WO2021180100A1 - 基于swmm与efdc耦合模型的调蓄工程环境效应评估方法及装置 - Google Patents

基于swmm与efdc耦合模型的调蓄工程环境效应评估方法及装置 Download PDF

Info

Publication number
WO2021180100A1
WO2021180100A1 PCT/CN2021/079867 CN2021079867W WO2021180100A1 WO 2021180100 A1 WO2021180100 A1 WO 2021180100A1 CN 2021079867 W CN2021079867 W CN 2021079867W WO 2021180100 A1 WO2021180100 A1 WO 2021180100A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
swmm
water quality
project
storage
Prior art date
Application number
PCT/CN2021/079867
Other languages
English (en)
French (fr)
Inventor
夏瑞
陈焰
杨中文
王璐
马淑芹
张凯
后希康
王晓
贾蕊宁
杨辰
张晓娇
Original Assignee
中国环境科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国环境科学研究院 filed Critical 中国环境科学研究院
Priority to AU2021233949A priority Critical patent/AU2021233949A1/en
Publication of WO2021180100A1 publication Critical patent/WO2021180100A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/152Water filtration

Definitions

  • the invention relates to the field of water environment treatment engineering, in particular to a method and device for evaluating the environmental effects of a regulation and storage engineering based on a SWMM and EFDC coupling model.
  • the regulation and storage project is a common method of urban water environment management, especially non-point source pollution control.
  • non-point sources are directly imported into the river with rainfall and runoff, which will increase the pollution load of the river and worsen the water quality, which will affect the water quality section to reach the standard.
  • a storage tank of a certain size can be built in the rainwater pipe network system to collect rainfall runoff in a certain size area. From the perspective of water conservancy, the effect of staggering the flood peaks can be achieved, and from the perspective of water quality improvement, the initial rainwater with a large pollution load can be accommodated, and the impact of the initial rainwater on the water quality of the river can be reduced.
  • the main methods used to assess the environmental effects of storage projects include:
  • the post-effect evaluation method based on data analysis mainly evaluates the effect of the project operation by analyzing the degree of water quality change after the project is implemented, but this method mainly relies on the measured data after the actual operation of the project, and it cannot be completed during the project planning period. Pre-judgment of the effect after operation has great limitations in guiding the formulation of preliminary project planning schemes.
  • the pollution reduction effect evaluation method based on load calculation mainly analyzes the reduction effect after the implementation of the project from the perspective of total pollutant control, but does not consider the response relationship between pollution reduction and water quality, and cannot scientifically evaluate the engineering design plan (location, It is difficult to provide technical support for the formulation of a treatment project with water quality goals as the core of the water environment quality improvement effect after implementation.
  • the urban river hydrodynamic water quality model simulation is used as the method, and the water quality change before and after the project is used as the boundary condition to simulate and analyze the improvement effect of the water environment.
  • this method only considers the pollution discharge and The water environment response process in the river channel does not fully consider the impact of the rain-runoff pollution input from the source of the river channel on the water environment governance effect under the influence of the rainfall runoff process under different seasonal conditions.
  • the factors used in the evaluation process are relatively one-sided, and the impact of urban non-point source pollution input on the water environment is not considered, and the impact of the location and scale of the project on the environmental effects of the storage project is not considered, and the project is not considered.
  • the impact of the change process of rainfall and runoff on the environmental effects of the storage project during the implementation process may easily lead to inaccurate assessment results.
  • embodiments of the present invention provide a method and device for evaluating the environmental effect of a storage project based on a coupling model of SWMM and EFDC .
  • an embodiment of the present invention provides a method for evaluating the environmental effects of a regulation and storage project based on a coupling model of SWMM and EFDC, including: acquiring first geographic data used to characterize the runoff of the pipe network in the study area, and characterizing the pipe network in the study area The second geographic data of the parameter, the third geographic data that characterizes the distribution of rivers in the study area, and the fourth geographic data that characterizes the hydrodynamic water quality of the river in the study area; according to the first geographic data, the second geographic data, the third geographic data, and the fourth geographic data
  • the data constructs the first coupling model of SWMM and EFDC to obtain the first output data used to characterize the water quality and water volume before the implementation of the regulation and storage project; obtain the location, scale and catchment area data of the regulation and storage project, and project investment data; according to the regulation and storage project Adjust the SWMM model based on the location, scale and catchment area data; construct the second coupling model of SWMM and EFDC according to the adjusted SWMM
  • the SWMM model includes a pipe network system, and adjusts the SWMM model according to the location, scale and catchment area data of the storage project, including: generalizing the storage project as a node into the pipe network system according to the location of the storage project; converting the node Turn the storage tank into a storage tank and convert the pipeline after the storage tank into an orifice; adjust the pipe network system according to the catchment area data, the storage tank and the orifice of the storage project.
  • adjusting the pipe network system according to the water catchment area data, the storage tank and the orifice of the regulation and storage project including: according to the water catchment area data of the storage tank, divide the water catchment area in the pipe network system into Independent area; adjust the direction of the pipe network and boundary conditions of the catchment area according to the catchment area, the location of the storage tank and the orifice.
  • evaluating the environmental effects of the storage project according to the first output data, the second output data, and the project investment data includes: obtaining the first water quality index of the section to be assessed according to the first output data and the preset water quality index Concentration, the first water volume, the section to be assessed is the downstream exit section of the river in the study area, the focus section or the water quality assessment section; according to the second output data and the preset water quality indicators, the second water quality index concentration, second water quantity, Water quality indicator compliance days and total water quality indicator simulation days; calculate water quality concentration changes based on the first water quality indicator concentration, first water volume, second water quality indicator concentration, second water volume, water quality indicator compliance days, total water quality indicator simulation days, and project investment data Rate, load flux change, compliance rate, and water quality-based cost-effectiveness ratio; according to the water quality concentration change rate, load flux change, compliance rate, and water quality-based cost-effectiveness ratio to evaluate the environmental effects of storage projects.
  • k represents the rate of change of water quality concentration
  • C 0 and C t respectively represent the water quality index concentration (mg/l) before and after the regulation and storage project
  • W represents the change in load flux
  • Q 0 , Q t respectively represent the regulation and storage project Front and rear water volume (m 3 /s)
  • S represents the rate of compliance
  • D S and D T represent the number of days after the regulation and storage project reaches the standard and the total number of simulated days
  • R represents the cost-effectiveness ratio based on water quality
  • M represents the project investment (Ten thousand yuan).
  • constructing a first coupling model of SWMM and EFDC based on the first geographic data, the second geographic data, the third geographic data, and the fourth geographic data includes: constructing the SWMM model based on the first geographic data; constructing the SWMM model based on the second geographic data and The SWMM model obtains the output data of the water quality and water volume of the pipe network in the study area; constructs the EFDC model based on the third and fourth geographic data; couples the SWMM model and the EFDC model according to the output data of the water quality and water volume of the pipe network in the study area , Generate the first coupling model of SWMM and EFDC.
  • an embodiment of the present invention provides a device for evaluating the environmental effects of a regulation and storage project based on a coupling model of SWMM and EFDC.
  • Data the second geographic data that characterizes the pipeline network parameters in the study area, the third geographic data that characterizes the distribution of rivers in the study area, and the fourth geographic data that characterizes the hydrodynamic water quality of the river in the study area;
  • the first building unit is used to base on the first geographic data .
  • the second geographic data, the third geographic data, and the fourth geographic data construct the first coupling model of SWMM and EFDC to obtain the first output data used to characterize the water quality and water volume before the implementation of the storage project;
  • the second acquisition unit is used for Obtain the location, scale, catchment area data, and project investment data of the storage project; adjustment unit used to adjust the SWMM model according to the location, scale, and catchment area data of the storage project;
  • the second construction unit used to adjust the SWMM after adjustment
  • the model constructs the second coupling model of SWMM and
  • an embodiment of the present invention provides a computer device, including: at least one processor; and a memory communicatively connected with the at least one processor; wherein the memory stores instructions that can be executed by one processor, and the instructions are At least one processor executes, so that at least one processor executes the method for evaluating the environmental effects of the regulation and storage project based on the coupling model of SWMM and EFDC as in the first aspect or any implementation of the first aspect.
  • an embodiment of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores computer instructions, and the computer instructions are used to cause a computer to execute the SWMM and EFDC coupling model to assess the environmental effects of regulation and storage projects.
  • the method and device for evaluating the environmental effects of a regulation and storage project based on the coupling model of SWMM and EFDC form a coupling model of SWMM and EFDC by embedding a network management hydrological model (SWMM) in a traditional river hydrodynamic water quality model (EFDC),
  • SWMM network management hydrological model
  • EFDC river hydrodynamic water quality model
  • the storage project When assessing the environmental effects of storage projects through the coupling model of SWMM and EFDC, the impact of non-point source pollution caused by rainfall runoff on the compliance of water quality cross-sections can be analyzed in a coordinated manner.
  • the storage project will be As a change value generalized into the SWMM model, rather than as a constant generalization in the EFDC model, it considers the impact of the change process of rainfall and runoff on the environmental effects of the regulation and storage project, and generalizes the regulation and storage project into the SWMM When considering the location and scale of the regulation and storage project, the assessment of the environmental effects of the regulation and storage project is more accurate.
  • Fig. 1 shows a schematic flow chart of a method for evaluating the environmental effects of a regulation and storage project based on a coupling model of SWMM and EFDC according to an embodiment of the present invention
  • Figure 2 shows a schematic diagram of node and pipeline form transformation in the generalization of a storage tank according to an embodiment of the present invention
  • Figure 3 shows a modified schematic diagram of a pipe network system according to an embodiment of the present invention
  • Figure 4 shows a water system and land use distribution map in a case area of an embodiment of the present invention
  • FIG. 5 shows a bitmap of each element in a case area according to an embodiment of the present invention
  • FIG. 6 shows a DEM digital elevation map of a case area according to an embodiment of the present invention
  • FIG. 7 shows a schematic diagram of a large cross-section of partial river topography in a case area of an embodiment of the present invention
  • Fig. 8 shows a daily-scale histogram of rainfall at a rainfall station in a case area according to an embodiment of the present invention
  • FIG. 9 shows a schematic diagram of a SWMM model skeleton diagram of a case area of an embodiment of the present invention.
  • FIG. 10 shows the flow rate calibration result of the first coupling model in the case area of the embodiment of the present invention
  • FIG. 11 shows the water quality calibration result of the first coupling model in the case area of the embodiment of the present invention
  • Figure 12 shows a case area regulating storage tank and a SWMM outlet distribution diagram before setting the regulating storage tank in an embodiment of the present invention
  • FIG. 13 shows a diagram of the original pipe network system involving SU4 and SU5 in the case area of an embodiment of the present invention
  • Figure 14 shows a partial view of the modified pipe network involving SU4 and SU5 in the case area of the embodiment of the present invention
  • FIG. 15 shows the original pipe network diagram and the modified pipe network diagram related to SU7 in the case area of the embodiment of the present invention
  • FIG. 16 shows a schematic diagram of parameter setting of No. 4 storage tank in the case area of an embodiment of the present invention
  • FIG. 17 shows a schematic diagram of parameter setting of No. 5 storage tank in the case area of an embodiment of the present invention.
  • FIG. 18 shows a schematic diagram of parameter setting of No. 7 storage tank in the case area of an embodiment of the present invention.
  • FIG. 19 shows the boundary generalized input of the storage tank in the case area of the embodiment of the present invention.
  • Figure 20 shows the COD concentration change trend diagram of the assessment section before and after the regulation and storage project of the embodiment of the present invention
  • FIG. 21 shows a schematic structural diagram of a device for evaluating the environmental effects of a regulation and storage project based on a coupling model of SWMM and EFDC according to an embodiment of the present invention
  • FIG. 22 shows a schematic diagram of the hardware structure of a computer device according to an embodiment of the present invention.
  • Relative terms eg “under” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe an element as illustrated in the figure The relationship between a layer or area and another element, layer or area. It will be understood that in addition to the orientation depicted in the figures, these terms and those discussed above are also intended to include different orientations of the device.
