WO2021180633A1 - Procédé d'usinage par laminage d'une roue dentée - Google Patents

Procédé d'usinage par laminage d'une roue dentée Download PDF

Info

Publication number
WO2021180633A1
WO2021180633A1 PCT/EP2021/055751 EP2021055751W WO2021180633A1 WO 2021180633 A1 WO2021180633 A1 WO 2021180633A1 EP 2021055751 W EP2021055751 W EP 2021055751W WO 2021180633 A1 WO2021180633 A1 WO 2021180633A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
worm
machining
rolling
module
Prior art date
Application number
PCT/EP2021/055751
Other languages
German (de)
English (en)
Inventor
Peter Kopton
Gábor SZALAI
Markus Heilmann
Original Assignee
Audi Ag
AUDI HUNGARIA Zrt.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi Ag, AUDI HUNGARIA Zrt. filed Critical Audi Ag
Publication of WO2021180633A1 publication Critical patent/WO2021180633A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F19/00Finishing gear teeth by other tools than those used for manufacturing gear teeth
    • B23F19/002Modifying the theoretical tooth flank form, e.g. crowning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F5/00Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made
    • B23F5/02Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by grinding
    • B23F5/04Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by grinding the tool being a grinding worm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F5/00Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made
    • B23F5/20Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by milling
    • B23F5/22Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by milling the tool being a hob for making spur gears

