NH)ガスを用いることができる。 From the gas supply pipe 232b, as a reactor containing an element different from the above-mentioned predetermined element, for example, a nitrogen (N) -containing gas as a reaction gas is MFC241b, a valve 243b, a pipe 249b, and a gas introduction area 237b. It is configured to be supplied into the buffer chamber 237c via. As the N-containing gas, for example, a hydrogen nitride-based gas can be used. The hydrogen nitride-based gas can be said to be a substance composed of only two elements, N and H, and acts as a nitride gas, that is, an N source. As the hydrogen nitride-based gas, for example, ammonia (NH 3 ) gas can be used.
 ガス供給管232c,232dからは、不活性ガスとして、例えば、窒素(N)ガスが、それぞれMFC241c,241d、バルブ243c,243d、ガス供給管232a,232b、ノズル249a、配管249bを介して処理室201内へ供給される。 From the gas supply pipes 232c and 232d, for example, nitrogen (N 2 ) gas is processed as an inert gas via MFC241c, 241d, valves 243c, 243d, gas supply pipes 232a, 232b, nozzle 249a, and pipe 249b, respectively. It is supplied into the room 201.
 主に、ガス供給管232a、MFC241a、バルブ243aにより、第1のガス供給系としての原料供給系が構成される。主に、ガス供給管232b、MFC241b、バルブ243bにより、第2のガス供給系としての反応体供給系(リアクタント供給系)が構成される。主に、ガス供給管232c,232d、MFC241c,241d、バルブ243c,243dにより、不活性ガス供給系が構成される。原料供給系、反応体供給系および不活性ガス供給系を総称して単にガス供給系(ガス供給部)とも称する。 Mainly, the gas supply pipe 232a, the MFC 241a, and the valve 243a form a raw material supply system as the first gas supply system. Mainly, the gas supply pipe 232b, the MFC 241b, and the valve 243b form a reactant supply system (reactant supply system) as the second gas supply system. Mainly, the gas supply pipes 232c, 232d, MFC241c, 241d, and valves 243c, 243d constitute an inert gas supply system. The raw material supply system, the reactant supply system and the inert gas supply system are also collectively referred to simply as a gas supply system (gas supply unit).
 (プラズマ生成部)
 次にプラズマ生成部について、図1から図3を用いて説明する。
(Plasma generator)
Next, the plasma generation unit will be described with reference to FIGS. 1 to 3.
 図2に示すように、プラズマは容量結合プラズマ(Capacitively Coupled Plasma、略称:CCP)を用い、反応ガス供給時に石英などで作製された真空隔壁である反応管203(処理室201)の内部のバッファ構造237で生成する。 As shown in FIG. 2, a capacitively coupled plasma (Capacitively Coupled Plasma, abbreviated as CCP) is used as the plasma, and a buffer inside the reaction tube 203 (processing chamber 201), which is a vacuum partition made of quartz or the like when the reaction gas is supplied. Generated in structure 237.
 図2および図3(a)に示すように、外部電極300は、ウエハ200の配列方向に長い矩形形状を有する薄板で構成されている。図1及び図3(b)に示すように、外部電極300は、整合器272を介して高周波電源273が接続される第1の外部電極(Hot電極)300-1と、基準電位0Vでありアースに接地されている第2の外部電極(Ground電極)300-2が、等間隔で配置されている。本開示では特に区別して説明する必要のない場合には、外部電極300として記載して説明する。 As shown in FIGS. 2 and 3A, the external electrode 300 is made of a thin plate having a rectangular shape long in the arrangement direction of the wafer 200. As shown in FIGS. 1 and 3B, the external electrode 300 has a reference potential of 0 V and a first external electrode (Hot electrode) 300-1 to which the high frequency power supply 273 is connected via the matching unit 272. Second external electrodes (Ground electrodes) 300-2, which are grounded to the ground, are arranged at equal intervals. In the present disclosure, when it is not necessary to separately explain the description, the description will be described as the external electrode 300.
 外部電極300は反応管203とヒータ207との間に、バッファ構造237が設けられている位置に対応する処理室201の外側に設けられている。具体的には、バッファ構造は、ガスをプラズマ化するためのエリアとしてプラズマエリア(バッファ室)237cを設け、外部電極300は、バッファ室237cが設けられている位置に対応する反応管203の外壁(処理室201の外側)に沿うように略円弧状に配置される。外部電極300は、例えば、中心角が30度以上240度以下となる円弧状に形成された石英カバーの内壁面に固定されて配置される。すなわち、外部電極300はバッファ室(プラズマエリア)237cが設けられている位置に対応する反応管203の外周(処理室201の外側)に配置される。また、バッファ構造237は、バッファ室237cにガスを供給するためのエリアとしてガス供給部(ガス導入エリア)237bが設けられている。外部電極300は、ガス導入エリア(ガス供給部)237bが設けられている位置に対応する反応管203の外周(処理室201の外側)には配置されていない。外部電極300には、高周波電源273から整合器272を介し、例えば周波数13.56MHzの高周波が入力されることによってバッファ室237c内にプラズマ活性種306が生成される。このように生成されたプラズマによって、ウエハ200の周囲から基板処理のためのプラズマ活性種306をウエハ200の表面に供給することが可能となる。主に、バッファ構造237と外部電極300と高周波電源273によってプラズマ生成部が構成される。 The external electrode 300 is provided between the reaction tube 203 and the heater 207 on the outside of the processing chamber 201 corresponding to the position where the buffer structure 237 is provided. Specifically, the buffer structure is provided with a plasma area (buffer chamber) 237c as an area for converting gas into plasma, and the external electrode 300 is the outer wall of the reaction tube 203 corresponding to the position where the buffer chamber 237c is provided. It is arranged in a substantially arc shape along (outside of the processing chamber 201). The external electrode 300 is fixedly arranged on the inner wall surface of a quartz cover formed in an arc shape having a central angle of 30 degrees or more and 240 degrees or less, for example. That is, the external electrode 300 is arranged on the outer periphery of the reaction tube 203 (outside the processing chamber 201) corresponding to the position where the buffer chamber (plasma area) 237c is provided. Further, the buffer structure 237 is provided with a gas supply unit (gas introduction area) 237b as an area for supplying gas to the buffer chamber 237c. The external electrode 300 is not arranged on the outer periphery of the reaction tube 203 (outside the processing chamber 201) corresponding to the position where the gas introduction area (gas supply unit) 237b is provided. The plasma active species 306 is generated in the buffer chamber 237c by inputting a high frequency of, for example, a frequency of 13.56 MHz from the high frequency power supply 273 to the external electrode 300 via the matching unit 272. The plasma generated in this way makes it possible to supply the plasma active species 306 for substrate treatment from the periphery of the wafer 200 to the surface of the wafer 200. The plasma generation unit is mainly composed of the buffer structure 237, the external electrode 300, and the high frequency power supply 273.
 外部電極300は、アルミニウムや銅、ステンレスなどの金属で構成することもできるが、ニッケルなどの耐酸化材料で構成することにより、電気伝導率の劣化を抑制しつつ、基板処理が可能となる。特に、アルミニウムが添加されたニッケル合金材料で構成することにより、耐熱性および耐腐食性の高い酸化被膜であるAlO膜が電極表面に形成される。この被膜形成の効果により、電極内部への劣化の進行を抑止できるため、電気伝導率の低下によるプラズマ生成効率の低下を抑制することが可能となる。 The external electrode 300 can be made of a metal such as aluminum, copper, or stainless steel, but by using an oxidation-resistant material such as nickel, it is possible to process the substrate while suppressing deterioration of electrical conductivity. In particular, by forming the nickel alloy material to which aluminum is added, an AlO film, which is an oxide film having high heat resistance and corrosion resistance, is formed on the electrode surface. Due to the effect of this film formation, the progress of deterioration inside the electrode can be suppressed, so that the decrease in plasma generation efficiency due to the decrease in electrical conductivity can be suppressed.
