WO2021180081A1 - 氘代喷他佐辛及其制备方法和用途 - Google Patents
氘代喷他佐辛及其制备方法和用途 Download PDFInfo
- Publication number
- WO2021180081A1 WO2021180081A1 PCT/CN2021/079781 CN2021079781W WO2021180081A1 WO 2021180081 A1 WO2021180081 A1 WO 2021180081A1 CN 2021079781 W CN2021079781 W CN 2021079781W WO 2021180081 A1 WO2021180081 A1 WO 2021180081A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- injection
- pharmaceutical composition
- pentazocine
- deuterated
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D221/00—Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
- C07D221/02—Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
- C07D221/22—Bridged ring systems
- C07D221/26—Benzomorphans
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/05—Isotopically modified compounds, e.g. labelled
Definitions
- This application relates to the field of medicine, in particular to deuterated pentazocine and its preparation method and application.
- Pentazocine a derivative of benzomorphane, has mixed agonistic and antagonistic effects on opioid receptors. It mainly agonizes opioid ⁇ receptors. In larger doses, it can agonize sigma receptors, and it has effects on ⁇ receptors. Partially agitated or weaker antagonism. Pentazocine is suitable for the analgesia of moderate to severe pain and has a wide range of clinical applications, such as intraoperative analgesia, postoperative analgesia, chronic pain treatment, cancer pain treatment, etc.
- ADME absorption, distribution, metabolism and/or excretion
- deuterium modification is also a feasible method to improve the properties of drug ADME. Due to the complex metabolic processes of biological systems, the pharmacokinetic properties of drugs in organisms are affected by many factors, which also show corresponding complexity. Compared with the corresponding non-deuterated drugs, the changes in the pharmacokinetic properties of deuterated drugs show great contingency and unpredictability.
- Deuteration at certain sites not only cannot prolong the half-life, but may shorten it and deteriorate its pharmacokinetic properties; on the other hand, hydrogen at certain positions on the drug molecule is not easily deuterated due to steric hindrance and other reasons. Therefore, the deuteration of drugs is not arbitrary, and the sites that can be deuterated are unpredictable.
- This application aims to solve one of the existing technical problems at least to a certain extent.
- the embodiments of the present application provide a compound having a structure represented by formula (I), or its stereoisomers, N-oxides, solvates, metabolites, pharmaceutically acceptable salts or pro- medicine,
- the stereoisomer is an enantiomer.
- the pharmaceutically acceptable salt is hydrochloride or lactate.
- the provided deuterated pentazocine has improved pharmacokinetics, higher metabolic stability, and prolonged half-life of pentazocine And improved bioavailability.
- the embodiments of the present application provide an intermediate of the compound described in the first aspect, which has a structure represented by formula (II)
- the embodiments of the present application provide a pharmaceutical composition comprising the compound described in the first aspect and pharmaceutically acceptable excipients.
- the pharmaceutical composition is formulated into an oral dosage form, an injection dosage form or an inhalation dosage form.
- the oral dosage form includes tablets, granules and capsules, preferably sustained-release tablets and sustained-release capsules.
- the pharmaceutical composition further comprises an additional therapeutic agent, wherein the additional therapeutic agent is selected from one of naloxone, acetaminophen, and aspirin.
- the embodiments of the present application provide a method for preparing the compound described in the first aspect, wherein the compound having the structure represented by formula (I) is synthesized according to the following scheme:
- the molar ratio of compound II, compound 5 and sodium bicarbonate is 1:1.1:0.9.
- the embodiments of the present application provide the compound of the first aspect or the compound prepared according to the method of the fourth aspect or the use of the pharmaceutical composition of the third aspect in the manufacture of a medicine, wherein the medicine is used In order to provide analgesia for acute and chronic pain, it is optionally combined with one of naloxone, acetaminophen and aspirin.
- the compound is administered to a subject in need thereof by a route selected from the group consisting of oral, topical, parenteral, sublingual, rectal, vaginal and intranasal.
- the parenteral route of administration includes subcutaneous injection, intravenous injection, intramuscular injection, epidural injection, intrasternal injection, and infusion.
- the acute and chronic pain includes: cancer pain and surgical/postoperative pain.
- the embodiments of the present application provide the compound of the first aspect or the pharmaceutical composition of the third aspect for use in providing analgesia for acute and chronic pain, optionally combined with naloxone, A combination of acetaminophen and aspirin.
- the compound is administered to a subject in need thereof by a route selected from the group consisting of oral, topical, parenteral, sublingual, rectal, vaginal and intranasal.
- the parenteral route of administration includes subcutaneous injection, intravenous injection, intramuscular injection, epidural injection, intrasternal injection, and infusion.
- the acute and chronic pain includes: cancer pain and surgical/postoperative pain.
- the embodiments of the present application provide a method for providing analgesia for acute and chronic pain, including: administering the compound of the first aspect or the pharmaceutical composition of the third aspect to a subject in need thereof, Optionally combined with one of naloxone, acetaminophen and aspirin.
- the compound is administered to a subject in need thereof by a route selected from the group consisting of oral, topical, parenteral, sublingual, rectal, vaginal and intranasal.
- the parenteral route of administration includes subcutaneous injection, intravenous injection, intramuscular injection, epidural injection, intrasternal injection, and infusion.
- the acute and chronic pain includes: cancer pain and surgical/postoperative pain.
- any chemical formula given herein is intended to mean a compound having the structure depicted by the structural formula and certain variations or forms.
- the compounds of any formula given herein may have asymmetric or chiral centers, and therefore exist in different stereoisomeric forms. All stereoisomers (including optical isomers, enantiomers and diastereomers) and mixtures of the compounds of the general formula are considered to fall within the scope of the general formula.
- certain structures can exist as geometric isomers (ie, cis and trans isomers), as tautomers, or as atropisomers. All such isomeric forms and mixtures thereof are considered part of the invention herein. Therefore, any chemical formula given herein is intended to represent racemates, one or more enantiomeric forms, one or more diastereomeric forms, one or more tautomers, or Atropisomeric forms and their mixtures.
- Stereoisomers refer to compounds that have the same chemical composition but differ in the arrangement of atoms or groups in space. Stereoisomers include enantiomers, diastereomers, conformational isomers (rotamers), geometric (cis/trans) isomers, atropisomers and the like.
- Chiral refers to a molecule that has the non-superimposability of its mirror image partner
- achiral refers to a molecule that can be superimposed on its mirror image partner
- Enantiomers refer to two stereoisomers of a compound, which are non-superimposable mirror images of each other.
- Diastereoisomers refer to stereoisomers that have two or more centers of chirality and whose molecules are not mirror images of each other. Diastereomers have different physical properties, such as melting point, boiling point, spectral properties, or biological activity. Mixtures of diastereomers can be separated according to high-resolution analytical procedures such as electrophoresis and chromatography such as HPLC.
- deuterated refers to the replacement of one or more hydrogens in a compound or group with deuterium. Deuteration can be mono-, di-, poly, or fully-substituted. In another preferred example, the deuterium isotope content of deuterium at the deuterium substitution position is greater than the natural deuterium isotope content ((0.015%, more preferably >50%, more preferably >75%, more preferably >95%, more preferably Land>97%, more preferably>99%, more preferably>99.5%.
- bioavailability refers to the rate and amount of the drug reaching the patient's systemic circulation after the drug or its prodrug is administered to the patient, and can be determined by evaluating the drug concentration-time curve of, for example, plasma or blood.
- Useful parameters to characterize plasma or blood concentration-time curves include area under the curve (AUC), time to maximum concentration (Tmax) and maximum drug concentration (maximum drug concentration, Cmax), where Cmax refers to the maximum concentration of the drug in the patient’s plasma or blood after a certain dose of drug or a certain form of drug is administered to the patient.
- Tmax refers to the maximum concentration of the drug in the patient’s plasma or blood after the patient administers a certain dose of drug or a certain form of drug.
- Time of maximum concentration (Cmax) time of maximum concentration
- oral bioavailability refers to the proportion of orally administered drugs reaching the systemic circulation.
- Oral bioavailability is the product of the absorbed part, the part that escapes the elimination reaction of the intestinal wall, and the part that escapes the elimination reaction of the liver; and the factors that affect the bioavailability can be divided into physiological factors, physicochemical factors and biopharmaceutical factors.
- administering (administering a" compound) compound and “administration of” compound” (“administration of” compound) shall be understood to mean providing the compound of the present invention to an individual in need thereof, including the compound of the present invention Or the pharmaceutical composition of the prodrug of the compound. It is recognized that those skilled in the non-limiting field can treat patients currently suffering from neurological and mental disorders with an effective amount of the compounds of the present invention, or by treating patients with such disorders in terms of prophylaxis.
- composition is intended to encompass products containing specified amounts of specified ingredients, as well as any product produced directly or indirectly from a combination of specified amounts of specified ingredients.
- the term in connection with pharmaceutical compositions is intended to cover products containing active ingredients and inert ingredients that constitute carriers, as well as products that are directly or indirectly composed of any combination, complexation or polymerization of two or more ingredients, or by other types of reactions or Any product resulting from an interaction (for example, causing one or more ingredients to break down). Therefore, the pharmaceutical composition of the present invention encompasses any composition made by mixing the compound of the present invention and a pharmaceutically acceptable carrier.
- the term "subject” encompasses mammals and non-mammals.
- mammals include, but are not limited to, any member of the mammalian category: humans; non-human primates, such as chimpanzees, and other ape and monkey species; agricultural animals, such as cows, horses, sheep, goats, pigs; domestic animals , Such as rabbits, dogs, and cats; and experimental animals including rodents, such as rats, mice, and guinea pigs.
- non-mammals include, but are not limited to, birds, fish, and the like.
- the mammal is a human.
- pharmaceutically acceptable excipients refer to pharmaceutically acceptable materials, compositions, or vehicles that participate in imparting the form or consistency of the pharmaceutical composition.
- Each excipient must be compatible with the other ingredients of the pharmaceutical composition when mixed. When administered to patients, such interactions will not greatly reduce the efficacy of the compounds of the invention and produce pharmaceutically unacceptable compositions.
- each excipient must of course have a sufficiently high purity to make it pharmaceutically acceptable.
- Suitable pharmaceutically acceptable excipients will vary according to the particular dosage form selected.
- suitable pharmaceutically acceptable excipients can be selected to achieve their specific functions in the composition.
- certain pharmaceutically acceptable excipients can be selected because of their ability to promote uniform dosage forms.
- Certain pharmaceutically acceptable excipients can be selected because of their ability to produce stable dosage forms.
- Certain pharmaceutically acceptable excipients may be selected because once they are administered to the patient, they help to carry or transport the compound of the invention from one organ or part of the patient's body to another organ or part of the body.
- Certain pharmaceutically acceptable excipients can be selected because of their ability to enhance patient compliance.
- Suitable pharmaceutically acceptable excipients include the following types of excipients: diluents, fillers, binders, disintegrants, lubricants, glidants, granulating agents, coating agents, wetting agents, solvents, auxiliary materials Solvents, suspending agents, emulsifiers, sweeteners, flavoring agents, taste masking agents, coloring agents, anti-caking agents, humectants, chelating agents, plasticizers, tackifiers, antioxidants, preservatives, stabilizers, Surfactants and buffers.
- certain pharmaceutically acceptable excipients can perform more than one function and can perform alternative functions.
- the applicant's current method has the potential to prevent these sites from being metabolized.
- Other sites on the molecule can also undergo transformations leading to metabolites with hitherto unknown pharmacology/toxicology. Limiting the production of these metabolites has the potential to reduce the risk of administration of such drugs, and may even allow for increased dosages and/or increased potency.
- the applicant unexpectedly discovered that the deuterated pentazocine and its stereoisomers, N-oxides, solvates, metabolites, pharmaceutically acceptable salts or prodrugs provided in this application Compared with non-deuterated pentazocine, it has improved pharmacokinetics, higher metabolic stability, extended half-life of pentazocine and improved bioavailability.
- Step 1 Preparation of [4,4'- 2 H 6 ]-ethyl-3-methyl-2-butenoic acid ethyl ester 3
- Triethyl phosphonoacetate 1 39.3g, 0.176mol
- dry tetrahydrofuran 350ml
- cool to -5 ⁇ 0°C slowly drop in n-butyllithium (0.16mol, 2.5M n-hexane solution)
- gradually heat up Stir at room temperature until the bubbling stops.
- Deuterated acetone 2 (7.5g, 0.117mol) in 70ml of dry tetrahydrofuran solution is added to the phosphonic acid anion solution. The mixture is stirred at room temperature for 4 ⁇ 4.5h.
- Step 1 Preparation of [4,4'- 2 H 6 ]-ethyl-3-methyl-2-butenoic acid ethyl ester 3
- Triethyl phosphonoacetate 1 (51g, 0.23mol), dry tetrahydrofuran (420ml), cooled to -5 ⁇ 0°C, slowly dripped n-butyllithium (0.2mol, 2.5M n-hexane solution), and gradually heated to Stir at room temperature until the bubbling stops.
- Deuterated acetone 2 (9.8g, 0.15mol) in 80ml dry tetrahydrofuran solution is added to the phosphonic acid anion solution. The mixture is stirred at room temperature for 4 ⁇ 4.5h.
- Pretreatment Crush the raw and auxiliary materials separately through a 100-mesh sieve for later use.
- Pressing direct pressing, the temperature between the presses is 20-25°C, and the relative humidity is controlled at 35-45%.
- NADPH production system in 2% sodium bicarbonate (2.2mM NADPH, 25.6mM glucose 6-phosphate, 6 units/mL glucose 6-phosphate dehydrogenase and 3.3mM magnesium chloride) at 1 mg/mL liver microsomal protein
- the stability of liver microsomes was determined.
- the test compound was prepared as a solution in 25% acetonitrile-water, and the solution was added to the assay mixture (final assay concentration 3ug/mL) and incubated at 37°C.
- the final concentration of acetonitrile in the determination should be ⁇ 1%.
- Example 1-3 Precisely weigh an appropriate amount of the compound of Example 1-3, dissolve it with CMC-Na solution to prepare a 15mg/mL solution for intragastric administration to SD rats, filter and sterilize before administration, and the dosage is 30mg/Kg .
- CMC-Na solution After each isoflurane anesthesia, about 0.10 mL of blood was taken from the orbit of each animal, and EDTAK 2 was used for anticoagulation.
- the collection time points of the PO group were: 15min, 30min, 1h, 2h, 4h, 6h, 8h and 24h after gavage.
- the plasma was centrifuged within 1 hour (centrifugation conditions: 3000 rpm, 15 min, 6°C). Take the supernatant for analysis.
- LC-MS-MS analysis adopts positive ion detection method.
- concentration-time data was calculated using DAS 3.0 pharmacokinetic software and statistical moment method to obtain the main absorption kinetic parameters T 1/2 (h), AUC (0-t) ( h ng mL -1 ), AUC(0- ⁇ )(h ng mL -1 ), etc.
- the results are as follows:
- deuterated pentazocine Compared with pentazocine, deuterated pentazocine, deuterated pentazocine hydrochloride and deuterated pentazocine lactate have achieved considerable analgesic effects in analgesic experiments in animal models.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Rheumatology (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pain & Pain Management (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
提供了式(I)所示结构的化合物,或者其立体异构体、N-氧化物、溶剂合物、代谢产物、药学上可接受的盐或前药。还提供了包含式(I)所示结构的化合物的药物组合物及其制备方法和中间体,以及镇痛应用。
Description
优先权信息
本申请请求2020年03月13日向中国国家知识产权局提交的、专利申请号为202010177342.6的专利申请的优先权和权益,并且通过参照将其全文并入此处。
本申请涉及医药领域,特别涉及氘代喷他佐辛及其制备方法和用途。
背景技术
喷他佐辛,是苯并吗啡烷的衍生物,对阿片受体兼有混合性的激动和拮抗作用,主要激动阿片κ受体,较大剂量时可激动σ受体,对μ受体具有部分激动或较弱的拮抗作用。喷他佐辛适用于中至重度疼痛的镇痛,临床应用广泛,如术中辅助镇痛、术后镇痛、慢性疼痛治疗、癌痛治疗等均可适用。
跟随性药物是首创性药物的后续与补充,是新药创制的一个重要方面。许多药物由于存在不良的吸收、分布、代谢和(或)排泄(ADME)性质,阻碍了其广泛的应用或限制其在某些适应证中的用途。除制剂技术和前药策略外,氘修饰也是改进药物ADME性质的一种可行方法。由于生物系统的代谢过程复杂,药物在生物体内的药代动力学性质受到多方面因素影响,也表现出相应的复杂性。与相应的非氘代药物相比,氘代药物的药代动力学性质的变化表现出极大的偶然性和不可预测性。某些位点的氘代非但不能延长半衰期,反而可能会使其缩短,劣化其药代动力学性质;另一方面,药物分子上某些位置的氢因为空间位阻等原因也不易被氘代,因此药物的氘代并非随心所欲,可氘代的位点是不可预期的。
目前针对喷他佐辛的氘代修饰仍有待进一步的研究。
发明内容
本申请旨在至少在一定程度上解决现有的技术问题之一。
在第一方面,本申请的实施方案提供了具有式(I)所示结构的化合物,或者其立体异构体、N-氧化物、溶剂合物、代谢产物、药学上可接受的盐或前药,
在一个实施方案中,所述立体异构体是镜像异构体。
在一个实施方案中,所述药学上可接受的盐为盐酸盐或乳酸盐。
根据本申请实施方案,与未氘代的喷他佐辛相比,所提供的氘代喷他佐辛具有改善的药代动力学、更高的代谢稳定性、延长的喷他佐辛的半衰期和改善的生物利用度。
在第二方面,本申请的实施方案提供了第一方面所述化合物的中间体,具有式(II)所示的结构
在第三方面,本申请的实施方案提供了药物组合物,包含第一方面所述的化合物和药学上可接受的辅料。
在一个实施方案中,所述药物组合物被配制成口服剂型、注射剂型或吸入剂型。
在一个实施方案中,所述口服剂型包括片剂、颗粒剂和胶囊剂,优选地缓释片剂和缓释胶囊。
在一个实施方案中,所述药物组合物还包含另外的治疗剂,其中所述另外的治疗剂选自纳洛酮、对乙酰氨基酚和阿司匹林中的一种。
在第四方面,本申请的实施方案提供了制备第一方面所述的化合物的方法,其中具有式(I)所示结构的化合物是按照如下方案合成的:
在一个实施方案中,其中在步骤4的反应中,化合物II、化合物5与碳酸氢钠的摩尔比为1:1.1:0.9。
在第五方面,本申请的实施方案提供了第一方面所述化合物或根据第四方面所述方法制备的化合物或者第三方面所述药物组合物在制造药物中的用途,其中所述药物用于针对急慢性疼痛提供镇痛作用,任选地与纳洛酮、对乙酰氨基酚和阿司匹林中的一种联合。
在一个实施方案中,其中通过选自以下的途径向有此需要的受试者施用所述化合物:口服、局部、肠胃外、舌下、直肠、阴道和鼻内。
在一个实施方案中,其中肠胃外途径施用包括皮下注射、静脉内注射、肌内注射、硬膜外注射、胸骨内注射和输注。
在一个实施方案中,其中所述急慢性疼痛包括:癌症疼痛和手术/术后疼痛。
在第六方面,本申请的实施方案提供了用于在针对急慢性疼痛提供镇痛作用中使用的第一方面所述化合物或第三方面所述药物组合物,任选地与纳洛酮、对乙酰氨基酚和阿司匹林中的一种联合。
在一个实施方案中,其中通过选自以下的途径向有此需要的受试者施用所述化合物:口服、局部、肠胃外、舌下、直肠、阴道和鼻内。
在一个实施方案中,其中肠胃外途径施用包括皮下注射、静脉内注射、肌内注射、硬膜外注射、胸骨内注射和输注。
在一个实施方案中,其中所述急慢性疼痛包括:癌症疼痛和手术/术后疼痛。
在第七方面,本申请的实施方案提供了针对急慢性疼痛提供镇痛作用的方法,包括:向有此需要的受试者施用第一方面所述化合物或第三方面所述药物组合物,任选地与纳洛酮、对乙酰氨基酚和阿司匹林中的一种联合。
在一个实施方案中,其中通过选自以下的途径向有此需要的受试者施用所述化合物:口服、局部、肠胃外、舌下、直肠、阴道和鼻内。
在一个实施方案中,其中肠胃外途径施用包括皮下注射、静脉内注射、肌内注射、硬膜外注射、胸骨内注射和输注。
在一个实施方案中,其中所述急慢性疼痛包括:癌症疼痛和手术/术后疼痛。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
术语及其定义
本文给出的任何化学式意图表示具有由结构式所描绘的结构以及某些变体或形式的化合物。例如,本文给出的任何化学式的化合物可以具有不对称或手性中心,并且因此以不同的立体异构体形式存在。通式化合物的所有立体异构体(包括旋光异构体、对映异构体和非对映异构体)及其混合物都被认为落入该通式的范围内。此外,某些结构可以作为几何异构体(即,顺式和反式异构体)、作为互变异构体或作为阻转异构体存在。所有这样的异构体形式及其混合物在本文中均被视为本发明的一部分。因此,本文给出的任何化学式意图表示外消旋物、一种或多种对映异构体形式、一种或多种非对映异构体形式、一种或多种互变异构或阻转异构体形式以及它们的混合物。
“立体异构体”是指具有相同的化学组成但关于原子或基团在空间中的排布不同的化合物。立体异构体包括对映异构体、非对映异构体、构象异构体(旋转异构体)、几何(顺式/反式)异构体、阻转异构体等。
“手性”是指具有镜像配对体的不可叠合性的分子,而术语“非手性”是指可叠合在其镜像配对体上的分子。
“对映异构体”是指化合物的两种立体异构体,它们是彼此不可叠合的镜像。
“非对映异构体”是指具有两个或更多个手性中心并且其分子不是彼此镜像的立体异构体。非对映异构体具有不同的物理性质,例如熔点、沸点、光谱性质或生物活性。非对映异构体的混合物可以根据高分辨率分析程序如电泳和色谱法如HPLC进行分离。
本文所使用的立体化学定义和惯例通常遵循S.P.Parker,Ed.,McGraw-Hill Dictionary of Chemical Terms(1984)McGraw-Hill Book Company,New York;以及Eliel,E.和Wilen,S.,"Stereochemistry of Organic Compounds(有机化合物的立体化学)",John Wiley & Sons,Inc.,New York,1994。
在本文中,“氘代”指化合物或基团中的一个或多个氢被氘所取代。氘代可以是一取代、二取代、多取代或全取代。在另一优选例中,氘在氘取代位置的氘同位素含量是大于天然氘同位素含量((0.015%,更佳地>50%,更佳地>75%,更佳地>95%,更佳地>97%,更佳地>99%,更佳地>99.5%。
在本文中,“生物利用度”是指在向患者施用药物或其前体药物后到达患者体循环的药物的速率和数量,并且可以通过评估例如血浆或血液的药物浓度-时间曲线来确定。表征血浆或血液浓度-时间曲线的有用参数包括曲线下面积(area under the curve,AUC),达到最大浓度的时间(time to maximum concentration,Tmax)和最大药物浓度(maximum drug concentration,Cmax),其中Cmax是指向患者施用一定剂量的药物或某种形式的药物后患者血浆或血液中药物的最大浓度,Tmax是指向患者施用一定剂量的药物或某种形式的药物后,患者血浆或血液中达到药物最大浓度(Cmax)的时间。
在本文中,“口服生物利用度”(F%)是指口服施用的药物到达体循环的比例。口服生物利用度是被吸收的部分、逃出肠壁消除反应的部分和逃出肝脏消除反应的部分的产物;并且影响生物利用度的因素可以分为生理因素、物理化学因素和生物制药因素。
如本文所用,术语“施用”("administering a"compound)化合物和化合物的“施用”("administration of"compound)应理解为是指向有此需要的个体提供本发明的化合物、包含本发明的化合物或化合物的前药的药物组合物。公认的是,非限制性领域的技术人员可以用有效量的本发明化合物治疗目前患有神经和精神障碍的患者,或者通过在预防上治疗患有该障碍的患者。
如本文所用,术语“组合物”旨在涵盖包含指定量的指定成分的产品,以及直接或间接地由指定量的指定成分的组合产生的任何产品。与药物组合物有关的该术语旨在涵盖包含构成载体的活性成分和惰性成分的产品,以及直接或间接由任何两种或多种成分的组合、络合或聚合,或者由其他类型的反应或相互作用(例如导致一种或多种成分分解)产生的任何产品。因此,本发明的药物组合物涵盖通过混合本发明的化合物和药学上可接受的载 体制成的任何组合物。
如本文所用,术语“受试者”涵盖哺乳动物和非哺乳动物。哺乳动物的示例包括但不限于哺乳动物类别的任何成员:人类;非人类灵长类动物,例如黑猩猩,以及其他猿类和猴子物种;农畜,例如牛、马、绵羊、山羊、猪;家畜,例如兔、狗和猫;以及包括啮齿动物的实验动物,例如大鼠、小鼠和豚鼠等。非哺乳动物的示例包括但不限于鸟类、鱼类等。在本发明的一个实施方案中,哺乳动物是人。
如本文所用,“药学上可接受的辅料”是指参与赋予药物组合物形式或稠度的药学上可接受的材料、组合物或媒介物。每种辅料在混合时必须与药物组合物的其他成分兼容。当向患者施用时,这样相互作用将不会大幅度降低本发明化合物的药效,并产生药物学上不可接受的组合物。另外,每种辅料当然必须具有足够高的纯度以使其在药学上可接受。
合适的药学上可接受的辅料将根据所选的特定剂型而变化。另外,可以选择合适的药学上可接受的辅料以实现它们在组合物中的特定功能。例如,可以选择某些药学上可接受的辅料,因为它们具有促进产生均匀剂型的能力。可以选择某些药学上可接受的辅料,因为它们具有产生稳定剂型的能力。可以选择某些药学上可接受的辅料,因为一旦向患者施用它们,便有助于携带或运输本发明的化合物从患者的一个器官或身体的一部分到另一器官或身体的一部分。可以选择某些药学上可接受的辅料,因为它们具有增强患者依从性的能力。
合适的药学上可接受的辅料包括以下类型的辅料:稀释剂、填充剂、粘合剂、崩解剂、润滑剂、助流剂、造粒剂、包衣剂、润湿剂、溶剂、助溶剂、悬浮剂、乳化剂、甜味剂、调味剂、掩味剂、着色剂、防结块剂、保湿剂、螯合剂、增塑剂、增粘剂、抗氧化剂、防腐剂、稳定剂、表面活性剂和缓冲剂。技术人员将理解,取决于制剂中存在多少辅料和制剂中存在什么其他成分,某些药学上可接受的辅料可以发挥一种以上的功能并且可以发挥替代的功能。
技术人员具有本领域的知识和技能,以使他们能够选择适当量的合适的药学上可接受的辅料用于本发明。另外,本领域技术人员可获得描述药学上可接受的辅料的资源,并且这些资源可用于选择合适的药学上可接受的辅料。示例包括《雷明顿药物科学》(Remington's Pharmaceutical Sciences)(Mack Publishing Company)、《药物添加剂手册》(The Handbook of Pharmaceutical Additives)(Gower Publishing Limited),以及《药物辅料手册》(The Handbook of Pharmaceutical Excipients)(the American Pharmaceutical Association and the Pharmaceutical Press).
在“《雷明顿:药学的科学与实践》(Remington:The Science and Practice of Pharmacy),第21版,2005,D.B.Troy编,Lippincott Williams& Wilkins,费城”和“《医药技术百科全书》 (Encyclopedia of Pharmaceutical Technology),J.Swarbrick和J.C.Boylan编,1988-1999,Marcel Dekker,纽约”中公开了用于配制药学上可接受的组合物的各种载体及其制备的已知技术,其每个的内容通过引用并入本文。除非任何常规载体介质与本发明化合物不兼容,例如通过产生任何不良的生物学作用或以有害的方式与药学上可接受的组合物的任何其他组分相互作用,否则其用途是预期在本发明的范围内的。
除非另外定义,否则本文使用的所有技术和科学术语具有与本发明所属领域的普通技术人员通常理解的含义相同的含义。如果发生冲突,以本说明书(包括定义)为准。在整个说明书和权利要求书中,词语“包括”或诸如“包含”或“含有”的变体将被理解为暗示包含所述整体或整体的组但不排除任何其它整体或整体的组。除非上下文另有要求,否则未用数量词限定的名词包括单数和复数指示对象。术语“例如”或“如”之后的任何实例并不意味着穷举或限制。
本申请是发明人对以下问题和事实的发现而做出的:
本申请人从2014年开始研究喷他佐辛,从国家安监司特药处获得立项开始,经历了几十批次的合成,中试研究,最终申报了原料药及注射液的仿制药注册。在研究喷他佐辛代谢途径时,可能推测的代谢位点在肝药酶CYP450等的途径如下:
申请人基于实验室作出的发现以及对文献的梳理,目前的方法有防止这些位点代谢的潜能。该分子上的其它位点也可经历导致具有迄今未知的药理学/毒理学的代谢物的转化。限制这些代谢物的产生具有降低此类药物施用的危险的潜能,并且甚至可允许增加的剂量和/或增加的效力。通过大量的实验,申请人出乎意料的发现本申请提供的氘代喷他佐辛及其立体异构体、N-氧化物、溶剂合物、代谢产物、药学上可接受的盐或前药相比于未氘代的喷他佐辛具有改善的药代动力学、更高的代谢稳定性、延长的喷他佐辛的半衰期和改善的生物利用度。
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。
实施例1:氘代喷他佐辛的制备
1)步骤1:[4,4'-
2H
6]-乙基-3-甲基-2-丁烯酸乙酯3的制备
膦酰基乙酸三乙酯1(39.3g,0.176mol)、干燥的四氢呋喃(350ml),冷却至-5~0℃,缓慢滴入正丁基锂(0.16mol,2.5M正己烷溶液),逐渐升温至室温搅拌直至鼓泡停止,氘代丙酮2(7.5g,0.117mol)的70ml干燥的四氢呋喃溶液,加入到这膦酸阴离子溶液中,混合物在室温下搅拌4~4.5h,TLC鉴别终点(戊烷/乙醚=2:1),然后加入22ml饱和氯化铵溶液淬灭,用异丙醚萃取水层,合并有机层,用盐水(30mL×3)洗涤,无水硫酸镁干燥,过滤掉干燥剂,滤液减压浓缩,粗品经柱色谱纯化(戊烷/乙醚=2:1),得13.6g淡黄色油状物标题化合物,收率86.6%,GC含量97.8%。
1H-NMR(500MHz,CDCl
3/TMS,ppm):δ:5.61(s,1H),4.10(q,J=11.9Hz,2H),1.22(t,J=11.9Hz,3H);
13C-NMR:165.9,154.2,115.1,59.1,14.2;
GC-MS(m/z):134。
2)步骤2:[4,4'-
2H
6]-3-甲基-2-丁烯酸醇4的制备
[4,4'-
2H
6]-乙基-3-甲基-2-丁烯酸乙酯3(13.4g,0.1mol)、50ml四氢呋喃溶液,冷却至-5~0℃,搅拌下滴入四氢铝锂(4.0g,0.105mol)的150ml干燥的四氢呋喃溶液,在-5~0℃搅拌0.5h,然后在室温搅拌45min,加入异丙醚80ml,在-5~0℃下加入100g硫酸钠与30ml水的混合物,室温搅拌0.5h,加入另外的100g的无水硫酸钠以出去水,过滤,固体用异丙醚洗涤,快速柱色谱纯化(戊烷/乙醚=2:1),得6.8g无色油状物标题化合物,收率74%,GC含量96.9%。
1H-NMR(500MHz,CDCl
3/TMS,ppm):δ:5.33(t,J=11.5,1H),4.04(d,J=11.5Hz,2H),2.76(s,OH);
13C NMR(CDCl
3):135.3,123.7,59.1;
GC-MS(m/z):92.18
3)步骤3:[4,4'-
2H
6]-1-溴-3-甲基-2-丁烯(中间体II)的制备
[4,4'-
2H
6]-3-甲基-2-丁烯酸醇4(6.5g,0.07mol),250ml干燥二氯甲烷,0℃下,通过注射器加入三溴化硼(6.75ml,0.07mol),-5~0℃搅拌30min后再在室温搅拌30min,冰淬灭反应,二氯甲烷层用盐水(30mL×3)洗涤,无水硫酸镁干燥,浓缩至干,粗品蒸馏纯化即得[4,4'-
2H
6]-1-溴-3-甲基-2-丁烯(中间体II)10.0g无色油状物,收率92.1%,GC含量98.5%。
1H-NMR(500MHz,CDCl
3/TMS,ppm):δ:5.53(t,J=14Hz,1H),3.98(d,J=14Hz,2H);
13C-NMR(CDCl
3):140.2,121.4,29.5;
GC-MS(m/z):155.0
4)步骤4:氘代喷他佐辛的制备
将本公司自制的化合物5(11.5g,0.0528mol)溶于40ml DMF中,加入碳酸氢钠4.39g(0.0522mol),搅拌升温至105~110℃,滴入[4,4'-
2H
6]-1-溴-3-甲基-2-丁烯(中间体II)9.0g(0.058mol)的9ml DMF溶液,滴入完毕,维持该温度继续搅拌1h,TLC鉴别终点(石油醚-乙酸乙酯=10:1),反应完毕,冷却至室温,过滤,减压浓缩至干,残余物加50ml二氯甲烷及20ml水,加5ml三乙胺,搅拌10min,静置分层,有机层用用盐水(30mL×3)洗涤,无水硫酸镁干燥,过滤,减压浓缩至干,残余物加10ml丙酮,-5~0℃下搅拌1h,过滤,固体用适量冷的丙酮洗涤,真空60℃~65℃干燥5h,得白色结晶性粉末氘代喷他佐辛10.9g,收率71%,HPLC含量99.2%。
1H-NMR(500MHz,CDCl
3/TMS,ppm):
13C-NMR(CDCl
3):
IR:(傅里叶变换红外光谱仪,Bruker Tensor 27型)
MS:(高分辨飞行时间质谱ES+质谱和ES-质谱图)
峰m/z | 离子m/z | 强度(%) | 解析归属 |
222.1 | C 12H 12D 6NOH + | 8 | |
224.2 | C 12H 14D 6NOH + | 45 | 223.2C 12H 14D 6NO(II) |
225.2 | 10 | ||
272.2 | C 19H 21D 6NOH + | 100 | 291.2C 19H 21D 6NO(I) |
293.2 | 22 |
峰m/z | 离子m/z | 强度(%) | 解析归属 |
222.1 | C 14H 128D 6NO - | 88 | 223.1C 14H 13D 6NO -(III) |
223.1 | 10 | ||
290.1 | C 19H 20D 6NO - | 100 | 291.1C 19H 21D 6NO |
291.1 | 15 |
实施例2:氘代喷他佐辛的制备
1)步骤1:[4,4'-
2H
6]-乙基-3-甲基-2-丁烯酸乙酯3的制备
膦酰基乙酸三乙酯1(51g,0.23mol)、干燥的四氢呋喃(420ml),冷却至-5~0℃,缓慢滴入正丁基锂(0.2mol,2.5M正己烷溶液),逐渐升温至室温搅拌直至鼓泡停止,氘代丙酮2(9.8g,0.15mol)的80ml干燥的四氢呋喃溶液,加入到这膦酸阴离子溶液中,混合物在室温下搅拌4~4.5h,TLC鉴别终点(戊烷/乙醚=2:1),然后加入30ml饱和氯化铵溶液淬灭,用异丙醚萃取水层,合并有机层,用盐水(30mL×3)洗涤,无水硫酸镁干燥,过滤掉干燥剂,滤液减压浓缩,粗品经柱色谱纯化(戊烷/乙醚=2:1),得17.9g淡黄色油状物标题化合物,收率87.0%,GC含量98.3%。
1H-NMR(500MHz,CDCl
3/TMS,ppm):
2)步骤2:[4,4'-
2H
6]-3-甲基-2-丁烯酸醇4的制备
[4,4'-
2H
6]-乙基-3-甲基-2-丁烯酸乙酯3(17.5g,0.13mol)、50ml四氢呋喃溶液,冷却至-5~0℃,搅拌下滴入四氢铝锂(5.2g,0.14mol)的190ml干燥的四氢呋喃溶液,在-5~0℃搅拌0.5h,然后在室温搅拌45min,加入异丙醚100ml,在-5~0℃下加入130g硫酸钠与50ml水的混合物,室温搅拌0.5h,加入另外的130g的无水硫酸钠以出去水,过滤,固体用异丙醚洗涤,快速柱色谱纯化(戊烷/乙醚=2:1),得8.9g无色油状物标题化合物,收率74.7%,GC含量97.5%。
3)步骤3:[4,4'-
2H
6]-1-溴-3-甲基-2-丁烯(中间体II)的制备
[4,4'-
2H
6]-3-甲基-2-丁烯酸醇4(8.5g,0.091mol),290ml干燥二氯甲烷,0℃下,通过注射器加入三溴化硼(8.78ml,0.091mol),-5~0℃搅拌30min后再在室温搅拌30min,冰淬灭反应,二氯甲烷层用盐水(30mL×3)洗涤,无水硫酸镁干燥,浓缩至干,粗品蒸馏纯化即得[4,4'-
2H
6]-1-溴-3-甲基-2-丁烯(中间体II)13.3g无色油状物,收率92.7%,GC含量98.9%。
4)步骤4:氘代喷他佐辛的制备
化合物5(15g,0.069mol),本公司自制,溶于55ml DMF中,加入碳酸氢钠5.7g(0.068mol),搅拌升温至105~110℃,滴入[4,4'-
2H
6]-1-溴-3-甲基-2-丁烯(中间体II)11.7 g(0.075mol)的12ml DMF溶液,滴入完毕,维持该温度继续搅拌1h,TLC鉴别终点(石油醚-乙酸乙酯=10:1),反应完毕,冷却至室温,过滤,减压浓缩至干,残余物加90ml二氯甲烷及30ml水,加8ml三乙胺,搅拌10min,静置分层,有机层用用盐水(30mL×3)洗涤,无水硫酸镁干燥,过滤,减压浓缩至干,残余物加15ml丙酮,-5~0℃下搅拌1h,过滤,固体用适量冷的丙酮洗涤,真空60℃~65℃干燥5h,得白色结晶性粉末氘代喷他佐辛14.2g,收率71.4%,HPLC含量99.7%。
实施例3:氘代喷他佐辛盐酸盐的制备
氘代喷他佐辛(20.4g,0.07mol),溶于100ml甲醇中,升温至45~50℃搅拌下滴入15%的氯化氢甲醇溶液,直至溶液的pH值为3~4,搅拌10min,然后冷却至-5~0℃析晶2h,过滤,固体用甲醇洗涤,得20.8g白色结晶性粉末,收率91.1%。
实施例4:氘代喷他佐辛乳酸盐的制备
氘代喷他佐辛(20.4g,0.07mol),溶于100ml异丙醇中,升温至55~60℃搅拌下加入乳酸(7.2g,0.08mol),维持该温度搅拌30min,然后冷却至室温静置析晶2h,过滤,固体用异丙醇洗涤,得21.4g白色结晶性粉末,收率79.1%。
实施例5:氘代喷他佐辛注射液的制备
处方:
制备工艺:
a)称取配方量的实施例1或实施例4化合物、乳酸及氯化钠,加80%注射用水溶解;
b)加入0.6%的注射用针用活性炭,50℃~60℃保温搅拌30min,过滤脱炭,得到滤液;
c)冷却至室温,必要时,用0.1N的氢氧化钠调节pH值3.5~5.5,加注射用水至全量,测定中间体含量和pH值;合格后
d)经0.22μm微孔滤膜过滤,灌装2ml安瓿瓶中,充N
2,每支灌封1ml,121℃热压灭菌30min,得到氘代喷他佐辛注射液成品。
实施例6:盐酸氘代喷他佐辛/盐酸纳洛酮片的制备
规格:25mg/0.25mg(25mg氘代喷他佐辛/0.25mg纳洛酮)
处方:
规格:50mg/0.5mg(50mg氘代喷他佐辛/0.5mg纳洛酮)
处方:
制备工艺:
①、预处理:将原辅料分别粉碎过100目筛备用。
②、总混:实施盐酸纳洛酮和微晶纤维素混匀后加入其它辅料,最后加硬脂酸镁以增
加流动性,混匀再加入其他辅料,混匀。
③、压片:直接压片,压片间温度20~25℃,相对湿度控制在35~45%。
实施例7:体外肝微粒体稳定性测定
在于2%碳酸氢钠中的NADPH产生系统(2.2mM NADPH,25.6mM葡萄糖6-磷酸酯、6单位/mL葡萄糖6-磷酸脱氢酶和3.3mM氯化镁)中以l mg/mL肝微粒体蛋白进行肝微粒体稳定性测定。将测试化合物制备为于25%乙腈一水中的溶液,将该溶液加入测定混合物(最终测定浓度3ug/mL)并在37℃下孵育。测定中乙腈的最终浓度应<1%。在0、15、30、45、60、120min时取出小份(60ul),以冰冷乙腈(300ul,溶解有内标化合物)稀释以终止反应。在12000RPM离心样品10min以沉淀蛋白。将上清液转移到微离心管并储存以用于测试化合物降解半衰期的LC/MS/MS分析。由此发现在此测定的氘代喷他佐辛与喷他佐辛相比增加的半衰期。结果如下:
化合物 | 喷他佐辛 | 氘代喷他佐辛 | 盐酸氘代喷他佐辛 | 乳酸氘代喷他佐辛 |
代谢百分比 | 36.2%±2.5% | 7.9%±1.6% | 8.4%±1.3% | 8.6%±1.1% |
结果表明:喷他佐辛在120min内代谢了36.2%,而氘代喷他佐辛、盐酸氘代喷他佐辛及乳酸氘代喷他佐辛分别代谢了7.9%、8.4%及8.6%,因此,本发明的氘代喷他佐辛代谢稳定性远远大于喷他佐辛。
实施例8:SD大鼠体内的口服药物血药浓度
精密称取适量实施例1-3化合物,用CMC-Na溶液溶解分别配制成15mg/mL溶液用于SD大鼠灌胃给药,给药前进行过滤除菌,给药剂量均为30mg/Kg。每只动物每次异氟烷麻醉后通过眼眶取血约0.10mL血液,EDTAK
2抗凝,PO组采集时间点为:灌胃后15min、30min、1h、2h、4h、6h、8h和24h。并于1小时之内离心分离血浆(离心条件:3000转/分钟,15min,6℃)。取上清液进样分析。
LC-MS-MS分析采用正离子方式检测。所得浓度一时间数据,用DAS 3.0药代动力学软件,采用统计矩法进行计算,得到大鼠灌胃给予化合物后主要吸收动力学参数T
1/2(h)、AUC(0-t)(h ng mL
-1)、AUC(0-∞)(h ng mL
-1)等。结果如下:
化合物 | 喷他佐辛 | 氘代喷他佐辛 | 盐酸氘代喷他佐辛 | 乳酸氘代喷他佐辛 |
T1/2 | 3.41±0.13 | 4.76±0.24 | 4.89±0.16 | 4.75±0.20 |
AUC(0-t) | 2107±433 | 1689±375 | 1674±369 | 1702±358 |
AUC(0-∞) | 2274±532 | 2766±471 | 2853±502 | 2809±497 |
结果表明:氘代喷他佐辛、盐酸氘代喷他佐辛及乳酸氘代喷他佐辛半衰期分别延长了 39.6%、43.4%、39.3%,药时曲线下AUC(0-∞)(h ng mL
-1)面积值分别增加了21.6%、25.5%及23.5%。显示出了本发明的氘代喷他佐辛具有良好的药代动力学性质。
实施例9 镇痛作用
与喷他佐辛相比,氘代喷他佐辛、盐酸氘代喷他佐辛及乳酸氘代喷他佐辛在动物模型的镇痛实验中实现了相当的镇痛作用。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (22)
- 根据权利要求1所述的化合物,其中所述立体异构体是镜像异构体。
- 根据权利要求1所述的化合物,其中所述药学上可接受的盐为盐酸盐或乳酸盐。
- 一种药物组合物,包含如权利要求1至3中任一项所述的化合物和药学上可接受的辅料。
- 根据权利要求5所述的药物组合物,其中所述药物组合物被配制成口服剂型、注射剂型或吸入剂型。
- 根据权利要求6所述的药物组合物,其中所述口服剂型包括片剂、颗粒剂和胶囊剂,优选地缓释片剂和缓释胶囊。
- 根据权利要求5至7中任一项所述的药物组合物,还包含另外的治疗剂,其中所述另外的治疗剂选自纳洛酮、对乙酰氨基酚和阿司匹林中的一种。
- 根据权利要求9所述的方法,其中在步骤4的反应中,化合物II、化合物5与碳酸氢钠的摩尔比为1:1.1:0.9。
- 根据权利要求1至3中任一项所述的化合物或根据权利要求9或10所述的方法制备的化合物或者根据权利要求5至8所述的药物组合物在制造药物中的用途,其中所述药物用于针对急慢性疼痛提供镇痛作用,任选地与纳洛酮、对乙酰氨基酚和阿司匹林中的一种联合。
- 根据权利要求11所述的用途,其中通过选自以下的途径向有此需要的受试者施用所述化合物:口服、局部、肠胃外、舌下、直肠、阴道和鼻内。
- 根据权利要求12所述的用途,其中肠胃外途径施用包括皮下注射、静脉内注射、肌内注射、硬膜外注射、胸骨内注射和输注。
- 根据权利要求11至13中任一项所述的用途,其中所述急慢性疼痛包括:癌症疼痛和术中/术后疼痛。
- 根据权利要求1至3中任一项所述的化合物或根据权利要求9或10所述的方法制备的化合物或者根据权利要求5至8所述的药物组合物,用于在针对急慢性疼痛提供镇痛作用中使用,任选地与纳洛酮、对乙酰氨基酚和阿司匹林中的一种联合。
- 根据权利要求15使用的所述化合物,其中通过选自以下的途径向有此需要的受试者施用所述化合物:口服、局部、肠胃外、舌下、直肠、阴道和鼻内。
- 根据权利要求16使用的所述化合物,其中肠胃外途径施用包括皮下注射、静脉内注射、肌内注射、硬膜外注射、胸骨内注射和输注。
- 根据权利要求15至17中任一项使用的所述化合物,其中所述急慢性疼痛包括:癌症疼痛和术中/术后疼痛。
- 一种针对急慢性疼痛提供镇痛作用的方法,包括:向有此需要的受试者施用权利要求1所述的化合物,任选地与纳洛酮、对乙酰氨基酚和阿司匹林中的一种联合。
- 根据权利要求19所述的方法,其中通过口服、局部、肠胃外、舌下、直肠、阴道和鼻内施用所述化合物。
- 根据权利要求20所述的方法,其中肠胃外途径施用包括皮下注射、静脉内注射、肌内注射、硬膜外注射、胸骨内注射和输注。
- 根据权利要求19所述方法,其中所述急慢性疼痛包括:癌症疼痛和术中/术后疼痛。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010177342.6A CN111217749A (zh) | 2020-03-13 | 2020-03-13 | 氘代喷他佐辛及制备方法、医药组合物和用途 |
CN202010177342.6 | 2020-03-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021180081A1 true WO2021180081A1 (zh) | 2021-09-16 |
Family
ID=70830022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/079781 WO2021180081A1 (zh) | 2020-03-13 | 2021-03-09 | 氘代喷他佐辛及其制备方法和用途 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111217749A (zh) |
WO (1) | WO2021180081A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114031505A (zh) * | 2021-12-06 | 2022-02-11 | 和鼎(南京)医药技术有限公司 | 一种制备喷他佐辛中间体的方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111217749A (zh) * | 2020-03-13 | 2020-06-02 | 安徽省逸欣铭医药科技有限公司 | 氘代喷他佐辛及制备方法、医药组合物和用途 |
CN112079779B (zh) * | 2020-08-21 | 2022-03-18 | 华润双鹤药业股份有限公司沧州分公司 | 一种喷他佐辛的合成方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3644373A (en) * | 1968-12-06 | 1972-02-22 | Grelan Pharmaceutical Co | Method for the production of 3-substituted-1 2 3 4 5 6-hexahydro-6 11-dimethyl-8-hydroxy-2 6-methano-3-benzazocines |
GB1330464A (en) * | 1969-11-20 | 1973-09-19 | Grindstedvaerket As | Method for the production of derivatives of 1,2,3,4,5,6- hexahydro-2,6-methano-3-benzazocine |
US4105659A (en) * | 1960-12-01 | 1978-08-08 | Sterling Drug Inc. | 1,2,3,4,5,6-hexahydro-2,6-methano-3-benzazocines |
CN107827819A (zh) * | 2017-10-30 | 2018-03-23 | 安徽恒星制药有限公司 | 一种喷他佐辛晶型及其制备方法 |
CN111217749A (zh) * | 2020-03-13 | 2020-06-02 | 安徽省逸欣铭医药科技有限公司 | 氘代喷他佐辛及制备方法、医药组合物和用途 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10338634A (ja) * | 1997-04-11 | 1998-12-22 | Grelan Pharmaceut Co Ltd | 医薬組成物 |
-
2020
- 2020-03-13 CN CN202010177342.6A patent/CN111217749A/zh active Pending
-
2021
- 2021-03-09 WO PCT/CN2021/079781 patent/WO2021180081A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4105659A (en) * | 1960-12-01 | 1978-08-08 | Sterling Drug Inc. | 1,2,3,4,5,6-hexahydro-2,6-methano-3-benzazocines |
US3644373A (en) * | 1968-12-06 | 1972-02-22 | Grelan Pharmaceutical Co | Method for the production of 3-substituted-1 2 3 4 5 6-hexahydro-6 11-dimethyl-8-hydroxy-2 6-methano-3-benzazocines |
GB1330464A (en) * | 1969-11-20 | 1973-09-19 | Grindstedvaerket As | Method for the production of derivatives of 1,2,3,4,5,6- hexahydro-2,6-methano-3-benzazocine |
CN107827819A (zh) * | 2017-10-30 | 2018-03-23 | 安徽恒星制药有限公司 | 一种喷他佐辛晶型及其制备方法 |
CN111217749A (zh) * | 2020-03-13 | 2020-06-02 | 安徽省逸欣铭医药科技有限公司 | 氘代喷他佐辛及制备方法、医药组合物和用途 |
Non-Patent Citations (2)
Title |
---|
CHOI SEOUNG-RYOUNG, BREUGST MARTIN, HOUK KENDALL N., POULTER C. DALE: "δ-Deuterium Isotope Effects as Probes for Transition-State Structures of Isoprenoid Substrates", THE JOURNAL OF ORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, vol. 79, no. 8, 18 April 2014 (2014-04-18), pages 3572 - 3580, XP055846738, ISSN: 0022-3263, DOI: 10.1021/jo500394u * |
MILLER DAVID J., GAO JIALI, TRUHLAR DONALD G., YOUNG NEIL J., GONZALEZ VERONICA, ALLEMANN RUDOLF K.: "Stereochemistry of eudesmane cation formation during catalysis by aristolochene synthase from Penicillium roqueforti", ORGANIC & BIOMOLECULAR CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, vol. 6, no. 13, 7 July 2008 (2008-07-07), pages 2346 - 2354, XP055846742, ISSN: 1477-0520, DOI: 10.1039/b804198a * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114031505A (zh) * | 2021-12-06 | 2022-02-11 | 和鼎(南京)医药技术有限公司 | 一种制备喷他佐辛中间体的方法 |
CN114031505B (zh) * | 2021-12-06 | 2024-02-02 | 和鼎(南京)医药技术有限公司 | 一种制备喷他佐辛中间体的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111217749A (zh) | 2020-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112479996B (zh) | 吡啶氮氧化合物及其制备方法和用途 | |
WO2021180081A1 (zh) | 氘代喷他佐辛及其制备方法和用途 | |
US7531685B2 (en) | Deuterium-enriched oxybutynin | |
US8524780B2 (en) | Deuterium-enriched bupropion | |
JP2016065085A (ja) | モノアミン再取り込み阻害薬としてのフェニル置換シクロアルキルアミン | |
JP2013541577A (ja) | 1,2,4−トリアゾロ[4,3−a]ピリジン誘導体およびmGluR2受容体のポジティブアロステリックモジュレーターとしてのそれらの使用 | |
WO2020117626A1 (en) | 4-amino or 4-alkoxy-substituted aryl sulfonamide compounds with selective activity in voltage-gated sodium channels | |
US10266529B2 (en) | Salts, co-crystals, and polymorphs of an anxiolytic compound | |
US20230143552A1 (en) | Dopamine d2 receptor ligands | |
US20170305905A1 (en) | Crystalline form of an anxiolytic compound | |
KR20220103977A (ko) | 에스트로겐 수용체 조절제의 염 및 형태 | |
US20090076137A1 (en) | Deuterium-enriched dronedarone | |
US11299497B2 (en) | Substituted tetrahydropyran dihydrothienopyrimidines and their use as phosphodiesterase inhibitors | |
CN111150731A (zh) | 含氧吡格雷光学异构体或其盐的组合物及应用 | |
US20110212976A1 (en) | Deuterium-enriched risperidone | |
US10807995B2 (en) | Thienothiophene compounds for long-acting injectable compositions and related methods | |
US20110160270A1 (en) | Deuterium-enriched sdx-101 | |
US20090082364A1 (en) | Deuterium-enriched levocedtirizine | |
US20090076071A1 (en) | Deuterium-enriched retapamulin | |
US20090082383A1 (en) | Deuterium-enriched buprenorphine | |
CN114728920B (zh) | 一种沃替西汀前药及其应用 | |
US20080299217A1 (en) | Deuterium-enriched bifeprunox | |
US20090069380A1 (en) | Deuterium-enriched aroxifene | |
TW202237622A (zh) | 雜環化合物的鹽及其晶型、製備方法、治療用途與醫藥組合物 | |
US20090076164A1 (en) | Deuterium-enriched tapentadol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21768126 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21768126 Country of ref document: EP Kind code of ref document: A1 |