WO2021180151A1 - 香槟塔型多级节流控制阀 - Google Patents

香槟塔型多级节流控制阀 Download PDF

Info

Publication number
WO2021180151A1
WO2021180151A1 PCT/CN2021/080131 CN2021080131W WO2021180151A1 WO 2021180151 A1 WO2021180151 A1 WO 2021180151A1 CN 2021080131 W CN2021080131 W CN 2021080131W WO 2021180151 A1 WO2021180151 A1 WO 2021180151A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve core
sleeve
groove
shoulder
Prior art date
Application number
PCT/CN2021/080131
Other languages
English (en)
French (fr)
Inventor
王渭
陈凤官
明友
余宏兵
耿圣陶
叶晓节
王勤
Original Assignee
合肥通用机械研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥通用机械研究院有限公司 filed Critical 合肥通用机械研究院有限公司
Priority to US17/790,108 priority Critical patent/US11953120B2/en
Publication of WO2021180151A1 publication Critical patent/WO2021180151A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/04Means in valves for absorbing fluid energy for decreasing pressure or noise level, the throttle being incorporated in the closure member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/08Means in valves for absorbing fluid energy for decreasing pressure or noise level and having a throttling member separate from the closure member, e.g. screens, slots, labyrinths

Definitions

  • the invention relates to the field of valves, in particular to a champagne tower type multi-stage throttling control valve that can be applied to high-pressure differential media to reduce noise and resist cavitation damage.
  • the multi-stage throttle control valve is the most important link in automation control, and its reliability and adjustment accuracy will affect the safety and quality of the system's automated operation.
  • With the continuous development of the process industry there are more and more working conditions in the process that require high pressure difference control of the medium. Large medium pressure differences are prone to vibration and noise, cavitation damage, etc., resulting in multi-level throttling control Serious damage to the valve trim.
  • the multi-stage throttle control valve mainly has two structural forms, namely, a multi-stage sleeve-type control valve or a labyrinth-type multi-stage control valve.
  • the multi-stage sleeve type regulating valve is provided with a number of coaxial sleeves on the outer sleeve of the valve core, and a plurality of holes are arranged on each sleeve, and multiple sleeves are superimposed to perform multi-stage pressure reduction.
  • the labyrinth-type multi-stage regulating valve adopts the laminated structure of the labyrinth discs, and the multi-stage bending flow channels are processed on the discs, so as to improve the resistance coefficient of the sleeve through the multi-stage bending flow channels.
  • the above-mentioned traditional multi-stage pressure-reducing regulating valve can achieve a certain degree of throttling control function, but there are also the following problems:
  • For the multi-stage sleeve-type regulating valve due to its own structural size limitation, only relatively few The step-down stages cannot be applied to complex throttling occasions.
  • the opposite is true for the labyrinth-type multi-stage control valve which has a relatively complicated structure, is difficult to process, and is expensive to use.
  • the size of the flow channel of the labyrinth-type multi-stage control valve is often small, which makes the fluid flow in the flow channel tortuously and bends frequently, and the flow hole or flow channel has a great risk of blockage; and once blockage occurs, it cannot be quickly cleared. , It can reduce the performance of the valve, or even cause the valve to fail, which will cause a lot of troubles in actual use.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art and provide a champagne tower type multi-stage throttle control valve; the present invention has a compact and concise structure and high operating reliability, which can effectively reduce noise and resist cavitation damage. At the same time, it can further reduce the processing difficulty and cost of the valve, especially suitable for use under the control conditions of high pressure difference medium.
  • the champagne tower type multi-stage throttle control valve includes a valve body and a bonnet covering the valve body.
  • the bonnet and the inner cavity of the valve are enclosed to form a valve cavity where the throttle sleeve and the valve core can be placed; at the valve cavity
  • the through-type opening is provided with a fluid inlet and a fluid outlet communicating with the external environment, and the valve core is inserted into the cavity of the throttle sleeve, so that the medium can pass through the fluid formed between the throttle sleeve and the valve core after pouring in through the fluid inlet
  • the passage enters the fluid outlet; it is characterized in that: the shape of the sleeve cavity of the throttle sleeve is a stepped hole shape with more than two layers, and the shape of the valve core is a stepped shaft with more than two layers coaxial with the throttle sleeve, and the valve core
  • the number of shoulders is less than or equal to the number of shoulders of the throttling sleeve cavity, so that the
  • the total throttling area of the runner grooves on each stepped shaft section of the spool increases step by step; the runner grooves on the same stepped shaft section bypass the valve
  • the core axes are uniformly distributed in the axial direction, and the runner grooves on the stepped shaft sections of the adjacent layers are evenly staggered from each other.
  • the length of the runner grooves on each stepped shaft section of the valve core is smaller than the axial length of the current stepped shaft section, so that the runner groove is shaped like a straight key groove with closed ends.
  • the length of the flow channel groove on each stepped shaft section of the valve core is smaller than the axial length of the current stepped shaft section, so that the shape of the flow channel groove is closed at the end and the groove length direction presents an angle with the axial direction of the valve core.
  • Oblique groove shape; the inclination angles of the runner grooves of two adjacent layers of stepped shaft sections are opposite to each other.
  • the length of the runner grooves on each stepped shaft section of the valve core is equal to the axial length of the current stepped shaft section, so that the runner groove has a straight groove shape.
  • the length of the runner groove on each stepped shaft section of the valve core is equal to the axial length of the current stepped shaft section, so that the groove length direction of the runner groove shape and the axial direction of the valve core present an angled oblique passage groove ⁇ ;
