WO2021180178A1 - 一种地质数据处理方法、系统、装置和存储介质 - Google Patents

一种地质数据处理方法、系统、装置和存储介质 Download PDF

Info

Publication number
WO2021180178A1
WO2021180178A1 PCT/CN2021/080246 CN2021080246W WO2021180178A1 WO 2021180178 A1 WO2021180178 A1 WO 2021180178A1 CN 2021080246 W CN2021080246 W CN 2021080246W WO 2021180178 A1 WO2021180178 A1 WO 2021180178A1
Authority
WO
WIPO (PCT)
Prior art keywords
geological
area
data processing
frame
section map
Prior art date
Application number
PCT/CN2021/080246
Other languages
English (en)
French (fr)
Inventor
岳川
何智伟
李世佳
竺维彬
黄威然
张义龙
罗淑仪
黄承泽
区穗辉
张景开
Original Assignee
广州轨道交通建设监理有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州轨道交通建设监理有限公司 filed Critical 广州轨道交通建设监理有限公司
Publication of WO2021180178A1 publication Critical patent/WO2021180178A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/40Filling a planar surface by adding surface attributes, e.g. colour or texture
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/003Maps
    • G09B29/005Map projections or methods associated specifically therewith

Definitions

  • the invention relates to the technical field of tunnel construction, in particular to a geological data processing method, system, device and storage medium.
  • Tunnel construction is needed in the construction of highways, rail transit, sponge cities, and underground pipe corridors, and the shield method is an important method in tunnel construction.
  • a shield machine is used as the main tool for tunnel excavation, and its main work process is to build segment rings while digging. Because the shield method does not need to excavate the road surface first, and cannot visually detect the geological conditions in the construction environment, engineering geological survey must be the pre-step.
  • the results of geological surveys are mostly in graphics (including the plan position map of the exploration point, the geological section map, the borehole histogram, and the particle curve) or the table (including the list of exploration points, the stratum statistics, the statistics of physical and mechanical properties, and the dynamic cone penetration.
  • Statistical table standard penetration test statistical table, loess collapsibility calculation statistical table).
  • technicians can understand the geological conditions on the tunneling route of the shield machine by reading the geological survey data, so as to set the working parameters of the shield machine.
  • the more important is the composition of the strata, that is, which strata are included in the excavation route and the proportion of each strata.
  • the construction environment of the shield machine is complex and changeable, and the formation composition of the tunneling route may change very rapidly.
  • the construction personnel need to understand the formation composition of each segment ring to be erected during the construction of the shield machine.
  • the geological survey data are scattered in different carriers, and the construction personnel need to obtain the geological survey data from different sources for repeated reference.
  • the construction personnel need to spend a lot of time to obtain the geological survey data, which is likely to cause delays in the construction project.
  • the geological survey data especially the formation composition information, is difficult to display intuitively, construction personnel need to spend a lot of time to understand the geological survey data. If misunderstandings occur during this process, it will have an unpredictable impact on the project.
  • the purpose of the present invention is to provide a geological data processing method, system, device and storage medium.
  • the embodiment of the present invention includes a geological data processing method, including:
  • the geological section map is converted into a vector graphic format for display.
  • geological data processing method further includes the following steps:
  • a first frame is displayed on the edge of the area corresponding to the segment ring being inquired.
  • geological data processing method further includes the following steps:
  • the number information of the segment ring corresponding to the first frame and the geological condition information of the location are superimposed and displayed on the geological section map;
  • the geological condition information includes the stratigraphic components corresponding to each of the representative colors Information and the proportion of the area corresponding to each of the representative colors.
  • geological data processing method further includes the following steps:
  • a second frame with the same visual effect is displayed at the edge of the identified area.
  • geological data processing method further includes the following steps:
  • the geological condition information corresponding to the merged area is compared and evaluated with the qualified condition, and if the qualified condition is met, a third frame is displayed on the edge of the merged area.
  • geological data processing method further includes the following steps:
  • geological data processing method further includes the following steps:
  • the area framed by the first frame and/or the second frame is enlarged and displayed.
  • the embodiment of the present invention also includes a geological data processing system, including:
  • the first module is used to obtain the geological section map on the tunneling route of the shield machine
  • the second module is used to parse out the formation composition information contained in the geological section map, and find the representative color corresponding to each of the formation composition information;
  • the third module is used to fill the representative color to the corresponding position of the formation composition information in the geological section map;
  • the fourth module is used to convert the geological section map into a vector graphic format for display.
  • the embodiment of the present invention further includes a geological data processing device, including a memory and a processor, the memory is configured to store at least one program, and the processor is configured to load the at least one program to execute the embodiment of the present invention.
  • a geological data processing device including a memory and a processor, the memory is configured to store at least one program, and the processor is configured to load the at least one program to execute the embodiment of the present invention. The method.
  • the embodiment of the present invention further includes a storage medium in which instructions executable by the processor are stored, and the instructions executable by the processor are used to execute the method described in the embodiment of the present invention when executed by the processor.
  • the beneficial effect of the present invention is that by color filling the geological section map and displaying the vector diagram obtained through color filling and format conversion, the more critical stratigraphic component information in the geological exploration data can be visually displayed through color blocks of different colors. It allows on-site construction personnel to quickly understand the types of stratum distributed on the tunneling route of the shield machine and their positional relationship, and set the working parameters of the shield machine accordingly. The construction efficiency of the shield machine construction project is improved by avoiding the trouble of the construction personnel suspending the excavation to consult the geological prospecting data.
  • Figure 1 is a flowchart of a geological data processing method in an embodiment
  • Figure 2 is a schematic diagram of the effect of the geological section map in DWG or DWF format in the embodiment
  • Figure 3 is a schematic diagram of the effect of analyzing the formation composition information of the geological section map in the embodiment
  • Fig. 4 is a schematic diagram of the effect of the geological section map in SVG format in the embodiment.
  • Fig. 5 is a schematic diagram of the principle of regional division of geological section maps in the embodiment.
  • Fig. 6 is a schematic diagram showing the effect of displaying the first frame on the area in the geological cross-sectional view in the embodiment.
  • the steps of the geological data processing method described below can be executed on devices with computer program execution capabilities, data processing capabilities, and graphics display capabilities, such as tablet computers, mobile phones, or shield machine controllers with display devices. These devices should also have corresponding storage devices to store the original data that is the processing object of the geological data processing method, as well as the intermediate data generated during the processing and the final processing results.
  • the geological data refers to the geological section map, stratum composition information, geological condition information, segment ring number information, etc. involved in the following description.
  • the geological data processing method is implemented through the following steps:
  • Step S1 Determine the tunneling route of the shield machine according to the construction plan, and obtain the geological section map on the tunneling route from the geological survey data.
  • Figure 2 shows the geological section view obtained in step S1, and its format is generally DWG or DWF opened with AutoCAD software.
  • the picture of the geological section map shows the stratum distribution in the underground environment through which the excavation route passes.
  • the space between the upper and lower excavation route dividing lines indicates the required excavation route, and the space outside the two excavation route dividing lines indicates the excavation route Outside the underground environment.
  • the stratigraphic composition is distinguished by the stratigraphic composition boundary.
  • step S2 Before step S2 is executed, representative colors can be arranged for each layer component.
  • the arrangement rules used in this embodiment are shown in Table 1.
  • the stratigraphic components contained in Table 1 are distinguished by their detailed geological classification methods. For example, when representing the metamorphic rock breeze zone, the corresponding stratigraphic code, layer number, rock and soil layer name, and rock and soil sublayer are also used. The number, the name of the geotechnical sublayer, and the age are displayed together. For the sake of simplicity, in this embodiment, only the geotechnical sub-layer names of the formation components are called.
  • Table 1 through RGB coding, the representative color of each stratigraphic component can be confirmed, that is, Table 1 establishes the mapping relationship between each stratigraphic component and its representative color.
  • the more critical stratum composition information in the geological exploration data can be visually displayed through different colored color blocks, so that on-site construction personnel can quickly understand the stratum distributed on the tunneling route of the shield machine According to the type and their positional relationship, the working parameters of the shield machine can be set.
  • the construction efficiency of the shield machine construction project is improved by avoiding the trouble of the construction personnel suspending the excavation to consult the geological prospecting data.
  • the geological data processing method further includes the following steps:
  • Figure 5 is a schematic diagram of the divided areas.
  • the displayed geological section map is divided into multiple areas indicated by dashed boxes. These dashed boxes may not be displayed along with the geological section, but are only used to indicate the divisions on the geological section. Areas, these areas are the objects to be processed in the subsequent steps.
  • Each area corresponds to a segment ring to be installed by the shield machine on the tunneling route.
  • the relative position of each area on the geological section map is relative to the corresponding segment ring on the tunneling route.
  • the relative position is the same, and the actual length represented by the lateral width of each area is equal to the width of the corresponding segment ring. In this way, each area is corresponding to its respective segment ring, which can be quickly searched by number. To the area corresponding to each segment ring.
