WO2021180517A1 - Insulating modular unit for leakproof thermally insulating tank - Google Patents

Insulating modular unit for leakproof thermally insulating tank Download PDF

Info

Publication number
WO2021180517A1
WO2021180517A1 PCT/EP2021/055198 EP2021055198W WO2021180517A1 WO 2021180517 A1 WO2021180517 A1 WO 2021180517A1 EP 2021055198 W EP2021055198 W EP 2021055198W WO 2021180517 A1 WO2021180517 A1 WO 2021180517A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating
modular block
heat
tank
liquid
Prior art date
Application number
PCT/EP2021/055198
Other languages
French (fr)
Inventor
Benoit Morel
Guillaume De Combarieu
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to CN202180020660.4A priority Critical patent/CN115280059A/en
Priority to KR1020227031450A priority patent/KR20220150312A/en
Priority to JP2022554282A priority patent/JP2023516788A/en
Publication of WO2021180517A1 publication Critical patent/WO2021180517A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to the field of sealed and thermally insulating tanks.
  • the invention relates more particularly to the field of sealed and thermally insulating tanks comprising a metallic waterproofing membrane and a thermally insulating modular block.
  • the invention also relates to a thermally insulating modular block for the insulation of a sealed tank for the storage and / or transport of a liquid.
  • Document WO-A-2019122757 discloses a thermally insulating barrier for a cold liquid storage tank comprising a plurality of juxtaposed insulating boxes.
  • a box has a compartment and a pulverulent heat-insulating liner disposed in the compartment.
  • the pulverulent packing presents an excellent compromise between a low density and satisfactory thermal insulation performance and is little or not sensitive to an irreversible settlement phenomenon after having been immersed in the liquid stored in the tank.
  • the pulverulent filling is generally chosen from pyrogenic silicas, silica aerogels and mixtures thereof.
  • these powder fillings consistently contain a small amount of chlorine, approximately 10 parts per million (ppm) or more of chlorine.
  • the solid diffusion of the insulation in the form of dust can cause contact between the chlorine and the metallic waterproofing membrane, for example made of stainless steel or an alloy with a low coefficient of thermal expansion, in particular an iron and nickel alloy such as INVAR®, and thus cause corrosion by pitting of the waterproofing membrane.
  • Moisture can also carry the chlorine present in the powdery packing and then contact the chlorine with the waterproofing membrane by condensation and cause corrosion of the metal by pitting.
  • any thermally insulating barrier comprising a gas permeable envelope and comprising a powdery lining chosen from pyrogenic silicas, silica aerogels and their mixture with a small quantity of chlorine
  • a phenomenon of corrosion of the external structures metal is likely to be observed.
  • This corrosion phenomenon which weakens the waterproofing membrane, is therefore very damaging depending on the technology used, in particular for sealed and thermally insulating tanks for the storage and / or transport of a liquid.
  • thermally insulating barrier of liquid storage tanks should be improved, as for example disclosed in FR3075918, to overcome the drawbacks of corrosion observed on metal sealing membranes sensitive to low concentrations of chlorine, such as, for example, alloys of iron and nickel, more precisely the alloy of iron (64%) and nickel (36%) called INVAR®.
  • Document WO-A-2014184393 describes a composition comprising 40 to 93% of pyrogenic silica or of silica airgel and 5 to 50% of particles having a specific surface, determined by BET, less than or equal to 100 m 2 / g. These particles are selected from a large list of products and are chosen for their role of trapping gas molecules in order to delay the rise in internal pressure and thus maintain optimal insulation performance.
  • the size of the pyrogenic silica particles is between 5 nm and 50 nm.
  • the size of the silica airgel particles is between 2 nm and 50 nm or between 50 nm and 2000 nm depending on the manufacturing process.
  • the composition is used for the manufacture of vacuum insulating panels (VIP) which are used in the construction of new buildings and for the insulation of pre-existing buildings as insulation in refrigeration equipment and for the insulation of pipes and tubes. / or machinery in industry.
  • VIP vacuum insulating panels
  • Document KR-A-20130067712 discloses a flame retardant insulation material comprising 35% to 99.5% by weight of fumed silica having a microporous structure, 0.3 to 25% by weight of a stiffener and 0.2% to 55%. by weight of a heat resistant filler.
  • the stiffener is chosen from glass fibers, ceramic fibers, carbon fibers, quartz fibers and their mixture.
  • the heat resistant filler can be silicon carbide, zirconium silicate, graphite, metakaolin, titanium dioxide, pyrophillite, vermiculite, perlite, calcium silicate and the like.
  • Document JP-A-2013104491 relates to the field of manufacturing processes for vacuum insulating material.
  • a powder is sealed in a packaging material impermeable to gases under reduced pressure, especially for buildings or freezers or refrigerators. It is indicated that the powder is fumed silica, the average size of the primary particles of which is between 5 and 100 nm and the water content of which is less than 1% by mass.
  • the powder may contain a gas and moisture adsorbent component such as synthetic zeolite, activated carbon, activated alumina, silica gel, dawsonite, hydrotalcite, and carbon particles. adsorbs chemicals such as oxides and hydroxides of alkali metals and alkaline earth metals.
  • the present invention therefore generally aims to reduce or even eliminate the phenomenon of corrosion of the metallic sealing membrane of a sealed tank incorporating a plurality of thermally insulating modular blocks and comprising a heat-insulating lining mainly based on pyrogenic silicas, silica aerogels and mixtures thereof.
  • the present invention aims to reduce or even eliminate the phenomenon of corrosion of the waterproofing membrane of a sealed and thermally insulating tank, comprising a plurality of modular blocks permeable to gas, and intended to store a liquid chosen from among the Liquefied Natural Gas, Liquefied petroleum gas, liquid methane, liquid ethane, liquid propane, liquid argon and liquid hydrogen.
  • a first object according to the present invention relates to a thermally insulating modular block for the insulation of a sealed tank for storing a liquid, the modular block comprising a heat-insulating lining, the heat-insulating lining comprising a pulverulent insulating material comprising a chosen main component. from fumed silicas, silica aerogels and mixtures thereof and at least one anion exchange compound capable of capturing the chloride anion in exchange for the release of at least one other anion, the exchange compound of anion being in the form of a powder mixed with the pulverulent insulating material, the heat-insulating lining not being enclosed in a gas-tight envelope.
  • the heat-insulating lining can also include fibers, for example glass fibers or carbon fibers.
  • the heat insulating lining may also contain infrared opacifying agents such as SiC, TiO2, graphite or carbon black.
  • the heat-insulating packing can also contain fillers such as perlite in order to limit the settling of the heat-insulating packing, in particular in the event of accidental immersion by liquefied gas.
  • module block is meant a solid self-supporting entity, such as a box or a rigid panel, and which can be arranged according to need and the desired number.
  • the geometry can be diverse, cylindrical, parallelepiped or other.
  • pulverulent insulating material any composition in powder form and which prevents the loss of heat.
  • a powder can be packaged in bulk, lightly pressed in a rigid container or in a flexible envelope, or else pressed and densified in the form of blocks or panels sufficiently self-supporting to be handled.
  • Such a powder can also be packaged within a flexible envelope which is itself inserted into a rigid container forming a self-supporting panel suitable for handling.
  • such a powder can be packaged at a density of between 80 kg / m 3 and 500 kg / m 3 depending on the envisaged application and the desired mechanical properties.
  • anion exchange compound capable of capturing the chloride anion is understood to mean any chemical compound in the form of a powder having an OH - or CO 3 2 ⁇ group and having the capacity to exchange an anion included in its structure. with another chloride anion present in the heat insulating packing. Mention may be made, for example, of clays, lamellar double hydroxide compounds (HDL), synthetic hydrotalcite, crosslinked ion exchange polymers and mixtures thereof. HDL compounds are solid compounds formed from a stack of sheets containing metal cations between which anionic species and water molecules can be inserted.
  • HDL lamellar double hydroxide compounds
  • HDLs employed herein can include hydrated and dehydrated forms.
  • the anion exchange compound may also be able to capture another ionic halogen, for example fluorine, the physical properties of which are close to those of chlorine.
  • sealing membrane is meant a thin film or sheet of a material consisting of metals or metal alloys to seal the tank against liquid.
  • metals or metal alloys we can cite, for example, INVAR®.
  • particles having an average apparent size is meant that the particles have a particle size distribution, the average value of which is thus defined.
  • mass proportion is understood to mean mass percentage (% m) to denote the proportion by mass of the component in the total mixture.
  • volume fraction is meant the volume of the component divided by the sum of the volumes of all the components of the mixture.
  • gas permeable envelope rigid or semi-rigid or flexible materials defining a closed space.
  • gas permeable materials are, for example, wood, damping materials, textile materials, composite materials such as sheet of fiberglass, sheet of polymer fibers, plywood, compressed cardboard.
  • envelopes comprising a rigid frame can be found in particular in documents FR-A-2867831, WO-A-2013017773 and WO-A-2014020257.
  • the thermally insulating modular block comprises a gas permeable envelope defining at least one compartment, the heat insulating lining being disposed in said compartment.
  • the powdery insulating material contains little or no binder such as an adhesive polymer.
  • the proportion of binder used to condition the heat-insulating lining is less than 12% by mass of the heat-insulating lining. For example from 0.3 to 12%. A greater quantity would result in degradation of the thermal insulation performance of the modular block.
  • the anion exchange compound is hydrated and includes water molecules.
  • the anion exchange compound is chosen from clays, double lamellar hydroxide compounds (HDL), synthetic hydrotalcite (magnesium-aluminum hydroxycarbonate, of chemical composition Mg 6 Al 2 (OH) 16 CO 3 4H 2 O), crosslinked anion exchange polymers containing the exchangeable anion OH- or CO32-, for example ion exchanger III (product code 104767 from MERCK®) and mixtures thereof.
  • HDL double lamellar hydroxide compounds
  • synthetic hydrotalcite magnesium-aluminum hydroxycarbonate, of chemical composition Mg 6 Al 2 (OH) 16 CO 3 4H 2 O
  • crosslinked anion exchange polymers containing the exchangeable anion OH- or CO32- for example ion exchanger III (product code 104767 from MERCK®) and mixtures thereof.
  • the anion exchange compound has a group chosen from the hydroxide ion (OH - ) and the carbonate ion (CO 3 2- ).
  • the HDL compound is of the formula [M II 1-x M III x (OH) 2 ] x + [A m- x / m .nH 2 O] x- , wherein MII and MIII are di- and trivalent cations of the sheet, respectively, and A denotes an interfoliar anionic species.
  • A can be any anion capable of exchanging with the chloride anion present in the heat insulating packing.
  • A will not be a halogen anion or a sulfide anion.
  • the anionic species A of the HDL compound is chosen from the hydroxide ion (OH - ) and the carbonate ion (CO 3 2- ).
  • HDL minerals suitable according to the invention Hydrotalcite of formula Mg 6 Al 2 (OH) 16 CO 3 , 4H 2 O (rhombohedral type structure) Manasseite of formula Mg 6 Al 2 (OH) 16 CO 3 , 4H 2 O (hexagonal type structure) Meixnerite of formula Mg 6 Al 2 (OH) 18 , 4H 2 O Pyroaurite of formula Mg 6 Fe 2 (OH) 16 CO 3 , 4H 2 O (rhombohedral structure) Sjogrenite of formula Mg 6 Fe 2 (OH) 16 CO 3 , 4H 2 O (hexagonal type structure) Coalingite of formula Mg 10 Fe 2 (OH) 24 CO 3 , 2H 2 O Stichtite of formula Mg 6 Cr 2 (OH) 16 CO 3 , 4H 2 O (rhombohedral structure) Barbertonite of formula Mg 6 Cr 2 (OH) 16 CO 3 , 4H 2 O
  • the anion exchange compound will be chosen from synthetic hydrotalcite (see example 1), a crosslinked polymer (see example 2), and mixtures thereof.
  • the anion exchange compound is in the form of particles having an average apparent size of between 1 ⁇ m and 50 ⁇ m, preferably between 1 ⁇ m and 25 ⁇ m and more advantageously between 1 and 10 ⁇ m.
  • the proportion by mass of the anion exchange compound represents between 1% and 30% by mass of the heat-insulating lining, preferably between 5% and 20% by mass of the heat-insulating lining.
  • the volume fraction occupied by the anion exchange compound within the heat-insulating lining is less than 5%, preferably less than 1%.
  • the casing comprising a rigid frame including a bottom panel, a cover panel and spacers keeping the bottom panel and the cover panel parallel at a distance from each other for take up a pressure force
  • the spacing elements of the modular block can be produced in various ways.
  • the modular block spacers have side walls disposed on edges of the bottom panel and the cover panel, internal partitions extending between two opposite edges of the bottom panel and between two edges. opposites of the cover panel and / or the load-bearing pillars, in particular small-section load-bearing pillars, distributed over an internal surface of the bottom panel and the cover panel.
  • a second object according to the invention consists of a sealed and thermally insulating tank comprising at least one thermally insulating barrier and a waterproofing membrane resting against said thermally insulating barrier and in which the thermally insulating barrier comprises a plurality of the aforementioned modular blocks.