  • the inclination angles of the runner grooves of the two adjacent stepped shaft sections are opposite to each other.
  • the outer wall of the throttle sleeve has a conical structure with a thin upper and a thick lower surface, a valve seat is arranged at the top of the throttle sleeve, and the bottom end surface of the valve seat and the top end surface of the throttle sleeve form a sealing fit;
  • the valve stem is vertically oriented After the valve cover, it enters the stepped cavity of the throttle sleeve through the coaxial hole at the valve seat, and forms a coaxial solid connection with the valve core;
  • the fluid hole is arranged radially through the valve seat, and the fluid inlet is located at The fluid outlet is located at the bottom end of the valve body on one side of the valve body, and the medium enters the fluid passage through the fluid hole.
  • the top end surface of the valve core abuts against the bottom end surface of the valve seat, so that the two cooperate to form a top end seal pair; the throttle area formed at the top end seal pair is larger than the first end surface of the valve core. Throttle area at the shoulder of the first stage.
  • the shape of the inner cavity of the valve core is a trumpet-shaped counterbore shape with an opening facing downward.
  • the fluid outlet is a bell-shaped enlarged diameter structure with a gradually increasing aperture.
  • the present invention combines multi-channel parallel and multi-stage series; when the valve circuit is closed, each layer of sealing surface formed between the valve core and the throttle sleeve forms an axial Sealing system to ensure the sealing effect of the entire valve body; and when the valve path is opened, the radial flow channel formed by the sealing surface and the axial or oblique flow channel formed by each layer of flow channel grooves cooperate to form a complete
  • the fluid passage can finally meet the requirements of noise reduction and anti-cavitation damage for the control conditions of the high pressure difference medium.
  • the above-mentioned multi-path parallel and multi-stage series combination of the flow channel coordination method makes the medium continuously change with the axis/oblique and radial changes of the flow channel when it enters the fluid passage through the fluid inlet. Flow direction, thereby realizing the function of fluid slow speed throttling;
  • the valve core itself is formed by a stepped shaft structure with large rigidity, and always maintains the guiding state with the throttle sleeve, the guiding is firm, and the processing difficulty and cost are relatively lower. Obviously, it has very good anti-vibration performance, can better adapt to the vibration conditions that occur in the control conditions of the high pressure difference medium, and it is extremely safe and stable to work.
  • the runner groove which is the most critical for forming the fluid path, it has a variety of specific implementation methods; or the runner groove is a straight groove or a chute structure with closed ends, that is, the end of the runner groove and the next layer There is a gap between the shoulder of the hole or the shoulder of the next layer; this method is the best solution, because of the errors in manufacturing and assembly and debugging, after the valve core and the throttle set are matched, the valve core shoulder and the throttle The step fit formed by the hole shoulder of the sleeve cannot be tightly sealed.
  • This method can give priority to the sealing realization of the top seal pair, and there may be a small gap in the matching of the step end surface of the other shaft shoulder and the hole shoulder, but the end of the runner groove Not exposed; the closed end of the flow channel groove can ensure that even if the above-mentioned seal leaks, the sealing cooperation between the outer wall of the valve core and the cavity wall of the throttle sleeve can ensure the sealing and throttling effect of the overall valve circuit.
  • the runner groove of the second method is a through groove structure, and the runner groove of this method needs to rely on the premise that the above-mentioned sealing surface can always be in a reliable sealing state, and will not be repeated here.
  • the runner grooves are arranged on the outer wall of the valve core to facilitate actual processing and production, thereby further reducing the processing cycle and production cost, and enhancing market competitiveness.
  • the angle of the runner groove between two adjacent layers should be opposite; this can further increase the resistance of the medium flowing through the runner groove, and improve the throttling and noise reduction Effect.
  • the angles of the runner grooves on the two adjacent layers of stepped shaft sections are opposite, and the force of the fluid flowing through the valve core can be balanced with each other, which helps to improve the working reliability and actual service life of the present invention. have to.
  • each layer of stepped shaft section on the valve core is provided with the same number of runner grooves but of different specifications, the runner grooves between the two adjacent layers should be staggered at a uniform angle, so that the medium can flow through the two
  • the layers need to switch directions to split or merge, which can further improve the throttling effect of the medium.
  • the cross-sectional area of each layer of channel grooves increases step by step with the flow direction of the medium, which is beneficial to the stepwise diffusion of the medium and reduces noise.
  • the runner grooves between two adjacent layers should also be staggered by a uniform angle.
  • the runner groove of the same specification can further facilitate the processing and manufacturing of the valve core, without frequent tool changes or changing processing procedures, reducing the processing difficulty and cost.
  • the number of runner grooves increases layer by layer, and the total throttling area can be increased step by step; the number of runner grooves increases layer by layer, that is, increasing the number of parallel circuits on each layer can further improve the throttling and noise reduction. Effect.
  • valve core and the valve stem can also be designed in an integrated manner, of course, a split structure can also be adopted.
  • the valve seat and the throttle sleeve can also be designed in an integrated manner, and the top seal pair formed by the valve seat and the valve core, that is, the first heavy seal structure formed between the valve core shoulder and the throttle sleeve space Under the premise, the valve seat and the valve core can also form a second re-sealing structure.