  • the geological section map and the first frame are all reduced in proportion to the actual size, it can be seen from the geometric meaning that the actual environment of the segment ring numbered 466 on the left line is located in the micro-weathered zone of metamorphic rocks and moderate weathering of metamorphic rocks.
  • the content of the metamorphic rock in the breeze zone is The content of metamorphic rocks in the middle weathered zone is In Figure 6, Its meaning is that the content of the metamorphic rock in the micro-weathered zone in the actual environment where the segment ring numbered 466 on the left line is located is 51.04%, and the content of the metamorphic rock in the moderate weathering zone is 48.95%.
  • the geological condition information such as the type of stratigraphic component and the content of each stratigraphic component of the local area on the excavation line can be inquired, and displayed through eye-catching visual effects, with high reliability Readability and comprehensibility solve the problem of requiring construction personnel to suspend construction work to inquire and analyze paper geological survey data in the prior art, and reduce the efficiency of construction progress.
  • the local area can be as thin as a single segment ring.
  • the segment ring is the basic element of the entire tunnel.
  • the geological condition information query of a single segment ring can make the construction staff quickly understand the geological condition of each segment ring. , So as to design and implement meticulous operations for a single segment ring, and improve the overall quality of the construction project.
  • the geological data processing method further includes the following steps:
  • the "same geological condition information" can be judged according to the following criteria: the formation components contained are the same type, or the formation component types are the same and the percentage content of each formation component is the same (or the percentage content difference of the same formation component) Does not exceed the preset threshold 5%).
  • the same geological conditions that is, they contain the same type of stratum components, and the percentage content of each stratum component is the same or similar. It is convenient for the construction staff to set the shield machine to the same construction parameters for these areas and avoid duplication. Carry out operations such as consulting geological prospecting data to improve construction efficiency.
  • the geological data processing method further includes the following steps:
  • the qualified conditions are set according to construction specifications and actual construction links.
  • the qualified conditions can be set as the content of the metamorphic rock in the slightly weathered zone ⁇ 60% and the content of the metamorphic rock in the medium weathered zone ⁇ 50%.
  • the qualified conditions are only used in the implementation of the geological data processing method of this embodiment. It does not mean that it has an inevitable relationship with the "qualified" judgment conditions such as the acceptance criteria for project completion. Moreover, in the actual application of this implementation In the case of geological data processing methods, it may also be necessary to consider the content of other stratigraphic components such as the red-bed micro-weathered zone and granite micro-weathered zone, but the influence of the content of other stratigraphic components is ignored for the convenience of explanation.
  • S14 Combine the selected and continuous regions into one region.
  • the total area of the merged area is the area of each area before the merger.
  • the stratum component type contained in the merged area is the union of the stratum component types contained in each area before the merge, and the content of each strata component in the merged area is the same stratum component in each area before the merge The sum of the content.
  • the area obtained after the merging corresponds to the whole composed of several consecutive segment rings corresponding to the area before the merging.
  • step S15 Obtain the geological condition information corresponding to the merged area. Since the properties of the merged regions are the same as those of the regions before the merge, there is only a quantitative difference in the information content. Therefore, for the merged regions, the processing of steps S7 and S8 can be performed, that is, the merged regions can be calculated The ratio of the area of each color block contained in the area to the total area of the combined area to obtain the construction location corresponding to the combined area and the content of each layer component contained in the combined area.
  • the principle and effect of performing steps S11-S13 is: by comparing the geological information of each area with the qualified conditions, and filtering out the qualified areas, the construction personnel can be reminded which areas are qualified, so as to improve the shield. Properly set the working parameters of the machine to improve work efficiency.
  • the principle and effect of performing steps S14-S16 is: on the basis of performing steps S11-S13, multiple areas are further merged into one area and analyzed.
  • the qualified conditions can be screened out. Consecutive multiple areas, and remind the construction staff to pay attention through the third frame.
  • the selected continuous areas have uniformly distributed geological conditions. It is suitable to use fixed shield machine working parameters for the tunneling route positions corresponding to these continuous areas, so that the construction personnel can focus on these continuous areas.
  • the region carries out corresponding work arrangements to improve work efficiency.
  • the geological data processing method further includes the following steps:
  • the calculated length ratio means that the area framed by the third frame corresponds to the construction location of the tunneling route
  • the number of segment rings that can be accommodated can provide a reference for construction personnel, so that they can use wider segments to construct segment rings at these positions, thereby improving work efficiency.
  • the geological data processing method further includes the following steps:
  • the first module is used to obtain the geological section map on the tunneling route of the shield machine
  • the second module is used to parse out the formation composition information contained in the geological section map, and find the representative color corresponding to each of the formation composition information;
  • the third module is used to fill the representative color to the corresponding position of the formation composition information in the geological section map;
  • the fourth module is used to convert the geological section map into a vector graphic format for display.
  • the first module, the second module, the third module, and the fourth module may be hardware modules or software modules with corresponding functions on devices such as computers, tablets, or mobile phones.
  • This embodiment also includes a geological data processing device, including a memory and a processor, the memory is configured to store at least one program, and the processor is configured to load the at least one program to execute the geological data processing method.
  • This embodiment also includes a storage medium in which instructions executable by the processor are stored, and the instructions executable by the processor are used to execute the geological data processing method when executed by the processor.
  • the geological data processing system, device and storage medium in this embodiment can execute the geological data processing method of the present invention, can execute any combination of implementation steps of the method embodiments, and have corresponding functions and beneficial effects of the method.
  • first, second, third, etc. may be used in this disclosure to describe various elements, these elements should not be limited to these terms. These terms are only used to distinguish elements of the same type from each other.
  • first element may also be referred to as the second element, and similarly, the second element may also be referred to as the first element.
  • second element may also be referred to as the first element.
  • the use of any and all examples or exemplary language (“such as”, “such as”, etc.) provided in this embodiment is only intended to better describe the embodiments of the present invention, and unless otherwise required, will not affect the scope of the present invention. Impose restrictions.
  • the embodiments of the present invention can be realized or implemented by computer hardware, a combination of hardware and software, or by computer instructions stored in a non-transitory computer-readable memory.
  • the method can be implemented in a computer program using standard programming techniques-including a non-transitory computer readable storage medium configured with a computer program, where the storage medium so configured allows the computer to operate in a specific and predefined manner-according to the specific
  • Each program can be implemented in a high-level process or object-oriented programming language to communicate with the computer system. However, if necessary, the program can be implemented in assembly or machine language. In any case, the language can be a compiled or interpreted language. In addition, the program can be run on a programmed application specific integrated circuit for this purpose.
  • the operations of the process described in this embodiment can be performed in any suitable order, unless this embodiment indicates otherwise or otherwise clearly contradicts the context.
  • the process (or variant and/or combination thereof) described in this embodiment can be executed under the control of one or more computer systems configured with executable instructions, and can be used as code that is executed on one or more processors in common (For example, executable instructions, one or more computer programs, or one or more applications), implemented by hardware or a combination thereof.
  • the computer program includes a plurality of instructions executable by one or more processors.
  • the method can be implemented in any type of computing platform that is operably connected to a suitable computing platform, including but not limited to a personal computer, a mini computer, a main frame, a workstation, a network or a distributed computing environment, a separate or integrated computer Platform, or communication with charged particle tools or other imaging devices, etc.
  • a suitable computing platform including but not limited to a personal computer, a mini computer, a main frame, a workstation, a network or a distributed computing environment, a separate or integrated computer Platform, or communication with charged particle tools or other imaging devices, etc.
  • Aspects of the present invention can be implemented by machine-readable codes stored on non-transitory storage media or devices, whether removable or integrated into computing platforms, such as hard disks, optical reading and/or writing storage media, RAM, ROM, etc., so that they can be read by a programmable computer, and when the storage medium or device is read by the computer, it can be used to configure and operate the computer to perform the processes described herein.
  • machine-readable code or part thereof, can be transmitted through a wired or wireless network.
  • a medium includes instructions or programs that implement the steps described above in combination with a microprocessor or other data processors
  • the invention described in this embodiment includes these and other different types of non-transitory computer-readable storage media.
  • the present invention also includes the computer itself.
  • the computer program can be applied to input data to perform the functions described in this embodiment, thereby converting the input data to generate output data to be stored in the non-volatile memory.
  • the output information can also be applied to one or more output devices such as displays.
  • the converted data represents physical and tangible objects, including specific visual depictions of physical and tangible objects generated on the display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Instructional Devices (AREA)

