WO2021179810A1 - 天线组件和电子设备 - Google Patents

天线组件和电子设备 Download PDF

Info

Publication number
WO2021179810A1
WO2021179810A1 PCT/CN2021/073567 CN2021073567W WO2021179810A1 WO 2021179810 A1 WO2021179810 A1 WO 2021179810A1 CN 2021073567 W CN2021073567 W CN 2021073567W WO 2021179810 A1 WO2021179810 A1 WO 2021179810A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
filter circuit
circuit
feeding
radio frequency
Prior art date
Application number
PCT/CN2021/073567
Other languages
English (en)
French (fr)
Inventor
杨帆
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010169497.5A external-priority patent/CN113394546A/zh
Priority claimed from CN202020306585.0U external-priority patent/CN211350951U/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP21766834.2A priority Critical patent/EP4117115A4/en
Publication of WO2021179810A1 publication Critical patent/WO2021179810A1/zh
Priority to US17/940,973 priority patent/US20230006335A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • This application relates to the field of antenna technology, and in particular to an antenna assembly and electronic equipment.
  • the antenna of an electronic device with a metal frame is mainly implemented based on a metal frame, and the cross-sectional height of the metal frame is one of the main factors affecting its radiation efficiency.
  • the cross-sectional height of the metal frame of the electronic device can be understood as the metal width of the metal frame in the thickness direction of the mobile phone.
  • the low profile height frame design poses new challenges to the antenna performance.
  • an antenna assembly and an electronic device are provided.
  • An antenna assembly including:
  • the conductive frame is provided with at least one gap, and the gap divides the conductive frame into at least independent first conductive stubs and second conductive stubs, wherein a first feed point is provided on the first conductive stubs, and A second feed point is provided on the second conductive branch;
  • the filter module includes a first filter circuit and a second filter circuit
  • the feeding module includes a first feeding circuit and a second feeding circuit; wherein,
  • the first feeding circuit couples and feeds a switchable first current signal to the first conductive stub through the first filter circuit and the first feeding point, so that the first current signal on the first conductive stub is
  • a radiator can switchably radiate first radio frequency signals of different frequency bands
  • the second feeding circuit feeds a second current signal to the second conductive stub through the second filter circuit and the second feeding point, so that the second radiator on the second conductive stub radiates The second radio frequency signal, wherein, when the first radio frequency signal of different frequency bands is switchably radiated by the first radiator, the working frequency band of the second radio frequency signal radiated by the second radiator remains unchanged.
  • An electronic device including:
  • the conductive frame is provided with at least one gap, and the gap divides the conductive frame into at least independent first conductive stubs and second conductive stubs, wherein a first feed point is provided on the first conductive stubs, and A second feed point is provided on the second conductive branch;
  • the filter module includes a first filter circuit and a second filter circuit
  • the feeding module includes a first feeding circuit and a second feeding circuit; wherein,
  • the first feeding circuit couples and feeds a switchable first current signal to the first conductive stub through the first filter circuit and the first feeding point, so that the first current signal on the first conductive stub is
  • a radiator can switchably radiate first radio frequency signals of different frequency bands
  • the second feeding circuit feeds a second current signal to the second conductive stub through the second filter circuit and the second feeding point, so that the second radiator on the second conductive stub radiates The second radio frequency signal, wherein, when the first radio frequency signal of different frequency bands is switchably radiated by the first radiator, the working frequency band of the second radio frequency signal radiated by the second radiator remains unchanged; wherein,
  • the substrate is accommodated in a cavity enclosed by the conductive frame, and the filter module and the power feeding module are arranged on the substrate.
  • the first conductive stub and the second conductive stub share the same slot to simultaneously radiate the first radio frequency signal and the second radio frequency signal, which can improve the space utilization rate of the conductive frame in the slot and the electronic device. At the same time, it is no longer necessary to design the antenna radiator separately, which reduces the thickness of the mobile phone.
  • the first radiator when the first radiator can switchably radiate the first radio frequency signal of different frequency bands, the working frequency band of the second radio frequency signal radiated by the second radiator remains unchanged, so as to improve the performance of the antenna assembly
  • the first radiator and the second radiator can be integrated on the top frame or the bottom frame of the electronic device, thereby reducing the pressure of integrating the antenna assembly on the side frame, so as to reduce the cross-sectional height of the side frame.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of an electronic device in an embodiment
  • FIG. 2 is a schematic diagram of a first structure of an antenna assembly in an electronic device in an embodiment
  • FIG. 3 is a schematic diagram of a second structure of an antenna assembly in an electronic device in an embodiment
  • FIG. 4 is a schematic diagram of a third structure of an antenna assembly in an electronic device in an embodiment
  • FIG. 5 is a schematic diagram of a fourth structure of an antenna assembly in an electronic device in an embodiment
  • FIG. 6 is a schematic diagram of a simulation of an antenna component in an electronic device in an embodiment
  • FIG. 7 is a schematic diagram of a fifth structure of an antenna assembly in an electronic device in an embodiment.
  • first, second, etc. used in this application can be used herein to describe various elements, but these elements are not limited by these terms. These terms are only used to distinguish the first element from another element, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, "a plurality of” means at least two, such as two, three, etc., unless specifically defined otherwise.
  • the antenna assembly of an embodiment of the present application is applied to an electronic device.
  • the electronic device may include a mobile phone, a tablet computer, a notebook computer, a handheld computer, a mobile Internet device (MID), and a wearable device (for example, smart watches, smart bracelets, pedometers, etc.) or other communication modules that can be equipped with array antenna components.
  • MID mobile Internet device
  • wearable device For example, smart watches, smart bracelets, pedometers, etc.
  • other communication modules that can be equipped with array antenna components.
  • the electronic device 10 may include a conductive frame 110, a back cover, a display screen assembly 120, a substrate 130, and a radio frequency circuit.
  • the display screen assembly 120 is fixed on the housing assembly formed by the conductive frame 110 and the back cover.
  • the display screen assembly 120 and the housing assembly together form the external structure of the electronic device 10.
  • the display screen assembly 120 can be used to display pictures or fonts, and can be The user provides an operation interface.
  • the back cover is used to form the outer contour of the electronic device 10.
  • the back cover can be formed in one piece.
  • a rear camera hole, fingerprint recognition module, antenna assembly mounting hole and other structures can be formed on the back cover.
  • the back cover may be a non-metal back cover, for example, the back cover may be a plastic back cover, a ceramic back cover, a 3D glass back cover, etc.
  • the conductive frame 110 may be a frame structure with through holes.
  • the material of the conductive frame 110 may include metal frames such as aluminum alloy and magnesium alloy.
  • the conductive frame 110 is a rectangular frame with rounded corners.
  • the conductive frame 110 may include a first frame and a third frame arranged opposite to each other, and a second frame and a fourth frame arranged opposite to each other.
  • the two frames are respectively connected with the first frame and the third frame.
  • the first frame can be understood as the top frame of the electronic device 10
  • the third frame can be understood as the bottom frame of the electronic device 10
  • the second frame and the fourth frame can be understood as the side frames of the electronic device 10.
  • the antenna assembly may be partially or completely formed by a part of the conductive frame 110 of the electronic device 10.
  • the radiator of the antenna assembly may be partially or integrated in at least one of the top frame, the bottom frame, and the side frame of the electronic device 10.
  • the substrate 130 may be received in the receiving space formed by the conductive frame 110 and the back cover.
  • the substrate 130 may be a PCB (Printed Circuit Board, printed circuit board) or FPC (Flexible Printed Circuit, flexible circuit board).
  • a part of the radio frequency circuit for processing antenna signals can be integrated on the substrate 130, and a controller that can control the operation of the electronic device 10 can also be integrated.
  • the radio frequency circuit includes, but is not limited to, an antenna component, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the radio frequency circuit can also communicate with the network and other devices through wireless communication.
  • the above-mentioned wireless communication can use any communication standard or protocol, including but not limited to Global System of Mobile Communication (GSM), General Packet Radio Service (GPRS), Code Division Multiple Access (Code Division) Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), Long Term Evolution (LTE), Email, Short Messaging Service (SMS), etc.
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • Email Short Messaging Service
  • an embodiment of the present application provides an antenna assembly, where the antenna assembly includes a conductive frame 110, a filter module 210 and a feeding module 220.
  • the conductive frame 110 is provided with at least one gap 111, and the gap 111 divides the conductive frame 110 into at least independent first conductive branches 113 and second conductive branches 115.
  • the slot 111 is used as a part of the antenna assembly.
  • the slot 111 can be understood as a slit, and the conductive frame 110 can be divided into at least two independent conductive branches.
  • a gap 111 is used to divide the conductive frame 110 into independent first conductive stubs 113 and second conductive stubs 115.
  • the conductive frame 110 can be divided into independent N+1 conductive branches.
  • the gap 111 may be filled with air, plastic, and/or other dielectrics.
  • the shape of the slit 111 may be straight or may have one or more curved shapes.
  • the gap 111 can be opened at any position of the conductive frame 110.
  • the shape, size, and number of the slits 111 and the position where the slits 111 are opened to the conductive frame 110 are not further limited.
  • Each conductive branch can be provided with its feed point correspondingly.
  • the first conductive stub 113 is provided with a first feed point S1
  • the second conductive stub 115 is provided with a second feed point S2.
  • the filter module 210 includes a first filter circuit 211 and a second filter circuit 213.