  • the waterproofing membrane is made of a nickel steel alloy with a low coefficient of thermal expansion, that is to say a coefficient of linear thermal expansion (in length) from 20 ° C to 90 ° C less than or equal to 2.0 ⁇ 10 ⁇ 6 K ⁇ 1 , with K representing the Kelvin.
  • the waterproofing membrane is INVAR®, more precisely an alloy of iron (64%) and nickel (36%).
  • said thermally insulating barrier is a secondary insulating barrier and said waterproofing membrane is a secondary waterproofing membrane
  • the vessel further comprising a primary thermally insulating barrier resting against the secondary waterproofing membrane and a primary waterproofing membrane resting against said primary insulating barrier and intended to be in contact with the fluid contained in the tank.
  • said thermally insulating barrier is a primary insulating barrier and said waterproofing membrane is a primary waterproofing membrane intended to be in contact with the fluid contained in the tank, the tank further comprising a membrane secondary waterproofing against which the primary thermally insulating barrier rests and a secondary insulating barrier against which the secondary waterproofing membrane rests.
  • the sealed and thermally insulating tank is intended to store a liquid chosen from liquefied natural gas, liquefied petroleum gas, liquid methane, liquid ethane, liquid propane, liquid argon and l liquid hydrogen.
  • Such a tank can be part of an onshore storage facility, for example to store LNG or be installed in a floating, coastal or deep water structure, in particular an LNG vessel, a floating storage and regasification unit (FSRU). , a floating production and remote storage unit (FPSO) and others.
  • the tank may be intended for the transport of liquefied gas or to receive liquefied gas serving as fuel for the propulsion of the floating structure, for example in any type of vessel.
  • a vessel for transporting a liquid product comprises a double hull and a above-mentioned tank arranged in the double hull.
  • the invention also provides a method of loading or unloading such a vessel, in which a liquid product is conveyed through isolated pipes from or to a floating or terrestrial storage installation to or from the tank. of the ship.
  • the invention also provides a transfer system for a liquid product, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the vessel to a floating storage installation or terrestrial and a pump for driving a flow of liquid product through the insulated pipes from or towards the floating or terrestrial storage installation towards or from the vessel of the vessel.
  • FIG. 1 is a partial cut-away view of a sealed tank wall comprising heat-insulating modular blocks having a rigid wooden casing.
  • FIG. 1 is a schematic perspective representation of a modular heat-insulating block which can be included in the vessel wall of the and which has pillars.
  • FIG. 1 is a perspective view of a modular formwork elements with a plurality of anchoring studs and a load-bearing structure incorporating heat-insulating modular blocks.
  • FIG. 1 is a similar perspective view, similar to the , in which the modular formwork elements were removed and junction insulators were added.
  • FIG. 1 is a cut-away schematic representation of an LNG vessel tank and a loading / unloading terminal for this tank.
  • the vessel wall is composed successively in its thickness of a secondary insulating barrier 2 which is formed of modular blocks 3 juxtaposed on the double hull 1 and retained on the latter by secondary retaining members 4; then a secondary waterproof membrane 5 carried by the modular blocks 3; then a primary insulating barrier 6 formed by modular blocks 7 juxtaposed and retained on the secondary waterproof membrane 5 by primary retaining members 8 themselves attached to the secondary retaining members 4 and, finally, by a primary waterproof membrane 9 carried by the modular blocks 7. Further details on the structure of the modular blocks 3 and 7 can be found in the publication FR-A-2867831.
  • a heat-insulating lining fills the interior space of the modular blocks 3 and consists of a mixture of a pulverulent insulating material comprising a main component chosen from among pyrogenic silicas, silica aerogels and mixtures thereof and of at least one anion exchange compound.
  • the anion exchange compound consists of an HDL compound and / or a crosslinked anion exchange polymer containing the exchangeable anion OH - or CO 3 2- , for example the crosslinked ion exchange polymer III (product code 104767 from MERCK ®).
  • the modular block 53 comprises a bottom panel 54 on which are fixed distribution flanges 55.
  • a row of pillars 56 and 60 is supported and is fixed each time on a distribution flange 55 corresponding.
  • the pillars 57 of each row of pillar 56 or 60 extend according to the thickness of the modular block 53 and therefore in a direction perpendicular to the supporting wall 1.
  • the pillars 57 have a solid rectangular section.
  • Each row of pillars 56 or 60 is parallel with respect to a lateral side 58 of the modular block 53.
  • the rows of pillars carry a reinforced cover panel 59.
  • the pillars 57 allow in particular the transmission of the stresses exerted on the cover panel 59 to the wall 1 and have a compressive strength function. Further details on the structure of modular block 53 can be found in publication WO-A-2014020257.
  • a heat-insulating lining fills the space between the pillars 57 and consists of a mixture of a pulverulent insulating material comprising a main component chosen from silicas. pyrogels, silica aerogels and mixtures thereof and of at least one anion exchange compound.
  • a thermally insulating modular block in a sealed and thermally insulating tank wall according to one embodiment.
  • Such sealed walls make it possible to produce a containment chamber or vessel for storing and / or transporting a cryogenic fluid, such as a liquefied gas, for example methane.
  • Anchoring studs 11, also called couplers, are regularly positioned and fixed on an external supporting structure 12.
  • This supporting structure 12 can in particular be a self-supporting metal sheet or more generally any type of rigid partition having suitable mechanical properties, such as a concrete wall in a land-based construction.
  • Modular formwork elements 13 are arranged against the supporting structure 12 between the anchoring studs 11.
  • the modular formwork elements 13 thus have a projecting shape, inwardly, relative to the plane of the supporting structure 12.
  • the Modular formwork elements 13 form, with the anchoring studs 11 and the supporting structure 12, a plurality of compartments.
  • the compartments have an open side opposite the supporting structure 12.
  • the modular formwork elements 13 are longitudinal beams arranged perpendicular to each other so as to form compartments having the shape of quadrilaterals at right angles.
  • the modular formwork elements 13 can be equipped with releasable fasteners allowing them to be fixed to the supporting structure 12 and / or to the anchoring studs 11.
  • compartments are then filled with compressed panels with a heat-insulating lining 15 to through the open side of the compartments in order to form a plurality of insulating sectors made of compressed heat-insulating lining 15.
  • the compartments therefore define a template for the production of said insulating sectors 15.
  • short fibers such as glass fibers
  • the compressed panels comprise a heat insulating liner including in addition to the powdery insulating material fibers.
  • the heat-insulating lining fills the compartments and consists of a mixture of a pulverulent insulating material comprising a main component chosen from fumed silicas, silica aerogels and mixtures thereof and at least one anion exchange compound.
  • the interstices between the insulating sectors of compressed heat-insulating lining 15 are lined with insulating junction elements 18 shown in FIG. 4.
  • the insulating junction elements 18 are also placed at room temperature. , under compressive stress between the insulating sectors of compressed heat-insulating lining 15.
  • said insulating junction elements 18 are able to relax and fill the gap between the insulating sectors of compressed heat-insulating lining 15 when they contract under the pressure. effect of low temperatures.
  • the insulating junction elements 18 are strips made of a flexible material such as glass wool, polyester wadding, polyurethane (PU), melamine, polyethylene (PE) foams, polypropylene (PP) or silicone. The width of these bands is determined such that, at ambient temperature, they undergo a compressive stress between the insulating sectors of compressed heat-insulating lining 15.
  • composition as well as the process for preparing the heat-insulating lining intended to form the thermally insulating modular block will be described below.
  • the heat insulating liner is made from a powdery insulating material comprising hydrophobic fumed silicas, silica aerogels and mixtures thereof and at least one anion exchange compound.
  • Hydrophobic fumed silicas are available, for example, either under the trade reference AEROSIL R974 or under the trade reference AEROSIL R812S produced by the company Evonik.
  • Silica aerogels are available for example under the trade reference P100 produced by Cabot Corporation and are ground to a particle size of less than 100 ⁇ m.
  • the heat-insulating lining may further comprise a granular filler consisting of small expanded perlites available under the trade reference CR615 produced by the company KD One Co. or consisting of glass microspheres available under the trade reference Glass Bubble K1 produced by the company 3M or of a granular silica airgel, compatible with liquid nitrogen, known by the trade name P400 produced by Cabot Corporation.
  • a granular filler consisting of small expanded perlites available under the trade reference CR615 produced by the company KD One Co. or consisting of glass microspheres available under the trade reference Glass Bubble K1 produced by the company 3M or of a granular silica airgel, compatible with liquid nitrogen, known by the trade name P400 produced by Cabot Corporation.
  • Example 1 Preparation of the hydrotalcite type anion exchange compound
  • the anion exchange compound is obtained from Sigma Aldrich®. This is a white synthetic hydrotalcite powder, product code 652288, with a molecular weight of 603.98 g / mol. Its density is 2.06 and its particle size is between 1 and 5 ⁇ m.
  • Example 2 Preparation of the polymer type anion exchange compound
  • the anion exchange compound is an ion exchange resin obtained from Sigma Aldrich® under the product reference 104767 and is named Ion exchanger III (strongly basic anion exchanger, OH - form) for analysis . It is a powder of a crosslinked polymer with a density of 650-700kg / m 3 . Its particle size is between 496 and 674 ⁇ m.
  • the polymer is placed in a 70 ZPS type impact mill at 16,000 revolutions per minute, the selector of which is set at 8,000 revolutions per minute for an air circulation rate of 80 m 3 / h.
  • the following table gives the results of the particle size distribution of the powder before and after grinding, measured by a “Mastersizer3000” device from Malvern.
  • a powder is obtained having a particle size of between 1 and 50 ⁇ m, with only 10% of the particles having a diameter greater than 19.6 ⁇ m.
  • the hydrophobic fumed silica used is of two types: - silica obtained under the reference AEROSIL® R974 from Evonik Resource Efficiency GmbH with a particle size of less than 200 ⁇ m. - the silica obtained under the reference HDK®H30 obtained from Wacker Chemie AG, which has a particle size of less than 200 ⁇ m.
  • Hydrophobic fumed silica is mixed with hydrotalcite or ground ion exchange resin as shown in Table 2.
  • Example 4 Test of the reduction of the corrosion of INVAR® by pyrogenic silicas by adding an anion exchanger
  • the INVAR® alloy is obtained from APERAM IMPHY in the form of hot-rolled strips 0.7 mm thick.
  • samples of 65 mm length and 31.5 mm width are taken.
  • the specimens are free from surface defects. To clean them, they are immersed in 95% ethanol for 15 minutes with the application of ultrasound. The slides are then dried under filtered dry compressed air.
  • the sample holder comprises a bottle 63, a pierced stopper 64 comprising a stopper lip 65, a filter 66, a test tube of INVAR® 67 and the powder 68.
  • the collection deadline for each powder reference tested is 100h, 250h, 500h and 1000h.
  • INVAR® specimens per reference are tested (one for each duration).
  • the invar slide is removed from the sample holder and cleaned of residual powder traces by a compressed air jet, then kept under vacuum to stop corrosion.
  • the insulating blocks described above can be used in different types of tanks, for example to constitute a primary or secondary insulating barrier of an LNG tank in an onshore installation or in a floating structure such as an LNG vessel or the like.
  • the thermally insulating barrier in which the modular insulating blocks are used is maintained at negative pressure during operation of the tank, i.e. a partial vacuum is created, for example in space. located between the load-bearing wall and the secondary membrane or between the secondary membrane and the primary membrane to further improve thermal insulation.
  • the loading / unloading terminal of the tank of an LNG vessel comprises a loading and unloading station 75, an underwater pipeline 76 and an onshore installation 77.
  • the loading and unloading station 75 is a fixed installation off-shore comprising a movable arm 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading / unloading pipes 73.
  • the movable arm 74 can be swiveled. to all LNG carrier sizes.
  • a connecting pipe (not shown) extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the onshore installation 77.
  • the latter comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75.
  • the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.
  • pumps on board the ship 70 and / or pumps fitted to the shore installation 77 and / or pumps fitted to the loading and unloading station 75 are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Thermal Insulation (AREA)