 (電極固定治具)
 次に外部電極300を固定する電極固定治具としての石英カバー301について、図3を用いて説明する。図3(a),(b)で示すように、複数本設けられた外部電極300は、その切欠き部(不図示)を湾曲形状の電極固定治具である石英カバー301の内壁面に設けられた突起部310に引掛け、スライドさせて固定し、この石英カバー301と一体となるようユニット化(フック式電極ユニット)して反応管203の外周に設置されている。ここで、外部電極300と電極固定治具である石英カバー301とを含めて電極固定ユニットという。なお、石英カバー301と外部電極300の材料として、それぞれ、石英とニッケル合金を採用している。
(Electrode fixing jig)
Next, the quartz cover 301 as an electrode fixing jig for fixing the external electrode 300 will be described with reference to FIG. As shown in FIGS. 3A and 3B, a plurality of external electrodes 300 are provided with notches (not shown) on the inner wall surface of a quartz cover 301 which is a curved electrode fixing jig. It is hooked on the protruding portion 310, slid and fixed, and unitized (hook type electrode unit) so as to be integrated with the quartz cover 301, and is installed on the outer periphery of the reaction tube 203. Here, the external electrode 300 and the quartz cover 301, which is an electrode fixing jig, are referred to as an electrode fixing unit. Quartz and nickel alloys are used as the materials for the quartz cover 301 and the external electrode 300, respectively.
 基板温度500℃以下で高い処理能力を得るためには、石英カバー301の専有率を中心角30度以上240度以下の円弧形状とし、また、パーティクルの発生を避けるために排気口である排気管231やノズル249aなどを避けた配置が望ましい。30度よりも小さい中心角となるように構成すると、配置する外部電極300の本数が少なくなってしまい、プラズマの生産量が減少してしまう。240度よりも大きい中心角となるように構成すると、反応管203の側面を石英カバー301が覆う面積が大きくなり過ぎてしまい、ヒータ207からの熱エネルギーを遮断してしまう。本実施形態においては中心角110度の石英カバーを2台で左右対称に配置している。 In order to obtain high processing capacity at a substrate temperature of 500 ° C or less, the exclusive ratio of the quartz cover 301 should be an arc shape with a central angle of 30 degrees or more and 240 degrees or less, and an exhaust pipe which is an exhaust port to avoid generation of particles. It is desirable that the arrangement avoids 231 and the nozzle 249a. If the central angle is smaller than 30 degrees, the number of external electrodes 300 to be arranged is reduced, and the amount of plasma produced is reduced. If the central angle is larger than 240 degrees, the area covered by the quartz cover 301 on the side surface of the reaction tube 203 becomes too large, and the thermal energy from the heater 207 is cut off. In this embodiment, two quartz covers having a central angle of 110 degrees are arranged symmetrically.
 反応管203には、処理室201内の雰囲気を排気する排気部としての排気管231が設けられている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および排気バルブ(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されているバルブである。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。排気管231は、反応管203に設ける場合に限らず、ノズル249aと同様にマニホールド209に設けてもよい。 The reaction pipe 203 is provided with an exhaust pipe 231 as an exhaust unit for exhausting the atmosphere in the processing chamber 201. The exhaust pipe 231 is provided with a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (AutoPressure Controller) valve 244 as an exhaust valve (pressure adjusting unit). A vacuum pump 246 as a vacuum exhaust device is connected. The APC valve 244 can perform vacuum exhaust and vacuum exhaust stop in the processing chamber 201 by opening and closing the valve with the vacuum pump 246 operating, and further, with the vacuum pump 246 operating, the APC valve 244 can perform vacuum exhaust and vacuum exhaust stop. The valve is configured so that the pressure in the processing chamber 201 can be adjusted by adjusting the valve opening degree based on the pressure information detected by the pressure sensor 245. The exhaust system is mainly composed of an exhaust pipe 231, an APC valve 244, and a pressure sensor 245. The vacuum pump 246 may be included in the exhaust system. The exhaust pipe 231 is not limited to the case where it is provided in the reaction pipe 203, and may be provided in the manifold 209 in the same manner as the nozzle 249a.
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、マニホールド209の下端に垂直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属により構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の処理室201と反対側には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出することが可能なように構成されている。ボートエレベータ115は、ボート217すなわちウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。また、マニホールド209の下方には、ボートエレベータ115によりシールキャップ219を降下させている間、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ219sが設けられている。シャッタ219sは、例えばSUS等の金属により構成され、円盤状に形成されている。シャッタ219sの上面には、マニホールド209の下端と当接するシール部材としてのOリング220cが設けられている。シャッタ219sの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構115sにより制御される。 Below the manifold 209, a seal cap 219 is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209. The seal cap 219 is configured to come into contact with the lower end of the manifold 209 from below in the vertical direction. The seal cap 219 is made of a metal such as SUS and is formed in a disk shape. An O-ring 220b as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the seal cap 219. On the side of the seal cap 219 opposite to the processing chamber 201, a rotation mechanism 267 for rotating the boat 217, which will be described later, is installed. The rotating shaft 255 of the rotating mechanism 267 penetrates the seal cap 219 and is connected to the boat 217. The rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217. The seal cap 219 is configured to be vertically lifted and lowered by a boat elevator 115 as a lifting mechanism vertically installed outside the reaction tube 203. The boat elevator 115 is configured so that the boat 217 can be carried in and out of the processing chamber 201 by raising and lowering the seal cap 219. The boat elevator 115 is configured as a transport device (convey mechanism) for transporting the boat 217, that is, the wafer 200, into and out of the processing chamber 201. Further, below the manifold 209, a shutter 219s is provided as a furnace palate body that can airtightly close the lower end opening of the manifold 209 while the seal cap 219 is lowered by the boat elevator 115. The shutter 219s is made of a metal such as SUS and is formed in a disk shape. An O-ring 220c as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the shutter 219s. The opening / closing operation of the shutter 219s (elevating / lowering operation, rotating operation, etc.) is controlled by the shutter opening / closing mechanism 115s.
 (基板支持具)
 図1に示すように基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、所定の間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料で構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料で構成される断熱板218が多段に支持されている。
(Board support)
As shown in FIG. 1, the boat 217 as a substrate support supports a plurality of wafers, for example, 25 to 200 wafers, in a horizontal position and vertically aligned with each other in a multi-stage manner. That is, they are arranged so as to be arranged at predetermined intervals. The boat 217 is made of a heat resistant material such as quartz or SiC. In the lower part of the boat 217, a heat insulating plate 218 made of a heat-resistant material such as quartz or SiC is supported in multiple stages.
 図1に示すように反応管203の内部には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度を所望の温度分布とする。温度センサ263は、ノズル249aと同様に反応管203の内壁に沿って設けられている。 As shown in FIG. 1, a temperature sensor 263 as a temperature detector is installed inside the reaction tube 203. By adjusting the degree of energization of the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 is set to a desired temperature distribution. The temperature sensor 263 is provided along the inner wall of the reaction tube 203 like the nozzle 249a.
 (制御装置)
 次に制御装置について図4を用いて説明する。図4に示すように、制御部(制御装置)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
(Control device)
Next, the control device will be described with reference to FIG. As shown in FIG. 4, the controller 121, which is a control unit (control device), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I / O port 121d. Has been done. The RAM 121b, the storage device 121c, and the I / O port 121d are configured so that data can be exchanged with the CPU 121a via the internal bus 121e. An input / output device 122 configured as, for example, a touch panel is connected to the controller 121.
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する成膜処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する各種処理(成膜処理)における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like. In the storage device 121c, a control program for controlling the operation of the substrate processing device, a process recipe in which the procedure and conditions of the film forming process described later are described, and the like are readablely stored. The process recipes are combined so that the controller 121 can execute each procedure in various processes (deposition process) described later and obtain a predetermined result, and functions as a program. Hereinafter, process recipes, control programs, etc. are collectively referred to simply as programs. In addition, a process recipe is also simply referred to as a recipe. When the term program is used in the present specification, it may include only a recipe alone, a control program alone, or both of them. The RAM 121b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 121a are temporarily held.
 I/Oポート121dは、上述のMFC241a~241d、バルブ243a~243d、圧力センサ245、APCバルブ244、真空ポンプ246、ヒータ207、温度センサ263、整合器272、高周波電源273、回転機構267、ボートエレベータ115、シャッタ開閉機構115s等に接続されている。 The I / O port 121d includes the above-mentioned MFC 241a to 241d, valves 243a to 243d, pressure sensor 245, APC valve 244, vacuum pump 246, heater 207, temperature sensor 263, matching unit 272, high frequency power supply 273, rotation mechanism 267, and boat. It is connected to the elevator 115, the shutter opening / closing mechanism 115s, and the like.