Abstract

一种地质数据处理方法、系统、装置和存储介质,所述方法包括获取盾构机掘进路线上的地质断面图,解析出所述地质断面图中包含的地层组分信息,查找各所述地层组分信息对应的代表色,将所述代表色填充至所述地质断面图中的地层组分信息相应位置,以及将所述地质断面图转换为矢量图形格式进行显示等步骤。本方法可以将地质勘探资料中较为关键的地层组分信息通过不同颜色的色块直观地显示出来,使得现场施工人员可以快速地了解到盾构机掘进路线上所分布的地层的类型以及它们的位置关系,据此对盾构机的工作参数进行设置,避免了施工人员暂停掘进去查阅地质勘探资料,提高盾构机施工工程的效率。本方法广泛应用于隧道施工技术领域。

Description

一种地质数据处理方法、系统、装置和存储介质 技术领域
本发明涉及隧道施工技术领域,尤其是一种地质数据处理方法、系统、装置和存储介质。
背景技术
在公路、轨道交通、海绵城市以及地下管廊等工程建设中都需要用到隧道施工,而盾构法是隧道施工中的重要方法。盾构法中使用盾构机作为开挖隧道的主要工具,其主要工作过程是在掘进的同时进行管片环的拼砌。由于盾构法无需先对路面等进行开挖,不能目测施工环境中的地质条件,必须以工程地质勘察为前置步骤。
地质勘察所得的结果多以图形(包括勘探点平面位置图、地质断面图、钻孔柱状图、颗分曲线)或者表格(包括勘探点一览表、地层统计表、物理力学性质统计表、动力触探统计表、标准贯入试验统计表、黄土湿陷量计算统计表)。现有盾构施工技术中,由技术人员通过阅读地质勘察资料,了解盾构机掘进路线上的地质条件,从而设定盾构机的工作参数。所涉及的地质条件中,较为重要的是地层组分,即掘进路线上包括哪些地层以及每种地层的占比。盾构机施工环境复杂多变,掘进路线上的地层组分变化可能非常迅速,施工人员需要了解盾构机施工过程中所要拼砌的每个管片环所处位置的地层组分。
现有技术中,地质勘察资料分散在不同的载体中,施工人员需要从不同来源获取地质勘察资料进行反复的查阅,施工人员需要花费大量的时间去获取地质勘察资料,容易使施工工程发生延误。而且由于地质勘察资料尤其是地层组分信息难以直观地显示出来,施工人员需要花费大量的时间去理解地质勘察资料,在此过程中如果发生误解等情况,将对工程产生难以预估的影响。
发明内容
针对上述至少一个技术问题,本发明的目的在于提供一种地质数据处理方法、系统、装置和存储介质。
一方面,本发明实施例包括一种地质数据处理方法,包括:
获取盾构机掘进路线上的地质断面图;
解析出所述地质断面图中包含的地层组分信息,查找各所述地层组分信息对应的代表色;
将所述代表色填充至所述地质断面图中的地层组分信息相应位置;
将所述地质断面图转换为矢量图形格式进行显示。
进一步地,所述地质数据处理方法还包括以下步骤:
将所述地质断面图划分成为多个区域;各所述区域分别对应所述盾构机在掘进路线上所要安装的管片环;
在对管片环所处位置的地质状况信息进行查询的情况下,在被查询的所述管片环对应的所述区域边缘显示第一边框。
进一步地,所述地质数据处理方法还包括以下步骤:
检测所述第一边框所框定的所述区域中包含的代表色;
计算所检测出的各所述代表色所形成色块面积对所述第一边框总面积的占比;
将所述第一边框所对应的管片环的编号信息、所处位置的地质状况信息叠加显示在所述地质断面图上;所述地质状况信息包括各所述代表色所对应的地层组分信息、各所述代表色所对应的面积占比。
进一步地,所述地质数据处理方法还包括以下步骤:
识别所述地质断面图中所有对应相同地质状况信息的区域;
在识别出的所述区域边缘显示具有相同视觉效果的第二边框。
进一步地,所述地质数据处理方法还包括以下步骤:
设定用于评价所述地质状况信息的合格条件;
将所有所述区域所对应的地质状况信息与所述合格条件进行对比评价;
筛选出符合所述合格条件的地质状况信息以及相应的区域;
将筛选出的且连续的多个区域合并成一个区域;
获取合并所得的区域对应的地质状况信息;
将合并所得的区域所对应的地质状况信息与所述合格条件进行对比评价,在符合所述合格条件的情况下,在合并所得的区域边缘显示第三边框。
进一步地,所述地质数据处理方法还包括以下步骤:
计算并显示所述第三边框与第一边框的长度比例。
进一步地,所述地质数据处理方法还包括以下步骤:
对所述第一边框和/或第二边框所框定的所述区域进行放大显示。
另一方面,本发明实施例还包括一种地质数据处理系统,包括:
第一模块,用于获取盾构机掘进路线上的地质断面图;
第二模块,用于解析出所述地质断面图中包含的地层组分信息,查找各所述地层组分信息对应的代表色;
第三模块,用于将所述代表色填充至所述地质断面图中的地层组分信息相应位置;
第四模块,用于将所述地质断面图转换为矢量图形格式进行显示。
另一方面,本发明实施例还包括一种地质数据处理装置,包括存储器和处理器,所述存储器用于存储至少一个程序,所述处理器用于加载所述至少一个程序以执行本发明实施例所述方法。
另一方面,本发明实施例还包括一种存储介质,其中存储有处理器可执行的指令,所述处理器可执行的指令在由处理器执行时用于执行本发明实施例所述方法。
本发明的有益效果是:通过对地质断面图进行颜色填充以及显示经过颜色填充和格式转换所得的矢量图,可以将地质勘探资料中较为关键的地层组分信息通过不同颜色的色块直观地显示出来,使得现场施工人员可以快速地了解到盾构机掘进路线上所分布的地层的类型以及它们的位置关系,据此对盾构机的工作参数进行设置。由于避免了施工人员暂停掘进去查阅地质勘探资料的麻烦,使得盾构机施工工程的效率得到提高。
附图说明
图1为实施例中地质数据处理方法的流程图;
图2为实施例中DWG或DWF格式的地质断面图效果示意图;
图3为实施例中对地质断面图进行地层组分信息解析的效果示意图