Abstract

The invention pertains to a thermally insulating modular unit (3, 7) for insulating a leakproof liquid storage tank, the modular unit (3, 7) comprising a heat-insulating filling, the heat-insulating filling comprising a pulverulent insulating material containing a principal component selected from fumed silicas, silica aerogels and mixtures thereof and at least one anion exchange compound in the form of a powder mixed with the pulverulent insulating material, where the heat-insulating filling is not enclosed in a gastight casing.

Description

BLOC MODULAIRE ISOLANT POUR CUVE ÉTANCHE ET THERMIQUEMENT ISOLANTEMODULAR INSULATION BLOCK FOR WATERPROOF AND THERMALLY INSULATED TANK
L’invention se rapporte au domaine des cuves étanches et thermiquement isolantes. L’invention se rapporte plus particulièrement au domaine des cuves étanches et thermiquement isolantes comprenant une membrane d’étanchéité métallique et un bloc modulaire thermiquement isolant.
L’invention se rapporte encore à un bloc modulaire thermiquement isolant pour l’isolation d’une cuve étanche pour le stockage et/ou le transport d’un liquide.
The invention relates to the field of sealed and thermally insulating tanks. The invention relates more particularly to the field of sealed and thermally insulating tanks comprising a metallic waterproofing membrane and a thermally insulating modular block.
The invention also relates to a thermally insulating modular block for the insulation of a sealed tank for the storage and / or transport of a liquid.
Arrière-plan technologiqueTechnological background
Le document WO-A-2019122757 divulgue une barrière thermiquement isolante d’une cuve de stockage d’un liquide froid comportant une pluralité de caissons isolants juxtaposés. Un caisson présente un compartiment et une garniture calorifuge pulvérulente disposée dans le compartiment. La garniture pulvérulente présente un excellent compromis entre une faible densité et des performances d'isolation thermique satisfaisantes et est peu ou pas sensible à un phénomène de tassement irréversible après avoir été immergée dans le liquide stocké dans la cuve. La garniture pulvérulente est en général choisie parmi les silices pyrogénées, les aérogels de silice et leurs mélanges.Document WO-A-2019122757 discloses a thermally insulating barrier for a cold liquid storage tank comprising a plurality of juxtaposed insulating boxes. A box has a compartment and a pulverulent heat-insulating liner disposed in the compartment. The pulverulent packing presents an excellent compromise between a low density and satisfactory thermal insulation performance and is little or not sensitive to an irreversible settlement phenomenon after having been immersed in the liquid stored in the tank. The pulverulent filling is generally chosen from pyrogenic silicas, silica aerogels and mixtures thereof.
En raison de leurs procédés de fabrication, ces garnitures pulvérulentes contiennent systématiquement une petite quantité de chlore, soit environ 10 parties par million (ppm) ou plus de chlore. La diffusion solide de l’isolant sous forme de poussière, soit par mise en suspension dans l’air et déplacement avec le mouvement de celui-ci, soit par déplacement induit par la gravité ou par toutes les accélérations subies par le navire, peut entrainer un contact entre le chlore et la membrane d’étanchéité métallique, par exemple en acier inoxydable ou en un alliage à faible coefficient de dilation thermique, notamment alliage de fer et de nickel tel l’INVAR®, et ainsi provoquer la corrosion par piqûre de la membrane d’étanchéité. L’humidité peut aussi entrainer le chlore présent dans la garniture pulvérulente puis mettre en contact le chlore avec la membrane d’étanchéité par condensation et provoquer la corrosion du métal par piqûre.Due to their manufacturing processes, these powder fillings consistently contain a small amount of chlorine, approximately 10 parts per million (ppm) or more of chlorine. The solid diffusion of the insulation in the form of dust, either by suspension in the air and displacement with the movement of the latter, or by displacement induced by gravity or by all the accelerations undergone by the ship, can cause contact between the chlorine and the metallic waterproofing membrane, for example made of stainless steel or an alloy with a low coefficient of thermal expansion, in particular an iron and nickel alloy such as INVAR®, and thus cause corrosion by pitting of the waterproofing membrane. Moisture can also carry the chlorine present in the powdery packing and then contact the chlorine with the waterproofing membrane by condensation and cause corrosion of the metal by pitting.
Il est possible de se procurer ces garnitures pulvérulentes dépourvues de l’élément chlore mais leur coût est beaucoup plus élevé. These powdery fillings devoid of the chlorine element are available but their cost is much higher.
D’une manière générale donc, pour toute barrière thermiquement isolante comprenant une enveloppe perméable au gaz et comportant une garniture pulvérulente choisie parmi les silices pyrogénées, les aérogels de silice et leur mélange avec une petite quantité de chlore, un phénomène de corrosion des structures extérieures en métal est susceptible d’être observé. Ce phénomène de corrosion, qui fragilise la membrane d’étanchéité, est donc très dommageable selon la technologie utilisée, notamment pour les cuves étanches et thermiquement isolantes pour le stockage et/ou le transport d’un liquide.In general therefore, for any thermally insulating barrier comprising a gas permeable envelope and comprising a powdery lining chosen from pyrogenic silicas, silica aerogels and their mixture with a small quantity of chlorine, a phenomenon of corrosion of the external structures metal is likely to be observed. This corrosion phenomenon, which weakens the waterproofing membrane, is therefore very damaging depending on the technology used, in particular for sealed and thermally insulating tanks for the storage and / or transport of a liquid.
Il convient donc de manière générale de résoudre ce problème de corrosion sans nuire aux performances d’isolation thermique de la barrière isolante, et ainsi mettre au point des cuves intégrant des barrières d’isolation thermique perméables au gaz dont la garniture calorifuge est à base de silices pyrogénées, d’aérogels de silice et les mélanges de ceux-ci, et dont les structures extérieures en métal sensibles à de faibles concentrations de chlore ne se corrodent plus.It is therefore generally necessary to solve this corrosion problem without adversely affecting the thermal insulation performance of the insulating barrier, and thus to develop tanks incorporating thermal insulation barriers permeable to gas, the heat-insulating lining of which is based on pyrogenic silicas, silica airgels and mixtures thereof, and whose outer metal structures sensitive to low concentrations of chlorine no longer corrode.
Il convient plus spécifiquement de perfectionner la barrière thermiquement isolante des cuves de stockage d’un liquide, comme par exemple divulguée dans FR3075918, pour pallier aux inconvénients de la corrosion observée sur les membranes d’étanchéités en métal sensibles à de faibles concentrations de chlore, comme par exemple les alliages de fer et de nickel, plus précisément l’alliage de fer (64%) et de Nickel (36%) dénommé INVAR®.More specifically, the thermally insulating barrier of liquid storage tanks should be improved, as for example disclosed in FR3075918, to overcome the drawbacks of corrosion observed on metal sealing membranes sensitive to low concentrations of chlorine, such as, for example, alloys of iron and nickel, more precisely the alloy of iron (64%) and nickel (36%) called INVAR®.
Il est connu par ailleurs dans le domaine des matériaux de protection ou d’isolation thermique comprenant des silices pyrogénées les documents qui suivent.The following documents are also known in the field of protection or thermal insulation materials comprising pyrogenic silicas.
Le document WO-A-2014184393 décrit une composition comprenant 40 à 93% de silice pyrogénées ou d’aérogel de silice et 5 à 50% de particules ayant une surface spécifique, déterminée par BET, inférieure ou égal à 100 m2/g. Ces particules sont sélectionnées parmi une grande liste de produits et sont choisies pour leur rôle de piégeur de molécules gazeuses afin de retarder la remontée de la pression interne et ainsi conserver la performance optimale d’isolation. La taille des particules de silice pyrogénées est comprise entre 5 nm et 50 nm. La taille des particules d’aérogel de silice est comprise entre 2 nm et 50 nm ou entre 50 nm et 2000 nm selon le procédé de fabrication. Les particules ayant une surface spécifique, déterminée par BET, inférieure ou égal à 100 m2/g, présente alternativement une surface spécifique inférieure ou égale 50 m2/g, alternativement inférieure ou égale à 30 m2/g. La composition est utilisée pour la fabrication de panneaux isolant sous vide (PIV) lesquels sont utilisés dans la construction de nouveaux bâtiments et pour l'isolation de bâtiments préexistants en tant qu'isolant dans des appareils de réfrigération et pour l'isolation de tuyaux et / ou de machines dans l'industrie.Document WO-A-2014184393 describes a composition comprising 40 to 93% of pyrogenic silica or of silica airgel and 5 to 50% of particles having a specific surface, determined by BET, less than or equal to 100 m 2 / g. These particles are selected from a large list of products and are chosen for their role of trapping gas molecules in order to delay the rise in internal pressure and thus maintain optimal insulation performance. The size of the pyrogenic silica particles is between 5 nm and 50 nm. The size of the silica airgel particles is between 2 nm and 50 nm or between 50 nm and 2000 nm depending on the manufacturing process. The particles having a specific surface area, determined by BET, less than or equal to 100 m 2 / g, alternately have a specific surface area less than or equal to 50 m 2 / g, alternately less than or equal to 30 m 2 / g. The composition is used for the manufacture of vacuum insulating panels (VIP) which are used in the construction of new buildings and for the insulation of pre-existing buildings as insulation in refrigeration equipment and for the insulation of pipes and tubes. / or machinery in industry.
Le document KR-A-20130067712 divulgue un matériau isolant ignifuge comprenant 35% à 99,5% en poids de silice pyrogénée ayant une structure microporeuse, 0,3 à 25% en poids d’un raidisseur et 0,2% à 55% en poids d’une charge résistante à la chaleur. Le raidisseur est choisi parmi les fibres de verre, les fibres de céramiques, les fibres de carbone, les fibres de quartz et leur mélange. La charge résistante à la chaleur peut être du carbure de silicium, du silicate de zirconium, du graphite, du métakaolin, du dioxyde de titane, de la pyrophillite, de la vermiculite, de la perlite, du silicate de calcium et leur semblable.Document KR-A-20130067712 discloses a flame retardant insulation material comprising 35% to 99.5% by weight of fumed silica having a microporous structure, 0.3 to 25% by weight of a stiffener and 0.2% to 55%. by weight of a heat resistant filler. The stiffener is chosen from glass fibers, ceramic fibers, carbon fibers, quartz fibers and their mixture. The heat resistant filler can be silicon carbide, zirconium silicate, graphite, metakaolin, titanium dioxide, pyrophillite, vermiculite, perlite, calcium silicate and the like.
Le document JP-A-2013104491 a trait au domaine des procédés de fabrication de matériau isolant sous vide. Une poudre est scellée dans un matériau d’emballage imperméable aux gaz sous une pression réduite notamment pour les immeubles ou les congélateurs ou les réfrigérateurs. Il est indiqué que la poudre est de la silice pyrogénée dont la taille moyenne des particules primaires est comprise entre 5 et 100 nm et dont la teneur en eau est inférieure à 1% en masse. De plus la poudre peut contenir un composant adsorbant de gaz et d’humidité tel qu’une zéolithe synthétique, du carbone activé, de l’alumine activée, un gel de silice, de la dawsonite, de l’hydrotalcite, et des particules d’adsorbent chimique tel que les oxydes et les hydroxydes de métaux alcalins et de métaux alcalino-terreux.Document JP-A-2013104491 relates to the field of manufacturing processes for vacuum insulating material. A powder is sealed in a packaging material impermeable to gases under reduced pressure, especially for buildings or freezers or refrigerators. It is indicated that the powder is fumed silica, the average size of the primary particles of which is between 5 and 100 nm and the water content of which is less than 1% by mass. In addition, the powder may contain a gas and moisture adsorbent component such as synthetic zeolite, activated carbon, activated alumina, silica gel, dawsonite, hydrotalcite, and carbon particles. adsorbs chemicals such as oxides and hydroxides of alkali metals and alkaline earth metals.
RésuméAbstract
La présente invention vise par conséquent de manière générale à diminuer voire à supprimer le phénomène de corrosion de la membrane d’étanchéité métallique d’une cuve étanche intégrant une pluralité de blocs modulaires thermiquement isolant et comprenant une garniture calorifuge principalement à base de silices pyrogénées, d’aérogels de silices et leurs mélanges.The present invention therefore generally aims to reduce or even eliminate the phenomenon of corrosion of the metallic sealing membrane of a sealed tank incorporating a plurality of thermally insulating modular blocks and comprising a heat-insulating lining mainly based on pyrogenic silicas, silica aerogels and mixtures thereof.
Plus particulièrement, la présente invention vise à diminuer voire à supprimer le phénomène de corrosion de la membrane d’étanchéité d’une cuve étanche et thermiquement isolante, comprenant une pluralité de blocs modulaires perméables au gaz, et destinée à stocker un liquide choisi parmi le Gaz Naturel Liquéfié, le gaz de pétrole Liquéfié, le méthane liquide, l’éthane liquide, le propane liquide, l’argon liquide et l’hydrogène liquide.More particularly, the present invention aims to reduce or even eliminate the phenomenon of corrosion of the waterproofing membrane of a sealed and thermally insulating tank, comprising a plurality of modular blocks permeable to gas, and intended to store a liquid chosen from among the Liquefied Natural Gas, Liquefied petroleum gas, liquid methane, liquid ethane, liquid propane, liquid argon and liquid hydrogen.
Un premier objet selon la présente invention concerne un bloc modulaire thermiquement isolant pour l'isolation d'une cuve étanche de stockage d’un liquide, le bloc modulaire comprenant une garniture calorifuge , la garniture calorifuge comprenant un matériau isolant pulvérulent comportant un composant principal choisi parmi les silices pyrogénées, les aérogels de silice et les mélanges de ceux-ci et au moins un composé échangeur d’anion apte à capter l’anion chlorure en échange de la libération d’au moins un autre anion, le composé échangeur d’anion étant sous la forme d’une poudre mélangée au matériau isolant pulvérulent, la garniture calorifuge n’étant pas enfermée dans une enveloppe étanche au gaz.A first object according to the present invention relates to a thermally insulating modular block for the insulation of a sealed tank for storing a liquid, the modular block comprising a heat-insulating lining, the heat-insulating lining comprising a pulverulent insulating material comprising a chosen main component. from fumed silicas, silica aerogels and mixtures thereof and at least one anion exchange compound capable of capturing the chloride anion in exchange for the release of at least one other anion, the exchange compound of anion being in the form of a powder mixed with the pulverulent insulating material, the heat-insulating lining not being enclosed in a gas-tight envelope.
La garniture calorifuge peut également comporter des fibres, par exemple des fibres de verre ou des fibres de carbone. La garniture calorifuge peut également contenir des agents opacifiant aux infrarouges tels que SiC, TiO2, graphite ou noir de carbone. La garniture calorifuge peut également contenir des charges telles que la perlite afin de limiter le tassement de la garniture calorifuge, notamment en cas d’immersion accidentelle par le gaz liquéfié.The heat-insulating lining can also include fibers, for example glass fibers or carbon fibers. The heat insulating lining may also contain infrared opacifying agents such as SiC, TiO2, graphite or carbon black. The heat-insulating packing can also contain fillers such as perlite in order to limit the settling of the heat-insulating packing, in particular in the event of accidental immersion by liquefied gas.
Les définitions suivantes permettent de mieux comprendre la portée de la divulgation.The following definitions provide a better understanding of the scope of the disclosure.