  • the throttling area formed at the top seal pair is larger than the throttling area at the first layer of the valve core, that is, the maximum flow velocity of the medium after throttling occurs downstream of the top seal pair, thereby effectively extending The effective life of the top seal pair is improved.
  • the fluid inlet is located at one side of the valve body and the fluid outlet is located at the bottom end of the valve body. The medium enters the fluid passage through the fluid hole at the valve seat, and finally flows out through the fluid outlet at the bottom end of the valve body.
  • the flow channel groove opened on the valve core can also have other groove shapes, and the cross section of the groove body can be triangular, trapezoidal, gear tooth shape or other shapes in addition to rectangular.
  • the valve core it can also be set to a hollow type, which can reduce the weight of the valve core.
  • the valve body has an angular structure, that is, the flow direction is side-in and bottom-out.
  • the fluid outlet can be designed as a bell-shaped enlarged diameter structure with a gradually increasing aperture to further reduce the medium flow rate and improve the actual throttling efficiency.
  • Fig. 1 is a schematic cross-sectional structure diagram of the present invention in a closed state
  • Figure 2 is a schematic cross-sectional structure diagram of the present invention in an open state
  • Figure 3 is a schematic diagram of the three-dimensional structure when the flow channel groove at the valve core is a closed-end straight key groove;
  • Figure 4 is a front view of the structure shown in Figure 3;
  • Figure 5 is a cross-sectional view of Figure 4.
  • Figure 6 is a schematic diagram of the three-dimensional structure when the flow channel groove at the valve core is a closed-end oblique groove
  • Fig. 7 is a front view of the structure shown in Fig. 6.
  • the specific implementation structure of the present invention can be referred to as shown in FIGS. 1-7.
  • the main structure includes a valve body 10, a valve cover 20, a valve core 40, a throttle sleeve 30, a valve seat 50, a valve stem 60, and the like.
  • the valve body 10 in the embodiment has an angular structure with a fluid inlet 11 running through the side and a fluid outlet 12 running through the bottom.
  • the fluid outlet 12 is provided with an expanding section or the fluid outlet 12 has a self-expanding structure. For details, refer to FIG. 1 -2 shown.
  • valve core 40 and the throttle sleeve 30 are stepped, and the shaft diameter, aperture and length are matched with each other.
  • the valve core 40 is a multi-layer stepped shaft
  • the sleeve cavity of the throttle sleeve 30 is a stepped hole of the corresponding layer that matches the valve core 40 to facilitate the two They form the coaxial sleeve type sealing fit relationship shown in the figure.
  • each layer of cylindrical stepped surface on the valve core 40 is provided with a number of runner grooves a, that is, the runner grooves a start along the shoulder 41 of the current stepped surface, and Extend in the axial or oblique direction to the direction of the medium flow, and finally form a through groove or a single-ended closed groove structure.
  • runner groove a if the groove structure in Figure 3-7 is not used, other groove shapes can also be used, and the cross section of the groove body can also be triangular, trapezoidal, or gear teeth in addition to rectangles. Shape or other shapes, etc., only need to be able to realize the conduction capability of the fluid passage under the stepped structure.
  • valve core 40 can also be set to a hollow type, so that the weight of the valve core 40 can be reduced.
  • a lower guide section can be provided on the valve core 40 to cooperate with the lower guide sleeve or the valve body 10, and a silencer structure can be provided on the lower guide section to improve the practicability of the overall structure.
  • the total throttle area of each layer of runner groove a should increase layer by layer with the flow direction of the medium; in other words, when the number of runner grooves a in each layer is the same, then the next layer of runner When groove a is equal in length, the axial cross-sectional area must be larger; and when the number of runner grooves a in each layer is inconsistent, the runner groove a of the same specification and size can be arranged, but the runner groove a of the next layer The number must be more than the number of the previous layer, and so on.
  • the flow channel grooves a of each layer are evenly distributed around the axis of the valve core 40, and the two adjacent layers of flow channel grooves a should be staggered by a uniform angle to achieve uniform media splitting and merging effects.
  • valve core 40 and the valve stem 60 can be designed as an integrated or separated design, and the valve seat 50 and the throttle sleeve 30 are the same.
  • the sealing surface range of the valve core 40 should cover the sealing surface range of the valve seat 50, that is, the outer diameter of the sealing surface of the valve core 40 is greater than the outer diameter of the sealing surface of the valve seat 50, and the inner diameter is smaller than the inner diameter of the sealing surface of the valve seat 50, and the valve core 40
  • the hardness of the sealing surface is greater than the hardness of the sealing surface of the valve seat 50.
  • valve core 40 adopts the straight keyway structure with closed ends as shown in Figures 3-5 as an example, the specific use process of the present invention will be further described as follows:
  • the present invention is in a closed state as a whole at this time.
  • the present invention is turned on as shown in Figure 2, that is, the valve stem 60 is driven down; since the valve stem 60 is fixedly connected to the valve core 40, the valve stem 60 will drive the valve core 40 down together, so that the valve core 40 and the valve seat 50 are The formed top seal pair b is opened, and the shoulder 41 of the valve core 40 gradually leaves the shoulder 31 of the throttle sleeve 30.
  • the end of the runner groove a is a small distance from the shoulder 41 of the next layer, that is, when the top seal pair b is separated, the runner groove a on each step of the valve core 40 is not yet complete.
  • the high pressure differential medium flows in from the side inlet of the valve body 10, that is, the fluid inlet 11, and flows through the fluid hole 51 at the valve seat 50. It then flows through the fluid passage formed by the valve core 40 and the throttle sleeve 30, and then flows to the expanded diameter section of the valve body 10, that is, the fluid outlet 12, and finally flows out of the valve body 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lift Valve (AREA)
  • Details Of Valves (AREA)