Definitions

  • the invention relates to a method for hobbing, in particular for hobbing and / or for grinding a gear according to the preamble of claim 1.
  • the toothing of gears can be produced by continuous generating grinding or by continuous hobbing.
  • Continuous generating grinding is a method for hard finishing of tooth flanks
  • continuous hobbing is a method for soft finishing of tooth flanks.
  • a generating grinding worm or a hobbing worm which has a cylindrical base body with at least one helically extending worm thread, is used as the tool.
  • the kinematics of hobbing and hob grinding is similar to a helical gear unit.
  • a toothed wheel produced by generating grinding or by hobbing can have a toothing which, compared to a standardized toothing, is modified in such a way that tolerances, such as position errors of the axes, are taken into account.
  • the tooth flanks can optionally be provided with a crown in order to reduce noise development during operation and to improve the vibration behavior, the strength, the distribution of forces and the surface pressure of the teeth.
  • the module of the gear wheel can vary over the tooth width in a gear wheel axial direction. The module indicates the size of the gear. Only gears with the same module can be paired with one another.
  • the module (i.e. the diameter division) of a gear is a basic dimension or a reference variable to which all other gear parameters (tooth tip height, tooth root height, tooth height, circumferential pitch).
  • a generic method and a machine tool for machining gears by milling and / or grinding are known.
  • a generating worm is driven in a generating direction of rotation about a generating worm axis and in a gear-worm-like cutting engagement with the gearwheel rotating about a gear axis.
  • the cutting engagement takes place at a contact point between a pitch worm flank and a gear tooth flank.
  • the rolling worm is adjusted in a feed movement along the gear axis. Coupled with the motion of the worm feed motion, the contact point is shifted along the gear axis.
  • the rolling machining process is controlled in DE 10 2015 209 917 A1 in such a way that the gearwheel has a module that is constant over the tooth width.
  • a grinding worm for generating grinding of gears is known.
  • a hob cutter is known from DE 2 212 225 A.
  • a grinding machine with a grinding tool for simultaneous generating grinding of two workpieces is known.
  • DE 44 03 236 A1 a grinding worm for generating grinding of cylindrical spur gears is known.
  • the object of the invention is to provide a method for rolling machining with which, compared to the prior art, a gearwheel with a module that varies over the tooth width can be produced in a simpler manner.
  • the object is achieved by the features of claim 1.
  • Preferred developments of the invention are disclosed in the subclaims.
  • the invention is based on a rolling machining process in which all gear teeth are produced with a constant module in a machining plane at right angles to the gear wheel axial direction and in which the rolling worm is adjusted with a feed movement along the gear wheel axis to relocate motion-coupled contact point along the gear axis.
  • a further roller screw axis movement is impressed on the roller screw in the roller machining process.
  • the module changes at least partially over the tooth width in the gear wheel axial direction.
  • the rolling worm can be adjusted in the rolling machining process in a feed movement along the gear axis in different feed positions.
  • Each feed position is assigned a machining plane at right angles to the gearwheel axial direction, in which a module that is constant in the circumferential direction of the gearwheel (i.e. in the machining plane) is generated at the contact point with material removal.
  • the module generated is constant in every machining plane (at right angles to the gear axis). It is therefore preferred if the pitch worm remains in each feed position until at least one complete gear wheel revolution has taken place. This ensures that all teeth of the gear are machined at the contact point, forming a constant module.
  • the rolling machining process can be controlled in such a way that the module generated in a first feed position differs from a module generated in a second feed position differs.
  • the further roller screw axis movement can be impressed on the roller screw feed movement.
  • the rolling worm can have at least one worm thread which runs helically around a rolling worm base body.
  • the pitch worm can be conical.
  • an active roller screw outer diameter at the contact point can be continuously reduced from a large diameter roller screw end face to an axially opposite small diameter roller screw end face.
  • the process control can therefore adjust the conical worm gear by a travel in the worm gear axis. This changes the active pitch worm diameter at the contact point and, accordingly, also the material removal at the contact point, namely with a change in the module.
  • the further roller screw axis movement can be a pivoting movement of the roller screw about a pivot axis, in which the roller screw can be adjusted by a pivot angle during the roller machining, and / or a roller screw radial movement axially parallel to the roller screw axis around which to generate a module that varies over the tooth width of the gearwheel.
  • the pivot axis can be aligned axially parallel to the gear wheel axis.
  • the worm can be adjusted in a feed direction parallel to the gear axis by means of a tool feed.
  • the roller worm can be adjusted via a shift movement along its roller screw axis of rotation in order to extend its service life.
  • the additional further axis movement is called the rolling rotation movement, the Rolling worm feed and the shifting movement of the rolling worm are superimposed.
  • Another aspect of the invention relates specifically to the production of a gearwheel, which in the finished state has at least a first
  • a multi-start roller worm can be used, which has at least two helical worm threads running around a main body of the pitch circle. According to the invention, the first
  • the worm thread and the second worm thread can each be designed with mutually different worm thread profiles.
  • the first module area in particular can be generated with the aid of the first worm gear.
  • the second module area of the gearwheel can specifically be produced by means of the second worm gear.
  • the rolling machining according to the invention can be part of a fully automated process chain for manufacturing the gear.
  • the process chain can have further conventional hobbing and / or generating grinding process steps in any way.
  • the worm gear can be controlled on the basis of this polynomial equation.