  • the first filter circuit 211 is used to filter out radio frequency signals other than the corresponding frequency of the first radio frequency signal, so that the first radio frequency signal is in a conducting state when flowing through the first filter circuit 211.
  • the second filter circuit 213 is used to filter out radio frequency signals other than the corresponding frequency of the second radio frequency signal, so that the second radio frequency signal is in a conductive state when flowing through the first filter circuit 211.
  • the feeding module 220 includes a first feeding circuit 221 and a second feeding circuit 223; wherein, the first feeding circuit 221 passes through the first filter circuit 211 and the first feeding point S1 to the first A conductive stub 113 is coupled to feed a switchable first current signal, so that the first radiator on the first conductive stub 113 can switchably radiate first radio frequency signals of multiple working frequency bands in different frequency bands;
  • the second feeding circuit 223 feeds a second current signal to the second conductive stub 115 through the second filter circuit 213 and the second feeding point S2, so that the second radiation on the second conductive stub 115
  • the body radiates a second radio frequency signal, wherein when the first radio frequency signal of different frequency bands is switchably radiated by the first radiator, the working frequency band of the second radio frequency signal radiated by the second radiator remains unchanged.
  • the working frequency band of the first radio frequency signal is different from the working frequency band of the second radio frequency signal.
  • the first radio frequency signal may include radio frequency signals of different frequency bands.
  • the first radio frequency signal may include an LTE signal and a 5G signal.
  • the working frequency band of the first radio frequency signal includes at least two working frequency bands of a 5G signal and two working frequency bands of an LTE signal.
  • LTE signals can be divided into low frequency radio frequency signals (Low band, LB for short), intermediate frequency radio frequency signals (Middleband, MB for short), and high frequency radio frequency signals (High band, HB for short).
  • the first radiator of the first conductive stub 113 can correspondingly radiate the intermediate frequency radio frequency signal and the high frequency radio frequency signal in the LTE signal under the excitation of the first feeding circuit 221.
  • the intermediate frequency radio frequency signal includes a frequency range of 17 MHz to 2170 MHz
  • the high frequency radio frequency signal includes a frequency range of 2300 MHz to 2690 MHz.
  • the working frequency band of 5G signal can include at least N78 frequency band and N79 frequency band, among them, the frequency range of N78 frequency band is 3.3GHz ⁇ 3.6GHz, and the frequency range of N79 frequency band can be 4.8GHz ⁇ 5GHz.
  • the first radiator can be used to realize the radiation and reception of radio frequency signals corresponding to N78 and N79 in the 5G operating frequency band, and can also be used to realize the radiation and reception of intermediate frequency and high frequency radio frequency signals in the LTE signal.
  • the second radio frequency signal includes a satellite positioning signal.
  • Satellite positioning signals include Global Positioning System (GPS) signals with a frequency range of 1.2GHz-1.6GHz, BeiDou Navigation Satellite System (BDS) signals, and Global Navigation Satellite System (Global Navigation Satellite System). , GLONASS) at least one of the signals.
  • GPS Global Positioning System
  • BDS BeiDou Navigation Satellite System
  • GLONASS Global Navigation Satellite System
  • the second radiator may be used to radiate radio frequency signals in the GPS L1 frequency band or the GPS L5 frequency band.
  • the above-mentioned antenna assembly can also keep the resonant frequency of GPS L1 or GPS L5 constant, so that the cellular network and GPS positioning can work at the same time without affecting each other.
  • the antenna assembly includes a conductive frame 110.
  • the conductive frame 110 is provided with a gap 111.
  • the gap 111 divides the conductive frame 110 into a first conductive branch 113 and a second conductive branch 115, wherein the first conductive branch 113 A first feed point S1 is provided on the upper part, and a second feeder is provided on the second conductive stub 115.
  • the first feeder circuit 221 passes through the first filter circuit 211 and the first feed point S1 to the first A conductive stub 113 is coupled to feed a switchable first current signal, so that the first radiator on the first conductive stub 113 can switchably radiate a first radio frequency signal with multiple operating frequency bands; the second feed The electrical circuit 223 feeds a second current signal to the second conductive stub 115 through the second filter circuit 213 and the second feeding point S2, so that the second radiator on the second conductive stub 115 radiates The second radio frequency signal, wherein, when the first radio frequency signal of different frequency bands is switchably radiated by the first radiator, the working frequency band of the second radio frequency signal radiated by the second radiator remains unchanged.
  • the first conductive stub 113 and the second conductive stub 115 share the same gap 111 to simultaneously realize the radiation of the first radio frequency signal and the second radio frequency signal, which can improve the gap 111 and the conductive frame 110 in the electronic device 10. Space utilization. At the same time, it is no longer necessary to design the antenna radiator separately, which reduces the thickness of the mobile phone.
  • the first radiator and the second radiator may be integrated in the first frame or the third frame of the electronic device 10 to improve the utilization rate of the top frame or the bottom frame, thereby reducing the integration of antenna components on the side.
  • the pressure of the frame can reduce the cross-sectional height of the side frame, and the cross-sectional height of the side frame can be reduced to less than 1mm.
  • the cross-sectional height of the side frame can be understood as the metal width of the conductive frame 110 in the thickness direction of the electronic device 10, and the cross-sectional height of the conductive frame 110 is one of the main factors affecting its radiation efficiency.
  • the antenna assembly can be integrated on the top frame or the bottom frame without affecting the antenna assembly. Flexibility and performance.
  • the first conductive stub 113 is further provided with a first return point G1, the first feed point S1 is located close to the gap 111, and the first return point G1 is located away from the gap 111 .
  • the first conductive stub 113 between the first feed point S1 and the first return point G1 constitutes the first radiator.
  • both the first feeder circuit 221 and the first filter circuit 211 can be arranged on the substrate 130, and the first filter circuit 211 can be connected to the first conductive stub 113 through the first feeder 251, wherein the first feeder
  • the coupling point between 251 and the first conductive stub 113 can be used as the first feed point S1.
  • the first power feeding portion 251 may be a conductive elastic piece or a screw coupling.
  • the first feeding point S1 may be connected to the first filter circuit 211 through a conductive elastic piece or a screw.
  • the first current signal output by the first feed circuit 221 can be fed to the first conductive circuit through the first feed point S1 through the first filter circuit 211, and the switchable first current signal can be fed through the feeding method of the shrapnel or screw.
  • the branch 113 generates radiation, that is, radiates the first radio frequency signal with a plurality of different working frequency bands.
  • the first return point G1 may be connected to the ground layer of the substrate 130 through the first connecting portion 252 to achieve a connection with the ground.
  • the first connecting portion 252 may be a conductive body such as a spring sheet, a screw, or a flexible circuit board, and the first connecting portion 252 may also be a connecting arm made of the same material as the first conductive stub 113.
  • the first connecting portion 252 and the first conductive stub 113 may be integrally formed to simplify the structure of the antenna assembly.
  • the second conductive branch 115 is further provided with a second return point G2, the second feed point S2 is located close to the gap 111, and the second return point G2 is located away from the gap 111 .
  • the second conductive branch 115 between the second feed point S2 and the second return point G2 constitutes the second radiator.
  • the second feeder circuit 223 and the second filter circuit 213 can both be disposed on the substrate 130, and the second filter circuit 213 can be coupled to the second conductive branch 115 through the second feeder 253, wherein the second feeder
  • the coupling point between the portion 253 and the second conductive stub 115 can be used as the second feeding point S2.
  • the second power feeding portion 253 may be a conductive elastic piece or a screw, and the second feeding point S2 may be connected to the second filter circuit 213 through the conductive elastic piece or screw.
  • the second current signal output by the second feeding circuit 223 can be fed to the second conductive branch 115 via the second feeding point S2 through the second filter circuit 213 through the feeding method of shrapnel or screw. In order to excite a quarter or other mode of current on the second radiator to generate radiation, the second radio frequency signal can be radiated.
  • the second return point G2 may be connected to the ground layer of the substrate 130 through the second connecting portion 253 to realize the conduction with the ground.
  • the second connecting portion 254 may be a conductive body such as an elastic sheet, a screw, or a flexible circuit board, and the second connecting portion 254 may also be a connecting arm made of the same material as the second conductive stub 115.
  • the second connecting portion 254 and the second conductive stub 115 may be integrally formed to simplify the structure of the antenna assembly.
  • the working frequency band of the second radio frequency signal radiated by the second radiator can be changed by changing the length of the second radiator.
  • the length of the second radiator can be defined as the first length; when the second radiator is used to radiate the second radio frequency signal in the GPS L5 frequency band
  • the length of the second radiator can be defined as the second length. Wherein, the second length is greater than the first length.
  • the second filter in order to enable the second radiator to radiate the second radio frequency signal in the GPS L5 frequency band, on the basis of radiating the second radio frequency signal in the GPS L1 frequency band, in addition to increasing the length of the second radiator, it is also necessary to adjust the second filter accordingly.
  • the length of the first radiator and the second radiator can be adjusted according to the working frequency band of the first radio frequency signal and the second radio frequency signal.
  • the first radiator can also be used to receive the first radio frequency signal, and the second radiator can also receive the second radio frequency signal. Therefore, the first radiator and the second radiator can Realize the input (reception) and output (radiation) of the first radio frequency signal and the second radio frequency signal.
  • the first filter circuit 211 is a high-pass filter circuit.