Abstract

提供了一种可应用于高压差介质降噪抗汽蚀破坏的香槟塔型多级节流控制阀,包括阀体(10)、阀盖(20)、节流套(30)及阀芯(40),节流套(30)的套腔外形呈两层以上的阶梯孔状,而阀芯(40)外形呈两层以上的与节流套(30)同轴的阶梯轴状,且阀芯(40)处轴肩(41)数目少于或等于节流套(30)套腔的孔肩(31)数目,从而使得轴向上的每组阀芯(40)处轴肩(41)均能与相应节流套(30)处孔肩(31)形成密封面配合;节流套(30)的孔肩(31)和/或阀芯(40)的轴肩(41)处轴向的或斜向的开设有流道槽(a)。香槟塔型多级节流控制阀结构紧凑简洁且动作可靠度高,降低了阀门的加工难度及成本。

Description

香槟塔型多级节流控制阀
本申请主张2020年03月13日申请的申请号为202010173265.7的“香槟塔型多级节流控制阀”的优先权,原受理机构为中国。
技术领域
本发明涉及阀门领域,具体涉及一种可应用于高压差介质降噪抗汽蚀破坏的香槟塔型多级节流控制阀。
背景技术
多级节流控制阀作为自动化控制中最为重要的环节,其可靠性及调节精度都会影响系统自动化运行的安全及质量。随着流程工业的不断发展,工艺中越来越多地出现需要对介质进行高压差控制的工况要求,介质压差大很容易出现振动噪声、气蚀破坏等现象,从而造成多级节流控制阀阀内件的严重损坏。
现有技术中,多级节流控制阀主要有两种结构形式,也即多级套筒式调节阀或迷宫型多级调节阀。多级套筒式调节阀是在阀芯外套设若干个同轴套筒,在每个套筒上设置多个孔,叠加多层套筒进行多级减压。迷宫型多级调节阀则采用迷宫盘片层叠式结构,在盘片上加工多级折弯流道,从而通过多级弯折的流道来提高套筒的阻力系数。上述传统多级减压调节阀固然可以起到一定程度的节流控制功能,但也存在以下问题:对于多级套筒式调节阀而言,由于自身构造尺寸限制,只能设置相对较少的降压级数,无法应用于复杂节流场合。而对于迷宫型多级调节阀而言则反之,结构相对复杂,加工难度大,使用成本高昂。此外,迷宫型多级调节阀的流道尺寸往往较小,使得流体在流道内流动过程中迂回、折弯次数多,流通孔或流道存在很大的堵塞风险;且一旦发生堵塞无法快速清除,轻则降低阀门的性能,重则甚至造成阀门失效,从而给实际使用带来诸多困扰。
发明内容
本发明的目的是克服上述现有技术的不足,提供一种香槟塔型多级节流控制阀;本发明结构紧凑简洁且动作可靠度高,能在具备有效降噪和抗汽蚀破坏功能的同时,亦能进一步的降低阀门的加工难度及成本,尤其适应高压差介质的控制工况下所使用。
为实现上述目的,本发明采用了以下技术方案:
香槟塔型多级节流控制阀,包括阀体以及盖覆于阀体上的阀盖,阀盖与阀体内腔共同围合形成可供节流套及阀芯安置的阀腔;阀腔处贯穿式的开设有连通外部环境的流体进口及流体出口,且阀芯穿设于节流套套腔内,以使得介质经由流体进口涌入后,能通过节流套与阀芯之间形成的流体通路进入流体出口;其特征在于:所述节流套的套腔外形呈两层以上的阶梯孔状,而阀芯外形呈两层以上的与节流套同轴的阶梯轴状,且阀芯处轴肩数目少于或等于节流套套腔的孔肩数目,从而使得轴向上的每组阀芯处轴肩均能与相应节流套处孔肩形成密封面配合;节流套的孔肩和/或阀芯轴肩处轴向或斜向的开设有流道槽,且所述孔肩处流道槽与所述轴肩处流道槽的布置位置彼此空间避让;当阀芯相对节流套产生轴向位移动作直至密封面打开时,相配合的节流套的孔肩和阀芯轴肩形成的密封面以及各流道槽彼此连通形成所述流体通路。
优选的,由流体通路的进口端至流体通路的出口端,阀芯的各层阶梯轴段上的流道槽的总节流面积逐级增多;同一层阶梯轴段上的流道槽绕阀芯轴线轴向均布,相邻层阶梯轴段上的各流道槽彼此均匀错开。
优选的,阀芯的各层阶梯轴段上的流道槽长度小于当前层阶梯轴段的轴向长度,从而使得流道槽外形呈末端封闭的直键槽状。
优选的,阀芯的各层阶梯轴段上的流道槽长度小于当前层阶梯轴段的轴向长度,从而使得流道槽外形呈末端封闭且槽长方向与阀芯轴向呈现夹角的斜向槽状;相邻两层阶梯轴段的流道槽的倾斜角度彼此相反。
优选的,阀芯的各层阶梯轴段上的流道槽长度等于当前层阶梯轴段 的轴向长度,从而使得流道槽外形呈直通槽状。
优选的,阀芯的各层阶梯轴段上的流道槽长度等于当前层阶梯轴段的轴向长度,从而使得流道槽外形槽长方向与阀芯轴向呈现夹角的斜向通槽状;相邻两层阶梯轴段的流道槽的倾斜角度彼此相反。
优选的,所述节流套外壁呈上细下粗的锥面状结构,在节流套的顶端布置阀座,阀座底端面与节流套的顶端面形成密封配合;阀杆铅垂向的阀盖后,经阀座处同轴孔进入节流套的阶梯孔腔内,并与阀芯间构成同轴式的固接配合关系;阀座处径向贯穿布置流体孔,流体进口位于阀体一侧而流体出口位于阀体底端部,介质经由流体孔进入所述流体通路。
优选的,所述阀芯顶端面抵靠式的密封抵紧于阀座底端面处,从而使得两者配合形成顶端密封副;所述顶端密封副处形成的节流面积大于阀芯处第一级轴肩处的节流面积。
优选的,所述阀芯的内腔外形呈开口朝下的喇叭型沉孔状。
优选的,流体出口为孔径逐渐增大的喇叭口状的扩径结构。
本发明的有益效果在于:
1)、抛弃了传统的多级节流阀结构,本发明通过采用多路并联与多级串联相互结合;当阀路关闭时,阀芯与节流套间形成的每层密封面来形成轴向密封体系,以保证整个阀体的密封效果;而当阀路开启时,上述密封面所形成的径向流道与各层流道槽所形成的轴向或斜向流道配合来形成完整的流体通路,最终可实现对高压差介质控制工况的降噪、抗汽蚀破坏的要求。具体而言,一方面,上述多路并联与多级串联相互结合的流道配合方式,使得介质在经由流体进口进入流体通路时,会不断随流道的轴/斜向及径向变化而改变流向,从而实现了流体缓速节流功能;而另一方面,阀芯自身由刚度大的阶梯轴结构形成,并与节流套始终保持导向状态,导向坚固,加工难度及成本相对更低,并显然具备了非常好的抗振动性能,可以较好地适应高压差介质控制工况中发 生的振动工况,工作起来极为安全稳定。