  • FIGS. 3a and 3b each show views by means of which a rolling machining process is illustrated
  • FIGS. 4 and 5 are views of a generating grinding worm according to the invention.
  • FIG. 6 shows a second exemplary embodiment of the invention in a view corresponding to FIG. 3;
  • FIG. 7 shows, in a view corresponding to FIG. 4, a hobbing worm for hobbing
  • FIG. 8 shows, in a view corresponding to FIG. 3, a generating grinding process known from the prior art
  • FIG. 9 to 12 views according to an alternative embodiment; and FIG. 13 shows a further exemplary embodiment.
  • the gear wheel 1 has a central gear wheel axial section 3, to which lateral gear wheel axial sections 5 adjoin on both sides in the gear wheel axial direction.
  • the module rrn is constant throughout.
  • the tooth parameters which are directly proportional to the module rrn are in the middle gear wheel axial section 3, that is to say, among other things, the tip diameter da and the Root diameter df constant throughout.
  • the gear wheel 1 can preferably be designed as a standard gear wheel, in which the tooth parameters are determined as a function of the module rrn by means of the above equations.
  • the module rri2 does not remain constant in the respective lateral gearwheel axial section 5 of the gearwheel 1, but is continuously reduced in the axial course up to the respective gearwheel end face 7.
  • the tip diameter da is reduced in each lateral gear wheel axial section 5, from a maximum value damax to a minimum value damin (FIG. 2).
  • the reduction in the tip diameter da can take place with a simultaneous increase in the root diameter df. In this way, the strength is increased at the end faces 11 of the gear 1.
  • the gear wheel 1 is therefore designed in the lateral gear wheel axial sections 5 as a special shape deviating from the standard gear wheel.
  • the gear wheel 1 shown in FIG. 1 or 2 is produced with the aid of a gear cutting machine indicated in FIG. 3 which has a generating grinding worm 9.
  • FIG. 8 a gear grinding machine is indicated in a roughly schematic representation of the principle insofar as it is necessary to understand the invention.
  • the basic structure and a process control in the generating grinding process are known, for example, from DE 10 2015 209 917 A1, according to which a continuous generating grinding process can be carried out.
  • the gear cutting machine has a cylindrical generating grinding worm 9 rotating about a worm axis B. This is in a generating grinding process step in chip engagement with tooth gaps of the gear wheel 1 rotating about a gear axis C. The chip engagement takes place at a contact point K between a gear worm flank and a gear tooth flank.
  • the roller worm 9 has a worm gear G with in cross-section trapezoidal screw thread profile. The worm thread runs helically around a base body 19 of the generating grinding worm 9.
  • the generating grinding worm 9 is adjusted by a feed f z in the feed direction z in FIG.
  • the contact point K is coupled with the movement of the feed movement f z of the pitch worm 9 along the tooth width b of the gearwheel 1.
  • the generating grinding worm 9 is adjusted with a shift movement f y along its axis of rotation B during generating grinding, in order to extend the service life of the generating grinding worm 9.
  • the gear grinding machine has an electronic control unit 21 in FIG.
  • a software program is stored in the electronic control unit 21, by means of which the actuating drives for the fully automatic implementation of a generating grinding step and a dressing step are controlled with control signals.
  • the control signals are used to set the control parameters of the machine components (i.e. tool carrier, turret, workpiece carrier and dressing unit), i.e. positioning movements in the spatial directions x, y, z and / or spindle speeds nw.
  • FIGS. 3 to 5 illustrate a rolling machining process according to a first exemplary embodiment, by means of which, for example, the gear wheel 1 shown in FIGS. 1 and 2 can be produced, the module m of which in each machining plane E1, E2 ( Figures 3a, 3b) remains constant, but varies over the tooth width b.
  • the rolling worm 9 used in the rolling machining process has a conical shape, as shown in FIGS. 4 and 5.
  • the rolling worm 9 - in addition to the feed movement f z - an additional further axis movement As-i, AS2 is impressed in order to use the Gear width b to generate a module change.
  • the axis movement required for such a module change in the first embodiment is an axial movement As-i, AS2 of the roller screw 9 in the roller screw axial direction B, ie an infeed movement in the infeed direction y.
  • FIGS. 3a and 3b An exemplary process management is illustrated in FIGS. 3a and 3b.
  • the pitch worm 9 is adjusted in the feed direction z into different feed positions, of which only a first feed position VP1 and a second feed position VP2 are indicated in FIGS. 3a and 3b.
  • a machining plane E1, E2 is assigned to each of the feed positions VP1, VP2.
  • the machining planes E1, E2 are each aligned at right angles to the gear axis C.
  • a module m is generated locally at the contact point K with material removal.
  • the pitch worm 9 remains in the respective feed position VP1, VP2 until at least one complete gear wheel revolution has taken place, so that an identical local module mi, rri2 is generated in the respective machining plane E1, E2 for all teeth of the gear wheel 1 . Subsequently, the rolling worm 9 is moved into a further feed position via a feed movement f z.
  • the conical roller worm 9 is shown in the first feed position VP1 by way of example.
  • the pitch worm 9 is axially adjusted by a first adjustment path Asi (FIG. 3).
  • the conical roller screw 9 with a predefined active roller screw diameter removes material at the contact point K in order to generate a first module rrn in the first processing plane E1 (see cross-hatching in FIG. 3a).
  • the worm 9 is advanced in the feed direction z up to the second feed position VP2 (FIG. 3b).
  • a roller screw outer diameter in FIG. 5 is continuously reduced from a large diameter roller screw face 13 to an axially opposite small diameter roller screw face 15.
  • the conical generating grinding worm 9 is realized with two threads with a first worm thread G1 and a second worm thread G2.
  • the first worm thread G1 and the second worm thread G2 can each be different from one another
  • the first module area rrn can be generated in the middle gear wheel axial section 3 (FIGS. 1 or 2) by means of the first worm thread G1, while the second module areas rri2 can be generated in the outer gear wheel axial sections 5 with the help of the second worm thread G2.