  • the high-pass filter circuit can be understood as a state in which the first radio frequency signal passes through the first filter circuit 211, and blocks non-first radio frequency signals with a frequency lower than the corresponding frequency of the first radio frequency signal from passing through the first filter circuit 211. .
  • the first filter circuit 211 includes a first capacitor C1 and a first inductor L1, wherein the first end of the first capacitor C1 is connected to the first end and the first feeding point of the first inductor L1, respectively. S1 connection, the other end of the first capacitor C1 is connected to the first feeding circuit 221; the second end of the first inductor L1 is grounded.
  • the high-pass filter circuit may also be composed of other devices, and is not limited to the examples described in the embodiments of the present application.
  • the second filter circuit 213 is a low-pass filter circuit.
  • the low-pass filter circuit can be understood as a state in which the second radio frequency signal passes through the second filter circuit 213, and blocks non-second radio frequency signals with frequencies higher than the corresponding frequency of the second radio frequency signal from passing through the second filter circuit. 213.
  • the second filter circuit 213 includes a second capacitor C2 and a second inductor L2, wherein the first end of the second inductor L2 is respectively connected to the first end and the second feeding point of the second capacitor C2. S2 connection, the other end of the second inductor L2 is connected to the second feeding circuit 223; the second end of the second inductor L2 is grounded.
  • the low-pass filter circuit can also be formed by other devices, and is not limited to the examples described in the embodiments of the present application.
  • the antenna assembly further includes a switching module 230.
  • the switching module 230 is respectively connected to the first feed point S1 and the first filter circuit 211, and is used to adjust the first current signal fed to the first feed point S1 to feed the switchable stub 113
  • the first current signal in turn causes the first conductive stub 113 to radiate the first radio frequency signal in any of the operating frequency bands.
  • the switching module 230 includes a switching unit 231 and a plurality of third capacitors (C3, C4, C5, C6).
  • the switch unit 231 includes a control terminal and a plurality of selection terminals. The control terminals are respectively connected to the first feed point S1 and the first filter circuit 211; the selection terminal is grounded through the third capacitor.
  • the third capacitor of the switching module 230 in the above example can be replaced with a third inductor.
  • the switching module 230 may include a switching unit 231 and a plurality of third inductors (L3, L4, L5, L6).
  • the switch unit 231 includes a control terminal and a plurality of selection terminals. The control terminals are respectively connected to the first feed point S1 and the first filter circuit 211; the selection terminal is grounded through the third inductor.
  • the number of selection terminals of the switch unit 231 can be set according to the number of working frequency bands that can be radiated by the first radiator.
  • the switch unit 231 may be a single-pole multi-throw switch, where the active end of the single-pole multi-throw switch can be used as the control end of the switch unit 231, and the fixed end of the single-pole multi-throw switch can be used as the selection end of the switch unit 231.
  • each fixed end of the single-pole multi-throw switch is connected to a capacitor, and the capacitance value of each capacitor is different.
  • the switch unit 231 may also include multiple single-pole single-throw switches, multiple single-pole double-throw switches, multiple electronic switch tubes, and the like.
  • the electronic switch tube can be a MOS tube, a transistor, and the like.
  • the specific components of the switch unit 231 are not further limited, and it only needs to meet the switching selection conditions for multiple third capacitors or multiple third inductors.
  • the switch unit 231 can be controlled to select and conduct different tuning paths, so as to change the size of the third capacitor or the third inductance in the tuning path and adjust The working resonant frequency feeds a switchable first current signal to the first conductive stub 113 to switch between different working frequency bands.
  • the switching module 230 between the first feeder circuit 221 and the first filter circuit 211, it can be used to switch multiple operating frequency bands in the first radio frequency signal (for example, MHB, N78, N79).
  • Working frequency band while keeping the resonant frequency of the second radio frequency signal (e.g. GPS L1) always unchanged.
  • the radiation efficiency of each working frequency band e.g. working frequency bands B1, B3, B40, B41, N78, N79
  • the system efficiency meets the communication requirements, so that the cellular network and GPS positioning work at the same time without affecting each other.
  • the frequency within the range of 7-13% of the resonant frequency can be understood as the working bandwidth of the antenna.
  • the working bandwidth of the antenna is 1620MHz-1980MHz.
  • a first matching circuit 241 for adjusting the first radio frequency signal is further provided between the first conductive stub 113 and the first feeding circuit 221; wherein The first matching circuit 241 can be used to adjust the input impedance of the first radiator to improve the transmission performance of the first radiator.
  • a second matching circuit 243 for adjusting the second radio frequency signal is also provided between the second conductive stub 115 and the second feeding circuit 223; wherein, the second matching circuit 243 can be used for adjusting the second radiation.
  • the input impedance of the body to improve the transmission performance of the second radiator.
  • the first matching circuit 241 and the second matching circuit 243 may include a combination of capacitance and/or inductance.
  • the specific composition form of the first matching circuit 241 and the second matching circuit 243 is not further limited.
  • first feeding point S1 can be arranged close to the slot 111
  • second feeding point S2 can also be arranged close to the slot 111.
  • specific position of the first feed point S1 is associated with the first matching circuit 241, that is, the specific position of the first feed point S1 can be set according to the first matching circuit 241, and accordingly, the second feed point S2
  • the specific position is associated with the second matching circuit 243, that is, the specific position of the second feeding point S2 can be set according to the second matching circuit 243.
  • the conductive frame 110 is divided into a first conductive stub 113 and a second conductive stub 115 by arranging the gap 111 on the conductive frame 110, and the first conductive stub 113 feeds the first current signal in the MHB frequency band of LTE or the N78 and N79 frequency bands of 5G NR which is used to excite the first conductive stub 113 close to the gap 111, and the second conductive stub 115 is close to The position of the slot 111 feeds the second current signal used to excite the second conductive stub 115 to resonate in the GPS L1 or GPS L5 frequency band, thereby realizing the common-aperture antenna design of dual conductive stubs, so that GPS, MHB, N78 and N79 shares a gap to improve the gap and the space utilization of the whole machine.
  • the number of slits 111 opened on the conductive frame 110 is multiple.
  • the two gaps include a first gap and a second gap.
  • the first gap and the second gap can divide the conductive frame 110 into independent first conductive stubs, second conductive stubs, and third conductive stubs, where each Each of the conductive branches can be provided with a feed point and a return point correspondingly.
  • a first radiator for radiating a first radio frequency signal can be integrated on the first conductive branch
  • a second radiator for radiating a second radio frequency signal can be integrated on the second conductive branch
  • a second radiator for radiating the second radio frequency signal can be integrated on the third conductive branch.
  • the third radio frequency signal may be a WIFI (WIreless-FIdelity) signal or a Bluetooth (Bluetooth) signal.
  • the working frequency band of the WIFI signal may include 2.4 GHz and 5 GHz
  • the working frequency band of the Bluetooth signal may include 2.4 GHz.
  • each feed point can be connected to the filter circuit via a conductive spring sheet or screw, and the filter circuit can be connected to the corresponding feed circuit.
  • Each feeding circuit can feed the feeding current to the corresponding conductive stub through the filter circuit, conductive shrapnel or screw, and feeding point, so that the conductive stub (radiator) between the feeding point and the return point is excited.
  • One or the other mode of current generates radiation, that is, different radio frequency signals are radiated.
  • the conductive frame 110 can be divided into N+1 independent conductive branches, and at the same time, N+1 filter circuits and feeders can be provided correspondingly.
  • the electrical circuit also correspondingly integrates N+1 radiators on N+1 independent conductive branches to radiate N+1 radio frequency signals, and the working frequency band of each radio frequency signal is different.
  • An embodiment of the present application further provides an electronic device 10, which includes a substrate 130 and an antenna assembly as in any of the above embodiments; wherein, the substrate 130 is accommodated in an empty space surrounded by the conductive frame 110. In the cavity, the filter module 210 and the power feeding module 220 are arranged on the substrate 130.
  • the first conductive stub 113 and the second conductive stub 115 share the same slot 111 to simultaneously radiate the first radio frequency signal and the second radio frequency signal, which can improve the gap 111 and the electronic device 10, the space utilization rate of the conductive frame 110. At the same time, it is no longer necessary to design the antenna radiator separately, which reduces the thickness of the mobile phone.
  • the first radiator and the second radiator can be integrated in the first frame or the third frame of the electronic device 10.
  • the pressure of integrating the antenna assembly into the side frame can be reduced, and the cross-sectional height of the side frame can be reduced, and the cross-sectional height of the side frame can be reduced to less than 1mm.
  • the cross-sectional height of the side frame can be understood as the metal width of the conductive frame 110 in the thickness direction of the electronic device 10, and the cross-sectional height of the conductive frame 110 is one of the main factors affecting its radiation efficiency.
  • the top frame can be Or the bottom frame is used to integrate the antenna components to ensure that the antenna has sufficient headroom.
  • the design requirements of multiple frequency bands and multiple antennas can be met under the limited radiator length of the top or bottom frame.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM), which acts as external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchronous Link (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous Link (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Support Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线组件,天线组件包括:导电边框(110),开设有至少一缝隙(111),缝隙将(111)导电边框至少分割为独立的第一导电枝节(113)和第二导电枝节(115),第一导电枝(113)节上设有第一馈点(S1),第二导电枝节(115)上设有第二馈点(S2);滤波模块(210),包括第一滤波电路(211)和第二滤波电路(212);馈电模块(220),包括第一馈电电路(221)和第二馈电电路(223);第一馈电电路(221)经第一滤波电路(211)、第一馈点(S1)向第一导电枝节(113)耦合馈入可切换的第一电流信号,以使第一导电枝节(113)上的第一辐射体可切换地辐射不同频段的第一射频信号;第二馈电电路(223)经第二滤波电路(212)、第二馈点(S2)向第二导电枝节(115)馈入第二电流信号,以使第二导电枝节(113)上的第二辐射体辐射第二射频信号。