2)、对于形成流体通路最关键的流道槽而言,其具备多种具体实现方式;或流道槽为末端封闭的直槽或斜槽结构,也即流道槽的末端与下一层孔肩或下一层轴肩之间是存在间隙的;该种方式为最优方案,因为加工制造及装配调试误差等,在阀芯与节流套装配完成后,阀芯轴肩与节流套的孔肩所形成的台阶配合不可能密封配合严实,该种方式可优先保证顶端密封副的密封实现,而其它轴肩与孔肩的台阶端面配合可存在小间隙,但流道槽的末端未被露出;末端封闭的流道槽,可保证即使上述密封出现泄漏问题,也能通过阀芯外壁与节流套孔腔壁的密封配合来保证整体阀路的密封节流效果。第二种方式的流道槽为通槽结构,该种方式的流道槽需要依赖上述密封面能始终处于可靠密封状态为前提,此处就不再赘述。上述方式中,统一的是均将流道槽布置在阀芯外壁处,以便于实际加工及制作,从而进一步的缩减加工周期及制作成本,以提升市场竞争力。
3)、值得注意的是,当流道槽为斜槽时,相邻两层之间的流道槽的角度应当相反;这样可进一步增加介质流经流道槽的阻力,提升节流降噪效果。与此同时,相邻两层阶梯轴段上的流道槽的角度相反,流体流经阀芯的作用力可以被相互平衡,有助于提升本发明的工作可靠性及实际使用寿命,一举多得。
4)、当阀芯上每层阶梯轴段处均开设有相同数量但不同规格的流道槽时,相邻两层之间的流道槽应当错开均匀的角度,从而能使得介质流经两层之间需要转换方向来进行分流或者合流,这样可以进一步提升对介质的节流效果。每一层流道槽的横截面积随着介质流向逐级增大,这样是有利于介质的逐级扩散,降低噪音等。而当阀芯上每层阶梯轴段处开设有不同数量但相同规格的流道槽时,相邻两层之间的流道槽同样应当错开均匀的角度。相同规格的流道槽,可进一步的便于阀芯的加工制造,不需要频繁换刀或更改加工程序,降低加工难度及成本。流道槽 的数量逐层增多,即可实现总的节流面积是逐级增大的;流道槽的数量逐层增多,即增加每层的并联路数,可进一步提升节流降噪的效果。
5)、阀芯与阀杆也可以一体化设计,当然也可以采用分体式结构。同理,阀座和节流套也可一体化设计,并使阀座与阀芯形成的顶端密封副,也即:在阀芯轴肩与节流套空间所形成的第一重密封结构的前提下,阀座与阀芯也能形成第二重密封结构。当本发明开启时,顶端密封副处形成的节流面积大于阀芯第一层轴肩处的节流面积,即使得介质节流后的最大流速发生在顶端密封副的下游,从而有效地延长了顶端密封副的有效寿命。工作时,流体进口位于阀体一侧而流体出口位于阀体底端部,介质经由阀座处流体孔进入所述流体通路,并最终经由阀体底端处流体出口流出。
6)、实际上,阀芯上开设的流道槽,也可以为其它刻槽形状,而槽体横截面除了矩形外,还可以是三角形、梯形、齿轮齿形或其它形状。至于阀芯也可以设置为中空型式,可以减轻阀芯的重量。阀体为角式结构,也即流向为侧进底出,此时可将流体出口设计为孔径逐渐增大的喇叭口状的扩径结构,以进一步降低介质流速,提升实际节流效率。
附图说明
图1为本发明处于关闭状态下的剖视结构示意图;
图2为本发明处于开启状态下的剖视结构示意图;
图3为阀芯处流道槽为末端封闭式直键槽时的立体结构示意图;
图4为图3所示结构的正视图;
图5为图4的剖视图;
图6为阀芯处流道槽为末端封闭式斜向槽时的立体结构示意图;
图7为图6所示结构的正视图。
附图中附图标记的具体含义如下:
a-流道槽 b-顶端密封副
10-阀体 11-流体进口 12-流体出口
20-阀盖
30-节流套 31-孔肩
40-阀芯 41-轴肩
50-阀座 51-流体孔
60-阀杆
具体实施方式
为便于理解,此处对本发明的具体结构及工作方式作以下进一步描述:
本发明的具体实施结构可参照图1-7所示,其主体结构包括阀体10、阀盖20、阀芯40、节流套30、阀座50以及阀杆60等。实施例中的阀体10为角式结构,侧边贯穿布置流体进口11,底部贯穿布置流体出口12,流体出口12处设置有扩径段或者流体出口12自成扩径结构,具体参照图1-2所示。
对于阀芯40及节流套30而言,如图如图1-7所示的,两者均为阶梯状,且轴径、孔径及长度相互配合。换言之,在图1-2所示结构中,阀芯40为多层式的阶梯轴状,而节流套30的套腔为与阀芯40相匹配的对应层的阶梯孔状,以便于两者形成图中所示的同轴套接式密封配合关系。在图3-7中可以看出,阀芯40上的每层柱状阶梯面处均开设有若干流道槽a,也即流道槽a是沿当前层阶梯面的轴肩41处开始,并沿轴向或斜向向介质流向方向延伸,最终形成通槽或单端封闭的槽型结构。当然,对于流道槽a而言,如不采用图3-7中的槽型结构,也可以为其它刻槽形状,甚至槽体的横截面除了矩形外,还可以是三角形、梯形、齿轮齿形或其它形状等,只需能实现阶梯结构下的流体通路导通能力即可。
当然,阀芯40也可以设置为中空型式,从而可以减轻阀芯40的重量。必要时,可在阀芯40上设有下导向段,与下导向套或阀体10配合,在下导向段上,可设置消音结构,以提升整体结构的实用性。
在开设流道槽a时,应当注意,各层流道槽a的总节流面积随着介质流向应当逐层增多;换言之,当各层流道槽a数目一致时,则下一层流道槽a在槽长相等的情况下,轴向截面积必然更大;而当各层流道槽a数目不一致时,可布置相同规格尺寸的流道槽a,但下一层流道槽a的数目必然多余上一层的数目,以此类推即可。每层流道槽a均绕阀芯40轴线均匀分布,且相邻两层流道槽a应当错开均匀角度,以实现均匀的介质分流及合流效果。
实际制作时,阀芯40与阀杆60既可以一体化设计也可以采用分体式设计,阀座50和节流套30同理。阀座50与阀芯40形成的顶端密封副b在阀门开启时,顶端密封副b处形成的节流面积大于第一层阶梯轴段处的节流面积,即使得介质节流后的最大流速发生在顶端密封副b的下游,从而有效地延长了顶端密封副b的有效寿命。此外。阀芯40的密封面范围应当覆盖阀座50的密封面范围,即阀芯40密封面的外径大于阀座50密封面的外径,内径小于阀座50密封面的内径,且阀芯40密封面的硬度大于阀座50密封面的硬度。
为便于理解本发明,此处结合图1-2,且阀芯40采用如图3-5所示的末端封闭的直键槽结构为例,对本发明的具体使用流程作以下进一步描述:
如图1所示,此时本发明整体处于关闭状态。