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、回転機構267の制御、MFC241a~241dによる各種ガスの流量調整動作、バルブ243a~243dの開閉動作、インピーダンス監視に基づく高周波電源273の調整動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の正逆回転、回転角度および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、高周波電源273および外部電極300によるプラズマ生成等を制御するように構成されている。 The CPU 121a is configured to read and execute a control program from the storage device 121c and read a recipe from the storage device 121c in response to an input of an operation command from the input / output device 122 or the like. The CPU 121a controls the rotation mechanism 267, adjusts the flow rate of various gases by the MFCs 241a to 241d, opens and closes the valves 243a to 243d, adjusts the high frequency power supply 273 based on the impedance monitoring, and APC so as to follow the contents of the read recipe. Opening and closing operation of valve 244 and pressure adjustment operation by APC valve 244 based on pressure sensor 245, start and stop of vacuum pump 246, temperature adjustment operation of heater 207 based on temperature sensor 263, forward / reverse rotation of boat 217 by rotation mechanism 267, It is configured to control the rotation angle and rotation speed adjusting operation, the raising and lowering operation of the boat 217 by the boat elevator 115, the plasma generation by the high frequency power supply 273 and the external electrode 300, and the like.
 コントローラ121は、外部記憶装置(例えば、ハードディスク等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。 The controller 121 installs the above-mentioned program stored in an external storage device (for example, a magnetic disk such as a hard disk, an optical disk such as a CD, a magneto-optical disk such as MO, or a semiconductor memory such as a USB memory) 123 in a computer. Can be configured by. The storage device 121c and the external storage device 123 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium. When the term recording medium is used in the present specification, it may include only the storage device 121c alone, it may include only the external storage device 123 alone, or it may include both of them. The program may be provided to the computer by using a communication means such as the Internet or a dedicated line without using the external storage device 123.
 (2)基板処理工程
 次に、基板処理装置を使用して、半導体装置の製造工程の一工程として、ウエハ200上に薄膜を形成する工程について、図5を参照しながら説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
(2) Substrate Processing Step Next, a step of forming a thin film on the wafer 200 as one step of the manufacturing process of the semiconductor device using the substrate processing apparatus will be described with reference to FIG. In the following description, the operation of each part constituting the substrate processing apparatus is controlled by the controller 121.
 ここでは、原料ガスとしてDCSガスを供給するステップと、反応ガスとしてプラズマ励起させたNHガスを供給するステップとを非同時に、すなわち同期させることなく所定回数(1回以上)行うことで、ウエハ200上に、SiおよびNを含む膜として、シリコン窒化膜(SiN膜)を形成する例について説明する。また、例えば、ウエハ200上には、予め所定の膜が形成されていてもよい。また、ウエハ200または所定の膜には予め所定のパターンが形成されていてもよい。 Here, the step of supplying the DCS gas as a source gas, and supplying the plasma-excited NH 3 gas was allowed as a reaction gas in a non-simultaneous, i.e. a predetermined number of times (at least once) without synchronizing by performing the wafer An example of forming a silicon nitride film (SiN film) as a film containing Si and N on 200 will be described. Further, for example, a predetermined film may be formed in advance on the wafer 200. Further, a predetermined pattern may be formed in advance on the wafer 200 or a predetermined film.
 本明細書では、図5に示す成膜処理のプロセスフローを、便宜上、以下のように示すこともある。
  (DCS→NH*)×n ⇒ SiN
In the present specification, the process flow of the film forming process shown in FIG. 5 may be shown as follows for convenience.
(DCS → NH 3 *) × n ⇒ SiN
 本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。 When the word "wafer" is used in the present specification, it may mean the wafer itself or a laminate of a wafer and a predetermined layer or film formed on the surface thereof. When the term "wafer surface" is used in the present specification, it may mean the surface of the wafer itself or the surface of a predetermined layer or the like formed on the wafer. In the present specification, when it is described that "a predetermined layer is formed on a wafer", it means that a predetermined layer is directly formed on the surface of the wafer itself, or a layer formed on the wafer or the like. It may mean forming a predetermined layer on top of it. The use of the term "wafer" in the present specification is also synonymous with the use of the term "wafer".
 (搬入ステップ:S1)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、シャッタ開閉機構115sによりシャッタ219sが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。
(Bring-in step: S1)
When a plurality of wafers 200 are loaded into the boat 217 (wafer charge), the shutter opening / closing mechanism 115s moves the shutter 219s to open the lower end opening of the manifold 209 (shutter open). After that, as shown in FIG. 1, the boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 and carried into the processing chamber 201 (boat load). In this state, the seal cap 219 is in a state of sealing the lower end of the manifold 209 via the O-ring 220b.
 (圧力・温度調整ステップ:S2)
 処理室201の内部、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気(減圧排気)される。この際、処理室201内の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。真空ポンプ246は、少なくとも後述する成膜ステップが終了するまでの間は常時作動させた状態を維持する。
(Pressure / temperature adjustment step: S2)
Vacuum exhaust (vacuum exhaust) is performed by the vacuum pump 246 so that the inside of the processing chamber 201, that is, the space where the wafer 200 exists, has a desired pressure (vacuum degree). At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information. The vacuum pump 246 is always kept in operation until at least the film forming step described later is completed.
 また、処理室201内のウエハ200が所望の温度となるようにヒータ207によって加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。ヒータ207による処理室201内の加熱は、少なくとも後述する成膜ステップが終了するまでの間は継続して行われる。ただし、成膜ステップを室温以下の温度条件下で行う場合は、ヒータ207による処理室201内の加熱は行わなくてもよい。なお、このような温度下での処理だけを行う場合には、ヒータ207は不要となり、ヒータ207を基板処理装置に設置しなくてもよい。この場合、基板処理装置の構成を簡素化することができる。
 続いて、回転機構267によるボート217およびウエハ200の回転を開始する。回転機構267によるボート217およびウエハ200の回転は、少なくとも成膜ステップが終了するまでの間は継続して行われる。
Further, the wafer 200 in the processing chamber 201 is heated by the heater 207 so as to have a desired temperature. At this time, the state of energization of the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the inside of the processing chamber 201 has a desired temperature distribution. The heating in the processing chamber 201 by the heater 207 is continuously performed at least until the film forming step described later is completed. However, when the film forming step is performed under a temperature condition of room temperature or lower, it is not necessary to heat the inside of the processing chamber 201 by the heater 207. When only the processing under such a temperature is performed, the heater 207 becomes unnecessary, and the heater 207 does not have to be installed in the substrate processing apparatus. In this case, the configuration of the substrate processing apparatus can be simplified.
Subsequently, the rotation mechanism 267 starts the rotation of the boat 217 and the wafer 200. The rotation of the boat 217 and the wafer 200 by the rotation mechanism 267 is continuously performed at least until the film forming step is completed.
(原料ガス供給ステップ:S3,S4)
 ステップS3では、処理室201内のウエハ200に対してDCSガスを供給する。バルブ243aを開き、ガス供給管232a内へDCSガスを流す。DCSガスは、MFC241aにより流量調整され、ノズル249aを介してガス供給孔250aから処理室201内へ供給され、排気管231から排気される。このとき同時にバルブ243cを開き、ガス供給管232c内へNガスを流す。Nガスは、MFC241cにより流量調整され、DCSガスと一緒に処理室201内へ供給され、排気管231から排気される。
(Raw material gas supply step: S3, S4)
In step S3, DCS gas is supplied to the wafer 200 in the processing chamber 201. The valve 243a is opened to allow DCS gas to flow into the gas supply pipe 232a. The flow rate of the DCS gas is adjusted by the MFC 241a, is supplied into the processing chamber 201 from the gas supply hole 250a via the nozzle 249a, and is exhausted from the exhaust pipe 231. Open At the same time the valve 243 c, flow the N 2 gas to the gas supply pipe 232c. The flow rate of the N 2 gas is adjusted by the MFC 241c, is supplied into the processing chamber 201 together with the DCS gas, and is exhausted from the exhaust pipe 231.
 また、配管249b内へのDCSガスの侵入を抑制するため、バルブ243dを開き、ガス供給管232d内へNガスを流す。Nガスは、ガス供給管232b、配管249bを介して処理室201内へ供給され、排気管231から排気される。 Further, in order to suppress the penetration of the DCS gas into the pipe 249 b, by opening the valve 243 d, flow the N 2 gas to the gas supply pipe 232 d. The N 2 gas is supplied into the processing chamber 201 via the gas supply pipe 232b and the pipe 249b, and is exhausted from the exhaust pipe 231.