Description

天线组件和电子设备
相关申请的交叉引用
本申请要求于2020年3月12日提交中国专利局、申请号为2020101694975、2020203065850发明名称为“天线组件和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别是涉及一种天线组件和电子设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
随着无线通信技术的发展,用户对电子设备的便携性及外观的要求越来越高。具有金属边框的电子设备的天线主要基于金属边框来实现,金属边框的剖面高度是影响其辐射效率的主要因素之一。其中,电子设备金属边框的剖面高度可以理解为金属边框在手机厚度方向的金属宽度。在追求极致手机外观表现的趋势下,低剖面高度边框设计对天线性能提出了新的挑战。
发明内容
根据本申请的各种实施例,提供一种天线组件和电子设备。
一种天线组件,包括:
导电边框,开设有至少一缝隙,所述缝隙将所述导电边框至少分割为独立的第一导电枝节和第二导电枝节,其中,所述第一导电枝节上设有第一馈点,所述第二导电枝节上设有第二馈点;
滤波模块,包括第一滤波电路和第二滤波电路;
馈电模块,包括第一馈电电路和第二馈电电路;其中,
所述第一馈电电路经所述第一滤波电路、所述第一馈点向所述第一导电枝节耦合馈入可切换的第一电流信号,以使所述第一导电枝节上的第一辐射体可切换地辐射不同频段的第一射频信号;
所述第二馈电电路经所述第二滤波电路、所述第二馈点向所述第二导电枝节馈入第二电流信号,以使所述第二导电枝节上的第二辐射体辐射第二射频信号,其中,在所述第一辐射体可切换地辐射不同频段的所述第一射频信号时,所述第二辐射体辐射的第二射频信号的工作频段保持不变。
一种电子设备,包括:
基板;
导电边框,开设有至少一缝隙,所述缝隙将所述导电边框至少分割为独立的第一导电枝节和第二导电枝节,其中,所述第一导电枝节上设有第一馈点,所述第二导电枝节上设有第二馈点;
滤波模块,包括第一滤波电路和第二滤波电路;
馈电模块,包括第一馈电电路和第二馈电电路;其中,
所述第一馈电电路经所述第一滤波电路、所述第一馈点向所述第一导电枝节耦合馈入可切换的第一电流信号,以使所述第一导电枝节上的第一辐射体可切换地辐射不同频段的第一射频信号;
所述第二馈电电路经所述第二滤波电路、所述第二馈点向所述第二导电枝节馈入第二电流信号,以使所述第二导电枝节上的第二辐射体辐射第二射频信号,其中,在所述第一辐射 体可切换地辐射不同频段的所述第一射频信号时,所述第二辐射体辐射的第二射频信号的工作频段保持不变;其中,所述基板容置于所述导电边框围合形成的空腔内,所述滤波模块、馈电模块设置在所述基板上。
上述天线组件和电子设备,第一导电枝节和第二导电枝节共用同一缝隙以同时实现对第一射频信号和第二射频信号的辐射,可以提高缝隙和电子设备中导电边框的空间利用率。同时,可以不必再单独设计天线辐射体,减少了手机的厚度。另外,在所述第一辐射体可切换地辐射不同频段的所述第一射频信号时,所述第二辐射体辐射的第二射频信号的工作频段保持不变,以提升该天线组件的性能,同时,可以将该第一辐射体和第二辐射体集成在电子设备顶部边框或底部边框,进而可以减轻将天线组件集成在侧边框的压力,以减小侧边框的剖面高度。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中电子设备的立体结构示意图;
图2为一实施例中电子设备中天线组件的第一结构示意图;
图3为一实施例中电子设备中天线组件的第二结构示意图;
图4为一实施例中电子设备中天线组件的第三结构示意图;
图5为一实施例中电子设备中天线组件的第四结构示意图;
图6为一实施例中电子设备中天线组件的仿真示意图;
图7为一实施例中电子设备中天线组件的第五结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
需要说明的是,当元件被称为“贴合于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
本申请一实施例的天线组件应用于电子设备,在一个实施例中,电子设备可以为包括手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(Mobile Internet Device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等)或其他可设置阵列天线组件的通信模块。
如图1所示,在本申请实施例中,电子设备10可包括导电边框110、后盖、显示屏组件120、基板130和射频电路。显示屏组件120固定于导电边框110、后盖形成的壳体组件上,显示屏组件120与壳体组件一起形成电子设备10的外部结构,显示屏组件120可用来显示画面或字体,并能够为用户提供操作界面。
后盖用于形成电子设备10的外部轮廓。后盖可以一体成型。在后盖的成型过程中,可以 在后盖上形成后置摄像头孔、指纹识别模组、天线组件安装孔等结构。其中,后盖可以为非金属后盖,例如,后盖可以为塑胶后盖、陶瓷后盖、3D玻璃后盖等。
在其中一实施例中,导电边框110可以为具有通孔的框体结构。导电边框110的材质可以包括铝合金、镁合金等金属边框。
在其中一实施例中,导电边框110为圆角矩形边框,其中,导电边框110可包括相背设置的第一边框和第三边框,相背设置的第二边框和第四边框,其中,第二边框分别与第一边框、第三边框连接。其中,第一边框可以理解为电子设备10的顶边框,第三边框可以理解为电子设备10的底边框,第二边框和第四边框可以理解为电子设备10的侧边框。
该天线组件可以部分或全部由该电子设备10的导电边框110的一部分形成。示例性的,该天线组件的辐射体可以部分或集成在该电子设备10的顶边框、底边框和侧边框的至少一个。
基板130可以收容在导电边框110与后盖形成的收容空间中。基板130可以为PCB(Printed Circuit Board,印刷电路板)或FPC(Flexible Printed Circuit,柔性电路板)。在该基板130上可集成用于处理天线信号的部分射频电路,还可以集成能够控制电子设备10的运行的控制器等。射频电路包括但不限于天线组件、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。此外,射频电路还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(Global System of Mobile communication,GSM)、通用分组无线服务(General Packet Radio Service,GPRS)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、长期演进(Long Term Evolution,LTE))、电子邮件、短消息服务(Short Messaging Service,SMS)等。
如图2所示,本申请实施例提供一种天线组件,其中,该天线组件包括导电边框110、滤波模块210和馈电模块220。
导电边框110,开设有至少一缝隙111,所述缝隙111将所述导电边框110至少分割为独立的第一导电枝节113和第二导电枝节115。
在其中一个实施例中,缝隙111作为天线组件的一部分,该缝隙111可以理解为断缝,可以将导电边框110分割为至少两个独立的导电枝节。示例性的,一个缝隙111用于将导电边框110分割为独立第一导电枝节113和第二导电枝节115。当缝隙111的数量为N时,可以对用将导电边框110分割为独立的N+1个导电枝节。
在其中一个实施例中,缝隙111可以填充有空气、塑料和/或其它电介质。
在其中一个实施例中,缝隙111的形状可以是直的,或者可以具有一个或多个弯曲形状。
需要说明的是,缝隙111可开设在导电边框110的任意位置。在本申请实施例中,对缝隙111的形状、尺寸、数量及缝隙111开设在到导电边框110的位置均不做进一步的限定。
每一导电枝节上都可对应设置其馈点。其中,所述第一导电枝节113上设有第一馈点S1,所述第二导电枝节115上设有第二馈点S2。