Par « bloc modulaire » on entend une entité solide autoporteuse, comme un caisson ou un panneau rigide, et pouvant être agencée selon le besoin et le nombre souhaité. La géométrie peut être diverse, cylindrique, parallélépipèdique ou autre.By “modular block” is meant a solid self-supporting entity, such as a box or a rigid panel, and which can be arranged according to need and the desired number. The geometry can be diverse, cylindrical, parallelepiped or other.
Par « matériau isolant pulvérulent » on entend toute composition sous forme de poudre et qui empêche la déperdition de la chaleur. Une telle poudre peut être conditionnée en vrac, légèrement pressée dans un contenant rigide ou dans une enveloppe souple, ou bien pressée et densifiée sous forme de blocs ou panneaux suffisamment autoporteurs pour être manipulés. Une telle poudre peut aussi être conditionnée au sein d’une enveloppe souple qui est elle-même inséré dans un contenant rigide formant un panneau autoporteur apte à être manipulé. Par exemple, une telle poudre peut être conditionnée à une densité comprise entre 80 kg/m3 et 500 kg/m3 selon l’application envisagée et les propriétés mécaniques recherchées. By “pulverulent insulating material” is meant any composition in powder form and which prevents the loss of heat. Such a powder can be packaged in bulk, lightly pressed in a rigid container or in a flexible envelope, or else pressed and densified in the form of blocks or panels sufficiently self-supporting to be handled. Such a powder can also be packaged within a flexible envelope which is itself inserted into a rigid container forming a self-supporting panel suitable for handling. For example, such a powder can be packaged at a density of between 80 kg / m 3 and 500 kg / m 3 depending on the envisaged application and the desired mechanical properties.
Par « composé échangeur d’anion apte à capter l’anion chlorure » on entend tout composé chimique sous la forme d’une poudre présentant un groupement OH- ou CO3 2− et ayant la capacité d’échanger un anion compris dans sa structure avec un autre anion chlorure présent dans la garniture calorifuge. On peut citer par exemple les argiles, les composés hydroxydes doubles lamellaires (HDL), l’hydrotalcite de synthèse, les polymères réticulés échangeur d’ion et leurs mélanges. Les composés HDL sont des composés solides formés d’un empilement de feuillets contenant des cations métalliques entre lesquels peuvent s’intercaler des espèces anioniques et des molécules d’eau. Leur structure est basée sur celle de la brucite Mg(OH)2, dans laquelle une partie des ions divalents est aléatoirement substituée des ions trivalents, conférant ainsi au plan d’octaèdres un excès charge positive. Afin d’assurer la neutralité électrique globale, cet excédent de charge est compensé par les charges négatives d’anions intercalés dans les espaces inter-feuillets. Les HDLs employés ici peuvent comprendre des formes hydratées et déshydratées. Le composé échangeur d’anion peut être aussi apte à capter un autre halogène ionique, par exemple le fluor dont les propriétés physiques sont proches de celles du chlore.The term “anion exchange compound capable of capturing the chloride anion” is understood to mean any chemical compound in the form of a powder having an OH - or CO 3 2− group and having the capacity to exchange an anion included in its structure. with another chloride anion present in the heat insulating packing. Mention may be made, for example, of clays, lamellar double hydroxide compounds (HDL), synthetic hydrotalcite, crosslinked ion exchange polymers and mixtures thereof. HDL compounds are solid compounds formed from a stack of sheets containing metal cations between which anionic species and water molecules can be inserted. Their structure is based on that of brucite Mg (OH) 2, in which some of the divalent ions are randomly substituted with trivalent ions, thus giving the plane of octahedra an excess positive charge. In order to ensure overall electrical neutrality, this excess charge is compensated by the negative charges of anions intercalated in the inter-sheet spaces. HDLs employed herein can include hydrated and dehydrated forms. The anion exchange compound may also be able to capture another ionic halogen, for example fluorine, the physical properties of which are close to those of chlorine.
Par « membrane d’étanchéité » on entend un film mince ou une feuille d’un matériau constitué de métaux ou d’alliage de métaux permettant d’étanchéifier la cuve vis à vis du liquide. On peut citer par exemple l’INVAR®.By "sealing membrane" is meant a thin film or sheet of a material consisting of metals or metal alloys to seal the tank against liquid. We can cite, for example, INVAR®.
Par « particules ayant une taille apparente moyenne » on entend que les particules ont une distribution granulométrique dont la valeur moyenne est ainsi définie. By “particles having an average apparent size” is meant that the particles have a particle size distribution, the average value of which is thus defined.
Par « proportion massique » on entend pourcentage massique (%m) pour désigner la proportion en masse du composant dans le mélange total. The term “mass proportion” is understood to mean mass percentage (% m) to denote the proportion by mass of the component in the total mixture.
Par « fraction volumique » on entend le volume du composant divisé par la somme des volumes de tous les composants du mélange.By "volume fraction" is meant the volume of the component divided by the sum of the volumes of all the components of the mixture.
Par « enveloppe perméable au gaz » on entend des matériaux rigides ou semi-rigides ou souples définissant un espace fermé. Des exemples de ces matériaux perméables au gaz sont par exemples le bois, les matériaux amortissants, les matériaux textiles, les matériaux composites comme de la feuille de fibre de verre, de la feuille de fibres polymères, le contreplaqué, le carton compressé. Des exemples non limitatifs d’enveloppes comprenant une armature rigide se trouvent notamment dans les documents FR-A-2867831, WO-A-2013017773 et WO-A-2014020257.By “gas permeable envelope” is meant rigid or semi-rigid or flexible materials defining a closed space. Examples of these gas permeable materials are, for example, wood, damping materials, textile materials, composite materials such as sheet of fiberglass, sheet of polymer fibers, plywood, compressed cardboard. Non-limiting examples of envelopes comprising a rigid frame can be found in particular in documents FR-A-2867831, WO-A-2013017773 and WO-A-2014020257.
Dans un mode de réalisation, le bloc modulaire thermiquement isolant comprend une enveloppe perméable au gaz définissant au moins un compartiment, la garniture calorifuge étant disposée dans ledit compartiment.In one embodiment, the thermally insulating modular block comprises a gas permeable envelope defining at least one compartment, the heat insulating lining being disposed in said compartment.
Dans un mode de réalisation, le matériau isolant pulvérulent ne comprend pas ou peu de liant tel qu’un polymère adhésif. In one embodiment, the powdery insulating material contains little or no binder such as an adhesive polymer.
Dans une mode de réalisation, la proportion de liant utilisée pour conditionner la garniture calorifuge est inférieure à 12 % en masse de la garniture calorifuge. Par exemple de 0,3 à 12 %. Une quantité supérieure entrainerait une dégradation des performances de l’isolation thermique du bloc modulaire.In one embodiment, the proportion of binder used to condition the heat-insulating lining is less than 12% by mass of the heat-insulating lining. For example from 0.3 to 12%. A greater quantity would result in degradation of the thermal insulation performance of the modular block.
Dans un mode de réalisation, le composé échangeur d’anion est hydraté et comprend des molécules d’eau.In one embodiment, the anion exchange compound is hydrated and includes water molecules.
Dans un mode de réalisation, le composé échangeur d’anion est choisi parmi les argiles, les composés hydroxydes doubles lamellaires (HDL), l’hydrotalcite de synthèse (magnésium-aluminium hydroxycarbonate, de composition chimique Mg6Al2(OH)16CO3 4H2O), les polymères réticulés échangeurs d’anion contenant l’anion échangeable OH- ou CO32-, par exemple l’échangeur d’ions III (code produit 104767 de MERCK®) et leurs mélanges. In one embodiment, the anion exchange compound is chosen from clays, double lamellar hydroxide compounds (HDL), synthetic hydrotalcite (magnesium-aluminum hydroxycarbonate, of chemical composition Mg 6 Al 2 (OH) 16 CO 3 4H 2 O), crosslinked anion exchange polymers containing the exchangeable anion OH- or CO32-, for example ion exchanger III (product code 104767 from MERCK®) and mixtures thereof.
Dans un mode de réalisation, le composé échangeur d’anion présente un groupement choisi parmi l’ion hydroxyde (OH-) et l’ion carbonate (CO3 2-).In one embodiment, the anion exchange compound has a group chosen from the hydroxide ion (OH - ) and the carbonate ion (CO 3 2- ).
Dans un mode de réalisation, le composé d’HDL est de formule [MII 1-xMIII x(OH)2]x+[Am- x/m.nH2O]x-, dans laquelle MII et MIII sont respectivement des cations di- et trivalents du feuillet et A désigne une espèce anionique interfoliaire. In one embodiment, the HDL compound is of the formula [M II 1-x M III x (OH) 2 ] x + [A m- x / m .nH 2 O] x- , wherein MII and MIII are di- and trivalent cations of the sheet, respectively, and A denotes an interfoliar anionic species.
A peut être tout anion susceptible de s’échanger avec l’anion chlorure présent dans la garniture calorifuge. De préférence A ne sera pas un anion halogène ni un anion sulfure.A can be any anion capable of exchanging with the chloride anion present in the heat insulating packing. Preferably, A will not be a halogen anion or a sulfide anion.
Dans un mode de réalisation, l’espèce anionique A du composé d’HDL est choisie parmi l’ion hydroxyde (OH-) et l’ion carbonate (CO3 2-).In one embodiment, the anionic species A of the HDL compound is chosen from the hydroxide ion (OH - ) and the carbonate ion (CO 3 2- ).
On peut citer à titre d’exemple différents types de minéraux d’HDL convenant selon l’invention :
Hydrotalcite de formule Mg6Al2(OH)16CO3, 4H2O (structure type rhomboédrique)
Manasseite de formule Mg6Al2(OH)16CO3, 4H2O (structure type hexagonal)
Meixnerite de formule Mg6Al2(OH)18, 4H2O
Pyroaurite de formule Mg6Fe2(OH)16CO3, 4H2O (structure type rhomboédrique)
Sjogrenite de formule Mg6Fe2(OH)16CO3, 4H2O (structure type hexagonal)
Coalingite de formule Mg10Fe2(OH)24CO3, 2H2O
Stichtite de formule Mg6Cr2(OH)16CO3, 4H2O (structure de type rhomboédrique)
Barbertonite de formule Mg6Cr2(OH)16CO3, 4H2O (structure de type hexagonale)
Takovite de formule Ni6Cr2(OH)16CO3, 4H2O
Reevesite de formule Ni6Fe2(OH)16CO3, 4H2O
Desautelsite de formule Mg6Mn2(OH)16CO3, 4H2O.
By way of example, there may be mentioned different types of HDL minerals suitable according to the invention:
Hydrotalcite of formula Mg 6 Al 2 (OH) 16 CO 3 , 4H 2 O (rhombohedral type structure)
Manasseite of formula Mg 6 Al 2 (OH) 16 CO 3 , 4H 2 O (hexagonal type structure)
Meixnerite of formula Mg 6 Al 2 (OH) 18 , 4H 2 O
Pyroaurite of formula Mg 6 Fe 2 (OH) 16 CO 3 , 4H 2 O (rhombohedral structure)
Sjogrenite of formula Mg 6 Fe 2 (OH) 16 CO 3 , 4H 2 O (hexagonal type structure)
Coalingite of formula Mg 10 Fe 2 (OH) 24 CO 3 , 2H 2 O
Stichtite of formula Mg 6 Cr 2 (OH) 16 CO 3 , 4H 2 O (rhombohedral structure)
Barbertonite of formula Mg 6 Cr 2 (OH) 16 CO 3 , 4H 2 O (hexagonal type structure)
Takovite of formula Ni 6 Cr 2 (OH) 16 CO 3 , 4H 2 O
Reevesite of formula Ni 6 Fe 2 (OH) 16 CO 3 , 4H 2 O
Desautelsite of formula Mg 6 Mn 2 (OH) 16 CO 3 , 4H 2 O.
Dans un mode de réalisation, le composé échangeur d’anion sera choisi parmi l’hydrotalcite de synthèse (voir exemple 1), un polymère réticulé (voir exemple 2), et leurs mélanges.In one embodiment, the anion exchange compound will be chosen from synthetic hydrotalcite (see example 1), a crosslinked polymer (see example 2), and mixtures thereof.
Selon un mode de réalisation, le composé échangeur d’anion se présente sous la forme de particules ayant une taille apparente moyenne comprise entre 1 µm et 50 µm, de préférence entre 1 µm et 25 µm et plus avantageusement entre 1 et 10µm.According to one embodiment, the anion exchange compound is in the form of particles having an average apparent size of between 1 μm and 50 μm, preferably between 1 μm and 25 μm and more advantageously between 1 and 10 μm.
Selon un mode de réalisation, la proportion massique de le composé échangeur d’anion représente entre 1% et 30% en masse de la garniture calorifuge, de préférence entre 5% et 20% en masse de la garniture calorifuge.According to one embodiment, the proportion by mass of the anion exchange compound represents between 1% and 30% by mass of the heat-insulating lining, preferably between 5% and 20% by mass of the heat-insulating lining.
Selon un mode de réalisation, la fraction volumique occupée par le composé échangeur d’anion au sein de la garniture calorifuge est inférieure à 5%, de préférence inférieure à 1%. According to one embodiment, the volume fraction occupied by the anion exchange compound within the heat-insulating lining is less than 5%, preferably less than 1%.
Selon un mode de réalisation, l’enveloppe comprenant une armature rigide incluant un panneau de fond, un panneau de couvercle et des éléments d’espacement maintenant le panneau de fond et le panneau de couvercle parallèlement à distance l’un de l’autre pour reprendre un effort de pression, les éléments d’espacement du bloc modulaire peuvent être réalisés de diverses manières.According to one embodiment, the casing comprising a rigid frame including a bottom panel, a cover panel and spacers keeping the bottom panel and the cover panel parallel at a distance from each other for take up a pressure force, the spacing elements of the modular block can be produced in various ways.
Dans un mode de réalisation, les éléments d’espacement du bloc modulaire comportent des parois latérales disposées sur des bords du panneau de fond et du panneau de couvercle, des cloisons internes s’étendant entre deux bords opposés du panneau de fond et entre deux bords opposés du panneau de couvercle et/ou des piliers porteurs, notamment des piliers porteurs de petite section, distribués sur une surface interne du panneau de fond et du panneau de couvercle.In one embodiment, the modular block spacers have side walls disposed on edges of the bottom panel and the cover panel, internal partitions extending between two opposite edges of the bottom panel and between two edges. opposites of the cover panel and / or the load-bearing pillars, in particular small-section load-bearing pillars, distributed over an internal surface of the bottom panel and the cover panel.
Un second objet selon l’invention consiste en une cuve étanche et thermiquement isolante comportant au moins une barrière thermiquement isolante et une membrane d’étanchéité reposant contre ladite barrière thermiquement isolante et dans laquelle la barrière thermiquement isolante comporte une pluralité de blocs modulaires précités.A second object according to the invention consists of a sealed and thermally insulating tank comprising at least one thermally insulating barrier and a waterproofing membrane resting against said thermally insulating barrier and in which the thermally insulating barrier comprises a plurality of the aforementioned modular blocks.
Dans un mode de réalisation du second objet selon l’invention, la membrane d’étanchéité est en alliage d’acier au nickel à faible coefficient de dilatation thermique, c’est-à-dire un coefficient de dilatation thermique linéaire (en longueur) de 20°C à 90°C inférieur ou égal à 2,0 × 10−6 K−1, avec K représentant le Kelvin. D’une manière préférentielle, la membrane d’étanchéité est de l’INVAR®, plus précisément un alliage de fer (64%) et de Nickel (36%).In an embodiment of the second object according to the invention, the waterproofing membrane is made of a nickel steel alloy with a low coefficient of thermal expansion, that is to say a coefficient of linear thermal expansion (in length) from 20 ° C to 90 ° C less than or equal to 2.0 × 10 −6 K −1 , with K representing the Kelvin. Preferably, the waterproofing membrane is INVAR®, more precisely an alloy of iron (64%) and nickel (36%).
Dans un mode de réalisation particulier, ladite barrière thermiquement isolante est une barrière isolante secondaire et ladite membrane d’étanchéité est une membrane d’étanchéité secondaire, la cuve comportant en outre une barrière thermiquement isolante primaire reposant contre la membrane d’étanchéité secondaire et une membrane d’étanchéité primaire reposant contre ladite barrière isolante primaire et destinée à être en contact avec le fluide contenu dans la cuve.In a particular embodiment, said thermally insulating barrier is a secondary insulating barrier and said waterproofing membrane is a secondary waterproofing membrane, the vessel further comprising a primary thermally insulating barrier resting against the secondary waterproofing membrane and a primary waterproofing membrane resting against said primary insulating barrier and intended to be in contact with the fluid contained in the tank.