 MFC241aで制御するDCSガスの供給流量は、例えば1sccm以上、6000sccm以下、好ましくは3000sccm以上、5000sccm以下の範囲内の流量とする。MFC241c,241dで制御するNガスの供給流量は、それぞれ例えば100sccm以上、10000sccm以下の範囲内の流量とする。処理室201内の圧力は、例えば1Pa以上、2666Pa以下、好ましくは665Pa以上、1333Paの範囲内の圧力とする。DCSガスにウエハ200を晒す時間は、例えば1サイクルあたり20秒程度の時間とする。なお、DCSガスにウエハ200を晒す時間は膜厚によって異なる。 The supply flow rate of the DCS gas controlled by the MFC 241a is, for example, a flow rate within the range of 1 sccm or more and 6000 sccm or less, preferably 3000 sccm or more and 5000 sccm or less. The supply flow rate of the N 2 gas controlled by the MFC 241c and 241d shall be, for example, a flow rate within the range of 100 sccm or more and 10000 sccm or less, respectively. The pressure in the processing chamber 201 is, for example, 1 Pa or more and 2666 Pa or less, preferably 665 Pa or more and 1333 Pa or less. The time for exposing the wafer 200 to the DCS gas is, for example, about 20 seconds per cycle. The time for exposing the wafer 200 to the DCS gas varies depending on the film thickness.
 ヒータ207の温度は、ウエハ200の温度が、例えば0℃以上700℃以下、好ましくは室温(25℃)以上550℃以下、より好ましくは40℃以上500℃以下の範囲内の温度となるような温度に設定する。本実施形態のように、ウエハ200の温度を700℃以下、さらには550℃以下、さらには500℃以下とすることで、ウエハ200に加わる熱量を低減させることができ、ウエハ200が受ける熱履歴の制御を良好に行うことができる。 The temperature of the heater 207 is such that the temperature of the wafer 200 is, for example, 0 ° C. or higher and 700 ° C. or lower, preferably room temperature (25 ° C.) or higher and 550 ° C. or lower, and more preferably 40 ° C. or higher and 500 ° C. or lower. Set to temperature. By setting the temperature of the wafer 200 to 700 ° C. or lower, further to 550 ° C. or lower, and further to 500 ° C. or lower as in the present embodiment, the amount of heat applied to the wafer 200 can be reduced, and the heat history received by the wafer 200 can be reduced. Can be well controlled.
 上述の条件下でウエハ200に対してDCSガスを供給することにより、ウエハ200(表面の下地膜)上に、Si含有層が形成される。Si含有層はSi層の他、ClやHを含み得る。Si含有層は、ウエハ200の最表面に、DCSが物理吸着したり、DCSの一部が分解した物質が化学吸着したり、DCSが熱分解することでSiが堆積したりすること等により形成される。すなわち、Si含有層は、DCSやDCSの一部が分解した物質の吸着層(物理吸着層や化学吸着層)であってもよく、Siの堆積層(Si層)であってもよい。 By supplying DCS gas to the wafer 200 under the above-mentioned conditions, a Si-containing layer is formed on the wafer 200 (the base film on the surface). The Si-containing layer may contain Cl and H in addition to the Si layer. The Si-containing layer is formed by physically adsorbing DCS on the outermost surface of the wafer 200, chemically adsorbing a substance obtained by partially decomposing DCS, or depositing Si by thermally decomposing DCS. Will be done. That is, the Si-containing layer may be an adsorption layer (physisorption layer or chemisorption layer) of a substance in which a part of DCS or DCS is decomposed, or may be a Si deposition layer (Si layer).
 Si含有層が形成された後、バルブ243aを閉じ、処理室201内へのDCSガスの供給を停止する。このとき、APCバルブ244を開いたままとし、真空ポンプ246により処理室201内を真空排気し、処理室201内に残留する未反応もしくはSi含有層の形成に寄与した後のDCSガスや反応副生成物等を処理室201内から排除する(S4)。また、バルブ243c,243dは開いたままとして、処理室201内へのNガスの供給を維持する。Nガスはパージガスとして作用する。なお、このステップS4を省略してもよい。 After the Si-containing layer is formed, the valve 243a is closed to stop the supply of DCS gas into the processing chamber 201. At this time, the APC valve 244 is left open, the inside of the processing chamber 201 is evacuated by the vacuum pump 246, and the DCS gas and the reaction sub-reaction after contributing to the formation of the unreacted or Si-containing layer remaining in the processing chamber 201. Products and the like are excluded from the processing chamber 201 (S4). Further, the valves 243c and 243d are kept open to maintain the supply of N 2 gas into the processing chamber 201. The N 2 gas acts as a purge gas. Note that this step S4 may be omitted.
 原料ガスとしては、DCSガスのほか、テトラキスジメチルアミノシラン(Si[N(CH、略称:4DMAS)ガス、トリスジメチルアミノシラン(Si[N(CHH、略称:3DMAS)ガス、ビスジメチルアミノシラン(Si[N(CH、略称:BDMAS)ガス、ビスジエチルアミノシラン(Si[N(C、略称:BDEAS)、ビスターシャリーブチルアミノシラン(SiH[NH(C)]、略称:BTBAS)ガス、ジメチルアミノシラン(DMAS)ガス、ジエチルアミノシラン(DEAS)ガス、ジプロピルアミノシラン(DPAS)ガス、ジイソプロピルアミノシラン(DIPAS)ガス、ブチルアミノシラン(BAS)ガス、ヘキサメチルジシラザン(HMDS)ガス等の各種アミノシラン原料ガスや、モノクロロシラン(SiHCl、略称:MCS)ガス、トリクロロシラン(SiHCl、略称:TCS)ガス、テトラクロロシラン(SiCl、略称:STC)ガス、ヘキサクロロジシラン(SiCl、略称:HCDS)ガス、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等の無機系ハロシラン原料ガスや、モノシラン(SiH、略称:MS)ガス、ジシラン(Si、略称:DS)ガス、トリシラン(Si、略称:TS)ガス等のハロゲン基非含有の無機系シラン原料ガスを好適に用いることができる。 As the raw material gas, in addition to DCS gas, tetrakis (dimethylamino) silane (Si [N (CH 3) 2] 4, abbreviation: 4DMAS) Gas, trisdimethylaminosilane (Si [N (CH 3) 2] 3 H, abbreviation: 3DMAS ) gas, bis (dimethylamino) silane (Si [N (CH 3) 2] 2 H 2, abbreviation: BDMAS) gas, bis-diethylamino silane (Si [N (C 2 H 5) 2] 2 H 2, abbreviation: BDEAS), Vista Shaributylaminosilane (SiH 2 [NH (C 4 H 9 )] 2 , abbreviation: BTBAS) gas, dimethylaminosilane (DMAS) gas, diethylaminosilane (DEAS) gas, dipropylaminosilane (DPAS) gas, diisopropylaminosilane (DIPAS) ) Gas, butylaminosilane (BAS) gas, various aminosilane raw material gases such as hexamethyldisilazane (HMDS) gas, monochlorosilane (SiH 3 Cl, abbreviation: MCS) gas, trichlorosilane (SiHCl 3 , abbreviation: TCS) gas. , Tetrachlorosilane (SiCl 4 , abbreviation: STC) gas, hexachlorodisilane (Si 2 Cl 6 , abbreviation: HCDS) gas, octachlorotrisilane (Si 3 Cl 8 , abbreviation: OCTS) gas and other inorganic halosilane raw material gas. , Monosilane (SiH 4 , abbreviation: MS) gas, disilane (Si 2 H 6 , abbreviation: DS) gas, trisilane (Si 3 H 8 , abbreviation: TS) gas and other halogen group-free inorganic silane raw material gas. It can be preferably used.
 不活性ガスとしては、Nガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。 As the inert gas, in addition to the N 2 gas, a rare gas such as Ar gas, He gas, Ne gas, and Xe gas can be used.
 (反応ガス供給ステップ:S5,S6)
 成膜処理が終了した後、処理室201内のウエハ200に対して反応ガスとしてのプラズマ励起させたNHガスを供給する(S5)。
(Reaction gas supply step: S5, S6)
After the deposition process has been completed, supplying NH 3 gas is plasma-excited as the reaction gas to the wafer 200 in the process chamber 201 (S5).