滤波模块210,包括第一滤波电路211和第二滤波电路213。其中,第一滤波电路211用于滤除第一射频信号对应频率以外的射频信号,以使第一射频信号流过该第一滤波电路211时为导通的状态。第二滤波电路213用于滤除第二射频信号对应频率以外的射频信号,以使第二射频信号流过该第一滤波电路211时为导通的状态。
馈电模块220,包括第一馈电电路221和第二馈电电路223;其中,所述第一馈电电路221经所述第一滤波电路211、所述第一馈点S1向所述第一导电枝节113耦合馈入可切换的第一电流信号,以使所述第一导电枝节113上的第一辐射体可切换地辐射不同频段的多个工作频段的第一射频信号;所述第二馈电电路223经所述第二滤波电路213、所述第二馈点S2向所述第二导电枝节115馈入第二电流信号,以使所述第二导电枝节115上的第二辐射体辐射第二射频信号,其中,在所述第一辐射体可切换地辐射不同频段的所述第一射频信号时,所述第二辐射体辐射的第二射频信号的工作频段保持不变。第一射频信号的工作频段和第二 射频信号的工作频段不同。
在其中一个实施例中,第一射频信号可包括不同频段的射频信号,例如,第一射频信号可包括LTE信号和5G信号。具体的,所述第一射频信号的工作频段至少包括5G信号的两个工作频段和LTE信号的两个工作频段
LTE信号可以分为低频射频信号(Low band,简称LB)、中频射频信号(Middleband,简称MB)、高频射频信号(High band,简称HB)。在本申请实施例中,第一导电枝节113的第一辐射体在第一馈电电路221的激励下,可对应辐射LTE信号中的中频射频信号和高频射频信号。其中,中频射频信号包括的频率范围为17MHz至2170MHz,高频射频信号包括的频率范围为2300MHz至2690MHz。
5G信号的工作频段可至少包括N78频段和N79频段,其中,N78频段3.3GHz~3.6GHz,N79频段的频率范围可为4.8GHz~5GHz。
因此,第一辐射体可用于实现5G工作频段中N78和N79对应的射频信号辐射和接收,同时还可以用于实现LTE信号中中频和高频射频信号的辐射和接收。
在其中一个实施例中,所述第二射频信号包括卫星定位信号。卫星定位信号包括全球定位系统(Global PositioningSystem,GPS)信号,其频率范围为1.2GHz-1.6GHz、北斗卫星导航系统(BeiDou Navigation Satellite System,BDS)信号、格洛纳斯卫星导航系统(GlobalNavigation Satellite System,GLONASS)信号中的至少一种。示例性的,第二辐射体可用于辐射GPS L1频段或GPS L5频段的射频信号。
上述天线组件在辐射第一射频信号的同时,还可以保持GPS L1或GPS L5的谐振频率始终不变,即可实现蜂窝网和GPS定位同时工作不相互影响。
本申请实施例中,天线组件包括导电边框110,该导电边框110上开设有缝隙111,缝隙111将导电边框110分割为第一导电枝节113和第二导电枝节115,其中,第一导电枝节113上设有第一馈点S1,第二导电枝节115上设有第二馈电,所述第一馈电电路221经所述第一滤波电路211、所述第一馈点S1向所述第一导电枝节113耦合馈入可切换的第一电流信号,以使所述第一导电枝节113上的第一辐射体可切换的辐射具有多个工作频段的第一射频信号;所述第二馈电电路223经所述第二滤波电路213、所述第二馈点S2向所述第二导电枝节115馈入第二电流信号,以使所述第二导电枝节115上的第二辐射体辐射第二射频信号,其中,在所述第一辐射体可切换地辐射不同频段的所述第一射频信号时,所述第二辐射体辐射的第二射频信号的工作频段保持不变。也即,本实例中第一导电枝节113和第二导电枝节115共用同一缝隙111以同时实现对第一射频信号和第二射频信号的辐射,可以提高缝隙111和电子设备10中导电边框110的空间利用率。同时,可以不必再单独设计天线辐射体,减少了手机的厚度。
示例性的,可以将该第一辐射体和第二辐射体集成在电子设备10的第一边框或第三边框,以提高顶部边框或底部边框的利用率,进而可以减轻将天线组件集成在侧边框的压力,以减小侧边框的剖面高度,可以将侧边框的剖面高度缩小至1mm以内。其中,侧边框的剖面高度可以理解即导电边框110在电子设备10厚度方向的金属宽度,导电边框110的剖面高度是影响其辐射效率的主要因素之一。在曲面屏的侧面弯曲弧度越来越大的背景下,即便用于集成天线的侧边框的天线净空大幅度减小,也可以在顶部边框或底部边框来集成天线组件,也不会影响天线组件的灵活性和性能。
在其中一个实施例中,所述第一导电枝节113还设有第一回地点G1,所述第一馈点S1靠近所述缝隙111设置,所述第一回地点G1远离所述缝隙111设置。所述第一馈点S1与所述第一回地点G1之间的第一导电枝节113构成所述第一辐射体。
其中,第一馈电电路221和第一滤波电路211均可设置在基板130上,第一滤波电路211可通过第一馈电部251接至第一导电枝节113,其中,第一馈电部251与第一导电枝节113的耦接点可作为第一馈点S1。第一馈电部251可为导电弹片或螺钉耦,具体的,第一馈点S1可通过导电弹片或螺钉与第一滤波电路211连接。其中,第一馈电电路221输出的第一电流 信号可经第一滤波电路211,通过弹片或螺钉的馈电方式将可切换的第一电流信号经第一馈点S1馈入至第一导电枝节113,以产生辐射,即可辐射具有多个不同工作频段的第一射频信号。
在其中一个实施例中,第一回地点G1可通过第一连接部252与基板130的地层相连,以实现与地的导通。其中,第一连接部252可以为弹片、螺钉等导电体或柔性电路板,第一连接部252还可以为与第一导电枝节113相同的材质制造的连接臂。示例性的,第一连接部252与第一导电枝节113可一体成型,以简化天线组件的结构。
在其中一个实施例中,所述第二导电枝节115还设有第二回地点G2,所述第二馈点S2靠近所述缝隙111设置,所述第二回地点G2远离所述缝隙111设置。所述第二馈点S2与所述第二回地点G2之间的第二导电枝节115构成所述第二辐射体。
其中,第二馈电电路223和第二滤波电路213均可设置在基板130上,第二滤波电路213可通过第二馈电部253耦接至第二导电枝节115,其中,第二馈电部253与第二导电枝节115的耦接点可作为第二馈点S2。示例性的,第二馈电部253可为导电弹片或螺钉,其第二馈点S2可通过导电弹片或螺钉与第二滤波电路213连接。其中,第二馈电电路223输出的第二电流信号可经第二滤波电路213,通过弹片或螺钉的馈电方式将第二电流信号经第二馈点S2馈入至第二导电枝节115,以在第二辐射体上激励出四分之一或其他模式的电流,从而产生辐射,即可辐射第二射频信号。
在其中一个实施例中,第二回地点G2可通过第二连接部253与基板130的地层相连,以实现与地的导通。其中,第二连接部254可以为弹片、螺钉等导电体或柔性电路板,第二连接部254还可以为与第二导电枝节115相同的材质制造的连接臂。示例性的,第二连接部254与第二导电枝节115可一体成型,以简化天线组件的结构。
可以通过改变第二辐射体的长度以改变第二辐射体辐射第二射频信号的工作频段。示例性的,当第二辐射体用于辐射GPS L1频段的第二射频信号时,其第二辐射体的长度可定义为第一长度;当第二辐射体用于辐射GPS L5频段的第二射频信号时,其第二辐射体的长度可定义为第二长度。其中,第二长度大于第一长度。当然,为了使第二辐射体能够辐射GPS L5频段的第二射频信号,在辐射GPS L1频段的第二射频信号的基础上,除了需要增加第二辐射体的长度,还需要对应调整第二滤波电路213及第二馈电电路223中个器件的参数。
需要说明的是,辐射体越长就能够覆盖更低的频段,高频段反而对辐射体的尺寸要求不高。第一辐射体和第二辐射体的长度可根据第一射频信号和第二射频信号的工作频段进行调整。
可以理解地是,第一辐射体还可以用于实现对第一射频信号的接收,第二辐射体也可以实现对第二射频信号的接收,因此,通过第一辐射体和第二辐射体可实现对第一射频信号和第二射频信号的输入(接收)和输出(辐射)。
如图3所示,在其中一个实施例中,所述第一滤波电路211为高通滤波电路。其中,高通滤波电路可以理解为第一射频信号经过该第一滤波电路211时为通过的状态,并阻断频率低于第一射频信号对应频率的非第一射频信号经过该第一滤波电路211。