图4为实施例中SVG格式的地质断面图效果示意图;
图5为实施例中对地质断面图进行区域划分的原理示意图;
图6为实施例中对地质断面图中的区域进行第一边框显示的效果示意图。
具体实施方式
以下所述地质数据处理方法的各步骤,可以在平板电脑、手机或者带有显示设备的盾构机控制器等具有计算机程序执行能力、数据处理能力以及图形显示能力的设备上执行。这些设备还应该具有相应的存储器件,从而存储作为地质数据处理方法处理对象的原始数据,以及处理过程中所产生的中间数据和最终的处理结果。
本实施例中,所述地质数据是指以下说明中所涉及到的地质断面图、地层组分信息、地质状况信息、管片环的编号信息等。
参照图1,所述地质数据处理方法是通过以下步骤实现的:
S1.根据施工计划确定盾构机的掘进路线,从地质勘察资料中获取掘进路线上的地质断面图。图2所示是步骤S1所获取到的地质断面图,其格式一般为使用AutoCAD软件打开的DWG或DWF。
地质断面图的画面展示了掘进路线所经过的地下环境中的地层分布情况,其中上下两条 掘进路线分界线之间的空间表示需要掘进路线,两条掘进路线分界线之外的空间表示掘进路线之外的地下环境。各地层组分之间通过地层组分分界线进行区分。
S2.从地质断面图本身所存储的信息或者地质断面图的附加数据中解析出所述地质断面图中包含的地层组分信息。如图3所示,通过地层组分信息,可以获知地质断面图中所展示的每种地层组分的名称,例如变质岩微风化带、变质岩中等风化带和变质岩强风化带等。
在执行步骤S2之前,可以先为各地层组分编排代表色,本实施例中所使用的编排规则如表1所示。
表1
Figure PCTCN2021080246-appb-000001
Figure PCTCN2021080246-appb-000002
Figure PCTCN2021080246-appb-000003
Figure PCTCN2021080246-appb-000004
表1中所包含的地层组分使用了其详细的地质学分类方法进行区分,例如在表示变质岩微风化带时还将其对应的地层编码、层号、岩土层名称、岩土亚层号、岩土亚层名称以及时代一并展示。为了简便说明,本实施例中仅称呼地层组分的岩土亚层名称。
表1中,通过RGB编码,可以确认每种地层组分的代表色,即表1建立了每种地层组分与其代表色之间的映射关系。
S3.通过表1,可以查找各所述地层组分信息对应的代表色,并将其填充至图3所示的地质断面图中,使得地质断面图中用于表示各地层组分的部分被填充上具有相应颜色的色块。
S4.使用Adobe Illustrator或者CATIA软件,将填充好色块的所述地质断面图转换为矢量图形SVG格式进行显示,显示效果如图4所示。
通过执行步骤S1-S4,可以将地质勘探资料中较为关键的地层组分信息通过不同颜色的色块直观地显示出来,使得现场施工人员可以快速地了解到盾构机掘进路线上所分布的地层的类型以及它们的位置关系,据此对盾构机的工作参数进行设置。由于避免了施工人员暂停掘进去查阅地质勘探资料的麻烦,使得盾构机施工工程的效率得到提高。
本实施例中,所述地质数据处理方法还包括以下步骤:
S5.将图2或图3所示的地质断面图划分成为多个区域,使得每个区域分别对应所述盾构机在掘进路线上所要安装的管片环。
图5是划分区域的示意图,所显示的地质断面图画面被划分成为多个用虚线框表示的区域,这些虚线框可以不随地质断面图一起显示出来,只是用来示意地质断面图上被划分的区域,这些区域是后续步骤中被处理的对象。每个区域分别对应盾构机在掘进路线上所要安装的一个管片环,具体地,每个区域在地质断面图上所处的相对位置,与相应的管片环在掘进路线上所处的相对位置相同,而且每个区域的横向宽度所代表的实际长度等于相应的管片环的宽度,这样,每个区域都分别与各自的管片环对应的起来,可以通过编号的形式快速地查找到每个管片环所对应的区域。
S6.当需要对管片环所处位置的地质状况信息进行查询时,首先获取需要查询的管片环的编号,再从地质断面图上查找到具有相同编号的区域,并在该区域边缘显示第一边框。例如,需要对左线编号为466的管片环进行查询,则在编号为466的区域的边缘显示第一边框,其显示效果如图6所示,所述边框为图6中所显示的实线框,从而使得从视觉效果上突出显示该区域,提醒使用者留意所查找出的区域。
S7.检测所述第一边框所框定的所述区域中包含的代表色。根据表1中的代表色编排规则,可以识别出第一边框内包含两种代表色,分别对应变质岩微风化带和变质岩中等风化带。
S8.计算所检测出的各所述代表色所形成色块面积对所述第一边框总面积的占比。首先,通过统计总像素数等方式,计算出第一边框所框定的区域的总面积S 、代表变质岩微风化带的色块的面积S 1以及代表变质岩中等风化带的色块的面积S 2,它们满足S =S 1+S 2。分别计算占比
Figure PCTCN2021080246-appb-000005
由于地质断面图和第一边框都是按照实际尺寸等比例缩小的,因此由几何意义可知,左线编号为466的管片环所处的实际环境中存在变质岩微风化带和变质岩中等风化带两种地层组分,其中变质岩微风化带的含量为
Figure PCTCN2021080246-appb-000006
变质岩中等风化带的含量为
Figure PCTCN2021080246-appb-000007
图6中,
Figure PCTCN2021080246-appb-000008
其意义为左线编号为466的管片环所处的实际环境中变质岩微风化带的含量为51.04%,变质岩中等风化带的含量为48.95%。