 このステップでは、バルブ243b~243dの開閉制御を、ステップS3におけるバルブ243a,243c,243dの開閉制御と同様の手順で行う。NHガスは、MFC 241bにより流量調整され、配管249bを介してバッファ室237c内へ供給される。このとき、外部電極300に高周波電力を供給する。バッファ室237c内へ供給されたNHガスはプラズマ状態に励起され(プラズマ化して活性化され)、活性種(NH*)として処理室201内へ供給され、排気管231から排気される。 In this step, the opening / closing control of the valves 243b to 243d is performed in the same procedure as the opening / closing control of the valves 243a, 243c, 243d in step S3. The flow rate of the NH 3 gas is adjusted by the MFC 241b, and the NH 3 gas is supplied into the buffer chamber 237c via the pipe 249b. At this time, high frequency power is supplied to the external electrode 300. The NH 3 gas supplied into the buffer chamber 237c is excited to a plasma state (plasmaized and activated), supplied as an active species (NH 3 *) into the processing chamber 201, and exhausted from the exhaust pipe 231.
 MFC241bで制御するNHガスの供給流量は、例えば100sccm以上、10000sccm以下、好ましくは1000sccm以上、2000sccm以下の範囲内の流量とする。外部電極300に印加する高周波電力は、例えば50W以上、600W以下の範囲内の電力とする。処理室201内の圧力は、例えば1Pa以上、500Pa以下の範囲内の圧力とする。プラズマを用いることで、処理室201内の圧力をこのような比較的低い圧力帯としても、NHガスを活性化させることが可能となる。NHガスをプラズマ励起することにより得られた活性種をウエハ200に対して供給する時間、すなわち、ガス供給時間(照射時間)は、例えば1秒以上、180秒以下、好ましくは1秒以上、60秒以下の範囲内の時間とする。その他の処理条件は、上述のS3と同様な処理条件とする。 The supply flow rate of the NH 3 gas controlled by the MFC 241b is, for example, a flow rate within the range of 100 sccm or more and 10000 sccm or less, preferably 1000 sccm or more and 2000 sccm or less. The high frequency power applied to the external electrode 300 is, for example, power within the range of 50 W or more and 600 W or less. The pressure in the processing chamber 201 is, for example, a pressure in the range of 1 Pa or more and 500 Pa or less. By using the plasma, also the pressure in the processing chamber 201 as such a relatively low pressure zone, it is possible to activate the NH 3 gas. NH 3 time for supplying the active species obtained by the gas to plasma excitation to the wafer 200, i.e., the gas supply time (irradiation time), for example more than 1 second, 180 seconds or less, preferably 1 second or more, The time is within the range of 60 seconds or less. Other processing conditions are the same as those in S3 described above.
 上述の条件下でウエハ200に対してNHガスを供給することにより、ウエハ200上に形成されたSi含有層がプラズマ窒化される。この際、プラズマ励起されたNHガスのエネルギーにより、Si含有層が有するSi-Cl結合、Si-H結合が切断される。Siとの結合を切り離されたCl、Hは、Si含有層から脱離することとなる。そして、Cl等が脱離することで未結合手(ダングリングボンド)を有することとなったSi含有層中のSiが、NHガスに含まれるNと結合し、Si-N結合が形成されることとなる。この反応が進行することにより、Si含有層は、SiおよびNを含む層、すなわち、シリコン窒化層(SiN層)へと変化させられる(改質される)。 By supplying NH 3 gas to the wafer 200 under the conditions described above, Si-containing layer formed on the wafer 200 is plasma nitriding. At this time, the energy of the plasma excited NH 3 gas, Si-Cl bond Si-containing layer has, Si-H bond is cleaved. Cl and H from which the bond with Si has been separated will be desorbed from the Si-containing layer. Then, Si in the Si-containing layer having an unbonded hand (dangling bond) due to desorption of Cl and the like is bonded to N contained in the NH 3 gas, and a Si—N bond is formed. The Rukoto. As this reaction proceeds, the Si-containing layer is changed (modified) into a layer containing Si and N, that is, a silicon nitride layer (SiN layer).
 なお、Si含有層をSiN層へと改質させるには、NHガスをプラズマ励起させて供給する必要がある。NHガスをノンプラズマの雰囲気下で供給しても、上述の温度帯では、Si含有層を窒化させるのに必要なエネルギーが不足しており、Si含有層からClやHを充分に脱離させたり、Si含有層を充分に窒化させてSi-N結合を増加させたりすることは、困難なためである。 Incidentally, in order modified Si-containing layer to the SiN layer, it is necessary to supply the NH 3 gas by plasma excitation. Also NH 3 gas was supplied under a non-plasma atmosphere, in a temperature zone above has insufficient energy required to nitride the Si-containing layer, sufficiently desorption of Cl or H from Si-containing layer This is because it is difficult to increase the Si—N bond by sufficiently nitriding the Si-containing layer.
 Si含有層をSiN層へ変化させた後、バルブ243bを閉じ、NHガスの供給を停止する。また、外部電極300への高周波電力の供給を停止する。そして、ステップS4と同様の処理手順、処理条件により、処理室201内に残留するNHガスや反応副生成物を処理室201内から排除する(S6)。なお、このステップS6を省略してもよい。 After the Si-containing layer is changed into SiN layer, closing the valve 243b, to stop the supply of the NH 3 gas. Further, the supply of high frequency power to the external electrode 300 is stopped. Then, the NH 3 gas and the reaction by-product remaining in the treatment chamber 201 are removed from the treatment chamber 201 by the same treatment procedure and treatment conditions as in step S4 (S6). Note that this step S6 may be omitted.
 窒化剤、すなわち、プラズマ励起させるN含有ガスとしては、NHガスの他、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス等を用いてもよい。 As the nitride, that is, the N-containing gas to be plasma-excited, in addition to NH 3 gas, diimide (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, N 3 H 8 gas and the like may be used.
 不活性ガスとしては、Nガスの他、例えば、ステップS4で例示した各種希ガスを用いることができる。 As the inert gas, in addition to the N 2 gas, for example, various rare gases exemplified in step S4 can be used.
 (所定回数実施:S7)
 上述したS3,S4,S5,S6をこの順番に沿って非同時に、すなわち、同期させることなく行うことを1サイクルとし、このサイクルを所定回数(n回)、すなわち、1回以上行う(S7)ことにより、ウエハ200上に、所定組成および所定膜厚のSiN膜を形成することができる。上述のサイクルは、複数回繰り返すことが好ましい。すなわち、1サイクルあたりに形成されるSiN層の厚さを所望の膜厚よりも小さくし、SiN層を積層することで形成されるSiN膜の膜厚が所望の膜厚になるまで、上述のサイクルを複数回繰り返すことが好ましい。
(Implemented a predetermined number of times: S7)
Performing the above-mentioned S3, S4, S5, and S6 in this order non-simultaneously, that is, without synchronization is defined as one cycle, and this cycle is performed a predetermined number of times (n times), that is, one or more times (S7). Thereby, a SiN film having a predetermined composition and a predetermined film thickness can be formed on the wafer 200. The above cycle is preferably repeated a plurality of times. That is, the thickness of the SiN layer formed per cycle is made smaller than the desired film thickness, and the film thickness of the SiN film formed by laminating the SiN layers becomes the desired film thickness. It is preferable to repeat the cycle multiple times.
 (大気圧復帰ステップ:S8)
 上述の成膜処理が完了したら、ガス供給管232c,232dのそれぞれから不活性ガスとしてのNガスを処理室201内へ供給し、排気管231から排気する。これにより、処理室201内が不活性ガスでパージされ、処理室201内に残留するガス等が処理室201内から除去される(不活性ガスパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(S8)。
(Atmospheric pressure return step: S8)
When the above-mentioned film forming process is completed, N 2 gas as an inert gas is supplied from each of the gas supply pipes 232c and 232d into the processing chamber 201 and exhausted from the exhaust pipe 231. As a result, the inside of the processing chamber 201 is purged with the inert gas, and the gas or the like remaining in the processing chamber 201 is removed from the inside of the processing chamber 201 (inert gas purge). After that, the atmosphere in the treatment chamber 201 is replaced with the inert gas (replacement of the inert gas), and the pressure in the treatment chamber 201 is restored to the normal pressure (S8).