具体的,所述第一滤波电路211包括第一电容C1和第一电感L1,其中,所述第一电容C1的第一端分别与所述第一电感L1的第一端、第一馈点S1连接,所述第一电容C1的另一端与所述第一馈电电路221连接;所述第一电感L1的第二端接地。
需要说明的是,高通滤波电路还可以为其他器件构成,不限于本申请实施例的举例说明。
在其中一个实施例中,所述第二滤波电路213为低通滤波电路。其中,低通滤波电路可以理解为第二射频信号经过该第二滤波电路213时为通过的状态,并阻断频率高于第二射频信号对应频率的非第二射频信号经过该第二滤波电路213。
具体的,所述第二滤波电路213包括第二电容C2和第二电感L2,其中,所述第二电感L2的第一端分别与所述第二电容C2的第一端、第二馈点S2连接,所述第二电感L2的另一端与所述第二馈电电路223连接;所述第二电感L2的第二端接地。
需要说明的是,低通滤波电路还可以为其他器件构成,不限于本申请实施例的举例说明。
如图4和图5所示,在其中一个实施例中,所述天线组件还包括切换模块230。切换模块230分别与所述第一馈点S1、第一滤波电路211连接,用于调节馈入至所述第一馈点S1的第一电流信号以向第一导电枝节113馈入可切换的第一电流信号,进而使所述第一导电枝节113辐射任一所述工作频段的第一射频信号。
参考图4,在其中一个实施例中,所述切换模块230包括开关单元231和多个第三电容(C3、C4、C5、C6)。其中,开关单元231包括控制端和多个选择端,所述控制端分别与所述第一馈点S1、第一滤波电路211连接;所述选择端经所述第三电容接地。
参考图5,在其中一个实施例中,可以将上述实例中切换模块230的第三电容替换为第三电感。具体的,该切换模块230可包括开关单元231和多个第三电感(L3、L4、L5、L6)。开关单元231包括控制端和多个选择端,所述控制端分别与所述第一馈点S1、第一滤波电路211连接;所述选择端经所述第三电感接地。
其中,开关单元231的选择端的数量可以根据第一辐射体所能够辐射的工作频段的数量来设定。具体的,开关单元231可以为单刀多掷开关,其中,单刀多掷开关的动端可以作为开关单元231的控制端,单刀多掷开关的不动端可以作为开关单元231的选择端。其中,单刀多掷开关的每个不动端均连接一个电容,且每个电容的电容值均不相同。
需要说明的是,该开关单元231也可包括多个单刀单掷开关、多个单刀双掷开关、多个电子开关管等。其中,电子开关管可以为MOS管、晶体管等。在本申请实施例中,对开关单元231的具体组成器件不做进一步的限定,其满足符合对多个第三电容或多个第三电感的切换选择条件即可。
当该天线组件的第一辐射体需要辐射不同工作频段的第一射频信号时,可以控制开关单元231选择导通不同的调谐通路,以改变调谐通路中第三电容或第三电感的大小进而调节工作谐振频率以向第一导电枝节113馈入可切换的第一电流信号,来实现切换不同的工作频段。
如图6所示,通过在第一馈电电路221和第一滤波电路211之间设置该切换模块230,可以用于切换第一射频信号中的多个工作频段(例如,MHB、N78、N79工作频段),并同时保持第二射频信号(例如,GPS L1)的谐振频率始终不变,同时,各个工作频段(例如,工作频段B1、B3、B40、B41、N78、N79)的辐射效率和系统效率均满足通信要求,从而实现蜂窝网和GPS定位同时工作不相互影响。
需要说明的是,谐振频率7-13%范围内的频率可以理解为天线的工作带宽。例如,天线的谐振频率为1800MHz,工作带宽为谐振频率的10%,则天线的工作频段为1620MHz-1980MHz。
如图7所示,在其中一个实施例中,所述第一导电枝节113和所述第一馈电电路221之间还设有用于调节所述第一射频信号的第一匹配电路241;其中,第一匹配电路241可以用于调节第一辐射体的输入阻抗,以提高第一辐射体的传输性能。
所述第二导电枝节115和所述第二馈电电路223之间还设有用于调节所述第二射频信号的第二匹配电路243;其中,第二匹配电路243可以用于调节第二辐射体的输入阻抗,以提高第二辐射体的传输性能。
具体的,第一匹配电路241和第二匹配电路243可包括电容和/或电感等的组合。在本申请实施例中,对第一匹配电路241和第二匹配电路243的具体组成形式不做进一步的限定。
需要说明的是,第一馈点S1可靠近缝隙111设置,第二馈点S2也可靠近缝隙111设置。可以理解,第一馈点S1的具体位置与第一匹配电路241相关联,也即,第一馈点S1的具体位置可以根据第一匹配电路241来设置,相应的,第二馈点S2的具体位置与第二匹配电路243相关联,也即,第二馈点S2的具体位置可以根据第二匹配电路243来设置。
在其中一个实施例中,通过在所述导电边框110上设置所述缝隙111,从而将所述导电边框110分割为第一导电枝节113和第二导电枝节115,并在所述第一导电枝节113靠近所述缝隙111的位置馈入用于激励所述第一导电枝节113谐振于LTE的MHB频段或5G NR的N78、N79频段的第一电流信号,以及在所述第二导电枝节115靠近所述缝隙111的位置馈入用于 激励所述第二导电枝节115谐振于GPS L1或GPS L5频段的第二电流信号,从而实现双导电枝节的共口径天线设计,使得GPS、MHB、N78和N79共用一个缝隙,提高缝隙和整机空间利用率。
在其中一个实施例中,导电边框110上开设的缝隙111的数量为多个。示例性的,以缝隙为两个为例进行说明。两个缝隙包括第一缝隙和第二缝隙,其中,第一缝隙和第二缝隙可以将导电边框110分割为独立的第一导电枝节、第二导电枝节和第三导电枝节,其中,在每一所述导电枝节上均可对应设置馈点和回地点。其中,第一导电枝节上可集成用于辐射第一射频信号的第一辐射体,第二导电枝节上可集成用于辐射第二射频信号的第二辐射体,第三导电枝节上可集成用于辐射第三射频信号的第三辐射体。其中,第三射频信号可以为WIFI(WIreless-FIdelity)信号、蓝牙(Bluetooth)信号。具体的,其中,WIFI信号的工作频段可包括2.4GHz和5GHz,Bluetooth信号的工作频段可包括2.4GHz。
进一步的,每个馈点均可经导电弹片或螺钉连接至滤波电路,并由其滤波电路连接至对应的馈电电路。每一馈电电路可经该滤波电路、导电弹片或螺钉、馈点将馈电电流馈入至对应的导电枝节,以使馈点与回地点之间导电枝节(辐射体)上激励出四分之一或其他模式的电流,从而产生辐射,即可辐射不同的射频信号。
依此类推,当导电边框110上设置有N(N>2)条缝隙111时,可以将导电边框110分割为N+1个独立的导电枝节,同时可对应设置N+1个滤波电路、馈电电路,也在N+1个独立的导电枝节上对应集成N+1个辐射体,看用于辐射N+1个射频信号,且每个射频信号的工作频段不同。
本申请实施例还提供一种电子设备10,该电子设备10包括基板130以及如上述任一实施例中的天线组件;其中,所述基板130容置于所述导电边框110围合形成的空腔内,所述滤波模块210、馈电模块220设置在所述基板130上。
当该天线组件应用在电子设备10中时,第一导电枝节113和第二导电枝节115共用同一缝隙111以同时实现对第一射频信号和第二射频信号的辐射,可以提高缝隙111和电子设备10中导电边框110的空间利用率。同时,可以不必再单独设计天线辐射体,减少了手机的厚度。
示例性的,由于采用共口径天线设计,使得GPS、MHB、N78和N79共用一个缝隙,从而可以将该第一辐射体和第二辐射体集成在电子设备10的第一边框或第三边框,以提高顶部边框或底部边框的利用率,进而可以减轻将天线组件集成在侧边框的压力,以减小侧边框的剖面高度,可以将侧边框的剖面高度缩小至1mm以内。其中,侧边框的剖面高度可以理解即导电边框110在电子设备10厚度方向的金属宽度,导电边框110的剖面高度是影响其辐射效率的主要因素之一。在曲面屏的侧面弯曲弧度越来越大的背景下,侧边框的剖面高度受限,从而使得天线净空大幅度减小,通过采用本发明实施方式中提供的共口径天线设计,可以在顶部边框或底部边框来集成天线组件,保证天线具有足够的净空,并通过切换电路的设计,在顶部或底部边框有限的辐射体长度下,满足多频段、多天线的设计需求。
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。合适的非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因 此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种天线组件,包括:
    导电边框,开设有缝隙,所述缝隙将所述导电边框至少分割为独立的第一导电枝节和第二导电枝节,其中,所述第一导电枝节上设有第一馈点,所述第二导电枝节上设有第二馈点;
    滤波模块,包括第一滤波电路和第二滤波电路;
    馈电模块,包括第一馈电电路和第二馈电电路;其中,
    所述第一馈电电路经所述第一滤波电路、所述第一馈点向所述第一导电枝节耦合馈入可切换的第一电流信号,以使所述第一导电枝节上的第一辐射体可切换地辐射不同频段的第一射频信号;
    所述第二馈电电路经所述第二滤波电路、所述第二馈点向所述第二导电枝节馈入第二电流信号,以使所述第二导电枝节上的第二辐射体辐射第二射频信号,其中,在所述第一辐射体可切换地辐射不同频段的所述第一射频信号时,所述第二辐射体辐射的第二射频信号的工作频段保持不变。
  2. 根据权利要求1所述的天线组件,其特征在于,所述第一滤波电路为高通滤波电路,所述第二滤波电路为低通滤波电路。
  3. 根据权利要求2所述的天线组件,其特征在于,所述第一滤波电路包括第一电容和第一电感,其中,所述第一电容的第一端分别与所述第一电感的第一端、第一馈点连接,所述第一电容的另一端与所述第一馈电电路连接;所述第一电感的第二端接地。
  4. 根据权利要求3所述的天线组件,其特征在于,所述第二滤波电路包括第二电容和第二电感,其中,所述第二电感的第一端分别与所述第二电容的第一端、第二馈点连接,所述第二电感的另一端与所述第二馈电电路连接;所述第二电感的第二端接地。
  5. 根据权利要求1所述的天线组件,其特征在于,所述天线组件还包括:
    切换模块,分别与所述第一馈点、第一滤波电路连接,用于调节馈入至所述第一馈点的第一电流信号以使所述第一辐射体辐射任一所述工作频段的第一射频信号。
  6. 根据权利要求5所述的天线组件,其特征在于,所述切换模块包括:
    多个第三电容,
    开关单元,包括控制端和多个选择端,所述控制端分别与所述第一馈点、第一滤波电路连接;每一所述选择端经一所述第三电容接地。
  7. 根据权利要求5所述的天线组件,其特征在于,所述切换模块包括:
    多个第三电感,
    开关单元,包括控制端和多个选择端,所述控制端分别与所述第一馈点、第一滤波电路连接;每一所述选择端经一所述第三电感接地。
  8. 根据权利要求1所述的天线组件,其特征在于,所述第一导电枝节还设有第一回地点,所述第一馈点靠近所述缝隙设置,所述第一回地点远离所述缝隙设置且所述第一馈点与所述第一回地点之间的第一导电枝节构成所述第一辐射体;
    所述第二导电枝节还设有第二回地点,所述第二馈点靠近所述缝隙设置,所述第二回地点远离所述缝隙设置,且所述第二馈点与所述第二回地点之间的第一导电枝节构成所述第二辐射体。
  9. 根据权利要求1所述的天线组件,其特征在于,所述第一导电枝节和所述第一馈电电路之间还设有用于调节所述第一射频信号的第一匹配电路;所述导电枝节和所述第二馈电电路之间还设有用于调节所述第二射频信号的第二匹配电路。
  10. 根据权利要求9所述的天线组件,其特征在于,所述第一匹配电路包括电容和/或电感;所述第二匹配电路包括电容和/或电感。
  11. 根据权利要求1所述的天线组件,其特征在于,所述第一滤波电路通过第一馈电 部耦接至所述第一导电枝节,其中,所述第一馈电部与所述第一导电枝节的耦接点可作为第一馈点;
    所述第二滤波电路通过第二馈电部耦接至所述第二导电枝节,其中,所述第二馈电部与所述第二导电枝节的耦接点可作为所述第二馈点。
  12. 根据权利要求1所述的天线组件,其特征在于,所述缝隙的数量为两个,两个所述缝隙将所述导电边框分割为独立的第一导电枝节、第二导电枝节和第三导电枝节,其中,在所述第三导电枝节上对应设置馈点和回地点;其中,所述第三导电枝节上集成用于辐射第三射频信号的第三辐射体。
  13. 根据权利要求1所述的天线组件,其特征在于,所述第一射频信号的工作频段至少包括5G信号的两个工作频段和LTE信号的两个工作频段;所述第二射频信号包括卫星定位信号。
  14. 根据权利要求13所述的天线组件,其特征在于,所述5G信号的工作频段至少包括N78频段和N79频段;所述卫星定位信号包括GPS L1频段或GPS L5频段的射频信号。
  15. 一种电子设备,包括:
    基板;
    导电边框,开设有至少一缝隙,所述缝隙将所述导电边框至少分割为独立的第一导电枝节和第二导电枝节,其中,所述第一导电枝节上设有第一馈点,所述第二导电枝节上设有第二馈点;
    滤波模块,包括第一滤波电路和第二滤波电路;
    馈电模块,包括第一馈电电路和第二馈电电路;其中,
    所述第一馈电电路经所述第一滤波电路、所述第一馈点向所述第一导电枝节耦合馈入可切换的第一电流信号,以使所述第一导电枝节上的第一辐射体可切换地辐射不同频段的第一射频信号;
    所述第二馈电电路经所述第二滤波电路、所述第二馈点向所述第二导电枝节馈入第二电流信号,以使所述第二导电枝节上的第二辐射体辐射第二射频信号,其中,在所述第一辐射体可切换地辐射不同频段的所述第一射频信号时,所述第二辐射体辐射的第二射频信号的工作频段保持不变;其中,所述基板容置于所述导电边框围合形成的空腔内,所述滤波模块、馈电模块设置在所述基板上。
  16. 根据权利要求15所述的电子设备,其特征在于,所述第一滤波电路为高通滤波电路,所述第二滤波电路为低通滤波电路。
  17. 根据权利要求16所述的电子设备,其特征在于,所述第一滤波电路包括第一电容和第一电感,其中,所述第一电容的第一端分别与所述第一电感的第一端、第一馈点连接,所述第一电容的另一端与所述第一馈电电路连接;所述第一电感的第二端接地;所述第二滤波电路包括第二电容和第二电感,其中,所述第二电感的第一端分别与所述第二电容的第一端、第二馈点连接,所述第二电感的另一端与所述第二馈电电路连接;所述第二电感的第二端接地。
  18. 根据权利要求15所述的天线组件,其特征在于,所述天线组件还包括:
    切换模块,分别与所述第一馈点、第一滤波电路连接,用于调节馈入至所述第一馈点的第一电流信号以使所述第一辐射体辐射任一所述工作频段的第一射频信号。
  19. 根据权利要求15所述的电子设备,其特征在于,所述导电边框可包括相背设置的第一边框和第三边框,相背设置的第二边框和第四边框,其中,第二边框分别与第一边框、第三边框连接,其中,所述第一导电枝节和第二导电枝节集成在所述电子设备的第一边框或第三边框。
PCT/CN2021/073567 2020-03-12 2021-01-25 天线组件和电子设备 WO2021179810A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21766834.2A EP4117115A4 (en) 2020-03-12 2021-01-25 ANTENNA ARRANGEMENT AND ELECTRONIC DEVICE
US17/940,973 US20230006335A1 (en) 2020-03-12 2022-09-08 Antenna assembly and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010169497.5 2020-03-12
CN202010169497.5A CN113394546A (zh) 2020-03-12 2020-03-12 天线组件和电子设备
CN202020306585.0U CN211350951U (zh) 2020-03-12 2020-03-12 天线组件和电子设备
CN202020306585.0 2020-03-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/940,973 Continuation US20230006335A1 (en) 2020-03-12 2022-09-08 Antenna assembly and electronic device

Publications (1)

Publication Number Publication Date
WO2021179810A1 true WO2021179810A1 (zh) 2021-09-16

Family

ID=77671197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073567 WO2021179810A1 (zh) 2020-03-12 2021-01-25 天线组件和电子设备

Country Status (3)

Country Link
US (1) US20230006335A1 (zh)
EP (1) EP4117115A4 (zh)
WO (1) WO2021179810A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10056695B2 (en) * 2015-07-28 2018-08-21 Apple Inc. Electronic device antenna with switchable return paths
CN207800915U (zh) * 2017-12-29 2018-08-31 瑞声精密制造科技(常州)有限公司 一种天线系统及移动终端
CN108470977A (zh) * 2018-03-28 2018-08-31 广东欧珀移动通信有限公司 天线组件、天线装置及电子设备
CN108631041A (zh) * 2018-04-25 2018-10-09 Oppo广东移动通信有限公司 天线组件及电子装置
CN109546305A (zh) * 2018-11-14 2019-03-29 维沃移动通信有限公司 一种通信终端
CN109687115A (zh) * 2019-01-28 2019-04-26 广州三星通信技术研究有限公司 用于电子终端的gps天线结构以及电子终端
CN211350951U (zh) * 2020-03-12 2020-08-25 Oppo广东移动通信有限公司 天线组件和电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10741916B2 (en) * 2015-12-03 2020-08-11 Huawei Technologies Co., Ltd. Metal frame antenna and terminal device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10056695B2 (en) * 2015-07-28 2018-08-21 Apple Inc. Electronic device antenna with switchable return paths
CN207800915U (zh) * 2017-12-29 2018-08-31 瑞声精密制造科技(常州)有限公司 一种天线系统及移动终端
CN108470977A (zh) * 2018-03-28 2018-08-31 广东欧珀移动通信有限公司 天线组件、天线装置及电子设备
CN108631041A (zh) * 2018-04-25 2018-10-09 Oppo广东移动通信有限公司 天线组件及电子装置
CN109546305A (zh) * 2018-11-14 2019-03-29 维沃移动通信有限公司 一种通信终端
CN109687115A (zh) * 2019-01-28 2019-04-26 广州三星通信技术研究有限公司 用于电子终端的gps天线结构以及电子终端
CN211350951U (zh) * 2020-03-12 2020-08-25 Oppo广东移动通信有限公司 天线组件和电子设备

Also Published As

Publication number Publication date
EP4117115A4 (en) 2023-08-23
US20230006335A1 (en) 2023-01-05
EP4117115A1 (en) 2023-01-11

Similar Documents

Publication Publication Date Title
CN211350951U (zh) 天线组件和电子设备
CN211350950U (zh) 天线组件和电子设备
CN212136680U (zh) 天线组件和电子设备
CN212136686U (zh) 天线组件和电子设备
US10044096B2 (en) Mobile device and manufacturing method thereof
US20230006345A1 (en) Antenna Assembly and Electronic Device
US20230006360A1 (en) Antenna assembly and electronic device
EP2704252A2 (en) Mobile device and antenna structure
TW201409956A (zh) 切換天線裝置及方法
JP2016509393A (ja) チューナブルアンテナのための方法および装置
JP2011528520A (ja) アンテナ装置
CN211350948U (zh) 天线组件和电子设备
CN113285212B (zh) 天线结构
CN107994316B (zh) 天线系统及通信终端
US20200411987A1 (en) Antenna structure
US20230006336A1 (en) Antenna Assembly and Electronic Device
CN113394547A (zh) 天线组件和电子设备
CN113394545A (zh) 天线组件和电子设备
EP4254659A1 (en) Antenna apparatus and electronic device
US11791540B2 (en) Signal feeding assembly, antenna module and electronic equipment
WO2021179810A1 (zh) 天线组件和电子设备
CN113394546A (zh) 天线组件和电子设备
CN113394550A (zh) 天线组件和电子设备
WO2023273493A1 (zh) 天线装置及电子设备
TWI753595B (zh) 通訊模組及具有其之穿戴式裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21766834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021766834

Country of ref document: EP

Effective date: 20221006