之后,如图2所示的开启本发明,即驱动阀杆60下行;由于阀杆60与阀芯40固定连接,阀杆60会带动阀芯40一起下行,使得阀芯40与阀座50所形成的顶端密封副b打开,阀芯40的轴肩41也逐渐离开节流套30的孔肩31。由于如图3-5中,流道槽a的末端距离下一层轴肩41有较小距离,即当上述顶端密封副b脱离时,阀芯40每层阶梯上的流道槽a尚未完全移出节流套30的套腔所形成的套腔配合面中,也即此时节流套30的套腔仍然在周向上与阀芯40的外周壁间形成密封配合。此时,需再进一步下移阀杆60,直至阀芯40上的流道槽a从节流 套30的套腔配合面中逐渐移出,流体通路如图2所示的被导通。
当本发明开启时,如图2中流向箭头所示,高压差介质从阀体10的侧边进口也即流体进口11流入,流经阀座50处流体孔51。再流经阀芯40与节流套30组成的流体通路,然后流至阀体10的扩径段也即流体出口12,最后流出阀体10。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制。尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围。如对流道槽a进行不改变固有功能的前提下的单纯外形的替换,或对节流套30外壁及阀体10外壁进行单纯外观的变化,甚至对流体进口11及流体出口12的布置位置进行不影响功能下的简单变更等,这类在上述结构基础上的常规技术延伸,均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 香槟塔型多级节流控制阀,包括阀体(10)以及盖覆于阀体(10)上的阀盖(20),阀盖(20)与阀体(10)内腔共同围合形成可供节流套(30)及阀芯(40)安置的阀腔;阀腔处贯穿式的开设有连通外部环境的流体进口(11)及流体出口(12),且阀芯(40)穿设于节流套(30)套腔内,以使得介质经由流体进口(11)涌入后,能通过节流套(30)与阀芯(40)之间形成的流体通路进入流体出口(12);其特征在于:所述节流套(30)的套腔外形呈两层以上的阶梯孔状,而阀芯(40)外形呈两层以上的与节流套(30)同轴的阶梯轴状,且阀芯(40)处轴肩(41)数目少于或等于节流套(30)套腔的孔肩(31)数目,从而使得轴向上的每组阀芯(40)处轴肩(41)均能与相应节流套(30)处孔肩(31)形成密封面配合;节流套(30)的孔肩(31)和/或阀芯(40)轴肩(41)处轴向或斜向的开设有流道槽(a),且所述孔肩(31)处流道槽(a)与所述轴肩(41)处流道槽(a)的布置位置彼此空间避让;当阀芯(40)相对节流套(30)产生轴向位移动作直至密封面打开时,相配合的节流套(30)的孔肩(31)和阀芯(40)轴肩(41)形成的密封面以及各流道槽(a)彼此连通形成所述流体通路。
  2. 根据权利要求1所述的香槟塔型多级节流控制阀,其特征在于:由流体通路的进口端至流体通路的出口端,阀芯(40)的各层阶梯轴段上的流道槽(a)的总节流面积逐级增多;同一层阶梯轴段上的流道槽
    (a)绕阀芯(40)轴线轴向均布,相邻层阶梯轴段上的各流道槽(a)彼此均匀错开。
  3. 根据权利要求1所述的香槟塔型多级节流控制阀,其特征在于:阀芯(40)的各层阶梯轴段上的流道槽(a)长度小于当前层阶梯轴段的轴向长度,从而使得流道槽(a)外形呈末端封闭的直键槽状。
  4. 根据权利要求1所述的香槟塔型多级节流控制阀,其特征在于:阀芯(40)的各层阶梯轴段上的流道槽(a)长度小于当前层阶梯轴段的轴向长度,从而使得流道槽(a)外形呈末端封闭且槽长方向与阀芯 (40)轴向呈现夹角的斜向槽状;相邻两层阶梯轴段的流道槽(a)的倾斜角度彼此相反。
  5. 根据权利要求1所述的香槟塔型多级节流控制阀,其特征在于:阀芯(40)的各层阶梯轴段上的流道槽(a)长度等于当前层阶梯轴段的轴向长度,从而使得流道槽(a)外形呈直通槽状。
  6. 根据权利要求1所述的香槟塔型多级节流控制阀,其特征在于:阀芯(40)的各层阶梯轴段上的流道槽(a)长度等于当前层阶梯轴段的轴向长度,从而使得流道槽(a)外形槽长方向与阀芯(40)轴向呈现夹角的斜向通槽状;相邻两层阶梯轴段的流道槽(a)的倾斜角度彼此相反。
  7. 根据权利要求1或2或3或4或5或6所述的香槟塔型多级节流控制阀,其特征在于:所述节流套(30)外壁呈上细下粗的锥面状结构,在节流套(30)的顶端布置阀座(50),阀座(50)底端面与节流套(30)的顶端面形成密封配合;阀杆(60)铅垂向的阀盖(20)后,经阀座(50)处同轴孔进入节流套(30)的阶梯孔腔内,并与阀芯(40)间构成同轴式的固接配合关系;阀座(50)处径向贯穿布置流体孔(51),流体进口(11)位于阀体(10)一侧而流体出口(12)位于阀体(10)底端部,介质经由流体孔(51)进入所述流体通路。
  8. 根据权利要求7所述的香槟塔型多级节流控制阀,其特征在于:所述阀芯(40)顶端面抵靠式的密封抵紧于阀座(50)底端面处,从而使得两者配合形成顶端密封副(b);所述顶端密封副(b)处形成的节流面积大于阀芯(40)处第一级轴肩(41)处的节流面积。
  9. 根据权利要求1或2或3或4或5或6所述的香槟塔型多级节流控制阀,其特征在于:所述阀芯(40)的内腔外形呈开口朝下的喇叭型沉孔状。
  10. 根据权利要求1或2或3或4或5或6所述的香槟塔型多级节流控制阀,其特征在于:流体出口(12)为孔径逐渐增大的喇叭口状的 扩径结构。
PCT/CN2021/080131 2020-03-13 2021-03-11 香槟塔型多级节流控制阀 WO2021180151A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/790,108 US11953120B2 (en) 2020-03-13 2021-03-11 Champagne tower-type multi-stage throttle control valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010173265.7 2020-03-13
CN202010173265.7A CN111473155B (zh) 2020-03-13 2020-03-13 香槟塔型多级节流控制阀

Publications (1)

Publication Number Publication Date
WO2021180151A1 true WO2021180151A1 (zh) 2021-09-16

Family

ID=71748260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080131 WO2021180151A1 (zh) 2020-03-13 2021-03-11 香槟塔型多级节流控制阀

Country Status (3)

Country Link
US (1) US11953120B2 (zh)
CN (1) CN111473155B (zh)
WO (1) WO2021180151A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117432813A (zh) * 2023-12-19 2024-01-23 成都乘风阀门有限责任公司 一种弹簧式多级节流放空阀

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111473155B (zh) * 2020-03-13 2022-04-08 合肥通用机械研究院有限公司 香槟塔型多级节流控制阀
CN113586782A (zh) * 2021-07-30 2021-11-02 西安西热节能技术有限公司 一种降低局部应力集中的调节阀
CN113958742B (zh) * 2021-09-29 2023-12-19 合肥通用机械研究院有限公司 一种双级塔式可调型定流量平衡阀
CN114151551B (zh) * 2021-12-28 2024-05-28 江苏智能特种阀门有限公司 高压加氢装置用高压差多级降压角型调节阀
CN115614480B (zh) * 2022-09-22 2023-09-19 浙江中控流体技术有限公司 一种柱塞式多级降压降噪阀芯及单座控制阀
CN117432864B (zh) * 2023-12-19 2024-02-27 成都乘风阀门有限责任公司 一种用于阀门的节流装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113908A (en) * 1990-09-04 1992-05-19 Dresser Industries, Inc. Multistep trim design
CN202868036U (zh) * 2012-08-31 2013-04-10 山东沃克控制阀有限公司 一种减压阀门
CN203131204U (zh) * 2012-12-31 2013-08-14 雷蒙德(北京)阀门制造有限公司 多级降压降噪控制阀
CN205605856U (zh) * 2016-02-29 2016-09-28 沈阳科派卡装备有限公司 一种多级降压柱状单座控制阀
CN206112247U (zh) * 2016-09-20 2017-04-19 华南理工大学 一种迷宫式微流量调节阀
CN111473155A (zh) * 2020-03-13 2020-07-31 合肥通用机械研究院有限公司 香槟塔型多级节流控制阀