 (搬出ステップ:S9)
 その後、ボートエレベータ115によりシールキャップ219が下降されて、マニホールド209の下端が開口されるとともに、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される(S9)。ボートアンロードの後は、シャッタ219sが移動させられ、マニホールド209の下端開口がOリング220cを介してシャッタ219sによりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出されることとなる(ウエハディスチャージ)。なお、ウエハディスチャージの後は、処理室201内へ空のボート217を搬入するようにしてもよい。
(Delivery step: S9)
After that, the seal cap 219 is lowered by the boat elevator 115 to open the lower end of the manifold 209, and the processed wafer 200 is supported by the boat 217 from the lower end of the manifold 209 to the outside of the reaction tube 203. It is carried out (boat unloading) (S9). After the boat is unloaded, the shutter 219s is moved and the lower end opening of the manifold 209 is sealed by the shutter 219s via the O-ring 220c (shutter close). The processed wafer 200 will be taken out from the boat 217 after being carried out of the reaction tube 203 (wafer discharge). After the wafer is discharged, the empty boat 217 may be carried into the processing chamber 201.
 (3)本実施形態による効果
 本実施形態によれば、以下に示す1つ又は複数の効果が得られる。
(3) Effects of the present embodiment According to the present embodiment, one or more of the following effects can be obtained.
 (a)処理ガスをプラズマ化するプラズマ生成部が形成されている位置に対応する反応管の外周に外部電極を設けることにより、この外部電極により反応管内に供給された処理ガスをプラズマで活性化し、この活性化した処理ガスを基板へ供給することができる。 (A) By providing an external electrode on the outer periphery of the reaction tube corresponding to the position where the plasma generating portion for converting the processing gas into plasma is formed, the processing gas supplied into the reaction tube by this external electrode is activated by plasma. , This activated processing gas can be supplied to the substrate.
 (b)外部電極は、プラズマ生成部が形成されている位置であって、プラズマ生成部にガスを供給するガス供給部を除く位置に設けられることにより、ガス供給部内でのプラズマ形成を防止することができる。 (B) The external electrode is provided at a position where the plasma generation unit is formed and is provided at a position other than the gas supply unit that supplies gas to the plasma generation unit, thereby preventing plasma formation in the gas supply unit. be able to.
 (c)反応管の内壁に沿ってバッファ室を設け、バッファ室が設けられている位置に対応する反応管の外周にプラズマを形成する外部電極を設け、この外部電極によりバッファ室内に供給された処理ガスをプラズマで活性化し、この活性化した処理ガスを基板へ供給することにより、バッファ室内での高効率のプラズマを形成することができ、基板に対して高効率で形成されたプラズマ活性種ガスを供給することができる。 (C) A buffer chamber is provided along the inner wall of the reaction tube, and an external electrode for forming plasma is provided on the outer periphery of the reaction tube corresponding to the position where the buffer chamber is provided, and is supplied into the buffer chamber by this external electrode. By activating the processing gas with plasma and supplying the activated processing gas to the substrate, it is possible to form a highly efficient plasma in the buffer chamber, and the plasma active species formed with high efficiency on the substrate. Gas can be supplied.
 (d)活性化した処理ガスを基板へ供給する処理ガス供給口が、基板中央へ向けて、基板水平方向に対して複数設けられていることにより、基板の中央へ対してプラズマ化されたガスの供給量を増加することができる。 (D) A plurality of processing gas supply ports for supplying activated processing gas to the substrate are provided in the horizontal direction of the substrate toward the center of the substrate, so that the gas is turned into plasma toward the center of the substrate. Supply can be increased.
 (e)バッファ室を形成するバッファ構造には、仕切り板が設けられ、この仕切り板により処理ガス導入エリアとバッファ室としてのプラズマエリアとに仕切られることにより、処理ガス導入エリアとプラズマエリアとを分離することができる。 (E) A partition plate is provided in the buffer structure forming the buffer chamber, and the processing gas introduction area and the plasma area are separated by partitioning the processing gas introduction area and the plasma area as the buffer chamber by the partition plate. Can be separated.
 (f)仕切り板には、処理ガス導入エリアからプラズマエリアへガスを供給するガス供給孔が設けられることにより、処理ガス導入エリアとプラズマエリアとを分離した状態で、処理ガスをプラズマエリアへガスを供給することができる。 (F) The partition plate is provided with a gas supply hole for supplying gas from the processing gas introduction area to the plasma area, so that the processing gas is gas to the plasma area in a state where the processing gas introduction area and the plasma area are separated. Can be supplied.
 (g)仕切り板にはプラズマエリアに処理ガスを供給する複数の孔が設けられおり、処理ガス導入エリアの下部から処理ガスが供給されて、複数の孔からプラズマエリアに処理ガスが供給されることにより、バッファ室内のガス濃度を均一化することができる。 (G) The partition plate is provided with a plurality of holes for supplying the processing gas to the plasma area, the processing gas is supplied from the lower part of the processing gas introduction area, and the processing gas is supplied to the plasma area from the plurality of holes. Thereby, the gas concentration in the buffer chamber can be made uniform.
 (h)処理ガス導入エリアが設けられている位置に対応する反応管の外周に外部電極を設けないことにより、処理ガス導入エリア内でのプラズマ形成を防止することができる。 (H) By not providing an external electrode on the outer periphery of the reaction tube corresponding to the position where the treated gas introduction area is provided, it is possible to prevent plasma formation in the treated gas introduction area.
 (i)プラズマエリアが設けられている位置に対応する反応管の外周に外部電極を設けることにより、プラズマエリア内にプラズマを形成することができる。 (I) Plasma can be formed in the plasma area by providing an external electrode on the outer circumference of the reaction tube corresponding to the position where the plasma area is provided.
 (j)バッファ構造は、処理室側の内壁の上部より下部にわたる部分に、基板の積載方向に沿って設けられ、処理室内にプラズマ化されたガスを供給するガス供給口が設けられることにより、処理室内のガス濃度を均一化することができる。 (J) The buffer structure is provided in a portion extending from the upper part to the lower part of the inner wall on the processing chamber side along the loading direction of the substrate, and a gas supply port for supplying plasmaized gas is provided in the processing chamber. The gas concentration in the processing chamber can be made uniform.
 (k)平面視において、原料ガス供給ノズルを挟んでバッファ室が設けられ、それぞれのバッファ室が設けられている位置に対応する反応管の外周にプラズマを形成する外部電極を設けることにより、プラズマエリアの拡大することができる。 (K) In a plan view, a buffer chamber is provided across the raw material gas supply nozzle, and plasma is provided by providing an external electrode that forms plasma on the outer circumference of the reaction tube corresponding to the position where each buffer chamber is provided. The area can be expanded.
 以上、本開示の実施形態について具体的に説明した。しかしながら、本開示は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 The embodiment of the present disclosure has been specifically described above. However, the present disclosure is not limited to the above-described embodiment, and various modifications can be made without departing from the gist thereof.
 例えば、上述の実施形態では、原料を供給した後に反応ガスを供給する例について説明した。本開示はこのような態様に限定されず、原料、反応ガスの供給順序は逆でもよい。すなわち、反応ガスを供給した後に原料を供給するようにしてもよい。供給順序を変えることにより、形成される膜の膜質や組成比を変化させることが可能となる。 For example, in the above-described embodiment, an example in which the reaction gas is supplied after the raw material is supplied has been described. The present disclosure is not limited to such an embodiment, and the supply order of the raw material and the reaction gas may be reversed. That is, the raw material may be supplied after the reaction gas is supplied. By changing the supply order, it is possible to change the film quality and composition ratio of the formed film.
 上述の実施形態等では、ウエハ200上にSiN膜を形成する例について説明した。本開示はこのような態様に限定されず、ウエハ200上に、シリコン酸化膜(SiO膜)、シリコン酸炭化膜(SiOC膜)、シリコン酸炭窒化膜(SiOCN膜)、シリコン酸窒化膜(SiON膜)等のSi系酸化膜を形成する場合や、ウエハ200上にシリコン炭窒化膜(SiCN膜)、シリコン硼窒化膜(SiBN膜)、シリコン硼炭窒化膜(SiBCN膜)等のSi系窒化膜を形成する場合にも、好適に適用可能である。これらの場合、反応ガスとしては、O含有ガスの他、C等のC含有ガスや、NH等のN含有ガスや、BCl等のB含有ガスを用いることができる。 In the above-described embodiment and the like, an example of forming a SiN film on the wafer 200 has been described. The present disclosure is not limited to such an embodiment, and a silicon oxide film (SiO film), a silicon acid carbide film (SiOC film), a silicon acid carbonic nitride film (SiOCN film), and a silicon acid nitride film (SiON) are placed on the wafer 200. When forming a Si-based oxide film such as a film), or on a wafer 200, Si-based nitride such as a silicon carbonitride film (SiCN film), a silicon boron nitride film (SiBN film), or a silicon boron nitride film (SiBCN film) It is also suitably applicable when forming a film. In these cases, as the reaction gas, the other O-containing gas, C 3 and C-containing gas, such as H 6, and N-containing gas such as NH 3, it can be used B-containing gas such as BCl 3.