Dans un autre mode de réalisation particulier, ladite barrière thermiquement isolante est une barrière isolante primaire et ladite membrane d’étanchéité est une membrane d’étanchéité primaire destinée à être en contact avec le fluide contenu dans la cuve, la cuve comportant en outre une membrane d’étanchéité secondaire contre laquelle repose la barrière thermiquement isolante primaire et une barrière isolante secondaire contre laquelle repose la membrane d’étanchéité secondaire.In another particular embodiment, said thermally insulating barrier is a primary insulating barrier and said waterproofing membrane is a primary waterproofing membrane intended to be in contact with the fluid contained in the tank, the tank further comprising a membrane secondary waterproofing against which the primary thermally insulating barrier rests and a secondary insulating barrier against which the secondary waterproofing membrane rests.
Dans un mode de réalisation, la cuve étanche et thermiquement isolante est destinée à stocker un liquide choisi parmi le Gaz Naturel Liquéfié, le gaz de pétrole Liquéfié, le méthane liquide, l’éthane liquide, le propane liquide, l’argon liquide et l’hydrogène liquide.In one embodiment, the sealed and thermally insulating tank is intended to store a liquid chosen from liquefied natural gas, liquefied petroleum gas, liquid methane, liquid ethane, liquid propane, liquid argon and l liquid hydrogen.
Une telle cuve peut faire partie d’une installation de stockage terrestre, par exemple pour stocker du GNL ou être installée dans une structure flottante, côtière ou en eau profonde, notamment un navire méthanier, une unité flottante de stockage et de regazéification (FSRU), une unité flottante de production et de stockage déporté (FPSO) et autres. Dans le cas d’un ouvrage flottant, la cuve peut être destinée au transport de gaz liquéfié ou à recevoir du gaz liquéfié servant de carburant pour la propulsion de l’ouvrage flottant, par exemple dans tout type de navire.Such a tank can be part of an onshore storage facility, for example to store LNG or be installed in a floating, coastal or deep water structure, in particular an LNG vessel, a floating storage and regasification unit (FSRU). , a floating production and remote storage unit (FPSO) and others. In the case of a floating structure, the tank may be intended for the transport of liquefied gas or to receive liquefied gas serving as fuel for the propulsion of the floating structure, for example in any type of vessel.
Selon un mode de réalisation, un navire pour le transport d’un produit liquide comporte une double coque et une cuve précitée disposée dans la double coque.According to one embodiment, a vessel for transporting a liquid product comprises a double hull and a above-mentioned tank arranged in the double hull.
Selon un mode de réalisation, l’invention fournit aussi un procédé de chargement ou déchargement d’un tel navire, dans lequel on achemine un produit liquide à travers des canalisations isolées depuis ou vers une installation de stockage flottante ou terrestre vers ou depuis la cuve du navire. According to one embodiment, the invention also provides a method of loading or unloading such a vessel, in which a liquid product is conveyed through isolated pipes from or to a floating or terrestrial storage installation to or from the tank. of the ship.
Selon un mode de réalisation, l’invention fournit aussi un système de transfert pour un produit liquide, le système comportant le navire précité, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation de stockage flottante ou terrestre et une pompe pour entrainer un flux de produit liquide à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.According to one embodiment, the invention also provides a transfer system for a liquid product, the system comprising the aforementioned vessel, insulated pipes arranged so as to connect the tank installed in the hull of the vessel to a floating storage installation or terrestrial and a pump for driving a flow of liquid product through the insulated pipes from or towards the floating or terrestrial storage installation towards or from the vessel of the vessel.
Brève description des figuresBrief description of the figures
L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés, parmi lesquelles :The invention will be better understood, and other aims, details, characteristics and advantages thereof will emerge more clearly during the following description of several particular embodiments of the invention, given solely by way of illustration and not by way of limitation. , with reference to the accompanying drawings, among which:
est une vue partielle écorchée d’une paroi de cuve étanche comprenant des blocs modulaires calorifuges présentant une enveloppe rigide en bois. is a partial cut-away view of a sealed tank wall comprising heat-insulating modular blocks having a rigid wooden casing.
est une représentation schématique en perspective d’un bloc modulaire calorifuge qui peut être inclus dans la paroi de cuve de la et qui comporte des piliers. is a schematic perspective representation of a modular heat-insulating block which can be included in the vessel wall of the and which has pillars.
est une vue en perspective d’un éléments modulaires de coffrage avec une pluralité de plots d’ancrage et une structure porteuse intégrant des blocs modulaires calorifuges. is a perspective view of a modular formwork elements with a plurality of anchoring studs and a load-bearing structure incorporating heat-insulating modular blocks.
est une vue en perspective similaire, similaire à la , dans laquelle les éléments modulaires de coffrage ont été retirés et des isolants de jonction ont été ajoutés. is a similar perspective view, similar to the , in which the modular formwork elements were removed and junction insulators were added.
est un schéma en coupe du montage complet avec échantillon correspondant au test de la réduction de la corrosion de l’INVAR® décrit dans l’exemple 4. is a sectional diagram of the complete assembly with sample corresponding to the corrosion reduction test of INVAR® described in example 4.
est une représentation schématique écorchée d’une cuve de navire méthanier et d’un terminal de chargement/déchargement de cette cuve. is a cut-away schematic representation of an LNG vessel tank and a loading / unloading terminal for this tank.
En se référant à la , on voit une zone de la double coque du navire désignée par le chiffre 1. La paroi de cuve est composée successivement dans son épaisseur d’une barrière isolante secondaire 2 qui est formée de blocs modulaires 3 juxtaposés sur la double coque 1 et retenus sur celle-ci par des organes de retenue secondaires 4 ; puis d’une membrane étanche secondaire 5 portée par les blocs modulaires 3 ; puis d’une barrière isolante primaire 6 formée par des bloc modulaires 7 juxtaposés et retenus sur la membrane étanche secondaire 5 par des organes de retenue primaires 8 eux-mêmes fixés aux organes de retenue secondaires 4 et, enfin, d’une membrane étanche primaire 9 portée par les blocs modulaires 7. D’autres détails sur la structure des blocs modulaires 3 et 7 peuvent être trouvés dans la publication FR-A-2867831.With reference to the , we see an area of the double hull of the ship designated by the number 1. The vessel wall is composed successively in its thickness of a secondary insulating barrier 2 which is formed of modular blocks 3 juxtaposed on the double hull 1 and retained on the latter by secondary retaining members 4; then a secondary waterproof membrane 5 carried by the modular blocks 3; then a primary insulating barrier 6 formed by modular blocks 7 juxtaposed and retained on the secondary waterproof membrane 5 by primary retaining members 8 themselves attached to the secondary retaining members 4 and, finally, by a primary waterproof membrane 9 carried by the modular blocks 7. Further details on the structure of the modular blocks 3 and 7 can be found in the publication FR-A-2867831.
Une garniture calorifuge, non représentée, conditionnée dans des sacs souples ou conditionnée sous la forme de blocs compactés, remplit l’espace intérieur des blocs modulaires 3 et est constituée d’un mélange d’un matériau isolant pulvérulent comportant un composant principal choisi parmi les silices pyrogénées, les aérogels de silice et les mélanges de ceux-ci et d’au moins un composé échangeur d’anion. Le composé échangeur d’anion consiste en un composé HDL et/ou un polymère réticulé échangeur d’anion contenant l’anion échangeable OH- ou CO3 2-, par exemple le polymère réticulé échangeur d’ions III (code produit 104767 de MERCK®).A heat-insulating lining, not shown, packaged in flexible bags or packaged in the form of compacted blocks, fills the interior space of the modular blocks 3 and consists of a mixture of a pulverulent insulating material comprising a main component chosen from among pyrogenic silicas, silica aerogels and mixtures thereof and of at least one anion exchange compound. The anion exchange compound consists of an HDL compound and / or a crosslinked anion exchange polymer containing the exchangeable anion OH - or CO 3 2- , for example the crosslinked ion exchange polymer III (product code 104767 from MERCK ®).
En se référant à la , selon un autre mode de réalisation, le bloc modulaire 53 comporte un panneau de fond 54 sur lequel sont fixées des semelles de répartition 55. Une rangée de piliers 56 et 60 s’appuie et est fixée à chaque fois sur une semelle de répartition 55 correspondante. En particuliers, les piliers 57 de chaque rangée de pilier 56 ou 60 s’étendent selon l’épaisseur du bloc modulaire 53 et donc selon une direction perpendiculaire à la paroi porteuse 1. Les piliers 57 présentent une section pleine rectangulaire. Chaque rangée de piliers 56 ou 60 est parallèle par rapport à un côté latéral 58 du bloc modulaire 53. Les rangées de piliers portent un panneau de couvercle renforcé 59. Les piliers 57 permettent notamment la transmission des contraintes exercées sur le panneau de couvercle 59 à la paroi 1 et ont une fonction de résistance à la compression. D’autres détails sur la structure du bloc modulaire 53 peuvent être trouvés dans la publication WO-A-2014020257.With reference to the , according to another embodiment, the modular block 53 comprises a bottom panel 54 on which are fixed distribution flanges 55. A row of pillars 56 and 60 is supported and is fixed each time on a distribution flange 55 corresponding. In particular, the pillars 57 of each row of pillar 56 or 60 extend according to the thickness of the modular block 53 and therefore in a direction perpendicular to the supporting wall 1. The pillars 57 have a solid rectangular section. Each row of pillars 56 or 60 is parallel with respect to a lateral side 58 of the modular block 53. The rows of pillars carry a reinforced cover panel 59. The pillars 57 allow in particular the transmission of the stresses exerted on the cover panel 59 to the wall 1 and have a compressive strength function. Further details on the structure of modular block 53 can be found in publication WO-A-2014020257.
Une garniture calorifuge, non représentée, conditionnée dans des sacs souples ou conditionnée sous la forme de blocs compactés, remplit l’espace entre les piliers 57 et est constituée d’un mélange d’un matériau isolant pulvérulent comportant un composant principal choisi parmi les silices pyrogénées, les aérogels de silice et les mélanges de ceux-ci et d’au moins un composé échangeur d’anion.A heat-insulating lining, not shown, packaged in flexible bags or packaged in the form of compacted blocks, fills the space between the pillars 57 and consists of a mixture of a pulverulent insulating material comprising a main component chosen from silicas. pyrogels, silica aerogels and mixtures thereof and of at least one anion exchange compound.
En se référant à la , il est décrit l’intégration d’un bloc modulaire thermiquement isolant dans une paroi de cuve étanche et thermiquement isolante selon un mode de réalisation. De telles parois étanches permettent de réaliser une enceinte de confinement ou cuve pour emmagasiner et/ou transporter un fluide cryogénique, tel qu'un gaz liquéfié, par exemple du méthane. Des plots d'ancrage 11, également appelés coupleurs, sont régulièrement positionnés et fixés sur une structure porteuse 12 externe. Cette structure porteuse 12 peut notamment être une tôle métallique autoporteuse ou plus généralement tout type de cloison rigide présentant des propriétés mécaniques appropriées, telle qu'un mur de béton dans une construction terrestre. Des éléments modulaires 13 de coffrage sont disposés contre la structure porteuse 12 entre les plots d'ancrage 11. Les éléments modulaires 13 de coffrage présentent ainsi une forme en saillie, vers l'intérieur, par rapport au plan de la structure porteuse 12. Les éléments modulaires de coffrage 13 forment, avec les plots d'ancrage 11 et la structure porteuse 12, une pluralité de compartiments. Les compartiments présentent un côté ouvert à l'opposé de la structure porteuse 12. Les éléments modulaires 13 de coffrage sont des poutres longitudinales disposées perpendiculairement les unes aux autres de sorte à former des compartiments présentant la forme de quadrilatères à angles droits. Les éléments modulaires 13 de coffrage peuvent être équipés d'organes de fixation libérables permettant de les fixer à la structure porteuse 12 et/ou aux plots d'ancrage 11. Les compartiments sont ensuite remplis par des panneaux compressés d’une garniture calorifuge 15 à travers le côté ouvert des compartiments afin de former une pluralité de secteurs isolants en garniture calorifuge compressée 15. Les compartiments définissent donc un gabarit pour la réalisation desdits secteurs isolants 15. With reference to the , it is described the integration of a thermally insulating modular block in a sealed and thermally insulating tank wall according to one embodiment. Such sealed walls make it possible to produce a containment chamber or vessel for storing and / or transporting a cryogenic fluid, such as a liquefied gas, for example methane. Anchoring studs 11, also called couplers, are regularly positioned and fixed on an external supporting structure 12. This supporting structure 12 can in particular be a self-supporting metal sheet or more generally any type of rigid partition having suitable mechanical properties, such as a concrete wall in a land-based construction. Modular formwork elements 13 are arranged against the supporting structure 12 between the anchoring studs 11. The modular formwork elements 13 thus have a projecting shape, inwardly, relative to the plane of the supporting structure 12. The Modular formwork elements 13 form, with the anchoring studs 11 and the supporting structure 12, a plurality of compartments. The compartments have an open side opposite the supporting structure 12. The modular formwork elements 13 are longitudinal beams arranged perpendicular to each other so as to form compartments having the shape of quadrilaterals at right angles. The modular formwork elements 13 can be equipped with releasable fasteners allowing them to be fixed to the supporting structure 12 and / or to the anchoring studs 11. The compartments are then filled with compressed panels with a heat-insulating lining 15 to through the open side of the compartments in order to form a plurality of insulating sectors made of compressed heat-insulating lining 15. The compartments therefore define a template for the production of said insulating sectors 15.
Dans un mode de réalisation, des fibres courtes, telles que des fibres de verre, sont mélangés avec le matériau isolant pulvérulent avant la formation des panneaux compressés. Dans ce mode de réalisation, les panneaux compressés comprennent une garniture calorifuge incluant en plus du matériau isolant pulvérulent des fibres.In one embodiment, short fibers, such as glass fibers, are mixed with the powdery insulation material before forming the compressed panels. In this embodiment, the compressed panels comprise a heat insulating liner including in addition to the powdery insulating material fibers.
La garniture calorifuge, non représentée, remplie les compartiments et est constituée d’un mélange d’un matériau isolant pulvérulent comportant un composant principal choisi parmi les silices pyrogénées, les aérogels de silice et les mélanges de ceux-ci et d’au moins un composé échangeur d’anion.The heat-insulating lining, not shown, fills the compartments and consists of a mixture of a pulverulent insulating material comprising a main component chosen from fumed silicas, silica aerogels and mixtures thereof and at least one anion exchange compound.
Lorsque les éléments modulaires 13 de coffrage sont retirés, les secteurs isolants en garniture calorifuge compressée 15 sont séparés par des interstices formés par le retrait des éléments de coffrage.When the modular formwork elements 13 are removed, the insulating sectors of compressed heat insulating lining 15 are separated by interstices formed by the withdrawal of the formwork elements.
Afin d'assurer une continuité de l'isolation thermique, lesdits interstices entre les secteurs isolants en garniture calorifuge compressée 15 sont garnis d'éléments isolants de jonction 18 représenté figure 4. Les éléments isolants de jonction 18 sont en outre disposés, à température ambiante, sous contrainte de compression entre les secteurs isolants en garniture calorifuge compressée 15. Ainsi, lesdits éléments isolants de jonction 18 sont aptes à se détendre et combler le jeu entre les secteurs isolants en garniture calorifuge compressée 15 lorsque ceux-ci se contractent sous l'effet de basses températures. Selon un mode de réalisation, les éléments isolants 18 de jonction sont des bandes réalisées dans un matériau souple tel que la laine de verre, l'ouate de polyester, les mousses de polyuréthane (PU), de mélamine, de polyéthylène (PE), de polypropylène (PP) ou de silicone. La largeur de ces bandes est déterminée de telle sorte que, à température ambiante, elles subissent une contrainte de compression entre les secteurs isolants en garniture calorifuge compressée 15.In order to ensure continuity of thermal insulation, said interstices between the insulating sectors of compressed heat-insulating lining 15 are lined with insulating junction elements 18 shown in FIG. 4. The insulating junction elements 18 are also placed at room temperature. , under compressive stress between the insulating sectors of compressed heat-insulating lining 15. Thus, said insulating junction elements 18 are able to relax and fill the gap between the insulating sectors of compressed heat-insulating lining 15 when they contract under the pressure. effect of low temperatures. According to one embodiment, the insulating junction elements 18 are strips made of a flexible material such as glass wool, polyester wadding, polyurethane (PU), melamine, polyethylene (PE) foams, polypropylene (PP) or silicone. The width of these bands is determined such that, at ambient temperature, they undergo a compressive stress between the insulating sectors of compressed heat-insulating lining 15.
On décrira ci-dessous la composition ainsi que le procédé de préparation de la garniture calorifuge destinée à former le bloc modulaire thermiquement isolant.The composition as well as the process for preparing the heat-insulating lining intended to form the thermally insulating modular block will be described below.
La garniture calorifuge est réalisée à partir d’un matériau isolant pulvérulent comprenant les silices pyrogénées hydrophobes, les aérogels de silice et les mélanges de ceux-ci et d’au moins un composé échangeur d’anion.The heat insulating liner is made from a powdery insulating material comprising hydrophobic fumed silicas, silica aerogels and mixtures thereof and at least one anion exchange compound.
Les silices pyrogénées hydrophobes sont disponibles par exemple soit sous la référence commerciale AEROSIL R974 ou soit sous la référence commerciale AEROSIL R812S produites par la société Evonik.Hydrophobic fumed silicas are available, for example, either under the trade reference AEROSIL R974 or under the trade reference AEROSIL R812S produced by the company Evonik.
Les aérogels de silice sont disponibles par exemple sous la référence commerciale P100 produite par Cabot Corporation et sont broyés à une granulométrie inférieure à 100 μm.Silica aerogels are available for example under the trade reference P100 produced by Cabot Corporation and are ground to a particle size of less than 100 μm.
La garniture calorifuge peut comprendre en outre une charge granulaire constituée de petites perlites expansées disponibles sous la référence commerciale CR615 produite par la société KD One Co. ou constituée de microsphères de verre disponibles sous la référence commerciale Glass Bubble K1 produite par la société 3M ou d’un aérogel granulaire de silice, compatible avec l’azote liquide, connu sous la référence commerciale P400 produite par Cabot Corporation.The heat-insulating lining may further comprise a granular filler consisting of small expanded perlites available under the trade reference CR615 produced by the company KD One Co. or consisting of glass microspheres available under the trade reference Glass Bubble K1 produced by the company 3M or of a granular silica airgel, compatible with liquid nitrogen, known by the trade name P400 produced by Cabot Corporation.
Exemple 1 : Préparation du composé échangeur d’anion de type hydrotalcite
Le composé échangeur d’anion est obtenu chez Sigma Aldrich®. Il s’agit d’une poudre blanche d’hydrotalcite synthétique, code produit 652288, de poids moléculaire 603,98 g/mol. Sa densité est 2,06 et sa granulométrie est comprise entre 1 et 5 μm.
Example 1: Preparation of the hydrotalcite type anion exchange compound
The anion exchange compound is obtained from Sigma Aldrich®. This is a white synthetic hydrotalcite powder, product code 652288, with a molecular weight of 603.98 g / mol. Its density is 2.06 and its particle size is between 1 and 5 μm.
Exemple 2 : Préparation du composé échangeur d’anion de type polymère
Le composé échangeur d’anion est une résine échangeuse d’ion obtenue chez Sigma Aldrich® sous la référence produit 104767 et est nommé Echangeur d’ions III (échangeur d’anion fortement basique, forme OH - ) pour analyse. Il s’agit d’une poudre d’un polymère réticulé dont la masse volumique est 650-700kg/m3. Sa granulométrie est comprise entre 496 et 674 μm.
Example 2: Preparation of the polymer type anion exchange compound
The anion exchange compound is an ion exchange resin obtained from Sigma Aldrich® under the product reference 104767 and is named Ion exchanger III (strongly basic anion exchanger, OH - form) for analysis . It is a powder of a crosslinked polymer with a density of 650-700kg / m 3 . Its particle size is between 496 and 674 μm.
Le polymère est placé dans un broyeur à impacts de type 70 ZPS à 16000 tours par minute et dont le sélecteur est réglé à 8000 tours par minute pour un débit de circulation d’air à 80 m3/h.The polymer is placed in a 70 ZPS type impact mill at 16,000 revolutions per minute, the selector of which is set at 8,000 revolutions per minute for an air circulation rate of 80 m 3 / h.
Le tableau suivant donne les résultats de la granulométrie de la poudre avant et après broyage, mesurée par un appareil « Mastersizer3000 » de marque Malvern.The following table gives the results of the particle size distribution of the powder before and after grinding, measured by a “Mastersizer3000” device from Malvern.
Figure pctxmlib-appb-I000001
Figure pctxmlib-appb-I000001
« DXX(v) = A » signifie que la proportion volumique XX% de la distribution des particules présente un diamètre inférieur à A µm.“DXX (v) = A” means that the XX% volume proportion of the particle distribution has a diameter of less than A µm.
On obtient une poudre présentant une granulométrie comprise entre 1 et 50 μm, avec seulement 10% des particules présentant un diamètre supérieur à 19,6 μm.A powder is obtained having a particle size of between 1 and 50 μm, with only 10% of the particles having a diameter greater than 19.6 μm.
Exemple 3 : Préparation des garnitures pyrogénées anticorrosives avec échangeur d’anion chlorureExample 3: Preparation of anticorrosive pyrogenic linings with chloride anion exchanger
La silice pyrogénée hydrophobe utilisée est de deux types :
- la silice obtenue sous la référence AEROSIL® R974 chez Evonik Resource Efficiency GmbH de granulométrie inférieure à 200 µm.
- la silice obtenue sous la référence HDK®H30 obtenue chez Wacker Chemie AG, qui présente une granulométrie inférieure à 200 µm.
The hydrophobic fumed silica used is of two types:
- silica obtained under the reference AEROSIL® R974 from Evonik Resource Efficiency GmbH with a particle size of less than 200 μm.
- the silica obtained under the reference HDK®H30 obtained from Wacker Chemie AG, which has a particle size of less than 200 μm.
La Silice pyrogénée hydrophobe est mélangée à l’hydrotalcite ou à la résine échangeuse d’ion broyée comme indiquée dans le tableau 2.Hydrophobic fumed silica is mixed with hydrotalcite or ground ion exchange resin as shown in Table 2.
Exemple 4 : Test de la réduction de la corrosion de l’INVAR® par des silices pyrogénées par ajout d’un échangeur d’anionExample 4: Test of the reduction of the corrosion of INVAR® by pyrogenic silicas by adding an anion exchanger
L’alliage INVAR® est obtenu chez APERAM IMPHY sous forme de bandes laminées à chaud faisant 0,7 mm d’épaisseur.The INVAR® alloy is obtained from APERAM IMPHY in the form of hot-rolled strips 0.7 mm thick.
D’une bande, on prélève des éprouvettes de longueur 65 mm et largeur 31,5 mm. Les éprouvettes sont sans défauts d’état de surface. Afin de les nettoyer, on les immerge dans de l’éthanol à 95% durant 15 minutes avec application d’ultrasons. Puis on sèche les lames sous air comprimé sec filtré.From a strip, samples of 65 mm length and 31.5 mm width are taken. The specimens are free from surface defects. To clean them, they are immersed in 95% ethanol for 15 minutes with the application of ultrasound. The slides are then dried under filtered dry compressed air.
Les différentes expériences indiquées dans le tableau 2 suivant sont effectuées.The various experiments indicated in Table 2 below are carried out.
Figure pctxmlib-appb-I000002
Figure pctxmlib-appb-I000002
Le protocole de vieillissement accéléré suivant est appliqué. Les conditions de vieillissement accéléré consistent en une température de 55°C et une humidité ambiante de 95%HR. En se référant à la , le porte échantillon comprend un flacon 63, un bouchon percé 64 comprenant une lèvre de bouchon 65, un filtre 66, une éprouvette d’INVAR® 67 et la poudre 68.The following accelerated aging protocol is applied. The accelerated aging conditions consist of a temperature of 55 ° C and an ambient humidity of 95% RH . With reference to the , the sample holder comprises a bottle 63, a pierced stopper 64 comprising a stopper lip 65, a filter 66, a test tube of INVAR® 67 and the powder 68.
L’échéance de prélèvement de chaque référence de poudre testée se fait à 100h, 250h, 500h et 1000h.The collection deadline for each powder reference tested is 100h, 250h, 500h and 1000h.
Quatre éprouvettes d’INVAR® par référence sont testées (une pour chaque durée).Four INVAR® specimens per reference are tested (one for each duration).
A chaque prélèvement, la lame d’invar est retirée du porte échantillon et nettoyée des traces de poudre résiduelles par jet d’air comprimé, puis conservée sous vide pour stopper la corrosion.For each sample, the invar slide is removed from the sample holder and cleaned of residual powder traces by a compressed air jet, then kept under vacuum to stop corrosion.
Pour chaque campagne une série d’éprouvettes « Référence » est ajoutée. Elles consistent en des lames d’INVAR® placées dans des portes échantillon sans poudre.For each campaign, a series of "Reference" test tubes is added. They consist of INVAR® slides placed in powder-free sample holders.
L’immersion des lames d’INVAR® dans les mélanges indiqués dans le tableau 2 ci-dessus a donné les résultats de la quantification des taux surfaciques de corrosion présentés dans les tableaux 3 et 4.The immersion of the INVAR® blades in the mixtures indicated in Table 2 above gave the results of the quantification of the surface corrosion rates presented in Tables 3 and 4.
[Tableau 3] : Test de l’hydrotalcite
Figure pctxmlib-appb-I000003
[Table 3]: Hydrotalcite test
Figure pctxmlib-appb-I000003
[Tableau 4] : Test de l’échangeur d’anion basique broyé de type polymère
Figure pctxmlib-appb-I000004
[Table 4]: Test of the ground basic anion exchanger of polymer type
Figure pctxmlib-appb-I000004
En conclusion, ce test a démontré la suppression de la corrosivité des silices pyrogénées pour une éprouvette d’INVAR® par ajout en mélange d’un échangeur d’ions préchargé en OH-. In conclusion, this test demonstrated the elimination of the corrosivity of pyrogenic silicas for an INVAR® test tube by adding an ion exchanger preloaded with OH - as a mixture.
Les blocs isolants décrits ci-dessus peuvent être utilisés dans différents types de réservoirs, par exemple pour constituer une barrière isolante primaire ou secondaire d’un réservoir de GNL dans une installation terrestre ou dans un ouvrage flottant comme un navire méthanier ou autre. Dans un mode de réalisation préféré, la barrière thermiquement isolante dans laquelle sont utilisés les blocs isolants modulaires est maintenue en dépression pendant l’exploitation du réservoir, c’est-à-dire qu’un vide partiel est créé par exemple dans l’espace situé entre la paroi porteuse et la membrane secondaire ou entre la membrane secondaire et la membrane primaire pour améliorer encore l’isolation thermique.The insulating blocks described above can be used in different types of tanks, for example to constitute a primary or secondary insulating barrier of an LNG tank in an onshore installation or in a floating structure such as an LNG vessel or the like. In a preferred embodiment, the thermally insulating barrier in which the modular insulating blocks are used is maintained at negative pressure during operation of the tank, i.e. a partial vacuum is created, for example in space. located between the load-bearing wall and the secondary membrane or between the secondary membrane and the primary membrane to further improve thermal insulation.
En se référant à la , le terminal de chargement/déchargement de la cuve d’un navire méthanier comporte un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s’adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s’étend à l’intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l’installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l’installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.With reference to the , the loading / unloading terminal of the tank of an LNG vessel comprises a loading and unloading station 75, an underwater pipeline 76 and an onshore installation 77. The loading and unloading station 75 is a fixed installation off-shore comprising a movable arm 74 and a tower 78 which supports the movable arm 74. The movable arm 74 carries a bundle of insulated flexible pipes 79 which can be connected to the loading / unloading pipes 73. The movable arm 74 can be swiveled. to all LNG carrier sizes. A connecting pipe (not shown) extends inside the tower 78. The loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the onshore installation 77. The latter comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75. The underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.
Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en œuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l’installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.To generate the pressure necessary for the transfer of the liquefied gas, pumps on board the ship 70 and / or pumps fitted to the shore installation 77 and / or pumps fitted to the loading and unloading station 75 are used.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.Although the invention has been described in connection with several particular embodiments, it is obvious that it is in no way limited thereto and that it comprises all the technical equivalents of the means described as well as their combinations if these come within the scope of the invention.
L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication. The use of the verb "to comprise", "to understand" or "to include" and its conjugated forms does not exclude the presence of other elements or other steps than those set out in a claim.
Dans les revendications, tout signe de référence entre parenthèse ne saurait être interprété comme une limitation de la revendicationIn the claims, any reference sign in parentheses cannot be interpreted as a limitation of the claim.
Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.Although the invention has been described in connection with several particular embodiments, it is obvious that it is in no way limited thereto and that it comprises all the technical equivalents of the means described as well as their combinations if these come within the scope of the invention.
L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication. The use of the verb "to comprise", "to understand" or "to include" and its conjugated forms does not exclude the presence of other elements or other steps than those set out in a claim.
Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.In the claims, any reference sign in parentheses cannot be interpreted as a limitation of the claim.

Claims (21)

  1. Bloc modulaire thermiquement isolant (3, 7) pour l'isolation d'une cuve étanche de stockage d’un liquide, le bloc modulaire (3, 7) comprenant une garniture calorifuge, la garniture calorifuge comprenant un matériau isolant pulvérulent comportant un composant principal choisi parmi les silices pyrogénées, les aérogels de silice et les mélanges de ceux-ci et au moins un composé échangeur d’anion apte à capter l’anion chlorure en échange de la libération d’au moins un autre anion, le composé échangeur d’anion étant sous la forme d’une poudre mélangée au matériau isolant pulvérulent,
    la garniture calorifuge n’étant pas enfermée dans une enveloppe étanche au gaz.
    Thermally insulating modular block (3, 7) for insulating a sealed liquid storage tank, the modular block (3, 7) comprising a heat insulating lining, the heat insulating lining comprising a powder insulating material comprising a main component chosen from pyrogenic silicas, silica aerogels and mixtures thereof and at least one anion exchange compound capable of capturing the chloride anion in exchange for the release of at least one other anion, the exchange compound d the anion being in the form of a powder mixed with the pulverulent insulating material,
    the heat-insulating packing not being enclosed in a gas-tight envelope.
  2. Bloc modulaire selon la revendication 1, caractérisé en ce que le composé échangeur d’anion présente un groupement choisi parmi OH- et CO3 2-.Modular block according to Claim 1, characterized in that the anion exchange compound has a group chosen from OH - and CO 3 2- .
  3. Bloc modulaire selon la revendication 1 ou 2, caractérisé en ce que le composé échangeur d’anion est choisi parmi les argiles, les composés hydroxydes doubles lamellaires, l’hydrotalcite de synthèse et les polymères réticulés contenant l’anion échangeable OH- ou CO3 2- et leurs mélanges.Modular block according to Claim 1 or 2, characterized in that the anion exchange compound is chosen from clays, lamellar double hydroxide compounds, synthetic hydrotalcite and crosslinked polymers containing the exchangeable anion OH - or CO 3 2- and their mixtures.
  4. Bloc modulaire selon la revendication 3, caractérisé en ce que le composé hydroxyde double lamellaire est de formule [MII 1-xMIII x(OH)2]x+[Am- x/m.nH2O]x-, dans laquelle MII et MIII sont respectivement des cations di- et trivalents du feuillet et A désigne une espèce anionique interfoliaire.Modular block according to Claim 3, characterized in that the double lamellar hydroxide compound is of the formula [M II 1-x M III x (OH) 2 ] x + [A m- x / m .nH 2 O] x- , in which M II and M III are di- and trivalent cations of the sheet, respectively, and A denotes an interfoliar anionic species.
  5. Bloc modulaire selon l’une des revendications 1 à 4, caractérisé en ce que le composé échangeur d’anion se présente sous la forme de particules ayant une taille apparente moyenne comprise entre 1 µm et 50 µm.Modular block according to one of claims 1 to 4, characterized in that the anion exchange compound is in the form of particles having an average apparent size of between 1 µm and 50 µm.
  6. Bloc modulaire selon l’une des revendications 1 à 5, caractérisé en ce que la proportion massique du composé échangeur d’anion représente entre 1% et 30% en masse de la garniture calorifuge, de préférence entre 5% et 20% en masse de la garniture calorifuge.Modular block according to one of claims 1 to 5, characterized in that the mass proportion of the anion exchange compound represents between 1% and 30% by mass of the heat-insulating lining, preferably between 5% and 20% by mass of the heat-insulating lining.
  7. Bloc modulaire selon l’une des revendications 1 à 6, caractérisé en ce que la fraction volumique occupée par le composé échangeur d’anion au sein de la garniture calorifuge est inférieure à 5%.Modular block according to one of claims 1 to 6, characterized in that the volume fraction occupied by the anion exchange compound within the heat-insulating lining is less than 5%.
  8. Bloc modulaire selon l’une des revendications 1 à 7, caractérisé en ce que le bloc modulaire comprend une enveloppe perméable au gaz définissant au moins un compartiment, la garniture calorifuge étant disposée dans ledit compartiment.Modular block according to one of claims 1 to 7, characterized in that the modular block comprises a gas permeable envelope defining at least one compartment, the heat-insulating lining being arranged in said compartment.
  9. Bloc modulaire selon la revendication 8, dans lequel l’enveloppe perméable au gaz comprend une armature rigide incluant un panneau de fond, un panneau de couvercle et des éléments d’espacement maintenant le panneau de fond et le panneau de couvercle parallèlement à distance l’un de l’autre pour reprendre un effort de pression.The modular block of claim 8, wherein the gas permeable shell comprises a rigid frame including a bottom panel, a cover panel and spacers keeping the bottom panel and the cover panel parallel to each other apart. one of the other to resume a pressure effort.
  10. Bloc modulaire selon la revendication 9, caractérisé en ce que les éléments d’espacement comportent des parois latérales disposées sur des bords du panneau de fond et du panneau de couvercle.Modular block according to claim 9, characterized in that the spacers have side walls arranged on edges of the bottom panel and the cover panel.
  11. Bloc modulaire selon la revendication 9, caractérisé en ce que les éléments d’espacement comportent des cloisons internes s’étendant entre deux bords opposés du panneau de fond et entre deux bords opposés du panneau de couvercle.Modular block according to claim 9, characterized in that the spacers have internal partitions extending between two opposite edges of the bottom panel and between two opposite edges of the cover panel.
  12. Bloc modulaire selon la revendication 9, caractérisé en ce que les éléments d’espacement comportent des piliers porteurs (57).Modular block according to claim 9, characterized in that the spacing elements comprise supporting pillars (57).
  13. Bloc modulaire selon l’une des revendications 1 à 12, caractérisé en ce que la garniture calorifuge comporte des fibres.Modular block according to one of claims 1 to 12, characterized in that the heat-insulating lining comprises fibers.
  14. Cuve étanche et thermiquement isolante comportant au moins une barrière thermiquement isolante (2, 6) et une membrane d’étanchéité (5, 9) métallique reposant contre ladite barrière thermiquement isolante et dans laquelle la barrière thermiquement isolante comporte une pluralité de blocs modulaires (3, 7) selon l’une quelconque des revendications 1 à 13.Tight and thermally insulating tank comprising at least one thermally insulating barrier (2, 6) and a metallic waterproofing membrane (5, 9) resting against said thermally insulating barrier and in which the thermally insulating barrier comprises a plurality of modular blocks (3 , 7) according to any one of claims 1 to 13.
  15. Cuve selon la revendication 14, dans laquelle la membrane d’étanchéité (5, 9) est en alliage d’acier au nickel ayant un coefficient de dilatation thermique linéaire de 20°C à 90°C inférieur ou égal à 2,0 × 10−6 K−1.Tank according to claim 14, wherein the sealing membrane (5, 9) is made of a nickel steel alloy having a coefficient of linear thermal expansion of 20 ° C to 90 ° C less than or equal to 2.0 × 10 −6 K −1 .
  16. Cuve étanche et thermiquement isolante selon la revendication 14 ou 15, dans laquelle ladite barrière thermiquement isolante est une barrière isolante secondaire (2) et ladite membrane d’étanchéité est une membrane d’étanchéité secondaire (5), la cuve comportant en outre une barrière thermiquement isolante primaire (6) reposant contre la membrane d’étanchéité secondaire et une membrane d’étanchéité primaire (9) reposant contre ladite barrière isolante primaire et destinée à être en contact avec le fluide contenu dans la cuve.A sealed and thermally insulating vessel according to claim 14 or 15, wherein said thermally insulating barrier is a secondary insulating barrier (2) and said waterproofing membrane is a secondary waterproofing membrane (5), the vessel further comprising a barrier. thermally insulating primary (6) resting against the secondary waterproofing membrane and a primary waterproofing membrane (9) resting against said primary insulating barrier and intended to be in contact with the fluid contained in the tank.
  17. Cuve étanche et thermiquement isolante selon la revendication 14 ou 15, dans laquelle ladite barrière thermiquement isolante est une barrière isolante primaire (6) et ladite membrane d’étanchéité est une membrane d’étanchéité primaire (9) destinée à être en contact avec le fluide contenu dans la cuve, la cuve comportant en outre une membrane d’étanchéité secondaire (5) contre laquelle repose la barrière thermiquement isolante primaire et une barrière isolante secondaire (2) contre laquelle repose la membrane d’étanchéité secondaire.A sealed and thermally insulating vessel according to claim 14 or 15, wherein said thermally insulating barrier is a primary insulating barrier (6) and said sealing membrane is a primary sealing membrane (9) intended to be in contact with the fluid. contained in the tank, the tank further comprising a secondary waterproofing membrane (5) against which the primary thermally insulating barrier rests and a secondary insulating barrier (2) against which the secondary waterproofing membrane rests.
  18. Cuve étanche et thermiquement isolante selon l’une des revendications 14 à 17, destinée à stocker un liquide choisi parmi le Gaz Naturel Liquéfié, le gaz de pétrole Liquéfié, le méthane liquide, l’éthane liquide, le propane liquide, l’argon liquide et l’hydrogène liquide.Tight and thermally insulating tank according to one of claims 14 to 17, intended to store a liquid chosen from Liquefied Natural Gas, Liquefied petroleum gas, liquid methane, liquid ethane, liquid propane, liquid argon and liquid hydrogen.
  19. Navire (70) pour le transport d’un liquide, le navire comportant une double coque (72) et une cuve (71) selon l’une des revendications 14 à 18 installée dans la double coque.Vessel (70) for transporting liquid, the vessel comprising a double hull (72) and a tank (71) according to one of claims 14 to 18 installed in the double hull.
  20. Système de transfert pour un liquide, le système comportant un navire (70) selon la revendication 19, des canalisations isolées (73, 79, 76, 81) agencées de manière à relier la cuve (71) installée dans la coque du navire à une installation de stockage flottante ou terrestre (77) et une pompe pour entrainer un flux de liquide à travers les canalisations isolées depuis ou vers l’installation de stockage flottante ou terrestre vers ou depuis la cuve du navire.A transfer system for a liquid, the system comprising a vessel (70) according to claim 19, insulated pipes (73, 79, 76, 81) arranged to connect the vessel (71) installed in the hull of the vessel to a a floating or terrestrial storage facility (77) and a pump for driving a flow of liquid through insulated pipelines from or to the floating or terrestrial storage facility to or from the vessel's tank.
  21. Procédé de chargement ou déchargement d’un navire (70) selon la revendication 20 dans lequel on achemine un liquide à travers des canalisations isolées (73, 79, 76, 81) depuis ou vers une installation de stockage flottante terrestre (77) vers ou depuis la cuve (71) du navire.A method of loading or unloading a ship (70) according to claim 20 wherein a liquid is conveyed through insulated pipelines (73, 79, 76, 81) from or to an onshore floating storage facility (77) to or from the vessel (71).
PCT/EP2021/055198 2020-03-09 2021-03-02 Insulating modular unit for leakproof thermally insulating tank WO2021180517A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180020660.4A CN115280059A (en) 2020-03-09 2021-03-02 Insulated modular unit for sealed thermally insulated tank
KR1020227031450A KR20220150312A (en) 2020-03-09 2021-03-02 Insulated modular units for sealed insulated tanks
JP2022554282A JP2023516788A (en) 2020-03-09 2021-03-02 Insulated modular unit for leakproof insulated tanks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2002325A FR3107941B1 (en) 2020-03-09 2020-03-09 INSULATING MODULAR BLOCK FOR WATERTIGHT AND THERMALLY INSULATING TANK
FRFR2002325 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021180517A1 true WO2021180517A1 (en) 2021-09-16