  • FIG. 5b shows another conical roller grinding worm 9, in which the diameter of the roller screw base body 19 is continuously reduced between the large diameter roller screw end face 13 up to the axially opposite small diameter roller screw face 15.
  • the profile height h of the screw thread profile 17 increases continuously from the small-diameter roller screw end face 15 to the axially opposite large-diameter roller screw end face 13.
  • the gear cutting machine is shown according to a further embodiment, in which the generating grinding worm 9 is cylindrical.
  • the feed movement f z of the generating grinding worm 9 takes place in the feed direction z and the shifting movement f y of the generating grinding worm 9 in the spatial direction y.
  • the feed movement f z and the shift movement f y are superimposed on further axis movements S, R of the generating grinding worm 9 in FIG.
  • the further roller worm axis movement is not an adjusting movement along the roller screw axis B, but rather a pivoting movement S of the roller grinding worm 9 with a pivot angle a about a pivot axis A and / or a radial movement R of the roller grinding worm 9 axially parallel to the roller grinding worm axis B. in order to generate a module m which varies over the tooth width b of the gearwheel 1.
  • the pivot axis A is aligned approximately axially parallel to the gear axis C in FIG.
  • FIGS. 1 to 7 the invention is explained on the basis of continuous generating grinding machining, which represents a method for hard fine machining of tooth flanks.
  • the invention is not only applicable to continuous generating grinding, but - due to the same kinematics - also applicable to continuous hobbing, which represents a method for soft fine machining of tooth flanks.
  • the worm gear 9 is implemented as a conical worm gear that is used in continuous hobbing.
  • the geometry of the hobbing worm 9 shown in FIG. 7 is largely identical to the hobbing worm 9 illustrated with reference to FIG. 4. Reference is therefore made to the previous description.
  • the leg threads G1 and G2 in FIG. 7 do not run continuously around the screw base body 19, but are interrupted at cutouts.
  • the recesses are arranged in alignment one behind the other in the axial direction B, which results in chip spaces through which chips can be transported away.
  • the invention is not limited to the production of gears with straight teeth. Instead, the method according to the invention can also be used to produce gears with helical gears.
  • the pitch worm 9 is inclined at an angle with respect to the gear wheel axis of rotation C.
  • FIGS. 9 to 12 A further exemplary embodiment is shown in FIGS. 9 to 12, the basic structure of which is essentially identical to the exemplary embodiment shown in FIG. 3.
  • the only axial movement of the worm gear 9 is an infeed movement As in the infeed direction y, that is, along the worm gear axis B.
  • the pitch worm 9 in FIG. 9 is not designed in a conical shape, but rather has a bulge or crown in cross section (FIG. 10).
  • the worm gear module mw is a function mw (l) of the worm gear Length I designed.
  • the pitch worm length I extends between a worm thread start section 23 on one pitch worm end face 13 and a worm thread end section 25 on the opposite pitch worm end face 15, with intermediate worm thread sections in between.
  • a cambered worm thread profile is thus obtained in cross section, which is symmetrical with respect to a central transverse plane of the pitch worm 9.
  • a special rolling machining process can be implemented, which is described below with reference to FIGS 23 brought into cutting engagement with the gear wheel 1 in a transverse movement Q (FIG. 10), specifically in a start feed position VPstait (FIG. 11) with an assigned start machining plane Estait, in which the gear wheel 1 is machined.
  • the start machining plane Estait is located directly on the gear wheel face 20 (FIG. 11).
  • the worm thread start section 23 is brought into cutting engagement with the gearwheel 1 in the start machining plane Estait.
  • a start module m s tart in the gear 1 is produced.
  • both an infeed movement As of the pitch worm 9 in the infeed direction y and a synchronized feed movement f z in the feed direction z take place.
  • the gear wheel 1 is brought from the start feed position VPstait into an intermediate feed position, while the feed movement As disengages the worm thread start section 23 and an intermediate worm thread section engages the gear wheel 1 is brought.
  • a (compared to the start module mstart different) intermediate module generated.
  • the gear 1 is adjusted from its current intermediate feed position with a feed movement f z to a final feed position VPend, in which the worm gear 9 machines the gear 1 in the final machining plane Eend.
  • the pitch worm 9 is adjusted in the feed direction y in a synchronized feed movement As, so that the worm thread end section 25 in the final machining plane Eend is in cutting engagement with the gear wheel 1 to create an end module in the final machining plane Eend m e nd to produce.
  • FIG. 13 A further exemplary embodiment of the invention is described with reference to FIG. 13, the process arrangement of which is essentially identical to the exemplary embodiment shown in FIG. 9.
  • the gear 1 to be machined in the generating process is a first gear component of a gear stack 27, in which the first gear 1 with at least one not yet hobbed second gear 29 on a gear (not shown) Carrier is stored.
  • the two gears 1, 29 are aligned in FIG. 13 along the gear axis C in alignment with one another.
  • the rolling machining of the first gear 1 takes place as illustrated with reference to FIGS. 9 to 12.
  • the not yet hobbing second gear 29 can already be slightly in cutting engagement with the worm gear 9, as a result of which preliminary machining takes place.
  • the generating of the second gear 29 follows without interruption.
  • the end feed position VPend in the completed generating machining of the first gear 1 forms the start feed position VPstait for the subsequent generating machining of the second gear 29.
  • the first gear 1 that has already been rolled is detached from the gear stack 27 by means of a transfer unit (not shown) and to a storage station or to a is transferred to another processing station.
  • the mass production of gears it is preferred if, in the generating process, the axial movement of the worm 9 and / or the gear 1 alone is the infeed movement As in the infeed direction y, without radial movement R and without pivoting movement S.
  • this is advantageous if, while the second gear 29 is being produced, the first gear 1 which has already been produced is detached or unloaded from the gear stack 27.
  • the gear wheel stack 27 can be equipped with at least one further gear wheel that is still to be processed while the hobbing is in progress.
  • a swivel axis b face width