  • the embodiment of the present invention provides a method for evaluating the environmental effects of a regulation and storage project based on a coupling model of SWMM and EFDC, including:
  • the first geographic data that characterizes the pipe network runoff in the study area includes: study area boundary, Digital Elevation Model (DEM) data, rainfall station coordinate position, evaporation station coordinate position, land use data, soil type data, river assessment section Location etc.
  • the second geographic data that characterizes the pipeline network parameters of the study area includes: rainfall monitored by meteorological stations and corresponding observation time series, evaporation and corresponding observation time series.
  • the third geographic data that characterizes the distribution of the river in the study area includes: the distribution of the water system in the study area, the location of the hydrological station in the study area, the location of the water quality monitoring station, and the topographic data of the river.
  • the fourth geographic data that characterizes the hydrodynamic water quality of the river in the study area includes: the fourth geographic data includes: the location of the sewage treatment plant in the study area, the discharge flow, the sewage concentration, the location of the sewage outlet in the study area, the discharge flow, the sewage concentration, and the river course in the study area Historical monitoring of the hydrological station or on-site monitoring of the river inflow sequence data and historical monitoring of the water quality monitoring station or on-site monitoring of the background concentration of the river.
  • S102 Construct a first coupling model of SWMM and EFDC according to the first geographic data, the second geographic data, the third geographic data, and the fourth geographic data, and obtain the first output data used to characterize the water quality and water volume before the implementation of the storage project.
  • the SWMM (storm water management model) model is a storm and flood management model.
  • the EFDC (The Environmental Fluid Dynamics Code) model is an environmental fluid dynamics model.
  • the first geographic data can be used to build the SWMM model
  • the third geographic data and the fourth geographic data are used to build the EFDC model
  • the second geographic data is used as the driver to calibrate the SWMM model
  • the output data of the SWMM model can be used as the driver of the EFDC model to complete
  • the coupling of SWMM model and EFDC model generates the first coupling model of SWMM and EFDC.
  • the model automatically outputs the first output data, which includes water quality and water volume data that change over time before the implementation of the regulation and storage project.
  • the regulation and storage project is a common engineering measure for water environment governance, and this embodiment takes the regulation and storage project as the regulation and storage tank as an example for description.
  • the general practice of the regulation and storage project is to set up an interception before the pipeline into the river to collect the initial rainwater in the regulation and storage tank, and the retained initial rain will settle in the regulation and storage tank.
  • the water outlet pipe at the top of the storage tank is discharged into the river.
  • the scouring runoff at the beginning of the rainfall will cause greater pollution to the river course. Setting up a storage tank before entering the river course will reduce the pollution load of the river course, and can alleviate the impact of flood peaks to a certain extent.
  • the geographic location (x, y) of the storage tank can be determined.
  • the scale of the storage tank (storage volume m 3 ), project investment data and water catchment area data can be determined .
  • the rainwater and sewage pipelines will directly send rainwater and sewage into the sewage treatment plant for treatment, so the water quantity and quality after treatment are also discharged in accordance with the sewage treatment plant's standards.
  • the sewage generated by rainfall runoff is directly discharged into the river through the rainwater pipe. Therefore, during the rainfall period, the water quality of this part of the water changes with the rainfall process, and is not discharged at a constant rate. Therefore, it is necessary to generalize the storage pool as a variable value in the SWMM model, rather than as a constant generalization in the EFDC model.
  • the regulation and storage project can be generalized into the SWMM model, and the watershed area of the SWMM model can be modified according to the catchment area data of the regulation and storage project, and then the SWMM model can be adjusted.
  • the main parameters involved in the generalization of the storage project in the model include the location of the storage tank, the scale of the storage tank, the design of the storage tank and the parameter setting of the storage tank.
  • the location of the storage tank is determined according to geographic coordinates
  • the scale of the storage tank is determined according to the project planning. Generally refers to the volume of the storage tank.
  • the design of the storage tank is mainly a shape design, which can be trapezoidal, rectangular, and other regular shapes, or it can be The complex shape of the polygonal structure, the parameter setting of the storage tank includes the height of the outlet of the storage tank, the height of the pipe network port connected with the storage tank, etc.
  • the storage tank is mainly generalized in the SWMM model.
  • a storage tank corresponds to an outlet boundary, which is the inflow boundary in EFDC.
  • the outlet boundary of the storage tank is generally not fixed, and changes with rainfall. When it does not rain
  • the boundary water quantity and water quality are all 0.
  • the water quality refers to common pollutants, such as COD.
  • the model automatically outputs the second output data, including water quality and water volume data that change over time after the implementation of the regulation and storage project.
  • the first output data includes water quality and water volume data before the implementation of the storage project
  • the second output data includes water quality and water volume data after the implementation of the storage project.
  • project investment data can calculate the water quality concentration change rate, load flux change, compliance rate, and evaluate the environmental effects of the storage project based on the cost-effectiveness ratio of the water quality change.
  • the method for evaluating the environmental effects of a regulation and storage project based on the coupling model of SWMM and EFDC is achieved by embedding a network-managed hydrological model (SWMM) in the traditional river hydrodynamic water quality model (EFDC) to form a coupling model of SWMM and EFDC.
  • SWMM network-managed hydrological model
  • EFDC river hydrodynamic water quality model
  • the environmental effects of the storage project are evaluated. Since the SWMM model considers urban rainfall runoff (urban non-point source pollution), the SWMM and EFDC coupling model comprehensively considers the integrity and systemicity of the watershed, and takes into account the topography, pipeline network, hydrology, and meteorology.
  • the storage project When assessing the environmental effects of the storage project through the coupling model of SWMM and EFDC, it can analyze the impact of non-point source pollution caused by rainfall runoff on the compliance of the water quality section.
  • the storage project For the storage project, the storage project is regarded as a change. The value is generalized into the SWMM model, rather than as a constant generalization.
  • the EFDC model the impact of the change process of rainfall and runoff on the environmental effects of the regulation and storage project is considered, and when the regulation and storage project is generalized into the SWMM, Taking into account the location and scale of the storage project, the assessment of the environmental effects of the storage project is more accurate.
  • the SWMM model includes a pipe network system.
  • the SWMM model is adjusted according to the location, scale and catchment area data of the regulation and storage project, which specifically includes: taking the regulation and storage project as a node according to the location of the regulation and storage project Generalize into the pipe network system; convert the node into a storage tank and convert the pipeline after the storage tank into an orifice; adjust the pipeline network system according to the catchment area data, the storage tank and the orifice of the storage project.
  • the position of the storage tank can be generalized into the SWMM pipe network system in the form of a node, and then the node can be converted into a storage tank in the SWMM model, and the storage tank can be generalized at the same time
  • the orifice of the pipeline after the adjustment and storage tank is set, and the orifice for the outflow of the adjustment and storage tank is arranged at the top of the adjustment and storage tank.
  • the evaluation of the regulation and storage project is based on the establishment of the SWMM model. Therefore, the SWMM model did not consider the regulation and storage tank before setting up the regulation and storage tank. Therefore, before carrying out the evaluation, it is necessary to review the pipe network system and catchment area of the original SWMM model. to modify.
  • the shape and size of the storage tank can be designed.
  • the storage tank can be set in a regular shape, such as a rectangle, a trapezoid, etc., or it can be set in an irregular shape.
  • the parameters that affect the normal operation of the storage tank include the height of the storage tank, the maximum depth, and the elevation of the orifice. Since the storage tank is generalized in the SWMM model, its drainage outlet is the same as other outlets of the SWMM, directly input into the EFDC grid for simulation.
  • Adjusting the SWMM model according to the location, scale and catchment area data of the storage project is to generalize the storage project into the SWMM model, and adjust the pipe network system in the SWMM model to obtain a more reasonable pipe network system, taking rainfall into account
  • the impact of the change process of runoff on the environmental effects of the regulation and storage project can make the final assessment of the environmental effects of the regulation and storage project more accurate.
  • adjusting the pipe network system according to the water catchment area data, the storage tank, and the orifice of the regulation and storage project includes: according to the water catchment area data of the regulation and storage tank, in the pipe network system
  • the water area is divided into independent areas; the direction and boundary conditions of the pipe network of the water catchment area are adjusted according to the catchment area, the location of the storage tank and the orifice.
  • the boundary conditions refer to the location of the outlet of the storage tank and the water quality and volume data at the outlet.
  • the catchment area of the storage tank this part of the area was separated in the original SWMM model, and the pipe network system was reset, including the direction of the pipe network, the location of the storage tank, and the addition of model outlets.
  • the catchment area of the regulation and storage project is divided into independent regions from the pipe network system, so that the division of the pipe network is closer to reality, and the result of the environmental effect assessment of the regulation and storage project can be more accurate.
  • the aforementioned step S106 evaluating the environmental effects of the storage project according to the first output data, the second output data, and the project investment data, specifically includes: according to the first output data and the preset water quality The indicators obtain the first water quality index concentration and the first water volume of the section to be assessed.
  • the section to be assessed is the downstream exit section of the river in the study area, the focus section or the water quality assessment section; according to the second output data and the preset water quality index, the section to be assessed is obtained
  • the second water quality index concentration, the second water volume, the number of water quality index compliance days and the total number of water quality index simulation days; according to the first water quality index concentration, the first water volume, the second water quality index concentration, the second water volume, the water quality index compliance days, and the water quality index simulation Calculation of water quality concentration change rate, load flux change, compliance rate and cost-effectiveness ratio based on water quality based on total days and project investment data; according to water quality concentration change rate, load flux change, compliance rate, and cost-effectiveness ratio comparison based on water quality
  • the environmental effects of the regulation and storage project are evaluated.
  • the assessment of the environmental effects of the storage project includes: (1) Determining the assessment section and water quality changes; according to the project assessment requirements, select the focus section or the assessment section, such as the downstream exit section of the study area, and the focus section of the water quality.
  • Water quality assessment sections at all levels, etc., water quality indicators can select common indicators that characterize water quality conditions, such as chemical oxygen demand (COD), ammonia nitrogen (NH 4 + -N), total phosphorus (TP), etc.
  • COD chemical oxygen demand
  • NH 4 + -N ammonia nitrogen
  • TP total phosphorus
  • the rate of change of water quality concentration mainly represents the degree of reduction of water quality concentration before and after the project
  • the change of load flux mainly represents the change of load due to the combined action of water quantity and quality before and after the project.
  • the change is positive, indicating that the pollution load after the project has increased, otherwise the pollution load Reduce.
  • the compliance rate is mainly calculated according to the standards of Category III or Category IV in the "Surface Water Environmental Quality Standard GB3838-2002" to determine the number of compliance days before and after the project. Evaluate the operation effect of the project from an economic point of view.
  • the water quality index concentration and water volume data of the evaluation section before and after the implementation of the project can be obtained from the first output data and the second output data, as well as the data after the implementation of the project.
  • the number of simulated days, the number of days for the water quality index concentration to reach the standard, and then based on the project investment data and the preset calculation formula, the water quality concentration change rate, load flux change, compliance rate and water quality-based cost-effectiveness ratio can be calculated, and then the regulation and storage project To assess the environmental effects.
  • the embodiment of the present invention establishes an indicator framework for evaluating the environmental effects of a storage project, in which a cost-effectiveness ratio based on water quality is innovatively proposed as an indicator, and the addition of this indicator can provide guidance for project investment. Under different project conditions or different stages of the project, the changes in water quality can be simulated, combined with the corresponding investment, and the respective cost-effectiveness ratios can be analyzed to determine the best effect that can be achieved with the minimum investment.
  • the water quality concentration change rate, load flux change, compliance rate, and water quality-based cost-effectiveness ratio can be calculated by the following formulas:
  • k represents the rate of change of water quality concentration
  • C 0 and C t respectively represent the water quality index concentration (mg/l) before and after the regulation and storage project
  • W represents the change in load flux
  • Q 0 , Q t respectively represent the regulation and storage project Front and rear water volume (m 3 /s)
  • S represents the rate of compliance
  • D S and D T represent the number of days after the regulation and storage project reaches the standard and the total number of simulated days
  • R represents the cost-effectiveness ratio based on water quality
  • M represents the project investment (Ten thousand yuan).
  • step S102 constructing a first coupling model of SWMM and EFDC according to the first geographic data, the second geographic data, the third geographic data, and the fourth geographic data includes:
  • Construct a SWMM model based on the first geographic data specifically, format the collected land use data, DEM data, rainfall site location and other basic data, divide subcatchment areas, and build the SWMM model.
  • the format processing of basic data such as pipe network data, land use data, DEM data, rainfall site location, etc. includes: using ArcGIS to generalize the pipe network and water system, cutting and distributing land use, etc.
  • the output data of the water quality and volume of the pipe network in the study area are obtained; specifically, the collected rainfall and the corresponding observation time series, the evaporation in the study area and the corresponding observation time series are processed into the SWMM model
  • the SWMM model as the driver of the SWMM model
  • calibrate the parameters of the SWMM model and obtain the output data of the water quality and water volume of the pipe network in the study area.
  • the calibrated parameters include pipeline roughness, characteristic width of subcatchment area, impermeable runoff coefficient, permeable runoff coefficient, impervious depression storage capacity, pervious depression storage capacity, subcatchment Manning coefficient, Pollutant accumulation index coefficient and pollutant erosion index coefficient, etc.
  • the EFDC model based on the third geographic data and the fourth geographic data; specifically, the collected water system distribution in the study area, the relevant data of the sewage treatment plant in the study area (location, sewage flow, sewage concentration), and the relevant data of the sewage outlet in the study area (sewage discharge) Outlet location, sewage discharge flow, sewage concentration), the location of the hydrological station in the study area, the location of the water quality monitoring station, the topographic data of the river, the historical monitoring of the river hydrological station in the study area or the on-site monitoring of the river water flow sequence data and the water quality monitoring station
  • the EFDC model is constructed after formatting and processing the historical monitoring or field monitoring of the background concentration sequence data of the river incoming water.
  • the SWMM model and EFDC model are coupled according to the output data of runoff water quality and water volume of the pipeline network in the study area, and the first coupling model of SWMM and EFDC is generated.
  • the water quality and water volume data output by the SWMM model are used as the boundary of the EFDC model land runoff and non-point source, and input to the EFDC model as the driver of the EFDC model to calibrate the parameters of the EFDC model and complete the coupling of the SWMM model and the EFDC model.
  • the calibrated parameters include river roughness, pollutant degradation coefficient, etc.
  • the SWMM model and the EFDC model By constructing the SWMM model and the EFDC model separately, using the output data of the SWMM model as the input data of the EFDC model, coupling the SWMM model and the EFDC model to simulate the water environment in the river, because the SWMM model can be used to characterize the study area
  • the first geographic data of the pipe network runoff and the second geographic data representing the pipe network parameters of the study area obtain the output data of the water quality and quantity of the pipe network runoff in the study area, so that the urban non-point source process can be simulated, and the output data of the SWMM model is used as the EFDC model
  • the input data of EFDC, as the non-point source boundary of the EFDC model can make up for the inadequate consideration of urban non-point sources in the hydrodynamic water quality model, which can effectively support the integration of point and non-point sources in plain urban areas-hydrodynamics -Water quality simulation, realizing simulation analysis of water environment effects under the dual influence of natural conditions and human activities.
  • the SWMM model divides the watershed into many control units (subcatchments), and each control unit will generate non-point source pollution caused by rainfall runoff. From the perspective of pollution control, it can be based on detailed control The unit provides a reference for the implementation of refined space management and control, and further improves the accuracy of the traditional SWMM model.
  • the typical pollutant chemical oxygen demand (COD) is used as the water quality indicator to carry out the effect evaluation of the regulation and storage project.
  • the basic data collected in the case area includes four categories: spatial data, pollution data, hydrological data and meteorological data.
  • the results of the collection are shown in Table 1:
  • a water system and land use distribution map in the case area can be formed, as shown in Figure 4.
  • a location map of each element in the case area can be formed, as shown in Figure 5.
  • the DEM digital elevation map of the case area can be formed according to the digital elevation DEM data, as shown in Figure 6.
  • a large cross-section schematic diagram of the river topography in the case area can be formed, as shown in Figure 7.
  • a daily-scale histogram of rainfall at the rainfall station in the case area can be formed, as shown in Figure 8.
  • SWMM model skeleton As shown in Figure 9.
  • Set the length, diameter and roughness of the pipe network define the area, slope, catchment node and characteristic width of the subcatchment, impervious runoff coefficient, pervious runoff coefficient, impervious depression storage capacity , Permeable depression water storage, subcatchment Manning coefficient, etc., using rainfall data from rain gauge stations as driving conditions to complete the parameter calibration and model verification of the SWMM model.
  • the water volume and water quality output from the model outlet are EFDC river hydrodynamics
  • the water quality model provides runoff and non-point source boundaries.
  • Grid the basin water system.
  • the grid layout process comprehensively consider the solution efficiency of the model, the irregularity of the calculation area, the measured terrain data range and the accuracy requirements of the grid, and the high-resolution Cartesian grid is used for
  • the grid length and width are basically the same, and the spatial distribution of the grid size is relatively uniform, ensuring the accuracy of hydrodynamic and water quality simulation.
  • the construction of the regulating storage tank in the case area and the SWMM model exit before setting up the regulating storage tank are shown in Figure 12.
  • the scale of each regulating storage tank is shown in Table 4, and the exits F21, F22, and F24 are located outside the basin.
  • the modification of the pipe network and catchment area mainly involves three steps. The first is to modify the subcatchment area. According to the planning, the catchment area is cut or merged from the original subcatchment area to form the corresponding storage tank catchment area. Secondly, according to the location of the storage tank, modify the direction of the pipe network and the water catchment node on the basis of the original pipe network, and finally set the outlet of the storage tank. Refer to Figure 13 to Figure 15 for the modification of the pipe network and catchment area of the storage tanks SU4, SU5 and SU7.
  • the storage tank can be set to a regular shape, such as rectangle, trapezoid, etc., or it can be set to an irregular shape.
  • the storage tank All are designed to be rectangular.
  • the design table is shown in Table 5.
  • the parameters that affect the normal operation of the storage tank include the height of the storage tank, the maximum depth, and the elevation of the orifice.
  • the setting parameters of the storage tanks SU4, SU5, and SU7 are shown in Figure 16 to Figure 18.
  • the analysis shows that the COD background concentration under the condition of no regulation and storage project, the average concentration is 59.28mg/l. Under the regulation and storage project, the COD concentration decreases. According to the analysis of the water quantity and quality data simulated by the Shaobingzhuang gate, the average COD concentration is after regulation and storage. The concentration dropped to 57.61mg/l, the concentration change rate was 2.8%, the pollution load change amount was -50.8t, the compliance rate according to the IV water standard was 0.3%, and the cost-effectiveness ratio based on water quality changes was 0.017mg/(L ⁇ 10,000 Yuan).
  • the construction of the storage tank has a certain effect on the improvement of water quality. Therefore, in the actual construction process of the project, appropriate consideration can be given to increasing the number or scale of the storage tank to optimize the project to achieve the best project benefits.
  • the embodiment of the present invention also provides a device for evaluating the environmental effects of a regulation and storage project based on the coupling model of SWMM and EFDC, as shown in FIG.
  • the related description of, I won’t repeat it here.
  • the first construction unit 212 is used for constructing a first coupling model of SWMM and EFDC according to the first geographic data, the second geographic data, the third geographic data, and the fourth geographic data to obtain the water quality and water quantity before the implementation of the storage project
  • the first output data for details, refer to the relevant description of step S102 in the foregoing embodiment, which will not be repeated here.
  • the second acquiring unit 213 is configured to acquire the location, scale, catchment area data, and project investment data of the regulation and storage project; for details, refer to the relevant description of step S103 in the foregoing embodiment, and will not be repeated here.
  • the adjustment unit 214 is configured to adjust the SWMM model according to the location, scale, and water catchment area data of the regulation and storage project; for details, refer to the relevant description of step S104 in the foregoing embodiment, which will not be repeated here.
  • the second construction unit 215 is configured to construct a second coupling model of SWMM and EFDC according to the adjusted SWMM model, to obtain second output data used to characterize the water quality and water volume after the regulation and storage project is implemented; for details, refer to step S105 of the above embodiment The related description of, I won’t repeat it here.
  • the evaluation unit 216 is configured to evaluate the environmental effects of the storage project based on the first output data, the second output data, and the project investment data. For details, refer to the related description of step S106 in the foregoing embodiment, and details are not described herein again.
  • the environmental effect assessment device of the regulation and storage project based on the coupling model of SWMM and EFDC provided by the embodiment of the present invention by embedding the network management hydrological model (SWMM) in the traditional river hydrodynamic water quality model (EFDC), forms the coupling model of SWMM and EFDC, and adjusts The environmental effects of the storage project are evaluated. Since the SWMM model considers urban rainfall runoff (urban non-point source pollution), the SWMM and EFDC coupling model comprehensively considers the integrity and systemicity of the watershed, and takes into account the topography, pipeline network, hydrology, and meteorology.
  • SWMM network management hydrological model
  • EFDC traditional river hydrodynamic water quality model
  • the storage project When assessing the environmental effects of the storage project through the coupling model of SWMM and EFDC, it can analyze the impact of non-point source pollution caused by rainfall runoff on the compliance of the water quality section.
  • the storage project For the storage project, the storage project is regarded as a change. The value is generalized into the SWMM model, rather than as a constant generalization.
  • the EFDC model the impact of the change process of rainfall and runoff on the environmental effects of the regulation and storage project is considered, and when the regulation and storage project is generalized into the SWMM, Taking into account the location and scale of the storage project, the assessment of the environmental effects of the storage project is more accurate.
  • An embodiment of the present invention provides a computer device, including: at least one processor 221; and a memory 222 communicatively connected with the at least one processor; FIG. 22 takes one processor 221 as an example.
  • the processor 221 and the memory 222 may be connected through a bus or in other ways.
  • the connection through a bus is taken as an example.
  • the processor 221 may be a central processing unit (CPU).
  • the processor 221 may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), or Chips such as other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, or a combination of the above types of chips.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • Chips such as other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, or a combination of the above types of chips.
  • the memory 222 can be used to store non-transitory software programs, non-transitory computer executable programs and modules, such as the storage project based on the coupling model of SWMM and EFDC in the embodiment of the present invention Program instructions/modules corresponding to the environmental effect assessment method.
  • the processor 221 executes various functional applications and data processing of the processor by running the non-transitory software programs, instructions, and modules stored in the memory 222, that is, realizes the adjustment based on the SWMM and EFDC coupling model in the foregoing method embodiment. Methods of assessment of environmental effects of storage projects.
  • the memory 222 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created by the processor 221 and the like.
  • the memory 222 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 222 may optionally include memories remotely provided with respect to the processor 221, and these remote memories may be connected to the processor 221 via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the above-mentioned one or more modules are stored in the memory 222, and when executed by the processor 221, the method for evaluating the environmental effects of the regulation and storage project based on the coupling model of SWMM and EFDC in the embodiment shown in FIG. 1 is executed.
  • the program can be stored in a computer-readable storage medium. During execution, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium can be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), a random access memory (RAM), a flash memory (Flash Memory), a hard disk (Hard Disk Drive, abbreviation: HDD) or solid-state drive (Solid-State Drive, SSD), etc.; the storage medium may also include a combination of the foregoing types of memories.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Central Heating Systems (AREA)

Abstract

本发明公开了一种基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法及装置,该方法包括:获取用以表征研究区域管网径流的第一地理数据、表征研究区域管网参数的第二地理数据、表征研究区域河道分布的第三地理数据和表征研究区域河道水动力水质的第四地理数据;根据上述数据构建SWMM与EFDC第一耦合模型,得到用以表征调蓄工程实施前的水质、水量的第一输出数据;获取调蓄工程位置、规模及汇水区域数据、工程投资数据;根据调蓄工程位置、规模及汇水区域数据调整SWMM模型;根据调整后的SWMM模型构建SWMM与EFDC第二耦合模型,得到用以表征调蓄工程实施后水质、水量的第二输出数据;根据第一输出数据、第二输出数据及工程投资数据对调蓄工程的环境效应进行评估。

Description

基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法及装置
相关申请的交叉引用
本申请要求在2020年3月10日提交中国专利局、申请号为2020101641145,发明名称为《基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法及装置》的中国专利申请的优先权,记载于上述申请中的全部内容通过引用结合在本申请中。
技术领域
本发明涉及水环境治理工程领域,具体涉及一种基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法及装置。
背景技术
调蓄工程是城市水环境治理,尤其是面源污染控制的常见手段。一般地,面源随着降雨径流直接输入河道,会造成河道污染负荷增加,水质变差,影响水质断面达标。为了减少面源污染直接入河,可以在雨水管网系统中建设一定规模大小的调蓄池,收集一定大小区域的降雨径流。从水利角度可以达到错开洪峰的效果,从水质改善的角度则可以收纳污染负荷较大的初期雨水,减少初期雨水对河道水质的影响。但是,在调蓄工程实施前,如何设计调蓄池的大小、设置调蓄池的位置对于工程实施和工程造价具有一定的参考价值,而且在工程实施过程中,如何评估一些自然现象(降雨等)对考核断面水质的影响也是工程实施的主要内容。因此,需要开展调蓄工程的环境效应评估,可以为工程实施和造价提供技术支持。
目前,被使用于调蓄工程环境效应评估方法主要有:
基于数据分析的后效果评估方法,主要是通过分析工程实施后,水体水质变化程度评价工程运行的效果,但该种方法主要依赖于工程实际运行后的实测数据,无法在工程规划期对工程建成运行后的效果进行预判,对指导前期工程规划方案的制定存在较大局限。
基于负荷计算的污染减排效果评估方法,主要基于污染物总量控制的角度分析工程实施后的减排效果,但未考虑污染减排与水质的响应关系,无法科学评估工程设计方案(位置、规模等设计参数)实施后的水环境质量改善效果,难以为以水质目标为核心的治理工程方案制定提供技术支撑。
基于城市河道水环境数值模拟的治理工程效应评估,以城市河道水动力水质模型模拟为手段,以工程实施前后河道水质变化为边界条件,模拟分析水环境改善效果,但该方法仅考虑污染排放与河道内的水环境响应过程,未充分考虑不同季节条件的降雨径流过程影响下,河道外面源降雨径流污染输入对水环境治理效果的影响。
以上几种评估方法,在评估过程中进行参考的因素较为片面,未考虑城市面源污染输入对水环境的影响,也未考虑工程位置、规模等对调蓄工程环境效应的影响,未考虑工程实施过程中降雨径流的变化过程对调蓄工程环境效应的影响,容易导致评估结果并不准确。
发明内容
有鉴于此,为了克服现有技术中调蓄工程环境效应评估方法的评估结果并不准确的缺陷,本发明实施例提供了一种基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法及装置。
根据第一方面,本发明实施例提供了一种基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法,包括:获取用以表征研究区域管网径流的第一地理数据、表征研究区域管网参数的第二地理数据、表征研究区域河道分布的第三地理数据和表征研究区域河道水动力水质的第四地理数据;根据第一地理数据、第二地理数据、第三地理数据和第四地理数据构建SWMM与EFDC第一耦合模型,得到用以表征调蓄工程实施前的水质、水量的第一输出数据;获取调蓄工程位置、规模及汇水区域数据、工程投资数据;根据调蓄工程位置、规模 及汇水区域数据调整SWMM模型;根据调整后的SWMM模型构建SWMM与EFDC第二耦合模型,得到用以表征调蓄工程实施后水质、水量的第二输出数据;根据第一输出数据、第二输出数据及工程投资数据对调蓄工程的环境效应进行评估。
可选地,SWMM模型包括管网系统,根据调蓄工程位置、规模及汇水区域数据调整SWMM模型,包括:根据调蓄工程位置将调蓄工程作为节点概化进入管网系统;将节点转换成调蓄池并将调蓄池之后的管道转换为孔口;根据调蓄工程的汇水区域数据、调蓄池及孔口对管网系统进行调整。
可选地,根据调蓄工程的汇水区域数据、调蓄池及孔口对管网系统进行调整,包括:根据调蓄池的汇水区域数据,在管网系统中将汇水区域划分为独立区域;根据汇水区域、调蓄池的位置及孔口调整汇水区域的管网走向、边界条件。
可选地,根据第一输出数据、和第二输出数据及工程投资数据对调蓄工程的环境效应进行评估,包括:根据第一输出数据及预设水质指标得到待考核断面的第一水质指标浓度、第一水量,待考核断面是研究区域河道下游出口断面、重点关注断面或水质考核断面;根据第二输出数据及预设水质指标得到待考核断面的第二水质指标浓度、第二水量、水质指标达标天数及水质指标模拟总天数;根据第一水质指标浓度、第一水量、第二水质指标浓度、第二水量、水质指标达标天数、水质指标模拟总天数及工程投资数据计算水质浓度变化率、负荷通量变化量、达标率及基于水质的费效比;根据水质浓度变化率、负荷通量变化量、达标率及基于水质的费效比对调蓄工程的环境效应进行评估。
可选地,通过以下公式计算水质浓度变化率、负荷通量变化量、达标率及基于水质的费效比:
水质浓度变化率k:
Figure PCTCN2021079867-appb-000001
负荷通量变化量W:W=C t*Q t-C 0*Q 0
达标率S:
Figure PCTCN2021079867-appb-000002
基于水质的费效比R:
Figure PCTCN2021079867-appb-000003
其中:k表示水质浓度变化率,C 0、C t分别表示调蓄工程前、后的水质指标浓度(mg/l);W表示负荷通量变化量,Q 0、Q t分别表示调蓄工程前、后的水量(m 3/s);S表示达标率,D S、D T表示调蓄工程后水质指标达标天数、模拟的总天数;R表示基于水质的费效比,M表示工程投资(万元)。
可选地,根据第一地理数据、第二地理数据、第三地理数据和第四地理数据构建SWMM与EFDC第一耦合模型,包括:根据第一地理数据构建SWMM模型;根据第二地理数据及SWMM模型,得到研究区域管网径流水质、水量的输出数据;根据第三地理数据、第四地理数据构建EFDC模型;根据研究区域管网径流水质、水量的输出数据将SWMM模型及EFDC模型进行耦合,生成SWMM与EFDC第一耦合模型。
根据第二方面,本发明实施例提供了一种基于SWMM与EFDC耦合模型的调蓄工程环境效应评估装置,包括:第一获取单元,用于获取用以表征研究区域管网径流的第一地理数据、表征研究区域管网参数的第二地理数据、表征研究区域河道分布的第三地理数据和表征研究区域河道水动力水质的第四地理数据;第一构建单元,用于根据第一地理数据、第二地理数据、第三地理数据和第四地理数据构建SWMM与EFDC第一耦合模型,得到用以表征调蓄工程实施前的水质、水量的第一输出数据;第二获取单元,用于获取调蓄工程位置、规模及汇水区域数据、工程投资数据;调整单元,用于根据调蓄工程位置、规模及汇水区域数据调整SWMM模型;第二构建单元,用于根据调整后的SWMM模型构建SWMM与EFDC 第二耦合模型,得到用以表征调蓄工程实施后水质、水量的第二输出数据;评估单元,用于根据第一输出数据、第二输出数据及工程投资数据对调蓄工程的环境效应进行评估。
根据第三方面,本发明实施例提供了一种计算机设备,包括:至少一个处理器;以及与至少一个处理器通信连接的存储器;其中,存储器存储有可被一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器执行如第一方面或第一方面任意实施方式中的基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法。
根据第四方面,本发明实施例提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,计算机指令用于使计算机执行如第一方面或第一方面任意实施方式中的基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法。
本发明实施例提供的基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法及装置,通过在传统河道水动力水质模型(EFDC)中嵌入网管水文模型(SWMM),形成SWMM与EFDC耦合模型,对调蓄工程环境效应进行评估,由于SWMM模型考虑了城市降雨径流(城市面源污染),从而SWMM与EFDC耦合模型综合考虑了流域的完整性和系统性,统筹考虑了地形、管网、水文、气象和水质等条件,通过SWMM与EFDC耦合模型评估调蓄工程环境效应的时候,能够统筹模拟分析降雨径流产生面源污染对水质断面达标的影响,且对于调蓄工程,是将调蓄工程作为变化值概化到SWMM模型中,而不是作为一个常值概化在EFDC模型中,是考虑了降雨径流的变化过程对调蓄工程环境效应的影响,且将调蓄工程概化进入SWMM中时,考虑了调蓄工程的位置、规模等,从而对调蓄工程环境效应的评估更加准确。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法的流程示意图;
图2示出了本发明实施例的调蓄池概化中的节点及管道形式转化示意图;
图3示出了本发明实施例的管网系统修改示意图;
图4示出了本发明实施例的案例区水系及土地利用分布图;
图5示出了本发明实施例的案例区各要素点位图;
图6示出了本发明实施例的案例区DEM数字高程图;
图7示出了本发明实施例的案例区部分河道地形大断面示意图;
图8示出了本发明实施例的案例区雨量站降雨量日尺度柱状图;
图9示出了本发明实施例的案例区SWMM模型骨架示意图;
图10示出了本发明实施例的案例区第一耦合模型流量率定结果;
图11示出了本发明实施例的案例区第一耦合模型水质率定结果;
图12示出了本发明实施例的案例区调蓄池及设置调蓄池之前的SWMM出口分布图;
图13示出了本发明实施例的案例区涉及SU4与SU5的原管网系统图;
图14示出了本发明实施例的案例区涉及SU4与SU5修改后的管网局部图;
图15示出了本发明实实施例的案例区涉及SU7的原管网图与修改后的管网图;
图16示出了本发明实施例的案例区4号调蓄池参数设置示意图;
图17示出了本发明实施例的案例区5号调蓄池参数设置示意图;
图18示出了本发明实施例的案例区7号调蓄池参数设置示意图;
图19示出了本发明实施例的案例区调蓄池在模型中的边界概化输入;
图20示出了本发明实施例的调蓄工程前、后考核断面COD浓度变化趋势图;
图21示出了本发明实施例基于SWMM与EFDC耦合模型的调蓄工程环境效应评估装置结构示意图;
图22示出了本发明实施例计算机设备的硬件结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
将理解,当元件(例如层、区或衬底)被称为“在”另一元件“上”或延伸“到”另一元件“上”时,它可直接在另一元件上或直接延伸到另一元件上,或中间元件也可存在。相反,当元件被称为“直接在”另一元件“上”或“直接”延伸“到”另一元件“上”时,没有中间元件存在。同样,将理解,当元件(例如层、区或衬底)被称为“在”另一元件“之上”或“在”另一元件“之上”延伸时,它可直接在另一元件之上或直接在另一元件之上延伸,或中间元件也可存在。相反,当元件被称为“直接在”另一元件“之上”或“直接”在另一元件“之上”延伸时,没有中间元件存在。也将理解,当元件被称为“连接”或“耦合”到另一元件时,它可直接连接或耦合到另一元件,或中间元件也可存在。相反,当元件被称为“直接连接”或“直接耦合”到另一元件时,没有中间元件存在。
相对术语(例如“在…之下”或“在…之上”或者“上部”或“下部”或者“水平”或“垂直”)可在本文中用于描述如在图中图示的一个元件、层或区与另一元件、层或区的关系。将理解,除了在图中描绘的取向以外,这些术语和上面讨论的那些术语还意在包括器件的不同取向。
本发明实施例提供了一种基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法,包括:
S101.获取用以表征研究区域管网径流的第一地理数据、表征研究区域管网参数的第二地理数据、表征研究区域河道分布的第三地理数据和表征研究区域河道水动力水质的第四地理数据。
具体地,表征研究区域管网径流的第一地理数据包括:研究区域范围边界、数字高程模型(DEM)数据、雨量站坐标位置、蒸发站坐标位置、土地利用数据、土壤类型数据、河道考核断面位置等。表征研究区域管网参数的第二地理数据包括:气象站点监测的降雨量及相应观测时间序列、蒸发量及相应观测时间序列。表征研究区域河道分布的第三地理数据包括:研究区水系分布、研究区水文站的位置、水质监测站的位置、河道地形数据等。表征研究区域河道水动力水质的第四地理数据包括:所述第四地理数据包括:研究区污水处理厂位置、排污流量、排污浓度,研究区排污口位置、排污流量、排污浓度,研究区河道水文站的历史监测或现场监测的河道来水流量序列数据和水质监测站的历史监测或现场监测的河道来水背景浓度序列数据。
S102.根据第一地理数据、第二地理数据、第三地理数据和第四地理数据构建SWMM与EFDC第一耦合模型,得到用以表征调蓄工程实施前的水质、水量的第一输出数据。
具体地,SWMM(storm water management model)模型为暴雨洪水管理模型。EFDC(The Environmental Fluid Dynamics Code)模型为环境流体动力学模型。可采用第一地理数据建立SWMM模型,采用第三地理数据和第四地理数据建立EFDC模型,采用第二地理数据作为驱动,率定SWMM模型,将SWMM模型的输出数据作为EFDC模型的驱动,完成SWMM模型与EFDC模型的耦合,生成SWMM与EFDC第一耦合模型。生成SWMM与EFDC第一耦合模型后,模型自动输出第一输出数据,其中包括调蓄工程实施前随时间变化的水质、水量数据。
S103.获取调蓄工程位置、规模及汇水区域数据、工程投资数据。
具体的,调蓄工程是水环境治理的一种常见工程措施,本实施例以调蓄工程为调蓄池 为例进行说明。调蓄工程一般的做法是在入河管道之前设置一道拦截,将初期雨水收集在调蓄池中,滞留的初雨在调蓄池中沉淀,如果调蓄池蓄满之后,里面的水则随着调蓄池顶端的出水管道,排入河道。在实际情况中,降雨初期的冲刷径流对河道的污染较大,在进入河道之前设置调蓄池会让河道污染负荷减少,且能够在一定程度上缓解洪峰的影响。根据工程规划,结合现场勘查,可以确定调蓄池的地理位置(x,y),同时根据工程规划,可以确定调蓄池的规模(蓄水容积m 3)、工程投资数据及汇水区域数据。
S104.根据调蓄工程位置、规模及汇水区域数据调整SWMM模型。
具体地,大家一般都认为雨污合流的管道会直接把雨水和污水一起汇入污水处理厂进行处理,所以水量水质经过处理后也是按照污水处理厂的标准进行排放。但实际上,降雨径流产生的污水是直接随着雨水管道排入河道的,因此在降雨期间,这部分水量水质是随着降雨过程而变化的,并不是以常量进行排放。因此,需要将调蓄池作为变化值概化在SWMM模型中,而不是作为一个常值概化在EFDC模型。根据调蓄工程的位置、规模等信息可以将调蓄工程概化到SWMM模型中,根据调蓄工程的汇水区域数据可以修改SWMM模型的汇水区域,进而对SWMM模型进行调整。调蓄工程在模型中的概化涉及到的主要参数包括调蓄池的位置、调蓄池规模、调蓄池设计及调蓄池参数设置。调蓄池的位置依据地理坐标确定,调蓄池的规模根据工程规划确定,一般指调蓄池容积,调蓄池的设计主要是形状的设计,可以是梯形,矩形等规则形状,也可以是多边形构造的复杂形状,调蓄池的参数设置包括调蓄池出水口高度、与调蓄池连接的管网口的高度等。调蓄池主要是在SWMM模型中进行概化,一个调蓄池对应一个出口边界,也就是EFDC中的入流边界,调蓄池的出口边界一般不固定,随着降雨而变化,不降雨的时候边界水量水质均为0,在本实施例中,水质指的是常见的污染物,如COD。
S105.根据调整后的SWMM模型构建SWMM与EFDC第二耦合模型,得到用以表征调蓄工程实施后水质、水量的第二输出数据。
具体地,采用第二地理数据作为驱动,重新率定调整后的SWMM模型,将调整后的SWMM模型输出的数据作为EFDC模型的驱动,完成SWMM模型与EFDC模型的第二次耦合,生成SWMM与EFDC第二耦合模型。生成SWMM与EFDC第二耦合模型后,模型自动输出第二输出数据,其中包括调蓄工程实施后随时间变化的水质、水量数据。
S106.根据第一输出数据、第二输出数据及工程投资数据对调蓄工程的环境效应进行评估。具体地,第一输出数据包括调蓄工程实施前的水质、水量的数据,第二输出数据包括调蓄工程实施后的水质、水量的数据,根据调蓄工程实施前、后的水质、水量数据,及工程投资数据,可以计算水质浓度变化率、负荷通量变化量、达标率,基于水质变化的费效比等,对调蓄工程的环境效应进行评估。
本发明实施例提供的基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法,通过在传统河道水动力水质模型(EFDC)中嵌入网管水文模型(SWMM),形成SWMM与EFDC耦合模型,对调蓄工程环境效应进行评估,由于SWMM模型考虑了城市降雨径流(城市面源污染),从而SWMM与EFDC耦合模型综合考虑了流域的完整性和系统性,统筹考虑了地形、管网、水文、气象和水质等条件,通过SWMM与EFDC耦合模型评估调蓄工程环境效应的时候,能够统筹模拟分析降雨径流产生面源污染对水质断面达标的影响,且对于调蓄工程,是将调蓄工程作为变化值概化到SWMM模型中,而不是作为一个常值概化在EFDC模型中,是考虑了降雨径流的变化过程对调蓄工程环境效应的影响,且将调蓄工程概化进入SWMM中时,考虑了调蓄工程的位置、规模等,从而对调蓄工程环境效应的评估更加准确。
在可选的实施例中,SWMM模型包括管网系统,上述的步骤S104,根据调蓄工程位置、规模及汇水区域数据调整SWMM模型,具体包括:根据调蓄工程位置将调蓄工程作为节点概化进入管网系统;将节点转换成调蓄池并将调蓄池之后的管道转换为孔口;根据调蓄工程的汇水区域数据、调蓄池及孔口对管网系统进行调整。
具体地,如图2所示,可以将调蓄池的位置以节点的形式先概化进入SWMM管网系统,然后将该节点在SWMM模型中转换成调蓄池,概化调蓄池的同时设置调蓄池之后管道的孔口,调蓄池出流的孔口设置于调蓄池顶端。调蓄工程的评估是在SWMM模型已经建立的基础上,因此在设置调蓄池之前,SWMM模型没有考虑调蓄池,所以在开展评估之前,需要对原来SWMM模型的管网系统和汇水区进行修改。根据调蓄工程的规模和现场条件,可以设计调蓄池的形状和尺寸,在模型中可以将调蓄池设置成规则的形状,如矩形、梯形等,也可以设置成不规则的形状。在SWMM模型中,影响调蓄池正常运行的参数包括调蓄池标高、最大深度、孔口标高等参数。由于调蓄池是在SWMM模型中进行概化的,所以其排水口同SWMM其他出口一样,直接输入至EFDC网格当中进行模拟。
根据调蓄工程位置、规模及汇水区域数据调整SWMM模型,是将调蓄工程概化进入SWMM模型,并调整SWMM模型中的管网系统,从而得到更合理的管网系统,是考虑了降雨径流的变化过程对调蓄工程环境效应的影响,可以使得最终在评估调蓄工程环境效应时,评估结果更加准确。
在可选的实施例中,根据调蓄工程的汇水区域数据、调蓄池及孔口对管网系统进行调整,包括:根据调蓄池的汇水区域数据,在管网系统中将汇水区域划分为独立区域;根据汇水区域、调蓄池的位置及孔口调整汇水区域的管网走向、边界条件。具体地,边界条件是指调蓄池的出口位置以及出口的水质、水量数据。根据调蓄池的汇水区域,在原来的SWMM模型中将该部分区域独立出来,重新设置管网系统,包括管网走向、调蓄池位置、增加模型出口等,具体操作详见图3。从图3中可以看出,根据调蓄池的汇水区域数据,在管网系统中将调蓄池的汇水区域从管网系统中独立出来,管网系统中其他的汇水区域保持原有的管网走向和出口位置,调蓄池的汇水区域根据调蓄池的位置及孔口重新设置管网走向和出口位置,从而对管网系统进行了调整。
本发明实施例中,将调蓄工程的汇水区域从管网系统中划分为独立区域,使得管网的划分更贴近现实,可以使得对调蓄工程的环境效应评估的结果更加准确。
在可选的实施例中,上述的步骤S106,根据第一输出数据、和第二输出数据及工程投资数据对调蓄工程的环境效应进行评估,具体包括:根据第一输出数据及预设水质指标得到待考核断面的第一水质指标浓度、第一水量,待考核断面是研究区域河道下游出口断面、重点关注断面或水质考核断面;根据第二输出数据及预设水质指标得到待考核断面的第二水质指标浓度、第二水量、水质指标达标天数及水质指标模拟总天数;根据第一水质指标浓度、第一水量、第二水质指标浓度、第二水量、水质指标达标天数、水质指标模拟总天数及工程投资数据计算水质浓度变化率、负荷通量变化量、达标率及基于水质的费效比;根据水质浓度变化率、负荷通量变化量、达标率及基于水质的费效比对调蓄工程的环境效应进行评估。
具体地,对调蓄工程的环境效应进行评估包括:(1)确定考核断面和水质质变;根据工程评估需求,选择重点关注断面或考核断面,如研究区河道下游出口断面、重点关注的水质断面、各级水质考核断面等,水质指标可选择常见的表征水质状况的指标,如化学需氧量(COD)、氨氮(NH 4 +-N)、总磷(TP)等。(2)确定工程效果评估的指标;工程效果评估的指标包括水质浓度变化率、负荷通量变化量、达标率以及基于水质变化的费效比。水质浓度变化率主要表征工程前后的水质浓度降低程度,负荷通量变化量主要表征工程前后由于水量水质共同作用下的负荷变化情况,变化量为正值,表示工程后污染负荷增加,否则污染负荷减少。达标率主要依据《地表水环境质量标准GB3838-2002》中的III类或者IV类标准确定工程前后水质指标的达标天数计算,基于水质变化的费效比根据水质变化量和对应的工程投资确定,从经济角度评价工程的运行效果。(3)评估指标计算;根据确定的考核断面、水质指标,可以从第一输出数据和第二输出数据得到考核断面在工程实施前、后的水质指标的浓度、水量数据,以及工程实施后的模拟天数,水质指标浓度达标的天数,再根据工程投资数据及预设的计算公式,可以计算水质浓度变化率、负荷通量变化量、达标率及基于水质的费效比,进而对调蓄工程的环境效应进行评估。
本发明实施例建立了调蓄工程环境效应评估指标框架,其中创新性的提出了基于水质的费效比作为指标,该指标的加入能够为工程的投资提供指导。在不同的工程条件下或者工程的不同阶段可以模拟出水质的变化,结合对应的投资,分析各自的费效比,可以明确最小投资能达到的最佳的效果。
在可选的实施例中,可分别通过以下公式计算水质浓度变化率、负荷通量变化量、达标率及基于水质的费效比:
Figure PCTCN2021079867-appb-000004
W=C t*Q t-C 0*Q 0     (2)
Figure PCTCN2021079867-appb-000005
Figure PCTCN2021079867-appb-000006
其中:k表示水质浓度变化率,C 0、C t分别表示调蓄工程前、后的水质指标浓度(mg/l);W表示负荷通量变化量,Q 0、Q t分别表示调蓄工程前、后的水量(m 3/s);S表示达标率,D S、D T表示调蓄工程后水质指标达标天数、模拟的总天数;R表示基于水质的费效比,M表示工程投资(万元)。
在可选的实施例中,步骤S102,根据第一地理数据、第二地理数据、第三地理数据和第四地理数据构建SWMM与EFDC第一耦合模型,包括:
根据第一地理数据构建SWMM模型;具体地,将收集的土地利用数据、DEM数据、雨量站点位置等基础数据进行格式处理后,划分子汇水区,构建SWMM模型。对管网数据、土地利用数据、DEM数据、雨量站点位置等基础数据进行格式处理包括:利用ArcGIS对管网和水系进行概化、对土地利用进行切割和分配等。
根据第二地理数据及SWMM模型,得到研究区域管网径流水质、水量的输出数据;具体地,将收集的降雨量及相应观测时间序列、研究区域内蒸发量及相应观测时间序列处理成SWMM模型能够识别的格式后,输入SWMM模型,作为SWMM模型的驱动,率定SWMM模型的参数,并且得到研究区域管网径流水质、水量的输出数据。率定的参数包括管道糙率、子汇水区特征宽度、不透水性径流系数、透水性径流系数、不透水性洼地蓄水量、透水性洼地蓄水量、子汇水区曼宁系数、污染物累积指数系数和污染物冲刷指数系数等。
根据第三地理数据、第四地理数据构建EFDC模型;具体地,将收集的研究区水系分布、研究区污水处理厂相关数据(位置、排污流、排污浓度)、研究区排污口相关数据(排污口位置、排污流量、排污浓度)、研究区水文站的位置、水质监测站的位置、河道地形数据、研究区河道水文站的历史监测或现场监测的河道来水流量序列数据和水质监测站的历史监测或现场监测的河道来水背景浓度序列数据格式化处理后,构建EFDC模型。
根据研究区域管网径流水质、水量的输出数据将SWMM模型及EFDC模型进行耦合,生成SWMM与EFDC第一耦合模型。具体地,将SWMM模型输出的水质、水量数据作为EFDC模型陆地径流和面源的边界,输入到EFDC模型,作为EFDC模型的驱动,率定EFDC模型的参数,完成SWMM模型及EFDC模型的耦合,生成SWMM与EFDC第一耦合模型,并输出水质、水量随时间变化的第一输出数据。率定的参数包括河道糙率、污染物降解系数等。
通过分别构建SWMM模型和EFDC模型,将SWMM模型的输出数据作为EFDC模型的输入数据,将SWMM模型和EFDC模型进行耦合,用于对河道内的水环境进行模拟,由于SWMM模型可以通过表征研究区域管网径流的第一地理数据、表征研究区域管网参数的第二地理数据得到研究区域管网径流水质、水量的输出数据,从而可以模拟城市面源过程, 将SWMM模型的输出数据作为EFDC模型的输入数据,作为EFDC模型的面源边界,可以弥补水动力水质模型中对于城市面源考虑不周全的缺陷,从而可以有效支撑平原城市区的点面源“水陆一体”化的水量-水动力-水质模拟,实现自然条件和人类活动双重影响下的水环境效应模拟分析。且在本发明实施例中,SWMM模型将流域分成许多个控制单元(子汇水区),每个控制单元都会由降雨径流冲刷产生面源污染,从污染治理的角度,能够基于细化的控制单元为实施精细化的空间管控提供参考,进一步提升了SWMM传统模型的精度。
以下以一具体实施例对本发明实施例的基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法进行说明。
现以某城市区域水环境治理(如图4所示)为案例,以典型污染物化学需氧量(COD)为水质指标,开展调蓄工程效果评估。
(一)基础数据收集处理
收集案例区基础数据包括空间数据、污染数据、水文数据和气象数据四类,收集结果如表1所示:
表1
Figure PCTCN2021079867-appb-000007
表2
Figure PCTCN2021079867-appb-000008
表3
排污口序号 COD(mg/L) 水量(m 3/d)
P1 79.76 900
P2 126.4 500
P3 316 100
P4 39.13 100
P5 143 1000
P6 191.1 2500
P7 210.7 1000
P8 139.9 2500
P9 23.515 2300
P10 194.63 1000
P11 39.13 200
P12 37.62 200
P13 183.6 50
P14 84.28 144
P15 132.93 2000
P16 46.65 50
P17 46.65 150
P18 64.71 100
P19 84.28 100
P20 90.2 500
P21 33.01 2000
根据案例区水系分布及土地利用数据可以形成案例区水系及土地利用分布图,如图4所示。根据案例区水系分布、排污口位置、考核断面位置、污水处理厂位置、雨量站位置、流量监测站位置、调蓄池的位置、土壤类型数据可以形成案例区各要素点位图,如图5所示。根据数字高程DEM数据可以形成案例区DEM数字高程图,如图6所示。根据河道地形数据可以形成案例区河道地形大断面示意图,如图7所示。根据降雨量数据可以形成案例区雨量站降雨量日尺度柱状图,如图8所示。
(二)SWMM与EFDC第一耦合模型构建
(1)SWMM模型构建
利用ArcGIS将研究区域范围边界、数字高程模型(DEM)数据、雨量站坐标位置、蒸发站坐标位置、土地利用数据、土壤类型数据、河道考核断面位置等概化生成管网、子汇水区及排水口,然后导入SWMM软件形成SWMM模型骨架,如图9所示。设定管网的长度、 管径以及管道的糙率,定义子汇水区的面积、坡度、汇水节点以及特征宽度、不透水性径流系数、透水性径流系数、不透水性洼地蓄水量、透水性洼地蓄水量、子汇水区曼宁系数等,利用雨量站的降雨数据作为驱动条件,完成SWMM模型的参数率定和模型验证,模型出口输出的水量、水质为EFDC河道水动力水质模型提供径流和面源边界。
(2)EFDC模型建立
对流域水系进行网格划分,在网格布设过程中,综合考虑模型的求解效率、计算区域的不规则性、实测地形数据范围和网格要求精度要求,采用高分辨率笛卡尔网格,为了保证计算的稳定性和数值求解精度,网格长宽基本相等,网格大小的空间分布较为均匀,保证水动力和水质模拟的准确性。
(3)SWMM与EFDC模型耦合及率定验证
基于地形提取的河道断面生成河道数字模型,概化河道及设置输出边界,输入案例区各条水系的流量、水质边界(时间序列或者年均常值)和SWMM输出的径流和面源边界作为EFDC模型的驱动条件,完成SWMM模型与EFDC模型的耦合,生成SWMM与EFDC的第一耦合模型。如图10-图11所示为第一耦合模型的模拟率定结果。
(三)调蓄工程概化
(1)调蓄工程概化具体操作
(1)调蓄池的位置(x,y)及规模
根据资料收集情况,案例区的调蓄池建设情况与设置调蓄池之前的SWMM模型出口如图12所示,各调蓄池的规模见表4,其中出口F21、F22、F24位于流域外。
表4
名称 代号 建设容积(m 3)
4号调蓄池 SU4 4000
5号调蓄池 SU5 4000
7号调蓄池 SU7 1500
(2)管网及汇水区修改
管网及汇水区的修改主要涉及到三个步骤,首先是修改子汇水区,根据规划确定的汇水范围从原来的子汇水区切割或者合并出对应的调蓄池汇水区,其次根据调蓄池的位置在原来的管网基础上修改管网走向及汇水节点,最后设置调蓄池的出口。关于调蓄池SU4、SU5和SU7的管网及汇水区修改方式见图13~图15。
调蓄池SU4和SU5修改之前:在原管网系统中,子汇水区S60产生的降雨径流是进入汇水节点143的,S16和S53分别进入汇水节点149和157,然后进入过流节点156,最后一起经由排水口F6排放进入河道。如图13所示。
调蓄池SU4修改之后:新增管网和汇水节点397,原来的汇水节点146变为过流节点,将原来S60产生并汇入节点146的降雨径流重新汇入节点397,由汇水节点397排入4号调蓄池(SU4),最后由新增的排水口F-SU4排入河道;如图14所示。
调蓄池SU5修改之后:修改管网汇水节点149和157的位置,新增管网过流节点398,子汇水区S16和S53产生的降雨径流分别经由汇水节点149和157汇入过流节点398,然后排入5号调蓄池(SU5),最后经由新增的排水口F-SU5排入河道;如图14所示。
调蓄池SU7修改前后:修改之前,子汇水区S96产生的降雨径流进入汇水节点297,然后经由排水口F17排入河道;修改之后,新增汇水节点399,原来的汇水节点297变为过流节点,将原来S96产生并汇入节点297的的降雨径流重新汇入节点399,由汇水节点399排入7号调蓄池(SU4),最后由新增的排水口F-SU7排入河道;如图15所示。
(3)调蓄池设计
根据容积大小和现场条件设计调蓄池的形状和尺寸,在模型中可以将调蓄池设置成规则的形状,如矩形、梯形等,也可以设置成不规则的形状,本案例将调蓄池均设计成矩形。 设计表见表5。
表5
Figure PCTCN2021079867-appb-000009
(4)调蓄池参数设置
在SWMM模型中,影响调蓄池正常运行的参数包括调蓄池标高、最大深度、孔口标高等,调蓄池SU4、SU5和SU7设置参数分别如图16~图18所示。
(5)调蓄池边界条件的设置
由于调蓄池是在SWMM模型中进行概化的,所以其排水口同SWMM其他出口一样,直接输入至EFDC网格当中进行模拟,如图19所示。
(四)调蓄工程效果评估
(1)确立考核断面:如图5所示;
(2)确定水质指标:以典型污染物化学需氧量(COD)为水质指标;
(3)评估指标结果:基于构建完成的SWMM与EFDC的第二耦合模型,得到第二输出数据,根据上述公式(1)~(4)计算得到的水质变化率、污染负荷通量变化量、达标率及费效比如表6所示,工程前后水质变化如图20所示。
表6
Figure PCTCN2021079867-appb-000010
分析知,无调蓄工程条件下的COD背景浓度,平均浓度为59.28mg/l,在调蓄工程下,COD浓度降低,根据烧饼庄闸模拟的水量水质数据分析可知,调蓄后,COD平均浓度下降为57.61mg/l,浓度变化率为2.8%,污染负荷变化量为-50.8t,按照IV类水标准达标率为0.3%,基于水质变化的费效比为0.017mg/(L·万元)。
根据模拟结果,调蓄池的建设对于水质改善具有一定的效果,因此在工程实际建设过程中,可适当考虑增加调蓄池的数量或者规模来进行工程优化,达到最佳的工程效益。
本发明实施例还提供了一种基于SWMM与EFDC耦合模型的调蓄工程环境效应评估装置,如图21所示,包括:第一获取单元211,用于获取用以表征研究区域管网径流的第一地理数据、表征研究区域管网参数的第二地理数据、表征研究区域河道分布的第三地理数据和表征研究区域河道水动力水质的第四地理数据;详细内容参见上述实施例的步骤S101的相 关描述,在此不再赘述。
第一构建单元212,用于根据第一地理数据、第二地理数据、第三地理数据和第四地理数据构建SWMM与EFDC第一耦合模型,得到用以表征调蓄工程实施前的水质、水量的第一输出数据;详细内容参见上述实施例的步骤S102的相关描述,在此不再赘述。
第二获取单元213,用于获取调蓄工程位置、规模及汇水区域数据、工程投资数据;详细内容参见上述实施例的步骤S103的相关描述,在此不再赘述。
调整单元214,用于根据调蓄工程位置、规模及汇水区域数据调整SWMM模型;详细内容参见上述实施例的步骤S104的相关描述,在此不再赘述。
第二构建单元215,用于根据调整后的SWMM模型构建SWMM与EFDC第二耦合模型,得到用以表征调蓄工程实施后水质、水量的第二输出数据;详细内容参见上述实施例的步骤S105的相关描述,在此不再赘述。
评估单元216,用于根据第一输出数据、第二输出数据及工程投资数据对调蓄工程的环境效应进行评估。详细内容参见上述实施例的步骤S106的相关描述,在此不再赘述。
本发明实施例提供的基于SWMM与EFDC耦合模型的调蓄工程环境效应评估装置,通过在传统河道水动力水质模型(EFDC)中嵌入网管水文模型(SWMM),形成SWMM与EFDC耦合模型,对调蓄工程环境效应进行评估,由于SWMM模型考虑了城市降雨径流(城市面源污染),从而SWMM与EFDC耦合模型综合考虑了流域的完整性和系统性,统筹考虑了地形、管网、水文、气象和水质等条件,通过SWMM与EFDC耦合模型评估调蓄工程环境效应的时候,能够统筹模拟分析降雨径流产生面源污染对水质断面达标的影响,且对于调蓄工程,是将调蓄工程作为变化值概化到SWMM模型中,而不是作为一个常值概化在EFDC模型中,是考虑了降雨径流的变化过程对调蓄工程环境效应的影响,且将调蓄工程概化进入SWMM中时,考虑了调蓄工程的位置、规模等,从而对调蓄工程环境效应的评估更加准确。
本发明实施例提供了一种计算机设备,包括:至少一个处理器221;以及与至少一个处理器通信连接的存储器222;图22中以一个处理器221为例。
处理器221、存储器222可以通过总线或者其他方式连接,图221中以通过总线连接为例。
处理器221可以为中央处理器(Central Processing Unit,CPU)。处理器221还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。
存储器222作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本发明实施例中的基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法对应的程序指令/模块。处理器221通过运行存储在存储器222中的非暂态软件程序、指令以及模块,从而执行处理器的各种功能应用以及数据处理,即实现上述方法实施例中的基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法。
存储器222可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储处理器221所创建的数据等。此外,存储器222可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器222可选包括相对于处理器221远程设置的存储器,这些远程存储器可以通过网络连接至处理器221。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
上述的一个或者多个模块存储在所述存储器222中,当被所述处理器221执行时,执行如图1所示实施例中的基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法。
上述计算机设备具体细节可以对应参阅图1所示的实施例中对应的相关描述和效果进行 理解,此处不再赘述。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (9)

  1. 一种基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法,其特征在于,包括:
    获取用以表征研究区域管网径流的第一地理数据、表征研究区域管网参数的第二地理数据、表征研究区域河道分布的第三地理数据和表征研究区域河道水动力水质的第四地理数据;
    根据所述第一地理数据、第二地理数据、第三地理数据和第四地理数据构建SWMM与EFDC第一耦合模型,得到用以表征调蓄工程实施前的水质、水量的第一输出数据;
    获取调蓄工程位置、规模及汇水区域数据、工程投资数据;
    根据所述调蓄工程位置、规模及汇水区域数据调整所述SWMM模型;
    根据调整后的SWMM模型构建SWMM与EFDC第二耦合模型,得到用以表征调蓄工程实施后水质、水量的第二输出数据;
    根据所述第一输出数据、所述第二输出数据及所述工程投资数据对所述调蓄工程的环境效应进行评估。
  2. 根据权利要求1所述的基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法,其特征在于,SWMM模型包括管网系统,
    所述根据所述调蓄工程位置、规模及汇水区域数据调整所述SWMM模型,包括:
    根据所述调蓄工程位置将所述调蓄工程作为节点概化进入所述管网系统;
    将所述节点转换成调蓄池并将所述调蓄池之后的管道转换为孔口;
    根据所述调蓄工程的汇水区域数据、所述调蓄池及所述孔口对所述管网系统进行调整。
  3. 根据权利要求2所述的基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法,其特征在于,所述根据所述调蓄工程的汇水区域数据、所述调蓄池及所述孔口对所述管网系统进行调整,包括:
    根据所述调蓄池的汇水区域数据,在所述管网系统中将所述汇水区域划分为独立区域;
    根据所述汇水区域、所述调蓄池的位置及所述孔口调整所述汇水区域的管网走向、边界条件。
  4. 根据权利要求1-3任意一项所述的基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法,其特征在于,所述根据所述第一输出数据、和所述第二输出数据及所述工程投资数据对所述调蓄工程的环境效应进行评估,包括:
    根据所述第一输出数据及预设水质指标得到待考核断面的第一水质指标浓度、第一水量,所述待考核断面是研究区域河道下游出口断面、重点关注断面或水质考核断面;
    根据所述第二输出数据及所述预设水质指标得到所述待考核断面的第二水质指标浓度、第二水量、水质指标达标天数及水质指标模拟总天数;
    根据所述第一水质指标浓度、第一水量、第二水质指标浓度、第二水量、水质指标达标天数、水质指标模拟总天数及工程投资数据计算水质浓度变化率、负荷通量变化量、达标率及基于水质的费效比;
    根据所述水质浓度变化率、负荷通量变化量、达标率及基于水质的费效比对所述调蓄工程的环境效应进行评估。
  5. 根据权利要求4所述的基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法,其特征在于,通过以下公式计算水质浓度变化率、负荷通量变化量、达标率及基于水质的费效比:
    水质浓度变化率k:
    Figure PCTCN2021079867-appb-100001
    负荷通量变化量W:W=C t*Q t-C 0*Q 0
    达标率S:
    Figure PCTCN2021079867-appb-100002
    基于水质的费效比R:
    Figure PCTCN2021079867-appb-100003
    其中:k表示水质浓度变化率,C 0、C t分别表示调蓄工程前、后的水质指标浓度(mg/l);W表示负荷通量变化量,Q 0、Q t分别表示调蓄工程前、后的水量(m 3/s);S表示达标率,D S、D T表示调蓄工程后水质指标达标天数、模拟的总天数;R表示基于水质的费效比,M表示工程投资(万元)。
  6. 根据权利要求1所述的基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法,其特征在于,所述根据所述第一地理数据、第二地理数据、第三地理数据和第四地理数据构建SWMM与EFDC第一耦合模型,包括:
    根据所述第一地理数据构建SWMM模型;
    根据所述第二地理数据及所述SWMM模型,得到所述研究区域管网径流水质、水量的输出数据;
    根据所述第三地理数据、第四地理数据构建EFDC模型;
    根据所述研究区域管网径流水质、水量的输出数据将所述SWMM模型及所述EFDC模型进行耦合,生成SWMM与EFDC第一耦合模型。
  7. 一种基于SWMM与EFDC耦合模型的调蓄工程环境效应评估装置,其特征在于,包括:
    第一获取单元,用于获取用以表征研究区域管网径流的第一地理数据、表征研究区域管网参数的第二地理数据、表征研究区域河道分布的第三地理数据和表征研究区域河道水动力水质的第四地理数据;
    第一构建单元,用于根据所述第一地理数据、第二地理数据、第三地理数据和第四地理数据构建SWMM与EFDC第一耦合模型,得到用以表征调蓄工程实施前的水质、水量的第一输出数据;
    第二获取单元,用于获取调蓄工程位置、规模及汇水区域数据、工程投资数据;
    调整单元,用于根据所述调蓄工程位置、规模及汇水区域数据调整所述SWMM模型;
    第二构建单元,用于根据调整后的SWMM模型构建SWMM与EFDC第二耦合模型,得到用以表征调蓄工程实施后水质、水量的第二输出数据;
    评估单元,用于根据所述第一输出数据、所述第二输出数据及所述工程投资数据对所述调蓄工程的环境效应进行评估。
  8. 一种计算机设备,其特征在于,包括:
    至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器执行如权利要求1-6任意一项所述的基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法。
  9. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行如权利要求1-6任意一项所述的基于SWMM与EFDC耦合模型的调蓄工程环境效应评估方法。
PCT/CN2021/079867 2020-03-10 2021-03-10 基于swmm与efdc耦合模型的调蓄工程环境效应评估方法及装置 WO2021180100A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021233949A AU2021233949A1 (en) 2020-03-10 2021-03-10 SWMM and EFDC coupling model-based regulation and storage project environmental effect assessment method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010164114.5A CN111428972B (zh) 2020-03-10 2020-03-10 基于耦合模型的调蓄工程环境效应评估方法及装置
CN202010164114.5 2020-03-10

Publications (1)

Publication Number Publication Date
WO2021180100A1 true WO2021180100A1 (zh) 2021-09-16

Family

ID=71546284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079867 WO2021180100A1 (zh) 2020-03-10 2021-03-10 基于swmm与efdc耦合模型的调蓄工程环境效应评估方法及装置

Country Status (3)

Country Link
CN (1) CN111428972B (zh)
AU (1) AU2021233949A1 (zh)
WO (1) WO2021180100A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114240127A (zh) * 2021-12-14 2022-03-25 云南省设计院集团有限公司 基于水质水量诊断分析的城镇污水提质增效评估方法
CN114357675A (zh) * 2021-12-14 2022-04-15 华南理工大学 一种替换swmm模型输送模块计算出水口流量的方法
CN114372685A (zh) * 2021-12-28 2022-04-19 长江生态环保集团有限公司 一种基于swmm模型的城市暴雨内涝风险评估方法
CN115169263A (zh) * 2022-07-19 2022-10-11 中国科学院地理科学与资源研究所 基于TVGM-Budyko耦合模型的多时间尺度径流变化归因分析方法
CN115422850A (zh) * 2022-10-19 2022-12-02 北京云庐科技有限公司 基于efdc和边缘计算判断河流入河排污口污染贡献率的方法
CN116361973A (zh) * 2023-04-18 2023-06-30 中国水利水电科学研究院 考虑排水管网节点水位自动修正的城市洪涝过程模拟方法
CN116542045A (zh) * 2023-05-05 2023-08-04 天津大学 一种基于MixSIAR的排水管道三源外水比例计算方法
CN116628998A (zh) * 2023-05-30 2023-08-22 中国铁路广州局集团有限公司广州工程建设指挥部 一种适用于山岭地区的降雨汇水计算方法
CN117036099A (zh) * 2023-08-14 2023-11-10 上海勘测设计研究院有限公司 适应于植被洪水调蓄量的空间化精细核算方法与系统
CN117114512A (zh) * 2023-10-23 2023-11-24 武汉华信数据系统有限公司 水厂状态评估方法、装置、计算机设备及存储介质
CN117541078A (zh) * 2023-11-21 2024-02-09 交通运输部规划研究院 一种基于人工运河开发的生态保护策略定制方法
CN117541078B (zh) * 2023-11-21 2024-05-28 交通运输部规划研究院 一种基于人工运河开发的生态保护策略定制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111428972B (zh) * 2020-03-10 2022-09-13 中国环境科学研究院 基于耦合模型的调蓄工程环境效应评估方法及装置
CN112434443B (zh) * 2020-12-09 2022-03-25 中国建筑一局(集团)有限公司 一种基于swmm模型模拟河道水质参数计算方法
CN114036708A (zh) * 2021-09-17 2022-02-11 中铁第一勘察设计院集团有限公司 基于swmm模型的车辆基地雨水系统优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050273300A1 (en) * 2003-09-29 2005-12-08 Patwardhan Avinash S Method and system for water flow analysis
CN109492299A (zh) * 2018-11-07 2019-03-19 南开大学 基于swmm与modflow耦合的水资源模拟方法
CN109558973A (zh) * 2018-11-15 2019-04-02 深圳市环境科学研究院 一种水质与水生态一体化预警系统、控制设备和存储介质
US20190303755A1 (en) * 2018-04-02 2019-10-03 International Business Machines Corporation Water quality prediction
CN111428972A (zh) * 2020-03-10 2020-07-17 中国环境科学研究院 基于swmm与efdc耦合模型的调蓄工程环境效应评估方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110125659A1 (en) * 2009-11-24 2011-05-26 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for output of assessment of physical entity attribute effects on physical environments through in part social networking service input
CN108287950B (zh) * 2017-12-27 2021-09-14 生态环境部环境规划院 基于控制单元水环境质量目标管理的水质模拟方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050273300A1 (en) * 2003-09-29 2005-12-08 Patwardhan Avinash S Method and system for water flow analysis
US20190303755A1 (en) * 2018-04-02 2019-10-03 International Business Machines Corporation Water quality prediction
CN109492299A (zh) * 2018-11-07 2019-03-19 南开大学 基于swmm与modflow耦合的水资源模拟方法
CN109558973A (zh) * 2018-11-15 2019-04-02 深圳市环境科学研究院 一种水质与水生态一体化预警系统、控制设备和存储介质
CN111428972A (zh) * 2020-03-10 2020-07-17 中国环境科学研究院 基于swmm与efdc耦合模型的调蓄工程环境效应评估方法及装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114357675A (zh) * 2021-12-14 2022-04-15 华南理工大学 一种替换swmm模型输送模块计算出水口流量的方法
CN114240127B (zh) * 2021-12-14 2022-06-21 云南省设计院集团有限公司 基于水质水量诊断分析的城镇污水提质增效评估方法
CN114240127A (zh) * 2021-12-14 2022-03-25 云南省设计院集团有限公司 基于水质水量诊断分析的城镇污水提质增效评估方法
CN114357675B (zh) * 2021-12-14 2024-03-22 华南理工大学 一种替换swmm模型输送模块计算出水口流量的方法
CN114372685A (zh) * 2021-12-28 2022-04-19 长江生态环保集团有限公司 一种基于swmm模型的城市暴雨内涝风险评估方法
CN115169263A (zh) * 2022-07-19 2022-10-11 中国科学院地理科学与资源研究所 基于TVGM-Budyko耦合模型的多时间尺度径流变化归因分析方法
CN115422850A (zh) * 2022-10-19 2022-12-02 北京云庐科技有限公司 基于efdc和边缘计算判断河流入河排污口污染贡献率的方法
CN115422850B (zh) * 2022-10-19 2023-01-10 北京云庐科技有限公司 基于efdc和边缘计算判断河流入河排污口污染贡献率的方法
CN116361973B (zh) * 2023-04-18 2023-09-12 中国水利水电科学研究院 考虑排水管网节点水位自动修正的城市洪涝过程模拟方法
CN116361973A (zh) * 2023-04-18 2023-06-30 中国水利水电科学研究院 考虑排水管网节点水位自动修正的城市洪涝过程模拟方法
CN116542045A (zh) * 2023-05-05 2023-08-04 天津大学 一种基于MixSIAR的排水管道三源外水比例计算方法
CN116542045B (zh) * 2023-05-05 2024-01-23 天津大学 一种基于MixSIAR的排水管道三源外水比例计算方法
CN116628998B (zh) * 2023-05-30 2023-12-29 中国铁路广州局集团有限公司广州工程建设指挥部 一种适用于山岭地区的降雨汇水计算方法
CN116628998A (zh) * 2023-05-30 2023-08-22 中国铁路广州局集团有限公司广州工程建设指挥部 一种适用于山岭地区的降雨汇水计算方法
CN117036099A (zh) * 2023-08-14 2023-11-10 上海勘测设计研究院有限公司 适应于植被洪水调蓄量的空间化精细核算方法与系统
CN117114512A (zh) * 2023-10-23 2023-11-24 武汉华信数据系统有限公司 水厂状态评估方法、装置、计算机设备及存储介质
CN117114512B (zh) * 2023-10-23 2024-03-15 武汉华信数据系统有限公司 水厂状态评估方法、装置、计算机设备及存储介质
CN117541078A (zh) * 2023-11-21 2024-02-09 交通运输部规划研究院 一种基于人工运河开发的生态保护策略定制方法
CN117541078B (zh) * 2023-11-21 2024-05-28 交通运输部规划研究院 一种基于人工运河开发的生态保护策略定制方法

Also Published As

Publication number Publication date
CN111428972B (zh) 2022-09-13
CN111428972A (zh) 2020-07-17
AU2021233949A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
WO2021180100A1 (zh) 基于swmm与efdc耦合模型的调蓄工程环境效应评估方法及装置
CN108984823B (zh) 一种合流制溢流调蓄池规模的确定方法
CN111444595B (zh) 基于swmm与efdc耦合模型的截污工程环境效应评估方法及装置
Shamsudin et al. Rainfall runoff simulation using MIKE11 NAM
AU2021106591A4 (en) Method And System For Calculating A Dynamic Water Environment Capacity Of A Basin Based On River Lake Water Quality Limit
CN111369059A (zh) 基于内涝快速模拟耦合模型的城市内涝预测方法及系统
CN112101693B (zh) 基于正交分析的现状城区河道水质达标分析方法
CN109559098B (zh) 一种海绵城市试点区低影响开发设施模拟方法
Song et al. Water balance in irrigation reservoirs considering flood control and irrigation efficiency variation
Wu et al. A simplified approach for flood modeling in urban environments
CN111062125B (zh) 海绵型综合管廊水文效应评估方法
CN110838079A (zh) 一种智慧城市防洪排水远程监控系统及方法
CN111428350A (zh) 水环境检测耦合模型的构建方法、装置及计算机设备
CN109614655A (zh) 一种河流径流量的研究方法
CN111428914B (zh) 水环境治理工程方案的确定方法、装置及存储介质
CN111353718B (zh) 基于swmm与efdc的湿地、补水工程环境效应评估方法及装置
CN110580377A (zh) 一种基于响应曲面法的植草沟设计参数优化方法
CN110543660A (zh) 一种低冲击开发模拟方法、系统及相关装置
Yigzaw et al. Land use and land cover impact on probable maximum flood and sedimentation for artificial reservoirs: case study in the Western United States
CN115271440A (zh) 干旱区绿洲地下水生态水位分区动态调控方法及装置
CN110135036B (zh) 基于雨水承载量的绿地海绵系统设计容量值域确定方法
CN113869804A (zh) 一种洪涝灾害下的电网设备风险预警方法及系统
CN113723854A (zh) 一种合流制溢流的调控方法、装置及电子设备
CN116721184B (zh) 一种区域特征保持的制图综合方法及系统
CN114896550B (zh) 湖泊消落区二氧化碳释放量测定方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21769041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021233949

Country of ref document: AU

Date of ref document: 20210310

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21769041

Country of ref document: EP

Kind code of ref document: A1