 また、本開示は、ウエハ200上に、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、タンタル(Ta)、ニオブ(Nb)、アルミニウム(Al)、モリブデン(Mo)、タングステン(W)等の金属元素を含む酸化膜や窒化膜、すなわち、金属系酸化膜や金属系窒化膜を形成する場合においても、好適に適用可能である。すなわち、本開示は、ウエハ200上に、TiO膜、TiN膜、TiOC膜、TiOCN膜、TiON膜、TiBN膜、TiBCN膜、ZrO膜、ZrN膜、ZrOC膜、ZrOCN膜、Z
rON膜、ZrBN膜、ZrBCN膜、HfO膜、HfN膜、HfOC膜、HfOCN膜、HfON膜、HfBN膜、HfBCN膜、TaO膜、TaOC膜、TaOCN膜、TaON膜、TaBN膜、TaBCN膜、NbO膜、NbN膜、NbOC膜、NbOCN膜、NbON膜、NbBN膜、NbBCN膜、AlO膜、AlN膜、AlOC膜、AlOCN膜、AlON膜、AlBN膜、AlBCN膜、MoO膜、MoN膜、MoOC膜、MoOCN膜、MoON膜、MoBN膜、MoBCN膜、WO膜、WN膜、WOC膜、WOCN膜、WON膜、MWBN膜、WBCN膜等を形成する場合にも、好適に適用することが可能となる。
Further, in the present disclosure, titanium (Ti), zirconium (Zr), hafnium (Hf), tantalum (Ta), niobium (Nb), aluminum (Al), molybdenum (Mo), tungsten (W) are provided on the wafer 200. It is also suitably applicable to the case of forming an oxide film or a nitride film containing a metal element such as, that is, a metal-based oxide film or a metal-based nitride film. That is, in the present disclosure, on the wafer 200, a TiO film, a TiN film, a TiOC film, a TiOCN film, a TiON film, a TiBN film, a TiBCN film, a ZrO film, a ZrN film, a ZrOC film, a ZrOCN film, and Z
rON film, ZrBN film, ZrBCN film, HfO film, HfN film, HfOC film, HfOCN film, HfON film, HfBN film, HfBCN film, TaO film, TaOC film, TaOCN film, TaON film, TaBN film, TaBCN film, Nbo film. , NbN film, NbOC film, NbOCN film, NbON film, NbBN film, NbBCN film, AlO film, AlN film, AlOC film, AlOCN film, AlON film, AlBN film, AlBCN film, MoO film, MoN film, MoOC film, MoOCN. It can also be suitably applied when forming a film, a MoON film, a MoBN film, a MoBCN film, a WO film, a WN film, a WOC film, a WOCN film, a WON film, a MWBN film, a WBCN film, or the like.
 これらの場合、例えば、原料ガスとして、テトラキス(ジメチルアミノ)チタン(Ti[N(CH、略称:TDMAT)ガス、テトラキス(エチルメチルアミノ)ハフニウム(Hf[N(C)(CH)]、略称:TEMAH)ガス、テトラキス(エチルメチルアミノ)ジルコニウム(Zr[N(C5)(CH)]、略称:TEMAZ)ガス、トリメチルアルミニウム(Al(CH、略称:TMA)ガス、チタニウムテトラクロライド(TiCl)ガス、ハフニウムテトラクロライド(HfCl)ガス等を用いることができる。反応ガスとしては、上述の反応ガスを用いることができる。 In these cases, for example, as the raw material gas, tetrakis (dimethylamino) titanium (Ti [N (CH 3 ) 2 ] 4 , abbreviation: TDMAT) gas, tetrakis (ethylmethylamino) hafnium (Hf [N (C 2 H 5)) ) (CH 3 )] 4 , abbreviation: TEMAH gas, tetrakis (ethylmethylamino) zirconium (Zr [N (C 2 H 5 ) (CH 3 )] 4 , abbreviation: TEMAZ) gas, trimethylaluminum (Al (CH)) 3 ) 3 , abbreviation: TMA) gas, titanium tetrachloride (TiCl 4 ) gas, hafnium tetrachloride (HfCl 4 ) gas and the like can be used. As the reaction gas, the above-mentioned reaction gas can be used.
 すなわち、本開示は、半金属元素を含む半金属系膜や金属元素を含む金属系膜を形成する場合に、好適に適用することができる。これらの成膜処理の処理手順、処理条件は、上述の実施形態や変形例に示す成膜処理と同様な処理手順、処理条件とすることができる。これらの場合においても、上述の実施形態や変形例と同様の効果が得られる。 That is, the present disclosure can be suitably applied when forming a metalloid-based film containing a metalloid element or a metal-based film containing a metal element. The treatment procedure and treatment conditions for these film formation treatments can be the same treatment procedures and treatment conditions as those for the film formation treatments shown in the above-described embodiments and modifications. In these cases as well, the same effects as those of the above-described embodiments and modifications can be obtained.
 成膜処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、各種処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の薄膜を汎用的に、かつ、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、各種処理を迅速に開始できるようになる。 It is preferable that the recipes used for the film forming process are individually prepared according to the processing content and stored in the storage device 121c via a telecommunication line or an external storage device 123. Then, when starting various processes, it is preferable that the CPU 121a appropriately selects an appropriate recipe from a plurality of recipes stored in the storage device 121c according to the processing content. This makes it possible to form thin films of various film types, composition ratios, film qualities, and film thicknesses with a single substrate processing device in a versatile and reproducible manner. In addition, the burden on the operator can be reduced, and various processes can be started quickly while avoiding operation mistakes.
 上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更するようにしてもよい。 The above recipe is not limited to the case of newly creating, for example, it may be prepared by changing an existing recipe already installed in the board processing apparatus. When changing the recipe, the changed recipe may be installed on the substrate processing apparatus via a telecommunication line or a recording medium on which the recipe is recorded. Further, the input / output device 122 included in the existing board processing device may be operated to directly change the existing recipe already installed in the board processing device.
 200:ウエハ(基板)
 201:処理室
 217:ボート(基板支持具)
 300:外部電極
200: Wafer (board)
201: Processing room 217: Boat (board support)
300: External electrode

Claims (12)

  1.  基板を処理する処理室と、
     複数の前記基板を垂直方向に多段に保持する基板支持具と、
     前記処理室内に設けられ、ガスをプラズマ化するバッファ構造と、該バッファ構造が設けられている位置に対応する前記処理室の外側に設けられるプラズマを生成する外部電極と、を有するプラズマ生成部と、
     を備える基板処理装置。
    A processing room for processing the substrate and
    A board support that holds a plurality of the boards in multiple stages in the vertical direction,
    A plasma generating unit having a buffer structure provided in the processing chamber for converting gas into plasma, and an external electrode for generating plasma provided outside the processing chamber corresponding to the position where the buffer structure is provided. ,
    Substrate processing device.
  2.  前記バッファ構造は前記ガスを供給するガス供給部を備え、
     前記外部電極は、前記バッファ構造が設けられている位置であって、前記ガス供給部を除く位置に設けられる請求項1に記載の基板処理装置。
    The buffer structure includes a gas supply unit for supplying the gas.
    The substrate processing apparatus according to claim 1, wherein the external electrode is provided at a position where the buffer structure is provided and is provided at a position other than the gas supply unit.
  3.  前記バッファ構造には、前記ガスをプラズマ化するエリアとしてバッファ室が設けられる請求項2に記載の基板処理装置。 The substrate processing apparatus according to claim 2, wherein a buffer chamber is provided in the buffer structure as an area for converting the gas into plasma.
  4.  前記バッファ構造には、仕切り板が設けられ、該仕切り板により、前記ガス供給部と前記バッファ室に仕切られている請求項3に記載の基板処理装置。 The substrate processing apparatus according to claim 3, wherein a partition plate is provided in the buffer structure, and the partition plate partitions the gas supply unit and the buffer chamber.