Family

ID=70614197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/055198 WO2021180517A1 (en) 2020-03-09 2021-03-02 Insulating modular unit for leakproof thermally insulating tank

Country Status (5)

Country Link
JP (1) JP2023516788A (en)
KR (1) KR20220150312A (en)
CN (1) CN115280059A (en)
FR (1) FR3107941B1 (en)
WO (1) WO2021180517A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1230947A (en) * 1968-06-07 1971-05-05
CA897409A (en) * 1972-04-11 S. Kirk Bradley Thermal insulation powder for low temperature systems
FR2360536A1 (en) * 1976-08-05 1978-03-03 Air Liquide LOW THERMAL CONDUCTIBILITY INSULATION MATERIAL CONSTITUTES A COMPACT GRANULAR STRUCTURE
FR2867831A1 (en) 2004-03-17 2005-09-23 Gaz Transport & Technigaz WOOD-SUPPORTING BODY SUITABLE FOR THE SUPPORT AND THERMAL INSULATION OF A SEALED TANK MEMBRANE
WO2013017773A2 (en) 2011-08-01 2013-02-07 Gaztransport Et Technigaz Insulating block for manufacturing a tank wall
JP2013104491A (en) 2011-11-14 2013-05-30 Sekisui Plastics Co Ltd Method for manufacturing vacuum heat insulating material
KR20130067712A (en) 2011-12-14 2013-06-25 주식회사 케이씨씨 Flame retardant insulation material comprising recycled resource having microporous structure and method for preparing the same
WO2014020257A2 (en) 2012-08-03 2014-02-06 Gaztransport Et Technigaz Sealed and thermally insulating tank wall comprising spaced-apart support elements
WO2014167214A2 (en) * 2013-04-12 2014-10-16 Gaztransport Et Technigaz Corner structure of a sealed and thermally insulating tank for storing a fluid
WO2014184393A1 (en) 2013-05-17 2014-11-20 Dow Corning Corporation Insulation panels
WO2017017364A2 (en) * 2015-07-29 2017-02-02 Gaztransport Et Technigaz Device for operating a pumping device connected to a thermally insulating barrier of a tank used for storing a liquefied gas
CN109849249A (en) * 2019-01-28 2019-06-07 常州通和建筑工程有限公司 A kind of preparation method with heat-insulated expanding layer elastic rubber tube
WO2019122757A1 (en) 2017-12-22 2019-06-27 Gaztransport Et Technigaz Insulating box for a fluid-tight and thermally insulated tank and method for manufacturing such a box

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA897409A (en) * 1972-04-11 S. Kirk Bradley Thermal insulation powder for low temperature systems
GB1230947A (en) * 1968-06-07 1971-05-05
FR2360536A1 (en) * 1976-08-05 1978-03-03 Air Liquide LOW THERMAL CONDUCTIBILITY INSULATION MATERIAL CONSTITUTES A COMPACT GRANULAR STRUCTURE
FR2867831A1 (en) 2004-03-17 2005-09-23 Gaz Transport & Technigaz WOOD-SUPPORTING BODY SUITABLE FOR THE SUPPORT AND THERMAL INSULATION OF A SEALED TANK MEMBRANE
WO2013017773A2 (en) 2011-08-01 2013-02-07 Gaztransport Et Technigaz Insulating block for manufacturing a tank wall
JP2013104491A (en) 2011-11-14 2013-05-30 Sekisui Plastics Co Ltd Method for manufacturing vacuum heat insulating material
KR20130067712A (en) 2011-12-14 2013-06-25 주식회사 케이씨씨 Flame retardant insulation material comprising recycled resource having microporous structure and method for preparing the same
WO2014020257A2 (en) 2012-08-03 2014-02-06 Gaztransport Et Technigaz Sealed and thermally insulating tank wall comprising spaced-apart support elements
WO2014167214A2 (en) * 2013-04-12 2014-10-16 Gaztransport Et Technigaz Corner structure of a sealed and thermally insulating tank for storing a fluid
WO2014184393A1 (en) 2013-05-17 2014-11-20 Dow Corning Corporation Insulation panels
WO2017017364A2 (en) * 2015-07-29 2017-02-02 Gaztransport Et Technigaz Device for operating a pumping device connected to a thermally insulating barrier of a tank used for storing a liquefied gas
WO2019122757A1 (en) 2017-12-22 2019-06-27 Gaztransport Et Technigaz Insulating box for a fluid-tight and thermally insulated tank and method for manufacturing such a box
FR3075918A1 (en) 2017-12-22 2019-06-28 Gaztransport Et Technigaz INSULATING BOX FOR A SEALED AND THERMALLY INSULATING TANK AND METHOD OF MANUFACTURING SUCH A BOX
CN109849249A (en) * 2019-01-28 2019-06-07 常州通和建筑工程有限公司 A kind of preparation method with heat-insulated expanding layer elastic rubber tube

Also Published As

Publication number Publication date
JP2023516788A (en) 2023-04-20
FR3107941B1 (en) 2022-03-11
CN115280059A (en) 2022-11-01
KR20220150312A (en) 2022-11-10
FR3107941A1 (en) 2021-09-10

Similar Documents

Publication Publication Date Title
US9409770B2 (en) Storage systems for adsorbable gaseous fuel and methods of producing the same
KR101135452B1 (en) Gas Storage and Dispensing System with Monolithic Carbon Adsorbent
RU2548136C9 (en) Component for producing vacuum insulation systems
WO2021239712A1 (en) Anchoring device intended to retain insulating blocks
GB2065283A (en) Pressurized container for methane
CN106536383B (en) Heat-insulated container
WO2016174837A1 (en) Vacuum heat-insulating material, and heat-insulating container, dwelling wall, transport machine, hydrogen transport tanker, and lng transport tanker equipped with vacuum heat-insulating material
US20170276286A1 (en) Heat-insulating container provided with vacuum heat-insulating material, vacuum heat-insulating material, and tanker provided with heat-insulating container
WO2021180517A1 (en) Insulating modular unit for leakproof thermally insulating tank
WO2001030648A1 (en) Liquefied gas storage barge with concrete floating structure
US20070089764A1 (en) Gas tight vessel with a diffusion barrier layer of metal hydrides
EP1952054B1 (en) Device and method for protecting a cryogenic tank and tank comprising such a device
CA2767774A1 (en) Porous ceramic material having a macroporosity controlled by layering pore-forming agents
CN106219088A (en) A kind of it is applicable to that ground is fire-proof and explosion-proof, the double-layer tank of underground anti-seepage leakproof
HRP920745A2 (en) Formed body for thermal insulation
WO2019122757A1 (en) Insulating box for a fluid-tight and thermally insulated tank and method for manufacturing such a box
JPS61144495A (en) Gas filling method
WO2021094493A1 (en) Sealed and thermally insulating tank having anti-convection insulating seals
EP4075037A1 (en) Pipe for transporting pressurised fluid made of ultra high-performance fibre-reinforced concrete
CN114026357B (en) Sealing membrane for storage tank
WO2010119213A2 (en) Insulation, in an argon atmosphere, of a double-walled liquefied gas tank
FR3044740A1 (en) THREE DIMENSIONAL INSULATING METAL PIECE
EP3073212B1 (en) A set having a reactive solid medium for a thermochemical reactor and having a protection enveloppe for the medium, method for manufacturing the same and use of the set for producing thermal energy
WO2023066613A1 (en) Sealed and insulating tank for storing and/or transporting a liquefied gas
CN112797311A (en) Sealed and thermally insulated tank

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21708652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022554282

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21708652

Country of ref document: EP

Kind code of ref document: A1