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gears, Cams (AREA)

Abstract

L'invention concerne un procédé d'usinage par laminage, en particulier de taillage par fraise-mère ou de rectification de denture par génération, d'une roue dentée (1) de n'importe quel type de denture, par exemple une denture droite ou hélicoïdale ou similaire, au moyen d'une vis sans fin de laminage (9) qui est entraînée pendant l'usinage par laminage dans une direction de rotation de laminage (D) autour d'un axe de vis sans fin de laminage (B), la vis sans fin de laminage (9) étant en contact d'enlèvement de copeaux avec la roue dentée (1), laquelle est en corotation autour de l'axe de roue dentée (C), à savoir en un point de contact (K) situé entre un flanc de vis sans fin de laminage et un flanc de roue dentée, le point de contact (K) étant déplacé le long de l'axe de roue dentée (C ) dans un mouvement d'avance (fz) sur une largeur de dent (b) de la roue dentée (1), et pendant le processus de laminage, la vis sans fin de laminage (9) étant commandée de sorte que dans chaque plan d'usinage (E1, E2, …) perpendiculaire à la direction axiale de roue dentée (C), toutes les dents de roue dentée présentent dans chaque cas un module (m) constant. Lors du processus d'usinage par laminage, la vis sans fin de laminage (9) et/ou la roue dentée (1) effectue(nt) un déplacement axial (∆s, R, S) au moyen duquel le module (m) varie au moins en partie sur la largeur de dent (b).
PCT/EP2021/055751 2020-03-13 2021-03-08 Procédé d'usinage par laminage d'une roue dentée WO2021180633A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020106910.3 2020-03-13
DE102020106910.3A DE102020106910A1 (de) 2020-03-13 2020-03-13 Verfahren zur Wälzbearbeitung eines Zahnrads

Publications (1)

Publication Number Publication Date
WO2021180633A1 true WO2021180633A1 (fr) 2021-09-16

Family

ID=74870807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/055751 WO2021180633A1 (fr) 2020-03-13 2021-03-08 Procédé d'usinage par laminage d'une roue dentée

Country Status (2)

Country Link
DE (1) DE102020106910A1 (fr)
WO (1) WO2021180633A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116079412A (zh) * 2023-03-23 2023-05-09 杭州恒盛紧固件有限公司 一种螺丝加工用便于调节的滚丝切断一体机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE896907C (de) * 1943-07-13 1953-12-14 Ultra Praez Swerk G M B H Stirnkegelradwaelzfraeser
DE2212225A1 (de) 1971-03-16 1972-09-21 Kobe Steel Ltd ,Kobe(Japan) Abwälzfräser
EP0278512A1 (fr) * 1987-02-13 1988-08-17 Liebherr-Verzahntechnik GmbH Procédé d'usinage des engrenages
EP0497309A1 (fr) * 1991-01-30 1992-08-05 Kyoiku Haguruma Kogyo Kabushiki-Kaisha Outil rotatif pour la génération des roues dentées coniques
DE4403236A1 (de) 1993-03-08 1994-09-15 Reishauer Ag Schleifschnecke zum Wälzschleifen von zylindrischen Stirnzahnrädern
WO2001041961A1 (fr) * 1999-12-10 2001-06-14 Sauer-Danfoss Holding A/S Procede de production d'une denture bombee presentant des proprietes de developpante et arbres comprenant de telles dentures
DE10104410A1 (de) 2000-02-29 2001-08-30 Reishauer Ag Schleifschnecke zum Wälzschleifen von Zahnrädern
DE202014104881U1 (de) 2014-10-15 2014-11-13 Klingelnberg Ag Schleifmaschine mit einem Schleifwerkzeug zum gleichzeitigen Wälzschleifen zweier Werkstücke
DE102015209917A1 (de) 2015-05-29 2016-12-01 Zf Friedrichshafen Ag Verfahren und Werkzeugmaschine zur spanenden Bearbeitung gleicher Werkstücke in Serie durch Fräsen und/oder Schleifen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008037578A1 (de) 2008-11-24 2010-05-27 Profilator Gmbh & Co. Kg Vorrichtung und Verzahnen von Werkrädern mit einem konischen Wälzfräser
DE102010039490A1 (de) 2010-08-18 2012-02-23 Deckel Maho Pfronten Gmbh Verfahren und Vorrichtung zum Erzeugen von Steuerdaten zur Ausbildung eines Zahns einer Stirnradverzahnung durch fräsende Bearbeitung eines Werkstücks an einer Werkzeugmaschine
DE102012015846A1 (de) 2012-04-17 2013-10-17 Liebherr-Verzahntechnik Gmbh Verfahren und Vorrichtung zum Hartfeinbearbeiten von modifizierten Verzahnungen
DE102015008973A1 (de) 2015-07-10 2017-01-12 Liebherr-Verzahntechnik Gmbh Verfahren zur Herstellung eines verzahnten Werkstückes mit modifizierter Oberflächengeometrie
DE102018218888B4 (de) 2018-11-06 2023-02-23 Audi Ag Zahnradanordnung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE896907C (de) * 1943-07-13 1953-12-14 Ultra Praez Swerk G M B H Stirnkegelradwaelzfraeser
DE2212225A1 (de) 1971-03-16 1972-09-21 Kobe Steel Ltd ,Kobe(Japan) Abwälzfräser
EP0278512A1 (fr) * 1987-02-13 1988-08-17 Liebherr-Verzahntechnik GmbH Procédé d'usinage des engrenages
EP0497309A1 (fr) * 1991-01-30 1992-08-05 Kyoiku Haguruma Kogyo Kabushiki-Kaisha Outil rotatif pour la génération des roues dentées coniques
DE4403236A1 (de) 1993-03-08 1994-09-15 Reishauer Ag Schleifschnecke zum Wälzschleifen von zylindrischen Stirnzahnrädern
WO2001041961A1 (fr) * 1999-12-10 2001-06-14 Sauer-Danfoss Holding A/S Procede de production d'une denture bombee presentant des proprietes de developpante et arbres comprenant de telles dentures
DE10104410A1 (de) 2000-02-29 2001-08-30 Reishauer Ag Schleifschnecke zum Wälzschleifen von Zahnrädern
DE202014104881U1 (de) 2014-10-15 2014-11-13 Klingelnberg Ag Schleifmaschine mit einem Schleifwerkzeug zum gleichzeitigen Wälzschleifen zweier Werkstücke
DE102015209917A1 (de) 2015-05-29 2016-12-01 Zf Friedrichshafen Ag Verfahren und Werkzeugmaschine zur spanenden Bearbeitung gleicher Werkstücke in Serie durch Fräsen und/oder Schleifen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116079412A (zh) * 2023-03-23 2023-05-09 杭州恒盛紧固件有限公司 一种螺丝加工用便于调节的滚丝切断一体机

Also Published As

Publication number Publication date
DE102020106910A1 (de) 2021-09-16

Similar Documents

Publication Publication Date Title
EP2364231B1 (fr) Procédé et utilisation de décolletage en développante
EP3129181B1 (fr) Procédé et dispositifs pour dresser des meules (vis sans fin) de manière rapide et flexible
EP2895290B1 (fr) Procédé pour modifier les flancs d'une dent d'une roue dentée à l'aide d'un outil
DE102011115526B4 (de) Verfahren zum Abrichten einer mehrgängigen Schleifschnecke und zum Schleifen sowie Schleifschnecke
DE102012015846A1 (de) Verfahren und Vorrichtung zum Hartfeinbearbeiten von modifizierten Verzahnungen
EP2385885A2 (fr) Dispositif et procédé pour tailler des dents dans des pièces et jeu d'outils correspondant
EP2036673B1 (fr) Procédé pour dressage d'un outil spécifique au traitement précis des dents d'une roue dentée
EP3241640B1 (fr) Procédé de finition à haute dureté de la denture d'une roue dentée ou d'un profil semblable à une roue dentée d'une pièce usinée
DE19911235B4 (de) Verfahren zur Bearbeitung der Flanken im wesentlichen zylindrischer, aber breitenballig modifizierter Verzahnungen im kontinuierlichen Diagonal-Wälzverfahren
WO2017174187A1 (fr) Procédé d'enlèvement de matière d'une arête frontale de denture d'engrenage et dispositif conçu à cet effet
EP3043945A2 (fr) Procédé de décolletage en développante, et dispositif correspondant
EP3154733A1 (fr) Procédé de formation de contre-dépouilles dans les flancs de dents de roues dentées
EP3206822B1 (fr) Procédé de dressage d'un outil de rectification et procédé de rectification d'une roue dentée
WO2021180633A1 (fr) Procédé d'usinage par laminage d'une roue dentée
DE10220513B4 (de) Verfahren zum Abrichten oder Profilieren einer zylindrischen oder im wesentlichen zylindrischen Schleifschnecke
DE102007043402B4 (de) Verfahren zum Abrichten eines für die Feinbearbeitung der Zähne eines Zahnrades bestimmten Werkzeugs
WO2005075125A1 (fr) Dispositif et procede de production de profils de type dente sur des pieces
EP3016771B1 (fr) Dispositif permettant de lisser une denture et procédé de production d'une denture
WO2021001055A1 (fr) Procédé permettant la réalisation de modifications de flancs de dent sur des dentures de pièces et outils permettant la mise en œuvre du procédé
WO2008077593A1 (fr) Procédé pour fraiser les arêtes de dents
DE102009011492A1 (de) Verfahren zum Herstellen von Verzahnungen mit stirnseitigen Anspitzungen
CH696758A5 (de) Verfahren und Fräser zur Herstellung von kegeligen Stirnrädern.
WO2023161075A1 (fr) Procédé et dispositif de production d'encoches et de roues dentées
EP4066974A1 (fr) Procédé de création de différences de hauteur sur les flancs de dent d'une pièce à denture interne
DE102021001718A1 (de) Verfahren zum wälzstossen einer verzahnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21711199

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase

Ref document number: 21711199

Country of ref document: EP

Kind code of ref document: A1