  5.  前記仕切り板には、前記ガス供給部から前記バッファ室へ前記ガスを供給するガス供給孔が設けられる請求項4に記載の基板処理装置。 The substrate processing apparatus according to claim 4, wherein the partition plate is provided with a gas supply hole for supplying the gas from the gas supply unit to the buffer chamber.
  6.  前記仕切り板には、前記ガス供給孔が垂直方向に複数設けられる請求項5に記載の基板処理装置。 The substrate processing apparatus according to claim 5, wherein the partition plate is provided with a plurality of gas supply holes in the vertical direction.
  7.  前記バッファ構造は、前記処理室の内壁の上部より下部にわたる部分に、前記基板の積載方向に沿って設けられ、前記処理室内にプラズマ化された前記ガスを供給するガス供給口が設けられる請求項1に記載の基板処理装置。 A claim that the buffer structure is provided in a portion extending from the upper part to the lower part of the inner wall of the processing chamber along the loading direction of the substrate, and a gas supply port for supplying the plasmaized gas is provided in the processing chamber. The substrate processing apparatus according to 1.
  8.  前記ガス供給口は、前記基板の中央に向けて、前記基板の水平方向に対して複数設けられる請求項7に記載の基板処理装置。 The substrate processing apparatus according to claim 7, wherein a plurality of the gas supply ports are provided toward the center of the substrate in the horizontal direction of the substrate.
  9.  原料ガスを供給する原料ガス供給部と、複数の前記プラズマ生成部とを備え、
     平面視において、複数の前記プラズマ生成部が、前記処理室の中心と前記原料ガス供給部とを通る直線を挟んで配置される請求項1に記載の基板処理装置。
    A raw material gas supply unit for supplying a raw material gas and a plurality of the plasma generation units are provided.
    The substrate processing apparatus according to claim 1, wherein the plurality of plasma generating units are arranged with a straight line passing through the center of the processing chamber and the raw material gas supply unit in a plan view.
  10.  ガスを排気する排気部と、複数の前記プラズマ生成部を備え、
     平面視において、複数の前記プラズマ生成部が、前記処理室の中心と前記排気部とを通る直線を挟んで配置される請求項1に記載の基板処理装置。
    It is provided with an exhaust unit for exhausting gas and a plurality of the plasma generation units.
    The substrate processing apparatus according to claim 1, wherein a plurality of the plasma generating units are arranged so as to sandwich a straight line passing through the center of the processing chamber and the exhaust unit in a plan view.
  11.  基板を処理する処理室と、複数の前記基板を垂直方向に多段に保持する基板支持具と、前記処理室内に設けられ、ガスをプラズマ化するバッファ構造と、該バッファ構造が設けられている位置に対応する前記処理室の外側に設けられるプラズマを生成する外部電極と、を有するプラズマ生成部と、を備える基板処理装置の前記処理室に前記基板を搬入する工程と、
     前記ガスをプラズマ化する工程と、
     前記基板に対して、プラズマ化された前記ガスを供給する工程と、
     を有する半導体装置の製造方法。
    A processing chamber for processing a substrate, a substrate support for holding a plurality of the substrates in multiple stages in the vertical direction, a buffer structure provided in the processing chamber for converting gas into plasma, and a position where the buffer structure is provided. A step of carrying the substrate into the processing chamber of a substrate processing apparatus including a plasma generating unit having an external electrode for generating plasma provided outside the processing chamber corresponding to the above.
    The process of turning the gas into plasma and
    A step of supplying the plasma-generated gas to the substrate and
    A method for manufacturing a semiconductor device having.
  12.  基板を処理する処理室と、複数の前記基板を垂直方向に多段に保持する基板支持具と、前記処理室内に設けられ、ガスをプラズマ化するバッファ構造と、該バッファ構造が設けられている位置に対応する前記処理室の外側に設けられるプラズマを生成する外部電極と、を有するプラズマ生成部と、を備える基板処理装置の前記処理室に前記基板を搬入する手順と、
     前記ガスをプラズマ化する手順と、
     前記基板に対して、プラズマ化された前記ガスを供給する手順と、
     をコンピュータにより前記基板処理装置に実行させるプログラム。
    A processing chamber for processing a substrate, a substrate support for holding a plurality of the substrates in multiple stages in the vertical direction, a buffer structure provided in the processing chamber for converting gas into plasma, and a position where the buffer structure is provided. A procedure for carrying the substrate into the processing chamber of a substrate processing apparatus including a plasma generating unit having an external electrode for generating plasma provided outside the processing chamber corresponding to the above.
    The procedure for converting the gas into plasma and
    The procedure for supplying the plasma-generated gas to the substrate and
    A program that causes the board processing apparatus to execute the above.
PCT/JP2020/009978 2020-03-09 2020-03-09 Substrate treatment device, production method for semiconductor device, and program WO2021181450A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/009978 WO2021181450A1 (en) 2020-03-09 2020-03-09 Substrate treatment device, production method for semiconductor device, and program
TW110106849A TWI785510B (en) 2020-03-09 2021-02-26 Substrate processing apparatus, semiconductor device manufacturing method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009978 WO2021181450A1 (en) 2020-03-09 2020-03-09 Substrate treatment device, production method for semiconductor device, and program

Publications (1)

Publication Number Publication Date
WO2021181450A1 true WO2021181450A1 (en) 2021-09-16

Family

ID=77671255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009978 WO2021181450A1 (en) 2020-03-09 2020-03-09 Substrate treatment device, production method for semiconductor device, and program

Country Status (2)

Country Link
TW (1) TWI785510B (en)
WO (1) WO2021181450A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297818A (en) * 2002-04-05 2003-10-17 Hitachi Kokusai Electric Inc Substrate treatment apparatus
JP2004124234A (en) * 2002-10-07 2004-04-22 Hitachi Kokusai Electric Inc Apparatus for treating substrate
JP2007258580A (en) * 2006-03-24 2007-10-04 Tokyo Electron Ltd Plasma treatment equipment and plasma treatment method
JP2012094652A (en) * 2010-10-26 2012-05-17 Hitachi Kokusai Electric Inc Substrate processor and manufacturing method of semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100829327B1 (en) * 2002-04-05 2008-05-13 가부시키가이샤 히다치 고쿠사이 덴키 Substrate processing apparatus and reaction tube
JP5136574B2 (en) * 2009-05-01 2013-02-06 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
WO2018163399A1 (en) * 2017-03-10 2018-09-13 株式会社Kokusai Electric Substrate treatment device, method for manufacturing semiconductor device, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297818A (en) * 2002-04-05 2003-10-17 Hitachi Kokusai Electric Inc Substrate treatment apparatus
JP2004124234A (en) * 2002-10-07 2004-04-22 Hitachi Kokusai Electric Inc Apparatus for treating substrate
JP2007258580A (en) * 2006-03-24 2007-10-04 Tokyo Electron Ltd Plasma treatment equipment and plasma treatment method
JP2012094652A (en) * 2010-10-26 2012-05-17 Hitachi Kokusai Electric Inc Substrate processor and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
TW202145838A (en) 2021-12-01
TWI785510B (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP6918916B2 (en) Plasma generator, substrate processing equipment, semiconductor equipment manufacturing method, program executed by the substrate processing equipment, plasma generation method, program executed by the plasma generator, electrodes and reaction tubes
JP2020188280A (en) Substrate processing apparatus, method of manufacturing semiconductor device, program and reaction tube
JP6999596B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
WO2018055700A1 (en) Substrate processing device, method for manufacturing semiconductor device, and electrode fixing unit
JP2017168788A (en) Method for manufacturing semiconductor device, substrate processing apparatus and program
JP2017183392A (en) Substrate processing device, method of manufacturing semiconductor device, and recording medium
JP7027565B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
JP6937894B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
JP6867548B2 (en) Substrate processing equipment, semiconductor equipment manufacturing methods and programs
WO2021181450A1 (en) Substrate treatment device, production method for semiconductor device, and program
WO2022054855A1 (en) Substrate processing device, semiconductor device manufacturing method, and program
JP7058338B2 (en) Substrate processing equipment, substrate holders, semiconductor device manufacturing methods and programs
JP7457818B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, program, auxiliary plate, and substrate holder
WO2021044504A1 (en) Substrate processing device, plasma generation device, semiconductor device production method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP