WO2021180033A1 - 变焦镜头、摄像模组、电子设备及其调焦方法 - Google Patents

变焦镜头、摄像模组、电子设备及其调焦方法 Download PDF

Info

Publication number
WO2021180033A1
WO2021180033A1 PCT/CN2021/079534 CN2021079534W WO2021180033A1 WO 2021180033 A1 WO2021180033 A1 WO 2021180033A1 CN 2021079534 W CN2021079534 W CN 2021079534W WO 2021180033 A1 WO2021180033 A1 WO 2021180033A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
zoom lens
limiting member
housing
force
Prior art date
Application number
PCT/CN2021/079534
Other languages
English (en)
French (fr)
Inventor
夏太红
李斯坤
秦诗鑫
郭利德
王昕�
卢磊
曾义闵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021180033A1 publication Critical patent/WO2021180033A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B30/00Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles

Definitions

  • This application relates to the field of camera technology, and in particular to a zoom lens, a camera module, an electronic device and a focusing method thereof.
  • This application provides a zoom lens, camera module, and electronic equipment that are not easily affected by external motion or jitter.
  • this application provides a zoom lens.
  • the zoom lens includes a housing, a first motor, a first lens, and a self-locking component.
  • the first motor is installed inside the housing.
  • the first lens is mounted on the first motor.
  • the first motor is used to drive the first lens to move along the optical axis direction of the zoom lens. It is understandable that the optical axis of the zoom lens is an axis passing through the center of the lens in the zoom lens.
  • the self-locking assembly includes a limiting member, a connecting member and a force applying member.
  • the limiting member is located between the first motor and the housing.
  • One end of the connecting member is fixed to the housing, and the other end is fixed to the limiting member.
  • the force applying member is connected to the limiting member.
  • the limiting member contacts the first motor, so that a static friction force is formed between the first motors.
  • the force applying member does not receive the control signal
  • the force applying member does not generate a force applied to the limiting member.
  • the force application member receives a control signal, but the force application member does not respond to the control signal. At this time, the force application member does not generate a force applied to the limiting member.
  • the force applying member When the force applying member applies a force to the limiting member, the limiting member is separated from the first motor.
  • the force applying member receives a control signal.
  • the force applying member responds to the control signal, and generates a force applied to the limiting member.
  • a mechanical button is used to apply a force to the limiting member, so that the force applying member applies a force to the limiting member.
  • the limiting member of the self-locking assembly can be The connecting member is in contact with the first motor under pressure, and forms static friction with the first motor. At this time, the first motor is locked by the self-locking component. In this way, the stability of the first lens on the first motor is better. In other words, the first lens on the first motor is not easy to move due to external jitter or vibration.
  • the captured image is not easily deformed or blurred. In particular, when the user takes a photo during exercise, the effect of the image captured by the camera module is also better.
  • the self-locking assembly can be locked when the force applying member responds to the control signal.
  • the first motor At this time, the zoom lens may disconnect the current signal transmitted to the first motor. In this way, the zoom lens can greatly reduce energy consumption and heat generation during use.
  • the self-locking assembly can lock the first motor, so as to ensure that the first motor does not easily collide with other components in the zoom lens, that is, Reduce the risk of impact of the first motor.
  • the self-locking assembly can lock the first motor, so that the first motor is not prone to forced vibration, thereby reducing the first motor. Risk of damage. It is understandable that forced vibration refers to the vibration that occurs under the action of periodic external force.
  • the force applying member applies a force to the limiting member in response to the control signal
  • the limiting member or the connecting member is deformed, so that the limiting member and the connecting member are deformed.
  • the first motor is separated. In this way, when the first motor needs to drive the first lens to move along the optical axis of the zoom lens, the self-locking assembly will not affect the movement of the first motor.
  • the limiting member contacts the first motor under the pressure of the connecting member, and is in contact with the first motor. Static friction is formed between the motors.
  • the connecting member of this embodiment can not only connect the limiting member to the housing, but also can be used to apply force to the limiting member.
  • the connecting piece has the effect of "one thing with multiple uses”. At this time, the structure of the zoom lens is relatively simple.
  • the connecting member exerts a force on the limiting member
  • the limiting member will also exert a reaction force on the connecting member.
  • the connecting member is connected between the limiting member and the housing, the reaction force can be transmitted to the housing.
  • the overall strength of the shell is relatively high, and the reaction force can be effectively resisted.
  • the force applying member applies a force to the limiting member in response to a control signal
  • the limiting member or the connecting member is deformed, so that the limiting member and the The first motor is separated.
  • the present embodiment adopts the limiting function of the self-locking assembly.
  • the member or the connecting member is deformed to separate the limiting member from the first motor.
  • the structure is simple and does not increase the complexity of the structure of the zoom lens.
  • the connecting member is connected to the middle of the limiting member.
  • the two ends of the force applying member are respectively connected to the two ends of the limiting member. It can be understood that when the force applying member does not apply force to the limiting member, both ends of the limiting member are in contact with the first motor, and static friction is formed between the limiting member and the first motor. force. When the force applying member applies a pulling force to the limiting member, the two ends of the limiting member are close to each other to separate from the first motor.
  • the force applying member applies a pulling force to the limiting member to separate the limiting member from the first motor.
  • the force application method is simple, the structure of the self-locking component is simple, and it is easy to assemble.
  • the force applying member is a shape memory alloy. It is understandable that when the shape memory alloy responds to the control signal, the shape memory alloy can generate contraction force. At this time, the contraction force can apply a tensile force to the limiting member. When the shape memory alloy does not respond to the control signal, the shape memory alloy is in a natural state. At this time, the shape memory alloy does not exert any force on the limiting member.
  • the shape memory alloy of this embodiment can use its own deformation to generate an impact on the limiting member. ⁇
  • the force application method is simple, the structure is simple, and it does not occupy too much space inside the camera module.
  • the limiting member includes a first conductive section, a first insulating section, and a second conductive section that are sequentially connected. One end of the force applying member is fixed to the first conductive section, and the other end is fixed to the second conductive section.
  • the first conductive section, the forcing member and the second conductive section form a current path. It can be understood that a current path refers to a loop that enables current transmission.
  • the limiting member can be used to lock the first motor, and can also be used to form a part of a current path.
  • the limiting member has the effect of "one thing with multiple uses”.
  • the current path further includes a first circuit board.
  • the first circuit board is fixed to the housing. Both the first conductive section and the second conductive section are electrically connected to the first circuit board.
  • the first circuit board is used to transmit control signals to the first conductive section, the force applying member, and the second conductive section.
  • the method of transmitting the control signal is simple.
  • the current path may further include a first wire and a second wire.
  • the first wire is electrically connected to the first conductive section.
  • the second wire is electrically connected to the second conductive section.
  • the connecting member is a rigid member.
  • the connecting piece is connected to the middle of the limiting piece.
  • the number of the force application member is two.
  • One of the force applying members is connected between one end of the limiting member and the housing, and the other force applying member is connected between the other end of the limiting member and the housing.
  • both ends of the limiting member are in contact with the first motor under the pressure of the connecting member, and are in contact with the first motor.
  • a static friction force is formed between the first motors.
  • the force applying member is a shape memory alloy. It is understandable that when the shape memory alloy responds to the control signal, the shape memory alloy can generate contraction force. At this time, the contraction force can apply a pulling force to the two ends of the limiting member, so that the two ends of the limiting member are close to each other. When the shape memory alloy does not respond to the control signal, the shape memory alloy is in a natural state. At this time, the shape memory alloy does not exert any force on the limiting member.
  • the shape memory alloy of this embodiment can use its own deformation to produce a positive effect on the The force of the limit piece.
  • the force application method is simple, the structure is simple, and it does not occupy too much space inside the camera module.
  • each of the force application members includes a magnet and a coil.
  • the two magnets are respectively fixed on the two ends of the limiting member. Both of the coils are fixed to the housing.
  • the two coils and the two magnets are arranged opposite to each other in a one-to-one correspondence. It can be understood that, when the two coils respond to the control signal, the two coils both generate a magnetic attraction force with the magnets disposed opposite to each other. In this way, the magnet can exert a pulling force on the limiting member through the magnetic attraction force.
  • the magnet and the coil of this embodiment can use the generated magnetic attraction to generate the State the force of the limiter.
  • the force application method is simple, the structure is simple, and it does not occupy too much space inside the camera module.
  • the connecting member is an elastic member.
  • the elastic member can be, but is not limited to, an elastic sheet or a spring.
  • the connecting piece is connected to the middle of the limiting piece.
  • the number of the force application member is two. One of the forcing members is connected between one end of the limiting member and the housing. The other force applying member is connected between the other end of the limiting member and the housing.
  • the two force applying members do not apply force to the limiting member, the two ends of the limiting member are in contact with the first motor under the pressure of the connecting member, and are in contact with the first motor. A static friction force is formed between the first motors.
  • the two force applying members respond to the control signal, they respectively apply a pulling force to both ends of the limiting member, and the limiting member compresses the connecting member to separate from the first motor.
  • the zoom lens further includes a Hall sensor and a detection magnet.
  • the Hall sensor is fixed on the inner side of the housing.
  • the detection magnet is fixed to the first motor.
  • the Hall sensor is used to detect the magnetic field strength of the detection magnet.
  • the first motor drives the first lens to move along the optical axis direction of the zoom lens. At this time, it is easy for the first motor to fail to move to the target position.
  • a Hall sensor is used to detect and detect the magnetic field strength of the magnet, and determine the magnitude of the magnetic field strength and the preset magnetic field strength at 10 times of focusing. When the magnetic field strength is not equal to the preset magnetic field strength at 10 times of focusing, the Hall sensor can feed back to the external device. At this time, the external device can provide the compensation current signal to the first motor, so that the first motor can move to the target position, that is, the position of 10 times focus adjustment. In this way, the Hall sensor and the detection magnet can improve the accuracy of focusing of the camera module, so that the effect of the image captured by the camera module is better.
  • the zoom lens further includes a guide rail.
  • the guide rail is fixed to the inner side of the housing.
  • the first motor is slidably connected to the guide rail.
  • the first motor is slidably connected to the slide rail, so that the first motor drives the first lens to move along the optical axis direction of the zoom lens.
  • the moving range of the first motor can be set to be larger, so that the focusing range of the zoom lens is larger.
  • the guide rail can play a role in positioning the first motor. In this case, the stability of the first motor is better.
  • the zoom lens further includes a second motor and a fixed focus assembly.
  • the second motor is located on one side of the first motor.
  • the second motor is equipped with the first lens.
  • the second motor can move in the direction of the optical axis of the zoom lens.
  • the fixed focus assembly is installed with the lens.
  • the fixed focus assembly is located on a side of the first motor facing away from the second motor, and is fixed to the housing.
  • a second motor is additionally provided, so that the second motor is used to drive the first lens located on the second motor to move along the optical axis direction of the zoom lens. At this time, the focus range of the zoom lens is larger.
  • the zoom lens further includes a base, an upper reed and a lower reed.
  • the base has a first step surface and a second step surface in the optical axis direction of the zoom lens.
  • the periphery of the upper leaf spring is fixed to the first step surface.
  • the peripheral edge of the lower leaf spring is fixed to the second step surface.
  • the first motor has a front surface and a rear surface in the direction of the optical axis of the zoom lens.
  • the front surface of the first motor is fixed to the upper reed.
  • the rear surface of the first motor is fixed to the lower spring. It can be understood that the first motor can overcome the elastic force of the upper reed and the lower reed, thereby moving in the direction of the optical axis of the zoom lens.
  • this application provides a camera module.
  • the camera module includes a second circuit board, a photosensitive chip, and the zoom lens described in the first aspect.
  • the photosensitive chip and the zoom lens are both fixed on the second circuit board.
  • the zoom lens is used to project ambient light to the photosensitive chip.
  • the zoom lens when the zoom lens is applied to the camera module, the image captured by the camera module is not prone to deformation or blur.
  • the effect of the image captured by the camera module is also better.
  • the camera module can greatly reduce energy consumption and heat generation during use.
  • this application provides an electronic device.
  • the electronic device includes a housing and the above-mentioned camera module.
  • the camera module is installed inside the housing.
  • the housing is provided with a first light-transmitting part.
  • the camera module is used for collecting ambient light passing through the first light transmitting part.
  • the image captured by the electronic device is not easily deformed or blurred.
  • the effect of the image taken by the electronic device is also better.
  • the electronic device can greatly reduce energy consumption and heat generation during use.
  • the first motor of the zoom lens is not prone to collide with other components in the zoom lens, that is, the risk of collision by the first motor is reduced. In this way, the stability of the electronic device is also high.
  • the first motor is not prone to forced vibration, and the risk of damage to the first motor is low. In this way, the stability of the electronic device is also high. It is understandable that forced vibration refers to the vibration that occurs under the action of periodic external force.
  • the electronic device includes a prism motor.
  • the prism motor is installed inside the housing.
  • the prism motor is used to reflect the ambient light passing through the first light-transmitting part to the camera module.
  • the optical axis of the camera module can be not limited to extending along the Z-axis direction.
  • the optical axis of the camera module can also be parallel to the X axis or the Y axis. In this way, because the electronic device has a wider space in the X-axis or Y-axis direction, the focusing range of the camera module can be significantly increased, thereby achieving high-magnification focusing of the camera module.
  • the prism motor includes a prism motor housing and a prism.
  • the prism is located inside the prism motor housing, and the prism can be movably connected to the prism motor housing.
  • the present application provides a focusing method of an electronic device.
  • the electronic device includes a zoom lens.
  • the zoom lens includes the zoom lens including a housing, a first motor, a first lens, and a self-locking component.
  • the first motor is installed inside the housing.
  • the first lens is mounted on the first motor.
  • the first motor is used to drive the first lens to move along the optical axis direction of the zoom lens. It is understandable that the optical axis of the zoom lens is an axis passing through the center of the lens in the zoom lens.
  • the self-locking assembly includes a limiting member, a connecting member and a force applying member.
  • the limiting member is located between the first motor and the housing. One end of the connecting member is fixed to the housing, and the other end is fixed to the limiting member.
  • the force applying member is connected to the limiting member.
  • the method includes:
  • the force applying member receives the focusing signal, sending a control signal to the force applying member, the force applying member responds to the control signal and applies a force to the limiting member, so that the limiting member and the first motor Separate.
  • the first motor is controlled to drive the first lens to move along the optical axis of the zoom lens.
  • the limiting member of the self-locking assembly when the force applying member does not apply force to the limiting member, the limiting member of the self-locking assembly is in contact with the first motor and is connected to the first motor. Form static friction between. At this time, the first motor is locked by the self-locking component. In this way, the stability of the first lens on the first motor is better. In other words, the first lens on the first motor is not easy to move due to external jitter or vibration.
  • the captured image is not easily deformed or blurred. In particular, when the user takes a photo during exercise, the effect of the image captured by the camera module is also better.
  • the limiting member contacts the first motor under the pressure of the connecting member, and is in contact with the first motor. Static friction is formed between the motors.
  • the connecting member of this embodiment can not only connect the limiting member to the housing, but also can be used to apply force to the limiting member.
  • the connecting piece has the effect of "one thing with multiple uses”. At this time, the structure of the zoom lens is relatively simple.
  • the connecting member exerts a force on the limiting member
  • the limiting member will also exert a reaction force on the connecting member.
  • the connecting member is connected between the limiting member and the housing, the reaction force can be transmitted to the housing.
  • the overall strength of the shell is relatively high, and the reaction force can be effectively resisted.
  • the force applying member applies a force to the limiting member in response to a control signal
  • the limiting member or the connecting member is deformed, so that the limiting member and the The first motor is separated.
  • the present embodiment adopts the limiting function of the self-locking assembly.
  • the member or the connecting member is deformed to separate the limiting member from the first motor.
  • the structure is simple and does not increase the complexity of the structure of the zoom lens.
  • the zoom lens further includes a Hall sensor and a detection magnet.
  • the Hall sensor is fixed on the inner side of the housing.
  • the detection magnet is fixed to the first motor.
  • the method further includes:
  • the Hall sensor detects the magnetic field strength of the detection magnet
  • the first motor is controlled to drive the first lens to move to the target position along the optical axis direction of the zoom lens.
  • the first motor drives the first lens to move along the optical axis direction of the zoom lens. At this time, it is easy for the first motor to fail to move to the target position.
  • a Hall sensor is used to detect and detect the magnetic field strength of the magnet, and determine the magnitude of the magnetic field strength and the preset magnetic field strength at 10 times of focusing. When the magnetic field strength is not equal to the preset magnetic field strength at 10 times of focusing, the Hall sensor can feed back to the external device. At this time, the external device can provide the compensation current signal to the first motor, so that the first motor can move to the target position, that is, the position of 10 times focus adjustment. In this way, the Hall sensor and the detection magnet can improve the accuracy of focusing of the camera module, so that the effect of the image captured by the camera module is better.
  • FIG. 1 is a schematic structural diagram of an implementation manner of an electronic device provided by an embodiment of the present application
  • FIG. 2 is a partial exploded schematic diagram of the electronic device shown in FIG. 1;
  • Fig. 3 is a schematic partial cross-sectional view of the electronic device shown in Fig. 1 at line A-A;
  • FIG. 4 is a schematic structural diagram of the camera module of the electronic device shown in FIG. 1;
  • FIG. 5 is a partially exploded schematic diagram of the camera module shown in FIG. 4;
  • Fig. 6 is an enlarged schematic diagram of the electronic device shown in Fig. 3 at B;
  • FIG. 7 is a schematic diagram of the structure of the frame of the camera module shown in FIG. 4;
  • FIG. 8 is a partially exploded schematic diagram of the camera module shown in FIG. 4;
  • FIG. 9 is a partially exploded schematic diagram of the camera module shown in FIG. 4;
  • FIG. 10 is a partially exploded schematic diagram of another embodiment of the camera module shown in FIG. 4;
  • FIG. 11 is a partially exploded schematic diagram of the camera module shown in FIG. 4;
  • FIG. 12 is a schematic structural diagram of an embodiment of the self-locking component of the camera module shown in FIG. 11 at an angle;
  • Fig. 13 is a schematic structural diagram of the self-locking assembly shown in Fig. 12 at another angle;
  • FIG. 14a is a schematic diagram of an embodiment of the partial structure of the camera module shown in FIG. 4 in a state
  • FIG. 14b is a schematic diagram of a part of the structure of the camera module shown in FIG. 14a in another state;
  • FIG. 15 is a schematic diagram of another embodiment of the partial structure of the camera module shown in FIG. 4;
  • 16a is a schematic structural diagram of another embodiment of the self-locking component of the camera module shown in FIG. 11;
  • FIG. 16b is a schematic diagram of another embodiment of the partial structure of the camera module shown in FIG. 4 in a state;
  • FIG. 16c is a schematic diagram of a part of the structure of the camera module shown in FIG. 16b in another state;
  • Fig. 17a is a schematic diagram of still another embodiment of the partial structure of the camera module shown in Fig. 4 in a state;
  • FIG. 17b is a schematic diagram of a part of the structure of the camera module shown in FIG. 17a in another state;
  • 18a is a schematic diagram of still another embodiment of the partial structure of the camera module shown in FIG. 4 in a state;
  • FIG. 18b is a schematic diagram of a part of the structure of the camera module shown in FIG. 18a in another state;
  • 19a is a schematic diagram of still another embodiment of the partial structure of the camera module shown in FIG. 4 in a state;
  • FIG. 19b is a schematic diagram of a part of the structure of the camera module shown in FIG. 19a in another state;
  • FIG. 20 is a schematic flowchart of the focusing method of the electronic device shown in FIG. 1;
  • FIG. 21 is a schematic structural diagram of another implementation manner of an electronic device provided by an embodiment of the present application.
  • Fig. 22 is a schematic partial cross-sectional view of the electronic device shown in Fig. 21 at line C-C;
  • FIG. 23 is a partial exploded schematic diagram of the camera module of the electronic device shown in FIG. 21;
  • FIG. 24 is an exploded schematic diagram of the zoom lens of the camera module shown in FIG. 23;
  • FIG. 25 is a schematic diagram of a part of the structure of the zoom lens shown in FIG. 24;
  • FIG. 26 is a schematic diagram of part of the structure of the zoom lens shown in FIG. 24;
  • FIG. 27 is an exploded schematic diagram of a part of the structure of the zoom lens shown in FIG. 24 at an angle;
  • FIG. 28 is an exploded schematic diagram of part of the structure of the zoom lens shown in FIG. 27 at another angle;
  • Fig. 29 is a schematic partial cross-sectional view of the zoom lens shown in Fig. 23 at the line D-D;
  • FIG. 30 is a partial structural diagram of the zoom lens shown in FIG. 24;
  • FIG. 31 is a schematic diagram of a part of the structure of the zoom lens shown in FIG. 24.
  • FIG. 1 is a schematic structural diagram of an implementation manner of an electronic device according to an embodiment of the present application.
  • the electronic device 1 can be a mobile phone, a tablet (personal computer), a laptop (laptop computer), a personal digital assistant (personal digital assistant, PDA), a camera, a personal computer, a laptop, a vehicle-mounted device, a wearable device, Augmented reality (AR) glasses, AR helmet, virtual reality (VR) glasses or VR helmet.
  • the electronic device 1 of the embodiment shown in FIG. 1 is explained by taking a mobile phone as an example.
  • FIG. 2 is a partially exploded schematic diagram of the electronic device 1 shown in FIG. 1.
  • the width direction of the electronic device 1 is defined as the X axis.
  • the length direction of the electronic device 1 is the Y axis.
  • the thickness direction of the electronic device 1 is the Z axis.
  • the electronic device 1 is not easily affected by external movement or shaking during the shooting process, that is, the electronic device 1 has a better shooting effect.
  • the two setting methods of the electronic device 1 will be described in detail in conjunction with related drawings.
  • the electronic device 1 includes a housing 60, a screen 70, a host circuit board 80, a prism motor 90 and a camera module 100.
  • the housing 60 can be used to support the screen 70 and related components in the electronic device 1.
  • the housing 60 includes a back cover 61 and a frame 62.
  • the rear cover 61 is arranged opposite to the screen 70.
  • the back cover 61 and the screen 70 are installed on opposite sides of the frame 62.
  • the back cover 61, the frame 62 and the screen 70 jointly enclose a receiving space 63.
  • the accommodating space 63 can be used for accommodating components of the electronic device 1, such as a battery, a speaker, a microphone, or an earpiece.
  • FIG. 1 illustrates a structure in which the rear cover 61, the frame 62 and the screen 70 enclose a substantially rectangular parallelepiped.
  • the back cover 61 can be fixedly connected to the frame 62 by glue.
  • the back cover 61 and the frame 62 may also form an integral structure, that is, the back cover 61 and the frame 62 are integrally formed.
  • the rear cover 61 is provided with a first light transmitting portion 64.
  • the first light-transmitting portion 64 is used for allowing ambient light to enter the containing space 63.
  • the back cover 61 is provided with a light inlet hole.
  • the rear cover 61 is fixed with a transparent protective cover.
  • the transparent protective cover covers the light inlet. At this time, the transparent protective cover plate and the light inlet hole form the first light transmitting portion 64.
  • the screen 70 is used to display images, text, and the like.
  • the screen 70 is installed on the housing 60.
  • the screen 70 includes a protective cover 71 and a display screen 72.
  • the protective cover 71 is stacked on the display 72.
  • the protective cover 71 can be arranged close to the display screen 72, and can be mainly used to protect the display screen 72 from dust.
  • the material of the protective cover 71 can be, but is not limited to, glass.
  • the display 72 can be an organic light-emitting diode (OLED) display, an active matrix organic light-emitting diode or an active-matrix organic light-emitting diode (AMOLED) display , Mini organic light-emitting diode display, micro organic light-emitting diode display, micro organic light-emitting diode display, quantum dot light-emitting diode (quantum) dot light emitting diodes, QLED) display screen.
  • OLED organic light-emitting diode
  • AMOLED active-matrix organic light-emitting diode
  • Mini organic light-emitting diode display micro organic light-emitting diode display
  • micro organic light-emitting diode display micro organic light-emitting diode display
  • quantum dot light-emitting diode (quantum) dot light emitting diodes, QLED) display screen QLED
  • the host circuit board 80 is installed in the accommodating space 63.
  • the host circuit board 80 can be used to install electronic components of the electronic device 1.
  • electronic components include a processor (central processing unit, CPU), a battery management unit, and a baseband processing unit.
  • the host circuit board 80 is located between the screen 70 and the rear cover 61, that is, the host circuit board 80 is located in the receiving space 63.
  • the host circuit board 80 may be a hard circuit board, a flexible circuit board, or a flexible and hard circuit board.
  • the host circuit board 80 may be a FR-4 dielectric board, a Rogers dielectric board, or a mixed dielectric board of Rogers and FR-4, and so on.
  • FR-4 is the code name of a flame-resistant material grade
  • the Rogers dielectric board is a high-frequency board.
  • the prism motor 90 is installed in the accommodating space 63.
  • the prism motor 90 is used to reflect ambient light into the camera module 100.
  • the host circuit board 80 is provided with an escape space 81.
  • the prism motor 90 is located in the escape space 81.
  • the host circuit board 80 and the prism motor 90 have an overlapping area, so that the thickness of the electronic device 100 in the Z-axis direction can be set to be thinner.
  • the host circuit board 80 may not have the escape space 81.
  • FIG. 3 is a schematic partial cross-sectional view of the electronic device shown in FIG. 1 at the line A-A.
  • the prism motor 90 includes a prism motor housing 91 and a prism 92.
  • the prism 92 is located inside the prism motor housing 91.
  • the prism motor housing 91 has a second light transmitting portion 93 and a third light transmitting portion 94.
  • the second light-transmitting portion 93 is disposed opposite to the first light-transmitting portion 64 of the rear cover 61.
  • the third light transmitting portion 94 is located on the peripheral side of the prism motor housing 91.
  • the prism 92 includes a reflective surface 95. The reflective surface 95 is used to reflect ambient light into the camera module 100.
  • the ambient light passes through the first light-transmitting portion 64 and the second light-transmitting portion 93 in sequence, and is projected to the reflective surface 95 of the prism 92. At this time, the ambient light is reflected by the reflective surface 95 of the prism 92 to the third light-transmitting portion 94, and passes into the camera module 100 through the third light-transmitting portion 94.
  • the prism 92 can be movably connected to the prism motor housing 91.
  • the movable connection includes a sliding connection, a rotating connection, and a sliding connection with a rotating connection.
  • the prism 92 may be slidably connected to the inside of the prism motor housing 91 through a sliding device. In this way, when the prism 92 slides relative to the prism motor housing 91, the distance between the reflective surface 95 of the prism 92 and the camera module 100 can be changed.
  • the prism 92 can also be rotatably connected to the prism motor housing 91 through a rotating device.
  • the prism 92 when the prism 92 rotates relative to the prism motor housing 91, the incident angle between the ambient light and the reflective surface 95 of the prism 92 can be changed.
  • the prism 92 may also be fixedly connected to the prism motor housing 91.
  • the optical axis of the camera module 100 is not limited to extending along the Z-axis direction.
  • the optical axis of the camera module 100 refers to the light passing through the center of the lens in the camera module 100.
  • the optical axis of the camera module 100 may also be parallel to the X axis or the Y axis. In this way, because the electronic device 100 has a wider space in the X-axis or Y-axis direction, the focusing range of the camera module 100 can be significantly increased, thereby achieving high-magnification focusing of the camera module 100.
  • the camera module 100 is fixed in the accommodating space 63.
  • the camera module 100 is located in the escape space 81.
  • the host circuit board 80 and the camera module 100 have an overlapping area, so that the thickness of the electronic device 100 in the Z-axis direction can be set to be thinner.
  • the camera module 100 is provided with a first light inlet 323.
  • the first light entrance hole 323 is opposite to the third light transmission portion 94. At this time, the first light inlet hole 323 is used to allow the ambient light reflected by the prism motor 90 to enter the camera module 100 so that the camera module 100 collects the ambient light.
  • the number of camera modules 100 is not limited to the one shown in FIGS. 1 to 3.
  • the number of camera modules 100 can also be two or more than two.
  • the multiple camera modules 100 are randomly arranged in the X-Y plane.
  • a plurality of camera modules 100 are arranged along the X-axis direction, or arranged along the Y-axis direction.
  • two or more camera modules 100 may be integrated into one camera component.
  • the camera module 100 is electrically connected to the host circuit board 80. At this time, the host circuit board 80 can control the camera module 100 to take images or record videos.
  • the screen 70 may be provided with camera application software.
  • the user touches the camera application software in the screen 70.
  • the screen 70 generates a touch signal and transmits the touch signal to the host circuit board 80.
  • the host circuit board 80 receives the touch signal, and controls the camera module 100 to photograph the subject according to the touch signal.
  • the subject can be a person, an object, etc.
  • FIG. 4 is a schematic structural diagram of the camera module of the electronic device shown in FIG.
  • FIG. 5 is a partial exploded schematic diagram of the camera module shown in FIG. 4.
  • the camera module 100 includes a second circuit board 10, a photosensitive chip 20, a filter 39 and a zoom lens 30.
  • the second circuit board 10 is electrically connected to the host circuit board 80 (please refer to FIG. 3). In this way, the signal can be transmitted to the second circuit board 10 via the host circuit board 80. The signal can also be transmitted to the host circuit board 80 via the second circuit board 10.
  • the second circuit board 10 may be a rigid circuit board, a flexible circuit board, or a flexible-hard circuit board.
  • the second circuit board 10 may be a FR-4 dielectric board, a Rogers dielectric board, or a mixed dielectric board of Rogers and FR-4, and so on.
  • FIG. 6 is an enlarged schematic diagram of the electronic device shown in FIG. 3 at B.
  • the photosensitive chip 20 is fixed on the second circuit board 10 and is electrically connected to the second circuit board 10. In this way, after the photosensitive chip 20 receives ambient light, the signal generated by the photosensitive chip 20 can be transmitted to the host circuit board 80 via the second circuit board 10.
  • the photosensitive chip 20 may be mounted on the second circuit board 10 by chip on board (COB) technology. In other embodiments, the photosensitive chip 20 may also be packaged on the second circuit board 10 by ball grid array (BGA) technology or land grid array (LGA) technology.
  • COB chip on board
  • BGA ball grid array
  • LGA land grid array
  • electronic components or other chips are also mounted on the second circuit board 10.
  • Electronic components or other chips are arranged around the photosensitive chip 20. The electronic components or other chips are used to assist the photosensitive chip 20 to collect ambient light, and to assist the photosensitive chip 20 to perform signal processing on the collected ambient light.
  • a reinforcing plate is provided on the surface of the second circuit board 10 facing away from the photosensitive chip 20.
  • the reinforcing plate and the photosensitive chip 20 are located on different sides of the second circuit board 10.
  • the reinforcing plate can be, but is not limited to, a steel plate. The reinforcing plate can increase the strength of the second circuit board 10.
  • the second circuit board 10 may also be partially provided with a sink groove. At this time, the photosensitive chip 20 may be installed in the sink groove. In this way, the photosensitive chip 20 and the second circuit board 10 have an overlapping area in the X-axis direction. At this time, the camera module 100 can be thinner in the X-axis direction.
  • the filter 39 is fixed on the second circuit board 10.
  • a ring-shaped bracket 391 is provided on the surface of the second circuit board 10.
  • the filter 391 is fixed on the surface of the ring bracket 391 away from the second circuit board 10.
  • the photosensitive chip 20 may be located in the space enclosed by the ring bracket 391.
  • the surface of the second circuit board 10 is provided with a bumper.
  • the filter 39 is fixed on the surface of the raised block away from the second circuit board 10.
  • the filter 39 is disposed opposite to the photosensitive chip 20.
  • the filter 39 is used to filter the stray light passing through the ambient light, and project the filtered ambient light to the photosensitive chip 20, so as to ensure that the image captured by the electronic device 1 has better clarity.
  • the filter 39 can be, but is not limited to, a blue glass filter.
  • the filter 39 can also be a reflective infrared filter, or a double-pass filter (the double-pass filter can transmit visible light and infrared light in the ambient light at the same time, or make the visible light in the ambient light Transmit with other specific wavelengths of light (such as ultraviolet light) at the same time, or make infrared light and other specific wavelengths of light (such as ultraviolet light) transmit at the same time.).
  • the zoom lens 30 includes a substrate 31, a housing 32, a third circuit board 33, a guide rail 34, a fixed focus assembly 35, a first motor 36, a second motor 37, a lens group 38 and a self-locking assembly 40.
  • the substrate 31 is fixed to the second circuit board 10 and is on the same side as the photosensitive chip 20.
  • the substrate 31 is provided with a through hole 311.
  • the photosensitive chip 20 is disposed opposite to the through hole 311 to collect ambient light passing through the through hole 311.
  • the shape of the through hole 311 is not limited to the rectangular shape shown in FIG. 5.
  • the camera module 100 can be set thinner in the X-axis direction.
  • the filter 39 may be disposed on the surface of the substrate 31 facing the second circuit board 10, or may be disposed on the surface of the substrate 31 facing away from the second circuit board 10, or may be disposed in the through hole 311 (for example, , The side surface of the filter 39 is adhered to the hole wall of the through hole 311).
  • the zoom lens 30 may not be provided with the substrate 31.
  • the housing 32 is fixed on the side of the substrate 31 away from the second circuit board 10.
  • the housing 32 and the base plate 31 enclose a receiving space 312.
  • the base plate 31 and the housing 32 roughly form a box.
  • the shape enclosed by the base plate 31 and the housing 32 is not limited to the rectangular parallelepiped as shown in FIG. 4. In other embodiments, the housing 32 can also be directly fixed to the second circuit board 10.
  • the housing 32 includes an upper cover 321 and a frame 322.
  • the upper cover 321 is installed on the frame 322.
  • the first light inlet hole 323 is provided in the frame body 322.
  • the first light entrance hole 323 is used to allow the ambient light reflected by the prism motor 90 (refer to FIG. 3) to enter the inner side of the housing 32, that is, the receiving space 312.
  • FIG. 7 is a schematic structural diagram of the frame of the camera module shown in FIG. 4.
  • the frame 322 includes a left plate 3221, a rear plate 3222, and a lower plate 3223 and an upper plate 3224 disposed oppositely.
  • the left plate 3221 is connected between the lower plate 3223 and the upper plate 3224.
  • the rear plate 3222 is connected between the lower plate 3223 and the upper plate 3224 and connected to the left plate 3221.
  • the rear plate 3222 is opposite to the upper cover 321.
  • the left plate 3221 is disposed opposite to the base plate 31.
  • the first light inlet hole 323 is provided on the left plate member 3221.
  • the left plate 3221 is a plate of the frame 322 close to the left of the user, that is, a plate facing the negative direction of the X-axis.
  • the rear plate 3222 is a plate of the frame 322 away from the user, that is, a plate facing the negative direction of the Z-axis.
  • the lower plate 3223 is a plate of the frame 322 close to the bottom of the electronic device 1, that is, a plate facing the negative direction of the Y-axis.
  • the upper plate 3224 is a plate of the frame body 322 close to the top of the electronic device 1, that is, a plate facing the positive direction of the Y axis.
  • the third circuit board 33 is fixed to the rear plate 3222.
  • the third circuit board 33 is partly located inside the housing 32 and partly extends out of the housing 32, that is, partly located outside the housing 32.
  • the third circuit board 33 is not limited to the “convex” shape shown in FIG. 5.
  • the third circuit board 33 is electrically connected to the second circuit board 10. Specifically, it is electrically connected to the second circuit board 10 through the third circuit board 33 protruding from the inside of the housing 32. At this time, because the second circuit board 10 is electrically connected to the host circuit board 80, the signal sent by the host circuit board 80 can be transmitted to the third circuit board 33 through the second circuit board 10.
  • the third circuit board 33 may be a rigid circuit board, a flexible circuit board, or a flexible-hard circuit board.
  • the third circuit board 33 may be a FR-4 dielectric board, a Rogers dielectric board, or a mixed dielectric board of Rogers and FR-4, and so on.
  • FIG. 8 is a partial exploded view of the camera module shown in FIG. 4.
  • FIG. 9 is a partially exploded schematic diagram of the camera module shown in FIG. 4.
  • the fixed focus assembly 35 is fixed to the left plate 3221.
  • the fixed focus assembly 35 is provided with a first mounting hole 351.
  • the first mounting hole 351 is disposed opposite to the first light inlet hole 323 (please refer to FIG. 7) on the left plate 3221.
  • the lens group 38 includes a second lens 382.
  • a second lens 382 is installed in the first installation hole 351.
  • a second lens 382 is installed in the first installation hole 351.
  • the ambient light can propagate to the lens 38 in the first mounting hole 351 through the first light inlet hole 323.
  • one end of the guide rail 34 is fixed to the base plate 31, and the other end is fixed to the fixed focus assembly 35.
  • the number of guide rails 34 is not limited to the four shown in FIGS. 8 and 9. In other embodiments, one end of the guide rail 34 may also be fixed to the second circuit board 10. The other end of the guide rail 34 can also be fixed to the left plate 3221.
  • the first motor 36 includes a first moving bracket 361, a first magnet 362, and a first coil 363.
  • the first moving bracket 361 is movably connected to the guide rail 34.
  • the first moving bracket 361 is provided with a first sliding hole 364.
  • the guide rail 34 passes through the first sliding hole 364. In this way, the first moving bracket 361 can slide relative to the guide rail 34 through the first sliding hole 364. It can be understood that the number of the first sliding holes 364 in this embodiment is not limited to the four shown in FIG. 9.
  • the first mobile bracket 361 includes a first part 365 and a second part 366 connected to the first part 365.
  • the first part 365 is provided with a second mounting hole 367.
  • the second mounting hole 367 is opposite to the first mounting hole 351.
  • the lens group 38 includes a first lens 381.
  • At least one first lens 381 is installed in the second installation hole 367.
  • two first lenses 381 are installed in the second mounting hole 367.
  • the ambient light travels through the second lens 382 on the fixed focus assembly 35 to the first lens 381 on the first motor 36.
  • the second part 366 is provided with a first installation groove 368.
  • a first magnet 362 is installed in the first installation groove 368.
  • the second part 366 and the first part 365 are connected by bending.
  • the first motor 36 is roughly in the shape of " ⁇ ".
  • the second part 366 and the first part 365 may also be connected in a straight line, that is, the first motor 36 is substantially in a “one” shape.
  • the first coil 363 is fixed to the surface of the lower plate 3223 facing the second part 366.
  • the first coil 363 is arranged opposite to the first magnet 362.
  • the first coil 363 is electrically connected to the third circuit board 33 (please refer to FIG. 6).
  • the third circuit board 33 transmits a current signal to the first coil 363
  • the first coil 363 is energized, and the first magnet 362 can generate an ampere force in the negative direction of the X axis or the positive direction of the X axis.
  • the first magnet 362 pushes the first moving bracket 361 to move in the negative direction of the X-axis or the positive direction of the X-axis under the ampere force.
  • the first magnet 362 can generate an edge along the X Ampere force in the negative direction of the axis or the positive direction of the X axis. At this time, the first magnet 362 can push the first moving bracket 361 to move in the negative direction of the X-axis or the positive direction of the X-axis under the ampere force.
  • the second motor 37 includes a second moving bracket 371, a second magnet 372, and a second coil 373.
  • the second moving bracket 371 is movably connected to the guide rail 34.
  • the second moving bracket 371 is provided with a second sliding hole 374.
  • the guide rail 34 passes through the second sliding hole 374. In this way, the second moving bracket 371 can slide relative to the guide rail 34 through the second sliding hole 374. It can be understood that the number of the second sliding holes 374 in this embodiment is not limited to the four shown in FIG. 9.
  • the second mobile bracket 371 includes a third part 375 and a fourth part 376 connected to the third part 375.
  • the third part 375 is provided with a third mounting hole 377.
  • the third mounting hole 377 is opposite to the second mounting hole 367.
  • At least one first lens 381 is installed in the third installation hole 377.
  • two first lenses 381 are installed in the third mounting hole 377.
  • the ambient light propagates to the first lens 381 on the second motor 37 through the second lens 382 of the fixed focus assembly 35 and the first lens 381 of the first motor 36.
  • the fourth part 376 is provided with a second installation groove 378.
  • a second magnet 372 is installed in the second installation groove 378.
  • the fourth part 376 and the third part 375 are bent and connected.
  • the second motor 37 is roughly type.
  • the fourth part 376 and the third part 375 may also be connected in a straight line, that is, the second motor 37 is substantially in a "one" shape.
  • the second coil 373 is fixed to the surface of the upper plate 3224 facing the fourth portion 376.
  • the second coil 373 is arranged opposite to the second magnet 372.
  • the second coil 373 is electrically connected to the third circuit board 33.
  • the third circuit board 33 transmits a current signal to the second coil 373
  • the second coil 373 is energized, and the second magnet 372 can generate ampere force in the positive direction of the X axis or the negative direction of the X axis.
  • the second magnet 372 pushes the second moving bracket 371 to move in the positive direction of the X-axis or the negative direction of the X-axis under the ampere force.
  • the second magnet 372 can generate an edge along the X Ampere force in the positive direction of the axis or the negative direction of the X axis. At this time, the second magnet 372 can push the second moving bracket 371 to move in the positive direction of the X-axis or the negative direction of the X-axis under the ampere force.
  • a current signal is transmitted to the first coil 363 and the second coil 373.
  • the first magnet 362 pushes the first moving bracket 361 to move in the positive direction of the X axis or the negative direction of the X axis under the ampere force.
  • the lens 38 mounted on the first moving bracket 361 also moves in the positive direction of the X axis or the X axis.
  • the second magnet 372 can push the second moving bracket 371 to move in the positive direction of the X axis or the negative direction of the X axis under the ampere force. In this way, the lens 38 mounted on the second moving bracket 371 also moves in the positive direction of the X axis or the X axis. Move in the negative direction.
  • the first moving bracket 361 can also move independently in the positive direction of the X-axis or the negative direction of the X-axis.
  • the second moving bracket 371 can also move alone in the positive direction of the X-axis or in the negative direction of the X-axis. The details can be set according to the user's focus needs.
  • FIG. 10 is a partially exploded schematic diagram of another embodiment of the camera module shown in FIG. 4.
  • the zoom lens 30 may also include a Hall sensor 51 and a detection magnet 52.
  • the detection magnet 52 is fixed on the side of the first moving bracket 361 facing the third circuit board 33. Specifically, the detection magnet 52 can be fixed to the first part 365 of the first moving bracket 361 or can be fixed to the second part 366.
  • the first moving bracket 361 is provided with a sink groove.
  • the opening of the sink groove faces the third circuit board 33.
  • the detection magnet 52 is arranged in the sink. In this way, in the Z-axis direction, the detection magnet 52 does not increase the thickness of the camera module 100.
  • the Hall sensor 51 is located in the containing space 312. Specifically, the Hall sensor 51 is fixed to the third circuit board 33 and is electrically connected to the third circuit board 33. The Hall sensor 51 is used to detect the magnetic field strength of the magnet 52.
  • the third circuit board 33 transmits a current signal to the first coil 363.
  • the first magnet 362 pushes the first moving bracket 361 to move in the positive direction of the X-axis or the negative direction of the X-axis under the ampere force. At this time, it is easy for the first moving bracket 361 not to move to the target position.
  • the Hall sensor 51 is used to detect the magnetic field strength of the magnet 52, and determine the magnitude of the magnetic field strength and the preset magnetic field strength at 10 times of focusing.
  • the Hall sensor 51 feeds back to the host circuit board 80 through the third circuit board 33.
  • the host circuit board 80 can provide a compensation current signal to the first coil 363, so that the first moving bracket 361 can move to the target position, that is, the 10 times focus position.
  • the Hall sensor 51 and the detecting magnet 52 can improve the accuracy of focusing of the camera module 100, so that the effect of the image captured by the camera module 100 is better.
  • the detection magnet 52 may also be fixed on the side of the second moving bracket 371 facing the third circuit board 33.
  • the detection magnet 52 may be fixed on the third part 375 or the fourth part 376 of the second moving bracket 371.
  • the Hall sensor 51 is used to detect the magnetic field strength of the detecting magnet 52 fixed on the second movable bracket 371, thereby further improving the accuracy of the focus adjustment of the camera module 100, thereby making the image captured by the camera module 100 The effect is better.
  • the number of Hall sensors 51 is not limited to two as shown in FIG. 10.
  • the number of detection magnets 52 is not limited to two as shown in FIG. 10.
  • FIG. 11 is a partially exploded schematic diagram of the camera module 100 shown in FIG. 4.
  • the self-locking assembly 40 is used to lock the first motor 36 and/or the second motor 37 when the first motor 36 and/or the second motor 37 moves to the target position. It can be understood that when the first motor 36 is provided with the self-locking assembly 40, the self-locking assembly 40 is used to lock the first motor 36 when the first motor 36 moves to the target position. When the second motor 37 is provided with a self-locking assembly 40, the self-locking assembly 40 is used to lock the second motor 37 when the second motor 37 moves to the target position.
  • the self-locking assembly 40 is used to move the first motor 36 and the second motor 37 to the target position. 37 for locking.
  • the first motor 36 is provided with the self-locking assembly 40 as an example for illustration.
  • the self-locking assembly 40 is provided so that when the first motor 36 and/or the second motor 37 moves to the target position, the self-locking assembly 40 can perform the first motor 36 and/or the second motor 37. Lock tightly.
  • the first lens 381 on the first motor 36 and/or the first lens 381 on the second motor 37 are more stable, that is, the first lens 381 on the first motor 36 and/or the first lens 381 on the second motor 37 are more stable.
  • the first lens 381 is not easy to move due to external jitter or vibration, so that when the user is taking a photo, the captured image is not easily deformed or blurred. In particular, when the user takes a photo during exercise, the effect of the image captured by the camera module 100 is also better.
  • the camera module 100 does not need to pass through the direction
  • the first coil 363 and the second coil 373 transmit current signals to lock the first moving bracket 361 and the second moving bracket 371.
  • the transmission of current signals to the first motor 36 and/or the second motor 37 can be stopped. In this way, the camera module 100 can greatly reduce energy consumption and heat generation during use.
  • the first motor 36 and/or the second motor 37 are moved to the target position, the first motor 36 and/or the second motor 37 are locked to ensure that the first motor 36 and/or the second motor 37 are locked. It is not easy to collide with other components in the camera module 100, that is, the risk of collision with the first motor 36 and/or the second motor 37 is reduced.
  • forced vibration refers to the vibration that occurs under the action of periodic external force.
  • the self-locking assembly 40 has a variety of settings. Hereinafter, several setting modes of the self-locking assembly 40 will be described in detail in conjunction with related drawings.
  • the self-locking assembly 40 includes a limiting member 41, a force applying member 42, a connecting member 44 and a first circuit board 43.
  • the connecting member 44 is fixed to the middle of the limiting member 41, and the other end is fixed to the upper cover 321.
  • the connecting member 44 is a rigid member.
  • the connecting piece 44 and the upper cover 321 are integrally formed.
  • the connecting member 44 and the upper cover 321 are made of the same material.
  • the connecting member 44 may also be connected to the upper cover 321 by welding or bonding.
  • the connecting member 44 may also be an elastic member. For example, shrapnel or spring. At this time, the connecting member 44 is squeezed between the limiting member 41 and the upper cover. In other words, the connecting member 44 is in a compressed state.
  • FIG. 12 is a schematic structural diagram of an embodiment of the self-locking component of the camera module shown in FIG. 11 at an angle.
  • the limiting member 41 includes a first conductive section 411, a first insulating section 412, and a second conductive section 413 connected in sequence.
  • the first insulating section 412 is connected between the first conductive section 411 and the second conductive section 413.
  • the material of the first conductive section 411 and the second conductive section 413 may be copper, aluminum, silver, gold, aluminum alloy, or the like.
  • the first conductive section 411, the first insulating section 412, and the second conductive section 413 can be bent.
  • the material of the first insulating section 412 may be a polymer material.
  • thermoplastic polyurethane elastomer rubber thermoplastic polyurethanes, TPU
  • thermoplastic elastomer thermoplastic elastomer, TPE
  • thermoplastic rubber material thermoplastic rubber material
  • the limiting member 41 further includes a limiting block 414.
  • the number of limit blocks 414 is not limited to the two shown in FIG. 11 and FIG. 12.
  • the limit block 414 may also be one, three, or more than three.
  • the first limiting block 414 is fixedly connected to the surface of the first conductive section 411 facing the first motor 36.
  • the second limiting block 414 is fixedly connected to the surface of the second conductive section 413 facing the first motor 36.
  • the material of the limiting block 414 may be a polymer material.
  • the material of the limiting block 414 may also be the same as the material of the first conductive segment 411.
  • the limiting block 414 and the first conductive section 411 or the second conductive section 413 are integrally formed.
  • the force applying member 42 is a shape memory alloy (SMA).
  • SMA shape memory alloy
  • One end of the force applying member 42 is connected to the first conductive section 411, and the other end is connected to the second conductive section 413.
  • the two ends of the force applying member 42 may be fixedly connected to the first conductive section 411 and the second conductive section 413 by welding.
  • the first circuit board 43 includes a first section 431 and a second section 432 connected to the first section 431.
  • the first section 431 is fixedly connected to the bump 324.
  • the second section 432 is fixedly connected to the upper cover 321 and partially extends to the outside of the housing 32 through the base plate 31.
  • the second section 432 may be electrically connected to the second circuit board 10 and electrically connected to the host circuit board 80 through the second circuit board 10. In other embodiments, the second section 432 may also be electrically connected to the host circuit board 80 through wires.
  • FIG. 13 is a schematic structural diagram of the self-locking assembly shown in FIG. 12 at another angle.
  • the first segment 431 has a first pin 4311 and a second pin 4312.
  • the first pin 4311 is electrically connected to the first conductive segment 411.
  • the second pin 4312 is electrically connected to the second conductive segment 413.
  • the current path refers to a loop through which current can be transmitted between the first circuit board 43, the first conductive section 411, the force applying member 42, and the second conductive section 413.
  • the second section 432 may be used to electrically connect the second circuit board 10.
  • the second segment 432 includes a third pin 4321 and a fourth pin 4322.
  • the third pin 4321 and the fourth pin 4322 are electrically connected to the second circuit board 10.
  • the first circuit board 43 can pass through the second pin 4312 and the first pin 4311 to the first conductive section 411 and the second conductive section 411 and the second conductive section.
  • Segment 413 transmits the current signal.
  • the current signal acts on the force applying member 42 through the first conductive section 411 and the second conductive section 413.
  • the urging member 42 receives the current signal, and both ends of the urging member 42 contract toward the middle, that is, the urging member 42 generates a contraction force.
  • the urging member 42 in the contracted state can apply a pulling force to the limiting member 41 through the contraction force, thereby driving the first conductive section 411 and the second conductive section 413 to bend.
  • the first circuit board 43 may not include the first section 431.
  • the first conductive section 411 may be electrically connected to the first circuit board 43 through a wire
  • the second conductive section 413 may be electrically connected to the first circuit board 43 through a wire.
  • the self-locking component 40 may not include the first circuit board 43.
  • the first conductive section 411 may be electrically connected to the second circuit board 10 or the host circuit board 80 through wires.
  • the second conductive section 413 may be electrically connected to the second circuit board 10 or the host circuit board 80 through wires.
  • the force applying member 42 may also be a coil or a magnet.
  • the coil is fixed on the first conductive section 411.
  • the magnet is fixed on the second conductive section 413.
  • the coil is arranged opposite to the magnet. At this time, by energizing the coil to generate a magnetic attraction between the coil and the magnet, the magnetic attraction between the coil and the magnet is used to drive the first conductive section 411 and the second conductive section 413 to approach each other, that is, the limiting member 41 is generated. deformation.
  • the self-locking assembly 40 has two states. One is the locked state. One is the unlocked state. These two states will be described in detail below in conjunction with the relevant drawings.
  • FIG. 14a is a schematic diagram of an embodiment of the partial structure of the camera module shown in FIG. 4 in a state.
  • the force applying member 42 does not transmit a current signal to the force applying member 42, that is, when the force applying member 42 does not receive a current signal, the force applying member 42 does not shrink, and the force applying member 42 does not exert an effect on the limiting member 41 At this time, the force applying member 42 does not drive the first conductive section 411 and the second conductive section 413 to deform.
  • the two limit blocks 414 are in contact with the first motor 36 under the pressure of the connecting member 44, and a static friction force is generated between the first motor 36 and the first motor 36, so that the first motor 36 is locked by the static friction force. In this way, the first motor 36 is not easy to slide along the X axis under the action of the stop block 414.
  • Unlocked state Please refer to FIG. 14b, which is a schematic diagram of part of the structure of the camera module shown in FIG. 14a in another state.
  • Unlocked state when the first circuit board 43 transmits a current signal to the first conductive section 411 and the second conductive section 413. The current signal is transmitted to the force applying member 42 through the first conductive section 411 and the second conductive section 413. At this time, the urging member 42 receives the current signal, and both ends of the urging member 42 contract toward the middle, that is, the urging member 42 generates a contraction force.
  • the urging member 42 in the contracted state exerts a pulling force on the limiting member 41 through the contraction force, thereby driving the first conductive section 411 and the second conductive section 413 to approach each other, that is, the limiting member 41 is deformed.
  • the two limit blocks 414 are separated from the first motor 36.
  • the host circuit board 80 when the user needs to adjust the focus of the camera module 100, the host circuit board 80 receives the focus adjustment signal.
  • the host circuit board 80 transmits control signals to the first circuit board 43 through the second circuit board 10.
  • the control signal can be a current signal or a voltage signal.
  • the zoom lens 30 by providing the zoom lens 30 with a self-locking assembly 40, when the force applying member 42 does not apply a force to the limiting member 41, the self-locking assembly 40
  • the limiting member 41 can contact the first motor 36 under the pressure of the connecting member 44 and form static friction with the first motor 36.
  • the first motor 36 is locked by the self-locking assembly 40.
  • the stability of the first lens 381 on the first motor 36 is better.
  • the first lens 381 on the first motor 36 is not easily moved due to external jitter or vibration.
  • the captured image is not easily deformed or blurred.
  • the effect of the image captured by the camera module 100 is also better.
  • the present embodiment uses the self-locking assembly when the force applying member 42 responds to the control signal. 40 can lock the first motor 36. At this time, the zoom lens 30 can disconnect the current signal transmitted to the first motor 36. In this way, the zoom lens 30 can greatly reduce energy consumption and heat generation during use.
  • FIG. 15 is a schematic structural diagram of another embodiment of the partial structure of the camera module shown in FIG. 4.
  • the limiting member 41 includes a first conductive section 411 and a second conductive section 413.
  • the first conductive segment 411 and the second conductive segment 413 extend along the X-axis direction and are arranged at intervals.
  • the first conductive section 411 and the second conductive section 413 can be bent.
  • the end of the first conductive section 411 close to the second conductive section 413 is connected to the upper cover 321 through the connecting member 44.
  • the end of the second conductive section 413 close to the first conductive section 411 is connected to the upper cover 321 through the connecting member 44.
  • the locking principle of the self-locking assembly 40 of this embodiment is the same as the locking principle of the self-locking assembly 40 of the first embodiment. I won't repeat it here.
  • Figure 16a is another embodiment of the self-locking component of the camera module shown in Figure 11 Schematic diagram of the structure.
  • Fig. 16b is a schematic diagram of another embodiment of the partial structure of the camera module shown in Fig. 4 in a state.
  • the self-locking assembly 40 includes a limiting member 41, a first force applying member 421, a second force applying member 422, a connecting member 44 and a first circuit board 43.
  • the number of urging members is two. Both the first urging member 421 and the second urging member 422 are shape memory alloys.
  • the limiting member 41 includes a deformable piece 411 and a limiting block 414.
  • the material of the deformable sheet 411 is a conductive material, such as copper, aluminum, silver, gold, or aluminum alloy.
  • the deformable piece 411 can be bent.
  • the middle part of the deformable piece 411 is fixedly connected to the upper cover 321 through the connecting member 44.
  • the setting method of the connecting member 44 please refer to the setting method of the connecting member 44 in the first embodiment, which will not be repeated here.
  • the deformable piece 411 includes a first end 412 and a second end 413 disposed away from the first end 412.
  • the setting method of the limit block 414 can refer to the setting method of the limit block 414 in the first embodiment. I won't repeat it here.
  • first circuit board 43 of this embodiment no longer includes the first segment 431 of the first embodiment.
  • first circuit board 43 in this embodiment please refer to the arrangement of the second section 432 of the first embodiment. I won't repeat it here.
  • one end of the first force applying member 421 is connected to the first end 412, and the other end is connected to the first circuit board 43.
  • One end of the second urging member 422 is connected to the second end 413, and the other end is connected to the first circuit board 43.
  • the first circuit board 43, the first forcing member 421, the second forcing member 422, and the deformable piece 411 form a current path.
  • the first circuit board 43 transmits a current signal to the first urging member 421 and the second urging member 422 the first urging member 421 and the second urging member 422 generate heat, and shrink to the respective middle portions, respectively. That is, both the first force applying member 421 and the second force applying member 422 generate contraction force.
  • first urging member 421 and the second urging member 422 in the contracted state use their respective contraction forces to drive the deformable piece 411 to deform.
  • first end 412 and the second end 413 of the deformable piece 411 are close to each other.
  • the self-locking component 40 may not include the first circuit board 43.
  • one end of the first force applying member 421 is connected to the first end 412, and the other end is connected to the upper cover 321.
  • the first force applying member 421 is electrically connected to the second circuit board 10 through a wire.
  • the second urging member 422 may also be fixed to the upper cover 321 and electrically connected to the second circuit board 10 through wires.
  • the self-locking assembly 40 of this embodiment also has two states: a locked state and an unlocked state.
  • Locked state please refer to Figure 16b, locked state: when the first circuit board 43 does not transmit current signals to the first forcing member 421 and the second forcing member 422, that is, the first forcing member 421 and the second forcing member 422 When the force member 422 does not receive a current signal, the first force member 421 and the second force member 422 do not generate contraction force. At this time, the first force application member 421 and the second force application member 422 do not apply force to the force application member 41.
  • the two limit blocks 414 contact the first motor 36 under the pressure of the connecting member 44 and generate static friction with the first motor 36, so that the first motor 36 is locked by the static friction. In this way, the first motor 36 is not easy to slide along the X axis under the action of the stop block 414.
  • FIG. 16c is a schematic diagram of part of the structure of the camera module shown in FIG. 16b in another state.
  • the first circuit board 43 transmits a current signal to the first urging member 421 and the second urging member 422
  • the first urging member 421 and the second urging member 422 respond to the current signal, and respectively send current signals to the respective The middle part of the contraction.
  • the first urging member 421 and the second urging member 422 in the contracted state exert a pulling force on the limiting member 41 through the contraction force, thereby driving the first conductive section 411 and the second conductive section 413 to approach each other, that is, the limiting member 41 deformed.
  • the two limiting blocks 414 are close to each other and separated from the first motor 36.
  • FIG. 17a is another implementation of the partial structure of the camera module shown in FIG. 4 in one state. Schematic diagram of the way.
  • the self-locking assembly 40 includes a limiting member 41, a first force applying member 421, a second force applying member 422, a connecting member 44 and a first circuit board 43.
  • the limiting member 41 includes a rigid piece 411 and a limiting block 414.
  • the material of the rigid sheet 411 is a conductive material. For example, copper, aluminum, silver, gold, or aluminum alloy.
  • the rigid piece 411 includes a first end 412 and a second end 413 disposed away from the first end 412.
  • the arrangement of the first urging member 421 and the second urging member 422 can refer to the arrangement of the first urging member 421 and the second urging member 422 of the third embodiment. I won't repeat it here.
  • the setting method of the limit block 414 can refer to the setting method of the limit block 414 in the third embodiment.
  • the arrangement of the first circuit board 43 can refer to the arrangement of the first circuit board 43 in the third embodiment. I won't repeat it here.
  • the connecting member 44 is an elastic member. For example, spring or shrapnel.
  • One end of the connecting member 44 is connected between the first end 412 and the second end 413, and the other end is connected to the upper cover 321.
  • the other end of the connecting member 44 may also be connected to the first circuit board 43.
  • the self-locking assembly 40 of this embodiment also has two states: a locked state and an unlocked state.
  • FIG. 17b is a schematic diagram of a part of the structure of the camera module shown in FIG. 17a in another state.
  • the first circuit board 43 transmits a current signal to the first force application member 421 and the second force application member 422, at this time, the first force application member 421 and the second force application member 422 generate heat, and respectively to the respective middle portions shrink.
  • the first urging member 421 and the second urging member 422 in the contracted state exert a pulling force on the limiting member 41 through the contraction force, thereby driving the rigid member 411 to press the connecting member 44, and the connecting member 44 is compressed and deformed.
  • the rigid piece 411 can drive the two limiting blocks 414 to move away from the first motor 36, that is, the two limiting blocks 414 are separated from the first motor 36.
  • FIG. 18a is another implementation of the partial structure of the camera module shown in FIG. 4 in one state. Schematic diagram of the way.
  • the self-locking assembly 40 includes a limiting member 41, a third magnet 421, a fourth magnet 422, a third coil 423, a fourth coil 424, a connecting member 44 and a first circuit board 43.
  • the third magnet 421 and the third coil 423 form a force applying member.
  • the fourth magnet 422 and the fourth coil 424 form a force applying member.
  • the arrangement of the limiting member 41 and the connecting member 44 can refer to the arrangement of the limiting member 41 and the connecting member 44 in the first embodiment.
  • the limiting member 41 may also refer to the setting manner of the limiting member 41 in the second embodiment, and may also refer to the setting manner of the limiting member 41 in the third embodiment.
  • the arrangement of the limiting member 41 is based on the arrangement of the limiting member 41 of the third embodiment as an example.
  • the arrangement of the first circuit board 43 takes the arrangement of the first circuit board 43 of the third embodiment as an example.
  • the third magnet 421 is fixedly connected to the first end 412 of the deformable piece 411 and faces away from the first motor 36.
  • the fourth magnet 422 is fixedly connected to the second end 413 of the deformable piece 411 and faces away from the first motor 36.
  • the third magnet 421 may be fixedly connected to the first end 412 of the limiting member 41 by glue.
  • the fourth magnet 422 can be fixedly connected to the second end 413 of the limiting member 41 by glue.
  • the third coil 423 and the fourth coil 424 are both fixedly connected to the first circuit board 43, and both are electrically connected to the first circuit board 43.
  • the third coil 423 is disposed opposite to the third magnet 421.
  • the fourth coil 424 is disposed opposite to the fourth magnet 422.
  • the third coil 423 and the fourth coil 424 may also be directly fixedly connected to the upper cover 321.
  • the self-locking assembly 40 of this embodiment also has two states: a locked state and an unlocked state.
  • the two limit blocks 414 are in contact with the first motor 36 under the pressure of the connecting member 44, and a static friction force is generated between the first motor 36 and the first motor 36, so that the first motor 36 is locked by the static friction force. In this way, the first motor 36 is not easy to slide along the X axis under the action of the stop block 414.
  • FIG. 18b is a schematic diagram of part of the structure of the camera module shown in FIG. 18a in another state.
  • the first circuit board 43 transmits a current signal to the third coil 423 and the fourth coil 424, that is, when the third coil 423 and the fourth coil 424 respond to the current signal
  • the third coil 423 generates a magnetic attraction to the third magnet 421
  • the fourth coil 424 generates a magnetic attraction to the fourth magnet 422.
  • the third magnet 421 and the fourth magnet 422 exert a pulling force on the deformable piece 411 by the magnetic attraction force, thereby driving the first end 412 and the second end 413 of the deformable piece 411 to approach each other.
  • the two limit blocks 414 are separated from the first motor 36.
  • FIG. 19a is another implementation of the partial structure of the camera module shown in FIG. 4 in one state. Schematic diagram of the way.
  • the self-locking assembly 40 includes a limiting member 41, a third magnet 421, a fourth magnet 422, a third coil 423, a fourth coil 424, a connecting member 44 and a first circuit board 43.
  • the third magnet 421 and the third coil 423 form a force applying member.
  • the fourth magnet 422 and the fourth coil 424 form a force applying member.
  • the setting method of the limiting member 41 can refer to the setting method of the limiting member 41 in the fourth embodiment.
  • the arrangement of the first circuit board 43 can refer to the arrangement of the first circuit board 43 of the fourth embodiment. I won't repeat it here.
  • the arrangement of the connecting member 44 can refer to the arrangement of the connecting member 44 in the fourth embodiment. I won't repeat it here.
  • the third magnet 421 is fixedly connected to the first end 412 of the rigid piece 411 and faces away from the first motor 36.
  • the fourth magnet 422 is fixedly connected to the second end 413 of the rigid piece 411 and faces away from the first motor 36.
  • the third magnet 421 may be fixedly connected to the first end 412 of the limiting member 41 by glue.
  • the fourth magnet 422 can be fixedly connected to the second end 413 of the limiting member 41 by glue.
  • the third coil 423 and the fourth coil 424 are both fixedly connected to the first circuit board 43, and both are electrically connected to the first circuit board 43.
  • the third coil 423 is disposed opposite to the third magnet 421.
  • the fourth coil 424 is disposed opposite to the fourth magnet 422.
  • the third coil 423 and the fourth coil 424 may also be directly fixedly connected to the upper cover 321.
  • the self-locking assembly 40 of this embodiment also has two states: a locked state and an unlocked state.
  • FIG. 19b is a schematic diagram of part of the structure of the camera module shown in FIG. 19a in another state.
  • the first circuit board 43 transmits current signals to the third coil 423 and the fourth coil 424, that is, when the third coil 423 and the fourth coil 424 respond to the current signal
  • the third coil 423 generates a magnetic attraction force on the third magnet 421
  • the four coils 424 generate magnetic attraction to the fourth magnet 422.
  • the third magnet 421 and the fourth magnet 422 exert a pulling force on the rigid piece 411 through the magnetic attraction force, so that the rigid piece 411 presses the connecting piece 44, and the connecting piece 44 is compressed to deform.
  • the two limit blocks 414 are separated from the first motor 36.
  • this embodiment provides a focusing method of the electronic device 1.
  • the structure of the electronic device 1 is the electronic device 1 introduced in the above-mentioned first embodiment. The specific details are not repeated here.
  • FIG. 20 is a schematic flowchart of the focusing method of the electronic device shown in FIG. 1.
  • the focusing method of the electronic device 1 includes:
  • S100 receives the focusing signal and sends a control signal to the force applying member 42.
  • the force applying member 42 responds to the control signal and applies a force to the limiting member 41, and the limiting member 41 is separated from the first motor 36.
  • the control signal may be a current signal or a voltage signal.
  • the force applying member 42 applies a force to the limiting member 41 in response to a control signal
  • the limiting member 41 or the connecting member 44 is deformed to cause the limiting member 41 to deform.
  • the piece 41 is separated from the first motor 36.
  • this embodiment adopts the limitation of the self-locking assembly 40
  • the positioning member 41 or the connecting member 44 is deformed to separate the limiting member 41 from the first motor 36.
  • the structure is simple and does not increase the complexity of the structure of the zoom lens 30.
  • the structure of the self-locking component 40 when the structure of the self-locking component 40 is the structure of the self-locking component 40 of the first embodiment described above, by transmitting the current signal to the first conductive section 411 and the second conductive section 413, the current signal passes through the first conductive section 411 and the second conductive section 413. A conductive section 411 and a second conductive section 413 are transmitted to the force applying member 42. At this time, the urging member 42 responds to the current signal, and both ends of the urging member 42 contract toward the middle, that is, the urging member 42 generates a contraction force.
  • the urging member 42 in the contracted state exerts a pulling force on the limiting member 41 through the contraction force, thereby driving the first conductive section 411 and the second conductive section 413 to bend in a direction approaching each other.
  • the two limit blocks 414 are separated from the first motor 36.
  • the current signal is transmitted to the first conductive section 411 and the second conductive section 413, and the current signal passes through the first conductive section 411 and the second conductive section 413.
  • a conductive section 411 and a second conductive section 413 are transmitted to the force applying member 42.
  • the urging member 42 receives the current signal, and both ends of the urging member 42 contract toward the middle, that is, the urging member 42 generates a contraction force.
  • the urging member 42 in the contracted state exerts a pulling force on the limiting member 41 through the contraction force, thereby driving the first conductive section 411 and the second conductive section 413 to bend in a direction approaching each other.
  • the two limit blocks 414 are separated from the first motor 36.
  • the current signal is transmitted to the first force applying member 421 and the second force applying member 422, and at this time , The first urging member 421 and the second urging member 422 generate heat, and respectively contract toward the respective middle portions. In this way, the first urging member 421 and the second urging member 422 in the contracted state exert a pulling force on the urging member 41 by the contraction force, thereby driving the two ends of the deformable piece 411 to bend toward each other. At this time, the two limit blocks 414 are separated from the first motor 36.
  • the current signal is transmitted to the first force applying member 421 and the second force applying member 422, at this time ,
  • the first urging member 421 and the second urging member 422 generate heat, and respectively contract toward the respective middle portions.
  • the first urging member 421 and the second urging member 422 in the contracted state drive the rigid member 411 to press the connecting member 44 by the contraction force, the connecting member 44 is compressed, and the connecting member 44 is deformed.
  • the rigid piece 411 can move in the positive direction of the Z axis.
  • the two limit blocks 414 are separated from the first motor 36.
  • the current signal is transmitted to the third coil 423 and the fourth coil 424, that is, the third coil 423
  • the third coil 423 When receiving a current signal with the fourth coil 424, the third coil 423 generates a magnetic attraction force to the third magnet 421, and the fourth coil 424 generates a magnetic attraction force to the fourth magnet 422.
  • the third magnet 421 and the fourth magnet 422 exert a pulling force on the deformable piece 411 by the magnetic attraction force, thereby driving the two ends of the deformable piece 411 to bend toward each other.
  • the two limit blocks 414 are separated from the first motor 36.
  • the current signal is transmitted to the third coil 423 and the fourth coil 424, that is, the third coil 423
  • the third coil 423 When receiving a current signal with the fourth coil 424, the third coil 423 generates a magnetic attraction force to the third magnet 421, and the fourth coil 424 generates a magnetic attraction force to the fourth magnet 422.
  • the third magnet 421 and the fourth magnet 422 exert a pulling force on the rigid piece 411 by the magnetic attraction force, so that the rigid piece 411 presses the connecting piece 44, the connecting piece 44 is compressed, and the connecting piece 44 is deformed.
  • the two limit blocks 414 are separated from the first motor 36.
  • S200 controls the first motor 36 to drive the first lens 381 to move along the optical axis direction of the zoom lens 100.
  • the optical axis direction of the zoom lens 100 is the X axis direction.
  • the first motor 36 can drive the first lens 381 to move in the positive direction of the X axis or the negative direction of the X axis.
  • the distance of movement of the first lens 381 along the positive direction of the X axis or the negative direction of the X axis driven by the first motor 36 can be set according to the user's focus adjustment requirements.
  • the limiting member 41 contacts the first motor 36 under the pressure of the connecting member 44, and a static friction force is formed between the limiting member 41 and the first motor 36 .
  • the connecting member 44 of this embodiment can not only connect the limiting member 41 to the housing 32, but also can be used to force the limiting member 41.
  • the connector has the effect of "one thing with multiple uses”. At this time, the structure of the zoom lens 30 is relatively simple.
  • the connecting member 44 exerts a force on the limiting member 41
  • the limiting member 41 will also exert a reaction force on the connecting member 44.
  • the connecting member 44 is connected between the limiting member 41 and the housing, the reaction force can be transmitted to the housing 32.
  • the overall strength of the housing 32 is relatively large and can effectively resist the reaction force.
  • the first motor 36 is locked by the self-locking assembly 40, so that the first lens 381 on the first motor 36 is more stable, that is, the first lens 381 on the first motor 36 is not stable. It is easy to move due to external shaking or vibration, so that when the user is taking a photo, the captured image is not prone to deformation or blur. In particular, when the user takes a photo during exercise, the effect of the image captured by the camera module 100 is also better.
  • the second motor 37 may also be provided with a self-locking assembly 40.
  • the self-locking assembly 40 can also perform the above-mentioned steps on the second motor 37. The specific details are not repeated here.
  • the zoom lens 100 further includes a Hall sensor 51 and a detection magnet 52.
  • the method further includes:
  • the Hall sensor 51 detects the intensity of the magnetic field of the magnet 52.
  • the first motor 36 is controlled to drive the first lens 381 to move along the optical axis direction of the zoom lens 100 to the target position.
  • the current signal is transmitted to the first coil 363.
  • the first magnet 362 pushes the first moving bracket 361 to move in the positive direction of the X-axis or the negative direction of the X-axis under the ampere force. At this time, it is easy for the first moving bracket 361 not to move to the target position.
  • the Hall sensor 51 is used to detect the magnetic field strength of the magnet 52, and determine the magnitude of the magnetic field strength and the preset magnetic field strength at 10 times of focusing. When the magnetic field intensity is not equal to the preset magnetic field intensity at 10 times of focusing, the Hall sensor 51 feeds back to the host circuit board 80 through the third circuit board 33.
  • the host circuit board 80 can provide a compensation current signal to the first coil 363, so that the first moving bracket 361 can move to the target position, that is, the 10 times focus position.
  • the Hall sensor 51 and the detecting magnet 52 can improve the accuracy of focusing of the camera module 100, so that the effect of the image captured by the camera module 100 is better.
  • FIG. 21 is a schematic structural diagram of another implementation manner of an electronic device according to an embodiment of the present application.
  • Fig. 22 is a schematic partial cross-sectional view of the electronic device shown in Fig. 21 at the line C-C.
  • the electronic device 1 includes a housing 60, a screen 70, a host circuit board 80, and a camera module 100.
  • the arrangement of the housing 60, the screen 70, and the host circuit board 80 can refer to the arrangement of the housing 60, the screen 70, and the host circuit board 80 of the electronic device 100 in the first embodiment. I won't repeat it here.
  • the camera module 100 is disposed opposite to the first light transmitting portion 64 of the back cover 61. In this way, the camera module 100 of the electronic device 1 directly receives the ambient light passing through the first light transmitting portion 64. In other words, the electronic device 1 no longer receives the ambient light passing through the first light transmitting portion 64 through the prism motor 90 of the first embodiment.
  • the shape of the first light transmitting portion 64 is not limited to the circular shape shown in FIG. 21.
  • FIG. 23 is a partially exploded schematic diagram of the camera module of the electronic device shown in FIG. 21.
  • the camera module 100 includes a second circuit board 10, a photosensitive chip 20, a filter 39 and a zoom lens 30.
  • the arrangement of the second circuit board 10, the photosensitive chip 20 and the filter 39 can refer to the arrangement of the second circuit board 10, the photosensitive chip 20 and the filter 39 of the first embodiment, here No longer.
  • FIG. 24 is an exploded schematic diagram of the zoom lens of the camera module shown in FIG. 23.
  • the zoom lens 30 includes a base 31, a housing 32, an upper reed 34, a lower reed 35, a first motor 36, a first lens 381 and a self-locking assembly 40.
  • the base 31 includes a base plate 311 and a positioning post 312 fixedly connected to one side of the base plate 311.
  • the number of positioning posts 312 is four.
  • the positioning pillars 312 are respectively located at the four corners of the substrate 311. In other embodiments, the number and fixed positions of the positioning posts 312 are not specifically limited.
  • the substrate 311 is fixed to the second circuit board 10 and on the same side as the photosensitive chip 20.
  • the substrate 311 is provided with a through hole 313.
  • the photosensitive chip 20 is disposed opposite to the through hole 313 to collect ambient light passing through the through hole 313.
  • the shape of the through hole 313 is not limited to the circular shape shown in FIG. 24.
  • the camera module 100 can be set thinner in the X-axis direction.
  • the filter 39 may be disposed on the surface of the substrate 31 facing the second circuit board 10, or may be disposed on the surface of the substrate 31 facing the second circuit board 10, or may be disposed in the through hole 313 (for example, , The side surface of the filter 39 is adhered to the hole wall of the through hole 313).
  • FIG. 22 shows that the filter 39 is fixed on the surface of the substrate 31 facing the second circuit board 10.
  • FIG. 25 is a partial structural diagram of the zoom lens shown in FIG. 24.
  • each positioning column 312 has a first step surface 331 and a second step surface 332.
  • the first step surface 331 and the second step surface 332 have a height difference.
  • the upper spring 34 includes a first connecting ring 341 and a plurality of first connecting legs 342 connected to the periphery of the first connecting ring 341.
  • the plurality of first connecting pins 342 are respectively fixed to the plurality of first step surfaces 331 in a one-to-one correspondence.
  • the number of the first connecting pins 342 is four.
  • the four first connecting pins 342 are respectively fixed to the four first step surfaces 331 in a one-to-one correspondence.
  • FIG. 26 is a partial structural diagram of the zoom lens shown in FIG. 24.
  • the lower spring 35 includes a second connecting ring 351 and a plurality of second connecting legs 352 connected to the periphery of the second connecting ring 351.
  • the plurality of second connecting pins 352 are respectively fixed to the plurality of second step surfaces 332 in a one-to-one correspondence.
  • the number of second connecting pins 352 is four.
  • the four second connecting feet 352 are respectively fixed to the four second step surfaces 332 in a one-to-one correspondence.
  • FIG. 27 is an exploded schematic diagram of a part of the structure of the zoom lens shown in FIG. 24 at an angle.
  • FIG. 28 is an exploded schematic diagram of a part of the structure of the zoom lens shown in FIG. 27 at another angle.
  • the first motor 36 is equipped with a first lens 381. The first motor 36 is used to drive the first lens 381 to move along the optical axis direction of the zoom lens 100.
  • the first lens 381 may be installed in the lens barrel and installed on the first motor 36 through the lens barrel.
  • the first motor 36 includes a first moving bracket 361, a first magnet 362, a first coil 363, a second magnet 364 and a second coil 365.
  • the first movable support 361 includes a front surface 3611 and a rear surface 3612 disposed opposite to each other, a left surface 3613 and a right surface 3614 disposed opposite to each other, and an upper surface 3615 and a lower surface 3616 disposed opposite to each other.
  • the left surface 3613 and the right surface 3614 are connected between the front surface 3611 and the rear surface 3612.
  • the upper surface 3615 and the lower surface 3616 are connected between the front surface 3611 and the rear surface 3612, and connected between the left surface 3613 and the right surface 3614.
  • the front surface 3611 is the surface of the first moving bracket 361 close to the user, that is, the surface facing the positive direction of the Z axis.
  • the rear surface 3612 is the surface of the first moving bracket 361 away from the user, that is, the surface facing the negative direction of the Z-axis.
  • the left surface 3613 is the surface of the first mobile bracket 361 close to the left side of the user, that is, the surface facing the negative direction of the X-axis.
  • the right surface 3614 is the surface of the first moving bracket 361 close to the right side of the user, that is, the surface facing the positive direction of the X-axis.
  • the upper surface 3615 is the surface of the first moving bracket 361 close to the top of the electronic device 1, that is, the surface facing the positive direction of the Y axis.
  • the lower surface 3616 is the surface of the first moving bracket 361 close to the bottom of the electronic device 1, that is, the surface facing the negative direction of the Y-axis.
  • the front surface 3611 of the first moving bracket 361 is connected to the first connecting ring 341 of the upper spring 34.
  • the rear surface 3612 of the first moving bracket 361 is connected to the second connecting ring 351 of the lower spring 35.
  • the right surface 3614 of the first moving bracket 361 has a first protrusion 3617.
  • the left surface 3613 has a second bump 3618.
  • FIG. 29 is a schematic partial cross-sectional view of the zoom lens shown in FIG. 23 at the line D-D.
  • the first coil 363 is sleeved on the first bump 3617.
  • the second coil 365 is sleeved on the second bump 3618.
  • the housing 32 is fixedly connected to the substrate 311.
  • the housing 32 and the base plate 311 enclose a receiving space 312.
  • the housing 32 includes a front plate 322, an upper plate 323 and a lower plate 324 arranged oppositely, and a left plate 325 and a right plate 326 arranged oppositely.
  • the left plate 325 and the right plate 326 are connected between the upper plate 323 and the lower plate 324.
  • the front plate 322 is connected between the left plate 325 and the right plate 326 and between the upper plate 323 and the lower plate 324.
  • the front plate 322 is arranged opposite to the base plate 311.
  • the front plate 322 is provided with a through hole 327.
  • the base plate 311, the front plate 322, the upper plate 323, the lower plate 324, the left plate 325, and the right plate 326 roughly form a box.
  • the front plate 322 is a plate of the housing 32 close to the user, that is, a plate facing the positive direction of the Z axis.
  • the upper plate 323 is a plate of the housing 32 close to the top of the electronic device 1, that is, a plate facing the positive direction of the Y axis.
  • the lower plate 324 is a plate of the housing 32 close to the bottom of the electronic device 1, that is, a plate facing the negative direction of the Y-axis.
  • the left plate 325 is a plate of the housing 32 close to the left side of the user, that is, a plate facing the negative direction of the X-axis.
  • the right plate 326 is a plate of the housing 32 close to the right side of the user, that is, a plate facing the positive direction of the X-axis.
  • the first magnet 362 is fixed to the right plate 326 of the housing 32.
  • the first magnet 362 is arranged opposite to the first coil 363.
  • the second magnet 364 is fixed to the left plate 325 of the housing 32.
  • the second magnet 364 is arranged opposite to the second coil 365.
  • the first coil 363 when the first coil 363 receives the current signal, the first coil 363 is energized, and the current signal of the first coil 363 generates an ampere force along the Z axis under the magnetic field generated by the first magnet 362. At this time, the first coil 363 overcomes the elastic force of the upper reed 34 and the lower reed 35 under the ampere force, and pushes the first moving bracket 361 to move in the Z-axis direction.
  • the second coil 365 when a current signal is transmitted to the second coil 365, the second coil 365 is energized, and the current signal of the second coil 365 generates an ampere force in the Z-axis direction under the magnetic field generated by the second magnet 364. At this time, the second coil 365 overcomes the elastic force of the upper reed 34 and the lower reed 35 under the ampere force, and pushes the first moving bracket 361 to move along the Z-axis direction.
  • the first magnet 362 can generate along the Z axis. Ampere force in the positive or negative direction of the Z axis.
  • the second coil 365 can generate a positive direction along the Z axis or Ampere force in the negative direction of the Z axis.
  • the zoom lens 30 further includes a Hall sensor 51 and a detection magnet 52.
  • the detection magnet 52 is fixed to the first moving bracket 361. In this embodiment, the detection magnet 52 is fixed to the lower surface 3616 of the first moving bracket 361.
  • the detection magnet 52 may also be fixed to the upper surface 3615 of the first moving bracket 361.
  • the first moving bracket 361 may also be provided with a sink groove.
  • the opening of the sink groove is located on the lower surface 3616 or the upper surface 3615.
  • the detection magnet 52 is arranged in the sink.
  • the Hall sensor 51 is used to detect the magnetic field strength of the magnet 52.
  • the Hall sensor 51 is fixed to the housing 32 and faces the detection magnet 52. In this embodiment, the Hall sensor 51 is fixed to the lower plate 324 of the housing 32.
  • the Hall sensor 51 may also be fixed to the upper plate 323 of the housing 32.
  • the Hall sensor 51 is used to detect the magnetic field strength of the magnet 52, and determine the magnitude of the magnetic field strength and the preset magnetic field strength at 10 times of focusing. When the magnetic field strength is not equal to the preset magnetic field strength at 10 times of focusing, the Hall sensor 51 feeds back to the host circuit board 80 through the second circuit board 10.
  • the host circuit board 80 can provide a compensation current signal to the first coil 363, so that the first moving bracket 361 can move to the target position, that is, the 10 times focus position.
  • the Hall sensor 51 and the detecting magnet 52 can improve the accuracy of focusing of the camera module 100, so that the effect of the image captured by the camera module 100 is better.
  • FIG. 30 is a partial structural diagram of the zoom lens shown in FIG. 24.
  • FIG. 31 is a schematic diagram of a part of the structure of the zoom lens shown in FIG. 24.
  • the self-locking assembly 40 includes a limiting member 41, a force applying member 42 and a connecting member 44.
  • the connecting member 44 is fixedly connected to the housing 32.
  • the setting method of the self-locking assembly 40 can refer to the setting method of the self-locking structure 40 in the first embodiment. I won't repeat it here.
  • the locking principle and unlocking principle of the limiting member 41, the force applying member 42 and the connecting member 44 of the self-locking assembly 40 can refer to the first embodiment. I won't repeat them here.
  • the self-locking assembly 40 is used to lock the first motor 36 when the first motor 36 moves to the target position.
  • the first lens 381 on the first motor 36 is more stable, that is, the first lens 381 on the first motor 36 is not easily moved due to external jitter or vibration, so that when the user is taking a photo, The image is not prone to distortion or blur.
  • the effect of the image captured by the camera module 100 is also better.
  • the housing 32 also includes an upper cover 321.
  • the upper cover 321 is detachably connected to the upper plate 323, the lower plate 324, the left plate 325 or the right plate 326 of the housing 32.
  • the lower plate 324 of the housing 32 is provided with a fixing hole 3241.
  • the upper cover 321 may partially pass through the fixing hole 3241 and be connected to the lower plate 324.
  • the connecting member 44 of the self-locking assembly 40 is fixedly connected to the upper cover 321.
  • the self-locking assembly 40 is integrated with the upper cover 321. In this way, the way of installing the self-locking assembly 40 on the housing 32 is relatively simple.
  • the self-locking component 40 can also be directly fixed to the housing 32.
  • this embodiment provides a focusing method of the electronic device 1.
  • the structure of the electronic device 1 is the electronic device 1 described in the second embodiment.
  • the focusing method of the electronic device 1 includes:
  • the focusing signal is received and the control signal is sent to the force applying member 42.
  • the force applying member 42 responds to the control signal and applies a force to the limiting member 41, and the limiting member 41 is separated from the first motor 36.
  • the control signal may be a current signal or a voltage signal.
  • the self-locking assembly 40 is in an unlocked state.
  • the principle that the self-locking component 40 is in the unlocked state can refer to S100 of the focusing method of the electronic device 1 of the first embodiment. I won't repeat it here.
  • the first motor 36 is controlled to drive the first lens 381 to move along the optical axis direction of the zoom lens 100.
  • the optical axis direction of the zoom lens 100 is the Z axis direction.
  • the first motor 36 can drive the first lens 381 to move in the positive direction of the Z axis or the negative direction of the Z axis. It can be understood that the moving distance of the first lens 381 in the positive Z-axis direction or the negative Z-axis direction driven by the first motor 36 can be set according to the user's focus adjustment requirements.
  • the force applying member 42 applies a force to the limiting member 41 in response to a control signal
  • the limiting member 41 or the connecting member 44 is deformed to cause the limiting member 41 to deform.
  • the piece 41 is separated from the first motor 36.
  • this embodiment adopts the limitation of the self-locking assembly 40.
  • the positioning member 41 or the connecting member 44 is deformed to separate the limiting member 41 from the first motor 36.
  • the structure is simple and does not increase the complexity of the structure of the zoom lens 30.
  • the first motor 36 When the first motor 36 moves to the target position, it stops sending a control signal to the force applying member 42 and the limiting member 41 contacts the first motor 36 and generates static friction with the first motor 36.
  • the limiting member 41 contacts the first motor 36 under the pressure of the connecting member 44, and a static friction force is formed between the limiting member 41 and the first motor 36 .
  • the connecting member 44 of this embodiment can not only connect the limiting member 41 to the housing 32, but also can be used to apply force to the limiting member 41. As shown in FIG.
  • the connector has the effect of "one thing with multiple uses”. At this time, the structure of the zoom lens 30 is relatively simple.
  • the connecting member 44 exerts a force on the limiting member 41
  • the limiting member 41 will also exert a reaction force on the connecting member 44.
  • the connecting member 44 is connected between the limiting member 41 and the housing, the reaction force can be transmitted to the housing 32.
  • the overall strength of the housing 32 is relatively large and can effectively resist the reaction force.
  • the first motor 36 is locked by the self-locking assembly 40, so that the first lens 381 on the first motor 36 is more stable, that is, the first lens 381 on the first motor 36 is not stable. It is easy to move due to external shaking or vibration, so that when the user is taking a photo, the captured image is not prone to deformation or blur. In particular, when the user takes a photo during exercise, the effect of the image captured by the camera module 100 is also better.
  • the zoom lens 100 further includes a Hall sensor 51 and a detection magnet 52.
  • the method further includes:
  • the Hall sensor 51 detects the intensity of the magnetic field of the magnet 52.
  • the first motor 36 is controlled to drive the first lens 381 to move along the optical axis direction of the zoom lens 100 to the target position.
  • the current signal is transmitted to the first coil 363.
  • the first coil 363 pushes the first moving bracket 361 to move in the positive direction of the Z axis or the negative direction of the Z axis under the ampere force. At this time, it is easy for the first moving bracket 361 not to move to the target position.
  • the Hall sensor 51 is used to detect the magnetic field strength of the magnet 52, and determine the magnitude of the magnetic field strength and the preset magnetic field strength at 10 times of focusing. When the magnetic field intensity is not equal to the preset magnetic field intensity at 10 times of focusing, the Hall sensor 51 feeds back to the host circuit board 80 through the second circuit board 10.
  • the host circuit board 80 can provide a compensation current signal to the first coil 363, so that the first moving bracket 361 can move to the target position, that is, the 10 times focus position.
  • the Hall sensor 51 and the detecting magnet 52 can improve the accuracy of focusing of the camera module 100, so that the effect of the image captured by the camera module 100 is better.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Abstract

一种变焦镜头(30),包括外壳(32)、第一马达(36)、第一镜片(381)以及自锁组件(40)。第一马达(36)安装于外壳(32)的内侧。第一镜片(381)安装于第一马达(36)。第一马达(36)用于带动第一镜片(381)沿变焦镜头(30)的光轴方向移动。自锁组件(40)包括限位件(41)、连接件(44)以及施力件(42)。限位件(41)位于第一马达(36)与外壳(32)之间。连接件(44)一端固定于外壳(32),另一端固定于限位件(41),施力件(42)连接于限位件(41)。施力件(42)未向限位件(41)施加作用力时,限位件(41)与第一马达(36)接触,以使限位件(41)与第一马达(36)之间形成静摩擦力。施力件(42)向限位件(41)施加作用力时,限位件(41)与第一马达(36)分开。变焦镜头(30)在拍摄过程中不容易因外界运动或者抖动而影响。当变焦镜头(30)应用于摄像模组(100)及电子设备(1)时,电子设备(1)的拍摄性能较佳。

Description

变焦镜头、摄像模组、电子设备及其调焦方法
本申请要求于2020年03月13日提交中国专利局、申请号为202010177411.3、申请名称为“变焦镜头、摄像模组、电子设备及其调焦方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及摄像技术领域,尤其涉及一种变焦镜头、摄像模组和电子设备及其调焦方法。
背景技术
随着电子设备技术的日趋发展,人们希望手机的拍摄性能能够越来越好。然而,由于传统的手机在拍摄过程中,容易因外界的运动或抖动而使得拍摄的图像变形或模糊,从而严重影响手机的用户体验性。故而,如何设置一种稳定性较佳,不容易因外界运动或者抖动而影响拍摄质量的摄像模组非常重要。
发明内容
本申请提供一种不容易因外界运动或者抖动而影响拍摄的变焦镜头、摄像模组和电子设备。
第一方面,本申请提供一种变焦镜头。所述变焦镜头包括外壳、第一马达、第一镜片以及自锁组件。所述第一马达安装于所述外壳的内侧。所述第一镜片安装于所述第一马达。所述第一马达用于带动所述第一镜片沿所述变焦镜头的光轴方向移动。可以理解的是,所述变焦镜头的光轴是一条穿过变焦镜头内的镜片中心的轴线。
所述自锁组件包括限位件、连接件以及施力件。所述限位件位于所述第一马达与所述外壳之间。所述连接件一端固定于所述外壳,另一端固定于所述限位件。所述施力件连接于所述限位件。
所述施力件未向所述限位件施加作用力时,所述限位件与所述第一马达接触,以使所述第一马达之间形成静摩擦力。一种实施方式中,当所述施力件未接收到控制信号时,所述施力件未产生施加于所述限位件的作用力。一种实施方式中,所述施力件接收到控制信号,但所述施力件未响应所述控制信号,此时,所述施力件未产生施加于所述限位件的作用力。
所述施力件向所述限位件施加作用力时,所述限位件与所述第一马达分开。一种实施方式中,所述施力件接收控制信号。所述施力件响应控制信号,并产生施加于所述限位件的作用力。在其他实施方式中,通过机械按键对所述限位件施加作用力,以使所述施力件向所述限位件施加作用力。
在本实施例中,通过设置一种具有自锁组件的所述变焦镜头,从而在所述施力件未向所述限位件施加作用力时,所述自锁组件的限位件能在所述连接件的压力下与所述第一马达接触,且与所述第一马达之间形成静摩擦力。此时,所述第一马达被所述自锁组件锁紧。这样,所述第一马达上的第一镜片的稳定性较佳。换言之,所述第一马达上的第一镜片不 容易因外界的抖动或者振动而发生移动。当用户在拍摄照片时,拍摄的图像不容易出现变形或模糊。特别是,当用户在运动过程中拍照时,摄像模组拍摄的图像的效果也较佳。
此外,相较于通过对所述第一马达提供电流信号来锁紧所述第一马达的方案,本实施例通过在所述施力件响应于控制信号时,所述自锁组件能够锁紧所述第一马达。此时,所述变焦镜头可以断开传输至所述第一马达的电流信号。这样,所述变焦镜头在使用过程中可以较大程度地降低能耗和发热。
此外,通过在所述施力件响应于控制信号时,所述自锁组件能够锁紧所述第一马达,从而保证所述第一马达不容易与变焦镜头内的其他部件发生碰撞,也即降低所述第一马达撞击风险。
此外,通过在所述施力件响应于控制信号时,所述自锁组件能够锁紧所述第一马达,从而使得所述第一马达不容易发生受迫振动,进而降低所述第一马达受损害的风险。可以理解的是,受迫振动指的是在周期性的外力作用下,其所发生的振动。
此外,本实施例通过在所述施力件响应于控制信号,向所述限位件施加作用力时,所述限位件或所述连接件发生形变,以使所述限位件与所述第一马达分开。这样,当所述第一马达需要带动所述第一镜片沿所述变焦镜头的光轴方向移动时,所述自锁组件不会影响所述第一马达的移动。
一种实施方式中,所述施力件未向所述限位件施加作用力时,所述限位件在所述连接件的压力下与所述第一马达接触,且与所述第一马达之间形成静摩擦力。
可以理解的是,本实施例的所述连接件既可以起到将所述限位件连接到所述外壳,又可以用来对所述限位件施力。所述连接件具有“一物多用”的效果。此时,所述变焦镜头的结构较简单。
此外,当所述连接件对所述限位件施力时,所述限位件也会对所述连接件施加反作用力。此时,因为所述连接件连接于所述限位件与所述外壳之间,所以该反作用力可以传递至所述外壳。所述外壳的整体强度较大,可以有效抵抗该反作用力。
一种实施方式中,所述施力件响应于控制信号,向所述限位件施加作用力时,所述限位件或所述连接件发生形变,以使所述限位件与所述第一马达分开。
可以理解的是,相较于通过在所述变焦镜头内额外设置驱动装置来使得所述限位件与所述第一马达分开的方案,本实施例通过所述自锁组件的所述限位件或所述连接件发生形变来使得所述限位件与所述第一马达分开,其结构简单,不会增加变焦镜头的结构的复杂性。
一种实施方式中,所述连接件连接于所述限位件的中部。所述施力件的两端分别连接所述限位件的两端。可以理解的是,当所述施力件未向所述限位件施加作用力时,所述限位件的两端与所述第一马达接触,且与所述第一马达之间形成静摩擦力。当所述施力件向所述限位件施加拉力时,所述限位件的两端彼此靠近,以与所述第一马达分开。
在本实施方式中,通过所述施力件对所述限位件施加拉力,来使得所述限位件与所述第一马达分开。其施力方式简单,所述自锁组件的结构简单,易装配。
一种实施方式中,所述施力件为形状记忆合金。可以理解的是,当形状记忆合金响应控制信号时,形状记忆合金能够产生收缩力。此时,通过该收缩力能够对所述限位件施加 拉力。当形状记忆合金未响应控制信号时,形状记忆合金处于自然状态。此时,形状记忆合金未对所述限位件施加作用力。
可以理解的是,通过额外设置驱动装置来使得所述施力件向所述限位件施加作用力的方案,本实施方式的形状记忆合金可以利用自身的形变,来产生对所述限位件的作用力。其施力方式简单,结构简单,不会占用摄像模组的内部太多空间。
一种实施方式中,所述限位件包括依次连接的第一导电段、第一绝缘段及第二导电段。所述施力件的一端固定于所述第一导电段,另一端固定于所述第二导电段。所述第一导电段、所述施力件与所述第二导电段形成电流通路。可以理解的是,电流通路指的是能够使得电流传输的回路。
在本实施方式中,所述限位件既能够用于锁紧所述第一马达,又能够用于形成电流通路的一部分。所述限位件具有“一物多用”的效果。
一种实施方式中,所述电流通路还包括第一电路板。所述第一电路板固定于所述外壳。所述第一导电段与所述第二导电段均电连接于所述第一电路板。
可以理解的是,通过设置所述第一电路板,从而利用所述第一电路板来向所述第一导电段、所述施力件与所述第二导电段传输控制信号。该传输控制信号的方式简单。
在其他实施方式中,所述电流通路还可以包括第一导线与第二导线。所述第一导线电连接于所述第一导电段。所述第二导线电连接于所述第二导电段。
一种实施方式中,所述连接件为刚性件。所述连接件连接于所述限位件的中部。所述施力件的数量为两个。其中一个所述施力件连接于所述限位件的一端与外壳之间,另一个所述施力件连接于所述限位件的另一端与外壳之间。
可以理解的是,两个所述施力件未向所述限位件施加作用力时,所述限位件的两端在所述连接件的压力下与所述第一马达接触,且与所述第一马达之间形成静摩擦力。两个所述施力件响应于控制信号时,分别向所述限位件的两端施加拉力,所述限位件的两端彼此靠近,以与所述第一马达分开。
一种实施方式中,所述施力件为形状记忆合金。可以理解的是,当形状记忆合金响应控制信号时,形状记忆合金能够产生收缩力。此时,通过该收缩力能够对所述限位件的两端施加拉力,从而使得所述限位件的两端彼此靠近。当形状记忆合金未响应控制信号时,形状记忆合金处于自然状态。此时,形状记忆合金未对所述限位件施加作用力。
可以理解的是,相较于通过额外设置驱动装置来使得所述施力件向所述限位件施加作用力的方案,本实施方式的形状记忆合金可以利用自身的形变,来产生对所述限位件的作用力。其施力方式简单,结构简单,不会占用摄像模组的内部太多空间。
一种实施方式中,各所述施力件均包括一个磁铁及一个线圈。两个所述磁铁分别固定于所述限位件的两端。两个所述线圈均固定于所述外壳。两个所述线圈与两个所述磁铁分别一一对应地相对设置。可以理解的是,两个所述线圈在响应所述控制信号时,两个所述线圈均和各自相对设置的所述磁铁产生磁吸力。这样所述磁铁能够通过所述磁吸力对所述限位件施加拉力。
可以理解的是,相较于通过额外设置驱动装置来使得所述施力件向所述限位件施加作用力的方案,本实施方式的磁铁及线圈可以利用产生的磁吸力,来产生对所述限位件的作 用力。其施力方式简单,结构简单,不会占用摄像模组的内部太多空间。
一种实施方式中,所述连接件为弹性件。弹性件可以为但不仅限于为弹片或者弹簧。所述连接件连接于所述限位件的中部。所述施力件的数量为两个。其中一个所述施力件连接于所述限位件的一端与外壳之间。另一个所述施力件连接于所述限位件的另一端与外壳之间。
可以理解的是,两个所述施力件未向所述限位件施加作用力时,所述限位件的两端在所述连接件的压力下与所述第一马达接触,且与所述第一马达之间形成静摩擦力。两个所述施力件响应于控制信号时,分别向所述限位件的两端施加拉力,所述限位件压缩所述连接件,以与所述第一马达分开。
一种实施方式中,所述变焦镜头还包括霍尔传感器及检测磁铁。所述霍尔传感器固定于所述外壳的内侧。所述检测磁铁固定于所述第一马达。所述霍尔传感器用于检测所述检测磁铁的磁场强度。
可以理解的是,当用户需要对摄像模组进行调焦(例如10倍调焦)时,所述第一马达带动所述第一镜片沿所述变焦镜头的光轴方向移动。此时,所述第一马达容易出现未移动至目标位置。本实施方式利用霍尔传感器检测检测磁铁的磁场强度,并判断该磁场强度与10倍调焦处的预设磁场强度的大小。当该磁场强度与10倍调焦处的预设磁场强度不相等时,霍尔传感器能够通过向外部器件反馈。此时,外部器件能够向第一马达提供补偿电流信号,从而使得第一马达移动至目标位置,也即10倍调焦的位置。这样,通过霍尔传感器与检测磁铁能够提高摄像模组的调焦的准确度,从而使得摄像模组拍摄的图像的效果较佳。
一种实施方式中,所述变焦镜头还包括导轨。所述导轨固定于所述外壳的内侧。所述第一马达滑动连接于所述导轨。
在本实施方式中,通过所述第一马达滑动连接于所述滑轨,从而实现所述第一马达带动所述第一镜片沿所述变焦镜头的光轴方向移动。这样,一方面,所述第一马达的移动量程可以设置的较大,从而使得所述变焦镜头的调焦范围更大。另一方面,所述导轨可以对所述第一马达起到定位的作用,此时,所述第一马达的稳定性更佳。
一种实施方式中,所述变焦镜头还包括第二马达以及定焦组件。所述第二马达位于所述第一马达的一侧。所述第二马达安装有所述第一镜片。所述第二马达能够沿所述变焦镜头的光轴方向移动。所述定焦组件安装有所述镜片。所述定焦组件位于所述第一马达背向所述第二马达的一侧,且固定于所述外壳。
在本实施方式中,通过额外设置第二马达,从而利用第二马达来带动位于第二马达的第一镜片沿所述变焦镜头的光轴方向移动。此时,变焦镜头的调焦范围更大。
一种实施方式中,所述变焦镜头还包括底座、上簧片及下簧片。所述底座在所述变焦镜头的光轴方向上具有第一台阶面及第二台阶面。所述上簧片的周缘固定于所述第一台阶面。所述下簧片的周缘固定于所述第二台阶面。所述第一马达在所述变焦镜头的光轴方向上具有前表面与后表面。所述第一马达的前表面固定于所述上簧片。所述第一马达的后表面固定于所述下簧片。可以理解的是,所述第一马达能够克服所述上簧片与所述下簧片的弹力,从而在所述变焦镜头的光轴方向上移动。
第二方面,本申请提供一种摄像模组。所述摄像模组包括第二电路板、感光芯片及第 一方面所述的变焦镜头。所述感光芯片与所述变焦镜头均固定于所述第二电路板。所述变焦镜头用于将环境光线投射至所述感光芯片。
可以理解的是,当所述变焦镜头应用于所述摄像模组时,所述摄像模组拍摄的图像不容易出现变形或模糊。特别是,当用户在运动过程中拍照时,摄像模组拍摄的图像的效果也较佳。此外,所述摄像模组在使用过程中可以较大程度地降低能耗和发热。
第三方面,本申请提供一种电子设备。所述电子设备包括壳体及如上所述的摄像模组。所述摄像模组安装于所述壳体的内部。所述壳体设有第一透光部。所述摄像模组用于采集透过所述第一透光部的环境光线。
在本实施例中,当所述摄像模组应用于所述电子设备时,所述电子设备拍摄的图像不容易出现变形或模糊。特别是,当用户在运动过程中拍照时,所述电子设备拍摄的图像的效果也较佳。此外,所述电子设备在使用过程中可以较大程度地降低能耗和发热。
此外,所述变焦镜头的第一马达不容易与变焦镜头内的其他部件发生碰撞,也即降低所述第一马达撞击风险。这样,所述电子设备的稳定性也较高。
此外,所述第一马达不容易发生受迫振动,所述第一马达受损害的风险较低。这样,所述电子设备的稳定性也较高。可以理解的是,受迫振动指的是在周期性的外力作用下,其所发生的振动。
一种实施方式中,所述电子设备包括棱镜马达。所述棱镜马达安装于所述壳体的内侧。所述棱镜马达用于将透过所述第一透光部的环境光线反射至所述摄像模组。
可以理解的是,通过设置棱镜马达,可以使得摄像模组的光轴不受限于沿Z轴方向延伸。例如,摄像模组的光轴也可以平行于X轴,或者Y轴。这样,因为电子设备在X轴或者Y轴方向的空间较宽阔,所以摄像模组的调焦范围可以显著增加,从而实现摄像模组的高倍数调焦。
一种实施方式中,棱镜马达包括棱镜马达外壳及棱镜。棱镜位于棱镜马达外壳的内部,且所述棱镜可以活动连接于棱镜马达外壳。
第四方面,本申请提供一种电子设备的调焦方法。所述电子设备包括变焦镜头。所述变焦镜头包括所述变焦镜头包括外壳、第一马达、第一镜片以及自锁组件。所述第一马达安装于所述外壳的内侧。所述第一镜片安装于所述第一马达。所述第一马达用于带动所述第一镜片沿所述变焦镜头的光轴方向移动。可以理解的是,所述变焦镜头的光轴是一条穿过变焦镜头内的镜片中心的轴线。所述自锁组件包括限位件、连接件以及施力件。所述限位件位于所述第一马达与所述外壳之间。所述连接件一端固定于所述外壳,另一端固定于所述限位件。所述施力件连接于所述限位件。
所述方法包括:
接收调焦信号,向所述施力件发送控制信号,所述施力件响应所述控制信号,并向所述限位件施加作用力,以使所述限位件与所述第一马达分开。
控制所述第一马达带动所述第一镜片沿所述变焦镜头的光轴方向移动。
当所述第一马达移动至目标位置时,停止向所述施力件发送控制信号,所述限位件与所述第一马达接触,并与所述第一马达产生静摩擦力。
在本实施例中,通过在所述施力件未向所述限位件施加作用力时,所述自锁组件的限 位件与所述第一马达接触,且与所述第一马达之间形成静摩擦力。此时,所述第一马达被所述自锁组件锁紧。这样,所述第一马达上的第一镜片的稳定性较佳。换言之,所述第一马达上的第一镜片不容易因外界的抖动或者振动而发生移动。当用户在拍摄照片时,拍摄的图像不容易出现变形或模糊。特别是,当用户在运动过程中拍照时,摄像模组拍摄的图像的效果也较佳。
一种实施方式中,所述施力件未向所述限位件施加作用力时,所述限位件在所述连接件的压力下与所述第一马达接触,且与所述第一马达之间形成静摩擦力。
可以理解的是,本实施例的所述连接件既可以起到将所述限位件连接到所述外壳,又可以用来对所述限位件施力。所述连接件具有“一物多用”的效果。此时,所述变焦镜头的结构较简单。
此外,当所述连接件对所述限位件施力时,所述限位件也会对所述连接件施加反作用力。此时,因为所述连接件连接于所述限位件与所述外壳之间,所以该反作用力可以传递至所述外壳。所述外壳的整体强度较大,可以有效抵抗该反作用力。
一种实施方式中,所述施力件响应于控制信号,向所述限位件施加作用力时,所述限位件或所述连接件发生形变,以使所述限位件与所述第一马达分开。
可以理解的是,相较于通过在所述变焦镜头内额外设置驱动装置来使得所述限位件与所述第一马达分开的方案,本实施例通过所述自锁组件的所述限位件或所述连接件发生形变来使得所述限位件与所述第一马达分开,其结构简单,不会增加变焦镜头的结构的复杂性。
一种实施方式中,所述变焦镜头还包括霍尔传感器及检测磁铁。所述霍尔传感器固定于所述外壳的内侧。所述检测磁铁固定于所述第一马达。
在“控制所述第一马达带动所述第一镜片沿所述变焦镜头的光轴方向移动”之后,所述方法还包括:
所述霍尔传感器检测所述检测磁铁的磁场强度;
当确认出所述磁场强度不等于预设磁场强度时,控制所述第一马达带动所述第一镜片沿所述变焦镜头的光轴方向移动至所述目标位置。
可以理解的是,当用户需要对摄像模组进行调焦(例如10倍调焦)时,所述第一马达带动所述第一镜片沿所述变焦镜头的光轴方向移动。此时,所述第一马达容易出现未移动至目标位置。本实施方式利用霍尔传感器检测检测磁铁的磁场强度,并判断该磁场强度与10倍调焦处的预设磁场强度的大小。当该磁场强度与10倍调焦处的预设磁场强度不相等时,霍尔传感器能够通过向外部器件反馈。此时,外部器件能够向第一马达提供补偿电流信号,从而使得第一马达移动至目标位置,也即10倍调焦的位置。这样,通过霍尔传感器与检测磁铁能够提高摄像模组的调焦的准确度,从而使得摄像模组拍摄的图像的效果较佳。
附图说明
图1是本申请实施例提供的电子设备的一种实施方式的结构示意图;
图2是图1所示的电子设备的部分分解示意图;
图3是图1所示的电子设备在A-A线处的部分剖面示意图;
图4是图1所示的电子设备的摄像模组的结构示意图;
图5是图4所示的摄像模组的部分分解示意图;
图6是图3所示的电子设备在B处的放大示意图;
图7是图4所示的摄像模组的框体的结构示意图;
图8是图4所示的摄像模组的部分分解示意图;
图9是图4所示的摄像模组的部分分解示意图;
图10是图4所示的摄像模组的另一种实施方式的部分分解示意图;
图11是图4所示的摄像模组的部分分解示意图;
图12是图11所示摄像模组的自锁组件在一种角度下的一种实施方式的结构示意图;
图13是图12所示自锁组件在另一种角度下的结构示意图;
图14a是图4所示的摄像模组的部分结构在一种状态下的一种实施方式的示意图;
图14b是图14a所示的摄像模组的部分结构在另一种状态下的示意图;
图15是图4所示的摄像模组的部分结构的另一种实施方式的示意图;
图16a是图11所示的摄像模组的自锁组件的另一种实施方式的结构示意图;
图16b是图4所示的摄像模组的部分结构在一种状态下的另一种实施方式的示意图;
图16c是图16b所示的摄像模组的部分结构在另一种状态下的示意图;
图17a是图4所示的摄像模组的部分结构在一种状态下的再一种实施方式的示意图;
图17b是图17a所示的摄像模组的部分结构在另一种状态下的示意图;
图18a是图4所示的摄像模组的部分结构在一种状态下的再一种实施方式的示意图;
图18b是图18a所示的摄像模组的部分结构在另一种状态下的示意图;
图19a是图4所示的摄像模组的部分结构在一种状态下的再一种实施方式的示意图;
图19b是图19a所示的摄像模组的部分结构在另一种状态下的示意图;
图20是图1所示的电子设备的调焦方法的流程示意图;
图21是本申请实施例提供的电子设备的另一种实施方式的结构示意图;
图22是图21所示的电子设备在C-C线处的部分剖面示意图;
图23是图21所示的电子设备的摄像模组的部分分解示意图;
图24是图23所示的摄像模组的变焦镜头的分解示意图;
图25是图24所示的变焦镜头的部分结构示意图;
图26是图24所示的变焦镜头的部分结构示意图;
图27是图24所示的变焦镜头的部分结构在一种角度下的分解示意图;
图28是图27所示的变焦镜头的部分结构在另一种角度下的分解示意图;
图29是图23所示的变焦镜头在D-D线处的部分剖面示意图;
图30是图24所示的变焦镜头的部分结构示意图;
图31是图24所示的变焦镜头的部分结构示意图。
具体实施方式
请参阅图1,图1是本申请实施例提供的电子设备的一种实施方式的结构示意图。电子设备1可以为手机、平板电脑(tablet personal computer)、膝上型电脑(laptop computer)、个人数码助理(personal digital assistant,PDA)、照相机、个人计算机、 笔记本电脑、车载设备、可穿戴设备、增强现实(augmented reality,AR)眼镜、AR头盔、虚拟现实(virtual reality,VR)眼镜或者VR头盔。图1所示实施例的电子设备1以手机为例进行阐述。如图1及图2所示,图2是图1所示的电子设备1的部分分解示意图。为了便于描述,定义电子设备1的宽度方向为X轴。电子设备1的长度方向为Y轴。电子设备1的厚度方向为Z轴。
在本申请中,电子设备1在拍摄过程中不容易因外界运动或者抖动而受到影响,也即电子设备1的拍摄效果较佳。下文将结合相关附图具体介绍两种电子设备1的设置方式。
第一种实施例:请参阅图2,电子设备1包括壳体60、屏幕70、主机电路板80、棱镜马达90及摄像模组100。
其中,壳体60可用于支撑屏幕70以及电子设备1内相关器件。
壳体60包括后盖61及边框62。后盖61与屏幕70相对设置。后盖61与屏幕70安装于边框62的相背两侧,此时,后盖61、边框62与屏幕70共同围设出收容空间63。收容空间63可用于收容电子设备1的器件,例如电池、扬声器、麦克风或者听筒。结合附图1所示,附图1示意了后盖61、边框62与屏幕70围成大致呈长方体的结构。
一种实施方式中,后盖61可通过粘胶固定连接于边框62上。在另一种实施方式中,后盖61也可以与边框62形成一体结构,即后盖61与边框62一体成型。
此外,后盖61设有第一透光部64。第一透光部64用于使环境光线进入收容空间63内。
一种实施方式中,后盖61设有进光孔。后盖61固定有透明保护盖板。透明保护盖板遮盖进光孔。此时,透明保护盖板与进光孔形成第一透光部64。
其中,屏幕70用于显示图像、文字等。屏幕70安装于壳体60。
一种实施方式中,屏幕70包括保护盖板71和显示屏72。保护盖板71层叠于显示屏72。保护盖板71可以紧贴显示屏72设置,可主要用于对显示屏72起到保护防尘作用。保护盖板71的材质可以为但不仅限于为玻璃。显示屏72可以采用有机发光二极管(organic light-emitting diode,OLED)显示屏,有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light-emitting diode,AMOLED)显示屏,迷你发光二极管(mini organic light-emitting diode)显示屏,微型发光二极管(micro organic light-emitting diode)显示屏,微型有机发光二极管(micro organic light-emitting diode)显示屏,量子点发光二极管(quantum dot light emitting diodes,QLED)显示屏。
请再次参阅图2,主机电路板80安装于收容空间63内。主机电路板80可用于安装电子设备1的电子元器件。例如,电子元器件包括处理器(central processing unit,CPU)、电池管理单元和基带处理单元。主机电路板80位于屏幕70与后盖61之间,也即主机电路板80位于收容空间63内。
此外,主机电路板80可以为硬质电路板,也可以为柔性电路板,也可以为软硬结合电路板。此外,主机电路板80可以采用FR-4介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。这里,FR-4是一种耐燃材料等级的代号,Rogers介质板为一种高频板。
请再次参阅图2,棱镜马达90安装于收容空间63内。棱镜马达90用于将环境光线反射至摄像模组100内。
在本实施例中,主机电路板80设有避让空间81。棱镜马达90位于避让空间81内。此时,在Z轴方向,主机电路板80与棱镜马达90具有重叠区域,这样,电子设备100在Z轴方向的厚度可以设置得较薄。在其他实施例中,主机电路板80也可以不设有避让空间81。
请参阅图3,并结合图2所示,图3是图1所示的电子设备在A-A线处的部分剖面示意图。棱镜马达90包括棱镜马达外壳91及棱镜92。棱镜92位于棱镜马达外壳91的内部。棱镜马达外壳91具有第二透光部93及第三透光部94。第二透光部93与后盖61的第一透光部64相对设置。第三透光部94位于棱镜马达外壳91的周侧。此外,棱镜92包括反射面95。反射面95用于将环境光线反射至摄像模组100内。具体的,环境光线依次穿过第一透光部64及第二透光部93,并投射至棱镜92的反射面95。此时,环境光线被棱镜92的反射面95反射至第三透光部94,并经第三透光部94传入摄像模组100内。
一种实施方式中,棱镜92可以活动连接于棱镜马达外壳91。可以理解的是,活动连接包括滑动连接、转动连接以及滑动连接配合转动连接等方式。具体的,棱镜92可以通过滑动装置滑动连接在棱镜马达外壳91的内部。这样,当棱镜92相对棱镜马达外壳91滑动时,棱镜92的反射面95与摄像模组100之间的距离可以发生改变。此外,棱镜92也可以通过转动装置转动连接于棱镜马达外壳91。这样,当棱镜92相对棱镜马达外壳91转动时,环境光线与棱镜92的反射面95之间的入射角可以发生改变。在其他实施方式中,棱镜92也可以固定连接于棱镜马达外壳91。
可以理解的是,通过设置棱镜马达90,可以使得摄像模组100的光轴不受限于沿Z轴方向延伸。摄像模组100的光轴指的是经过摄像模组100中的镜头中心的光线。例如,摄像模组100的光轴也可以平行于X轴,或者Y轴。这样,因为电子设备100在X轴或者Y轴方向的空间较宽阔,所以摄像模组100的调焦范围可以显著增加,从而实现摄像模组100的高倍数调焦。
请再次参阅图3,并结合图2所示,摄像模组100固定于收容空间63内。在本实施方式中,摄像模组100位于避让空间81内。此时,在Z轴方向,主机电路板80与摄像模组100具有重叠区域,这样,电子设备100在Z轴方向的厚度可以设置得较薄。
此外,摄像模组100设有第一进光孔323。第一进光孔323与第三透光部94相对设置。此时,第一进光孔323用于使棱镜马达90反射的环境光线进入摄像模组100内,以使摄像模组100采集环境光线。
此外,摄像模组100的数量不局限于图1至图3所给出的一个。摄像模组100的数量也可以为两个,或大于两个。当摄像模组100的数量为多个时,多个摄像模组100在X-Y平面内任意排布。例如,多个摄像模组100沿X轴方向排布,或者沿Y轴方向排布。此外,当摄像模组100的数量为两个或者两个以上时,两个或者两个以上的摄像模组100可以集成为一个摄像组件。
此外,摄像模组100电连接于主机电路板80。此时,主机电路板80能够控制摄像模组100拍摄图像或者录像。
具体的,屏幕70中可以设置有摄像应用软件。当用户需要拍摄图像时,用户触摸屏幕70中的摄像应用软件。此时,屏幕70产生触控信号,并将触控信号传递给主机电路板80。主机电路板80接收触控信号,并根据触控信号控制摄像模组100对拍摄对象进行拍摄。拍摄对象可以是人、物等。
如图4及图5所示,图4是图1所示的电子设备的摄像模组的结构示意图。图5是图4所示的摄像模组的部分分解示意图。摄像模组100包括第二电路板10、感光芯片20、滤光片39及变焦镜头30。
其中,第二电路板10电连接于主机电路板80(请参阅图3)。这样,信号能够经主机电路板80传输至第二电路板10。信号也能够经第二电路板10传输至主机电路板80。
第二电路板10可以为硬质电路板,也可以为柔性电路板,也可以为软硬结合电路板。此外,第二电路板10可以采用FR-4介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。
请参阅图6,并结合图5所示,图6是图3所示的电子设备在B处的放大示意图。感光芯片20固定于第二电路板10上,且与第二电路板10电连接。这样,当感光芯片20接收环境光线之后,感光芯片20产生的信号能够经第二电路板10传输至主机电路板80。
一种实施方式中,感光芯片20可以通过板上芯片封装(chif on board,COB)技术贴装在第二电路板10。在其他实施方式中,感光芯片20也可以通过焊球阵列封装(ball grid array,BGA)技术或者栅格阵列封装(land grid array,LGA)技术封装在第二电路板10。
在其他实施方式中,第二电路板10上还安装有电子元器件或者其他芯片(例如驱动芯片)。电子元器件或者其他芯片设于感光芯片20的周边。电子元器件或者其他芯片用于辅助感光芯片20采集环境光线,以及辅助感光芯片20对所采集的环境光线进行信号处理。
在其他实施方式中,第二电路板10背向感光芯片20的表面设置有补强板。换言之,补强板与感光芯片20位于第二电路板10的不同侧。补强板可以为但不仅限于为钢板。补强板能够提高第二电路板10的强度。
在其他实施方式中,第二电路板10也可以在局部设置沉槽,此时,感光芯片20可安装于沉槽内。这样,感光芯片20与第二电路板10在X轴方向上具有重叠区域,此时,摄像模组100在X轴方向上可以设置得较薄。
请再次参阅图5及图6,滤光片39固定于第二电路板10上。第二电路板10的表面上设有环形支架391。滤光片391固定于环形支架391远离第二电路板10的表面上。感光芯片20可以位于环形支架391的所围成的空间内。
在其他实施方式中,第二电路板10的表面设置有垫高块。滤光片39固定于垫高块远离第二电路板10的表面上。
此外,滤光片39与感光芯片20相对设置。滤光片39用于过滤穿过环境光线中的杂光,并使过滤后的环境光线投射至感光芯片20,从而保证电子设备1拍摄图像具有较佳的清晰度。滤光片39可以为但不仅限于为蓝色玻璃滤光片。例如,滤光片39还可以为反射式红外滤光片,或者是双通滤光片(双通滤光片可使环境光线中的可见光和红外光同时透过,或者使环境光线中的可见光和其他特定波长的光线(例如紫外光)同时透过,或者使红外光和其他特定波长的光线(例如紫外光)同时透过。)。
请再次参阅图5及图6,变焦镜头30包括基板31、外壳32、第三电路板33、导轨34、定焦组件35、第一马达36、第二马达37、镜片组38及自锁组件40。
其中,基板31固定于第二电路板10,且与感光芯片20同侧。基板31设有通孔311。感光芯片20与通孔311相对设置,以采集穿出通孔311的环境光线。通孔311的形状不仅限于附图5所示意的矩形。
一种实施方式中,通过将感光芯片20部分伸进通孔311内,从而既可以避免基板31挤压感光芯片20,又可以使得感光芯片20与基板31在X轴方向上存在重叠区域,进而使得摄像模组100在X轴方向上可以设置得较薄。
一种实施方式中,滤光片39可以设置于基板31朝向第二电路板10的表面,也可以设置于基板31背向第二电路板10的表面,也可以设置于通孔311内(例如,将滤光片39的侧面粘接于通孔311的孔壁)。
在其他实施例中,变焦镜头30也可以不设置基板31。
请再次参阅图5及图6,外壳32固定于基板31远离第二电路板10的一侧。外壳32与基板31围出容纳空间312。基板31与外壳32大致形成一个箱体。基板31与外壳32所围成的形状不仅限于附图4所示意的长方体。在其他实施例中,外壳32也可以直接固定于第二电路板10。
其中,外壳32包括上盖321及框体322。上盖321安装于框体322。第一进光孔323设于框体322。第一进光孔323用于使棱镜马达90(请参阅图3)反射的环境光线进入外壳32的内侧,也即容纳空间312内。
请参阅图7,并结合图5所示,图7是图4所示的摄像模组的框体的结构示意图。框体322包括左板件3221、后板件3222及相对设置的下板件3223与上板件3224。左板件3221连接在下板件3223与上板件3224之间。后板件3222连接在下板件3223与上板件3224之间,且连接于左板件3221。后板件3222与上盖321相对设置。左板件3221与基板31相对设置。此外,第一进光孔323设于左板件3221。
可以理解的是,当电子设备1的后盖61朝向用户时,左板件3221为框体322靠近用户左侧的板件,也即面向X轴负方向的板件。后板件3222为框体322远离用户的板件,也即面向Z轴负方向的板件。下板件3223为框体322靠近电子设备1底部的板件,也即面向Y轴负方向的板件。上板件3224为框体322靠近电子设备1顶部的板件,也即面向Y轴正方向的板件。
请再次参阅图6所示,第三电路板33固定于后板件3222。第三电路板33部分位于外壳32的内部,部分伸出外壳32的内部,也即部分位于外壳32的外部。第三电路板33不仅限于图5中所示意的“凸”字型。
其中,第三电路板33电连接于第二电路板10。具体的,通过伸出外壳32的内部的第三电路板33电连接于第二电路板10。此时,因为第二电路板10电连接于主机电路板80,所以主机电路板80发出的信号能够经过第二电路板10传输至第三电路板33。
可以理解的是,第三电路板33可以为硬质电路板,也可以为柔性电路板,也可以为软硬结合电路板。此外,第三电路板33可以采用FR-4介质板,也可以采用罗杰斯(Rogers)介质板,也可以采用Rogers和FR-4的混合介质板,等等。
请参阅图8及图9,图8是图4所示的摄像模组的部分分解示意图。图9是图4所示的摄像模组的部分分解示意图。定焦组件35固定于左板件3221。定焦组件35开设有第一安装孔351。第一安装孔351与左板件3221上的第一进光孔323(请参阅图7)相对设置。镜片组38包括第二镜片382。第一安装孔351内安装有第二镜片382。在本实施例中,第一安装孔351内安装有一个第二镜片382。此时,环境光线能够经第一进光孔323传播至第一安装孔351内镜片38。
此外,导轨34的一端固定于基板31,另一端固定于定焦组件35。此外,导轨34的数量不仅限于图8及图9所示意的四个。在其他实施例中,导轨34的一端也可以固定于第二电路板10。导轨34的另一端也可以固定于左板件3221。
请再次参阅图8及图9,第一马达36包括第一移动支架361、第一磁铁362、第一线圈363。第一移动支架361活动连接于导轨34。第一移动支架361设有第一滑孔364。导轨34穿过第一滑孔364。这样,第一移动支架361可以通过第一滑孔364相对导轨34滑动。可以理解的是,本实施例的第一滑孔364的数量不仅限于附图9所示意的四个。
此外,第一移动支架361包括第一部分365及连接第一部分365的第二部分366。第一部分365设有第二安装孔367。第二安装孔367与第一安装孔351相对设置。镜片组38包括第一镜片381。第二安装孔367内安装有至少一个第一镜片381。在本实施例中,第二安装孔367安装有两个第一镜片381。此时,环境光线经定焦组件35上的第二镜片382传播至第一马达36上的第一镜片381。此外,第二部分366设有第一安装槽368。第一安装槽368安装有第一磁铁362。
在本实施方式中,第二部分366与第一部分365弯折连接。第一马达36大致呈“﹂”型。
在其他实施方式中,第二部分366与第一部分365也可以直线连接,也即第一马达36大致呈“一”型。
此外,第一线圈363固定于下板件3223朝向第二部分366的表面。第一线圈363与第一磁铁362相对设置。第一线圈363电连接于第三电路板33(请参阅图6)。在本实施例中,当第三电路板33对第一线圈363传输电流信号时,第一线圈363通电,第一磁铁362可以产生沿X轴负方向或者X轴正方向的安培力。此时,第一磁铁362在安培力下推动第一移动支架361沿X轴负方向或者X轴正方向移动。
在其他实施例中,通过改变第一线圈363上电流信号的方向,或者设置第一磁铁362的S极或者N极的位置,从而当第一线圈363通电时,第一磁铁362可以产生沿X轴负方向或者X轴正方向的安培力。此时,第一磁铁362在安培力下能够推动第一移动支架361沿X轴负方向或者X轴正方向移动。
请再次参阅图8及图9,第二马达37包括第二移动支架371、第二磁铁372、第二线圈373。第二移动支架371活动连接于导轨34。第二移动支架371设有第二滑孔374。导轨34穿过第二滑孔374。这样,第二移动支架371可以通过第二滑孔374相对导轨34滑动。可以理解的是,本实施例的第二滑孔374的数量不仅限于附图9所示意的四个。
此外,第二移动支架371包括第三部分375及连接第三部分375的第四部分376。第三部分375设有第三安装孔377。第三安装孔377与第二安装孔367相对设置。第三安装 孔377内安装有至少一个第一镜片381。在本实施例中,第三安装孔377安装有两个第一镜片381。此时,环境光线经定焦组件35上的第二镜片382、第一马达36的第一镜片381传播至第二马达37上的第一镜片381。此外,第四部分376设有第二安装槽378。第二安装槽378安装有第二磁铁372。
在本实施方式中,第四部分376与第三部分375弯折连接。第二马达37大致呈
Figure PCTCN2021079534-appb-000001
型。
在其他实施方式中,第四部分376与第三部分375也可以直线连接,也即第二马达37大致呈“一”型。
此外,第二线圈373固定于上板件3224朝向第四部分376的表面。第二线圈373与第二磁铁372相对设置。第二线圈373电连接于第三电路板33。在本实施例中,当第三电路板33对第二线圈373传输电流信号时,第二线圈373通电,第二磁铁372可以产生沿X轴正方向或者X轴负方向的安培力。此时,第二磁铁372在安培力下推动第二移动支架371沿X轴正方向或者X轴负方向移动。
在其他实施例中,通过改变第二线圈373上电流信号的方向,或者设置第二磁铁372的S极或者N极的位置,从而当第二线圈373通电时,第二磁铁372可以产生沿X轴正方向或者X轴负方向的安培力。此时,第二磁铁372在安培力下能够推动第二移动支架371沿X轴正方向或者X轴负方向移动。
可以理解的是,当用户需要对摄像模组100进行调焦时,向第一线圈363及第二线圈373传输电流信号。此时,第一磁铁362在安培力下推动第一移动支架361沿X轴正方向或者X轴负方向移动,这样,安装于第一移动支架361的镜片38也沿X轴正方向或者X轴负方向移动。此外,第二磁铁372在安培力下能够推动第二移动支架371沿X轴正方向或者X轴负方向移动,这样,安装于第二移动支架371的镜片38也沿X轴正方向或者X轴负方向移动。
在其他实施例中,第一移动支架361也可以单独沿X轴正方向或者X轴负方向移动。第二移动支架371也可以单独沿X轴正方向或者沿X轴负方向移动。具体的可根据用户的调焦需求而设置。
请参阅图10,图10是图4所示的摄像模组的另一种实施方式的部分分解示意图。变焦镜头30还可以包括霍尔传感器51及检测磁铁52。
其中,检测磁铁52固定于第一移动支架361朝向第三电路板33的一侧。具体的,检测磁铁52可以固定于第一移动支架361的第一部分365,也可以固定于第二部分366。
一种实施方式中,第一移动支架361设置有沉槽。沉槽的开口朝向第三电路板33。检测磁铁52设置于沉槽内。这样,在Z轴方向上,检测磁铁52不会增加摄像模组100的厚度。
其中,霍尔传感器51位于容纳空间312内。具体的,霍尔传感器51固定于第三电路板33,且电连接于第三电路板33。霍尔传感器51用于检测检测磁铁52的磁场强度。
可以理解的是,当用户需要对摄像模组100进行调焦(例如10倍调焦)时,第三电路板33对第一线圈363传输电流信号。第一磁铁362在安培力下推动第一移动支架361沿X轴正方向或者X轴负方向移动。此时,第一移动支架361容易出现未移动至目标位置。本 实施方式利用霍尔传感器51检测检测磁铁52的磁场强度,并判断该磁场强度与10倍调焦处的预设磁场强度的大小。当该磁场强度与10倍调焦处的预设磁场强度不相等时,霍尔传感器51通过第三电路板33向主机电路板80反馈。此时,主机电路板80能够向第一线圈363提供补偿电流信号,从而使得第一移动支架361移动至目标位置,也即10倍调焦的位置。这样,通过霍尔传感器51与检测磁铁52能够提高摄像模组100的调焦的准确度,从而使得摄像模组100拍摄的图像的效果较佳。
在其他实施例中,第二移动支架371朝向第三电路板33的一侧也可以固定有检测磁铁52。检测磁铁52可以固定于第二移动支架371第三部分375或者第四部分376上。这样,通过霍尔传感器51用于检测固定于第二移动支架371上的检测磁铁52的磁场强度,从而进一步地提高摄像模组100的调焦的准确度,进而使得摄像模组100拍摄的图像的效果更佳。
在其他实施例中,霍尔传感器51的数量不仅限于图10所示意的两个。检测磁铁52的数量不仅限于图10所示意的两个。
请参阅图11,并结合图5所示,图11是图4所示的摄像模组100的部分分解示意图。自锁组件40用于当第一马达36和/或第二马达37移动至目标位置时,将第一马达36和/或第二马达37进行锁紧。可以理解的是,当第一马达36设置有自锁组件40时,自锁组件40用于第一马达36移动至目标位置时,将第一马达36进行锁紧。当第二马达37设置有自锁组件40时,自锁组件40用于第二马达37移动至目标位置时,将第二马达37进行锁紧。当第一马达36与第二马达37均设有自锁组件40时,自锁组件40用于当第一马达36和第二马达37移动至目标位置时,将第一马达36和第二马达37进行锁紧。本实施例以第一马达36设置有自锁组件40为例进行阐述。
在本实施例中,通过设置自锁组件40,从而当第一马达36和/或第二马达37移动至目标位置时,自锁组件40能够将第一马达36和/或第二马达37进行锁紧。这样,第一马达36上的第一镜片381和/或第二马达37上的第一镜片381的稳定较佳,也即第一马达36上的第一镜片381和/或第二马达37上的第一镜片381不容易因外界的抖动或者振动而发生移动,从而当用户在拍摄照片时,拍摄的图像不容易出现变形或模糊。特别是,当用户在运动过程中拍照时,摄像模组100拍摄的图像的效果也较佳。
此外,当第一马达36和/或第二马达37移动至目标位置时,因为第一马达36和/或第二马达37可以被自锁组件40锁紧,所以摄像模组100无需再通过向第一线圈363及第二线圈373传输电流信号,来锁紧第一移动支架361与第二移动支架371。这样,当本实施例的第一马达36和/或第二马达37被自锁组件40锁紧时,可以停止对第一马达36和/或第二马达37传输电流信号。这样,摄像模组100在使用过程中可以较大程度地降低能耗和发热。
此外,当第一马达36和/或第二马达37移动至目标位置时,通过将第一马达36和/或第二马达37进行锁紧,从而保证第一马达36和/或第二马达37不容易与摄像模组100内的其他部件发生碰撞,也即降低第一马达36和/或第二马达37撞击风险。
此外,当第一马达36和/或第二马达37移动至目标位置时,通过将第一马达36和/或第二马达37进行锁紧,从而使得第一马达36和/或第二马达37相对稳定,也即第一马 达36和/或第二马达37不容易发生受迫振动。可以理解的是,受迫振动指的是在周期性的外力作用下,其所发生的振动。
在本实施例中,自锁组件40具有多种设置方式。下文将结合相关附图具体介绍自锁组件40的几种设置方式。
第一种实施方式:请再次参阅图11,自锁组件40包括限位件41、施力件42、连接件44及第一电路板43。
其中,连接件44的一端固定于限位件41的中部,另一端固定于上盖321。在本实施方式中,连接件44为刚性件。连接件44与上盖321为一体成型结构。换言之,连接件44与上盖321的材料相同。在其他实施方式中,连接件44也可以通过焊接或者粘接连接于上盖321。在其他实施方式中,连接件44也可以为弹性件。例如弹片或者弹簧。此时,连接件44被挤压在限位件41与上盖之间。换言之,连接件44处于压缩状态。
请参阅图12,并结合图11所示,图12是图11所示摄像模组的自锁组件在一种角度下的一种实施方式的结构示意图。限位件41包括依次连接的第一导电段411、第一绝缘段412及第二导电段413。换言之,第一绝缘段412连接在第一导电段411与第二导电段413之间。第一导电段411与第二导电段413的材质可以为铜、铝、银、金或者铝合金等。第一导电段411、第一绝缘段412与第二导电段413能够弯折。
此外,第一绝缘段412的材质可以为高分子材料。例如,热塑性聚氨酯弹性体橡胶(thermoplastic polyurethanes,TPU)、热塑性弹性体(thermoplastic elastomer,TPE)、热塑性橡胶材料(thermoplastic rubber material,TPR)。
此外,限位件41还包括限位块414。限位块414的数量不仅限于附图11及图12所示意的两个。例如,限位块414也可以为一个、三个或者大于三个。在本实施方式中,第一个限位块414固定连接于第一导电段411朝向第一马达36的表面。第二个限位块414固定连接于第二导电段413朝向第一马达36的表面。
此外,限位块414的材质可以为高分子材料。例如TPU、TPE或者TPR等。在其他实施例中,限位块414的材质也可以与第一导电段411的材质相同。限位块414与第一导电段411或者第二导电段413为一体成型结构。
请再次参阅图12,并结合图11所示,施力件42为形状记忆合金(shape memory alloy,SMA)。施力件42的一端连接于第一导电段411,另一端连接于第二导电段413。一种实施方式中,施力件42的两端可以通过焊接方式固定连接于第一导电段411与第二导电段413。
此外,第一电路板43包括第一段431及连接第一段431的第二段432。第一段431固定连接于凸块324。第二段432固定连接于上盖321,且部分经基板31伸至外壳32的外部。第二段432可以电连接于第二电路板10,并通过第二电路板10电连接于主机电路板80。在其他实施例中,第二段432也可以通过导线电连接于主机电路板80。
请参阅图13,并结合图11所示,图13是图12所示自锁组件在另一种角度下的结构示意图。第一段431具有第一引脚4311及第二引脚4312。第一引脚4311电连接于第一导电段411。第二引脚4312电连接于第二导电段413。这样,第一电路板43、第一导电段411、施力件42及第二导电段413形成电流通路。可以理解的是,电流通路指的是电流能够在第一电路板43、第一导电段411、施力件42及第二导电段413之间传输的回路。
此外,第二段432可以用于电连接第二电路板10。具体的,第二段432包括第三引脚4321及第四引脚4322。第三引脚4321及第四引脚4322电连接于第二电路板10。这样,当第二电路板10向第一电路板43传输电流信号时,此时,第一电路板43能够通过第二引脚4312及第一引脚4311向第一导电段411与第二导电段413传输电流信号。电流信号经第一导电段411与第二导电段413作用至施力件42。此时,施力件42接收电流信号,施力件42的两端向中部收缩,也即施力件42产生收缩力。这样,收缩状态的施力件42能够通过收缩力对限位件41施加拉力,从而带动第一导电段411与第二导电段413弯折。
在其他实施例中,第一电路板43也可以不包括第一段431。此时,第一导电段411可以通过导线电连接于第一电路板43,第二导电段413通过导线电连接于第一电路板43。
在其他实施例中,自锁组件40也可以不包括第一电路板43。此时,第一导电段411可以通过导线电连接于第二电路板10或者主机电路板80。第二导电段413可以通过导线电连接于第二电路板10或者主机电路板80。
在其他实施例中,施力件42也可以为线圈和磁铁。线圈固定于第一导电段411上。磁铁固定于第二导电段413上。线圈与磁铁相对设置。此时,通过向线圈通电,以使线圈和磁铁之间产生磁吸力,从而利用线圈与磁铁之间的磁吸力带动第一导电段411与第二导电段413彼此靠近,即限位件41发生形变。
在本实施方式中,自锁组件40具有两种状态。一种是锁紧状态。一种是解锁状态。下面将结合相关附图具体介绍这两种状态。
锁紧状态:请参阅图14a,图14a是图4所示的摄像模组的部分结构在一种状态下的一种实施方式的示意图。当第一电路板43未向施力件42传输电流信号,也即施力件42未接收电流信号时,施力件42未产生收缩,施力件42未向所述限位件41施加作用力,此时,施力件42未带动第一导电段411与第二导电段413发生形变。此时,两个限位块414在连接件44的压力下接触于第一马达36,并与第一马达36之间产生静摩擦力,从而利用该静摩擦力将第一马达36进行锁紧。这样,第一马达36在限位块414的作用下,不容易再沿X轴方向滑动。
解锁状态:请参阅图14b,图14b是图14a所示的摄像模组的部分结构在另一种状态下的示意图。解锁状态:当第一电路板43向第一导电段411与第二导电段413传输电流信号。电流信号经第一导电段411与第二导电段413传输至施力件42。此时,施力件42接收电流信号,施力件42的两端向中部收缩,也即施力件42产生收缩力。这样,收缩状态的施力件42通过收缩力对限位件41施加拉力,从而带动第一导电段411与第二导电段413彼此靠近,也即限位件41发生形变。此时,两个限位块414与第一马达36分开。
一种实施方式中,当用户需要对摄像模组100进行调焦时,主机电路板80接收到调焦信号。主机电路板80通过第二电路板10向第一电路板43传输控制信号。控制信号可以为电流信号也可以为电压信号。
在本实施方式中,通过设置一种具有自锁组件40的所述变焦镜头30,从而在所述施力件42未向所述限位件41施加作用力时,所述自锁组件40的限位件41能在所述连接件44的压力下与所述第一马达36接触,且与所述第一马达36之间形成静摩擦力。此时,所述第一马达36被所述自锁组件40锁紧。这样,所述第一马达36上的第一镜片381的稳定 性较佳。换言之,所述第一马达36上的第一镜片381不容易因外界的抖动或者振动而发生移动。当用户在拍摄照片时,拍摄的图像不容易出现变形或模糊。特别是,当用户在运动过程中拍照时,摄像模组100拍摄的图像的效果也较佳。
此外,相较于通过对所述第一马达36提供电流信号来锁紧所述第一马达36的方案,本实施例通过在所述施力件42响应于控制信号时,所述自锁组件40能够锁紧所述第一马达36。此时,所述变焦镜头30可以断开传输至所述第一马达36的电流信号。这样,所述变焦镜头30在使用过程中可以较大程度地降低能耗和发热。
第二种实施方式中,与第一种实施方式相同的技术内容不再赘述:请参阅图15,图15是图4所示的摄像模组的部分结构的另一种实施方式的结构示意图。限位件41包括第一导电段411及第二导电段413。第一导电段411与第二导电段413沿X轴方向延伸,且间隔排布。第一导电段411与第二导电段413能够弯折。
此外,第一导电段411靠近第二导电段413的端部通过连接件44连接于上盖321。第二导电段413靠近第一导电段411的端部通过连接件44连接于上盖321。本实施方式的自锁组件40的锁紧原理与第一种实施方式的自锁组件40的锁紧原理相同。这里不再赘述。
第三种实施方式中,与第一种实施方式相同的技术内容不再赘述:请参阅图16a与图16b,图16a是图11所示的摄像模组的自锁组件的另一种实施方式的结构示意图。图16b是图4所示的摄像模组的部分结构在一种状态下的另一种实施方式的示意图。自锁组件40包括限位件41、第一施力件421、第二施力件422、连接件44及第一电路板43。在本实施方式中,施力件的数量为两个。第一施力件421与第二施力件422均为形状记忆合金。
其中,限位件41包括形变片411及限位块414。
其中,形变片411的材质为导电材料,例如铜、铝、银、金或者铝合金等。形变片411能够弯折。此外,形变片411的中部通过连接件44固定连接于上盖321。连接件44的设置方式可参阅第一种实施方式的连接件44的设置方式,这里不再赘述。
此外,形变片411包括第一端部412以及远离第一端部412设置的第二端部413。
此外,限位块414的设置方式可参阅第一种实施方式的限位块414的设置方式。这里不再赘述。
此外,本实施方式的第一电路板43不再包括第一种实施方式的第一段431。本实施方式的第一电路板43的设置方式可参阅第一种实施方式的第二段432的设置方式。这里不再赘述。
请参阅图16a,第一施力件421的一端连接于第一端部412,另一端连接于第一电路板43。第二施力件422的一端连接于第二端部413,另一端连接于第一电路板43。这样,第一电路板43、第一施力件421、第二施力件422及形变片411形成一个电流通路。当第一电路板43向第一施力件421与第二施力件422传输电流信号时,第一施力件421与第二施力件422产生热量,并分别向各自的中部收缩,也即第一施力件421与第二施力件422均产生收缩力。这样,收缩状态的第一施力件421与第二施力件422利用各自的收缩力带动形变片411形变。此时,形变片411的第一端部412与第二端部413向彼此靠近。
在其他实施例中,自锁组件40也可以不包括第一电路板43。此时,第一施力件421的一端连接于第一端部412,另一端连接于上盖321。此时,再通过导线将第一施力件421 电连接至第二电路板10。此外,第二施力件422也可以固定于上盖321,并通过导线电连接至第二电路板10。
本实施方式的自锁组件40也具有两种状态:锁紧状态和解锁状态。
锁紧状态:请参阅图16b,锁紧状态:当第一电路板43未向第一施力件421与第二施力件422传输电流信号,也即第一施力件421与第二施力件422未接收电流信号时,第一施力件421与第二施力件422未产生收缩力。此时,第一施力件421与第二施力件422未向施力件41施加作用力。两个限位块414在连接件44的压力下接触于第一马达36,并与第一马达36之间产生静摩擦力,从而利用该静摩擦力将第一马达36进行锁紧。这样,第一马达36在限位块414的作用下,不容易再沿X轴方向滑动。
解锁状态:请参阅图16c,图16c是图16b所示的摄像模组的部分结构在另一种状态下的示意图。当第一电路板43向第一施力件421与第二施力件422传输电流信号时,此时,第一施力件421与第二施力件422响应该电流信号,并分别向各自的中部收缩。这样,收缩状态的第一施力件421与第二施力件422通过收缩力对限位件41施加拉力,从而带动第一导电段411与第二导电段413彼此靠近,也即限位件41发生形变。此时,两个限位块414彼此靠近,并与第一马达36分开。
第四种实施方式中,与第一种实施方式相同的技术内容不再赘述:请参阅图17a,图17a是图4所示的摄像模组的部分结构在一种状态下的再一种实施方式的示意图。自锁组件40包括限位件41、第一施力件421、第二施力件422、连接件44及第一电路板43。
其中,限位件41包括刚性片411及限位块414。刚性片411的材质为导电材料。例如铜、铝、银、金或者铝合金等。此外,刚性片411包括第一端部412以及远离第一端部412设置的第二端部413。
此外,第一施力件421与第二施力件422的设置方式可参阅第三种实施方式的第一施力件421与第二施力件422的设置方式。这里不再赘述。限位块414的设置方式可参阅第三种实施方式的限位块414的设置方式。第一电路板43的设置方式可参阅第三种实施方式的第一电路板43的设置方式。这里不再赘述。
此外,连接件44为弹性件。例如弹簧或者为弹片。连接件44的一端连接在第一端部412与第二端部413之间,另一端连接于上盖321。在其他实施方式中,连接件44的另一端也可以连接于第一电路板43。
本实施方式的自锁组件40也具有两种状态:锁紧状态和解锁状态。
锁紧状态:请参阅图17a,当第一电路板43未向第一施力件421与第二施力件422传输电流信号,也即第一施力件421与第二施力件422未接收电流信号时,第一施力件421与第二施力件422未产生收缩力。此时,第一施力件421与第二施力件422未对限位件41施加作用力。这样,两个限位块414在连接件44的压力下接触于第一马达36上,并与第一马达36之间产生静摩擦力,从而利用该静摩擦力将第一马达36进行锁紧。第一马达36在限位块414的作用下,不容易再沿X轴方向滑动。
解锁状态:请参阅图17b,图17b是图17a所示的摄像模组的部分结构在另一种状态下的示意图。当第一电路板43向第一施力件421与第二施力件422传输电流信号时,此时,第一施力件421与第二施力件422产生热量,并分别向各自的中部收缩。这样,收缩状态 的第一施力件421与第二施力件422通过收缩力对限位件41施加拉力,从而带动刚性件411挤压连接件44,连接件44压缩发生形变。这样,刚性片411便能够带动两个限位块414沿远离第一马达36移动,也即两个限位块414与第一马达36分开。
第五种实施方式中,与第一种实施方式相同的技术内容不再赘述:请参阅图18a,图18a是图4所示的摄像模组的部分结构在一种状态下的再一种实施方式的示意图。自锁组件40包括限位件41、第三磁铁421、第四磁铁422、第三线圈423、第四线圈424、连接件44及第一电路板43。在本实施方式中,第三磁铁421与第三线圈423形成一个施力件。第四磁铁422与第四线圈424形成一个施力件。
其中,限位件41及连接件44的设置方式可参阅第一种实施方式的限位件41及连接件44的设置方式。此外,限位件41也可以参阅第二种实施方式的限位件41的设置方式,也可以参阅第三种实施方式的限位件41的设置方式。在本实施方式中,限位件41的设置方式以第三种实施方式的限位件41的设置方式为例。此外,第一电路板43的设置方式以第三种实施方式的第一电路板43的设置方式为例。
第三磁铁421固定连接于形变片411的第一端部412,且背向第一马达36。第四磁铁422固定连接于形变片411的第二端部413,且背向第一马达36。一种实施方式中,第三磁铁421可通过粘胶固定连接于限位件41的第一端部412。第四磁铁422可通过粘胶固定连接于限位件41的第二端部413。
在本实施方式中,第三线圈423与第四线圈424均固定连接于第一电路板43,且均电连接于第一电路板43。此外,第三线圈423与第三磁铁421相对设置。第四线圈424与第四磁铁422相对设置。在其他实施方式中,第三线圈423与第四线圈424也可以直接固定连接于上盖321。
本实施方式的自锁组件40也具有两种状态:锁紧状态和解锁状态。
锁紧状态:请再次参阅图18a,当第一电路板43未向第三线圈423与第四线圈424传输电流信号,也即第三线圈423与第四线圈424未接收电流信号时,第三线圈423未对第三磁铁421产生磁吸力,第四线圈424未对第四磁铁422产生磁吸力。这样,第三磁铁421与第四磁铁422未对施力件41施加作用力,第三磁铁421与第四磁铁422未带动形变片411发生弯折。此时,两个限位块414在连接件44的压力下接触于第一马达36上,并与第一马达36之间产生静摩擦力,从而利用该静摩擦力将第一马达36进行锁紧。这样,第一马达36在限位块414的作用下,不容易再沿X轴方向滑动。
解锁状态:请参阅图18b,图18b是图18a所示的摄像模组的部分结构在另一种状态下的示意图。当第一电路板43向第三线圈423与第四线圈424传输电流信号,也即第三线圈423与第四线圈424响应该电流信号时,第三线圈423对第三磁铁421产生磁吸力,第四线圈424对第四磁铁422产生磁吸力。这样,第三磁铁421与第四磁铁422通过该磁吸力对形变片411施加拉力,从而带动形变片411的第一端部412与第二端部413彼此靠近。此时,两个限位块414与第一马达36分开。
第六种实施方式中,与第四种实施方式相同的技术内容不再赘述:请参阅图19a,图19a是图4所示的摄像模组的部分结构在一种状态下的再一种实施方式的示意图。自锁组件40包括限位件41、第三磁铁421、第四磁铁422、第三线圈423、第四线圈424、连接 件44及第一电路板43。在本实施方式中,第三磁铁421与第三线圈423形成一个施力件。第四磁铁422与第四线圈424形成一个施力件。
其中,限位件41的设置方式可参阅第四种实施方式的限位件41的设置方式。此外,第一电路板43的设置方式可参阅第四种实施方式的第一电路板43的设置方式。这里不再赘述。
此外,连接件44的设置方式可参阅第四种实施方式的连接件44的设置方式。这里不再赘述。
此外,第三磁铁421固定连接于刚性片411的第一端部412,且背向第一马达36。第四磁铁422固定连接于刚性片411的第二端部413,且背向第一马达36。一种实施方式中,第三磁铁421可通过粘胶固定连接于限位件41的第一端部412。第四磁铁422可通过粘胶固定连接于限位件41的第二端部413。
第三线圈423与第四线圈424均固定连接于第一电路板43,且均电连接于第一电路板43。此外,第三线圈423与第三磁铁421相对设置。第四线圈424与第四磁铁422相对设置。在其他实施方式中,第三线圈423与第四线圈424也可以直接固定连接于上盖321。
本实施方式的自锁组件40也具有两种状态:锁紧状态和解锁状态。
锁紧状态:请再次参阅图19a,当第一电路板43未向第三线圈423与第四线圈424传输电流信号,也即第三线圈423与第四线圈424未接收电流信号时,第三线圈423未对第三磁铁421产生磁吸力,第四线圈424未对第四磁铁422产生磁吸力。这样,第三磁铁421与第四磁铁422未对施力件41施加作用力。此时,两个限位块414在连接件44的作用下接触于第一马达36上,并与第一马达36之间产生静摩擦力,从而利用该静摩擦力将第一马达36进行锁紧。这样,第一马达36在限位块414的作用下,不容易再沿X轴方向滑动。
解锁状态:请参阅图19b,图19b是图19a所示的摄像模组的部分结构在另一种状态下的示意图。当第一电路板43向第三线圈423与第四线圈424传输电流信号,也即第三线圈423与第四线圈424响应电流信号时,第三线圈423对第三磁铁421产生磁吸力,第四线圈424对第四磁铁422产生磁吸力。这样,第三磁铁421与第四磁铁422通过该磁吸力对刚性片411施加拉力,从而使得刚性件411挤压连接件44,连接件44压缩,以发生形变。此时,两个限位块414与第一马达36分开。
在本实施例中,本实施例提供一种电子设备1的调焦方法。电子设备1的结构为上述第一个实施例中介绍的电子设备1。具体的这里不再赘述。
请参阅图20,图20是图1所示的电子设备的调焦方法的流程示意图。电子设备1的调焦方法包括:
S100接收调焦信号,向施力件42发送控制信号,施力件42响应控制信号,并向限位件41施加作用力,且限位件41与第一马达36分开。可以理解的是,控制信号可以为电流信号或者电压信号。
一种实施方式中,所述施力件42响应于控制信号,向所述限位件41施加作用力时,所述限位件41或所述连接件44发生形变,以使所述限位件41与所述第一马达36分开。
可以理解的是,相较于通过在所述变焦镜头内额外设置驱动装置来使得所述限位件与所述第一马达分开的方案,本实施例通过所述自锁组件40的所述限位件41或所述连接件 44发生形变,来使得所述限位件41与所述第一马达36分开,其结构简单,不会增加变焦镜头30的结构的复杂性。
一种实施方式中,当自锁组件40的结构为上述第一种实施方式的自锁组件40的结构时,通过向第一导电段411与第二导电段413传输电流信号,电流信号经第一导电段411与第二导电段413传输至施力件42。此时,施力件42响应电流信号,施力件42的两端向中部收缩,也即施力件42产生收缩力。这样,收缩状态的施力件42通过收缩力对限位件41施加拉力,从而带动第一导电段411与第二导电段413向彼此靠近的方向弯折。此时,两个限位块414与第一马达36分开。
一种实施方式中,当自锁组件40的结构为上述第二种实施方式的自锁组件40的结构时,通过向第一导电段411与第二导电段413传输电流信号,电流信号经第一导电段411与第二导电段413传输至施力件42。此时,施力件42接收电流信号,施力件42的两端向中部收缩,也即施力件42产生收缩力。这样,收缩状态的施力件42通过收缩力对限位件41施加拉力,从而带动第一导电段411与第二导电段413向彼此靠近的方向弯折。此时,两个限位块414与第一马达36分开。
一种实施方式中,当自锁组件40的结构为上述第三种实施方式的自锁组件40的结构时,通过向第一施力件421与第二施力件422传输电流信号,此时,第一施力件421与第二施力件422产生热量,并分别向各自的中部收缩。这样,收缩状态的第一施力件421与第二施力件422通过收缩力对施力件41施加拉力,从而带动形变片411的两端向彼此靠近的方向弯折。此时,两个限位块414与第一马达36分开。
一种实施方式中,当自锁组件40的结构为上述第四种实施方式的自锁组件40的结构时,通过向第一施力件421与第二施力件422传输电流信号,此时,第一施力件421与第二施力件422产生热量,并分别向各自的中部收缩。这样,收缩状态的第一施力件421与第二施力件422通过收缩力带动刚性件411挤压连接件44,连接件44压缩,连接件44发生形变。这样,刚性片411便能够沿Z轴正方向移动。此时,两个限位块414与第一马达36分开。
一种实施方式中,当自锁组件40的结构为上述第五种实施方式的自锁组件40的结构时,通过向第三线圈423与第四线圈424传输电流信号,也即第三线圈423与第四线圈424接收电流信号时,第三线圈423对第三磁铁421产生磁吸力,第四线圈424对第四磁铁422产生磁吸力。这样,第三磁铁421与第四磁铁422通过该磁吸力对形变片411施加拉力,从而带动形变片411的两端向彼此靠近的方向弯折。此时,两个限位块414与第一马达36分开。
一种实施方式中,当自锁组件40的结构为上述第六种实施方式的自锁组件40的结构时,通过向第三线圈423与第四线圈424传输电流信号,也即第三线圈423与第四线圈424接收电流信号时,第三线圈423对第三磁铁421产生磁吸力,第四线圈424对第四磁铁422产生磁吸力。这样,第三磁铁421与第四磁铁422通过该磁吸力对刚性片411施加拉力,从而使得刚性件411挤压连接件44,连接件44压缩,连接件44发生形变。此时,两个限位块414与第一马达36分开。
S200控制第一马达36带动第一镜片381沿变焦镜头100的光轴方向移动。
可以理解的是,变焦镜头100的光轴方向为X轴方向。此时,第一马达36能够带动第一镜片381沿X轴正方向或者X轴负方向移动。可以理解的是,第一马达36带动第一镜片381沿X轴正方向或者X轴负方向移动距离可根据用户的调焦需求而设置。
S300当第一马达36移动至目标位置时,停止向施力件42发送控制信号,限位件41与第一马达36接触,并与第一马达36产生静摩擦力。
可以理解的是,通过限位件41与第一马达36产生静摩擦力,从而利用该静摩擦力将第一马达36进行锁紧。这样,第一马达36在限位件41的作用下,不容易再沿X轴方向滑动。
一种实施方式中,施力件42未向限位件41施加作用力时,限位件41在连接件44的压力下与第一马达36接触,且与第一马达36之间形成静摩擦力。
可以理解的是,本实施例的连接件44既可以起到将限位件41连接到外壳32,又可以用来对限位件41施力。连接件具有“一物多用”的效果。此时,变焦镜头30的结构较简单。
此外,当连接件44对限位件41施力时,限位件41也会对连接件44施加反作用力。此时,因为连接件44连接于限位件41与外壳之间,所以该反作用力可以传递至外壳32。外壳32的整体强度较大,可以有效抵抗该反作用力。
在本实施方式中,通过自锁组件40将第一马达36进行锁紧,从而使得第一马达36上的第一镜片381的稳定较佳,也即第一马达36上的第一镜片381不容易因外界的抖动或者振动而发生移动,从而当用户在拍摄照片时,拍摄的图像不容易出现变形或模糊。特别是,当用户在运动过程中拍照时,摄像模组100拍摄的图像的效果也较佳。
在其他实施例中,第二马达37处也可以设置有自锁组件40。此时,自锁组件40也能够对第二马达37实行上述步骤。具体的这里不再赘述。
一种实施方式中,变焦镜头100还包括霍尔传感器51及检测磁铁52。
在“控制第一马达36带动第一镜片381沿变焦镜头100的光轴方向移动”之后,方法还包括:
霍尔传感器51检测检测磁铁52的磁场强度。
当确认出磁场强度不等于预设磁场强度时,控制第一马达36带动第一镜片381沿变焦镜头100的光轴方向移动至目标位置。
可以理解的是,当用户需要对摄像模组100进行调焦(例如10倍调焦)时,向第一线圈363传输电流信号。第一磁铁362在安培力下推动第一移动支架361沿X轴正方向或者X轴负方向移动。此时,第一移动支架361容易出现未移动至目标位置。本实施方式利用霍尔传感器51检测检测磁铁52的磁场强度,并判断该磁场强度与10倍调焦处的预设磁场强度的大小。当该磁场强度与10倍调焦处的预设磁场强度不相等时,霍尔传感器51通过第三电路板33向主机电路板80反馈。此时,主机电路板80能够向第一线圈363提供补偿电流信号,从而使得第一移动支架361移动至目标位置,也即10倍调焦的位置。这样,通过霍尔传感器51与检测磁铁52能够提高摄像模组100的调焦的准确度,从而使得摄像模组100拍摄的图像的效果较佳。
上文通过结合相关附图具体介绍了一种电子设备1及其调焦方法。下文将结合相关附 图具体介绍另一种电子设备1及其调焦方法。
第二种实施例,与第一种实施例大部分相同的内容不再赘述:如图21及图22所示,图21是本申请实施例提供的电子设备的另一种实施方式的结构示意图。图22是图21所示的电子设备在C-C线处的部分剖面示意图。电子设备1包括壳体60、屏幕70、主机电路板80及摄像模组100。壳体60、屏幕70、主机电路板80的设置方式可参阅第一种实施例的电子设备100的壳体60、屏幕70、主机电路板80的设置方式。这里不再赘述。
在本实施例中,摄像模组100与后盖61的第一透光部64相对设置。这样,电子设备1的摄像模组100直接接收穿过第一透光部64的环境光线。换言之,电子设备1不再通过第一种实施例的棱镜马达90来接收穿过第一透光部64的环境光线。第一透光部64的形状不仅限于附图21所示意的圆形。
此外,请参阅图23,图23是图21所示的电子设备的摄像模组的部分分解示意图。摄像模组100包括第二电路板10、感光芯片20、滤光片39及变焦镜头30。在本实施例中,第二电路板10、感光芯片20与滤光片39的设置方式可参阅第一种实施例的第二电路板10、感光芯片20与滤光片39的设置方式,这里不再赘述。
请参阅图24,图24是图23所示的摄像模组的变焦镜头的分解示意图。变焦镜头30包括底座31、外壳32、上簧片34、下簧片35、第一马达36、第一镜片381以及自锁组件40。
此外,底座31包括基板311及固定连接于基板311一侧的定位柱312。在本实施例中,定位柱312的数量为四个。定位柱312分别位于基板311的四个角落处。在其他实施例中,定位柱312的数量以及固定位置不做具体限制。
请再次参阅图24及图22,基板311固定于第二电路板10,且与感光芯片20同侧。基板311设有通孔313。感光芯片20与通孔313相对设置,以采集穿出通孔313的环境光线。通孔313的形状不仅限于附图24所示意的圆形。
一种实施方式中,通过将感光芯片20部分伸进通孔313内,从而既可以避免基板311挤压感光芯片20,又可以使得感光芯片20与基板311在X轴方向上存在重叠区域,从而使得摄像模组100在X轴方向上可以设置得较薄。
一种实施方式中,滤光片39可以设置于基板31朝向第二电路板10的表面,也可以设置于基板31背向第二电路板10的表面,也可以设置于通孔313内(例如,将滤光片39的侧面粘接于通孔313的孔壁)。附图22示意了滤光片39固定于基板31朝向第二电路板10的表面。
请参阅图25,并结合图24所示,图25是图24所示的变焦镜头的部分结构示意图。在Z轴方向上,各定位柱312均具有第一台阶面331与第二台阶面332。换言之,在Z轴方向上,第一台阶面331与第二台阶面332具有高度差。
此外,上簧片34包括第一连接环341及连接于第一连接环341的周缘的多个第一连接脚342。多个第一连接脚342分别一一对应地固定于多个第一台阶面331。在本实施例中,第一连接脚342的数量为四个。四个第一连接脚342分别一一对应地固定于四个第一台阶面331。
请参阅图26,并结合图24所示,图26是图24所示的变焦镜头的部分结构示意图。 下簧片35包括第二连接环351及连接于第二连接环351的周缘的多个第二连接脚352。多个第二连接脚352分别一一对应地固定于多个第二台阶面332。在本实施例中,第二连接脚352的数量为四个。四个第二连接脚352分别一一对应地固定于四个第二台阶面332。
请参阅图27与图28,图27是图24所示的变焦镜头的部分结构在一种角度下的分解示意图。图28是图27所示的变焦镜头的部分结构在另一种角度下的分解示意图。第一马达36安装有第一镜片381。第一马达36用于带动第一镜片381沿变焦镜头100的光轴方向移动。
在本实施方式中,第一镜片381可以安装于镜筒内,并通过镜筒安装于第一马达36。第一马达36包括第一移动支架361、第一磁铁362、第一线圈363、第二磁铁364及第二线圈365。
此外,第一移动支架361包括相背设置的前表面3611与后表面3612、相背设置的左表面3613与右表面3614以及相背设置的上表面3615与下表面3616。左表面3613与右表面3614连接在前表面3611与后表面3612之间。上表面3615与下表面3616连接在前表面3611与后表面3612之间,且连接在左表面3613与右表面3614之间。
可以理解的是,当电子设备1的后盖61朝向用户时,前表面3611为第一移动支架361靠近用户的表面,也即面向Z轴正方向的表面。后表面3612为第一移动支架361远离用户的表面,也即面向Z轴负方向的表面。左表面3613为第一移动支架361靠近用户左侧的表面,也即面向X轴负方向的表面。右表面3614为第一移动支架361靠近用户右侧的表面,也即面向X轴正方向的表面。上表面3615为第一移动支架361靠近电子设备1顶部的表面,也即面向Y轴正方向的表面。下表面3616为第一移动支架361靠近电子设备1底部的表面,也即面向Y轴负方向的表面。
请参阅图27与图26,第一移动支架361的前表面3611连接于上簧片34的第一连接环341。请参阅图28与图25,第一移动支架361的后表面3612连接于下簧片35的第二连接环351。这样,因为上簧片34与下簧片35具有弹性,所以当对第一移动支架361施加作用力时,第一移动支架361能够克服上簧片34与下簧片35的弹力移动。
请再次参阅图27与图28,第一移动支架361的右表面3614具有第一凸块3617。左表面3613具有第二凸块3618。
请参阅图29,图29是图23所示的变焦镜头在D-D线处的部分剖面示意图。第一线圈363套设于第一凸块3617。第二线圈365套设于第二凸块3618。此外,外壳32固定连接于基板311。外壳32与基板311围出容纳空间312。
请再次参阅图27与图28,外壳32包括前板件322、相对设置的上板件323与下板件324以及相对设置的左板件325与右板件326。左板件325与右板件326连接在上板件323与下板件324之间。前板件322连接在左板件325与右板件326之间,且连接在上板件323与下板件324之间。前板件322与基板311相对设置。前板件322设有贯穿孔327。基板311、前板件322、上板件323、下板件324、左板件325、右板件326大致形成一个箱体。
可以理解的是,当电子设备1的后盖61朝向用户时,前板件322为外壳32靠近用户的板件,也即面向Z轴正方向的板件。上板件323为外壳32靠近电子设备1顶部的板件,也即面向Y轴正方向的板件。下板件324为外壳32靠近电子设备1底部的板件,也即面向 Y轴负方向的板件。左板件325为外壳32靠近用户左侧的板件,也即面向X轴负方向的板件。右板件326为外壳32靠近用户右侧的板件,也即面向X轴正方向的板件。
请再次参阅图29,第一磁铁362固定于外壳32的右板件326。第一磁铁362与第一线圈363相对设置。第二磁铁364固定于外壳32的左板件325。第二磁铁364与第二线圈365相对设置。
在本实施例中,当第一线圈363接收电流信号时,第一线圈363通电,第一线圈363电流信号在第一磁铁362产生的磁场下产生沿Z轴方向的安培力。此时,第一线圈363在安培力下,克服上簧片34与下簧片35的弹力,推动第一移动支架361沿Z轴方向移动。
此外,当对第二线圈365传输电流信号时,第二线圈365通电,第二线圈365电流信号在第二磁铁364产生的磁场下产生沿Z轴方向的安培力。此时,第二线圈365在安培力下,克服上簧片34与下簧片35的弹力,推动第一移动支架361沿Z轴方向移动。
可以理解的是,通过改变第一线圈363上电流信号的方向,或者设置第一磁铁362的S极或者N极的位置,从而当第一线圈363通电时,第一磁铁362可以产生沿Z轴正方向或者Z轴负方向的安培力。此外,通过改变第二线圈365上电流信号的方向,或者设置第二磁铁364的S极或者N极的位置,从而当第二线圈365通电时,第二线圈365可以产生沿Z轴正方向或者Z轴负方向的安培力。
请再次参阅图27及图28,变焦镜头30还包括霍尔传感器51及检测磁铁52。
其中,检测磁铁52固定于第一移动支架361。在本实施方式中,检测磁铁52固定于第一移动支架361的下表面3616。
在其他实施方式中,检测磁铁52也可以固定于第一移动支架361的上表面3615。
在其他实施方式中,第一移动支架361也可以设置沉槽。沉槽的开口位于下表面3616或者上表面3615。检测磁铁52设置于沉槽内。
此外,霍尔传感器51用于检测检测磁铁52的磁场强度。霍尔传感器51固定于外壳32,且朝向检测磁铁52。在本实施方式中,霍尔传感器51固定于外壳32的下板件324。
在其他实施方式中,霍尔传感器51也可以固定于外壳32的上板件323。
可以理解的是,当用户需要对摄像模组100进行调焦(例如10倍调焦)时,对第一线圈363传输电流信号。第一线圈363在安培力下推动第一移动支架361沿Z轴正方向或者Z轴负方向移动。此时,第一移动支架361容易出现未移动至目标位置。本实施方式利用霍尔传感器51检测检测磁铁52的磁场强度,并判断该磁场强度与10倍调焦处的预设磁场强度的大小。当该磁场强度与10倍调焦处的预设磁场强度不相等时,霍尔传感器51通过第二电路板10向主机电路板80反馈。此时,主机电路板80能够向第一线圈363提供补偿电流信号,从而使得第一移动支架361移动至目标位置,也即10倍调焦的位置。这样,通过霍尔传感器51与检测磁铁52能够提高摄像模组100的调焦的准确度,从而使得摄像模组100拍摄的图像的效果较佳。
请参阅图30及图31,图30是图24所示的变焦镜头的部分结构示意图。图31是图24所示的变焦镜头的部分结构示意图。自锁组件40包括限位件41、施力件42及连接件44。连接件44固定连接于外壳32。具体的,自锁组件40的设置方式可以参阅第一种实施例的自锁结构40的设置方式。这里不再赘述。此外,自锁组件40的限位件41、施力件42及 连接件44的锁紧原理与解锁原理可参阅第一种实施例。这里也不再赘述。
可以理解的是,自锁组件40用于当第一马达36移动至目标位置时,将第一马达36进行锁紧。这样,第一马达36上的第一镜片381的稳定较佳,也即第一马达36上的第一镜片381不容易因外界的抖动或者振动而发生移动,从而当用户在拍摄照片时,拍摄的图像不容易出现变形或模糊。特别是,当用户在运动过程中拍照时,摄像模组100拍摄的图像的效果也较佳。
此外,外壳32还包括上盖321。结合附图27及图28,上盖321可拆卸连接于外壳32的上板件323、下板件324、左板件325或者右板件326。
一种实施方式中,外壳32的下板件324设有固定孔3241。上盖321可以部分穿过固定孔3241,并连接于下板件324。
此外,自锁组件40的连接件44固定连接于上盖321。换言之,自锁组件40与上盖321形成一体。这样,自锁组件40安装于外壳32的方式较简单。
在其他实施方式中,自锁组件40也可以直接固定于外壳32。
在本实施例中,本实施例提供一种电子设备1的调焦方法。电子设备1的结构为第二个实施例中介绍的电子设备1。
电子设备1的调焦方法包括:
接收调焦信号,向施力件42发送控制信号,施力件42响应控制信号,并向限位件41施加作用力,且限位件41与第一马达36分离。可以理解的是,控制信号可以为电流信号或者电压信号。在该步骤中,自锁组件40处于解锁状态。自锁组件40处于解锁状态的原理可以参阅第一种实施例的电子设备1的调焦方法的S100。这里不再赘述。
控制第一马达36带动第一镜片381沿变焦镜头100的光轴方向移动。
可以理解的是,变焦镜头100的光轴方向为Z轴方向。此时,第一马达36能够带动第一镜片381沿Z轴正方向或者Z轴负方向移动。可以理解的是,第一马达36带动第一镜片381沿Z轴正方向或者Z轴负方向移动距离可根据用户的调焦需求而设置。
一种实施方式中,所述施力件42响应于控制信号,向所述限位件41施加作用力时,所述限位件41或所述连接件44发生形变,以使所述限位件41与所述第一马达36分开。
可以理解的是,相较于通过在所述变焦镜头内额外设置驱动装置来使得所述限位件与所述第一马达分开的方案,本实施例通过所述自锁组件40的所述限位件41或所述连接件44发生形变,来使得所述限位件41与所述第一马达36分开,其结构简单,不会增加变焦镜头30的结构的复杂性。
当第一马达36移动至目标位置时,停止向施力件42发送控制信号,限位件41与第一马达36接触,并与第一马达36产生静摩擦力。
可以理解的是,通过限位件41与第一马达36产生静摩擦力,从而利用该静摩擦力将第一马达36进行锁紧。这样,第一马达36在限位件41的作用下,不容易再沿Z轴方向滑动。
一种实施方式中,施力件42未向限位件41施加作用力时,限位件41在连接件44的压力下与第一马达36接触,且与第一马达36之间形成静摩擦力。
可以理解的是,本实施例的连接件44既可以起到将限位件41连接到外壳32,又可以 用来对限位件41施力。连接件具有“一物多用”的效果。此时,变焦镜头30的结构较简单。
此外,当连接件44对限位件41施力时,限位件41也会对连接件44施加反作用力。此时,因为连接件44连接于限位件41与外壳之间,所以该反作用力可以传递至外壳32。外壳32的整体强度较大,可以有效抵抗该反作用力。
在本实施方式中,通过自锁组件40将第一马达36进行锁紧,从而使得第一马达36上的第一镜片381的稳定较佳,也即第一马达36上的第一镜片381不容易因外界的抖动或者振动而发生移动,从而当用户在拍摄照片时,拍摄的图像不容易出现变形或模糊。特别是,当用户在运动过程中拍照时,摄像模组100拍摄的图像的效果也较佳。
一种实施方式中,变焦镜头100还包括霍尔传感器51及检测磁铁52。
在“控制第一马达36带动第一镜片381沿变焦镜头100的光轴方向移动”之后,方法还包括:
霍尔传感器51检测检测磁铁52的磁场强度。
当确认出磁场强度不等于预设磁场强度时,控制第一马达36带动第一镜片381沿变焦镜头100的光轴方向移动至目标位置。
可以理解的是,当用户需要对摄像模组100进行调焦(例如10倍调焦)时,对第一线圈363传输电流信号。第一线圈363在安培力下推动第一移动支架361沿Z轴正方向或者Z轴负方向移动。此时,第一移动支架361容易出现未移动至目标位置。本实施方式利用霍尔传感器51检测检测磁铁52的磁场强度,并判断该磁场强度与10倍调焦处的预设磁场强度的大小。当该磁场强度与10倍调焦处的预设磁场强度不相等时,霍尔传感器51通过第二电路板10向主机电路板80反馈。此时,主机电路板80能够向第一线圈363提供补偿电流信号,从而使得第一移动支架361移动至目标位置,也即10倍调焦的位置。这样,通过霍尔传感器51与检测磁铁52能够提高摄像模组100的调焦的准确度,从而使得摄像模组100拍摄的图像的效果较佳。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种变焦镜头,其特征在于,包括外壳、第一马达、第一镜片以及自锁组件;
    所述第一马达安装于所述外壳的内侧,所述第一镜片安装于所述第一马达,所述第一马达用于带动所述第一镜片沿所述变焦镜头的光轴方向移动;
    所述自锁组件包括限位件、连接件以及施力件,所述限位件位于所述第一马达与所述外壳之间,所述连接件一端固定于所述外壳,另一端固定于所述限位件,所述施力件连接于所述限位件;
    所述施力件未向所述限位件施加作用力时,所述限位件与所述第一马达接触,以使所述限位件与所述第一马达之间形成静摩擦力;
    所述施力件向所述限位件施加作用力时,所述限位件与所述第一马达分开。
  2. 根据权利要求1所述的变焦镜头,其特征在于,所述连接件连接于所述限位件的中部,所述施力件的两端分别连接所述限位件的两端。
  3. 根据权利要求2所述的变焦镜头,其特征在于,所述施力件为形状记忆合金。
  4. 根据权利要求3所述的变焦镜头,其特征在于,所述限位件包括依次连接的第一导电段、第一绝缘段及第二导电段,所述施力件的一端固定于所述第一导电段,另一端固定于所述第二导电段,所述第一导电段、所述施力件与所述第二导电段形成电流通路。
  5. 根据权利要求4所述的变焦镜头,其特征在于,所述电流通路还包括第一电路板,所述第一电路板固定于所述外壳,所述第一导电段与所述第二导电段均电连接于所述第一电路板。
  6. 根据权利要求1所述的变焦镜头,其特征在于,所述连接件为刚性件,所述连接件连接于所述限位件的中部,所述施力件的数量为两个,其中一个所述施力件连接于所述限位件的一端与外壳之间,另一个所述施力件连接于所述限位件的另一端与外壳之间。
  7. 根据权利要求6所述的变焦镜头,其特征在于,两个所述施力件均为形状记忆合金。
  8. 根据权利要求6所述的变焦镜头,其特征在于,各所述施力件均包括一个磁铁及一个线圈,两个所述磁铁分别固定于所述限位件的两端,两个所述线圈均固定于所述外壳,两个所述线圈与两个所述磁铁分别一一对应地相对设置。
  9. 根据权利要求1所述的变焦镜头,其特征在于,所述连接件为弹性件,所述连接件连接于所述限位件的中部,所述施力件的数量为两个,其中一个所述施力件连接于所述限位件的一端与外壳之间,另一个所述施力件连接于所述限位件的另一端与外壳之间。
  10. 根据权利要求1至9中任一项所述的变焦镜头,其特征在于,所述变焦镜头还包括霍尔传感器及检测磁铁,所述霍尔传感器固定于所述外壳的内侧,所述检测磁铁固定于所述第一马达,所述霍尔传感器用于检测所述检测磁铁的磁场强度。
  11. 根据权利要求1至9中任一项所述的变焦镜头,其特征在于,所述变焦镜头还包括导轨,所述导轨固定于所述外壳的内侧,所述第一马达滑动连接于所述导轨。
  12. 根据权利要求1至9中任一项所述的变焦镜头,其特征在于,所述变焦镜头还包括底座、上簧片及下簧片,所述底座在所述变焦镜头的光轴方向上具有第一台阶面及第二台阶面,所述上簧片的周缘固定于所述第一台阶面,所述下簧片的周缘固定于所述第二台阶面,所述第一马达在所述变焦镜头的光轴方向上具有前表面与后表面,所述第一马达的前表面固定于所述上簧片,所述第一马达的后表面固定于所述下簧片。
  13. 一种摄像模组,其特征在于,包括第二电路板、感光芯片及如权利要求1至12中任一项所述的变焦镜头,所述感光芯片与所述变焦镜头均固定于所述第二电路板,所述变焦镜头用于将环境光线投射至所述感光芯片。
  14. 一种电子设备,其特征在于,包括壳体及如权利要求13所述的摄像模组,所述摄像模组安装于所述壳体的内部,所述壳体设有第一透光部,所述摄像模组用于采集透过所述第一透光部的环境光线。
  15. 一种电子设备的调焦方法,其特征在于,所述电子设备包括变焦镜头,所述变焦镜头包括外壳、第一马达、第一镜片以及自锁组件;所述第一马达安装于所述外壳的内侧,所述第一镜片安装于所述第一马达;所述自锁组件包括限位件、连接件以及施力件,所述限位件位于所述第一马达与所述外壳之间,所述连接件一端固定于所述外壳,另一端固定于所述限位件,所述施力件连接于所述限位件;
    所述方法包括:
    接收调焦信号,向所述施力件发送控制信号,所述施力件响应所述控制信号,并向所述限位件施加作用力,所述限位件与所述第一马达分开;
    控制所述第一马达带动所述第一镜片沿所述变焦镜头的光轴方向移动;
    当所述第一马达移动至目标位置时,停止向所述施力件发送控制信号,所述限位件与所述第一马达接触,并与所述第一马达产生静摩擦力。
  16. 根据权利要求15所述的电子设备的调焦方法,其特征在于,所述变焦镜头还包括霍尔传感器及检测磁铁,所述霍尔传感器固定于所述外壳的内侧,所述检测磁铁固定于所述第一马达;
    在“控制所述第一马达带动所述第一镜片沿所述变焦镜头的光轴方向移动”之后,所述方法还包括:
    所述霍尔传感器检测所述检测磁铁的磁场强度;
    当确认出所述磁场强度不等于预设磁场强度时,控制所述第一马达带动所述第一镜片沿所述变焦镜头的光轴方向移动至所述目标位置。
PCT/CN2021/079534 2020-03-13 2021-03-08 变焦镜头、摄像模组、电子设备及其调焦方法 WO2021180033A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010177411.3A CN113467036B (zh) 2020-03-13 2020-03-13 变焦镜头、摄像模组、电子设备及其调焦方法
CN202010177411.3 2020-03-13

Publications (1)

Publication Number Publication Date
WO2021180033A1 true WO2021180033A1 (zh) 2021-09-16

Family

ID=77670459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079534 WO2021180033A1 (zh) 2020-03-13 2021-03-08 变焦镜头、摄像模组、电子设备及其调焦方法

Country Status (2)

Country Link
CN (1) CN113467036B (zh)
WO (1) WO2021180033A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115002317A (zh) * 2022-05-26 2022-09-02 维沃移动通信有限公司 摄像头模组和电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115840277A (zh) * 2021-09-18 2023-03-24 格科微电子(上海)有限公司 摄像头模组及其数码设备
CN115623103A (zh) * 2022-09-30 2023-01-17 Oppo广东移动通信有限公司 锁定机构、壳体组件、电子设备
CN118057823A (zh) * 2022-11-18 2024-05-21 华为技术有限公司 摄像头模组及电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056951A (ja) * 2002-07-23 2004-02-19 Minolta Co Ltd 圧電アクチュエータの駆動回路、駆動方法および撮像装置
CN1894953A (zh) * 2003-12-19 2007-01-10 Hysonic株式会社 图像拍摄设备
CN101539655A (zh) * 2008-03-19 2009-09-23 德昌电机(深圳)有限公司 镜头驱动装置
CN101728971A (zh) * 2008-10-17 2010-06-09 德昌电机(深圳)有限公司 压电式运动系统及具有所述压电式运动系统的镜头驱动装置
CN101896719A (zh) * 2007-10-30 2010-11-24 剑桥机电有限公司 形状记忆合金致动装置
CN102037241A (zh) * 2008-05-21 2011-04-27 柯尼卡美能达精密光学株式会社 位置控制装置、位置控制方法、驱动装置及摄像装置
CN202059308U (zh) * 2011-05-18 2011-11-30 格科微电子(上海)有限公司 直线电动机及对焦模组、图像捕捉模组和电子设备
CN102437706A (zh) * 2011-12-21 2012-05-02 格科微电子(上海)有限公司 实现驱动物体直线运动装置的方法和直线电动机
CN107000216A (zh) * 2014-08-01 2017-08-01 Eto电磁有限责任公司 抓夹装置以及抓夹装置的应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW461985B (en) * 1999-08-13 2001-11-01 Primax Electronics Ltd Adjustment structure for fast locating of camera lenses
CN101324692A (zh) * 2007-06-12 2008-12-17 展讯通信(上海)有限公司 一种光学变焦镜头控制装置
CN109327571B (zh) * 2018-11-06 2020-08-14 Oppo广东移动通信有限公司 摄像头组件及电子装置
CN209433163U (zh) * 2019-01-18 2019-09-24 东莞佩斯讯光电技术有限公司 一种长焦镜头的摄像模组
CN110198407A (zh) * 2019-06-26 2019-09-03 Oppo(重庆)智能科技有限公司 电子设备及拍摄方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004056951A (ja) * 2002-07-23 2004-02-19 Minolta Co Ltd 圧電アクチュエータの駆動回路、駆動方法および撮像装置
CN1894953A (zh) * 2003-12-19 2007-01-10 Hysonic株式会社 图像拍摄设备
CN101896719A (zh) * 2007-10-30 2010-11-24 剑桥机电有限公司 形状记忆合金致动装置
CN101539655A (zh) * 2008-03-19 2009-09-23 德昌电机(深圳)有限公司 镜头驱动装置
CN102037241A (zh) * 2008-05-21 2011-04-27 柯尼卡美能达精密光学株式会社 位置控制装置、位置控制方法、驱动装置及摄像装置
CN101728971A (zh) * 2008-10-17 2010-06-09 德昌电机(深圳)有限公司 压电式运动系统及具有所述压电式运动系统的镜头驱动装置
CN202059308U (zh) * 2011-05-18 2011-11-30 格科微电子(上海)有限公司 直线电动机及对焦模组、图像捕捉模组和电子设备
CN102437706A (zh) * 2011-12-21 2012-05-02 格科微电子(上海)有限公司 实现驱动物体直线运动装置的方法和直线电动机
CN107000216A (zh) * 2014-08-01 2017-08-01 Eto电磁有限责任公司 抓夹装置以及抓夹装置的应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115002317A (zh) * 2022-05-26 2022-09-02 维沃移动通信有限公司 摄像头模组和电子设备

Also Published As

Publication number Publication date
CN113467036B (zh) 2022-11-11
CN113467036A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2021180033A1 (zh) 变焦镜头、摄像模组、电子设备及其调焦方法
US10203472B2 (en) Autofocus camera systems and methods
US20240088748A1 (en) Driving apparatus and electronic device
WO2023011353A1 (zh) 摄像头模组和电子设备
CN113114902B (zh) 拍摄装置及电子设备
US20240040257A1 (en) Camera apparatus and electronic device
WO2022052829A1 (zh) 光学镜头、摄像模组、电子设备及摄像模组的拍摄方法
CN215344785U (zh) 防抖机构、拍摄装置以及电子设备
CN115550535A (zh) 防抖组件、摄像模组及电子设备
CN115633240A (zh) 防抖组件、摄像模组及电子设备
WO2023174324A1 (zh) 镜头组件、摄像模组以及电子设备
CN115396581B (zh) 拍摄机构、拍摄装置以及电子设备
CN218514442U (zh) 摄像模组及电子设备
CN219999459U (zh) 一种摄像头模组和电子设备
CN219802461U (zh) 一种摄像头模组和电子设备
CN218387701U (zh) 防抖组件、摄像模组及电子设备
WO2023169291A1 (zh) 一种摄像模组及电子设备
EP4207729A1 (en) Camera module
US20240064393A1 (en) Camera module
US20230371170A1 (en) Camera module
WO2023001204A1 (zh) 光学镜头、摄像模组及电子设备
CN115499571A (zh) 一种摄像头模组、防抖组件和电子设备
KR20220148002A (ko) 카메라 모듈 및 이를 포함하는 광학기기
TW202331399A (zh) 潛望式攝像模組及電子裝置
CN113810580A (zh) 一种可微距拍摄的潜望式摄像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21768954

Country of ref document: EP

Kind code of ref document: A1