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3243157A (en) * 1961-06-14 1966-03-29 Zimmer Verfahrenstechnik Reducing valves
US3485474A (en) * 1966-08-03 1969-12-23 Sheldon C Evans Adjustable fluid restrictor
US3637188A (en) * 1970-01-13 1972-01-25 Baldwin Lima Hamilton Corp Multistage throttle valve
NL7403394A (en) * 1974-03-13 1975-09-16 Fdo Techn Adviseurs Variable throttle valve has housing and adjustable element - with, between them, series of laterally offset gaps with obstructions
US4044991A (en) * 1975-10-06 1977-08-30 Consolidated Controls Corporation High energy loss fluid flow control device
US4044992A (en) * 1976-01-09 1977-08-30 Consolidated Controls Corporation High energy loss fluid flow control device
US4504040A (en) * 1980-07-03 1985-03-12 Spils Richard W Multiple stage valve
US4494731A (en) * 1980-07-03 1985-01-22 Spils Richard W Valve having a movable interface isolating an actuating mechanism
US4363464A (en) * 1980-07-03 1982-12-14 Spils Richard W Angle globe valve
CN2425252Y (zh) * 2000-06-12 2001-03-28 马建然 阶梯形多级节流减压阀
US8585011B2 (en) * 2007-11-26 2013-11-19 Cameron International Corporation Control valve trim
US9556970B2 (en) * 2013-07-19 2017-01-31 Control Components, Inc. Cascade trim for control valve
CN206830935U (zh) * 2017-06-01 2018-01-02 李元兵 具有多级降压阀芯的降压阀
CN208871143U (zh) * 2018-09-10 2019-05-17 四川滨大阀门有限责任公司 一种用于高压差工况的多级降压抗冲蚀阀内组件结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113908A (en) * 1990-09-04 1992-05-19 Dresser Industries, Inc. Multistep trim design
CN202868036U (zh) * 2012-08-31 2013-04-10 山东沃克控制阀有限公司 一种减压阀门
CN203131204U (zh) * 2012-12-31 2013-08-14 雷蒙德(北京)阀门制造有限公司 多级降压降噪控制阀
CN205605856U (zh) * 2016-02-29 2016-09-28 沈阳科派卡装备有限公司 一种多级降压柱状单座控制阀
CN206112247U (zh) * 2016-09-20 2017-04-19 华南理工大学 一种迷宫式微流量调节阀
CN111473155A (zh) * 2020-03-13 2020-07-31 合肥通用机械研究院有限公司 香槟塔型多级节流控制阀

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117432813A (zh) * 2023-12-19 2024-01-23 成都乘风阀门有限责任公司 一种弹簧式多级节流放空阀
CN117432813B (zh) * 2023-12-19 2024-03-15 成都乘风阀门有限责任公司 一种弹簧式多级节流放空阀

Also Published As

Publication number Publication date
US11953120B2 (en) 2024-04-09
CN111473155B (zh) 2022-04-08
US20230052558A1 (en) 2023-02-16
CN111473155A (zh) 2020-07-31

Similar Documents

Publication Publication Date Title
WO2021180151A1 (zh) 香槟塔型多级节流控制阀
US5771929A (en) Low noise ball valve assembly with airfoil insert
US8881768B2 (en) Fluid flow control devices and systems, and methods of flowing fluids therethrough
US20050034770A1 (en) Fluid flow regulation
CN210890160U (zh) 一种串联阀芯双密封面多级降压调节阀
CN112664671B (zh) 一种多级套筒节流型高压差调节球阀
CN111473156A (zh) 一种小流量大压差调节阀
CA2233535C (en) Low noise ball valve assembly with downstream airfoil insert
CN110657251A (zh) 一种串联阀芯双密封面多级降压调节阀
US3042359A (en) Valve seat and disc arrangement
CN209818775U (zh) 一种具有分段式流量特性的抗气蚀阀门
CN202371284U (zh) 一种保护截止阀阀芯的分流减压装置
US4700746A (en) Control valve for high pressure fluids
CN220060684U (zh) 一种迷宫式节流降压组件及其调节阀
EP2422064A1 (en) Throttle valve and method of fabrication
CN219013387U (zh) 一种可调节流量的角式截止阀
CN217081442U (zh) 节能型六偏心金属密封蝶阀
CN218644894U (zh) 截止阀
CN210141356U (zh) 一种蝶阀体结构
CN219888737U (zh) 一种尘气蝶阀
US20230048962A1 (en) Fluid flow control devices and systems, and methods of flowing fluids
CN221097688U (zh) 一种多级降压式调节阀
US11566714B2 (en) Fluid flow control devices and related systems and methods
US11112032B2 (en) Tapered anti-cavitation cage
CN102155581B (zh) 一种多密封及分流减压节流截止阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767655

Country of ref document: EP

Kind code of ref document: A1