S8.将所述第一边框所对应的管片环的编号信息(左线466环)、所处位置的地质状况信 息叠加显示在所述地质断面图上,其中所述地质状况信息包括各所述代表色所对应的地层组分信息(变质岩微风化带和变质岩中等风化带)、各所述代表色所对应的面积占比(变质岩微风化带的含量51.04%和变质岩中等风化带48.95%),显示效果如图6所示。
通过执行步骤S5-S8,可以根据查询的需要,查询掘进线路上局部区域的地层组分类型以及每种地层组分的含量等地质状况信息,并且通过醒目的视觉效果展示出来,具有高的可读性和可理解性,解决了现有技术中要求施工人员暂停施工工作去查询纸质地质勘察资料并进行分析、降低施工进度效率的问题。而且,局部区域可以细至单个管片环,管片环是组成整个隧道的基本元素,精确至单个管片环的地质状况信息查询可以使得施工人员快速理解各管片环所处位置的地质状况,从而设计并实施针对单个管片环的细致作业,提高施工工程的整体质量。
本实施例中,所述地质数据处理方法还包括以下步骤:
S9.识别所述地质断面图中所有对应相同地质状况信息的区域。通过执行本实施例中所述的步骤S5-S8,可以对图5中所划分出的所有区域,以及因受幅面限制而未在附图中展示出的地质断面图的其他区域进行地质状况信息的分析,也就是计算出每个区域所表示的管片环所在位置中所含有的地层组分类型,以及每种地层组分的百分比含量。
所述“相同地质状况信息”可以按照如下标准判断:所含有的地层组分类型相同,或者地层组分类型相同且每种地层组分的百分比含量相同(或相同地层组分的百分比含量差值不超过预设的阈值5%)。
S10.在如果识别到地质断面图中存在至少两个区域,它们满足具有相同地质状况信息这一条件,那么就执行本步骤,即在识别出的所述区域边缘显示具有相同视觉效果的第二边框。具体地,每个满足具有相同地质状况信息这一条件的区域边缘都显示一个第二边框,所有的第二边框都具有相同的视觉效果,所述相同视觉效果是指第二边框的线型、粗度以及颜色等参数中的至少之一相同,足以使得施工人员可以通过一眼的观察即可注意到这些第二边框都具有相同的视觉效果,从而提醒用户这些第二边框所框定的区域都具有相同的地质状况,即它们所含有的地层组分类型相同,而且每种地层组分的百分比含量是相同或相似的,方便施工人员针对这些区域将盾构机设置为相同的施工参数,避免重复进行查阅地质勘探资料等操作,提高施工效率。
本实施例中,所述地质数据处理方法还包括以下步骤:
S11.设定用于评价所述地质状况信息的合格条件。所述合格条件是根据施工规范以及实际施工环节等情况来设定的,例如可以将合格条件设定为变质岩微风化带含量<60%且变质岩 中等风化带含量<50%。
所述合格条件只是用于执行本实施例地质数据处理方法过程中所使用的判定条件,并不表示其与工程竣工验收标准等“合格”的判定条件具有必然关系,而且,在实际应用本实施例地质数据处理方法时,可能还需要考虑红层微风化带、花岗岩微风化带等其他地层组分的含量,而此处为了说明方便则忽略其他地层组分含量的影响。
S12.将所有所述区域所对应的地质状况信息与所述合格条件进行对比评价。在合格条件为“变质岩微风化带含量<60%且变质岩中等风化带含量<50%”的情况下,图6所示的左线编号为466的管片环所在的位置的地质状况,即“变质岩微风化带含量为51.04%,变质岩中等风化带含量为48.95%”是“合格”的,并且可以针对其他区域进行地质状况信息与所述合格条件的对比评价,从而得到“合格”或“不合格”的结果。
S13.筛选出符合所述合格条件的地质状况信息以及相应的区域。在针对所有区域或者需要考察的区域执行步骤S11和S12后,可以得出这些区域对应的地质状况信息的评价结果,即“合格”或“不合格”,然后将“合格”的区域筛选出来。
S14.将筛选出的且连续的多个区域合并成一个区域。执行本步骤时,需要考察筛选出的“合格”的区域是否在地质断面图上连续,如果是连续的话,将这些区域合并成为一个区域,此时合并所得区域的总面积是合并前各区域面积的总和,合并所得区域中所包含的地层组分类型是合并前各区域所包含的地层组分类型的并集,合并所得区域中各地层组分的含量是合并前各区域中相同地层组分的含量之和。合并后所得的区域,对应是合并前区域所对应的连续几个管片环组成的整体。
S15.获取合并所得的区域对应的地质状况信息。由于合并后所得的区域与合并前各区域的性质是相同的,仅在信息含量上存在数量上的差别,因此对合并后所得的区域,可以执行步骤S7和S8的处理,即计算合并后所得的区域中所包含的各色块的面积与合并后所得的区域总面积之比,从而得到合并后所得的区域所对应的施工位置,所包含的各地层组分的含量。
S16.将合并所得的区域所对应的地质状况信息与所述合格条件进行对比评价,在符合所述合格条件的情况下,在合并所得的区域边缘显示第三边框。所述对比评价的过程与S12相同,并且在对比评价的结果为“合格”的情况下,在合并所得的区域边缘显示第三边框,从而对施工工作人员进行提醒。
执行步骤S11-S13的原理和效果在于:通过将各区域的地质状况信息与合格条件进行比较,并筛选出符合合格条件的区域,可以提醒施工人员哪些区域是符合合格条件的,从而对盾构机的工作参数进行合适的设置,提高工作效率。
执行步骤S14-S16的原理和效果在于:在执行步骤S11-S13的基础上进一步将多个区域合并成为一个区域并进行分析,可以在地质状况复杂多变的情况下,筛选出符合合格条件的连续多个区域,并通过第三边框的方式提示施工人员留意。根据本实施例中的分析可知,所筛选出的连续区域具有分布均匀的地质状况,适宜对这些连续区域所对应的掘进路线位置上使用固定的盾构机工作参数,使得施工人员可以针对这些连续区域进行相应的工作安排,从而提高工作效率。
在执行步骤S11-S16的情况下,所述地质数据处理方法还包括以下步骤:
S17.计算并显示所述第三边框与第一边框的长度比例。由于地质断面图、第一边框和第三边框都是按照实际尺寸等比例缩小的,因此由几何意义可知,第一边框的横向宽度所代表的实际长度等于相应的管片环的宽度,第三边框的横向宽度所代表的实际长度,等于多个第一区域相应的管片环的宽度之和,所以计算出的长度比例的意义是,第三边框所框定的区域对于的掘进路线施工位置处可以容纳的管片环的个数,这可以为施工人员提供参考,使得施工人员可以在这些位置使用较宽的管片来构建管片环,从而提高工作效率。
本实施例中,所述地质数据处理方法还包括以下步骤:
S18.对所述第一边框和/或第二边框所框定的所述区域进行放大显示。在图6等所示的显示效果的基础上,还可以生成小窗口,在小窗口中显示第一边框、第二边框和/或第三边框所框定的区域的放大显示结果,从而使得施工人员更好地留意和观察其所反映的地质状况等信息。
本实施例中所述的地质数据处理系统包括:
第一模块,用于获取盾构机掘进路线上的地质断面图;
第二模块,用于解析出所述地质断面图中包含的地层组分信息,查找各所述地层组分信息对应的代表色;
第三模块,用于将所述代表色填充至所述地质断面图中的地层组分信息相应位置;
第四模块,用于将所述地质断面图转换为矢量图形格式进行显示。
所述第一模块、第二模块、第三模块和第四模块可以是计算机、平板电脑或者手机等设备上具有相应功能的硬件模块或软件模块。
本实施例还包括一种地质数据处理装置,包括存储器和处理器,所述存储器用于存储至少一个程序,所述处理器用于加载所述至少一个程序以执行所述地质数据处理方法。
本实施例还包括一种存储介质,其中存储有处理器可执行的指令,所述处理器可执行的指令在由处理器执行时用于执行所述地质数据处理方法。
本实施例中的地质数据处理系统、装置和存储介质,可以执行本发明的地质数据处理方法,可执行方法实施例的任意组合实施步骤,具备该方法相应的功能和有益效果。
需要说明的是,如无特殊说明,当某一特征被称为“固定”、“连接”在另一个特征,它可以直接固定、连接在另一个特征上,也可以间接地固定、连接在另一个特征上。此外,本公开中所使用的上、下、左、右等描述仅仅是相对于附图中本公开各组成部分的相互位置关系来说的。在本公开中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。此外,除非另有定义,本实施例所使用的所有的技术和科学术语与本技术领域的技术人员通常理解的含义相同。本实施例说明书中所使用的术语只是为了描述具体的实施例,而不是为了限制本发明。本实施例所使用的术语“和/或”包括一个或多个相关的所列项目的任意的组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种元件,但这些元件不应限于这些术语。这些术语仅用来将同一类型的元件彼此区分开。例如,在不脱离本公开范围的情况下,第一元件也可以被称为第二元件,类似地,第二元件也可以被称为第一元件。本实施例所提供的任何以及所有实例或示例性语言(“例如”、“如”等)的使用仅意图更好地说明本发明的实施例,并且除非另外要求,否则不会对本发明的范围施加限制。
应当认识到,本发明的实施例可以由计算机硬件、硬件和软件的组合、或者通过存储在非暂时性计算机可读存储器中的计算机指令来实现或实施。所述方法可以使用标准编程技术-包括配置有计算机程序的非暂时性计算机可读存储介质在计算机程序中实现,其中如此配置的存储介质使得计算机以特定和预定义的方式操作——根据在具体实施例中描述的方法和附图。每个程序可以以高级过程或面向对象的编程语言来实现以与计算机系统通信。然而,若需要,该程序可以以汇编或机器语言实现。在任何情况下,该语言可以是编译或解释的语言。此外,为此目的该程序能够在编程的专用集成电路上运行。
此外,可按任何合适的顺序来执行本实施例描述的过程的操作,除非本实施例另外指示或以其他方式明显地与上下文矛盾。本实施例描述的过程(或变型和/或其组合)可在配置有可执行指令的一个或多个计算机系统的控制下执行,并且可作为共同地在一个或多个处理器上执行的代码(例如,可执行指令、一个或多个计算机程序或一个或多个应用)、由硬件或其组合来实现。所述计算机程序包括可由一个或多个处理器执行的多个指令。
进一步,所述方法可以在可操作地连接至合适的任何类型的计算平台中实现,包括但不限于个人电脑、迷你计算机、主框架、工作站、网络或分布式计算环境、单独的或集成的计算机平台、或者与带电粒子工具或其它成像装置通信等等。本发明的各方面可以以存储在非暂时性存储介质或设备上的机器可读代码来实现,无论是可移动的还是集成至计算平台,如硬盘、光学读取和/或写入存储介质、RAM、ROM等,使得其可由可编程计算机读取,当存 储介质或设备由计算机读取时可用于配置和操作计算机以执行在此所描述的过程。此外,机器可读代码,或其部分可以通过有线或无线网络传输。当此类媒体包括结合微处理器或其他数据处理器实现上文所述步骤的指令或程序时,本实施例所述的发明包括这些和其他不同类型的非暂时性计算机可读存储介质。当根据本发明所述的方法和技术编程时,本发明还包括计算机本身。
计算机程序能够应用于输入数据以执行本实施例所述的功能,从而转换输入数据以生成存储至非易失性存储器的输出数据。输出信息还可以应用于一个或多个输出设备如显示器。在本发明优选的实施例中,转换的数据表示物理和有形的对象,包括显示器上产生的物理和有形对象的特定视觉描绘。
以上所述,只是本发明的较佳实施例而已,本发明并不局限于上述实施方式,只要其以相同的手段达到本发明的技术效果,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。在本发明的保护范围内其技术方案和/或实施方式可以有各种不同的修改和变化。

Claims (10)

  1. 一种地质数据处理方法,其特征在于,包括以下步骤:
    获取盾构机掘进路线上的地质断面图;
    解析出所述地质断面图中包含的地层组分信息,查找各所述地层组分信息对应的代表色;
    将所述代表色填充至所述地质断面图中的地层组分信息相应位置;
    将所述地质断面图转换为矢量图形格式进行显示。
  2. 根据权利要求1所述的地质数据处理方法,其特征在于,还包括以下步骤:
    将所述地质断面图划分成为多个区域;各所述区域分别对应所述盾构机在掘进路线上所要安装的管片环;
    在对管片环所处位置的地质状况信息进行查询的情况下,在被查询的所述管片环对应的所述区域边缘显示第一边框。
  3. 根据权利要求2所述的地质数据处理方法,其特征在于,还包括以下步骤:
    检测所述第一边框所框定的所述区域中包含的代表色;
    计算所检测出的各所述代表色所形成色块面积对所述第一边框总面积的占比;
    将所述第一边框所对应的管片环的编号信息、所处位置的地质状况信息叠加显示在所述地质断面图上;所述地质状况信息包括各所述代表色所对应的地层组分信息、各所述代表色所对应的面积占比。
  4. 根据权利要求3所述的地质数据处理方法,其特征在于,还包括以下步骤:
    识别所述地质断面图中所有对应相同地质状况信息的区域;
    在识别出的所述区域边缘显示具有相同视觉效果的第二边框。
  5. 根据权利要求2-4任一项所述的地质数据处理方法,其特征在于,还包括以下步骤:
    设定用于评价所述地质状况信息的合格条件;
    将所有所述区域所对应的地质状况信息与所述合格条件进行对比评价;
    筛选出符合所述合格条件的地质状况信息以及相应的区域;
    将筛选出的且连续的多个区域合并成一个区域;
    获取合并所得的区域对应的地质状况信息;
    将合并所得的区域所对应的地质状况信息与所述合格条件进行对比评价,在符合所述合格条件的情况下,在合并所得的区域边缘显示第三边框。
  6. 根据权利要求5所述的地质数据处理方法,其特征在于,还包括以下步骤:
    计算并显示所述第三边框与第一边框的长度比例。
  7. 根据权利要求2-4任一项所述的地质数据处理方法,其特征在于,还包括以下步骤:
    对所述第一边框和/或第二边框所框定的所述区域进行放大显示。
  8. 一种地质数据处理系统,其特征在于,包括:
    第一模块,用于获取盾构机掘进路线上的地质断面图;
    第二模块,用于解析出所述地质断面图中包含的地层组分信息,查找各所述地层组分信息对应的代表色;
    第三模块,用于将所述代表色填充至所述地质断面图中的地层组分信息相应位置;
    第四模块,用于将所述地质断面图转换为矢量图形格式进行显示。
  9. 一种地质数据处理装置,其特征在于,包括存储器和处理器,所述存储器用于存储至少一个程序,所述处理器用于加载所述至少一个程序以执行权利要求1-7任一项所述方法。
  10. 一种存储介质,其中存储有处理器可执行的指令,其特征在于,所述处理器可执行的指令在由处理器执行时用于执行如权利要求1-7任一项所述方法。
PCT/CN2021/080246 2020-03-13 2021-03-11 一种地质数据处理方法、系统、装置和存储介质 WO2021180178A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010173903.5A CN111402361A (zh) 2020-03-13 2020-03-13 一种地质数据处理方法、系统、装置和存储介质
CN202010173903.5 2020-03-13

Publications (1)

Publication Number Publication Date
WO2021180178A1 true WO2021180178A1 (zh) 2021-09-16

Family

ID=71413917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080246 WO2021180178A1 (zh) 2020-03-13 2021-03-11 一种地质数据处理方法、系统、装置和存储介质

Country Status (2)

Country Link
CN (1) CN111402361A (zh)
WO (1) WO2021180178A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114528280A (zh) * 2021-12-31 2022-05-24 济南轨道交通集团有限公司 一种钻孔原始分层的辅助标准化方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111402361A (zh) * 2020-03-13 2020-07-10 广州轨道交通建设监理有限公司 一种地质数据处理方法、系统、装置和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813789A (zh) * 2010-02-09 2010-08-25 徐胜利 一种地质图件的图例矢量化方法及装置
CN108150179A (zh) * 2018-01-11 2018-06-12 广州地铁集团有限公司 高渗透性复杂地层盾构压力舱渣土改良方法
CN109933867A (zh) * 2019-02-27 2019-06-25 中国地质大学(武汉) 一种岩土工程勘察方案动态优化方法
CN110363850A (zh) * 2019-05-15 2019-10-22 武汉大学 一种基于移动终端的三维地层信息可视化方法
CN111402361A (zh) * 2020-03-13 2020-07-10 广州轨道交通建设监理有限公司 一种地质数据处理方法、系统、装置和存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102831508A (zh) * 2012-09-06 2012-12-19 中南大学 掘进装备刀具信息管理系统
CN103279986B (zh) * 2013-06-17 2017-10-27 陈超东 三维水平地质剖面图制作方法及其用途
CN103955558B (zh) * 2014-04-01 2017-04-19 武汉软想科技有限公司 一种采集并处理不同行业工勘数据的方法
CN106991258B (zh) * 2017-05-10 2020-11-06 中铁第五勘察设计院集团有限公司 一种建立隧道工程地质纵断面图的方法
CN107273608B (zh) * 2017-06-13 2020-06-30 中国石油大学(华东) 一种油藏地质剖面图矢量化方法
CN108153985B (zh) * 2017-12-28 2023-02-10 中化地质河南局集团有限公司 一种轨道交通岩土工程三维智能信息系统
CN108952734B (zh) * 2018-05-15 2020-02-14 同济大学 一种盾构施工平纵断面信息手机端实时展示方法
CN109753707B (zh) * 2018-12-25 2023-10-24 核工业北京地质研究院 一种利用勘探线剖面提取地层界线开展三维建模的方法
CN110348052A (zh) * 2019-06-06 2019-10-18 中国石油天然气集团有限公司 一种基于图形分布的勘察数据自动识别方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813789A (zh) * 2010-02-09 2010-08-25 徐胜利 一种地质图件的图例矢量化方法及装置
CN108150179A (zh) * 2018-01-11 2018-06-12 广州地铁集团有限公司 高渗透性复杂地层盾构压力舱渣土改良方法
CN109933867A (zh) * 2019-02-27 2019-06-25 中国地质大学(武汉) 一种岩土工程勘察方案动态优化方法
CN110363850A (zh) * 2019-05-15 2019-10-22 武汉大学 一种基于移动终端的三维地层信息可视化方法
CN111402361A (zh) * 2020-03-13 2020-07-10 广州轨道交通建设监理有限公司 一种地质数据处理方法、系统、装置和存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114528280A (zh) * 2021-12-31 2022-05-24 济南轨道交通集团有限公司 一种钻孔原始分层的辅助标准化方法

Also Published As

Publication number Publication date
CN111402361A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
CN106651609B (zh) 一种矿产资源开发环境遥感监测辅助信息系统及方法
Riquelme et al. Discontinuity spacing analysis in rock masses using 3D point clouds
Lee et al. Super-efficiency infeasibility and zero data in DEA
Lezzerini et al. Cultural heritage documentation and conservation: three-dimensional (3D) laser scanning and geographical information system (GIS) techniques for thematic mapping of facade stonework of St. Nicholas Church (Pisa, Italy)
WO2021180178A1 (zh) 一种地质数据处理方法、系统、装置和存储介质
Turker et al. Building‐based damage detection due to earthquake using the watershed segmentation of the post‐event aerial images
US20180052593A1 (en) Providing visual selection of map data for a digital map
Qing et al. Operational earthquake-induced building damage assessment using CNN-based direct remote sensing change detection on superpixel level
Behnam et al. Automated progress monitoring system for linear infrastructure projects using satellite remote sensing
CN102508869B (zh) 将cad图形与属性数据导入gis系统的方法
CN105469443A (zh) 基于地质路线(prb)过程双重建模生成三维地质图的方法
US20160110823A1 (en) Computing system and method for visualizing integrated real estate data
Doraiswamy et al. Interactive visual exploration of spatio-temporal urban data sets using urbane
CN105550428A (zh) 一种基于tls技术的桥梁安全评估方法
Spagnolo et al. ACME, a GIS tool for automated cirque metric extraction
Jowitt et al. Geology and mining: mineral resources and reserves: their estimation, use, and abuse
CN104700225A (zh) 房产测绘管理系统
CN110675498B (zh) 长大带状三维地质环境建模方法、装置及终端设备
Šupinský et al. LiDAR point clouds processing for large-scale cave mapping: a case study of the Majko dome in the Domica cave
Carrell Tools and techniques for 3D geologic mapping in Arc Scene: Boreholes, cross sections, and block diagrams
CN107239889A (zh) 一种定量评价泥石流胁迫下山区建筑物易损性的方法
Khahro et al. Data preparation for GIS based land suitability modelling: A stepped approach
CN114511240A (zh) 一种矿山采掘计划生成方法及存储介质
Chisăliţă et al. Field study in the logging yard by modern methods
CN110363850B (zh) 一种基于移动终端的三维地层信息可视化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21768198

Country of ref document: EP

Kind code of ref document: A1